Science.gov

Sample records for advanced ccd imaging

  1. An advanced CCD emulator with 32MB image memory

    NASA Astrophysics Data System (ADS)

    O'Connor, P.; Fried, J.; Kotov, I.

    2012-07-01

    As part of the LSST sensor development program we have developed an advanced CCD emulator for testing new multichannel readout electronics. The emulator, based on an Altera Stratix II FPGA for timing and control, produces 4 channels of simulated video waveforms in response to an appropriate sequence of horizontal and vertical clocks. It features 40MHz, 16-bit DACs for reset and video generation, 32MB of image memory for storage of arbitrary grayscale bitmaps, and provision to simulate reset and clock feedthrough ("glitches") on the video channels. Clock inputs are qualified for proper sequences and levels before video output is generated. Binning, region of interest, and reverse clock sequences are correctly recognized and appropriate video output will be produced. Clock transitions are timestamped and can be played back to a control PC. A simplified user interface is provided via a daughter card having an ARM M3 Cortex microprocessor and miniature color LCD display and joystick. The user can select video modes from stored bitmap images, or flat, gradient, bar, chirp, or checkerboard test patterns; set clock thresholds and video output levels; and set row/column formats for image outputs. Multiple emulators can be operated in parallel to simulate complex CCDs or CCD arrays.

  2. Advanced CCD camera developments

    SciTech Connect

    Condor, A.

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  3. Development of a CCD array as an imaging detector for advanced X-ray astrophysics facilities

    NASA Technical Reports Server (NTRS)

    Schwartz, D. A.

    1981-01-01

    The development of a charge coupled device (CCD) X-ray imager for a large aperture, high angular resolution X-ray telescope is discussed. Existing CCDs were surveyed and three candidate concepts were identified. An electronic camera control and computer interface, including software to drive a Fairchild 211 CCD, is described. In addition a vacuum mounting and cooling system is discussed. Performance data for the various components are given.

  4. CCD imaging sensors

    NASA Technical Reports Server (NTRS)

    Janesick, James R. (Inventor); Elliott, Stythe T. (Inventor)

    1989-01-01

    A method for promoting quantum efficiency (QE) of a CCD imaging sensor for UV, far UV and low energy x-ray wavelengths by overthinning the back side beyond the interface between the substrate and the photosensitive semiconductor material, and flooding the back side with UV prior to using the sensor for imaging. This UV flooding promotes an accumulation layer of positive states in the oxide film over the thinned sensor to greatly increase QE for either frontside or backside illumination. A permanent or semipermanent image (analog information) may be stored in a frontside SiO.sub.2 layer over the photosensitive semiconductor material using implanted ions for a permanent storage and intense photon radiation for a semipermanent storage. To read out this stored information, the gate potential of the CCD is biased more negative than that used for normal imaging, and excess charge current thus produced through the oxide is integrated in the pixel wells for subsequent readout by charge transfer from well to well in the usual manner.

  5. Performance characteristics of CCDs for the ACIS experiment. [Advanced X-ray Astrophysics Facility CCD Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Garmire, Gordon P.; Nousek, John; Burrows, David; Ricker, George; Bautz, Mark; Doty, John; Collins, Stewart; Janesick, James

    1988-01-01

    The search for the optimum CCD to be used at the focal surface of the Advanced X-ray Astrophysics Facility (AXAF) is described. The physics of the interaction of X-rays in silicon through the photoelectric effect is reviewed. CCD technology at the beginning of the AXAF definition phase is summarized, and the results of the CCD enhancement program are discussed. Other sources of optimum CCDs are examined, and CCD enhancements made at MIT Lincoln Laboratory are addressed.

  6. CCD imaging systems for DEIMOS

    NASA Astrophysics Data System (ADS)

    Wright, Christopher A.; Kibrick, Robert I.; Alcott, Barry; Gilmore, David K.; Pfister, Terry; Cowley, David J.

    2003-03-01

    The DEep Imaging Multi-Object Spectrograph (DEIMOS) images with an 8K x 8K science mosaic composed of eight 2K x 4K MIT/Lincoln Lab (MIT/LL) CCDs. It also incorporates two 1200 x 600 Orbit Semiconductor CCDs for active, close-loop flexure compensation. The science mosaic CCD controller system reads out all eight science CCDs in 40 seconds while maintaining the low noise floor of the MIT/Lincoln Lab CCDs. The flexure compensation (FC) CCD controller reads out the FC CCDs several times per minute during science mosaic exposures. The science mosaic CCD controller and the FC CCD controller are located on the electronics ring of DEIMOS. Both the MIT/Lincoln Lab CCDs and the Orbit flexure compensation CCDs and their associated cabling and printed circuit boards are housed together in the same detector vessel that is approximately 10 feet away from the electronics ring. Each CCD controller has a modular hardware design and is based on the San Diego State University (SDSU) Generation 2 (SDSU-2) CCD controller. Provisions have been made to the SDSU-2 video board to accommodate external CCD preamplifiers that are located at the detector vessel. Additional circuitry has been incorporated in the CCD controllers to allow the readback of all clocks and bias voltages for up to eight CCDs, to allow up to 10 temperature monitor and control points of the mosaic, and to allow full-time monitoring of power supplies and proper power supply sequencing. Software control features of the CCD controllers are: software selection between multiple mosaic readout modes, readout speeds, selectable gains, ramped parallel clocks to eliminate spurious charge on the CCDs, constant temperature monitoring and control of each CCD within the mosaic, proper sequencing of the bias voltages of the CCD output MOSFETs, and anti-blooming operation of the science mosaic. We cover both the hardware and software highlights of both of these CCD controller systems as well as their respective performance.

  7. CCD imager with photodetector bias introduced via the CCD register

    NASA Technical Reports Server (NTRS)

    Kosonocky, Walter F. (Inventor)

    1986-01-01

    An infrared charge-coupled-device (IR-CCD) imager uses an array of Schottky-barrier diodes (SBD's) as photosensing elements and uses a charge-coupled-device (CCD) for arranging charge samples supplied in parallel from the array of SBD's into a succession of serially supplied output signal samples. Its sensitivity to infrared (IR) is improved by placing bias charges on the Schottky barrier diodes. Bias charges are transported to the Schottky barrier diodes by a CCD also used for charge sample read-out.

  8. Quicker Selection of CCD Images

    NASA Technical Reports Server (NTRS)

    Salomon, P. M.; Smilowitz, K.

    1985-01-01

    Microprocessor limits analog-to-digital conversion to image areas of interest. Image region of interest selected in order of brightness by use of threshold detectors and their coordinates stored by microprocessor for tracking.

  9. A Pipeline Tool for CCD Image Processing

    NASA Astrophysics Data System (ADS)

    Bell, Jon F.; Young, Peter J.; Roberts, William H.; Sebo, Kim M.

    MSSSO is part of a collaboration developing a wide field imaging CCD mosaic (WFI). As part of this project, we have developed a GUI based pipeline tool that is an integrated part of MSSSO's CICADA data acquisition environment and processes CCD FITS images as they are acquired. The tool is also designed to run as a stand alone program to process previously acquired data. IRAF tasks are used as the central engine, including the new NOAO mscred package for processing multi-extension FITS files. The STScI OPUS pipeline environment may be used to manage data and process scheduling. The Motif GUI was developed using SUN Visual Workshop. C++ classes were written to facilitate launching of IRAF and OPUS tasks. While this first version implements calibration processing up to and including flat field corrections, there is scope to extend it to other processing.

  10. Astrometrica: Astrometric data reduction of CCD images

    NASA Astrophysics Data System (ADS)

    Raab, Herbert

    2012-03-01

    Astrometrica is an interactive software tool for scientific grade astrometric data reduction of CCD images. The current version of the software is for the Windows 32bit operating system family. Astrometrica reads FITS (8, 16 and 32 bit integer files) and SBIG image files. The size of the images is limited only by available memory. It also offers automatic image calibration (Dark Frame and Flat Field correction), automatic reference star identification, automatic moving object detection and identification, and access to new-generation star catalogs (PPMXL, UCAC 3 and CMC-14), in addition to online help and other features. Astrometrica is shareware, available for use for a limited period of time (100 days) for free; special arrangements can be made for educational projects.

  11. Method for eliminating artifacts in CCD imagers

    DOEpatents

    Turko, Bojan T.; Yates, George J.

    1992-01-01

    An electronic method for eliminating artifacts in a video camera (10) employing a charge coupled device (CCD) (12) as an image sensor. The method comprises the step of initializing the camera (10) prior to normal read out and includes a first dump cycle period (76) for transferring radiation generated charge into the horizontal register (28) while the decaying image on the phosphor (39) being imaged is being integrated in the photosites, and a second dump cycle period (78), occurring after the phosphor (39) image has decayed, for rapidly dumping unwanted smear charge which has been generated in the vertical registers (32). Image charge is then transferred from the photosites (36) and (38) to the vertical registers (32) and read out in conventional fashion. The inventive method allows the video camera (10) to be used in environments having high ionizing radiation content, and to capture images of events of very short duration and occurring either within or outside the normal visual wavelength spectrum. Resultant images are free from ghost, smear and smear phenomena caused by insufficient opacity of the registers (28) and (32), and are also free from random damage caused by ionization charges which exceed the charge limit capacity of the photosites (36) and (37).

  12. Method for eliminating artifacts in CCD imagers

    DOEpatents

    Turko, B.T.; Yates, G.J.

    1992-06-09

    An electronic method for eliminating artifacts in a video camera employing a charge coupled device (CCD) as an image sensor is disclosed. The method comprises the step of initializing the camera prior to normal read out and includes a first dump cycle period for transferring radiation generated charge into the horizontal register while the decaying image on the phosphor being imaged is being integrated in the photosites, and a second dump cycle period, occurring after the phosphor image has decayed, for rapidly dumping unwanted smear charge which has been generated in the vertical registers. Image charge is then transferred from the photosites and to the vertical registers and read out in conventional fashion. The inventive method allows the video camera to be used in environments having high ionizing radiation content, and to capture images of events of very short duration and occurring either within or outside the normal visual wavelength spectrum. Resultant images are free from ghost, smear and smear phenomena caused by insufficient opacity of the registers and, and are also free from random damage caused by ionization charges which exceed the charge limit capacity of the photosites. 3 figs.

  13. Method for eliminating artifacts in CCD imagers

    NASA Astrophysics Data System (ADS)

    Turko, B. T.; Yates, G. J.

    1990-06-01

    An electronic method for eliminating artifacts in a video camera employing a charge coupled device (CCD) as an image sensor is presented. The method comprises the step of initializing the camera prior to normal readout. The method includes a first dump cycle period for transferring radiation generated charge into the horizontal register. This occurs while the decaying image on the phosphor being imaged is being integrated in the photosites, and a second dump cycle period, occurring after the phosphor image has decayed, for rapidly dumping unwanted smear charge which has been generated in the vertical registers. Image charge is then transferred from the photosites and to the vertical registers and readout in conventional fashion. The inventive method allows the video camera to be used in environments having high ionizing radiation content, and to capture images of events of very short duration and occurring either within or outside the normal visual wavelength spectrum. Resultant images are free from ghost, smear, and smear phenomena caused by insufficient opacity of the registers, and are also free from random damage caused by ionization charges which exceed the charge limit capacity of the photosites.

  14. Recent developments of the electron-bombarded CCD image tubes

    NASA Astrophysics Data System (ADS)

    Dalinenko, Ilia N.; Kossov, Vladimir G.; Kozlov, V. N.; Lazovsky, Leonid Y.; Malyarov, Alexandre V.; Vishnevsky, Grigory I.; Vydrevitch, Michail G.; Zhuk, Andrey A.

    1997-08-01

    The results of more than 10 years experience in design and manufacturing of thinned back-side illuminated CCDs of different types are summed up. Based upon the EB CCDs created, the family of intensified electron-bombarded CCD image tubes has been designed, fabricated and tested. This family includes: the single-stage Gen I type EB CCD devices with the 532*580 and 780*580 pixels CCDs; the `hybrid' (the EB CCD tube plus GenyI image intensifier) devices; and the EB CCD tubes with the 40 mm photocathode and image demagnification factor 3:1. The results of tests of these devices are presented and discussed. Besides, the near future projects concerning EB CCD tubes with the 80 mm photocathode and with image demagnification factor 5:1, and EB CCD tubes with solar blind photocathodes for the UV and EUV applications are briefly described.

  15. UV-sensitive scientific CCD image sensors

    NASA Astrophysics Data System (ADS)

    Vishnevsky, Grigory I.; Kossov, Vladimir G.; Iblyaminova, A. F.; Lazovsky, Leonid Y.; Vydrevitch, Michail G.

    1997-06-01

    An investigation of probe laser irradiation interaction with substances containing in an environment has long since become a recognized technique for contamination detection and identification. For this purpose, a near and midrange-IR laser irradiation is traditionally used. However, as many works presented on last ecology monitoring conferences show, in addition to traditional systems, rapidly growing are systems with laser irradiation from near-UV range (250 - 500 nm). Use of CCD imagers is one of the prerequisites for this allowing the development of a multi-channel computer-based spectral research system. To identify and analyze contaminating impurities on an environment, such methods as laser fluorescence analysis, UV absorption and differential spectroscopy, Raman scattering are commonly used. These methods are used to identify a large number of impurities (petrol, toluene, Xylene isomers, SO2, acetone, methanol), to detect and identify food pathogens in real time, to measure a concentration of NH3, SO2 and NO in combustion outbursts, to detect oil products in a water, to analyze contaminations in ground waters, to define ozone distribution in the atmosphere profile, to monitor various chemical processes including radioactive materials manufacturing, heterogeneous catalytic reactions, polymers production etc. Multi-element image sensor with enhanced UV sensitivity, low optical non-uniformity, low intrinsic noise and high dynamic range is a key element of all above systems. Thus, so called Virtual Phase (VP) CCDs possessing all these features, seems promising for ecology monitoring spectral measuring systems. Presently, a family of VP CCDs with different architecture and number of pixels is developed and being manufactured. All CCDs from this family are supported with a precise slow-scan digital image acquisition system that can be used in various image processing systems in astronomy, biology, medicine, ecology etc. An image is displayed directly on a PC

  16. Radiation events in astronomical CCD images

    SciTech Connect

    Smith, A.R.; McDonald, R.J.; Hurley, D.L.; Holland, S.E.; Groom, D.E.; Brown, W.E.; Gilmore, D.K.; Stover, R.J.; Wei, M.

    2001-12-18

    The remarkable sensitivity of depleted silicon to ionizing radiation is a nuisance to astronomers. ''Cosmic rays'' degrade images because of struck pixels, leading to modified observing strategies and the development of algorithms to remove the unwanted artifacts. In the new-generation CCD's with thick sensitive regions, cosmic-ray muons make recognizable straight tracks and there is enhanced sensitivity to ambient gamma radiation via Compton-scattered electrons (''worms''). Beta emitters inside the dewar, for example high-potassium glasses such as BK7, also produce worm-like tracks. The cosmic-ray muon rate is irreducible and increases with altitude. The gamma rays are mostly by-products of the U and Th decay chains; these elements always appear as traces in concrete and other materials. The Compton recoil event rate can be reduced significantly by the choice of materials in the environment and dewar and by careful shielding. Telescope domes appear to be significantly cleaner than basement laboratories and Coude spectrograph rooms. Radiation sources inside the dewar can be eliminated by judicious choice of materials. Cosmogenic activation during high-altitude flights does not appear to be a problem. Our conclusions are supported by tests at the Lawrence Berkeley National Laboratory low-level counting facilities in Berkeley and at Oroville, California (180 m underground).

  17. Radiation events in astronomical CCD images

    NASA Astrophysics Data System (ADS)

    Smith, Alan R.; McDonald, Richard J.; Hurley, D. C.; Holland, Steven E.; Groom, Donald E.; Brown, William E.; Gilmore, David K.; Stover, Richard J.; Wei, Mingzhi

    2002-04-01

    The remarkable sensitivity of depleted silicon to ionizing radiation is a nuisance to astronomers. 'Cosmic rays' degrade images because of struck pixels, leading to modified observing strategies and the development of algorithms to remove the unwanted artifacts. In the new-generation CCD's with thick sensitive regions, cosmic-ray muons make recognizable straight tracks and there is enhanced sensitivity to ambient gamma radiation via Compton-scattered electrons ('worms'). Beta emitters inside the dewar, for example high-potassium glasses such as BK7 , also produce worm-like tracks. The cosmic-ray muon rate is irreducible and increases with altitude. The gamma rays are mostly by- products of 40K decay and the U and Th decay chains; these elements commonly appear as traces in concrete and other materials. The Compton recoil event rate can be reduced significantly by the choice of materials in the environment and dewar and by careful shielding. Telescope domes appear to have significantly lower rates than basement laboratories and Coude spectrograph rooms. Radiation sources inside the dewar can be eliminated by judicious choice of materials. Cosmogenic activation during high-altitude fights does not appear to be a problem. Our conclusion are supported by tests at the Lawrence Berkeley National Laboratory low-level counting facilities in Berkeley and at Oroville, California (180 m underground).

  18. Correlation and image compression for limited-bandwidth CCD.

    SciTech Connect

    Thompson, Douglas G.

    2005-07-01

    As radars move to Unmanned Aerial Vehicles with limited-bandwidth data downlinks, the amount of data stored and transmitted with each image becomes more significant. This document gives the results of a study to determine the effect of lossy compression in the image magnitude and phase on Coherent Change Detection (CCD). We examine 44 lossy compression types, plus lossless zlib compression, and test each compression method with over 600 CCD image pairs. We also derive theoretical predictions for the correlation for most of these compression schemes, which compare favorably with the experimental results. We recommend image transmission formats for limited-bandwidth programs having various requirements for CCD, including programs which cannot allow performance degradation and those which have stricter bandwidth requirements at the expense of CCD performance.

  19. Research into multispectral TDI-CCD imaging and fusion technology

    NASA Astrophysics Data System (ADS)

    He, Da; Zhou, Jianyong; Liu, Changlin; Chen, Hongbing

    2016-11-01

    A scanning imaging system based on 6144×96 multi-band five-color TDI-CCD was built, which is featuring Real-time imaging capability with high sensitivity and high dynamic range in multi-spectral bands for the same target. In this paper, the respective pixel topology for five TDI-CCD was obtained on the basis of their spatial relationship in five bands. Finally, high resolution gray-scale image and color image reconstruction for the scenic target were achieved by multi-Spectral fusion algorithm.

  20. Collection and processing data for high quality CCD images.

    SciTech Connect

    Doerry, Armin Walter

    2007-03-01

    Coherent Change Detection (CCD) with Synthetic Aperture Radar (SAR) images is a technique whereby very subtle temporal changes can be discerned in a target scene. However, optimal performance requires carefully matching data collection geometries and adjusting the processing to compensate for imprecision in the collection geometries. Tolerances in the precision of the data collection are discussed, and anecdotal advice is presented for optimum CCD performance. Processing considerations are also discussed.

  1. Experiments on the use of CCD's to detect photoelectron images

    NASA Technical Reports Server (NTRS)

    Choisser, J. P.

    1975-01-01

    Image tube design and processing requirements for building an ICCD are discussed. Work is under way at EVC for building an ICCD using the Fairchild CCD 201 (100 x 100) array, and progress will be reported. Demountable tests have been made, exposing parts of a CCD 201 to 15 kilovolt electrons over five radiation levels from approximately 10 to 1 million rads. Other tubes built by EVC over the last few years which successfully use semiconductors to detect photoelectrons will be described briefly.

  2. The Dark Energy Survey CCD imager design

    SciTech Connect

    Cease, H.; DePoy, D.; Diehl, H.T.; Estrada, J.; Flaugher, B.; Guarino, V.; Kuk, K.; Kuhlmann, S.; Schultz, K.; Schmitt, R.L.; Stefanik, A.; /Fermilab /Ohio State U. /Argonne

    2008-06-01

    The Dark Energy Survey is planning to use a 3 sq. deg. camera that houses a {approx} 0.5m diameter focal plane of 62 2kx4k CCDs. The camera vessel including the optical window cell, focal plate, focal plate mounts, cooling system and thermal controls is described. As part of the development of the mechanical and cooling design, a full scale prototype camera vessel has been constructed and is now being used for multi-CCD readout tests. Results from this prototype camera are described.

  3. CCD/CMOS hybrid FPA for low light level imaging

    NASA Astrophysics Data System (ADS)

    Liu, Xinqiao; Fowler, Boyd A.; Onishi, Steve K.; Vu, Paul; Wen, David D.; Do, Hung; Horn, Stuart

    2005-08-01

    We present a CCD / CMOS hybrid focal plane array (FPA) for low light level imaging applications. The hybrid approach combines the best of CCD imaging characteristics (e.g. high quantum efficiency, low dark current, excellent uniformity, and low pixel cross talk) with the high speed, low power and ultra-low read noise of CMOS readout technology. The FPA is comprised of two CMOS readout integrated circuits (ROIC) that are bump bonded to a CCD imaging substrate. Each ROIC is an array of Capacitive Transimpedence Amplifiers (CTIA) that connect to the CCD columns via indium bumps. The proposed column parallel readout architecture eliminates the slow speed, high noise, and high power limitations of a conventional CCD. This results in a compact, low power, ultra-sensitive solid-state FPA that can be used in low light level applications such as live-cell microscopy and security cameras at room temperature operation. The prototype FPA has a 1280×1024 format with 12-um square pixels. Measured dark current is less than 5.8 pA/cm2 at room temperature and the overall read noise is as low as 2.9e at 30 frames/sec.

  4. Development of CCD imaging sensors for space applications, phase 1

    NASA Technical Reports Server (NTRS)

    Antcliffe, G. A.

    1975-01-01

    The results of an experimental investigation to develop a large area charge coupled device (CCD) imager for space photography applications are described. Details of the design and processing required to achieve 400 X 400 imagers are presented together with a discussion of the optical characterization techniques developed for this program. A discussion of several aspects of large CCD performance is given with detailed test reports. The areas covered include dark current, uniformity of optical response, square wave amplitude response, spectral responsivity and dynamic range.

  5. Programmable CCD imaging system for synchrotron radiation studies

    SciTech Connect

    Rodricks, B.; Brizard, C.

    1991-07-01

    A real-time imaging system for x-ray detection has been developed. The CAMAC-based system has a Charge Coupled Device (CCD) as its active detection element. The electronics consists of a CAMAC-crate-based dedicated microprocessor coupled to arbitrary waveform generators, programmable timing, and ADC modules. The hardware flexibility achievable through this system enables one to use virtually any commercially available CCD. A dedicated CAMAC-based display driver allows for real-time imaging on a high-resolution color monitor. An optional front end consisting of a fiber-optic taper and a focusing optical lens system coupled to a phosphor screen allows for large area imaging. Further, programming flexibility, in which the detector can be used in different read-out modes, enables it to be exploited for time-resolved experiments. In one mode, sections of the CCD can be read-out with millisecond time-resolution and, in another, the use of the CCD as a storage device is exploited resulting microsecond time-resolution. Three different CCDs with radically different read-out timings and waveforms have been tested. 11 refs., 5 figs., 1 tab.

  6. Distance measurement based on pixel variation of CCD images.

    PubMed

    Hsu, Chen-Chien; Lu, Ming-Chih; Wang, Wei-Yen; Lu, Yin-Yu

    2009-10-01

    This paper presents a distance measurement method based on pixel number variation of CCD images by referencing to two arbitrarily designated points in the image frames. By establishing a relationship between the displacement of the camera movement along the photographing direction and the difference in pixel count between reference points in the images, the distance from an object can be calculated via the proposed method. To integrate the measuring functions into digital cameras, a circuit design implementing the proposed measuring system in selecting reference points, measuring distance, and displaying measurement results on CCD panel of the digital camera is proposed in this paper. In comparison to pattern recognition or image analysis methods, the proposed measuring approach is simple and straightforward for practical implementation into digital cameras. To validate the performance of the proposed method, measurement results using the proposed method and ultrasonic rangefinders are also presented in this paper.

  7. High definition 3D imaging lidar system using CCD

    NASA Astrophysics Data System (ADS)

    Jo, Sungeun; Kong, Hong Jin; Bang, Hyochoong

    2016-10-01

    In this study we propose and demonstrate a novel technique for measuring distance with high definition three-dimensional imaging. To meet the stringent requirements of various missions, spatial resolution and range precision are important properties for flash LIDAR systems. The proposed LIDAR system employs a polarization modulator and a CCD. When a laser pulse is emitted from the laser, it triggers the polarization modulator. The laser pulse is scattered by the target and is reflected back to the LIDAR system while the polarization modulator is rotating. Its polarization state is a function of time. The laser-return pulse passes through the polarization modulator in a certain polarization state, and the polarization state is calculated using the intensities of the laser pulses measured by the CCD. Because the function of the time and the polarization state is already known, the polarization state can be converted to time-of-flight. By adopting a polarization modulator and a CCD and only measuring the energy of a laser pulse to obtain range, a high resolution three-dimensional image can be acquired by the proposed three-dimensional imaging LIDAR system. Since this system only measures the energy of the laser pulse, a high bandwidth detector and a high resolution TDC are not required for high range precision. The proposed method is expected to be an alternative method for many three-dimensional imaging LIDAR system applications that require high resolution.

  8. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  9. CCD advances for X-ray scientific measurements in 1985

    NASA Technical Reports Server (NTRS)

    Janesick, James; Elliott, Tom; Collins, Stewart; Daud, Taher; Campbell, Dave; Dingizian, Arsham

    1986-01-01

    A theoretical model is presented which predicts the output response of a CCD to soft X-ray spectra. The model simulates the four fundamental parameters that ultimately limit CCD performance: quantum efficiency, charge collection efficiency, charge transfer efficiency, and read noise. Simulated results are presented for a wide variety of CCD structures, and general conclusions are presented about achieving a practical balance of sensitivity, energy, and spatial resolution for an AXAF instrument. The results of the analysis are compared to an existing state-of-the art CCD and improvements which will be made in the near future are projected.

  10. Fundamental performance differences of CMOS and CCD imagers: part V

    NASA Astrophysics Data System (ADS)

    Janesick, James R.; Elliott, Tom; Andrews, James; Tower, John; Pinter, Jeff

    2013-02-01

    Previous papers delivered over the last decade have documented developmental progress made on large pixel scientific CMOS imagers that match or surpass CCD performance. New data and discussions presented in this paper include: 1) a new buried channel CCD fabricated on a CMOS process line, 2) new data products generated by high performance custom scientific CMOS 4T/5T/6T PPD pixel imagers, 3) ultimate CTE and speed limits for large pixel CMOS imagers, 4) fabrication and test results of a flight 4k x 4k CMOS imager for NRL's SoloHi Solar Orbiter Mission, 5) a progress report on ultra large stitched Mk x Nk CMOS imager, 6) data generated by on-chip sub-electron CDS signal chain circuitry used in our imagers, 7) CMOS and CMOSCCD proton and electron radiation damage data for dose levels up to 10 Mrd, 8) discussions and data for a new class of PMOS pixel CMOS imagers and 9) future CMOS development work planned.

  11. Event-Driven Random-Access-Windowing CCD Imaging System

    NASA Technical Reports Server (NTRS)

    Monacos, Steve; Portillo, Angel; Ortiz, Gerardo; Alexander, James; Lam, Raymond; Liu, William

    2004-01-01

    A charge-coupled-device (CCD) based high-speed imaging system, called a realtime, event-driven (RARE) camera, is undergoing development. This camera is capable of readout from multiple subwindows [also known as regions of interest (ROIs)] within the CCD field of view. Both the sizes and the locations of the ROIs can be controlled in real time and can be changed at the camera frame rate. The predecessor of this camera was described in High-Frame-Rate CCD Camera Having Subwindow Capability (NPO- 30564) NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 26. The architecture of the prior camera requires tight coupling between camera control logic and an external host computer that provides commands for camera operation and processes pixels from the camera. This tight coupling limits the attainable frame rate and functionality of the camera. The design of the present camera loosens this coupling to increase the achievable frame rate and functionality. From a host computer perspective, the readout operation in the prior camera was defined on a per-line basis; in this camera, it is defined on a per-ROI basis. In addition, the camera includes internal timing circuitry. This combination of features enables real-time, event-driven operation for adaptive control of the camera. Hence, this camera is well suited for applications requiring autonomous control of multiple ROIs to track multiple targets moving throughout the CCD field of view. Additionally, by eliminating the need for control intervention by the host computer during the pixel readout, the present design reduces ROI-readout times to attain higher frame rates. This camera (see figure) includes an imager card consisting of a commercial CCD imager and two signal-processor chips. The imager card converts transistor/ transistor-logic (TTL)-level signals from a field programmable gate array (FPGA) controller card. These signals are transmitted to the imager card via a low-voltage differential signaling (LVDS) cable

  12. Design and fabrication technology of thinned backside-excited CCD imagers and the family of the intensified electron-bombarded CCD image tubes

    NASA Astrophysics Data System (ADS)

    Dalinenko, Ilia N.; Malyarov, Alexandre V.; Vishnevsky, Grigory I.; Vydrevitch, Michail G.; Kossov, Vladimir G.; Lazovsky, Leonid Y.; Golovkin, Sergei V.

    1995-09-01

    This paper sums up the results of more than 10 years of experience in design and manufacturing of thinned back-side illuminated CCDs of different types. Based upon the EB- CCDs created, the family of intensified electron-bombardment CCD image tubes has been designed, fabricated, and tested. This family includes: the single-stage Gen I EB-CCD devices with the 532(superscript *)580 and 780(superscript *)580 pixels CCDs; the 'hybrid' (the EB-CCD tube plus Gen I image intensifier) devices; and the EB-CCD tubes with the 40 mm photocathode and image demagnification factor 3 to 1. The results of the tests of these devices are presented and discussed. Besides this, the near future projects concerning EB-CCD tubes with the 80 mm photocathode and with image demagnification factor 5 to 1, and EB-CCD tubes with solar blind photocathods for the UV and EUV applications are briefly described.

  13. Design and fabrication technology of thinned backside-excited CCD imagers and the family of intensified electron-bombarded CCD image tubes

    NASA Astrophysics Data System (ADS)

    Dalinenko, Ilia N.; Malyarov, Alexandre V.; Vishnevsky, Grigory I.; Vydrevitch, Michail G.; Kossov, Vladimir G.; Lazovsky, Leonid Y.; Golovkin, Sergei V.

    1996-04-01

    This paper sums up the results of more than 10 years experience in design and manufacturing of thinned backside illuminated CCDs of different types. Based upon the EB-CCDs created, the family of intensified electron-bombarded CCD image tubes has been designed, fabricated and tested. This family includes: the single-stage Gen I-type EB-CCD devices with the 532*580 and 780*580 pixels CCDs; the `hybrid' (the EB-CCD tube plus Gen I image intensifier) devices; and the EB-CCD tubes with the 40 mm photocathode and image demagnification factor 3:1. The results of tests of these devices are presented and discussed. Besides, the near future projects concerning EB-CCD tubes with the 80 mm photocathode and with image demagnification factor 5:1, and EB-CCD tubes with solar blind photocathodes for the UV and EUV applications are briefly described.

  14. Design and fabrication technology of thinned backside-excited CCD imagers and the family of the electron-bombarded CCD image tubes

    NASA Astrophysics Data System (ADS)

    Dalinenko, I.; Kossov, V.; Kozlov, V.; Lazovsky, L.; Malyarov, A.; Vishnevsky, G.; Vydrevitch, M.; Zhuk, A.; Golovkin, S.

    1997-02-01

    The results of more than 10 years experience in design and manufacturing of thinned backside illuminated CCDs of different types are summed up. Based upon the EB CCDs created, the family of intensified electron-bombarded CCD image tubes has been designed, fabricated and tested. This family includes: the single-stage Gen I type EB CCD devices with the 532 × 580 and 780 × 580 pixels CCDs; the ``hybrid'' (the EB CCD tube plus Gen I image intensifier) devices; and the EB CCD tubes with the 40 mm photocathode and image demagnification factor 3:1. The results of tests of these devices are presented and discussed. Besides, the near future projects concerning EB CCD tubes with 80 mm photocathode and with image demagnification factor 5:1, the EB CCD tubes with solar blind photocathodes for the UV and EUV applications are briefly described.

  15. SCUBA-2 Ccd-Style Imaging for the JCMT

    NASA Astrophysics Data System (ADS)

    Ellis, Maureen

    2005-01-01

    SCUBA-2 will replace SCUBA (Submillimetre Common User Bolometer Array) on the James Clerk Maxwell Telescope in 2006 and will be the first CCD-style camera for submillimetre astronomy. The instrument will simultaneously image at 850 and 450 microns using two focal plane arrays of 5120 pixels each. SCUBA-2 will map the submillimetre sky 1000 times faster than SCUBA to the same signal-to-noise ratio. This paper introduces the detector technology and the challenges faced in reading out a detector array cooled to ˜120 mK.

  16. Producing CCD imaging sensor with flashed backside metal film

    NASA Technical Reports Server (NTRS)

    Janesick, James R. (Inventor)

    1988-01-01

    A backside illuminated CCD imaging sensor for reading out image charges from wells of the array of pixels is significantly improved for blue, UV, far UV and low energy x-ray wavelengths (1-5000.ANG.) by so overthinning the backside as to place the depletion edge at the surface and depositing a thin transparent metal film of about 10.ANG. on a native-quality oxide film of less than about 30.ANG. grown on the thinned backside. The metal is selected to have a higher work function than that of the semiconductor to so bend the energy bands (at the interface of the semiconductor material and the oxide film) as to eliminate wells that would otherwise trap minority carriers. A bias voltage may be applied to extend the frontside depletion edge to the interface of the semiconductor material with the oxide film in the event there is not sufficient thinning. This metal film (flash gate), which improves and stabilizes the quantum efficiency of a CCD imaging sensor, will also improve the QE of any p-n junction photodetector.

  17. Frequency-domain imaging of thick tissues using a CCD

    NASA Astrophysics Data System (ADS)

    French, Todd E.; Gratton, Enrico; Maier, John S.

    1992-04-01

    Imaging of thick tissue has been an area of active research during the past several years. Among the methods proposed to deal with the high scattering of biological tissues, the time resolution of a short light probe traversing a tissue seems to be the most promising. Time resolution can be achieved in the time domain using correlated single photon counting techniques or in the frequency domain using phase resolved methods. We have developed a CCD camera system which provides ultra high time resolution on the entire field of view. The phase of the photon diffusion wave traveling in the highly turbid medium can be measured with an accuracy of about one degree at each pixel. The camera has been successfully modulated at frequencies on the order of 100 MHz. At this frequency, one degree of phase shift corresponds to about 30 ps maximum time resolution. Powerful image processing software displays in real time the phase resolved image on the computer screen.

  18. System for control of cooled CCD and image data processing for plasma spectroscopy

    SciTech Connect

    Mimura, M.; Kakeda, T.; Inoko, A.

    1995-12-31

    A Spectroscopic measurement system which has a spacial resolution is important for plasma study. This is especially true for a measurement of a plasma without axial symmetry like the LHD-plasma. Several years ago, we developed an imaging spectroscopy system using a CCD camera and an image-memory board of a personal computer. It was very powerful to study a plasma-gas interaction phenomena. In which system, however, an ordinary CCD was used so that the dark-current noise of the CCD prevented to measure dark spectral lines. Recently, a cooled CCD system can be obtained for the high sensitivity measurement. But such system is still very expensive. The cooled CCD itself as an element can be purchased cheaply, because amateur agronomists began to use it to take a picture of heavenly bodies. So we developed an imaging spectroscopy system using such a cheap cooled CCD for plasma experiment.

  19. SCUBA-2: CCD-Style Imaging for the JCMT

    NASA Astrophysics Data System (ADS)

    Audley, M. D.; Holland, W. S.; Atkinson, D.; Cliffe, M.; Ellis, M.; Gao, X.; Gostick, D. C.; Hodson, T.; Kelly, D.; Macintosh, M. J.; McGregor, H.; Robson, I.; Smith, I.; Irwin, K. D.; Duncan, W. D.; Doriese, W. B.; Hilton, G. C.; Reintsema, C. D.; Ullom, J. N.; Vale, L. R.; Walton, A.; Dunare, C.; Parkes, W.; Ade, P. A. R.; Bintley, D.; Gannaway, F.; Hunt, C.; Griffin, M.; Pisano, G.; Sudiwala, R. V.; Walker, I.; Woodcraft, A.; Fich, M.; Halpern, M.; Mitchell, G.; Naylor, D.; Bastien, P.

    2003-12-01

    SCUBA-2, which will replace SCUBA (the Submillimeter Common User Bolometer Array) on the James Clerk Maxwell Telescope (JCMT), will be the first CCD-like array for submillimeter astronomy. Unlike previous detectors which have used discrete bolometers, SCUBA-2 has two dc-coupled, monolithic, filled arrays with a total of ˜10,000 bolometers. It will offer simultaneous imaging of an 8×8 arcmin field of view at wavelengths of 850 and 450\\ μm. SCUBA-2 is expected to have a huge impact on the study of galaxy formation and evolution in the early Universe as well as star and planet formation in our own Galaxy. Mapping the sky to the same S/N up to 1000 times faster than SCUBA, it will also act as a pathfinder for the new submillimeter interferometers such as ALMA. SCUBA-2's absorber-coupled pixels use superconducting transition edge sensors operating at ˜ 120\\ mK for photon-noise limited performance and a SQUID time-domain multiplexer for readout. The SCUBA-2 detectors are at the prototype stage and we expect to deliver science-grade arrays to the telescope in late 2005. We describe the key technologies that make SCUBA-2 possible and the unique capabilities that it will bring to submillimeter astronomy.

  20. Developments and Applications of High-Performance CCD and CMOS Imaging Arrays

    NASA Astrophysics Data System (ADS)

    Janesick, James; Putnam, Gloria

    2003-12-01

    For over 20 years, charge-coupled devices (CCDs) have dominated most digital imaging applications and markets. Today, complementary metal oxide semiconductor (CMOS) arrays are displacing CCDs in some applications, and this trend is expected to continue. Low cost, low power, on-chip system integration, and high-speed operation are unique features that have generated interest in CMOS arrays. This paper reviews current CCD and CMOS sensor developments and related applications. We compare fundamental performance parameters common to these technologies and describe why the CCD is considered a mature technology, whereas CMOS arrays have significant room for growth. The paper presents custom CMOS pixel designs and related fabrication processes that address performance deficiencies of the CCD in high-performance applications. We discuss areas of development for future CCD and CMOS imagers. The paper also briefly reviews hybrid imaging arrays that combine the advantages of CCD and CMOS, producing better sensors than either technology alone can provide.

  1. Electron multiplication CCD detector technology advancement for the WFIRST-AFTA coronagraph

    NASA Astrophysics Data System (ADS)

    Harding, Leon K.; Demers, Richard T.; Hoenk, Michael; Peddada, Pavani; Nemati, Bijan; Cherng, Michael; Michaels, Darren; Loc, Anthony; Bush, Nathan; Hall, David; Murray, Neil; Gow, Jason; Burgon, Ross; Holland, Andrew; Reinheimer, Alice; Jorden, Paul R.; Jordan, Douglas

    2015-11-01

    The WFIRST-AFTA (Wide Field InfraRed Survey Telescope-Astrophysics Focused Telescope Asset) is a NASA space observatory. It will host two major astronomical instruments: a wide-field imager (WFI) to search for dark energy and carry out wide field near infrared (NIR) surveys, and a coronagraph instrument (CGI) to image and spectrally characterize extrasolar planets. In this paper, we discuss the work that has been carried out at JPL in advancing Electron Multiplying CCD (EMCCD) technology to higher flight maturity, with the goal of reaching a NASA technology readiness level of 6 (TRL-6) by early-to-mid 2016. The EMCCD has been baselined for both the coronagraph's imager and integral field spectrograph (IFS) based on its sub-electron noise performance at extremely low flux levels - the regime where the AFTA CGI will operate. We present results from a study that fully characterizes the beginning of life performance of the EMCCD. We also discuss, and present initial results from, a recent radiation test campaign that was designed and carried out to mimic the conditions of the WFIRST-AFTA space environment in an L2 orbit, where we sought to assess the sensor's end of life performance, particularly degradation of its charge transfer efficiency, in addition to other parameters such as dark current, electron multiplication gain, clock induced charge and read noise.

  2. Differential imaging using charge-coupled device (CCD) imagers with on-chip charge storage

    NASA Technical Reports Server (NTRS)

    Stockman, H. S.

    1982-01-01

    A CCD technique is described which allows long integration periods between readouts together with moderate chopping rates. During each phase of a differential chopping cycle, one set of charge images is shifted to the center of the chip, which is light sensitive. At the same time, the other set of charge images is shifted under one of two masked areas which serve as charge-storage sites. Since the vertical shifting between phases can be accomplished in much less time than the typical exposure per phase, there is negligible image smearing. For a given light level and chopping rate the performance of this technique is limited primarily by the readout noise and the vertical charge transfer inefficiency. If many transfer cycles are required between readouts, the charge transfer inefficiency will diffuse the accumulated charge images along the vertical columns. Laboratory and astronomical data obtained with this technique using a CCD camera and the 2.3 m telescope on Kitt Peak are presented.

  3. Design of area array CCD image acquisition and display system based on FPGA

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Ning; Li, Tianting; Pan, Yue; Dai, Yuming

    2014-09-01

    With the development of science and technology, CCD(Charge-coupled Device) has been widely applied in various fields and plays an important role in the modern sensing system, therefore researching a real-time image acquisition and display plan based on CCD device has great significance. This paper introduces an image data acquisition and display system of area array CCD based on FPGA. Several key technical challenges and problems of the system have also been analyzed and followed solutions put forward .The FPGA works as the core processing unit in the system that controls the integral time sequence .The ICX285AL area array CCD image sensor produced by SONY Corporation has been used in the system. The FPGA works to complete the driver of the area array CCD, then analog front end (AFE) processes the signal of the CCD image, including amplification, filtering, noise elimination, CDS correlation double sampling, etc. AD9945 produced by ADI Corporation to convert analog signal to digital signal. Developed Camera Link high-speed data transmission circuit, and completed the PC-end software design of the image acquisition, and realized the real-time display of images. The result through practical testing indicates that the system in the image acquisition and control is stable and reliable, and the indicators meet the actual project requirements.

  4. A CCD image transducer and processor suitable for space flight. [satellite borne solar telescope instrumentation

    NASA Technical Reports Server (NTRS)

    Michels, D. J.

    1975-01-01

    A satellite borne extreme ultraviolet solar telescope makes use of CCD area arrays for both image readout and onboard data processing. The instrument is designed to view the inner solar corona in the wavelength band 170 - 630 A, and the output video stream may be selected by ground command to present the coronal scene, or the time-rate-of-change of the scene. Details of the CCD application to onboard image processing are described, and a discussion of the processor's potential for telemetry bandwidth compression is included. Optical coupling methods, data storage requirements, spatial and temporal resolution, and nonsymmetry of resolution (pitch) in the CCD are discussed.

  5. Design and operational characteristics of a PV 001 image tube incorporated with EB CCD readout

    NASA Astrophysics Data System (ADS)

    Bryukhnevich, Gennadii I.; Dalinenko, Ilia N.; Ivanov, K. N.; Kaidalov, S. A.; Kuz'min, G. A.; Moskalev, B. B.; Naumov, Sergei K.; Pischelin, E. V.; Postovalov, Valdis E.; Prokhorov, Alexander M.; Schelev, Mikhail Y.

    1991-06-01

    A luminescence screen was replaced with a thinned, backside-illuminated, electron bombarded (EB) CCD in a well-known PV 001 streak/shutter image converter tube. The tube was mounted into an experimental camera prototype for measurement of its main technical characteristics. Under EB CCD readout operation in a free-scanning, slow-speed mode, the overall system spatial resolution was higher than 40 lp/mm at 10% MTF, and the linear part of the light transfer function was not less than 130. In streak mode the PV 001/EB CCD image tube exhibited threshold sensitivity of not less than 10-10 J/cm2 when recording 40 ps, 850 nm radiation pulses from a semiconductor laser. The preliminary results indicate that the PV 001/EB CCD image tube has quite a stable infrared sensitivity of its S1 photocathode.

  6. Failure Analysis of CCD Image Sensors Using SQUID and GMR Magnetic Current Imaging

    NASA Technical Reports Server (NTRS)

    Felt, Frederick S.

    2005-01-01

    During electrical testing of a Full Field CCD Image Senor, electrical shorts were detected on three of six devices. These failures occurred after the parts were soldered to the PCB. Failure analysis was performed to determine the cause and locations of these failures on the devices. After removing the fiber optic faceplate, optical inspection was performed on the CCDs to understand the design and package layout. Optical inspection revealed that the device had a light shield ringing the CCD array. This structure complicated the failure analysis. Alternate methods of analysis were considered, including liquid crystal, light and thermal emission, LT/A, TT/A SQUID, and MP. Of these, SQUID and MP techniques were pursued for further analysis. Also magnetoresistive current imaging technology is discussed and compared to SQUID.

  7. Development of filter exchangeable 3CCD camera for multispectral imaging acquisition

    NASA Astrophysics Data System (ADS)

    Lee, Hoyoung; Park, Soo Hyun; Kim, Moon S.; Noh, Sang Ha

    2012-05-01

    There are a lot of methods to acquire multispectral images. Dynamic band selective and area-scan multispectral camera has not developed yet. This research focused on development of a filter exchangeable 3CCD camera which is modified from the conventional 3CCD camera. The camera consists of F-mounted lens, image splitter without dichroic coating, three bandpass filters, three image sensors, filer exchangeable frame and electric circuit for parallel image signal processing. In addition firmware and application software have developed. Remarkable improvements compared to a conventional 3CCD camera are its redesigned image splitter and filter exchangeable frame. Computer simulation is required to visualize a pathway of ray inside of prism when redesigning image splitter. Then the dimensions of splitter are determined by computer simulation which has options of BK7 glass and non-dichroic coating. These properties have been considered to obtain full wavelength rays on all film planes. The image splitter is verified by two line lasers with narrow waveband. The filter exchangeable frame is designed to make swap bandpass filters without displacement change of image sensors on film plane. The developed 3CCD camera is evaluated to application of detection to scab and bruise on Fuji apple. As a result, filter exchangeable 3CCD camera could give meaningful functionality for various multispectral applications which need to exchange bandpass filter.

  8. Evaluation of image quality of a new CCD-based system for chest imaging

    NASA Astrophysics Data System (ADS)

    Sund, Patrik; Kheddache, Susanne; Mansson, Lars G.; Bath, Magnus; Tylen, Ulf

    2000-04-01

    The Imix radiography system (Qy Imix Ab, Finland)consists of an intensifying screen, optics, and a CCD camera. An upgrade of this system (Imix 2000) with a red-emitting screen and new optics has recently been released. The image quality of Imix (original version), Imix 200, and two storage-phosphor systems, Fuji FCR 9501 and Agfa ADC70 was evaluated in physical terms (DQE) and with visual grading of the visibility of anatomical structures in clinical images (141 kV). PA chest images of 50 healthy volunteers were evaluated by experienced radiologists. All images were evaluated on Siemens Simomed monitors, using the European Quality Criteria. The maximum DQE values for Imix, Imix 2000, Agfa and Fuji were 11%, 14%, 17% and 19%, respectively (141kV, 5μGy). Using the visual grading, the observers rated the systems in the following descending order. Fuji, Imix 2000, Agfa, and Imix. Thus, the upgrade to Imix 2000 resulted in higher DQE values and a significant improvement in clinical image quality. The visual grading agrees reasonably well with the DQE results; however, Imix 2000 received a better score than what could be expected from the DQE measurements. Keywords: CCD Technique, Chest Imaging, Digital Radiography, DQE, Image Quality, Visual Grading Analysis

  9. The future scientific CCD

    NASA Technical Reports Server (NTRS)

    Janesick, J. R.; Elliott, T.; Collins, S.; Marsh, H.; Blouke, M. M.

    1984-01-01

    Since the first introduction of charge-coupled devices (CCDs) in 1970, CCDs have been considered for applications related to memories, logic circuits, and the detection of visible radiation. It is pointed out, however, that the mass market orientation of CCD development has left largely untapped the enormous potential of these devices for advanced scientific instrumentation. The present paper has, therefore, the objective to introduce the CCD characteristics to the scientific community, taking into account prospects for further improvement. Attention is given to evaluation criteria, a summary of current CCDs, CCD performance characteristics, absolute calibration tools, quantum efficiency, aspects of charge collection, charge transfer efficiency, read noise, and predictions regarding the characteristics of the next generation of silicon scientific CCD imagers.

  10. Flexible heat pipes for CCD cooling on the Advanced Camera for Surveys

    NASA Astrophysics Data System (ADS)

    Schweickart, Russell B.; Buchko, Matthew M.

    1998-08-01

    The Advanced Camera for Surveys (ACS) is an instrument containing two charged-coupled device (CCD) cameras and a multi-anode multi-channel array (MAMA) detector being built by Ball Aerospace and Technologies Corporation for NASA's Goddard Space Flight Center. The instrument is scheduled to be installed in the Hubble Space Telescope during a space shuttle mission in December of 1999. The CCD detectors need to operate at a temperature below -80 degrees C in order to avoid unacceptable dark current. This cooling is achieved with thermo-electric coolers (TEC) mounted in evacuated assemblies that contain the detectors. Heat that is generated by the TECs must be dissipated to space. Since the CCd assemblies are centrally located within the instrument enclosure, a method must be provided for transferring this heat to a heat rejection surfaces. Heat pipes have been selected for this purpose since they are frequently used in space applications for passively transferring heat from sources to remotely located radiating panels. The alignment of the CCDs is critical, however, so the loads induced into the detectors and the optical bench containing the sensor assemblies through heat pipes must be minimized. Consequently, the CCD heat pipes have been designed with a flexible section to minimize either thermally generated or launch induced structural loads. Structural and thermal testing has shown that these heat pipes will allow the ACS detectors to attain their operating temperature while meeting alignment stability requirements. This paper presents the design of and test results from the ACS flexible heat pipes.

  11. Proton damage effects in an EEV CCD imager

    SciTech Connect

    Hopkinson, G.R. ); Chlebek, C. )

    1989-12-01

    An EEV three phase CCD has been irradiated by 40 MeV protons up to a fluence of 3 {times} 10{sup 8} p/cm{sup 2}. New dark charge spikes appeared, but these were smaller than those previously reported for virtual phase CCDs. Dark charge maps were obtained at several temperatures. The larger spikes showed erratic temperature behavior, the smaller ones decreased in size as the temperatures decreased but at a rate slower than the mean dark charge level. Possible mechanisms are discussed

  12. Photometric narrowband CCD imaging of comets P/Brorsen-Metcalf and Austin (1989c1)

    NASA Technical Reports Server (NTRS)

    Schleicher, David G.; Osip, David J.; Millis, Robert L.; Thompson, Andrea; Sauter, Linda M.

    1990-01-01

    Simultaneous wide-field CCD images and conventional aperture photometry were obtained of Comets P/Brorsen/Metcalf (1989o) and Austin (1989c1). These data allow direct testing of absolute calibration of the CCD images and the ability to generate full-come, continuum-subtracted emission band images. Preliminary photometric calibration for a portion of the Brorsen-Metcalf observations yields reduced emission band and continuum fluxes which agree to within about 10 percent with those from the photoelectric observations. Conventional photometry of Comet Austin shows unusual variations among the production rates of the different species as a function of heliocentric distance.

  13. Design of ground-based physical simulation system for satellite-borne TDI-CCD dynamic imaging

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyuan; Zhang, Liu; Jin, Guang; Yang, Xiubin

    2010-11-01

    As we know, the existence of image motion has a bad effect on the image quality of satellite-borne TDI CCD camera. Although many theories on image motion are proposed to cope with this problem, few simulations are done to justify the proposed theories on ground. And thus, in this paper, a ground-based physical simulation system for TDI CCD imaging is developed and specified, which consists of a physical simulation subsystem for precise satellite attitude control based on a 3-axis air bearing table, and an imaging and simulation subsystem utilizing area-array CCD to simulate TDI CCD. The designed system could realize not only a precise simulation of satellite attitude control, whose point accuracy is above 0.1° and steady accuracy above 0.01°/s, but also an imaging simulation of 16-stage TDI CCD with 0.1s its integration time. This paper also gives a mathematical model of image motion of this system analogous with satellite-borne TDI CCD, and detailed descriptions on the principle utilizing area-array CCD to simulate TDI CCD. It is shown that experiment results are in accordance with mathematical simulation, and that the image quality deteriorate seriously when the correspondence between the image velocity and signal charges transfer velocity is broken out, which suggest not only the validity of the system design but also the validity of the proposed image motion theory of TDI CCD.

  14. Method for implementation of back-illuminated CMOS or CCD imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2008-01-01

    A method for implementation of back-illuminated CMOS or CCD imagers. An oxide layer buried between silicon wafer and device silicon is provided. The oxide layer forms a passivation layer in the imaging structure. A device layer and interlayer dielectric are formed, and the silicon wafer is removed to expose the oxide layer.

  15. LED characterization for development of on-board calibration unit of CCD-based advanced wide-field sensor camera of Resourcesat-2A

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhijit; Verma, Anurag

    2016-05-01

    The Advanced Wide Field Sensor (AWiFS) camera caters to high temporal resolution requirement of Resourcesat-2A mission with repeativity of 5 days. The AWiFS camera consists of four spectral bands, three in the visible and near IR and one in the short wave infrared. The imaging concept in VNIR bands is based on push broom scanning that uses linear array silicon charge coupled device (CCD) based Focal Plane Array (FPA). On-Board Calibration unit for these CCD based FPAs is used to monitor any degradation in FPA during entire mission life. Four LEDs are operated in constant current mode and 16 different light intensity levels are generated by electronically changing exposure of CCD throughout the calibration cycle. This paper describes experimental setup and characterization results of various flight model visible LEDs (λP=650nm) for development of On-Board Calibration unit of Advanced Wide Field Sensor (AWiFS) camera of RESOURCESAT-2A. Various LED configurations have been studied to meet dynamic range coverage of 6000 pixels silicon CCD based focal plane array from 20% to 60% of saturation during night pass of the satellite to identify degradation of detector elements. The paper also explains comparison of simulation and experimental results of CCD output profile at different LED combinations in constant current mode.

  16. Test technology on divergence angle of laser range finder based on CCD imaging fusion

    NASA Astrophysics Data System (ADS)

    Shi, Sheng-bing; Chen, Zhen-xing; Lv, Yao

    2016-09-01

    Laser range finder has been equipped with all kinds of weapons, such as tank, ship, plane and so on, is important component of fire control system. Divergence angle is important performance and incarnation of horizontal resolving power for laser range finder, is necessary appraised test item in appraisal test. In this paper, based on high accuracy test on divergence angle of laser range finder, divergence angle test system is designed based on CCD imaging, divergence angle of laser range finder is acquired through fusion technology for different attenuation imaging, problem that CCD characteristic influences divergence angle test is solved.

  17. CCD imaging technology and the war on crime

    NASA Astrophysics Data System (ADS)

    McNeill, Glenn E.

    1992-08-01

    Linear array based CCD technology has been successfully used in the development of an Automatic Currency Reader/Comparator (ACR/C) system. The ACR/C system is designed to provide a method for tracking US currency in the organized crime and drug trafficking environments where large amounts of cash are involved in illegal transactions and money laundering activities. United States currency notes can be uniquely identified by the combination of the denomination serial number and series year. The ACR/C system processes notes at five notes per second using a custom transport a stationary linear array and optical character recognition (OCR) techniques to make such identifications. In this way large sums of money can be " marked" (using the system to read and store their identifiers) and then circulated within various crime networks. The system can later be used to read and compare confiscated notes to the known sets of identifiers from the " marked" set to document a trail of criminal activities. With the ACR/C law enforcement agencies can efficiently identify currency without actually marking it. This provides an undetectable means for making each note individually traceable and facilitates record keeping for providing evidence in a court of law. In addition when multiple systems are used in conjunction with a central data base the system can be used to track currency geographically. 1.

  18. Technology advancement of the CCD201-20 EMCCD for the WFIRST coronagraph instrument: sensor characterization and radiation damage

    NASA Astrophysics Data System (ADS)

    Harding, Leon K.; Demers, Richard T.; Hoenk, Michael; Peddada, Pavani; Nemati, Bijan; Cherng, Michael; Michaels, Darren; Neat, Leo S.; Loc, Anthony; Bush, Nathan; Hall, David; Murray, Neil; Gow, Jason; Burgon, Ross; Holland, Andrew; Reinheimer, Alice; Jorden, Paul R.; Jordan, Douglas

    2016-01-01

    The Wide Field InfraRed Survey Telescope-Astrophysics Focused Telescope Asset (WFIRST-AFTA) mission is a 2.4-m class space telescope that will be used across a swath of astrophysical research domains. JPL will provide a high-contrast imaging coronagraph instrument-one of two major astronomical instruments. In order to achieve the low noise performance required to detect planets under extremely low flux conditions, the electron multiplying charge-coupled device (EMCCD) has been baselined for both of the coronagraph's sensors-the imaging camera and integral field spectrograph. JPL has established an EMCCD test laboratory in order to advance EMCCD maturity to technology readiness level-6. This plan incorporates full sensor characterization, including read noise, dark current, and clock-induced charge. In addition, by considering the unique challenges of the WFIRST space environment, degradation to the sensor's charge transfer efficiency will be assessed, as a result of damage from high-energy particles such as protons, electrons, and cosmic rays. Science-grade CCD201-20 EMCCDs have been irradiated to a proton fluence that reflects the projected WFIRST orbit. Performance degradation due to radiation displacement damage is reported, which is the first such study for a CCD201-20 that replicates the WFIRST conditions. In addition, techniques intended to identify and mitigate radiation-induced electron trapping, such as trap pumping, custom clocking, and thermal cycling, are discussed.

  19. Development of a Portable 3CCD Camera System for Multispectral Imaging of Biological Samples

    PubMed Central

    Lee, Hoyoung; Park, Soo Hyun; Noh, Sang Ha; Lim, Jongguk; Kim, Moon S.

    2014-01-01

    Recent studies have suggested the need for imaging devices capable of multispectral imaging beyond the visible region, to allow for quality and safety evaluations of agricultural commodities. Conventional multispectral imaging devices lack flexibility in spectral waveband selectivity for such applications. In this paper, a recently developed portable 3CCD camera with significant improvements over existing imaging devices is presented. A beam-splitter prism assembly for 3CCD was designed to accommodate three interference filters that can be easily changed for application-specific multispectral waveband selection in the 400 to 1000 nm region. We also designed and integrated electronic components on printed circuit boards with firmware programming, enabling parallel processing, synchronization, and independent control of the three CCD sensors, to ensure the transfer of data without significant delay or data loss due to buffering. The system can stream 30 frames (3-waveband images in each frame) per second. The potential utility of the 3CCD camera system was demonstrated in the laboratory for detecting defect spots on apples. PMID:25350510

  20. Precise calibration of CCD images with a small field of view. Application to observations of Phoebe

    NASA Astrophysics Data System (ADS)

    Peng, Q.; Vienne, A.; Han, Y. B.; Li, Z. L.

    2004-09-01

    A precise astrometric calibration method is presented for a CCD image with a small field of view. Its detailed computational formulae are given, and its feasibility and accuracy are tested by the observations of both the star and Phoebe, the 9th satellite of Saturn. This new method can also be applicable to other planetary satellites, asteroids and optical counterparts of extragalactic radio sources.

  1. CCD imaging of the inner coma jets of comet P/Halley

    NASA Technical Reports Server (NTRS)

    Boswell, James; Hughes, David W.

    1992-01-01

    We analyze the inner coma section of a CCD image of comet P/Halley taken at 1807 UT on 13 March 1986 using a C2 filter (wavelength 5000 to 5200A, half maximum) with the 3.8 m Anglo Australian Telescope at Siding Springs, Australia. Atmospheric turbulence leads to a spreading of the image detail and this produces a blander image of the inner coma region with a slower radial decrease of brightness in comparison to the unaffected image. We remove this smearing by utilizing the point spread function of a star on the same CCD image. Jets were then revealed by removing the average background. Analysis of the jet structure enabled us to estimate the lower limit of the parent molecule velocity. This is found to be 0.3 km s(exp -1).

  2. A configurable distributed high-performance computing framework for satellite's TDI-CCD imaging simulation

    NASA Astrophysics Data System (ADS)

    Xue, Bo; Mao, Bingjing; Chen, Xiaomei; Ni, Guoqiang

    2010-11-01

    This paper renders a configurable distributed high performance computing(HPC) framework for TDI-CCD imaging simulation. It uses strategy pattern to adapt multi-algorithms. Thus, this framework help to decrease the simulation time with low expense. Imaging simulation for TDI-CCD mounted on satellite contains four processes: 1) atmosphere leads degradation, 2) optical system leads degradation, 3) electronic system of TDI-CCD leads degradation and re-sampling process, 4) data integration. Process 1) to 3) utilize diversity data-intensity algorithms such as FFT, convolution and LaGrange Interpol etc., which requires powerful CPU. Even uses Intel Xeon X5550 processor, regular series process method takes more than 30 hours for a simulation whose result image size is 1500 * 1462. With literature study, there isn't any mature distributing HPC framework in this field. Here we developed a distribute computing framework for TDI-CCD imaging simulation, which is based on WCF[1], uses Client/Server (C/S) layer and invokes the free CPU resources in LAN. The server pushes the process 1) to 3) tasks to those free computing capacity. Ultimately we rendered the HPC in low cost. In the computing experiment with 4 symmetric nodes and 1 server , this framework reduced about 74% simulation time. Adding more asymmetric nodes to the computing network, the time decreased namely. In conclusion, this framework could provide unlimited computation capacity in condition that the network and task management server are affordable. And this is the brand new HPC solution for TDI-CCD imaging simulation and similar applications.

  3. CCD imaging for optical tomography of gel radiation dosimeters.

    PubMed

    Wolodzko, J G; Marsden, C; Appleby, A

    1999-11-01

    Several investigations have been carried out by a number of researchers over the past few years to evaluate the utility of imaging gel dosimeters for the three-dimensional measurement of radiation fields. These have been proposed to be of particular value in mapping radiation dose distributions associated with emerging and complex approaches to cancer treatment such as conformal (CRT), intensity modulated (IMRT), "gamma knife," and pencil beam radiotherapies. Imaging of the gels has been successfully accomplished with clinical MRI units and via laser-based optical scanning. However, neither of these methods is generally accessible to all potential users, limiting the broader study and implementation of this valuable tool. We report here the design, methodology, and results of a preliminary study carried out to evaluate the utility of a new, inexpensive, and simplified approach to tomographic imaging of gel radiation dosimeters. For the purpose of this initial investigation, an array of liquid scintillation vials was prepared, containing a ferrous sulphate xylenol orange (FSX) gelatin formulation. The FSX formulation undergoes a change in optical absorption characteristics following irradiation, and the resulting color change can be observed visually. The vials were irradiated individually to different doses. Three-dimensional imaging was accomplished by tomographic reconstruction from two-dimensional optical images acquired using a diffuse, fluorescent light source, a digital charge-coupled device camera, single-photon-emission-computed tomography software, and other simple components designed by the authors. The resulting transverse images were evaluated through a region-of-interest (ROI) analysis to obtain the average change in image density in each vial as a function of radiation dose. These measured ROI values were subjected to a linear regression analysis to fit them to a straight line, and to determine the goodness of fit. Results from multiple imaging trials

  4. Novel driver method to improve ordinary CCD frame rate for high-speed imaging diagnosis

    NASA Astrophysics Data System (ADS)

    Luo, Tong-Ding; Li, Bin-Kang; Yang, Shao-Hua; Guo, Ming-An; Yan, Ming

    2016-06-01

    The use of ordinary Charge-coupled-Device (CCD) imagers for the analysis of fast physical phenomenon is restricted because of the low-speed performance resulting from their long output times. Even though the form of Intensified-CCD (ICCD), coupled with a gated image intensifier, has extended their use for high speed imaging, the deficiency remains to be solved that ICDD could record only one image in a single shot. This paper presents a novel driver method designed to significantly improve the ordinary interline CCD burst frame rate for high-speed photography. This method is based on the use of vertical registers as storage, so that a small number of additional frames comprised of reduced-spatial-resolution images obtained via a specific sampling operation can be buffered. Hence, the interval time of the received series of images is related to the exposure and vertical transfer times only and, thus, the burst frame rate can be increased significantly. A prototype camera based on this method is designed as part of this study, exhibiting a burst rate of up to 250,000 frames per second (fps) and a capacity to record three continuous images. This device exhibits a speed enhancement of approximately 16,000 times compared with the conventional speed, with a spatial resolution reduction of only 1/4.

  5. Design and realization of an image mosaic system on the CCD aerial camera

    NASA Astrophysics Data System (ADS)

    Liu, Hai ying; Wang, Peng; Zhu, Hai bin; Li, Yan; Zhang, Shao jun

    2015-08-01

    It has long been difficulties in aerial photograph to stitch multi-route images into a panoramic image in real time for multi-route flight framing CCD camera with very large amount of data, and high accuracy requirements. An automatic aerial image mosaic system based on GPU development platform is described in this paper. Parallel computing of SIFT feature extraction and matching algorithm module is achieved by using CUDA technology for motion model parameter estimation on the platform, which makes it's possible to stitch multiple CCD images in real-time. Aerial tests proved that the mosaic system meets the user's requirements with 99% accuracy and 30 to 50 times' speed improvement of the normal mosaic system.

  6. Structure for implementation of back-illuminated CMOS or CCD imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2009-01-01

    A structure for implementation of back-illuminated CMOS or CCD imagers. An epitaxial silicon layer is connected with a passivation layer, acting as a junction anode. The epitaxial silicon layer converts light passing through the passivation layer and collected by the imaging structure to photoelectrons. A semiconductor well is also provided, located opposite the passivation layer with respect to the epitaxial silicon layer, acting as a junction cathode. Prior to detection, light does not pass through a dielectric separating interconnection metal layers.

  7. High-resolution image digitizing through 12x3-bit RGB-filtered CCD camera

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew Y. S.; Pau, Michael C. Y.

    1996-09-01

    A high resolution computer-controlled CCD image capturing system is developed by using a 12 bits 1024 by 1024 pixels CCD camera and motorized RGB filters to grasp an image with color depth up to 36 bits. The filters distinguish the major components of color and collect them separately while the CCD camera maintains the spatial resolution and detector filling factor. The color separation can be done optically rather than electronically. The operation is simply by placing the capturing objects like color photos, slides and even x-ray transparencies under the camera system, the necessary parameters such as integration time, mixing level and light intensity are automatically adjusted by an on-line expert system. This greatly reduces the restrictions of the capturing species. This unique approach can save considerable time for adjusting the quality of image, give much more flexibility of manipulating captured object even if it is a 3D object with minimal setup fixers. In addition, cross sectional dimension of a 3D capturing object can be analyzed by adapting a fiber optic ring light source. It is particularly useful in non-contact metrology of a 3D structure. The digitized information can be stored in an easily transferable format. Users can also perform a special LUT mapping automatically or manually. Applications of the system include medical images archiving, printing quality control, 3D machine vision, and etc.

  8. Solid state high resolution multi-spectral imager CCD test phase

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The program consisted of measuring the performance characteristics of charge coupled linear imaging devices, and a study defining a multispectral imaging system employing advanced solid state photodetection techniques.

  9. Design of multi-mode compatible image acquisition system for HD area array CCD

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Sui, Xiubao

    2014-11-01

    Combining with the current development trend in video surveillance-digitization and high-definition, a multimode-compatible image acquisition system for HD area array CCD is designed. The hardware and software designs of the color video capture system of HD area array CCD KAI-02150 presented by Truesense Imaging company are analyzed, and the structure parameters of the HD area array CCD and the color video gathering principle of the acquisition system are introduced. Then, the CCD control sequence and the timing logic of the whole capture system are realized. The noises of the video signal (KTC noise and 1/f noise) are filtered by using the Correlated Double Sampling (CDS) technique to enhance the signal-to-noise ratio of the system. The compatible designs in both software and hardware for the two other image sensors of the same series: KAI-04050 and KAI-08050 are put forward; the effective pixels of these two HD image sensors are respectively as many as four million and eight million. A Field Programmable Gate Array (FPGA) is adopted as the key controller of the system to perform the modularization design from top to bottom, which realizes the hardware design by software and improves development efficiency. At last, the required time sequence driving is simulated accurately by the use of development platform of Quartus II 12.1 combining with VHDL. The result of the simulation indicates that the driving circuit is characterized by simple framework, low power consumption, and strong anti-interference ability, which meet the demand of miniaturization and high-definition for the current tendency.

  10. CCD Camera

    DOEpatents

    Roth, Roger R.

    1983-01-01

    A CCD camera capable of observing a moving object which has varying intensities of radiation eminating therefrom and which may move at varying speeds is shown wherein there is substantially no overlapping of successive images and wherein the exposure times and scan times may be varied independently of each other.

  11. CCD Camera

    DOEpatents

    Roth, R.R.

    1983-08-02

    A CCD camera capable of observing a moving object which has varying intensities of radiation emanating therefrom and which may move at varying speeds is shown wherein there is substantially no overlapping of successive images and wherein the exposure times and scan times may be varied independently of each other. 7 figs.

  12. HERSCHEL/SCORE, imaging the solar corona in visible and EUV light: CCD camera characterization.

    PubMed

    Pancrazzi, M; Focardi, M; Landini, F; Romoli, M; Fineschi, S; Gherardi, A; Pace, E; Massone, G; Antonucci, E; Moses, D; Newmark, J; Wang, D; Rossi, G

    2010-07-01

    The HERSCHEL (helium resonant scattering in the corona and heliosphere) experiment is a rocket mission that was successfully launched last September from White Sands Missile Range, New Mexico, USA. HERSCHEL was conceived to investigate the solar corona in the extreme UV (EUV) and in the visible broadband polarized brightness and provided, for the first time, a global map of helium in the solar environment. The HERSCHEL payload consisted of a telescope, HERSCHEL EUV Imaging Telescope (HEIT), and two coronagraphs, HECOR (helium coronagraph) and SCORE (sounding coronagraph experiment). The SCORE instrument was designed and developed mainly by Italian research institutes and it is an imaging coronagraph to observe the solar corona from 1.4 to 4 solar radii. SCORE has two detectors for the EUV lines at 121.6 nm (HI) and 30.4 nm (HeII) and the visible broadband polarized brightness. The SCORE UV detector is an intensified CCD with a microchannel plate coupled to a CCD through a fiber-optic bundle. The SCORE visible light detector is a frame-transfer CCD coupled to a polarimeter based on a liquid crystal variable retarder plate. The SCORE coronagraph is described together with the performances of the cameras for imaging the solar corona.

  13. Optimised Post-Exposure Image Sharpening Code for L3-CCD Detectors

    SciTech Connect

    Harding, Leon K.; Butler, Raymond F.; Redfern, R. Michael; Sheehan, Brendan J.; McDonald, James

    2008-02-22

    As light from celestial bodies traverses Earth's atmosphere, the wavefronts are distorted by atmospheric turbulence, thereby lowering the angular resolution of ground-based imaging. Rapid time-series imaging enables Post-Exposure Image Sharpening (PEIS) techniques, which employ shift-and-add frame registration to remove the tip-tilt component of the wavefront error--as well as telescope wobble, thus benefiting all observations. Further resolution gains are possible by selecting only frames with the best instantaneous seeing--a technique sometimes calling 'Lucky Imaging'. We implemented these techniques in the 1990s, with the TRIFFID imaging photon-counting camera, and its associated data reduction software. The software was originally written for time-tagged photon-list data formats, recorded by detectors such as the MAMA. This paper describes our deep re-structuring of the software to handle the 2-d FITS images produced by Low Light Level CCD (L3-CCD) cameras, which have sufficient time-series resolution (>30 Hz) for PEIS. As before, our code can perform straight frame co-addition, use composite reference stars, perform PEIS under several different algorithms to determine the tip/tilt shifts, store 'quality' and shift information for each frame, perform frame selection, and generate exposure-maps for photometric correction. In addition, new code modules apply all 'static' calibrations (bias subtraction, dark subtraction and flat-fielding) to the frames immediately prior to the other algorithms. A unique feature of our PEIS/Lucky Imaging code is the use of bidirectional wiener-filtering. Coupled with the far higher sensitivity of the L3-CCD over the previous TRIFFID detectors, much fainter reference stars and much narrower time windows can be used.

  14. The method of x-ray image intensifies pixel matching and noise suppression based on the CCD

    NASA Astrophysics Data System (ADS)

    Yu, Shengtao; Qin, Xulei; Li, Ye

    2016-11-01

    In the proximity of X-ray imaging systems based on X-ray image intensifier, pixel matching and noise suppression are important methods to improve image quality. This paper analyzes CCD parameters' impact on imaging quality and the relations with, proposes pixel matching degree is a critical factor to restrict the performance of imaging system, and verified by experiments, the CCD refrigeration can effectively suppress the image noise, which adopts the extension of integration time method and obtains favorable signal-to-noise ratio, it also provides a simple and low cost solution for high quality X-ray real-time imaging of static objects.

  15. Development of CCD Cameras for Soft X-ray Imaging at the National Ignition Facility

    SciTech Connect

    Teruya, A. T.; Palmer, N. E.; Schneider, M. B.; Bell, P. M.; Sims, G.; Toerne, K.; Rodenburg, K.; Croft, M.; Haugh, M. J.; Charest, M. R.; Romano, E. D.; Jacoby, K. D.

    2013-09-01

    The Static X-Ray Imager (SXI) is a National Ignition Facility (NIF) diagnostic that uses a CCD camera to record time-integrated X-ray images of target features such as the laser entrance hole of hohlraums. SXI has two dedicated positioners on the NIF target chamber for viewing the target from above and below, and the X-ray energies of interest are 870 eV for the “soft” channel and 3 – 5 keV for the “hard” channels. The original cameras utilize a large format back-illuminated 2048 x 2048 CCD sensor with 24 micron pixels. Since the original sensor is no longer available, an effort was recently undertaken to build replacement cameras with suitable new sensors. Three of the new cameras use a commercially available front-illuminated CCD of similar size to the original, which has adequate sensitivity for the hard X-ray channels but not for the soft. For sensitivity below 1 keV, Lawrence Livermore National Laboratory (LLNL) had additional CCDs back-thinned and converted to back-illumination for use in the other two new cameras. In this paper we describe the characteristics of the new cameras and present performance data (quantum efficiency, flat field, and dynamic range) for the front- and back-illuminated cameras, with comparisons to the original cameras.

  16. An abuttable CCD imager for visible and X-ray focal plane arrays

    NASA Technical Reports Server (NTRS)

    Burke, Barry E.; Mountain, Robert W.; Harrison, David C.; Bautz, Marshall W.; Doty, John P.

    1991-01-01

    A frame-transfer silicon charge-coupled-device (CCD) imager has been developed that can be closely abutted to other imagers on three sides of the imaging array. It is intended for use in multichip arrays. The device has 420 x 420 pixels in the imaging and frame-store regions and is constructed using a three-phase triple-polysilicon process. Particular emphasis has been placed on achieving low-noise charge detection for low-light-level imaging in the visible and maximum energy resolution for X-ray spectroscopic applications. Noise levels of 6 electrons at 1-MHz and less than 3 electrons at 100-kHz data rates have been achieved. Imagers have been fabricated on 1000-Ohm-cm material to maximize quantum efficiency and minimize split events in the soft X-ray regime.

  17. Application of CCD images and colorimetry temperature measure for combustion monitoring and control

    NASA Astrophysics Data System (ADS)

    Huang, Yongli; Qu, Tan; Zhou, HuaiChun; Yuan, Ping; Han, Shudong

    2000-05-01

    In power stations, a CCD set is used to observe furnace flame images directly to distinguish the current combustion status of a boiler. Actually, more combustion information can be gained from flame images: the temperature distribution can be reconstructed inversely, and the furnace radiation can be described quantificationally. Colorimetry temperature measure and greyscale normalization is included in this technology. Moreover, many important run-states such as flameout and flame center excursion can be caught by automation systems using the pattern recognition. Methods of combustion characteristic pattern recognition are discussed. And some applications for improving combustion control system are described.

  18. Direct x-ray sensing CCD array for intraoral dental x-ray imaging system

    NASA Astrophysics Data System (ADS)

    Cox, John D.; Williams, Donald W.; Langford, D. S.

    1994-05-01

    A commercial prototype electronic intraoral dental x-ray imaging system employing a direct sensing CCD array has been developed. Image quality parameters were measured using x-ray sources at the National Institute of Standard and Technology radiation physical department in Gaithersburg, MD. Detector response to x-rays in the 10 to 70 keV energy range was measured. The beam hardening effects of human anatomy on a typical 70 kVp spectra was measured using a tissue-equivalent dental phantom.

  19. A new method of CCD dark current correction via extracting the dark Information from scientific images

    NASA Astrophysics Data System (ADS)

    Ma, Bin; Shang, Zhaohui; Hu, Yi; Liu, Qiang; Wang, Lifan; Wei, Peng

    2014-07-01

    We have developed a new method to correct dark current at relatively high temperatures for Charge-Coupled Device (CCD) images when dark frames cannot be obtained on the telescope. For images taken with the Antarctic Survey Telescopes (AST3) in 2012, due to the low cooling efficiency, the median CCD temperature was -46°C, resulting in a high dark current level of about 3e-/pix/sec, even comparable to the sky brightness (10e-/pix/sec). If not corrected, the nonuniformity of the dark current could even overweight the photon noise of the sky background. However, dark frames could not be obtained during the observing season because the camera was operated in frame-transfer mode without a shutter, and the telescope was unattended in winter. Here we present an alternative, but simple and effective method to derive the dark current frame from the scientific images. Then we can scale this dark frame to the temperature at which the scientific images were taken, and apply the dark frame corrections to the scientific images. We have applied this method to the AST3 data, and demonstrated that it can reduce the noise to a level roughly as low as the photon noise of the sky brightness, solving the high noise problem and improving the photometric precision. This method will also be helpful for other projects that suffer from similar issues.

  20. Design of Frame-transferred Surface Array CCD Imaging System for Dark Objects

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-heng; Yan, Yi-hua

    2016-01-01

    In order to realize the requirement of low-noise observations of dark objects in deep-space explorations, the design method for a simple and stable space camera imaging system is proposed in this paper. Based on the back-illuminated frame-transferred surface array CCD (CCD47-20AIMO) produced by the British E2V company, the circuitry design is given for the every part of the system. In which the applications of the correlated double-sampling analog-digital converter (AD) and the synchronous dynamic random access memory (SDRAM) can effectively suppress the correlated noise in the image signal. In addition, a drive control method favorable to the adjustment of exposure time is proposed, in the light-sensing stage it provides the exposure time with an independent and adjustable time delay to make the imaging system satisfy the requirement of long exposure time setting. The imaging system adopts the Cyclone III-series EP3C25Q240C8 field programable gate array produced by the Altera company as the kernel control device, and the drives are programmed in modules according to the function of the every device, in favor of transplantation. The simulative and experimental results indicate that the drive circuitry works normally, and that the system design can satisfy the preset requirement.

  1. High-resolution x-ray and γ-ray imaging using a scintillator-coupled electron-multiplying CCD

    NASA Astrophysics Data System (ADS)

    Hall, David; Holland, Andrew

    2009-08-01

    Over the last decade the rapid advancements in CCD technology have lead to significant developments in the field of low-light-level, Electron-Multiplying CCDs (EM-CCDs). The addition of a gain register before output allows signal electrons to be multiplied without increasing the external noise. This low effective readout noise, which can be reduced to the sub-electron level, allows very small signal levels to be detected. Caesium iodide is one of the most popular scintillation materials due to its many desirable properties. Approximately 60 photons are produced per keV of incident X-ray or γ-ray with wavelengths peaking at 550 nm (dependent on doping), matching the peak in the quantum efficiency of the back-illuminated CCD97 of over 90%. Using a scintillator coupled to an EMCCD it is possible to resolve individual interactions inside the scintillator. Multiple frames can be taken in quick succession with hundreds of interactions per frame. These interactions can be analysed individually using sub-pixel centroiding and the data compiled to create an image of a much higher resolution than that achieved with a single integrated frame. The interaction mechanism inside the scintillator is discussed with relation to the spatial and spectral resolution of the camera system. Analysis of individual events opens up the possibility of energy discrimination through the profiling of each interaction.

  2. Design for the correction system of the real time nonuniformity of large area-array CCD image

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Li, Chunmei; Lei, Ning

    2012-10-01

    With the robust thriving of aviation cameras and remote sensing technology, the linear-array CCD (charge-coupled device) and area CCD have developed toward large area CCD, which has a broad coverage and avoids the difficulty in jointing small area CCDs in addition to improving time resolution. However, due to the high amount of pixels and channels of large area CCD, photo-response non-uniformity (PRNU) is severe. In this paper, a real time non-uniformity correction system is introduced for a sort of large area full frame transfer CCD. First, the correction algorithm is elaborated according to CCD's working principle. Secondly, due to the high number of pixels and correction coefficient, ordinary chip memory cannot meet the requirement. The combination of external flash memory and DDR described in the paper satisfies large capacity memory and rapid real time correction. The methods and measurement steps for obtaining correction factors are provided simultaneously. At the end, an imaging test is made. The non-uniformity of the image is reduced to 0.38 % from the pre-correction 2.96 %, achieving an obvious reduction of non-uniformity. The result shows that the real time non-uniformity correction system can meet the demands of large area-array CCD.

  3. Design and Fabrication of High-Efficiency CMOS/CCD Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2007-01-01

    An architecture for back-illuminated complementary metal oxide/semiconductor (CMOS) and charge-coupled-device (CCD) ultraviolet/visible/near infrared- light image sensors, and a method of fabrication to implement the architecture, are undergoing development. The architecture and method are expected to enable realization of the full potential of back-illuminated CMOS/CCD imagers to perform with high efficiency, high sensitivity, excellent angular response, and in-pixel signal processing. The architecture and method are compatible with next-generation CMOS dielectric-forming and metallization techniques, and the process flow of the method is compatible with process flows typical of the manufacture of very-large-scale integrated (VLSI) circuits. The architecture and method overcome all obstacles that have hitherto prevented high-yield, low-cost fabrication of back-illuminated CMOS/CCD imagers by use of standard VLSI fabrication tools and techniques. It is not possible to discuss the obstacles in detail within the space available for this article. Briefly, the obstacles are posed by the problems of generating light-absorbing layers having desired uniform and accurate thicknesses, passivation of surfaces, forming structures for efficient collection of charge carriers, and wafer-scale thinning (in contradistinction to diescale thinning). A basic element of the present architecture and method - the element that, more than any other, makes it possible to overcome the obstacles - is the use of an alternative starting material: Instead of starting with a conventional bulk-CMOS wafer that consists of a p-doped epitaxial silicon layer grown on a heavily-p-doped silicon substrate, one starts with a special silicon-on-insulator (SOI) wafer that consists of a thermal oxide buried between a lightly p- or n-doped, thick silicon layer and a device silicon layer of appropriate thickness and doping. The thick silicon layer is used as a handle: that is, as a mechanical support for the

  4. Physical image quality evaluation of a CCD-based x-ray image intensifier digital fluorography system for cardiac applications

    NASA Astrophysics Data System (ADS)

    Baker, Edmund L.; Cowen, Arnold R.; Kemner, Rudolf; Bastiaens, Raoul J. M.

    1998-07-01

    An evaluation of the physical imaging performance of a prototype CCD-based TV camera (XTV16) cardiac Digital Fluorography system is presented. A tube-based TV camera (XTV11) operates in parallel, via a 50% mirror, allowing a direct comparison between the two different TV image recording technologies. The MTF, Noise Power Density (NPD) spectrum and the DQE of the system have been determined. The NPD analysis has been completed in both horizontal and vertical directions and, for completeness, a two dimensional noise analysis of the system has also been carried out. An audit of the main sources of noise in the systems is presented. The effectiveness of image corrections in minimizing systematic noise due to the CCD camera is demonstrated. The DQE spectra of both systems at zero frequency are X-ray quantum noise limited and they are both operating dose efficiently. The DQE spectrum in the horizontal direction of the XTV16 at high spatial frequencies is shown to be superior to that of the XTV11 which may translate to improved rendition of small features in clinical images. The CCD camera system described here s now used in the Cardio-Vascular systems of a major European company.

  5. Linear CCD attitude measurement system based on the identification of the auxiliary array CCD

    NASA Astrophysics Data System (ADS)

    Hu, Yinghui; Yuan, Feng; Li, Kai; Wang, Yan

    2015-10-01

    Object to the high precision flying target attitude measurement issues of a large space and large field of view, comparing existing measurement methods, the idea is proposed of using two array CCD to assist in identifying the three linear CCD with multi-cooperative target attitude measurement system, and to address the existing nonlinear system errors and calibration parameters and more problems with nine linear CCD spectroscopic test system of too complicated constraints among camera position caused by excessive. The mathematical model of binocular vision and three linear CCD test system are established, co-spot composition triangle utilize three red LED position light, three points' coordinates are given in advance by Cooperate Measuring Machine, the red LED in the composition of the three sides of a triangle adds three blue LED light points as an auxiliary, so that array CCD is easier to identify three red LED light points, and linear CCD camera is installed of a red filter to filter out the blue LED light points while reducing stray light. Using array CCD to measure the spot, identifying and calculating the spatial coordinates solutions of red LED light points, while utilizing linear CCD to measure three red LED spot for solving linear CCD test system, which can be drawn from 27 solution. Measured with array CCD coordinates auxiliary linear CCD has achieved spot identification, and has solved the difficult problems of multi-objective linear CCD identification. Unique combination of linear CCD imaging features, linear CCD special cylindrical lens system is developed using telecentric optical design, the energy center of the spot position in the depth range of convergence in the direction is perpendicular to the optical axis of the small changes ensuring highprecision image quality, and the entire test system improves spatial object attitude measurement speed and precision.

  6. Fibre-optic coupling to high-resolution CCD and CMOS image sensors

    NASA Astrophysics Data System (ADS)

    van Silfhout, R. G.; Kachatkou, A. S.

    2008-12-01

    We describe a simple method of gluing fibre-optic faceplates to complementary metal oxide semiconductor (CMOS) active pixel and charge coupled device (CCD) image sensors and report on their performance. Cross-sectional cuts reveal that the bonding layer has a thickness close to the diameter of the individual fibres and is uniform over the whole sensor area. Our method requires no special tools or alignment equipment and gives reproducible and high-quality results. The method maintains a uniform bond layer thickness even if sensor dies are mounted at slight angles with their package. These fibre-coupled sensors are of particular interest to X-ray imaging applications but also provide a solution for compact optical imaging systems.

  7. Multiple-CCD stereo acquisition system for high-speed imaging

    NASA Astrophysics Data System (ADS)

    Yafuso, Eiji S.; Sass, David T.; Dereniak, Eustace L.; Hoffman, Steven; Gonzalez, Rene; Gonzalez, Martin; Rettke, Douglas

    1998-10-01

    A high-speed 3D imaging system has been developed using multiple independent CCD cameras with sequentially triggered acquisition and individual field storage capability. The system described here utilizes sixteen independent cameras. A stereo alignment and triggering scheme arranges the cameras into two angularly separated banks of eight cameras each. By simultaneously triggering correlated stereo pairs, an eight-frame sequence of stereo images is captured. The delays can be individually adjusted to yield a greater number of acquired frames during more rapid segments of the vent, and the individual integration periods may be adjusted to ensure adequate radiometric response while minimizing image blur. Representation of the data as a 3D sequence introduces the issue of independent camera coordinate registration with the real scene. A discussion of the forward and inverse transform operator for the digital data is provided along with a description of the acquisition system.

  8. Coordinated observations of optical lightning from space using the FORTE photodiode detector and CCD imager

    NASA Astrophysics Data System (ADS)

    Suszcynsky, D. M.; Light, T. E.; Davis, S.; Green, J. L.; Guillen, J. L. L.; Myre, W.

    2001-08-01

    This paper presents an overview of the coordinated observation of optical lightning from space using the photodiode detector (PDD) and CCD-based imager known as the Lightning Location System (LLS) aboard the Fast On-Orbit Recording of Transient Events (FORTE) satellite. PDD/LLS coincidence statistics are presented and show that both the detected energy density and the detected peak irradiance of optical lightning events are proportional to the number of LLS pixels (pixel multiplicity) which are activated during the event. The inference is that LLS pixel multiplicity is more a function of the detected intensity and horizontal extent of the optical event rather than a direct indicator of the degree of scattering. PDD/LLS event coincidence is also used to improve upon traditional recurrence/clustering algorithms that discriminate against false LLS events due to energetic particles and glint. Energy density measurements of coincident events show that about 4% of the optical energy detected by the broadband PDD appears in the narrowband LLS. This is in general agreement with ground-based measurements and with assumptions incorporated into the design of current and planned CCD-imaging sensors.

  9. Development of proton CT imaging system using plastic scintillator and CCD camera

    NASA Astrophysics Data System (ADS)

    Tanaka, Sodai; Nishio, Teiji; Matsushita, Keiichiro; Tsuneda, Masato; Kabuki, Shigeto; Uesaka, Mitsuru

    2016-06-01

    A proton computed tomography (pCT) imaging system was constructed for evaluation of the error of an x-ray CT (xCT)-to-WEL (water-equivalent length) conversion in treatment planning for proton therapy. In this system, the scintillation light integrated along the beam direction is obtained by photography using the CCD camera, which enables fast and easy data acquisition. The light intensity is converted to the range of the proton beam using a light-to-range conversion table made beforehand, and a pCT image is reconstructed. An experiment for demonstration of the pCT system was performed using a 70 MeV proton beam provided by the AVF930 cyclotron at the National Institute of Radiological Sciences. Three-dimensional pCT images were reconstructed from the experimental data. A thin structure of approximately 1 mm was clearly observed, with spatial resolution of pCT images at the same level as that of xCT images. The pCT images of various substances were reconstructed to evaluate the pixel value of pCT images. The image quality was investigated with regard to deterioration including multiple Coulomb scattering.

  10. Measuring proton energies and fluxes using EIT (SOHO) CCD areas outside the solar disk images

    NASA Astrophysics Data System (ADS)

    Didkovsky, L. V.; Judge, D. L.; Jones, A. R.; Rhodes, E. J., Jr.; Gurman, J. B.

    2006-05-01

    An indirect proton flux measuring tool based on discrimination of the energy deposited by protons in 128×128 pixel EIT CCD areas outside the solar disk images is presented. Single pixel intensity events are converted into proton incident energy flux using modeled energy deposition curves for angles of incidence ± 60° in four EIT spatial areas with different proton stopping power. The extracted proton flux is corrected for both the loss of one-pixel events in the range of angles of incidence as well as for the contribution to the single pixel events resulting from scattered middle-energy protons (low-energy or high-energy particles are stopped by the EIT components or pass through them, accordingly). A simple geometrical approach was found and applied to correct for a non-unique relation between the proton-associated CCD output signal and the incident proton energy. With this geometrical approximation four unique proton incident energy ranges were determined as 45-49, 145-154, 297-335, and 390-440 MeV. The indirect proton flux measuring tool has been tested by comparing Solar Energetic Particles (SEP) flux temporal profiles extracted from the EIT CCD frames and downloaded from the GOES database for the Bastille Day (BD) of 2000 July 14 and the more recent 2005 January 20 events. The SEP flux temporal profiles and proton spectra extracted from the EIT in the relatively narrow energy ranges between 45 and 440 MeV reported here are consistent with the related GOES profiles. The four additional EIT extracted ranges provide higher energy resolution of the SEP data.

  11. Photon counting imaging and centroiding with an electron-bombarded CCD using single molecule localisation software

    NASA Astrophysics Data System (ADS)

    Hirvonen, Liisa M.; Barber, Matthew J.; Suhling, Klaus

    2016-06-01

    Photon event centroiding in photon counting imaging and single-molecule localisation in super-resolution fluorescence microscopy share many traits. Although photon event centroiding has traditionally been performed with simple single-iteration algorithms, we recently reported that iterative fitting algorithms originally developed for single-molecule localisation fluorescence microscopy work very well when applied to centroiding photon events imaged with an MCP-intensified CMOS camera. Here, we have applied these algorithms for centroiding of photon events from an electron-bombarded CCD (EBCCD). We find that centroiding algorithms based on iterative fitting of the photon events yield excellent results and allow fitting of overlapping photon events, a feature not reported before and an important aspect to facilitate an increased count rate and shorter acquisition times.

  12. Photon counting imaging and centroiding with an electron-bombarded CCD using single molecule localisation software

    PubMed Central

    Hirvonen, Liisa M.; Barber, Matthew J.; Suhling, Klaus

    2016-01-01

    Photon event centroiding in photon counting imaging and single-molecule localisation in super-resolution fluorescence microscopy share many traits. Although photon event centroiding has traditionally been performed with simple single-iteration algorithms, we recently reported that iterative fitting algorithms originally developed for single-molecule localisation fluorescence microscopy work very well when applied to centroiding photon events imaged with an MCP-intensified CMOS camera. Here, we have applied these algorithms for centroiding of photon events from an electron-bombarded CCD (EBCCD). We find that centroiding algorithms based on iterative fitting of the photon events yield excellent results and allow fitting of overlapping photon events, a feature not reported before and an important aspect to facilitate an increased count rate and shorter acquisition times. PMID:27274604

  13. Effects On Beam Alignment Due To Neutron-Irradiated CCD Images At The National Ignition Facility

    SciTech Connect

    Awwal, A; Manuel, A; Datte, P; Burkhart, S

    2011-02-28

    The 192 laser beams in the National Ignition Facility (NIF) are automatically aligned to the target-chamber center using images obtained through charged coupled device (CCD) cameras. Several of these cameras are in and around the target chamber during an experiment. Current experiments for the National Ignition Campaign are attempting to achieve nuclear fusion. Neutron yields from these high energy fusion shots expose the alignment cameras to neutron radiation. The present work explores modeling and predicting laser alignment performance degradation due to neutron radiation effects, and demonstrates techniques to mitigate performance degradation. Camera performance models have been created based on the measured camera noise from the cumulative single-shot fluence at the camera location. We have found that the effect of the neutron-generated noise for all shots to date have been well within the alignment tolerance of half a pixel, and image processing techniques can be utilized to reduce the effect even further on the beam alignment.

  14. Digital image measurement of specimen deformation based on CCD cameras and Image J software: an application to human pelvic biomechanics

    NASA Astrophysics Data System (ADS)

    Jia, Yongwei; Cheng, Liming; Yu, Guangrong; Lou, Yongjian; Yu, Yan; Chen, Bo; Ding, Zuquan

    2008-03-01

    A method of digital image measurement of specimen deformation based on CCD cameras and Image J software was developed. This method was used to measure the biomechanics behavior of human pelvis. Six cadaveric specimens from the third lumbar vertebra to the proximal 1/3 part of femur were tested. The specimens without any structural abnormalities were dissected of all soft tissue, sparing the hip joint capsules and the ligaments of the pelvic ring and floor. Markers with black dot on white background were affixed to the key regions of the pelvis. Axial loading from the proximal lumbar was applied by MTS in the gradient of 0N to 500N, which simulated the double feet standing stance. The anterior and lateral images of the specimen were obtained through two CCD cameras. Based on Image J software, digital image processing software, which can be freely downloaded from the National Institutes of Health, digital 8-bit images were processed. The procedure includes the recognition of digital marker, image invert, sub-pixel reconstruction, image segmentation, center of mass algorithm based on weighted average of pixel gray values. Vertical displacements of S1 (the first sacral vertebrae) in front view and micro-angular rotation of sacroiliac joint in lateral view were calculated according to the marker movement. The results of digital image measurement showed as following: marker image correlation before and after deformation was excellent. The average correlation coefficient was about 0.983. According to the 768 × 576 pixels image (pixel size 0.68mm × 0.68mm), the precision of the displacement detected in our experiment was about 0.018 pixels and the comparatively error could achieve 1.11\\perthou. The average vertical displacement of S1 of the pelvis was 0.8356+/-0.2830mm under vertical load of 500 Newtons and the average micro-angular rotation of sacroiliac joint in lateral view was 0.584+/-0.221°. The load-displacement curves obtained from our optical measure system

  15. Delta-doped CCD's as low-energy particle detectors and imagers

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Hoenk, Michael E. (Inventor); Hecht, Michael H. (Inventor)

    2002-01-01

    The back surface of a thinned charged-coupled device (CCD) is treated to eliminate the backside potential well that appears in a conventional thinned CCD during backside illumination. The backside of the CCD includes a delta layer of high-concentration dopant confined to less than one monolayer of the crystal semiconductor. The thinned, delta-doped CCD is used to detect very low-energy particles that penetrate less than 1.0 nm into the CCD, including electrons having energies less than 1000 eV and protons having energies less than 10 keV.

  16. Defect inspection in hot slab surface: multi-source CCD imaging based fuzzy-rough sets method

    NASA Astrophysics Data System (ADS)

    Zhao, Liming; Zhang, Yi; Xu, Xiaodong; Xiao, Hong; Huang, Chao

    2016-09-01

    To provide an accurate surface defects inspection method and make the automation of robust image region of interests(ROI) delineation strategy a reality in production line, a multi-source CCD imaging based fuzzy-rough sets method is proposed for hot slab surface quality assessment. The applicability of the presented method and the devised system are mainly tied to the surface quality inspection for strip, billet and slab surface etcetera. In this work we take into account the complementary advantages in two common machine vision (MV) systems(line array CCD traditional scanning imaging (LS-imaging) and area array CCD laser three-dimensional (3D) scanning imaging (AL-imaging)), and through establishing the model of fuzzy-rough sets in the detection system the seeds for relative fuzzy connectedness(RFC) delineation for ROI can placed adaptively, which introduces the upper and lower approximation sets for RIO definition, and by which the boundary region can be delineated by RFC region competitive classification mechanism. For the first time, a Multi-source CCD imaging based fuzzy-rough sets strategy is attempted for CC-slab surface defects inspection that allows an automatic way of AI algorithms and powerful ROI delineation strategies to be applied to the MV inspection field.

  17. Stereo Imaging Velocimetry Technique Using Standard Off-the-Shelf CCD Cameras

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth

    2004-01-01

    Stereo imaging velocimetry is a fluid physics technique for measuring three-dimensional (3D) velocities at a plurality of points. This technique provides full-field 3D analysis of any optically clear fluid or gas experiment seeded with tracer particles. Unlike current 3D particle imaging velocimetry systems that rely primarily on laser-based systems, stereo imaging velocimetry uses standard off-the-shelf charge-coupled device (CCD) cameras to provide accurate and reproducible 3D velocity profiles for experiments that require 3D analysis. Using two cameras aligned orthogonally, we present a closed mathematical solution resulting in an accurate 3D approximation of the observation volume. The stereo imaging velocimetry technique is divided into four phases: 3D camera calibration, particle overlap decomposition, particle tracking, and stereo matching. Each phase is explained in detail. In addition to being utilized for space shuttle experiments, stereo imaging velocimetry has been applied to the fields of fluid physics, bioscience, and colloidal microscopy.

  18. Advanced Imaging Tracker

    DTIC Science & Technology

    1982-06-01

    document requires that it 1e returncd: ADVANCED IMACINGC TRACKER Dr . L. E. Schmutz Contractor: Adaptive Optics Associates, Inc. Contt-ict Number: F30602-80...Code Number: IE20 Period of Worl: Covered: jun 80 - D’:c 81 Principal Investigator: Dr . Larry Schmut~z Phone: 617 547-2786 Project Engineer: Captaia...yaJPODCVR~ ADVANCED IMAGING TRACKER 10Jun 80 - ’,’ Dec 81 𔄃 PiRFORMiNO7 01G. REPORT NUMBER 7 ATII~(. ONTPA OR GRANTY NUMDERf.) Dr . 1L. E. Schiiut

  19. Observations of Selected Double Star Systems Using CCD Astrometry, Lucky Imaging, and Speckle Interferometry

    NASA Astrophysics Data System (ADS)

    Ariyawansa, Ashan; Troville, Jonathan

    2014-10-01

    In August 2013, a team of six undergraduate students were selected for a two week research program, Consortium for Undergraduate Research and Education in Astronomy (CUREA), at the Mount Wilson Observatory-California. Each student completed a project related to observational astronomy and a joint project was done by Ariyawansa and Troville on measuring double stars. In this project, three different methods were used to measure the angular separation and the position angle of the double stars. CCD astrometry was the first method used to measure the star system WDS17574+3540, which has been identified as a quadruple system. Lucky imaging and speckle interferometry were the other methods used to measure the systems delta Cyg, epsilon1 Lyr, epsilon2 Lyr, and WDS23595+3343 with reduction using the REDUC software package.

  20. CCD imaging of Comet Wilson (1987VII) - A quantitative coma analysis

    NASA Technical Reports Server (NTRS)

    Schulz, Rita; A'Hearn, Michael F.; Birch, Peter V.; Bowers, Craig; Kempin, Mark; Martin, Ralph

    1993-01-01

    Distinctive cometary components (dust, ions, and radicals) are studied on the basis of 2D, narrow-band CCD images of Comet Wilson (1987VII). The fact that Comet Wilson showed no significant structures in the neutral coma during its first perihelion passage is additional evidence for the hypothesis that dynamically new comets do not show a heterogeneous nucleus, but still have a relatively uniform surface. The deviations from the 1/rho law for the decrease of surface brightness as a function of nuclear distance are explained by a combination of short-term variations in the dust production and the effects of solar radiation pressure. The C2 production rate remains basically constant during the whole observational period, while the CN production rate decreases with increasing heliocentric distance. It is inferred that the formation of C2 might be due both to photolytic destruction of some parent molecules as well as to chemical reactions between other species.

  1. CCD Centroiding Experiment for Correcting a Distorted Image on the Focal Plane

    NASA Astrophysics Data System (ADS)

    Yano, Taihei; Araki, Hiroshi; Gouda, Naoteru; Kobayashi, Yukiyasu; Tsujimoto, Takuji; Nakajima, Tadashi; Kawano, Nobuyuki; Tazawa, Seiichi; Yamada, Yoshiyuki; Hanada, Hideo; Asari, Kazuyoshi; Tsuruta, Seiitsu

    2006-10-01

    JASMINE (Japan Astrometry Satellite Mission for Infrared Exploration) and ILOM (In situ Lunar Orientation Measurement) are space missions that are in progress at the National Astronomical Observatory of Japan. These two projects require a common astrometric technique to obtain precise positions of star images on solid-state detectors in order to accomplish their objectives. In the laboratory, we have carried out measurements of the centroid of artificial star images on a CCD array in order to investigate the precision of the positions of the stars, using an algorithm for estimating them from photon-weighted means of the stars. In the calibration of the position of a star image at the focal plane, we have also taken into account the lowest order distortion due to optical aberrations, which is proportional to the cube of the distance from the optical axis. Accordingly, we find that the precision of the measurement for the positions of the stars reaches below 1/100 pixel for one measurement.

  2. Weak Lensing PSF Correction of Wide-field CCD Mosaic Images (SULI Paper)

    SciTech Connect

    Cevallos, Marissa; /Caltech /SLAC

    2006-01-04

    Gravitational lensing provides some of the most compelling evidence for the existence of dark matter. Dark matter on galaxy cluster scales can be mapped due to its weak gravitational lensing effect: a cluster mass distribution can be inferred from the net distortion of many thousands of faint background galaxies that it induces. Because atmospheric aberration and defects in the detector distort the apparent shape of celestial objects, it is of great importance to characterize accurately the point spread function (PSF) across an image. In this research, the PSF is studied in images from the Canada-France-Hawaii Telescope (CFHT), whose camera is divided into 12 CCD chips. Traditional weak lensing methodology involves averaging the PSF across the entire image: in this work we investigate the effects of measuring the PSF in each chip independently. This chip-by-chip analysis was found to reduce the strength of the correlation between star and galaxy shapes, and predicted more strongly the presence of known galaxy clusters in mass maps. These results suggest correcting the CFHT PSF on an individual chip basis significantly improves the accuracy of detecting weak lensing.

  3. Digital image processing of the CCD (SRT) positional observations of two satellites (Ariel and Titania) of Uranus.

    NASA Astrophysics Data System (ADS)

    Peng, Qingyu; Liu, Weiwei; Wang, Feng

    1998-08-01

    The positional determination of natural satellites is very important in astrometry and celestial mechanics. Some researchers have performed very good astrometric observations of Uranian satellites with a new image processing technique. The authors compared the methods without and with halo-processing for the CCD (SRT-Separated Readout Technique) observations of Ariel and Titania carried out with the 1-meter telescope of Yunnan Observatory. When the two satellites were used to determine the CCD scale and orientation, it was clarified that the Uranian halo-processing is very important for the positional determination of satellites.

  4. CCD star trackers

    NASA Technical Reports Server (NTRS)

    Goss, W. C.

    1975-01-01

    The application of CCDs to star trackers and star mappers is considered. Advantages and disadvantages of silicon CCD star trackers are compared with those of image dissector star trackers. It is concluded that the CCD has adequate sensitivity for most single star tracking tasks and is distinctly superior in multiple star tracking or mapping applications. The signal and noise figures of several current CCD configurations are discussed. The basic structure of the required signal processing is described, and it is shown that resolution in excess of the number of CCD elements may be had by interpolation.

  5. Field-programmable gate array-based hardware architecture for high-speed camera with KAI-0340 CCD image sensor

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Yan, Su; Zhou, Zuofeng; Cao, Jianzhong; Yan, Aqi; Tang, Linao; Lei, Yangjie

    2013-08-01

    We present a field-programmable gate array (FPGA)-based hardware architecture for high-speed camera which have fast auto-exposure control and colour filter array (CFA) demosaicing. The proposed hardware architecture includes the design of charge coupled devices (CCD) drive circuits, image processing circuits, and power supply circuits. CCD drive circuits transfer the TTL (Transistor-Transistor-Logic) level timing Sequences which is produced by image processing circuits to the timing Sequences under which CCD image sensor can output analog image signals. Image processing circuits convert the analog signals to digital signals which is processing subsequently, and the TTL timing, auto-exposure control, CFA demosaicing, and gamma correction is accomplished in this module. Power supply circuits provide the power for the whole system, which is very important for image quality. Power noises effect image quality directly, and we reduce power noises by hardware way, which is very effective. In this system, the CCD is KAI-0340 which is can output 210 full resolution frame-per-second, and our camera can work outstandingly in this mode. The speed of traditional auto-exposure control algorithms to reach a proper exposure level is so slow that it is necessary to develop a fast auto-exposure control method. We present a new auto-exposure algorithm which is fit high-speed camera. Color demosaicing is critical for digital cameras, because it converts a Bayer sensor mosaic output to a full color image, which determines the output image quality of the camera. Complexity algorithm can acquire high quality but cannot implement in hardware. An low-complexity demosaicing method is presented which can implement in hardware and satisfy the demand of quality. The experiment results are given in this paper in last.

  6. SCUBA-2: A Large-Format CCD-Style Imager for Submillimeter Astronomy

    NASA Astrophysics Data System (ADS)

    Audley, M. D.; Holland, W.; Atkinson, D.; Cliffe, M.; Ellis, M.; Gao, X.; Gostick, D.; Hodson, T.; Kelly, D.; Macintosh, M.; McGregor, H.; Montgomery, D.; Smith, I.; Robson, I.; Irwin, K.; Duncan, W.; Doriese, R.; Hilton, G.; Reintsema, C.; Ullom, J.; Vale, L.; Walton, A.; Parkes, W.; Dunare, C.; Ade, P.; Bintley, D.; Gannaway, F.; Hunt, C.; Pisano, G.; Sudiwala, R.; Walker, I.; Woodcraft, A.; Fich, M.; Halpern, M.; Kycia, J.; Naylor, D.; Bastien, P.; Mitchell, G.

    We describe the capabilities of SCUBA-2, the first CCD-like imager for submillimeter astronomy, and the technologies that make it possible. Unlike previous detectors using discrete bolometers, SCUBA-2 has two dc-coupled, monolithic arrays with a total of ~10,000 bolometers. SCUBA-2's absorber-coupled pixels use superconducting transition edge sensors operating at ~ 120mK for photon-noise limited performance and a SQUID time-domain multiplexer for readout. It will offer simultaneous imaging of an 8 × 8 arcmin field of view at wavelengths of 850 μm and 450 μm. SCUBA-2 is expected to have a huge impact on the study of galaxy formation and evolution in the early Universe as well as star and planet formation in our own Galaxy. Mapping the sky to the same S/N up to 1000 times faster than SCUBA, SCUBA-2 will also act as a pathfinder for submillimeter interferometers such as ALMA. SCUBA-2 will begin operation on the JCMT in 2006.

  7. Fast X-ray/γ-ray imaging using electron multiplying CCD-based detector

    NASA Astrophysics Data System (ADS)

    Nagarkar, Vivek V.; Shestakova, Irina; Gaysinskiy, Valeriy; Singh, Bipin; Miller, Brian W.; Bradford Barber, H.

    2006-07-01

    New designs of electron multiplying charge coupled devices (EMCCDs) combine superior spatial resolution and low noise of a conventional CCD with the internal gain of an avalanche photodiode (APD). The presence of internal gain not only enhances the device sensitivity, but virtually eliminates the read noise associated with current CCDs, even when the device is read at very high frame rates of 100 frames per second or higher. Thus, the EMCCDs can simultaneously provide very high sensitivity and a high signal-to-noise ratio (SNR). At RMD we are exploiting these properties of EMCCD for use in radionuclide and X-ray imaging. Specifically, we have developed a system that makes use of an EMCCD with 512 × 512, 16 × 16 μm pixels. Special fiberoptic reducers have been designed to enhance the detector sensitive area. The system gain is software selectable and may be varied from 1 to 1000. This paper describes the detector design along with its γ-ray/X-ray imaging performance.

  8. Dynamic MTF improvement scheme and its validation for CCD operating in TDI mode for Earth imaging applications

    NASA Astrophysics Data System (ADS)

    Dubey, Neeraj; Banerjee, Arup

    2016-05-01

    The paper presents the scheme for improving the image contrast in the remote sensing images and highlights the novelty in hardware & software design in the test system developed for measuring image contrast function. Modulation transfer function (MTF) is the most critical quality element of the high-resolution imaging payloads for earth observation consisting of TDI-CCD (Time Delayed Integration Charge Coupled Device) image. From the mathematical model for MTF Smear MTF of 65% (35% degradation) is observed. Then a operating method for TDI-CCD is developed, using which 96% of Motion Smear MTF will occur within the imaging operation. As a major part of the validation, indigenously designed and developed a test system for measuring the dynamic MTF of TDI Sensors which consists of the optical scanning system, TDI-CCD camera drive & video processing electronics, thermal control system and telecentric uniform illumination system. The experimental results confirm that image quality improvement can be achieved by this method. This method is now implemented in the flight model hardware of the remote sensing payload.

  9. A New Serial-direction Trail Effect in CCD Images of the Lunar-based Ultraviolet Telescope

    NASA Astrophysics Data System (ADS)

    Wu, C.; Deng, J. S.; Guyonnet, A.; Antilogus, P.; Cao, L.; Cai, H. B.; Meng, X. M.; Han, X. H.; Qiu, Y. L.; Wang, J.; Wang, S.; Wei, J. Y.; Xin, L. P.; Li, G. W.

    2016-10-01

    Unexpected trails have been seen subsequent to relative bright sources in astronomical images taken with the CCD camera of the Lunar-based Ultraviolet Telescope (LUT) since its first light on the Moon’s surface. The trails can only be found in the serial-direction of CCD readout, differing themselves from image trails of radiation-damaged space-borne CCDs, which usually appear in the parallel-readout direction. After analyzing the same trail defects following warm pixels (WPs) in dark frames, we found that the relative intensity profile of the LUT CCD trails can be expressed as an exponential function of the distance i (in number of pixels) of the trailing pixel to the original source (or WP), i.e., {\\mathtt{\\exp }}(α {\\mathtt{i}}+β ). The parameters α and β seem to be independent of the CCD temperature, intensity of the source (or WP), and its position in the CCD frame. The main trail characteristics show evolution occurring at an increase rate of ˜(7.3 ± 3.6) × 10-4 in the first two operation years. The trails affect the consistency of the profiles of different brightness sources, which make smaller aperture photometry have larger extra systematic error. The astrometric uncertainty caused by the trails is too small to be acceptable based on LUT requirements for astrometry accuracy. Based on the empirical profile model, a correction method has been developed for LUT images that works well for restoring the fluxes of astronomical sources that are lost in trailing pixels.

  10. Classification of volcanic ash particles from Sakurajima volcano using CCD camera image and cluster analysis

    NASA Astrophysics Data System (ADS)

    Miwa, T.; Shimano, T.; Nishimura, T.

    2012-12-01

    Quantitative and speedy characterization of volcanic ash particle is needed to conduct a petrologic monitoring of ongoing eruption. We develop a new simple system using CCD camera images for quantitatively characterizing ash properties, and apply it to volcanic ash collected at Sakurajima. Our method characterizes volcanic ash particles by 1) apparent luminance through RGB filters and 2) a quasi-fractal dimension of the shape of particles. Using a monochromatic CCD camera (Starshoot by Orion Co. LTD.) attached to a stereoscopic microscope, we capture digital images of ash particles that are set on a glass plate under which white colored paper or polarizing plate is set. The images of 1390 x 1080 pixels are taken through three kinds of color filters (Red, Green and Blue) under incident-light and transmitted-light through polarizing plate. Brightness of the light sources is set to be constant, and luminance is calibrated by white and black colored papers. About fifteen ash particles are set on the plate at the same time, and their images are saved with a bit map format. We first extract the outlines of particles from the image taken under transmitted-light through polarizing plate. Then, luminances for each color are represented by 256 tones at each pixel in the particles, and the average and its standard deviation are calculated for each ash particle. We also measure the quasi-fractal dimension (qfd) of ash particles. We perform box counting that counts the number of boxes which consist of 1×1 and 128×128 pixels that catch the area of the ash particle. The qfd is estimated by taking the ratio of the former number to the latter one. These parameters are calculated by using software R. We characterize volcanic ash from Showa crater of Sakurajima collected in two days (Feb 09, 2009, and Jan 13, 2010), and apply cluster analyses. Dendrograms are formed from the qfd and following four parameters calculated from the luminance: Rf=R/(R+G+B), G=G/(R+G+B), B=B/(R+G+B), and

  11. Surface cleaning of CCD imagers using an electrostatic dissipative formulation of First Contact polymer

    NASA Astrophysics Data System (ADS)

    Derylo, G.; Estrada, J.; Flaugher, B.; Hamilton, J.; Kubik, D.; Kuk, K.; Scarpine, V.

    2008-07-01

    We describe the results obtained cleaning the surface of DECam CCD detectors with a new electrostatic dissipative formulation of First ContactTM polymer from Photonic Cleaning Technologies. We demonstrate that cleaning with this new product is possible without ESD damage to the sensors and without degradation of the antireflective coating used to optimize the optical performance of the detector. We show that First ContactTM is more effective for cleaning a CCD than the commonly used acetone swab.

  12. Photon counting imaging with an electron-bombarded CCD: Towards wide-field time-correlated single photon counting (TCSPC)

    NASA Astrophysics Data System (ADS)

    Hirvonen, Liisa M.; Jiggins, Stephen; Sergent, Nicolas; Zanda, Gianmarco; Suhling, Klaus

    2015-07-01

    Single photon detecting capabilities of an electron-bombarded CCD (EBCCD), where a photon is converted into a photoelectron that is accelerated through a high voltage before hitting the CCD chip, were characterised. The photon event pulse height distribution was found to be linearly dependent on the gain voltage. Based on these results, we propose that a gain voltage sweep during exposure in an EBCCD or EBCMOS camera would allow photon arrival time determination from the photon event pulse height with sub-frame exposure time resolution. This effectively uses an electron-bombarded sensor as a parallel-processing photoelectronic time-to-amplitude converter (TAC), or a 2-dimensional streak camera. Several applications that require timing of photon arrival, including fluorescence lifetime imaging microscopy (FLIM), may benefit from this approach. Moreover, the EBCCD was used on a fluorescence microscope to image fluorescently labelled cells in single photon counting mode.

  13. A comparison of CsI:Tl and GOS in a scintillator-CCD detector for nuclear medicine imaging

    NASA Astrophysics Data System (ADS)

    Bugby, S. L.; Jambi, L. K.; Lees, J. E.

    2016-09-01

    A number of portable gamma cameras for medical imaging use scintillator-CCD based detectors. This paper compares the performance of a scintillator-CCD based portable gamma camera with either a columnar CsI:Tl or a pixelated GOS scintillator installed. The CsI:Tl scintillator has a sensitivity of 40% at 140.5 keV compared to 54% with the GOS scintillator. The intrinsic spatial resolution of the pixelated GOS detector was 1.09 mm, over 4 times poorer than for CsI:Tl. Count rate capability was also found to be significantly lower when the GOS scintillator was used. The uniformity was comparable for both scintillators.

  14. The low-resolution imaging spectrograph red channel CCD upgrade: fully depleted, high-resistivity CCDs for Keck

    NASA Astrophysics Data System (ADS)

    Rockosi, C.; Stover, R.; Kibrick, R.; Lockwood, C.; Peck, M.; Cowley, D.; Bolte, M.; Adkins, S.; Alcott, B.; Allen, S. L.; Brown, B.; Cabak, G.; Deich, W.,; Hilyard, D.,; Kassis, M.,; Lanclos, K.,; Lewis, J.,; Pfister, T.,; Phillips, A.,; Robinson, L.,; Saylor, M.,; Thompson, M.,; Ward, J.,; Wei, M.,; Wright, C.,

    2010-07-01

    A mosaic of two 2k x 4k fully depleted, high resistivity CCD detectors was installed in the red channel of the Low Resolution Imaging Spectrograph for the Keck-I Telescope in June, 2009 replacing a monolithic Tektronix/SITe 2k x 2k CCD. These CCDs were fabricated at Lawrence Berkeley National Laboratory (LBNL) and packaged and characterized by UCO/Lick Observatory. Major goals of the detector upgrade were increased throughput and reduced interference fringing at wavelengths beyond 800 nm, as well as improvements in the maintainability and serviceability of the instrument. We report on the main features of the design, the results of optimizing detector performance during integration and testing, as well as the throughput, sensitivity and performance of the instrument as characterized during commissioning.

  15. Advances in alimentary tract imaging.

    PubMed

    Maglinte, Dean-Dt; Sandrasegaran, Kumaresan; Tann, Mark

    2006-05-28

    Advances in imaging techniques are changing the way radiologists undertake imaging of the gastrointestinal tract and their ability to answer questions posed by surgeons. In this paper we discuss the technological improvements of imaging studies that have occurred in the last few years and how these help to better diagnosing alimentary tract disease.

  16. Advanced Airborne Hyperspectral Imaging System (AAHIS)

    NASA Astrophysics Data System (ADS)

    Topping, Miles Q.; Pfeiffer, Joel E.; Sparks, Andrew W.; Jim, Kevin T. C.; Yoon, Dugan

    2002-11-01

    The design, operation, and performance of the fourth generation of Science and Technology International's Advanced Airborne Hyperspectral Imaging Sensors (AAHIS) are described. These imaging spectrometers have a variable bandwidth ranging from 390-840 nm. A three-axis image stabilization provides spatially and spectrally coherent imagery by damping most of the airborne platform's random motion. A wide 40-degree field of view coupled with sub-pixel detection allows for a large area coverage rate. A software controlled variable aperture, spectral shaping filters, and high quantum efficiency, back-illuminated CCD's contribute to the excellent sensitivity of the sensors. AAHIS sensors have been operated on a variety of fixed and rotary wing platforms, achieving ground-sampling distances ranging from 6.5 cm to 2 m. While these sensors have been primarily designed for use over littoral zones, they are able to operate over both land and water. AAHIS has been used for detecting and locating submarines, mines, tanks, divers, camouflage and disturbed earth. Civilian applications include search and rescue on land and at sea, agricultural analysis, environmental time-series, coral reef assessment, effluent plume detection, coastal mapping, damage assessment, and seasonal whale population monitoring

  17. Advancing biomedical imaging.

    PubMed

    Weissleder, Ralph; Nahrendorf, Matthias

    2015-11-24

    Imaging reveals complex structures and dynamic interactive processes, located deep inside the body, that are otherwise difficult to decipher. Numerous imaging modalities harness every last inch of the energy spectrum. Clinical modalities include magnetic resonance imaging (MRI), X-ray computed tomography (CT), ultrasound, and light-based methods [endoscopy and optical coherence tomography (OCT)]. Research modalities include various light microscopy techniques (confocal, multiphoton, total internal reflection, superresolution fluorescence microscopy), electron microscopy, mass spectrometry imaging, fluorescence tomography, bioluminescence, variations of OCT, and optoacoustic imaging, among a few others. Although clinical imaging and research microscopy are often isolated from one another, we argue that their combination and integration is not only informative but also essential to discovering new biology and interpreting clinical datasets in which signals invariably originate from hundreds to thousands of cells per voxel.

  18. Advancing biomedical imaging

    PubMed Central

    Weissleder, Ralph; Nahrendorf, Matthias

    2015-01-01

    Imaging reveals complex structures and dynamic interactive processes, located deep inside the body, that are otherwise difficult to decipher. Numerous imaging modalities harness every last inch of the energy spectrum. Clinical modalities include magnetic resonance imaging (MRI), X-ray computed tomography (CT), ultrasound, and light-based methods [endoscopy and optical coherence tomography (OCT)]. Research modalities include various light microscopy techniques (confocal, multiphoton, total internal reflection, superresolution fluorescence microscopy), electron microscopy, mass spectrometry imaging, fluorescence tomography, bioluminescence, variations of OCT, and optoacoustic imaging, among a few others. Although clinical imaging and research microscopy are often isolated from one another, we argue that their combination and integration is not only informative but also essential to discovering new biology and interpreting clinical datasets in which signals invariably originate from hundreds to thousands of cells per voxel. PMID:26598657

  19. Modern Imaging Technology: Recent Advances

    SciTech Connect

    Welch, Michael J.; Eckelman, William C.

    2004-06-18

    This 2-day conference is designed to bring scientist working in nuclear medicine, as well as nuclear medicine practitioners together to discuss the advances in four selected areas of imaging: Biochemical Parameters using Small Animal Imaging, Developments in Small Animal PET Imaging, Cell Labeling, and Imaging Angiogenesis Using Multiple Modality. The presentations will be on molecular imaging applications at the forefront of research, up to date on the status of molecular imaging in nuclear medicine as well as in related imaging areas. Experts will discuss the basic science of imaging techniques, and scheduled participants will engage in an exciting program that emphasizes the current status of molecular imaging as well as the role of DOE funded research in this area.

  20. Mammographic imaging with a small format CCD-based digital cassette: Physical characteristics of a clinical systema

    PubMed Central

    Vedantham, Srinivasan; Karellas, Andrew; Suryanarayanan, Sankararaman; Levis, Ilias; Sayag, Michel; Kleehammer, Robert; Heidsieck, Robert; D’Orsi, Carl J.

    2008-01-01

    The physical characteristics of a clinical charge coupled device (CCD)-based imager (Senovision, GE Medical Systems, Milwaukee, WI) for small-field digital mammography have been investigated. The imager employs a MinR 2000™ (Eastman Kodak Company, Rochester, NY) scintillator coupled by a 1:1 optical fiber to a front-illuminated 61×61 mm CCD operating at a pixel pitch of 30 microns. Objective criteria such as modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), and noise equivalent quanta (NEQ) were employed for this evaluation. The results demonstrated a limiting spatial resolution (10% MTF) of 10 cy/mm. The measured DQE of the current prototype utilizing a 28 kVp, Mo–Mo spectrum beam hardened with 4.5 cm Lucite is ~40% at close to zero spatial frequency at an exposure of 8.2 mR, and decreases to ~28% at a low exposure of 1.1 mR. Detector element nonuniformity and electronic gain variations were not significant after appropriate calibration and software corrections. The response of the imager was linear and did not exhibit signal saturation under tested exposure conditions. PMID:10984230

  1. Advanced Image Understanding.

    DTIC Science & Technology

    1981-12-01

    Applications to Computer Technology (McGraw-Hill, New York, 1967). . 3. B. Kruse, "System Architecture for Image Analysis," Chapter 7 of Structured ... Computer Vision, edited by S. Tanimoto and A. Klinger (Academic Press, 1980). 107

  2. Imaging the Moon II: Webcam CCD Observations and Analysis (a Two-Week Lab for Non-Majors)

    NASA Astrophysics Data System (ADS)

    Sato, T.

    2014-07-01

    Imaging the Moon is a successful two-week lab involving real sky observations of the Moon in which students make telescopic observations and analyze their own images. Originally developed around the 35 mm film camera, a common household object adapted for astronomical work, the lab now uses webcams as film photography has evolved into an obscure specialty technology and increasing numbers of students have little familiarity with it. The printed circuit board with the CCD is harvested from a commercial webcam and affixed to a tube to mount on a telescope in place of an eyepiece. Image frames are compiled to form a lunar mosaic, and crater sizes are measured. Students also work through the logistical steps of telescope time assignment and scheduling. They learn to keep a schedule and work with uncertainties of weather in ways paralleling research observations. Because there is no need for a campus observatory, this lab can be replicated at a wide variety of institutions.

  3. Advanced imaging communication system

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.; Rice, R. F.

    1977-01-01

    Key elements of system are imaging and nonimaging sensors, data compressor/decompressor, interleaved Reed-Solomon block coder, convolutional-encoded/Viterbi-decoded telemetry channel, and Reed-Solomon decoding. Data compression provides efficient representation of sensor data, and channel coding improves reliability of data transmission.

  4. Advanced Land Imager Assessment System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Choate, Mike; Christopherson, Jon; Hollaren, Doug; Morfitt, Ron; Nelson, Jim; Nelson, Shar; Storey, James; Helder, Dennis; Ruggles, Tim; Kaita, Ed; Levy, Raviv; Ong, Lawrence; Markham, Brian; Schweiss, Robert

    2008-01-01

    The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance. The geometric processing subsystem and analysis capabilities support sensor alignment calibrations, sensor chip assembly (SCA)-to-SCA alignments and band-to-band alignment; and perform geodetic accuracy assessments, modulation transfer function (MTF) characterizations, and image-to-image characterizations. ALIAS also characterizes and corrects band-toband registration, and performs systematic precision and terrain correction of ALI images. This system can geometrically correct, and automatically mosaic, the SCA image strips into a seamless, map-projected image. This system provides a large database, which enables bulk trending for all ALI image data and significant instrument telemetry. Bulk trending consists of two functions: Housekeeping Processing and Bulk Radiometric Processing. The Housekeeping function pulls telemetry and temperature information from the instrument housekeeping files and writes this information to a database for trending. The Bulk Radiometric Processing function writes statistical information from the dark data acquired before and after the Earth imagery and the lamp data to the database for trending. This allows for multi-scene statistical analyses.

  5. Characterization of the luminance and shape of ash particles at Sakurajima volcano, Japan, using CCD camera images

    NASA Astrophysics Data System (ADS)

    Miwa, Takahiro; Shimano, Taketo; Nishimura, Takeshi

    2015-01-01

    We develop a new method for characterizing the properties of volcanic ash at the Sakurajima volcano, Japan, based on automatic processing of CCD camera images. Volcanic ash is studied in terms of both luminance and particle shape. A monochromatic CCD camera coupled with a stereomicroscope is used to acquire digital images through three filters that pass red, green, or blue light. On single ash particles, we measure the apparent luminance, corresponding to 256 tones for each color (red, green, and blue) for each pixel occupied by ash particles in the image, and the average and standard deviation of the luminance. The outline of each ash particle is captured from a digital image taken under transmitted light through a polarizing plate. Also, we define a new quasi-fractal dimension ( D qf ) to quantify the complexity of the ash particle outlines. We examine two ash samples, each including about 1000 particles, which were erupted from the Showa crater of the Sakurajima volcano, Japan, on February 09, 2009 and January 13, 2010. The apparent luminance of each ash particle shows a lognormal distribution. The average luminance of the ash particles erupted in 2009 is higher than that of those erupted in 2010, which is in good agreement with the results obtained from component analysis under a binocular microscope (i.e., the number fraction of dark juvenile particles is lower for the 2009 sample). The standard deviations of apparent luminance have two peaks in the histogram, and the quasi-fractal dimensions show different frequency distributions between the two samples. These features are not recognized in the results of conventional qualitative classification criteria or the sphericity of the particle outlines. Our method can characterize and distinguish ash samples, even for ash particles that have gradual property changes, and is complementary to component analysis. This method also enables the relatively fast and systematic analysis of ash samples that is required for

  6. High performance 7.4-micron interline transfer CCD platform for applied imaging markets

    NASA Astrophysics Data System (ADS)

    Carpenter, Douglas A.; DiBella, James A.; Kaser, Robert; Kecskemety, Brent; Kosman, Stephen L.; McCarten, John P.; Parks, Christopher

    2013-02-01

    Technology developed for a 5.5 μm pixel interline transfer CCD family has been incorporated into a new family of highperformance 7.4 μm pixel CCDs, providing significant improvements in several key performance parameters compared to both the 5.5 μm family as well as the previous generation of 7.4 μm pixel products. Smear in the new platform has been reduced to -115 dB, and frame rate has been doubled relative to the previous generation of 7.4 μm pixel products. Dynamic range in normal operation has been improved to 70 dB, and the platform supports a new extended dynamic range mode which provides 82 dB when binning 2 × 2. The new family leverages the package and pin-out configurations used in the 5.5 μm pixel family, allowing easy integration into existing camera designs.

  7. GEM-based TPC with CCD imaging for directional dark matter detection

    NASA Astrophysics Data System (ADS)

    Phan, N. S.; Lauer, R. J.; Lee, E. R.; Loomba, D.; Matthews, J. A. J.; Miller, E. H.

    2016-11-01

    The most mature directional dark matter experiments at present all utilize low-pressure gas Time Projection Chamber (TPC) technologies. We discuss some of the challenges for this technology, for which balancing the goal of achieving the best sensitivity with that of cost effective scale-up requires optimization over a large parameter space. Critical for this are the precision measurements of the fundamental properties of both electron and nuclear recoil tracks down to the lowest detectable energies. Such measurements are necessary to provide a benchmark for background discrimination and directional sensitivity that could be used for future optimization studies for directional dark matter experiments. In this paper we describe a small, high resolution, high signal-to-noise GEM-based TPC with a 2D CCD readout designed for this goal. The performance of the detector was characterized using alpha particles, X-rays, gamma-rays, and neutrons, enabling detailed measurements of electron and nuclear recoil tracks. Stable effective gas gains of greater than 1 × 105 were obtained in 100 Torr of pure CF4 by a cascade of three standard CERN GEMs each with a 140 μm pitch. The high signal-to-noise and sub-millimeter spatial resolution of the GEM amplification and CCD readout, together with low diffusion, allow for excellent background discrimination between electron and nuclear recoils down below ∼10 keVee (∼23 keVr fluorine recoil). Even lower thresholds, necessary for the detection of low mass WIMPs for example, might be achieved by lowering the pressure and utilizing full 3D track reconstruction. These and other paths for improvements are discussed, as are possible fundamental limitations imposed by the physics of energy loss.

  8. The MPI/AIT X-ray Imager (MAXI): High speed pn-CCD's for x-ray detection

    SciTech Connect

    Strueder, L.; Braeuninger, H.; Meier, M.; Predehl, P.; Reppin, C.; Sterzik, M.; Truemper, J. . Inst. fuer Astrophysik); Cattaneo, P.; Hauff, D.; Lutz, G.; Schuster, K.F.; Schwarz, A. . Werner-Heisenberg-Inst. fuer Physik); Kenziorra, E.; Staubert, A. (Tuebingen

    1989-06-01

    MAXI (MPI/AIT X-RAY Imager) is part of a proposal submitted to the European Space Agency (ESA) as focal plane instrumentation of the X-ray Multi Mission (XMM). Within a collaboration of 13 European institutes we have proposed a fully depleted (sensitive) pn CCD of 280 {mu}m thickness with a homogeneous sensitive area of 36 cm{sup 2} and a pixel size of 150 {times} 150 {mu}m{sup 2} which is well matched with the telescope's angular resolution of 30 arcsec, translating to a position resolution of approximately 1 mm in the focal plane. The X-ray sensitivity is higher than 90% from 250 eV up to 10 keV, the readout time in the full frame mode of the complete focal plane will be 2 ms with a readout noise of better than 5 e{sup {minus}} (rms). Prototypes of all individual components of the camera system have been fabricated and tested. The camera concept will be presented. The measured transfer properties of the CCD and the on-chip electronics will be treated. Taking into account the coupling of the on-chip amplifier to the following front-end electronics the expected performance will be derived.

  9. Backside charging of the CCD

    NASA Technical Reports Server (NTRS)

    Janesick, J.; Elliott, T.; Daud, T.; Mccarthy, J.; Blouke, M.

    1985-01-01

    Until recently, the usefulness of the charge coupled device (CCD) as an imaging sensor was thought to be restricted to within rather narrow boundaries of the visible and near IR spectrum. However, since the discovery of backside charging the full potential of CCD performance is now realized. Indeed, the technique of backside charging not only allows the CCD to be used directly in the UV, EUV, and soft X-ray regimes, it has opened up new opportunities in optimizing charge collection processes as well. The technique of backside charging is discussed, and its properties, use, and potential in the future as it applies to the CCD are described.

  10. Radio-optical reference frame link using the U.S. Naval observatory astrograph and deep CCD imaging

    SciTech Connect

    Zacharias, N.; Zacharias, M. I.

    2014-05-01

    Between 1997 and 2004 several observing runs were conducted, mainly with the CTIO 0.9 m, to image International Celestial Reference Frame (ICRF) counterparts (mostly QSOs) in order to determine accurate optical positions. Contemporary to these deep CCD images, the same fields were observed with the U.S. Naval Observatory astrograph in the same bandpass. They provide accurate positions on the Hipparcos/Tycho-2 system for stars in the 10-16 mag range used as reference stars for the deep CCD imaging data. Here we present final optical position results of 413 sources based on reference stars obtained by dedicated astrograph observations that were reduced following two different procedures. These optical positions are compared to radio very long baseline interferometry positions. The current optical system is not perfectly aligned to the ICRF radio system with rigid body rotation angles of 3-5 mas (= 3σ level) found between them for all three axes. Furthermore, statistically, the optical-radio position differences are found to exceed the total, combined, known errors in the observations. Systematic errors in the optical reference star positions and physical offsets between the centers of optical and radio emissions are both identified as likely causes. A detrimental, astrophysical, random noise component is postulated to be on about the 10 mas level. If confirmed by future observations, this could severely limit the Gaia to ICRF reference frame alignment accuracy to an error of about 0.5 mas per coordinate axis with the current number of sources envisioned to provide the link. A list of 36 ICRF sources without the detection of an optical counterpart to a limiting magnitude of about R = 22 is provided as well.

  11. CCD-Based Skinning Injury Recognition on Potato Tubers (Solanum tuberosum L.): A Comparison between Visible and Biospeckle Imaging

    PubMed Central

    Gao, Yingwang; Geng, Jinfeng; Rao, Xiuqin; Ying, Yibin

    2016-01-01

    Skinning injury on potato tubers is a kind of superficial wound that is generally inflicted by mechanical forces during harvest and postharvest handling operations. Though skinning injury is pervasive and obstructive, its detection is very limited. This study attempted to identify injured skin using two CCD (Charge Coupled Device) sensor-based machine vision technologies, i.e., visible imaging and biospeckle imaging. The identification of skinning injury was realized via exploiting features extracted from varied ROIs (Region of Interests). The features extracted from visible images were pixel-wise color and texture features, while region-wise BA (Biospeckle Activity) was calculated from biospeckle imaging. In addition, the calculation of BA using varied numbers of speckle patterns were compared. Finally, extracted features were implemented into classifiers of LS-SVM (Least Square Support Vector Machine) and BLR (Binary Logistic Regression), respectively. Results showed that color features performed better than texture features in classifying sound skin and injured skin, especially for injured skin stored no less than 1 day, with the average classification accuracy of 90%. Image capturing and processing efficiency can be speeded up in biospeckle imaging, with captured 512 frames reduced to 125 frames. Classification results obtained based on the feature of BA were acceptable for early skinning injury stored within 1 day, with the accuracy of 88.10%. It is concluded that skinning injury can be recognized by visible and biospeckle imaging during different stages. Visible imaging has the aptitude in recognizing stale skinning injury, while fresh injury can be discriminated by biospeckle imaging. PMID:27763555

  12. CCD imaging of basal bioluminescence in larval fireflies: clues on the anatomic origin and evolution of bioluminescence.

    PubMed

    Viviani, V R; Okawachi, F M; Scorsato, V; Abdalla, F C

    2008-04-01

    The anatomic and biochemical origin of beetle bioluminescence is still poorly understood. Through CCD imaging we report that larvae and pupae of the Brazilian fireflies Aspisoma lineatum and Cratomorphus sp emit a continuous weak glow throughout the entire body during all stages. This luminescence is especially developed after feeding, ecdysis and in the pupal stage, gradually disappearing as the cuticle becomes sclerotized and the adult emerges. This weak glow arises from the fat body, which consists of small lobes spread all over the body cavity. According to their pigmentation, these lobes can be divided in whitish and pinkish, and display different luciferase isozymes. Morphological studies suggest that the jelly-like ventral lanterns in the 8th abdominal segment evolved from these white lobes, providing a rationale for the widespread location of lanterns in larvae of different bioluminescent beetles. The biological and biochemical function of this weak diffuse bioluminescence is discussed in the context of the larval life-history.

  13. Fast CCD camera for x-ray photon correlation spectroscopy and time-resolved x-ray scattering and imaging

    NASA Astrophysics Data System (ADS)

    Falus, P.; Borthwick, M. A.; Mochrie, S. G. J.

    2004-11-01

    A new, fast x-ray detector system is presented for high-throughput, high-sensitivity, time-resolved, x-ray scattering and imaging experiments, most especially x-ray photon correlation spectroscopy (XPCS). After a review of the architectures of different CCD chips and a critical examination of their suitability for use in a fast x-ray detector, the new detector hardware is described. In brief, its principal component is an inexpensive, commercial camera—the SMD1M60—originally designed for optical applications, and modified for use as a direct-illumination x-ray detector. The remainder of the system consists of two Coreco Imaging PC-DIG frame grabber boards, located inside a Dell Power-edge 6400 server. Each frame grabber sits on its own PCI bus and handles data from 2 of the CCD's 4 taps. The SMD1M60 is based on a fast, frame-transfer, 4-tap CCD chip, read out at12-bit resolution at frame rates of up to 62 Hz for full frame readout and up to 500 Hz for one-sixteenth frame readout. Experiments to characterize the camera's suitability for XPCS and small-angle x-ray scattering (SAXS) are presented. These experiments show that single photon events are readily identified, and localized to within a pixel index or so. This is a sufficiently fine spatial resolution to maintain the speckle contrast at an acceptable value for XPCS measurements. The detective quantum efficiency of the SMD1M60 is 49% for directly-detected 6.3 keV x rays. The effects of data acquisition strategies that permit near-real-time data compression are also determined and discussed. Overall, the SMD1M60 detector system represents a major improvement in the technology for time-resolved x-ray experiments, that require an area detector with time-resolutions in few-milliseconds-to-few-seconds range, and it should have wide applications, extending beyond XPCS.

  14. Electronic intraoral dental x-ray imaging system employing a direct sensing CCD array

    SciTech Connect

    Cox, J.D.; Langford, D.S.; Williams, D.W.

    1993-12-31

    A commercial prototype intraoral radiography system has been developed that can provide digital x-ray images for diagnosis. The system consists of an intraoral detector head, an intermediate drive electronics package, a main drive electronics package and a PC-based digital image management system. The system has the potential to replace the use of dental film in intraoral radiographic examinations. High-resolution images are acquired, then displayed on a CRT within seconds of image acquisition.

  15. Removing cosmic-ray hits from CCD images in real-time mode by means of an artificial neural network

    NASA Astrophysics Data System (ADS)

    Waniak, Wacław

    2006-06-01

    A feed-forward artificial neural network has been implemented to the problem of removing cosmic-ray hits (CRH) from CCD images. The results of a number of tests demonstrate the effectiveness of this method especially for undersampled stellar profiles. The problem of optimal and low price preparing of training data, which could enable real-time or at least fast post-processing filtering out of CRH is discussed. The training and test ensembles were composed of a number of synthetic stellar profiles involving different S/N ratios and CRH images taken from real data. Certain aspects of the network’s architecture and its training efficiency for different modes of the back-propagation procedure as well as for the pre-process normalization of data have been examined. It is shown that for training set composed of stellar images and CRH at a ratio of 1:2 recognition can reach 99% in the case of stars and 96% for CRH. To determine the extent to which the cognition power of a network trained using an ensemble of circular symmetric stellar profiles of a given radius can be generalised the test data included stellar profiles of different radii, as well as elongated profiles. The goal was to mimic temporal changes in seeing as well as such problems as image defocusing, the lack of isoplanatism and improper sideral tracking of a telescope. The experiments provided us with the conclusion that for S/N > 10 excellent classification property is maintained in cases where the change in the radius of a circular profile is up to 30%, as well as for elongated profiles where the longest dimension is almost double that of the shortest one. Moreover, the generalization capability has been investigated for test images of synthetic pairs of overlapping stars with different distances between components. Almost 99% recognition efficiency was achieved even if the separation was nearly three times the radius of the stellar profile, a case when two stars could be analyzed by appropriate software

  16. Advances in abdominal MR imaging.

    PubMed

    Ferrucci, J T

    1998-01-01

    Major technical advances in MR imaging have led to its wider use in the evaluation of abdominal disease. The principle new pulse sequence is the RARE sequence for T2-weighted imaging. Multishot and breath-hold single-shot RARE techniques are now widely used, and both have performed as well as conventional spin-echo imaging with far shorter acquisition times. The most notable improvements have been in the detection and characterization of hepatic lesions. Two liver-specific contrast agents received FDA approval during 1997: SPIO particles or ferumoxide and mangafodipir trisodium, a hepatocyte-specific agent. Both of these agents provide considerable benefit in the detection and characterization of hepatic lesions. Manganese enhancement has also proved useful in MR imaging of the pancreas, although fat-suppressed T1-weighted imaging with dynamic gadolinium enhancement has also yielded results comparable with those of contrast-enhanced CT. MR hydrography, a generic term for static fluid imaging, is another derivative of RARE fast T2-weighted imaging. MRCP, the best known example of MR hydrography, has been rapidly and widely employed as a primary method for imaging the biliary and pancreatic ducts and has become competitive with ERCP. MR vascular imaging, especially portal venography, has been used for noninvasive imaging of portal venous disease in Budd Chiari disease, before placement of transjugular intrahepatic portosystemic shunts, and for pancreatic cancer staging. Finally, the development of conventional phased-array body coils and endorectal coils has enabled high-quality MR imaging of perirectal disease (including Crohn disease, fistula in ano, and postpartum sphincter dysfunction). Future abdominal applications of MR imaging will involve second-generation MR interventional techniques, including use of open systems, functional or diffusion-weighted imaging exploiting the molecular activity of tissues, and virtual MR endoscopy. Although CT continues to evolve

  17. Research on detection method of end gap of piston rings based on area array CCD and image processing

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Wang, Zhong; Liu, Qi; Li, Lin

    2012-01-01

    Piston ring is one of the most important parts in internal combustion engine, and the width of end gap is an important parameter which should be detected one by one. In comparison to the previous measurements of end gap, a new efficient detection method is presented based on computer vision and image processing theory. This paper describes the framework and measuring principle of the measurement system. In which, the image processing algorithm is highlighted. Firstly, the partial end gap image of piston ring is acquired by the area array CCD; secondly, the end gap edge contour which is connected by single pixel is obtained by grayscale threshold segmentation, mathematical morphology contour edge detection, contour trace and other image processing tools; finally, the distance between the two end gap edge contour lines is calculated by using the least distance method of straight-line fitting. It has been proved by the repetitive experiments that the measurement accuracy can reach 0.01mm. What's more, the detection efficiency of automatic inspected instrument on parameters of piston ring based on this method can reach 10~12 pieces/min.

  18. Visual enhancement of laparoscopic nephrectomies using the 3-CCD camera

    NASA Astrophysics Data System (ADS)

    Crane, Nicole J.; Kansal, Neil S.; Dhanani, Nadeem; Alemozaffar, Mehrdad; Kirk, Allan D.; Pinto, Peter A.; Elster, Eric A.; Huffman, Scott W.; Levin, Ira W.

    2006-02-01

    Many surgical techniques are currently shifting from the more conventional, open approach towards minimally invasive laparoscopic procedures. Laparoscopy results in smaller incisions, potentially leading to less postoperative pain and more rapid recoveries . One key disadvantage of laparoscopic surgery is the loss of three-dimensional assessment of organs and tissue perfusion. Advances in laparoscopic technology include high-definition monitors for improved visualization and upgraded single charge coupled device (CCD) detectors to 3-CCD cameras, to provide a larger, more sensitive color palette to increase the perception of detail. In this discussion, we further advance existing laparoscopic technology to create greater enhancement of images obtained during radical and partial nephrectomies in which the assessment of tissue perfusion is crucial but limited with current 3-CCD cameras. By separating the signals received by each CCD in the 3-CCD camera and by introducing a straight forward algorithm, rapid differentiation of renal vessels and perfusion is accomplished and could be performed real time. The newly acquired images are overlaid onto conventional images for reference and comparison. This affords the surgeon the ability to accurately detect changes in tissue oxygenation despite inherent limitations of the visible light image. Such additional capability should impact procedures in which visual assessment of organ vitality is critical.

  19. Recent imaging advances in neurology.

    PubMed

    Rocchi, Lorenzo; Niccolini, Flavia; Politis, Marios

    2015-09-01

    Over the recent years, the application of neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) has considerably advanced the understanding of complex neurological disorders. PET is a powerful molecular imaging tool, which investigates the distribution and binding of radiochemicals attached to biologically relevant molecules; as such, this technique is able to give information on biochemistry and metabolism of the brain in health and disease. MRI uses high intensity magnetic fields and radiofrequency pulses to provide structural and functional information on tissues and organs in intact or diseased individuals, including the evaluation of white matter integrity, grey matter thickness and brain perfusion. The aim of this article is to review the most recent advances in neuroimaging research in common neurological disorders such as movement disorders, dementia, epilepsy, traumatic brain injury and multiple sclerosis, and to evaluate their contribution in the diagnosis and management of patients.

  20. Advances in multimodality molecular imaging

    PubMed Central

    Zaidi, Habib; Prasad, Rameshwar

    2009-01-01

    Multimodality molecular imaging using high resolution positron emission tomography (PET) combined with other modalities is now playing a pivotal role in basic and clinical research. The introduction of combined PET/CT systems in clinical setting has revolutionized the practice of diagnostic imaging. The complementarity between the intrinsically aligned anatomic (CT) and functional or metabolic (PET) information provided in a “one-stop shop” and the possibility to use CT images for attenuation correction of the PET data has been the driving force behind the success of this technology. On the other hand, combining PET with Magnetic Resonance Imaging (MRI) in a single gantry is technically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of few preclinical PET systems and one human prototype dedicated for simultaneous PET/MR brain imaging. This paper discusses recent advances in PET instrumentation and the advantages and challenges of multimodality imaging systems. Future opportunities and the challenges facing the adoption of multimodality imaging instrumentation will also be addressed. PMID:20098557

  1. Photon counting imaging with an electron-bombarded CCD: Towards a parallel-processing photoelectronic time-to-amplitude converter

    SciTech Connect

    Hirvonen, Liisa M.; Jiggins, Stephen; Sergent, Nicolas; Zanda, Gianmarco; Suhling, Klaus

    2014-12-15

    We have used an electron-bombarded CCD for optical photon counting imaging. The photon event pulse height distribution was found to be linearly dependent on the gain voltage. We propose on this basis that a gain voltage sweep during exposure in an electron-bombarded sensor would allow photon arrival time determination with sub-frame exposure time resolution. This effectively uses an electron-bombarded sensor as a parallel-processing photoelectronic time-to-amplitude converter, or a two-dimensional photon counting streak camera. Several applications that require timing of photon arrival, including Fluorescence Lifetime Imaging Microscopy, may benefit from such an approach. A simulation of a voltage sweep performed with experimental data collected with different acceleration voltages validates the principle of this approach. Moreover, photon event centroiding was performed and a hybrid 50% Gaussian/Centre of Gravity + 50% Hyperbolic cosine centroiding algorithm was found to yield the lowest fixed pattern noise. Finally, the camera was mounted on a fluorescence microscope to image F-actin filaments stained with the fluorescent dye Alexa 488 in fixed cells.

  2. Photon counting imaging with an electron-bombarded CCD: Towards a parallel-processing photoelectronic time-to-amplitude converter

    NASA Astrophysics Data System (ADS)

    Hirvonen, Liisa M.; Jiggins, Stephen; Sergent, Nicolas; Zanda, Gianmarco; Suhling, Klaus

    2014-12-01

    We have used an electron-bombarded CCD for optical photon counting imaging. The photon event pulse height distribution was found to be linearly dependent on the gain voltage. We propose on this basis that a gain voltage sweep during exposure in an electron-bombarded sensor would allow photon arrival time determination with sub-frame exposure time resolution. This effectively uses an electron-bombarded sensor as a parallel-processing photoelectronic time-to-amplitude converter, or a two-dimensional photon counting streak camera. Several applications that require timing of photon arrival, including Fluorescence Lifetime Imaging Microscopy, may benefit from such an approach. A simulation of a voltage sweep performed with experimental data collected with different acceleration voltages validates the principle of this approach. Moreover, photon event centroiding was performed and a hybrid 50% Gaussian/Centre of Gravity + 50% Hyperbolic cosine centroiding algorithm was found to yield the lowest fixed pattern noise. Finally, the camera was mounted on a fluorescence microscope to image F-actin filaments stained with the fluorescent dye Alexa 488 in fixed cells.

  3. Back-illuminated CCD imager adapted for contrast transfer function measurements thereon

    NASA Technical Reports Server (NTRS)

    Levine, Peter A. (Inventor)

    1987-01-01

    Stripe patterns of varying spatial frequency, formed in the top-metalization of a back-illuminated solid-state imager, facilitate on-line measurement of contrast transfer function during wafer-probe testing. The imager may be packaged to allow front-illumination during in-the-field testing after its manufacture.

  4. Dynamic imaging with a triggered and intensified CCD camera system in a high-intensity neutron beam

    NASA Astrophysics Data System (ADS)

    Vontobel, P.; Frei, G.; Brunner, J.; Gildemeister, A. E.; Engelhardt, M.

    2005-04-01

    When time-dependent processes within metallic structures should be inspected and visualized, neutrons are well suited due to their high penetration through Al, Ag, Ti or even steel. Then it becomes possible to inspect the propagation, distribution and evaporation of organic liquids as lubricants, fuel or water. The principle set-up of a suited real-time system was implemented and tested at the radiography facility NEUTRA of PSI. The highest beam intensity there is 2×107 cm s, which enables to observe sequences in a reasonable time and quality. The heart of the detection system is the MCP intensified CCD camera PI-Max with a Peltier cooled chip (1300×1340 pixels). The intensifier was used for both gating and image enhancement, where as the information was accumulated over many single frames on the chip before readout. Although, a 16-bit dynamic range is advertised by the camera manufacturers, it must be less due to the inherent noise level from the intensifier. The obtained result should be seen as the starting point to go ahead to fit the different requirements of car producers in respect to fuel injection, lubricant distribution, mechanical stability and operation control. Similar inspections will be possible for all devices with repetitive operation principle. Here, we report about two measurements dealing with the lubricant distribution in a running motorcycle motor turning at 1200 rpm. We were monitoring the periodic stationary movements of piston, valves and camshaft with a micro-channel plate intensified CCD camera system (PI-Max 1300RB, Princeton Instruments) triggered at exactly chosen time points.

  5. Advances in Pixelvision, Inc. Back-Illuminated CCD Imaging Technologies for Low Light Level Imaging Applications

    DTIC Science & Technology

    1997-07-01

    Pixel Size (um) QE Optimization Readout Mode Operating Mode Architecture PLUTO /III 1. PV10KBVF2CH 2048 x 1024 2 2 12 UV,VIS,FR,NO Progress./Interl...Full Frame PLUTO /IV 23. PV10KBVF2CH 2048 x 1024 2 2 12 UV,VIS,FR,NO Progress./Interl. NonMPP Full Frame Transfer 24. PV10KBVF2MH 2048 x 1024 2 2 12 UV...than 40 MHz bandwidth). The baseline Pluto architecture is shown in Table 2-1. The latter, the ADAPTIII, was chosen because, as it contains 40 closely

  6. Advances in multimodal molecular imaging.

    PubMed

    Auletta, Luigi; Gramanzini, Matteo; Gargiulo, Sara; Albanese, Sandra; Salvatore, Marco; Greco, Adelaide

    2017-03-01

    Preclinical molecular imaging is an emerging field. Improving the ability of scientists to study the molecular basis of human pathology in animals is of the utmost importance for future advances in all fields of human medicine. Moreover, the possibility of developing new imaging techniques or of implementing old ones adapted to the clinic is a significant area. Cardiology, neurology, immunology and oncology have all been studied with preclinical molecular imaging. The functional techniques of photoacoustic imaging (PAI), fluorescence molecular tomography (FMT), positron emission tomography (PET), and single photon emission computed tomography (SPECT) in association with each other or with the anatomic reference provided by computed tomography (CT) as well as with anatomic and functional information provided by magnetic resonance (MR) have all been proficiently applied to animal models of human disease. All the above-mentioned imaging techniques have shown their ability to explore the molecular mechanisms involved in animal models of disease. The clinical translatability of most of the techniques motivates the ongoing study of their possible fields of application. The ability to combine two or more techniques allows obtaining as much information as possible on the molecular processes involved in pathologies, reducing the number of animals necessary in each experiment. Merging molecular probes compatible with various imaging technique will further expand the capability to achieve the best results.

  7. Fully depleted back illuminated CCD

    DOEpatents

    Holland, Stephen Edward

    2001-01-01

    A backside illuminated charge coupled device (CCD) is formed of a relatively thick high resistivity photon sensitive silicon substrate, with frontside electronic circuitry, and an optically transparent backside ohmic contact for applying a backside voltage which is at least sufficient to substantially fully deplete the substrate. A greater bias voltage which overdepletes the substrate may also be applied. One way of applying the bias voltage to the substrate is by physically connecting the voltage source to the ohmic contact. An alternate way of applying the bias voltage to the substrate is to physically connect the voltage source to the frontside of the substrate, at a point outside the depletion region. Thus both frontside and backside contacts can be used for backside biasing to fully deplete the substrate. Also, high resistivity gaps around the CCD channels and electrically floating channel stop regions can be provided in the CCD array around the CCD channels. The CCD array forms an imaging sensor useful in astronomy.

  8. CCD-based projectional imaging of fluorescent probes in tissue-like media: experimental setup and characterization.

    PubMed

    Pöschinger, Thomas; Janunts, Edgar; Brünner, Holger; Langenbucher, Achim

    2010-01-01

    In this article, a non-contact imaging setup for the acquisition of multiple 2D projections of fluorescent probes in tissue-like phantoms is described. The setup basically consists of a high-sensitivity CCD camera for the detection of fluorescence and a rotating broad-beam light source for the continuous illumination of a rotatable phantom located in the rotation center. This allows for imaging of various projections in a full angular projection range of 360°. Beside the detailed description of the system layout, important key characteristics of the setup are outlined. The setup is demonstrated with projectional measurements of a tissue-like phantom and the results are verified by comparison of the projection-dependent fluorescence intensity distributions with corresponding 2D simulations. It is shown that the instrument is suitable for the sensitive detection of fluorescence emanating from fluorescent objects in tissue-like phantoms. Such setup could facilitate the collection of large projection data sets as they are used in optical fluorescence tomography of small animals.

  9. Astronomical CCD observing and reduction techniques

    NASA Technical Reports Server (NTRS)

    Howell, Steve B. (Editor)

    1992-01-01

    CCD instrumentation and techniques in observational astronomy are surveyed. The general topics addressed include: history of large array scientific CCD imagers; noise sources and reduction processes; basic photometry techniques; introduction to differential time-series astronomical photometry using CCDs; 2D imagery; point source spectroscopy; extended object spectrophotometry; introduction to CCD astrometry; solar system applications for CCDs; CCD data; observing with infrared arrays; image processing, data analysis software, and computer systems for CCD data reduction and analysis. (No individual items are abstracted in this volume)

  10. CCD-Based Imaging of Low-Energy Charged Particle Distribution Functions on ePOP and Swarm

    NASA Astrophysics Data System (ADS)

    Knudsen, D. J.; Burchill, J. K.

    2013-12-01

    The Canadian Enhanced Polar Outflow Probe (ePOP) and the European Space Agency's three Swarm satellites are being readied for launch in September and November 2013, respectively. Each will carry instruments that incorporate a novel CCD-based charged-particle detector to provide 64-pixel-diameter images of 2-D, low-energy charged particle distributions. The ePOP Suprathermal Electron Imager (SEI) will produce distribution functions in pitch angle and energy up to 200 eV at rates of up to 100 per second, with the goal of characterizing photo and suprathermal electrons that can drive ion outflow. The SEI can also image ion distributions up to 20 eV. ePOP will be launched on a Space-X Falcon 9 rocket into a polar elliptical orbit with an apogee of 1500 km. The Swarm satellites will be launched on a Russian Rokot vehicle into circular polar orbits, two at an initial altitude of 450 km, the third at 530 km. Swarm will measure magnetic and electric fields, the latter indirectly through ion drift detected by two Thermal Ion Imagers (TII) in each instrument, with the aid of Langmuir probe measurements of spacecraft potential and electron density and temperature. Electric fields measurements will be produced at a cadence of 2 per second to produce a picture of ionospheric electrodynamics at scales from 4 km to global. Due to special emphasis on measurement precision, Swarm will be able to resolve variations in Poynting flux as small as 1 microWatt per square meter. We gratefully acknowledge the ePOP SEI technical development team at the University of Calgary, and funding from the Canadian Space Agency. The Swarm Electric Field Instruments were built by a COM DEV Canada in collaboration with the University of Calgary and the Swedish Institute for Space Physics in Uppsala, with funding from ESA and CSA.

  11. CCD ACS Postflash Calibration

    NASA Astrophysics Data System (ADS)

    Chiaberge, Marco

    2011-10-01

    This activity provides a set of CCD FLASH exposure reference images for each current level/shutter-side combination, for the FLASH LED on the instrument side currently in use {one LED per instrument side}. It also tests linearity by exploring a wide range of flash "on" times and current settings. Short-term repeatability is also tested at the shortest FLASH exposure times that are expected to be used {2.0 sec, LOW LED current setting}.

  12. Colorized linear CCD data acquisition system with automatic exposure control

    NASA Astrophysics Data System (ADS)

    Li, Xiaofan; Sui, Xiubao

    2014-11-01

    Colorized linear cameras deliver superb color fidelity at the fastest line rates in the industrial inspection. It's RGB trilinear sensor eliminates image artifacts by placing a separate row of pixels for each color on a single sensor. It's advanced design minimizes distance between rows to minimize image artifacts due to synchronization. In this paper, the high-speed colorized linear CCD data acquisition system was designed take advantages of the linear CCD sensor μpd3728. The hardware and software design of the system based on FPGA is introduced and the design of the functional modules is performed. The all system is composed of CCD driver module, data buffering module, data processing module and computer interface module. The image data was transferred to computer by Camera link interface. The system which automatically adjusts the exposure time of linear CCD, is realized with a new method. The integral time of CCD can be controlled by the program. The method can automatically adjust the integration time for different illumination intensity under controlling of FPGA, and respond quickly to brightness changes. The data acquisition system is also offering programmable gains and offsets for each color. The quality of image can be improved after calibration in FPGA. The design has high expansibility and application value. It can be used in many application situations.

  13. Evaluation of crop yield loss of floods based on water turbidity index with multi-temporal HJ-CCD images

    NASA Astrophysics Data System (ADS)

    Gu, Xiaohe; Xu, Peng; Wang, Lei; Wang, Xiuhui

    2015-12-01

    Paddy is one of the most important food crops in China. Due to the intensive planting in the surrounding of rivers and lakes, paddy is vulnerable to flooding stress. The research on predicting crop yield loss derived from flooding stress will help the adjustment of crop planting structure and the claims of agricultural insurance. The paper aimed to develop a method of estimating yield loss of paddy derived from flooding by multi-temporal HJ CCD images. At first, the water pixels after flooding were extracted, from which the water line (WL) of turbid water pixels was generated. Secondly, the water turbidity index (WTI) and perpendicular vegetation index (PVI) was defined and calculated. By analyzing the relation among WTI, PVI and paddy yield, the model of evaluating yield loss of flooding was developed. Based on this model, the spatial distribution of paddy yield loss derived from flooding was mapped in the study area. Results showed that the water turbidity index (WTI) could be used to monitor the sediment content of flood, which was closely related to the plant physiology and per unit area yield of paddy. The PVI was the good indicator of paddy yield with significant correlation (0.965). So the PVI could be used to estimate the per unit area yield before harvesting. The PVI and WTI had good linear relation, which could provide an effective, practical and feasible method for monitoring yield loss of waterlogged paddy.

  14. Estimation of rice phenology date using integrated HJ-1 CCD and Landsat-8 OLI vegetation indices time-series images.

    PubMed

    Wang, Jing; Huang, Jing-feng; Wang, Xiu-zhen; Jin, Meng-ting; Zhou, Zhen; Guo, Qiao-ying; Zhao, Zhe-wen; Huang, Wei-jiao; Zhang, Yao; Song, Xiao-dong

    2015-10-01

    Accurate estimation of rice phenology is of critical importance for agricultural practices and studies. However, the accuracy of phenological parameters extracted by remote sensing data cannot be guaranteed because of the influence of climate, e.g. the monsoon season, and limited available remote sensing data. In this study, we integrate the data of HJ-1 CCD and Landsat-8 operational land imager (OLI) by using the ordinary least-squares (OLS), and construct higher temporal resolution vegetation indices (VIs) time-series data to extract the phenological parameters of single-cropped rice. Two widely used VIs, namely the normalized difference vegetation index (NDVI) and 2-band enhanced vegetation index (EVI2), were adopted to minimize the influence of environmental factors and the intrinsic difference between the two sensors. Savitzky-Golay (S-G) filters were applied to construct continuous VI profiles per pixel. The results showed that, compared with NDVI, EVI2 was more stable and comparable between the two sensors. Compared with the observed phenological data of the single-cropped rice, the integrated VI time-series had a relatively low root mean square error (RMSE), and EVI2 showed higher accuracy compared with NDVI. We also demonstrate the application of phenology extraction of the single-cropped rice in a spatial scale in the study area. While the work is of general value, it can also be extrapolated to other regions where qualified remote sensing data are the bottleneck but where complementary data are occasionally available.

  15. Estimation of rice phenology date using integrated HJ-1 CCD and Landsat-8 OLI vegetation indices time-series images*

    PubMed Central

    Wang, Jing; Huang, Jing-Feng; Wang, Xiu-Zhen; Jin, Meng-Ting; Zhou, Zhen; Guo, Qiao-Ying; Zhao, Zhe-Wen; Huang, Wei-Jiao; Zhang, Yao; Song, Xiao-Dong

    2015-01-01

    Accurate estimation of rice phenology is of critical importance for agricultural practices and studies. However, the accuracy of phenological parameters extracted by remote sensing data cannot be guaranteed because of the influence of climate, e.g. the monsoon season, and limited available remote sensing data. In this study, we integrate the data of HJ-1 CCD and Landsat-8 operational land imager (OLI) by using the ordinary least-squares (OLS), and construct higher temporal resolution vegetation indices (VIs) time-series data to extract the phenological parameters of single-cropped rice. Two widely used VIs, namely the normalized difference vegetation index (NDVI) and 2-band enhanced vegetation index (EVI2), were adopted to minimize the influence of environmental factors and the intrinsic difference between the two sensors. Savitzky-Golay (S-G) filters were applied to construct continuous VI profiles per pixel. The results showed that, compared with NDVI, EVI2 was more stable and comparable between the two sensors. Compared with the observed phenological data of the single-cropped rice, the integrated VI time-series had a relatively low root mean square error (RMSE), and EVI2 showed higher accuracy compared with NDVI. We also demonstrate the application of phenology extraction of the single-cropped rice in a spatial scale in the study area. While the work is of general value, it can also be extrapolated to other regions where qualified remote sensing data are the bottleneck but where complementary data are occasionally available. PMID:26465131

  16. Automated software for CCD-image processing and detection of small Solar System bodies

    NASA Astrophysics Data System (ADS)

    Savanevych, V.; Bryukhovetskiy, A.; Sokovikova, N.; Bezkrovniy, M.; Khlamov, S.; Elenin, L.; Movsesian, I.; Dihtyar, M.

    2014-07-01

    Efficiency is a crucial factor in the discovery of near-Earth asteroids (NEA) and potentially-hazardous asteroids. Current asteroid surveys yield many images per night. It is no longer possible for the observer to quickly view these images in the the blinking mode. This cause a serious difficulty for large-aperture wide-field telescopes, capturing up to several tens of asteroids in one image. To achieve better asteroid-survey efficiency it is necessary to design and develop automated software for the frame processing. Currently the CoLiTec software solves the problem of the frame processing for asteroid surveys in the real mode. The automatically detected asteroids are subject to follow-up visual confirmation. The CoLiTec software is in use for the automated detection of asteroids in Andrushivka Astronomical Observatory, in the Russian remote observatory ISON-NM (Mayhill, New Mexico, USA), as well as in the observatory ISON-Kislovodsk and in ISON-Ussuriysk starting from the fall 2013. The CoLiTec led to the first automated asteroid and comet discoveries in the CIS (Commonwealth of Independent States) and Baltic countries. In 2012 (2011) 80 (86) % of observations and 74 (75) % of discoveries of asteroids in these countries were made using the CoLiTec. The comet C/2010 X1 (Elenin), discovered using the CoLiTec on December 10, 2010, was the first comet discovered by a CIS astronomer over the past 20 years. In total, out of 7 recently discovered in the CIS and Baltic countries comets 4 comets were discovered due to the CoLiTec, namely C/2010 X1 (Elenin), P/2011 NO1 (Elenin), C/2012 S1 (ISON), and P/2013 V3 (Nevski). About 500,000 CoLiTec-used measurements were reported to MPC, including over 1,500 preliminary discovered objects. These objects include 21 Jupiter Trojan asteroids, 4 NEAs and 1 Centaur. Three other discovered asteroids were reported via dedicated electronic MPC circulars. In 2012 the CoLiTec users were ranked as No. 10, 13, and 22 in the list of the most

  17. A CCD-based fluorescence imaging system for real-time loop-mediated isothermal amplification-based rapid and sensitive detection of waterborne pathogens on microchips.

    PubMed

    Ahmad, Farhan; Seyrig, Gregoire; Tourlousse, Dieter M; Stedtfeld, Robert D; Tiedje, James M; Hashsham, Syed A

    2011-10-01

    Rapid, sensitive, and low-cost pathogen diagnostic systems are needed for early disease diagnosis and treatment, especially in resource-limited settings. This study reports a low-cost charge-coupled device (CCD)-based fluorescence imaging system for rapid detection of waterborne pathogens by isothermal gene amplification in disposable microchips. Fluorescence imaging capability of this monochromatic CCD camera is evaluated by optimizing the gain, offset, and exposure time. This imaging system is validated for 12 virulence genes of major waterborne pathogens on cyclic olefin polymer (COP) microchips, using SYTO-82 dye and real time fluorescence loop-mediated isothermal amplification referred here as microRT(f)-LAMP. Signal-to-noise ratio (SNR) and threshold time (Tt) of microRT(f)-LAMP assays are compared with those from a commercial real-time polymerase chain reaction (PCR) instrument. Applying a CCD exposure of 5 s to 10(5) starting DNA copies of microRT(f)-LAMP assays increases the SNR by 8-fold and reduces the Tt by 9.8 min in comparison to a commercial real-time PCR instrument. Additionally, single copy level sensitivity for Campylobacter jejuni 0414 gene is obtained for microRT(f)-LAMP with a Tt of 19 min, which is half the time of the commercial real-time PCR instrument. Due to the control over the exposure time and the wide field imaging capability of CCD, this low-cost fluorescence imaging system has the potential for rapid and parallel detection of pathogenic microorganisms in high throughput microfluidic chips.

  18. Analysis of CCD images of the coma of comet P/Halley

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.

    1992-01-01

    The modeling analysis objective of this project is to make use of the skill acquired in the development of Monte Carlo particle trajectory models for the distributions of gas species in cometary comae as a basis for a new dust coma model. This model will include a self-consistent picture of the time-dependent dusty-gas dynamics of the inner coma and the three-dimensional time-dependent trajectories of the dust particles under the influence of solar gravity and solar radiation pressure in the outer coma. Our purpose is to use this model as a tool to analyze selected images from two sets of data of the comet P/Halley with the hope that we can help to understand the effects of a number of important processes on the spatial morphology of the observed dust coma. The study will proceed much in the same way as our study of the spatially extended hydrogen coma where we were able to understand the spatial morphology of the Lyman-alpha coma in terms of the partial thermalization of the hot H atoms produced by the photodissociation of cometary H2O and OH. The processes of importance to the observed dust coma include: (1) the dust particle size distribution function; (2) the terminal velocities of various sized dust particles in the inner coma; (3) the radiation scattering properties of dust particles, which are important both in terms of the observed scattered radiation and the radiation pressure acceleration on dust particles; (4) the fragmentation and/or vaporization of dust particles; (5) the relative importance of CHON and silicate dust particles as they contribute both to the dusty-gas dynamics in the inner coma (that produce the dust particle terminal velocities) and to the observed spatial morphology of the outer dust coma; and (6) the time and direction dependence of the source of dust.

  19. Technical advances of interventional fluoroscopy and flat panel image receptor.

    PubMed

    Lin, Pei-Jan Paul

    2008-11-01

    In the past decade, various radiation reducing devices and control circuits have been implemented on fluoroscopic imaging equipment. Because of the potential for lengthy fluoroscopic procedures in interventional cardiovascular angiography, these devices and control circuits have been developed for the cardiac catheterization laboratories and interventional angiography suites. Additionally, fluoroscopic systems equipped with image intensifiers have benefited from technological advances in x-ray tube, x-ray generator, and spectral shaping filter technologies. The high heat capacity x-ray tube, the medium frequency inverter generator with high performance switching capability, and the patient dose reduction spectral shaping filter had already been implemented on the image intensified fluoroscopy systems. These three underlying technologies together with the automatic dose rate and image quality (ADRIQ) control logic allow patients undergoing cardiovascular angiography procedures to benefit from "lower patient dose" with "high image quality." While photoconductor (or phosphor plate) x-ray detectors and signal capture thin film transistor (TFT) and charge coupled device (CCD) arrays are analog in nature, the advent of the flat panel image receptor allowed for fluoroscopy procedures to become more streamlined. With the analog-to-digital converter built into the data lines, the flat panel image receptor appears to become a digital device. While the transition from image intensified fluoroscopy systems to flat panel image receptor fluoroscopy systems is part of the on-going "digitization of imaging," the value of a flat panel image receptor may have to be evaluated with respect to patient dose, image quality, and clinical application capabilities. The advantage of flat panel image receptors has yet to be fully explored. For instance, the flat panel image receptor has its disadvantages as compared to the image intensifiers; the cost of the equipment is probably the most

  20. Streak Camera Performance with Large-Format CCD Readout

    SciTech Connect

    Lerche, R A; Andrews, D S; Bell, P M; Griffith, R L; McDonald, J W; Torres, P III; Vergel de Dios, G

    2003-07-08

    The ICF program at Livermore has a large inventory of optical streak cameras that were built in the 1970s and 1980s. The cameras include micro-channel plate image-intensifier tubes (IIT) that provide signal amplification and early lens-coupled CCD readouts. Today, these cameras are still very functional, but some replacement parts such as the original streak tube, CCD, and IIT are scarce and obsolete. This article describes recent efforts to improve the performance of these cameras using today's advanced CCD readout technologies. Very sensitive, large-format CCD arrays with efficient fiber-optic input faceplates are now available for direct coupling with the streak tube. Measurements of camera performance characteristics including linearity, spatial and temporal resolution, line-spread function, contrast transfer ratio (CTR), and dynamic range have been made for several different camera configurations: CCD coupled directly to the streak tube, CCD directly coupled to the IIT, and the original configuration with a smaller CCD lens coupled to the IIT output. Spatial resolution (limiting visual) with and without the IIT is 8 and 20 lp/mm, respectively, for photocathode current density up to 25% of the Child-Langmuir (C-L) space-charge limit. Temporal resolution (fwhm) deteriorates by about 20% when the cathode current density reaches 10% of the C-L space charge limit. Streak tube operation with large average tube current was observed by illuminating the entire slit region through a Ronchi ruling and measuring the CTR. Sensitivity (CCD electrons per streak tube photoelectron) for the various configurations ranged from 7.5 to 2,700 with read noise of 7.5 to 10.5 electrons. Optimum spatial resolution is achieved when the IIT is removed. Maximum dynamic range requires a configuration where a single photoelectron from the photocathode produces a signal that is 3 to 5 times the read noise.

  1. Recent advances in imaging technologies in dentistry

    PubMed Central

    Shah, Naseem; Bansal, Nikhil; Logani, Ajay

    2014-01-01

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry. PMID:25349663

  2. Quantitative estimation of Secchi disk depth using the HJ-1B CCD image and in situ observations in Sishili Bay, China

    NASA Astrophysics Data System (ADS)

    Yu, Dingfeng; Zhou, Bin; Fan, Yanguo; Li, Tantan; Liang, Shouzhen; Sun, Xiaoling

    2014-11-01

    Secchi disk depth (SDD) is an important optical property of water related to water quality and primary production. The traditional sampling method is not only time-consuming and labor-intensive but also limited in terms of temporal and spatial coverage, while remote sensing technology can deal with these limitations. In this study, models estimating SDD have been proposed based on the regression analysis between the HJ-1 satellite CCD image and synchronous in situ water quality measurements. The results illustrate the band ratio model of B3/B1 of CCD could be used to estimate Secchi depth in this region, with the mean relative error (MRE) of 8.6% and root mean square error (RMSE) of 0.1 m, respectively. This model has been applied to one image of HJ-1 satellite CCD, generating water transparency on June 23, 2009, which will be of immense value for environmental monitoring. In addition, SDD was deeper in offshore waters than in inshore waters. River runoffs, hydrodynamic environments, and marine aquaculture are the main factors influencing SDD in this area.

  3. Advanced imaging in equine dental disease.

    PubMed

    Selberg, Kurt; Easley, Jeremiah T

    2013-08-01

    Dental and sinus disorders are relatively common and of major clinical importance in equine medicine. Advanced diagnostic imaging has become an integral part of equine veterinary medicine. Advanced imaging has progressed the understanding, diagnosis, and treatment of dental- and sinus-related diseases. As a clinician, it is important to realize the value of advanced diagnostic imaging. Although computed tomography and magnetic resonance imaging are both significantly more expensive compared with other diagnostic tools, the financial cost of inaccurate diagnosis and treatment can often result in higher overall costs.

  4. Image analysis in medical imaging: recent advances in selected examples.

    PubMed

    Dougherty, G

    2010-01-01

    Medical imaging has developed into one of the most important fields within scientific imaging due to the rapid and continuing progress in computerised medical image visualisation and advances in analysis methods and computer-aided diagnosis. Several research applications are selected to illustrate the advances in image analysis algorithms and visualisation. Recent results, including previously unpublished data, are presented to illustrate the challenges and ongoing developments.

  5. A search for T Tauri stars in high-latitude molecular clouds. I. IRAS sources and CCD imaging

    SciTech Connect

    Magnani, L.; Caillault, J.; Armus, L. E. O. Hulburt Center for Space Research, Washington, DC Georgia Univ., Athens Maryland Univ., College Park )

    1990-07-01

    Results are reported from a search for excess H-alpha emission from point sources in 19 high-Galactic-latitude molecular clouds (two dark clouds and 17 translucent clouds). A total of 111 candidate sources from the IRAS Point Source Catalog were evaluated, but most of these (except for five T Tau stars in the dark clouds) were found to be 100-micron cirrus sources, galaxies, or field stars. CCD observations of 23 ambiguous sources were obtained in the red and H-alpha bands using a CCD detector on the 0.9-m telescope at KPNO during September 1987 and February 1988: no H-alpha/R ratios more than 5 sigma above the respective field averages were found. It is concluded that significant low-mass star formation in translucent high-latitude molecular clouds is unlikely. 30 refs.

  6. CCD research. [design, fabrication, and applications

    NASA Technical Reports Server (NTRS)

    Gassaway, J. D.

    1976-01-01

    The fundamental problems encountered in designing, fabricating, and applying CCD's are reviewed. Investigations are described and results and conclusions are given for the following: (1) the development of design analyses employing computer aided techniques and their application to the design of a grapped structure; (2) the role of CCD's in applications to electronic functions, in particular, signal processing; (3) extending the CCD to silicon films on sapphire (SOS); and (4) all aluminum transfer structure with low noise input-output circuits. Related work on CCD imaging devices is summarized.

  7. Advanced Pointing Imaging Camera (APIC) Concept

    NASA Astrophysics Data System (ADS)

    Park, R. S.; Bills, B. G.; Jorgensen, J.; Jun, I.; Maki, J. N.; McEwen, A. S.; Riedel, E.; Walch, M.; Watkins, M. M.

    2016-10-01

    The Advanced Pointing Imaging Camera (APIC) concept is envisioned as an integrated system, with optical bench and flight-proven components, designed for deep-space planetary missions with 2-DOF control capability.

  8. Recent Advancements in Microwave Imaging Plasma Diagnostics

    SciTech Connect

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  9. Hepatocellular carcinoma: Advances in diagnostic imaging.

    PubMed

    Sun, Haoran; Song, Tianqiang

    2015-10-01

    Thanks to the growing knowledge on biological behaviors of hepatocellular carcinomas (HCC), as well as continuous improvement in imaging techniques and experienced interpretation of imaging features of the nodules in cirrhotic liver, the detection and characterization of HCC has improved in the past decade. A number of practice guidelines for imaging diagnosis have been developed to reduce interpretation variability and standardize management of HCC, and they are constantly updated with advances in imaging techniques and evidence based data from clinical series. In this article, we strive to review the imaging techniques and the characteristic features of hepatocellular carcinoma associated with cirrhotic liver, with emphasis on the diagnostic value of advanced magnetic resonance imaging (MRI) techniques and utilization of hepatocyte-specific MRI contrast agents. We also briefly describe the concept of liver imaging reporting and data systems and discuss the consensus and controversy of major practice guidelines.

  10. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2016-10-25

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  11. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2016-11-22

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  12. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2015-11-24

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  13. Advanced Atmospheric Sounder and Imaging Radiometer (AASIR)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Design information for the Advanced Atmospheric Sounder and Imaging Radiometer is reported, which was developed to determine the configuration of a sensor for IR and visible imaging. The areas of technology reported include: systems design, optics, mechanics, electronics, detectors, radiative cooler, and radiometric calibration.

  14. Advanced Imaging Algorithms for Radiation Imaging Systems

    SciTech Connect

    Marleau, Peter

    2015-10-01

    The intent of the proposed work, in collaboration with University of Michigan, is to develop the algorithms that will bring the analysis from qualitative images to quantitative attributes of objects containing SNM. The first step to achieving this is to develop an indepth understanding of the intrinsic errors associated with the deconvolution and MLEM algorithms. A significant new effort will be undertaken to relate the image data to a posited three-dimensional model of geometric primitives that can be adjusted to get the best fit. In this way, parameters of the model such as sizes, shapes, and masses can be extracted for both radioactive and non-radioactive materials. This model-based algorithm will need the integrated response of a hypothesized configuration of material to be calculated many times. As such, both the MLEM and the model-based algorithm require significant increases in calculation speed in order to converge to solutions in practical amounts of time.

  15. Imaging of the pancreas: Recent advances

    PubMed Central

    Chaudhary, Vikas; Bano, Shahina

    2011-01-01

    A wide spectrum of anomalies of pancreas and the pancreatic duct system are commonly encountered at radiological evaluation. Diagnosing pancreatic lesions generally requires a multimodality approach. This review highlights the new advances in pancreatic imaging and their applications in the diagnosis and management of pancreatic pathologies. The mainstay techniques include computed tomography (CT), magnetic resonance imaging (MRI), endoscopic ultrasound (EUS), radionuclide imaging (RNI) and optical coherence tomography (OCT). PMID:21847450

  16. Advanced Imaging for Space Science

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.

    2008-01-01

    Future NASA interferometric missions will realize high-resolution with less mass and volume compared to filled-apertures thus saving in cost over comparable filled-aperture systems. However, interferometeric aperture systems give reduced sensitivity requiring longer integration times to achieve a desired signal-to-noise ratio but is likely the only cost effective path forward for high-resolution space imaging.

  17. Comparison of different CCD detectors and chemometrics for predicting total anthocyanin content and antioxidant activity of mulberry fruit using visible and near infrared hyperspectral imaging technique.

    PubMed

    Huang, Lingxia; Zhou, Yibin; Meng, Liuwei; Wu, Di; He, Yong

    2017-06-01

    This study investigated the potential of using hyperspectral imaging technique in tandem with chemometrics for rapid and invasive predicting total anthocyanin content and antioxidant activity of mulberry fruit. Two calibration methods of partial least square regression and least-squares support vector machines and three wavelength selection algorithms of successive projections algorithm, uninformation variable elimination, and competitive adaptive reweighted sampling were applied. The best prediction models for the analysis of total anthocyanin content and antioxidant activity had Rval(2) of 0.959 and 0.995 respectively. The performances of two CCD detectors named silicon (Si) and indium gallium arsenide (InGaAs) were compared. The results show that hyperspectral imaging has a great potential for the assessment of total anthocyanin content and antioxidant activity of mulberry fruit.

  18. Signals of solar cosmic ray flux variations inferred from the noise in raw CCD solar images taken by SOHO/EIT

    NASA Astrophysics Data System (ADS)

    Oh, Suyeon; Park, Hyungmin; Yi, Yu; Chae, Jongchul

    2014-01-01

    The noise embedded in the raw data in one scientific discipline has sometimes been proven to be a valuable signal for another discipline, and there are examples throughout science history. The solar images taken by the solid state detectors (CCDs) of the Sun monitoring satellites are usually cleaned by removing the traces of cosmic rays on the raw CCD data files. Thus, while applying the method of removing the cosmic ray traces, we may be able to estimate the cosmic ray flux by counting the number of traces. The net cosmic ray flux is the sum of galactic cosmic rays and solar-originating particles. The latter are seen as highly transient flux changes related to solar eruptions. We can identify this kind of "cosmic ray" event from the association with phenomena revealed in processed solar images, and we show this using the data of SOHO/extreme ultraviolet imaging telescope (EIT). On the other hand, the estimated cosmic ray flux in the steady state is anticorrelated with solar cycle sunspot number. The profiles of estimated solar cosmic ray flux showing significant increase are found to be strongly correlated with the ground neutron monitor ground level enhancements. Additionally, the profile of estimated cosmic ray flux is consistent with that of the GOES P6 channel. It indicates that the particles with energy higher than 80 MeV may mainly produce the tracks on CCD of EIT. In conclusion, the raw solar images are valuable data for estimating both long-term cosmic ray variations and transient solar particles events.

  19. Advances in noninvasive functional imaging of bone.

    PubMed

    Lan, Sheng-Min; Wu, Ya-Na; Wu, Ping-Ching; Sun, Chi-Kuang; Shieh, Dar-Bin; Lin, Ruey-Mo

    2014-02-01

    The demand for functional imaging in clinical medicine is comprehensive. Although the gold standard for the functional imaging of human bones in clinical settings is still radionuclide-based imaging modalities, nonionizing noninvasive imaging technology in small animals has greatly advanced in recent decades, especially the diffuse optical imaging to which Britton Chance made tremendous contributions. The evolution of imaging probes, instruments, and computation has facilitated exploration in the complicated biomedical research field by allowing longitudinal observation of molecular events in live cells and animals. These research-imaging tools are being used for clinical applications in various specialties, such as oncology, neuroscience, and dermatology. The Bone, a deeply located mineralized tissue, presents a challenge for noninvasive functional imaging in humans. Using nanoparticles (NP) with multiple favorable properties as bioimaging probes has provided orthopedics an opportunity to benefit from these noninvasive bone-imaging techniques. This review highlights the historical evolution of radionuclide-based imaging, computed tomography, positron emission tomography, and magnetic resonance imaging, diffuse optics-enabled in vivo technologies, vibrational spectroscopic imaging, and a greater potential for using NPs for biomedical imaging.

  20. Advanced MR Imaging in Neuro-oncology.

    PubMed

    Radbruch, A; Bendszus, M

    2015-10-01

    The value of magnetic resonance (MR) imaging for the clinical management of brain tumour patients has greatly increased in recent years through the introduction of functional MR sequences. Previously, MR imaging for brain tumours relied for the most part on contrast-enhanced T1-weighted MR sequences but today with the help of advanced functional MR sequences, the pathophysiological aspects of tumour growth can be directly visualised and investigated. This article will present the pathophysiological background of the MR sequences relevant to neuro-oncological imaging as well as potential clinical applications. Ultimately, we take a look at possible future developments for ultra-high-field MR imaging.

  1. Advanced Microwave/Millimeter-Wave Imaging Technology

    NASA Astrophysics Data System (ADS)

    Shen, Zuowei; Yang, Lu; Luhmann, N. C., Jr.; Domier, C. W.; Ito, N.; Kogi, Y.; Liang, Y.; Mase, A.; Park, H.; Sakata, E.; Tsai, W.; Xia, Z. G.; Zhang, P.

    Millimeter wave technology advances have made possible active and passive millimeter wave imaging for a variety of applications including advanced plasma diagnostics, radio astronomy, atmospheric radiometry, concealed weapon detection, all-weather aircraft landing, contraband goods detection, harbor navigation/surveillance in fog, highway traffic monitoring in fog, helicopter and automotive collision avoidance in fog, and environmental remote sensing data associated with weather, pollution, soil moisture, oil spill detection, and monitoring of forest fires, to name but a few. The primary focus of this paper is on technology advances which have made possible advanced imaging and visualization of magnetohydrodynamic (MHD) fluctuations and microturbulence in fusion plasmas. Topics of particular emphasis include frequency selective surfaces, planar Schottky diode mixer arrays, electronically controlled beam shaping/steering arrays, and high power millimeter wave local oscillator and probe sources.

  2. Technology and application advancements of uncooled imagers

    NASA Astrophysics Data System (ADS)

    Norton, Peter W.; Kohin, Margaret

    2005-05-01

    Having delivered over 30,000 uncooled microbolometer based thermal imaging engines, BAE Systems is the world's leading producer. Advancements in technology include the demonstration of broadband microbolometers on a 46 μm pixel pitch which have excellent sensitivity in the MWIR (NETD ~180 mK, 3-5 μm) and LWIR (NETD ~ 15 mK, 8-12 μm) wavebands. Application advancements include the development of a family of thermal weapons sights for the military which will replace current cooled systems with lighter, lower power systems and the introduction of a new generation of handheld and pole mounted thermal imagers for commercial markets.

  3. Advances in Molecular Imaging with Ultrasound

    PubMed Central

    Gessner, Ryan; Dayton, Paul A.

    2010-01-01

    Ultrasound imaging has long demonstrated utility in the study and measurement of anatomic features and noninvasive observation of blood flow. Within the last decade, advances in molecular biology and contrast agents have allowed researchers to use ultrasound to detect changes in the expression of molecular markers on the vascular endothelium and other intravascular targets. This new technology, referred to as ultrasonic molecular imaging, is still in its infancy. However, in preclinical studies, ultrasonic molecular imaging has shown promise in assessing angiogenesis, inflammation, and thrombus. In this review, we discuss recent advances in microbubble-type contrast agent development, ultrasound technology, and signal processing strategies that have the potential to substantially improve the capabilities and utility of ultrasonic molecular imaging. PMID:20487678

  4. Personnel screening with advanced multistatic imaging technology

    NASA Astrophysics Data System (ADS)

    Ahmed, Sherif S.

    2013-05-01

    Personnel screening is demanded nowadays for securing air traffic as well as critical infrastructures. The millimeter-waves are able to penetrate clothes and detect concealed objects, making them an attractive choice for security screening. Imaging methods based on multistatic architecture can ensure high quality imagery in terms of resolution and dynamic range. Following the advances in semiconductor technology, fully electronic solutions delivering real-time imaging are becoming feasible. Furthermore, the continuously increasing capabilities of digital signal processing units allow for the utilization of digital-beamforming techniques for image reconstruction, thus offering new opportunities for imaging systems to use sophisticated operation modes. Based on these modern technologies, an advanced realization addressing personnel screening in E-band with planar multistatic sparse array design is demonstrated.

  5. Development of low-noise high-speed analog ASIC for X-ray CCD cameras and wide-band X-ray imaging sensors

    NASA Astrophysics Data System (ADS)

    Nakajima, Hiroshi; Hirose, Shin-nosuke; Imatani, Ritsuko; Nagino, Ryo; Anabuki, Naohisa; Hayashida, Kiyoshi; Tsunemi, Hiroshi; Doty, John P.; Ikeda, Hirokazu; Kitamura, Hisashi; Uchihori, Yukio

    2016-09-01

    We report on the development and performance evaluation of the mixed-signal Application Specific Integrated Circuit (ASIC) developed for the signal processing of onboard X-ray CCD cameras and various types of X-ray imaging sensors in astrophysics. The quick and low-noise readout is essential for the pile-up free imaging spectroscopy with a future X-ray telescope. Our goal is the readout noise of 5e- r . m . s . at the pixel rate of 1 Mpix/s that is about 10 times faster than those of the currently working detectors. We successfully developed a low-noise ASIC as the front-end electronics of the Soft X-ray Imager onboard Hitomi that was launched on February 17, 2016. However, it has two analog-to-digital converters per chain due to the limited processing speed and hence we need to correct the difference of gain to obtain the X-ray spectra. Furthermore, its input equivalent noise performance is not satisfactory (> 100 μV) at the pixel rate higher than 500 kpix/s. Then we upgrade the design of the ASIC with the fourth-order ΔΣ modulators to enhance its inherent noise-shaping performance. Its performance is measured using pseudo CCD signals with variable processing speed. Although its input equivalent noise is comparable with the conventional one, the integrated non-linearity (0.1%) improves to about the half of that of the conventional one. The radiation tolerance is also measured with regard to the total ionizing dose effect and the single event latch-up using protons and Xenon, respectively. The former experiment shows that all of the performances does not change after imposing the dose corresponding to 590 years in a low earth orbit. We also put the upper limit on the frequency of the latch-up to be once per 48 years.

  6. The Ortega Telescope Andor CCD

    NASA Astrophysics Data System (ADS)

    Tucker, M.; Batcheldor, D.

    2012-07-01

    We present a preliminary instrument report for an Andor iKon-L 936 charge-couple device (CCD) being operated at Florida Tech's 0.8 m Ortega Telescope. This camera will replace the current Finger Lakes Instrumentation (FLI) Proline CCD. Details of the custom mount produced for this camera are presented, as is a quantitative and qualitative comparison of the new and old cameras. We find that the Andor camera has 50 times less noise than the FLI, has no significant dark current over 30 seconds, and has a smooth, regular flat field. The Andor camera will provide significantly better sensitivity for direct imaging programs and, once it can be satisfactorily tested on-sky, will become the standard imaging device on the Ortega Telescope.

  7. Advanced seismic imaging for geothermal development

    SciTech Connect

    Louie, John; Pullammanappallil, Satish; Honjas, Bill

    2016-08-01

    J. N. Louie, Pullammanappallil, S., and Honjas, W., 2011, Advanced seismic imaging for geothermal development: Proceedings of the New Zealand Geothermal Workshop 2011, Nov. 21-23, Auckland, paper 32, 7 pp. Preprint available at http://crack.seismo.unr.edu/geothermal/Louie-NZGW11.pdf

  8. Uncooled thermal imaging sensor and application advances

    NASA Astrophysics Data System (ADS)

    Norton, Peter W.; Cox, Stephen; Murphy, Bob; Grealish, Kevin; Joswick, Mike; Denley, Brian; Feda, Frank; Elmali, Loriann; Kohin, Margaret

    2006-05-01

    BAE Systems continues to advance the technology and performance of microbolometer-based thermal imaging modules and systems. 640x480 digital uncooled infrared focal plane arrays are in full production, illustrated by recent production line test data for two thousand focal plane arrays. This paper presents a snapshot of microbolometer technology at BAE Systems and an overview of two of the most important thermal imaging sensor programs currently in production: a family of thermal weapons sights for the United States Army and a thermal imager for the remote weapons station on the Stryker vehicle.

  9. High-power white LED-based system incorporating a CCD Offner imaging spectrometer for real-time fluorescence qPCR measurements

    NASA Astrophysics Data System (ADS)

    Alaruri, Sami D.

    2014-12-01

    An optical system for qPCR fluorescence measurements which incorporates high-power white LEDs, PMMA plastic lenses and an Offner multichannel (imaging) CCD-based spectrometer has been developed and validated. The optical system can detect twenty reaction vessels in an asynchronous manner and up to seven different fluorescent dyes (7 plex) at 1 nM dye concentrations in each of the reaction vessels. Furthermore, PCR curves obtained using the optical measurement system for a genomic deoxyribonucleic acid (DNA) template containing HEX and Texas Red fluorescent probes (fluorophores) are discussed. The spectral resolution, dynamic range and repeatability of the measurement system are < 15 nm, > 3 decades and < 1% CV, respectively.

  10. CCD Luminescence Camera

    NASA Technical Reports Server (NTRS)

    Janesick, James R.; Elliott, Tom

    1987-01-01

    New diagnostic tool used to understand performance and failures of microelectronic devices. Microscope integrated to low-noise charge-coupled-device (CCD) camera to produce new instrument for analyzing performance and failures of microelectronics devices that emit infrared light during operation. CCD camera also used to indentify very clearly parts that have failed where luminescence typically found.

  11. Advanced endoscopic imaging to improve adenoma detection

    PubMed Central

    Neumann, Helmut; Nägel, Andreas; Buda, Andrea

    2015-01-01

    Advanced endoscopic imaging is revolutionizing our way on how to diagnose and treat colorectal lesions. Within recent years a variety of modern endoscopic imaging techniques was introduced to improve adenoma detection rates. Those include high-definition imaging, dye-less chromoendoscopy techniques and novel, highly flexible endoscopes, some of them equipped with balloons or multiple lenses in order to improve adenoma detection rates. In this review we will focus on the newest developments in the field of colonoscopic imaging to improve adenoma detection rates. Described techniques include high-definition imaging, optical chromoendoscopy techniques, virtual chromoendoscopy techniques, the Third Eye Retroscope and other retroviewing devices, the G-EYE endoscope and the Full Spectrum Endoscopy-system. PMID:25789092

  12. Advanced technologies for remote sensing imaging applications

    SciTech Connect

    Wood, L.L.

    1993-06-07

    Generating and returning imagery from great distances has been generally associated with national security activities, with emphasis on reliability of system operation. (While the introduction of such capabilities was usually characterized by high levels of innovation, the evolution of such systems has followed the classical track of proliferation of ``standardized items`` expressing ever more incremental technological advances.) Recent focusing of interest on the use of remote imaging systems for commercial and scientific purposes can be expected to induce comparatively rapid advances along the axes of efficiency and technological sophistication, respectively. This paper reviews the most basic reasons for expecting the next decade of advances to dwarf the impressive accomplishments of the past ten years. The impact of these advances clearly will be felt in all major areas of large-scale human endeavor, commercial, military and scientific.

  13. Advances in transmission x-ray optics

    SciTech Connect

    Ceglio, N.M.

    1983-01-01

    Recent developments in x-ray optics are reviewed. Specific advances in coded aperture imaging, zone plate lens fabrication, time and space resolved spectroscopy, and CCD x-ray detection are discussed.

  14. Testing fully depleted CCD

    NASA Astrophysics Data System (ADS)

    Casas, Ricard; Cardiel-Sas, Laia; Castander, Francisco J.; Jiménez, Jorge; de Vicente, Juan

    2014-08-01

    The focal plane of the PAU camera is composed of eighteen 2K x 4K CCDs. These devices, plus four spares, were provided by the Japanese company Hamamatsu Photonics K.K. with type no. S10892-04(X). These detectors are 200 μm thick fully depleted and back illuminated with an n-type silicon base. They have been built with a specific coating to be sensitive in the range from 300 to 1,100 nm. Their square pixel size is 15 μm. The read-out system consists of a Monsoon controller (NOAO) and the panVIEW software package. The deafualt CCD read-out speed is 133 kpixel/s. This is the value used in the calibration process. Before installing these devices in the camera focal plane, they were characterized using the facilities of the ICE (CSIC- IEEC) and IFAE in the UAB Campus in Bellaterra (Barcelona, Catalonia, Spain). The basic tests performed for all CCDs were to obtain the photon transfer curve (PTC), the charge transfer efficiency (CTE) using X-rays and the EPER method, linearity, read-out noise, dark current, persistence, cosmetics and quantum efficiency. The X-rays images were also used for the analysis of the charge diffusion for different substrate voltages (VSUB). Regarding the cosmetics, and in addition to white and dark pixels, some patterns were also found. The first one, which appears in all devices, is the presence of half circles in the external edges. The origin of this pattern can be related to the assembly process. A second one appears in the dark images, and shows bright arcs connecting corners along the vertical axis of the CCD. This feature appears in all CCDs exactly in the same position so our guess is that the pattern is due to electrical fields. Finally, and just in two devices, there is a spot with wavelength dependence whose origin could be the result of a defectous coating process.

  15. Advances in retinal ganglion cell imaging

    PubMed Central

    Balendra, S I; Normando, E M; Bloom, P A; Cordeiro, M F

    2015-01-01

    Glaucoma is one of the leading causes of blindness worldwide and will affect 79.6 million people worldwide by 2020. It is caused by the progressive loss of retinal ganglion cells (RGCs), predominantly via apoptosis, within the retinal nerve fibre layer and the corresponding loss of axons of the optic nerve head. One of its most devastating features is its late diagnosis and the resulting irreversible visual loss that is often predictable. Current diagnostic tools require significant RGC or functional visual field loss before the threshold for detection of glaucoma may be reached. To propel the efficacy of therapeutics in glaucoma, an earlier diagnostic tool is required. Recent advances in retinal imaging, including optical coherence tomography, confocal scanning laser ophthalmoscopy, and adaptive optics, have propelled both glaucoma research and clinical diagnostics and therapeutics. However, an ideal imaging technique to diagnose and monitor glaucoma would image RGCs non-invasively with high specificity and sensitivity in vivo. It may confirm the presence of healthy RGCs, such as in transgenic models or retrograde labelling, or detect subtle changes in the number of unhealthy or apoptotic RGCs, such as detection of apoptosing retinal cells (DARC). Although many of these advances have not yet been introduced to the clinical arena, their successes in animal studies are enthralling. This review will illustrate the challenges of imaging RGCs, the main retinal imaging modalities, the in vivo techniques to augment these as specific RGC-imaging tools and their potential for translation to the glaucoma clinic. PMID:26293138

  16. Computational and design methods for advanced imaging

    NASA Astrophysics Data System (ADS)

    Birch, Gabriel C.

    This dissertation merges the optical design and computational aspects of imaging systems to create novel devices that solve engineering problems in optical science and attempts to expand the solution space available to the optical designer. This dissertation is divided into two parts: the first discusses a new active illumination depth sensing modality, while the second part discusses a passive illumination system called plenoptic, or lightfield, imaging. The new depth sensing modality introduced in part one is called depth through controlled aberration. This technique illuminates a target with a known, aberrated projected pattern and takes an image using a traditional, unmodified imaging system. Knowing how the added aberration in the projected pattern changes as a function of depth, we are able to quantitatively determine depth of a series of points from the camera. A major advantage this method permits is the ability for illumination and imaging axes to be coincident. Plenoptic cameras capture both spatial and angular data simultaneously. This dissertation present a new set of parameters that permit the design and comparison of plenoptic devices outside the traditionally published plenoptic 1.0 and plenoptic 2.0 configurations. Additionally, a series of engineering advancements are presented, including full system raytraces of raw plenoptic images, Zernike compression techniques of raw image files, and non-uniform lenslet arrays to compensate for plenoptic system aberrations. Finally, a new snapshot imaging spectrometer is proposed based off the plenoptic configuration.

  17. Terahertz Tools Advance Imaging for Security, Industry

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Picometrix, a wholly owned subsidiary of Advanced Photonix Inc. (API), of Ann Arbor, Michigan, invented the world s first commercial terahertz system. The company improved the portability and capabilities of their systems through Small Business Innovation Research (SBIR) agreements with Langley Research Center to provide terahertz imaging capabilities for inspecting the space shuttle external tanks and orbiters. Now API s systems make use of the unique imaging capacity of terahertz radiation on manufacturing floors, for thickness measurements of coatings, pharmaceutical tablet production, and even art conservation.

  18. Rheumatoid Arthritis Revisited - Advanced Imaging Review.

    PubMed

    Vyas, Surabhi; Bhalla, Ashu Seith; Ranjan, Piyush; Kumar, Sandeep; Kumar, Uma; Gupta, Arun Kumar

    2016-01-01

    Rheumatoid Arthritis (RA) is a multisystem disorder, which causes significant morbidity. An early diagnosis of RA is essential to prevent the development of irreversible bone and joint changes. The disease has characteristic clinical features, but an early evaluation of the quantum of disease may be difficult with plain radiography alone. Recent developments in the imaging of RA have contributed significantly to an early diagnosis of the disease. In this article, we review the role and current status of various imaging modalities including recent advances in the evaluation and follow-up of early RA.

  19. Rheumatoid Arthritis Revisited – Advanced Imaging Review

    PubMed Central

    Vyas, Surabhi; Bhalla, Ashu Seith; Ranjan, Piyush; Kumar, Sandeep; Kumar, Uma; Gupta, Arun Kumar

    2016-01-01

    Summary Rheumatoid Arthritis (RA) is a multisystem disorder, which causes significant morbidity. An early diagnosis of RA is essential to prevent the development of irreversible bone and joint changes. The disease has characteristic clinical features, but an early evaluation of the quantum of disease may be difficult with plain radiography alone. Recent developments in the imaging of RA have contributed significantly to an early diagnosis of the disease. In this article, we review the role and current status of various imaging modalities including recent advances in the evaluation and follow-up of early RA. PMID:28105245

  20. High speed cooled CCD experiments

    SciTech Connect

    Pena, C.R.; Albright, K.L.; Yates, G.J.

    1998-12-31

    Experiments were conducted using cooled and intensified CCD cameras. Two different cameras were identically tested using different Optical test stimulus variables. Camera gain and dynamic range were measured by varying microchannel plate (MCP) voltages and controlling light flux using neutral density (ND) filters to yield analog digitized units (ADU) which are digitized values of the CCD pixel`s analog charge. A Xenon strobe (5 {micro}s FWHM, blue light, 430 nm) and a doubled Nd.yag laser (10 ns FWHM, green light, 532 nm) were both used as pulsed illumination sources for the cameras. Images were captured on PC desktop computer system using commercial software. Camera gain and integration time values were adjusted using camera software. Mean values of camera volts versus input flux were also obtained by performing line scans through regions of interest. Experiments and results will be discussed.

  1. Advanced magnetic resonance imaging of neurodegenerative diseases.

    PubMed

    Agosta, Federica; Galantucci, Sebastiano; Filippi, Massimo

    2017-01-01

    Magnetic resonance imaging (MRI) is playing an increasingly important role in the study of neurodegenerative diseases, delineating the structural and functional alterations determined by these conditions. Advanced MRI techniques are of special interest for their potential to characterize the signature of each neurodegenerative condition and aid both the diagnostic process and the monitoring of disease progression. This aspect will become crucial when disease-modifying (personalized) therapies will be established. MRI techniques are very diverse and go from the visual inspection of MRI scans to more complex approaches, such as manual and automatic volume measurements, diffusion tensor MRI, and functional MRI. All these techniques allow us to investigate the different features of neurodegeneration. In this review, we summarize the most recent advances concerning the use of MRI in some of the most important neurodegenerative conditions, putting an emphasis on the advanced techniques.

  2. Imaging Tumor Hypoxia to Advance Radiation Oncology

    PubMed Central

    Lee, Chen-Ting; Boss, Mary-Keara

    2014-01-01

    Abstract Significance: Most solid tumors contain regions of low oxygenation or hypoxia. Tumor hypoxia has been associated with a poor clinical outcome and plays a critical role in tumor radioresistance. Recent Advances: Two main types of hypoxia exist in the tumor microenvironment: chronic and cycling hypoxia. Chronic hypoxia results from the limited diffusion distance of oxygen, and cycling hypoxia primarily results from the variation in microvessel red blood cell flux and temporary disturbances in perfusion. Chronic hypoxia may cause either tumor progression or regressive effects depending on the tumor model. However, there is a general trend toward the development of a more aggressive phenotype after cycling hypoxia. With advanced hypoxia imaging techniques, spatiotemporal characteristics of tumor hypoxia and the changes to the tumor microenvironment can be analyzed. Critical Issues: In this review, we focus on the biological and clinical consequences of chronic and cycling hypoxia on radiation treatment. We also discuss the advanced non-invasive imaging techniques that have been developed to detect and monitor tumor hypoxia in preclinical and clinical studies. Future Directions: A better understanding of the mechanisms of tumor hypoxia with non-invasive imaging will provide a basis for improved radiation therapeutic practices. Antioxid. Redox Signal. 21, 313–337. PMID:24329000

  3. A study of cosmic ray flux based on the noise in raw CCD data from solar images

    NASA Astrophysics Data System (ADS)

    Shen, Z.-N.; Qin, G.

    2016-11-01

    Raw solar images from CCDs are often contaminated with single-pixel noise which is thought to be made by cosmic ray hits. The cosmic ray-affected pixels are usually outstanding when compared with the perimeter zone. In this work, we use a method based on the median filtering algorithm to identify and count the cosmic ray traces from SOHO/EIT solar images to estimate the cosmic ray (CR) flux. With such cosmic ray flux, we study the transient variations associated with the violent solar activities, such as the solar proton events (SPEs), which show good similarity with the observations of GOES 11 P6 channel with an energy interval 80-165 MeV. Further, using SPE list observed by SOHO/ERNE proton channels with more narrow energy intervals, it is found that CRs in the energy range 118-140 MeV affect the SOHO/EIT images the most. In addition, by using a robust automatic despiking method, we get the background of the cosmic ray flux from solar images, which is considered to be the galactic cosmic ray (GCR) flux. The GCR flux from solar images shows an 11 year period due to the solar modulation, similar to the SOHO/ERNE GCR flux and Newark neutron monitor count rates. Furthermore, GCRs from solar images have a 27 day period and show good anticorrelation with the changes of solar wind velocity.

  4. CCD Camera Observations

    NASA Astrophysics Data System (ADS)

    Buchheim, Bob; Argyle, R. W.

    One night late in 1918, astronomer William Milburn, observing the region of Cassiopeia from Reverend T.H.E.C. Espin's observatory in Tow Law (England), discovered a hitherto unrecorded double star (Wright 1993). He reported it to Rev. Espin, who measured the pair using his 24-in. reflector: the fainter star was 6.0 arcsec from the primary, at position angle 162.4 ^{circ } (i.e. the fainter star was south-by-southeast from the primary) (Espin 1919). Some time later, it was recognized that the astrograph of the Vatican Observatory had taken an image of the same star-field a dozen years earlier, in late 1906. At that earlier epoch, the fainter star had been separated from the brighter one by only 4.8 arcsec, at position angle 186.2 ^{circ } (i.e. almost due south). Were these stars a binary pair, or were they just two unrelated stars sailing past each other? Some additional measurements might have begun to answer this question. If the secondary star was following a curved path, that would be a clue of orbital motion; if it followed a straight-line path, that would be a clue that these are just two stars passing in the night. Unfortunately, nobody took the trouble to re-examine this pair for almost a century, until the 2MASS astrometric/photometric survey recorded it in late 1998. After almost another decade, this amateur astronomer took some CCD images of the field in 2007, and added another data point on the star's trajectory, as shown in Fig. 15.1.

  5. Advanced imaging in valvular heart disease.

    PubMed

    Bax, Jeroen J; Delgado, Victoria

    2017-04-01

    Although echocardiography remains the mainstay imaging technique for the evaluation of patients with valvular heart disease (VHD), innovations in noninvasive imaging in the past few years have provided new insights into the pathophysiology and quantification of VHD, early detection of left ventricular (LV) dysfunction, and advanced prognostic assessment. The severity grading of valve dysfunction has been refined with the use of Doppler echocardiography, cardiac magnetic resonance (CMR), and CT imaging. LV ejection fraction remains an important criterion when deciding whether patients should be referred for surgery. However, echocardiographic strain imaging can now detect impaired LV systolic function before LV ejection fraction reduces, thus provoking the debate on whether patients with severe VHD should be referred for surgery at an earlier stage (before symptom onset). Impaired LV strain correlates with the amount of myocardial fibrosis detected with CMR techniques. Furthermore, accumulating data show that the extent of fibrosis associated with severe VHD has important prognostic implications. The present Review focuses on using these novel imaging modalities to assess pathophysiology, early LV dysfunction, and prognosis of major VHDs, including aortic stenosis, mitral regurgitation, and aortic regurgitation.

  6. A Review of Significant Advances in Neutron Imaging from Conception to the Present

    NASA Astrophysics Data System (ADS)

    Brenizer, J. S.

    This review summarizes the history of neutron imaging with a focus on the significant events and technical advancements in neutron imaging methods, from the first radiograph to more recent imaging methods. A timeline is presented to illustrate the key accomplishments that advanced the neutron imaging technique. Only three years after the discovery of the neutron by English physicist James Chadwick in 1932, neutron imaging began with the work of Hartmut Kallmann and Ernst Kuhn in Berlin, Germany, from 1935-1944. Kallmann and Kuhn were awarded a joint US Patent issued in January 1940. Little progress was made until the mid-1950's when Thewlis utilized a neutron beam from the BEPO reactor at Harwell, marking the beginning of the application of neutron imaging to practical applications. As the film method was improved, imaging moved from a qualitative to a quantitative technique, with applications in industry and in nuclear fuels. Standards were developed to aid in the quantification of the neutron images and the facility's capabilities. The introduction of dynamic neutron imaging (initially called real-time neutron radiography and neutron television) in the late 1970's opened the door to new opportunities and new challenges. As the electronic imaging matured, the introduction of the CCD imaging devices and solid-state light intensifiers helped address some of these challenges. Development of improved imaging devices for the medical community has had a major impact on neutron imaging. Additionally, amorphous silicon sensors provided improvements in temporal resolution, while providing a reasonably large imaging area. The development of new neutron imaging sensors and the development of new neutron imaging techniques in the past decade has advanced the technique's ability to provide insight and understanding of problems that other non-destructive techniques could not provide. This rapid increase in capability and application would not have been possible without the

  7. The advanced Moon micro-imager experiment (AMIE) on SMART-1: Scientific goals and expected results

    NASA Astrophysics Data System (ADS)

    Pinet, P.; Cerroni, P.; Josset, J.-L.; Beauvivre, S.; Chevrel, S.; Muinonen, K.; Langevin, Y.; Barucci, M. A.; De Sanctis, M. C.; Shkuratov, Yu.; Shevchenko, V.; Plancke, P.; Hofmann, B. A.; Josset, M.; Ehrenfreund, P.; Sodnik, Z.; Koschny, D.; Almeida, M.; Foing, B.

    2005-11-01

    The advanced Moon micro-imager experiment (AMIE) is the imaging system on board ESA mission to the Moon SMART-1; it makes use of a miniaturised detector and micro-processor electronics developed by SPACE X in the frame of the ESA technical programme. The AMIE micro-imager will provide high resolution CCD images of selected lunar areas and it will perform colour imaging through three filters at 750, 915 and 960 nm with a maximum resolution of 46 m/pixel at the perilune of 500 km. Specific scientific objectives will include (1) imaging of high latitude regions in the southern hemisphere, in particular the South Pole Aitken basin (SPA) and the permanently shadowed regions close to the South Pole, (2) determination of the photometric properties of the lunar surface from observations at different phase angles (physical properties of the regolith), (3) multi-band imaging for constraining the chemical and mineral composition of the surface, (4) detection and characterisation of lunar non-mare volcanic units, (5) study of lithological variations from impact craters and implications for crustal heterogeneity. The AMIE micro-imager will also support a Laser-link experiment to Earth, an On Board Autonomous Navigation investigation and a Lunar libration experiment coordinated with radio science measurements.

  8. CCD gate definition process

    NASA Astrophysics Data System (ADS)

    Bluzer

    1986-02-01

    The present invention utilizes a double masking step in a CCD gate definition process to eliminate the re-entrant oxide by using a thin film layer other than photoresist to define the polysilicon gates used by defining the thin film layer with a double masking process before any of the polysilicon gate layer is etched. It is one object of the present invention, therefore, to provide an improved process for CCD gate definition. It is another object of the invention to provide an improved CCD gate definition process wherein a profiled oxide layer is produced over a polysilicon layer without re-entrant oxide regions. It is another object of the invention to provide an improved CCD gate definition process wherein a thin film layer is utilized to define the polysilicon gate layers. It is another object of the invention to provide an improved CCD gate definition process wherein the thin film layer is defined by a double masking process before any polysilicon layer is etched.

  9. Temporal evolution and spatial distribution of dust creation events in Tore Supra and in ASDEX Upgrade studied by CCD image analysis

    NASA Astrophysics Data System (ADS)

    Hong, Suk-Ho; Grisolia, Christian; Rohde, Volker; Monier-Garbet, Pascale; Tore Supra Team; ASDEX Upgrade Team

    2010-03-01

    Images of wide-angle visible standard CCD cameras contain information on dust creation events (DCEs) that occur during plasma operations. Analysing the straight line-like dust traces in the shallow volume of scrape-off layer along the vacuum vessel, caused by plasma-dust interaction, the database on the DCEs is built. The database provides short/long term temporal evolution and spatial distribution of origins of DCEs in fusion devices. We have studied the DCEs of CIMES (2006) and DITS (2007) Tore Supra (TS) campaigns, and the DCEs of the 2007 ASDEX Upgrade (AUG) campaign. The results from the TS CIMES campaign show different patterns of DCEs meaning different plasma-wall interaction depending on power coupling. The TS DITS campaign indicates that dusts may be an operational limit if a fixed plasma operation scenario is used repeatedly. Different behaviours of DCEs between the carbon limiter machine and the full tungsten divertor machine are found, which is important for next generation fusion machines like ITER.

  10. Recent advances in imaging preterm brain injury.

    PubMed

    Boardman, J P; Dyet, L E

    2007-08-01

    Survivors of preterm birth are at high risk of neurocognitive impairment in childhood, but the disturbances to brain growth and function that underlie impairment are not completely understood. Improvements in perinatal care have led to a reduction in the major destructive parenchymal brain lesions that are associated with motor impairment, such as cystic periventricular leucomalacia and haemorrhagic parenchymal infarction. However, with the application of advanced magnetic resonance (MR) imaging and processing techniques in the neonatal period, subtle alterations in brain development have become apparent. These changes occur with similar frequency to long-term neurocognitive impairment, and may therefore represent candidate neural substrates for this group of disorders. Here we review the range of lesions and associated outcomes that are seen in the current era of perinatal care, and discuss how state of the art MR imaging techniques have helped to define the neural systems affected by preterm birth, and have provided insights into understanding mechanisms of injury.

  11. Advanced methods in synthetic aperture radar imaging

    NASA Astrophysics Data System (ADS)

    Kragh, Thomas

    2012-02-01

    For over 50 years our world has been mapped and measured with synthetic aperture radar (SAR). A SAR system operates by transmitting a series of wideband radio-frequency pulses towards the ground and recording the resulting backscattered electromagnetic waves as the system travels along some one-dimensional trajectory. By coherently processing the recorded backscatter over this extended aperture, one can form a high-resolution 2D intensity map of the ground reflectivity, which we call a SAR image. The trajectory, or synthetic aperture, is achieved by mounting the radar on an aircraft, spacecraft, or even on the roof of a car traveling down the road, and allows for a diverse set of applications and measurement techniques for remote sensing applications. It is quite remarkable that the sub-centimeter positioning precision and sub-nanosecond timing precision required to make this work properly can in fact be achieved under such real-world, often turbulent, vibrationally intensive conditions. Although the basic principles behind SAR imaging and interferometry have been known for decades, in recent years an explosion of data exploitation techniques enabled by ever-faster computational horsepower have enabled some remarkable advances. Although SAR images are often viewed as simple intensity maps of ground reflectivity, SAR is also an exquisitely sensitive coherent imaging modality with a wealth of information buried within the phase information in the image. Some of the examples featured in this presentation will include: (1) Interferometric SAR, where by comparing the difference in phase between two SAR images one can measure subtle changes in ground topography at the wavelength scale. (2) Change detection, in which carefully geolocated images formed from two different passes are compared. (3) Multi-pass 3D SAR tomography, where multiple trajectories can be used to form 3D images. (4) Moving Target Indication (MTI), in which Doppler effects allow one to detect and

  12. Advanced imaging of the scapholunate ligamentous complex.

    PubMed

    Shahabpour, Maryam; Staelens, Barbara; Van Overstraeten, Luc; De Maeseneer, Michel; Boulet, Cedric; De Mey, Johan; Scheerlinck, Thierry

    2015-12-01

    The scapholunate joint is one of the most involved in wrist injuries. Its stability depends on primary and secondary stabilisers forming together the scapholunate complex. This ligamentous complex is often evaluated by wrist arthroscopy. To avoid surgery as diagnostic procedure, optimization of MR imaging parameters as use of three-dimensional (3D) sequences with very thin slices and high spatial resolution, is needed to detect lesions of the intrinsic and extrinsic ligaments of the scapholunate complex. The paper reviews the literature on imaging of radial-sided carpal ligaments with advanced computed tomographic arthrography (CTA) and magnetic resonance arthrography (MRA) to evaluate the scapholunate complex. Anatomy and pathology of the ligamentous complex are described and illustrated with CTA, MRA and corresponding arthroscopy. Sprains, mid-substance tears, avulsions and fibrous infiltrations of carpal ligaments could be identified on CTA and MRA images using 3D fat-saturated PD and 3D DESS (dual echo with steady-state precession) sequences with 0.5-mm-thick slices. Imaging signs of scapholunate complex pathology include: discontinuity, nonvisualization, changes in signal intensity, contrast extravasation (MRA), contour irregularity and waviness and periligamentous infiltration by edema, granulation tissue or fibrosis. Based on this preliminary experience, we believe that 3 T MRA using 3D sequences with 0.5-mm-thick slices and multiplanar reconstructions is capable to evaluate the scapholunate complex and could help to reduce the number of diagnostic arthroscopies.

  13. The Wasilewski sample of emission-line galaxies - Follow-up CCD imaging and spectroscopic and IRAS observations

    NASA Technical Reports Server (NTRS)

    Bothun, Gregory D.; Schmitz, Mark; Halpern, Jules P.; Lonsdale, Carol J.; Impey, Chris

    1989-01-01

    The results of an extensive imaging and spectroscopic follow-up of the objective prism-selected emission line galaxy (ELG) sample of Wasilewski (1982) are presented. Fluxes at 12, 25, 60, and 100 microns were also obtained from the coadded IRAS survey data. ELGs found by objective prism surveys are found to be generally small and underluminous galaxies which usually have higher than average optical surface brightness. The Seyfert detection rate in objective prism surveys is roughly 10 percent and the ratio of the space densities of Seyfert 2 to Seyfert 1 galaxies is significantly larger than unity. Most of the galaxies selected by objective prism surveys are star-forming, late-type spirals which often show disturbed morphology. About 25 percent of the galaxies detected by the surveys are faint, high-excitation metal-poor compact H II regions.

  14. The EMSS catalog of X-ray-selected clusters of galaxies. 1: An atlas of CCD images of 41 distant clusters

    NASA Technical Reports Server (NTRS)

    Gioia, I. M.; Luppino, G. A.

    1994-01-01

    An atlas of deep, wide-field R-band charge coupled device (CCD) images of a complete sample of distant, X-ray-selected clusters of galaxies is presented. These clusters are the 41 most distant (z is greater than or equal to 0.15) and most X-ray-luminous (L(sub x) is greater than or equal to 2 x 10(exp 44) ergs/s) clusters in the Einstein Observatory Extended Medium Sensitivity Survey (EMSS) catalog that are observable from Mauna Kea (delta is greater than -40 deg). The sample spans a redshift range of 0.15 is less than or equal to z is less than or equal to 0.81 and includes at least two and possibly as many as six rich clusters with z is greater than 0.5. For the most part, the data are of superior quality, with a median seeing of 0.8 sec full width half-maximum (FWHM) and coverage of at least 1 Mpc x 1 Mpc in the cluster frame (H(sub 0) = 50; q(sub 0) = 1/2). In addition, we update the available optical, X-ray, and radio data on the entire EMSS sample of 104 clusters. We outline the cluster selection criteria in detail and emphasize that X-ray-selected cluster samples may prove to be more useful for cosmological studies than optically selected samples. The EMSS cluster sample in particular can be exploited for diverse cosmological investigations, as demonstrated by the detection of evolution in the X-ray luminosity function previously reported, and more recently by the discovery of a large number of gravitationally lensed images in these clusters.

  15. Smart image sensors: an emerging key technology for advanced optical measurement and microsystems

    NASA Astrophysics Data System (ADS)

    Seitz, Peter

    1996-08-01

    Optical microsystems typically include photosensitive devices, analog preprocessing circuitry and digital signal processing electronics. The advances in semiconductor technology have made it possible today to integrate all photosensitive and electronical devices on one 'smart image sensor' or photo-ASIC (application-specific integrated circuits containing photosensitive elements). It is even possible to provide each 'smart pixel' with additional photoelectronic functionality, without compromising the fill factor substantially. This technological capability is the basis for advanced cameras and optical microsystems showing novel on-chip functionality: Single-chip cameras with on- chip analog-to-digital converters for less than $10 are advertised; image sensors have been developed including novel functionality such as real-time selectable pixel size and shape, the capability of performing arbitrary convolutions simultaneously with the exposure, as well as variable, programmable offset and sensitivity of the pixels leading to image sensors with a dynamic range exceeding 150 dB. Smart image sensors have been demonstrated offering synchronous detection and demodulation capabilities in each pixel (lock-in CCD), and conventional image sensors are combined with an on-chip digital processor for complete, single-chip image acquisition and processing systems. Technological problems of the monolithic integration of smart image sensors include offset non-uniformities, temperature variations of electronic properties, imperfect matching of circuit parameters, etc. These problems can often be overcome either by designing additional compensation circuitry or by providing digital correction routines. Where necessary for technological or economic reasons, smart image sensors can also be combined with or realized as hybrids, making use of commercially available electronic components. It is concluded that the possibilities offered by custom smart image sensors will influence the design

  16. Range-Gated LADAR Coherent Imaging Using Parametric Up-Conversion of IR and NIR Light for Imaging with a Visible-Range Fast-Shuttered Intensified Digital CCD Camera

    SciTech Connect

    YATES,GEORGE J.; MCDONALD,THOMAS E. JR.; BLISS,DAVID E.; CAMERON,STEWART M.; ZUTAVERN,FRED J.

    2000-12-20

    Research is presented on infrared (IR) and near infrared (NIR) sensitive sensor technologies for use in a high speed shuttered/intensified digital video camera system for range-gated imaging at ''eye-safe'' wavelengths in the region of 1.5 microns. The study is based upon nonlinear crystals used for second harmonic generation (SHG) in optical parametric oscillators (OPOS) for conversion of NIR and IR laser light to visible range light for detection with generic S-20 photocathodes. The intensifiers are ''stripline'' geometry 18-mm diameter microchannel plate intensifiers (MCPIIS), designed by Los Alamos National Laboratory and manufactured by Philips Photonics. The MCPIIS are designed for fast optical shattering with exposures in the 100-200 ps range, and are coupled to a fast readout CCD camera. Conversion efficiency and resolution for the wavelength conversion process are reported. Experimental set-ups for the wavelength shifting and the optical configurations for producing and transporting laser reflectance images are discussed.

  17. Vacuum compatible miniature CCD camera head

    DOEpatents

    Conder, Alan D.

    2000-01-01

    A charge-coupled device (CCD) camera head which can replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating x-rays, such as within a target chamber where laser produced plasmas are studied. The camera head is small, capable of operating both in and out of a vacuum environment, and is versatile. The CCD camera head uses PC boards with an internal heat sink connected to the chassis for heat dissipation, which allows for close(0.04" for example) stacking of the PC boards. Integration of this CCD camera head into existing instrumentation provides a substantial enhancement of diagnostic capabilities for studying high energy density plasmas, for a variety of military industrial, and medical imaging applications.

  18. Electron Trajectory Reconstruction for Advanced Compton Imaging of Gamma Rays

    NASA Astrophysics Data System (ADS)

    Plimley, Brian Christopher

    Gamma-ray imaging is useful for detecting, characterizing, and localizing sources in a variety of fields, including nuclear physics, security, nuclear accident response, nuclear medicine, and astronomy. Compton imaging in particular provides sensitivity to weak sources and good angular resolution in a large field of view. However, the photon origin in a single event sequence is normally only limited to the surface of a cone. If the initial direction of the Compton-scattered electron can be measured, the cone can be reduced to a cone segment with width depending on the uncertainty in the direction measurement, providing a corresponding increase in imaging sensitivity. Measurement of the electron's initial direction in an efficient detection material requires very fine position resolution due to the electron's short range and tortuous path. A thick (650 mum), fully-depleted charge-coupled device (CCD) developed for infrared astronomy has 10.5-mum position resolution in two dimensions, enabling the initial trajectory measurement of electrons of energy as low as 100 keV. This is the first time the initial trajectories of electrons of such low energies have been measured in a solid material. In this work, the CCD's efficacy as a gamma-ray detector is demonstrated experimentally, using a reconstruction algorithm to measure the initial electron direction from the CCD track image. In addition, models of fast electron interaction physics, charge transport and readout were used to generate modeled tracks with known initial direction. These modeled tracks allowed the development and refinement of the reconstruction algorithm. The angular sensitivity of the reconstruction algorithm is evaluated extensively with models for tracks below 480 keV, showing a FWHM as low as 20° in the pixel plane, and 30° RMS sensitivity to the magnitude of the out-of-plane angle. The measurement of the trajectories of electrons with energies as low as 100 keV have the potential to make electron

  19. Advanced MR Imaging in Pediatric Brain Tumors, Clinical Applications.

    PubMed

    Lequin, Maarten; Hendrikse, Jeroen

    2017-02-01

    Advanced MR imaging techniques, such as spectroscopy, perfusion, diffusion, and functional imaging, have improved the diagnosis of brain tumors in children and also play an important role in defining surgical as well as therapeutic responses in these patients. In addition to the anatomic or structural information gained with conventional MR imaging sequences, advanced MR imaging techniques also provide physiologic information about tumor morphology, metabolism, and hemodynamics. This article reviews the physiology, techniques, and clinical applications of diffusion-weighted and diffusion tensor imaging, MR spectroscopy, perfusion MR imaging, susceptibility-weighted imaging, and functional MR imaging in the setting of neuro-oncology.

  20. Recent advances in imaging subcellular processes.

    PubMed

    Myers, Kenneth A; Janetopoulos, Christopher

    2016-01-01

    Cell biology came about with the ability to first visualize cells. As microscopy techniques advanced, the early microscopists became the first cell biologists to observe the inner workings and subcellular structures that control life. This ability to see organelles within a cell provided scientists with the first understanding of how cells function. The visualization of the dynamic architecture of subcellular structures now often drives questions as researchers seek to understand the intricacies of the cell. With the advent of fluorescent labeling techniques, better and new optical techniques, and more sensitive and faster cameras, a whole array of questions can now be asked. There has been an explosion of new light microscopic techniques, and the race is on to build better and more powerful imaging systems so that we can further our understanding of the spatial and temporal mechanisms controlling molecular cell biology.

  1. Recent Advances in Morphological Cell Image Analysis

    PubMed Central

    Chen, Shengyong; Zhao, Mingzhu; Wu, Guang; Yao, Chunyan; Zhang, Jianwei

    2012-01-01

    This paper summarizes the recent advances in image processing methods for morphological cell analysis. The topic of morphological analysis has received much attention with the increasing demands in both bioinformatics and biomedical applications. Among many factors that affect the diagnosis of a disease, morphological cell analysis and statistics have made great contributions to results and effects for a doctor. Morphological cell analysis finds the cellar shape, cellar regularity, classification, statistics, diagnosis, and so forth. In the last 20 years, about 1000 publications have reported the use of morphological cell analysis in biomedical research. Relevant solutions encompass a rather wide application area, such as cell clumps segmentation, morphological characteristics extraction, 3D reconstruction, abnormal cells identification, and statistical analysis. These reports are summarized in this paper to enable easy referral to suitable methods for practical solutions. Representative contributions and future research trends are also addressed. PMID:22272215

  2. Recent advances in imaging subcellular processes

    PubMed Central

    Myers, Kenneth A.; Janetopoulos, Christopher

    2016-01-01

    Cell biology came about with the ability to first visualize cells. As microscopy techniques advanced, the early microscopists became the first cell biologists to observe the inner workings and subcellular structures that control life. This ability to see organelles within a cell provided scientists with the first understanding of how cells function. The visualization of the dynamic architecture of subcellular structures now often drives questions as researchers seek to understand the intricacies of the cell. With the advent of fluorescent labeling techniques, better and new optical techniques, and more sensitive and faster cameras, a whole array of questions can now be asked. There has been an explosion of new light microscopic techniques, and the race is on to build better and more powerful imaging systems so that we can further our understanding of the spatial and temporal mechanisms controlling molecular cell biology. PMID:27408708

  3. Recent advances in human viruses imaging studies.

    PubMed

    Florian, Paula Ecaterina; Rouillé, Yves; Ruta, Simona; Nichita, Norica; Roseanu, Anca

    2016-06-01

    Microscopy techniques are often exploited by virologists to investigate molecular details of critical steps in viruses' life cycles such as host cell recognition and entry, genome replication, intracellular trafficking, and release of mature virions. Fluorescence microscopy is the most attractive tool employed to detect intracellular localizations of various stages of the viral infection and monitor the pathogen-host interactions associated with them. Super-resolution microscopy techniques have overcome the technical limitations of conventional microscopy and offered new exciting insights into the formation and trafficking of human viruses. In addition, the development of state-of-the art electron microscopy techniques has become particularly important in studying virus morphogenesis by revealing ground-braking ultrastructural details of this process. This review provides recent advances in human viruses imaging in both, in vitro cell culture systems and in vivo, in the animal models recently developed. The newly available imaging technologies bring a major contribution to our understanding of virus pathogenesis and will become an important tool in early diagnosis of viral infection and the development of novel therapeutics to combat the disease.

  4. Advances in diagnostic imaging for pathologic conditions of the jaws.

    PubMed

    Benson, Byron W; Flint, Diane J; Liang, Hui; Opatowsky, Michael J

    2014-12-01

    Advances in dental and maxillofacial imaging are delineated along with the advantages and disadvantages of each imaging modality. The imaging modalities that are included are intraoral radiography, panoramic radiography, cone-beam computed tomography, multidetector computed tomography, magnetic resonance imaging, nuclear medicine, and ultrasound.

  5. Active Pixel Sensors: Are CCD's Dinosaurs?

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.

    1993-01-01

    Charge-coupled devices (CCD's) are presently the technology of choice for most imaging applications. In the 23 years since their invention in 1970, they have evolved to a sophisticated level of performance. However, as with all technologies, we can be certain that they will be supplanted someday. In this paper, the Active Pixel Sensor (APS) technology is explored as a possible successor to the CCD. An active pixel is defined as a detector array technology that has at least one active transistor within the pixel unit cell. The APS eliminates the need for nearly perfect charge transfer -- the Achilles' heel of CCDs. This perfect charge transfer makes CCD's radiation 'soft,' difficult to use under low light conditions, difficult to manufacture in large array sizes, difficult to integrate with on-chip electronics, difficult to use at low temperatures, difficult to use at high frame rates, and difficult to manufacture in non-silicon materials that extend wavelength response.

  6. Universal tool microscope remanufacture based on CCD

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Hu, Zhongxiang; Zhang, Xunming; Zhang, Jiaying

    2006-02-01

    To overcome the drawback of traditional universal tool microscopes, a remanufacturing scheme based on charge coupled devices (CCD) is proposed. In this paper, the remanufacturing of old tool microscopes is replaced gradually by CCD and grating ruler and the development of a novel measuring system designed to directly analyze image of the screw to be measured is discussed. For the analysis of image, such novel image processing methods as adaptive switching median (ASM) filter and edge detection based on the modified Sobel operator are designed. For the line detection algorithm, HOUGH transform also is used to measure the screw parameter. Experiments on screw images demonstrate that the scheme of remanufactured universal tool microscope is of feasibility and the proposed measurement is of validity.

  7. Methodological advances in imaging intravital axonal transport

    PubMed Central

    Sleigh, James N.; Vagnoni, Alessio; Twelvetrees, Alison E.; Schiavo, Giampietro

    2017-01-01

    Axonal transport is the active process whereby neurons transport cargoes such as organelles and proteins anterogradely from the cell body to the axon terminal and retrogradely in the opposite direction. Bi-directional transport in axons is absolutely essential for the functioning and survival of neurons and appears to be negatively impacted by both aging and diseases of the nervous system, such as Alzheimer’s disease and amyotrophic lateral sclerosis. The movement of individual cargoes along axons has been studied in vitro in live neurons and tissue explants for a number of years; however, it is currently unclear as to whether these systems faithfully and consistently replicate the in vivo situation. A number of intravital techniques originally developed for studying diverse biological events have recently been adapted to monitor axonal transport in real-time in a range of live organisms and are providing novel insight into this dynamic process. Here, we highlight these methodological advances in intravital imaging of axonal transport, outlining key strengths and limitations while discussing findings, possible improvements, and outstanding questions. PMID:28344778

  8. Methodological advances in imaging intravital axonal transport.

    PubMed

    Sleigh, James N; Vagnoni, Alessio; Twelvetrees, Alison E; Schiavo, Giampietro

    2017-01-01

    Axonal transport is the active process whereby neurons transport cargoes such as organelles and proteins anterogradely from the cell body to the axon terminal and retrogradely in the opposite direction. Bi-directional transport in axons is absolutely essential for the functioning and survival of neurons and appears to be negatively impacted by both aging and diseases of the nervous system, such as Alzheimer's disease and amyotrophic lateral sclerosis. The movement of individual cargoes along axons has been studied in vitro in live neurons and tissue explants for a number of years; however, it is currently unclear as to whether these systems faithfully and consistently replicate the in vivo situation. A number of intravital techniques originally developed for studying diverse biological events have recently been adapted to monitor axonal transport in real-time in a range of live organisms and are providing novel insight into this dynamic process. Here, we highlight these methodological advances in intravital imaging of axonal transport, outlining key strengths and limitations while discussing findings, possible improvements, and outstanding questions.

  9. Lens-Coupled CCD Detector for X-ray Crystallography

    PubMed Central

    Madden, Timothy J.; McGuigan, William; Molitsky, Michael J.; Naday, Istvan; McArthur, Alan; Westbrook, Edwin M.

    2007-01-01

    An x-ray crystallography detector (Blue-1) has been built based upon a Fairchild 486 back-illuminated CCD and a custom lens system designed by Optics One Inc. The advantages of our Blue-1 lens system over more conventional fiber-optic tapers are: lower noise and higher efficiency; improved point spread function; negligible spatial distortion; and lack of “chicken-wire” patterns. Also, the engineering is simpler because the CCD is not bonded to the fiber-optic taper. A unique mechanical design has been employed to accurately focus the image on the CCD. The detector software is based on MATLAB and takes advantage of its powerful imaging and signal processing libraries. The CCD timing can be updated on the fly by using a “CCD controller language” to specify timing. PMID:18185837

  10. Wave-shaping and engineering realization of CCD driving signals

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Li, Tao

    2010-10-01

    High-speed driving signals will easily incur the substrate bounce of CCD(charge-coupled device), causing the charge transfer of CCD, which not only reduces the charge transfer efficiency but also produces dispersion. Thus the CCD imaging quality will be severely influenced. This paper introduces the classification and work principle of driving signals and elaborates the mechanism of the occurrence of the substrate bounce of CCD. Taking the characteristics of high speed driving signals into consideration, the paper provides a method to restrict the substrate bounce's disturbance to CCD signals based on the driving signal wave-shaping theory. Theoretically speaking, the driving signal wave-shaping theory may effectively restrict the substrate bounce of CCD. Moreover, the circuit simulation proves the correctness of the theory. After the wave-shaping process to CCD driving circuits, the test results of CCD signals obviously excel those without wave-shaping. The circuit test also shows that the substrate bounce's disturbance to CCD signals is effectively restricted. The test proves the feasibility of the engineering about wave-shaping, providing a scientific theory for the focal plane high-speed driving circuit design in the future.

  11. Advances in superresolution optical fluctuation imaging (SOFI)

    PubMed Central

    Dertinger, Thomas; Pallaoro, Alessia; Braun, Gary; Ly, Sonny; Laurence, Ted A.; Weiss, Shimon

    2013-01-01

    We review the concept of superresolution optical fluctuation imaging (SOFI), discuss its attributes and trade-offs (in comparison with other superresolution methods), and present superresolved images taken on samples stained with quantum dots, organic dyes, and plasmonic metal nanoparticles. We also discuss the prospects of SOFI for live cell superresolution imaging and for imaging with other (non-fluorescent) contrasts. PMID:23672771

  12. Advanced x-ray imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Callas, John L. (Inventor); Soli, George A. (Inventor)

    1998-01-01

    An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.

  13. Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy

    PubMed Central

    Chen, Zhi-Yi; Wang, Yi-Xiang; Lin, Yan; Zhang, Jin-Shan; Yang, Feng; Zhou, Qiu-Lan; Liao, Yang-Ying

    2014-01-01

    Molecular imaging is an emerging field that integrates advanced imaging technology with cellular and molecular biology. It can realize noninvasive and real time visualization, measurement of physiological or pathological process in the living organism at the cellular and molecular level, providing an effective method of information acquiring for diagnosis, therapy, and drug development and evaluating treatment of efficacy. Molecular imaging requires high resolution and high sensitive instruments and specific imaging agents that link the imaging signal with molecular event. Recently, the application of new emerging chemical technology and nanotechnology has stimulated the development of imaging agents. Nanoparticles modified with small molecule, peptide, antibody, and aptamer have been extensively applied for preclinical studies. Therapeutic drug or gene is incorporated into nanoparticles to construct multifunctional imaging agents which allow for theranostic applications. In this review, we will discuss the characteristics of molecular imaging, the novel imaging agent including targeted imaging agent and multifunctional imaging agent, as well as cite some examples of their application in molecular imaging and therapy. PMID:24689058

  14. Transmission electron microscope CCD camera

    DOEpatents

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  15. CCD photometry using a wide-field Newtonian telescope.

    NASA Astrophysics Data System (ADS)

    Menako, C. R.; Henson, G. D.; Castelaz, M. A.; Powell, H. D.

    1996-01-01

    The paper demonstrates the utility of a CCD electronic-imaging camera at the focus of a wide-field Newtonian telescope as an efficient system for astronomical photometry. The CCD camera coupled to the wide-field telescope images one square degree of the sky, allowing for simultaneous light flux measurement of multiple stars without instrument repositioning. Photometric data acquired from the variable star W UMa using this system is compared to published values.

  16. Optics for Advanced Neutron Imaging and Scattering

    SciTech Connect

    Moncton, David E.; Khaykovich, Boris

    2016-03-30

    During the report period, we continued the work as outlined in the original proposal. We have analyzed potential optical designs of Wolter mirrors for the neutron-imaging instrument VENUS, which is under construction at SNS. In parallel, we have conducted the initial polarized imaging experiment at Helmholtz Zentrum, Berlin, one of very few of currently available polarized-imaging facilities worldwide.

  17. STIS-01 CCD Functional

    NASA Astrophysics Data System (ADS)

    Valenti, Jeff

    2001-07-01

    This activity measures the baseline performance and commandability of the CCD subsystem. Only primary amplifier D is used. Bias, Dark, and Flat Field exposures are taken in order to measure read noise, dark current, CTE, and gain. Numerous bias frames are taken to permit construction of "superbias" frames in which the effects of read noise have been rendered negligible. Dark exposures are made outside the SAA. Full frame and binned observations are made, with binning factors of 1x1 and 2x2. Finally, tungsten lamp exposures are taken through narrow slits to confirm the slit positions in the current database. All exposures are internals. This is a reincarnation of SM3A proposal 8502 with some unnecessary tests removed from the program.

  18. Dual wavelength imaging of a scrape-off layer in an advanced beam-driven field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Osin, D.; Schindler, T.

    2016-11-01

    A dual wavelength imaging system has been developed and installed on C-2U to capture 2D images of a He jet in the Scrape-Off Layer (SOL) of an advanced beam-driven Field-Reversed Configuration (FRC) plasma. The system was designed to optically split two identical images and pass them through 1 nm FWHM filters. Dual wavelength images are focused adjacent on a large format CCD chip and recorded simultaneously with a time resolution down to 10 μs using a gated micro-channel plate. The relatively compact optical system images a 10 cm plasma region with a spatial resolution of 0.2 cm and can be used in a harsh environment with high electro-magnetic noise and high magnetic field. The dual wavelength imaging system provides 2D images of either electron density or temperature by observing spectral line pairs emitted by He jet atoms in the SOL. A large field of view, combined with good space and time resolution of the imaging system, allows visualization of macro-flows in the SOL. First 2D images of the electron density and temperature observed in the SOL of the C-2U FRC are presented.

  19. CCD data acquisition systems at Lick and Keck Observatories

    NASA Technical Reports Server (NTRS)

    Kibrick, R. I.; Stover, R. J.; Conrad, A. R.

    1992-01-01

    This paper will describe and compare two distinct but related CCD data acquisition systems (DAS) currently under development at Lick and Keck Observatories. Although these two systems have a number of major architectural differences, they share a considerable amount of common hardware and software. Both of these new systems build on a large body of proven software that is the foundation of the existing CCD DAS currently in use at Lick Observatory. Both will provide support for reading up to four on-chip amplifiers per CCD and/or reading out mosaics of CCD chips. In addition, they will provide the capability for interactive, real-time adjustment of CCD waveforms for engineering purposes. Each of these two systems is composed of three major subsystems: (1) an instrument computer and its software; (2) a data capture computer and its software; and (3) a CCD/dewar controller and its software. The instrument computer is a Unix workstation, and the functions it provides include user interfaces, the interactive real-time display of CCD images, and the recording of image and FITS header data to disk and/or tape. The data capture computer is responsible for the packaging and high-speed transfer of the CCD pixel data stream into a bulk RAM, and the subsequent transfer of this data to the instrument computer. The CCD/dewar controller generates the waveforms for clocking the CCD, digitizes the pixel data, and transmits it via high-speed link to the data capture computer. It is also responsible for monitoring and controlling the dewar temperature and cryogen levels. Given the number of different types of processors and high-speed data links employed in both systems, a major emphasis of this paper will be on the various forms of interprocessor communications utilized for data transfer and distributed process synchronization.

  20. Tuberculosis, advanced - chest x-rays (image)

    MedlinePlus

    Tuberculosis is an infectious disease that causes inflammation, the formation of tubercules and other growths within tissue, ... death. These chest x-rays show advanced pulmonary tuberculosis. There are multiple light areas (opacities) of varying ...

  1. Fabrication of large-area CCD detectors on high-purity, float-zone silicon

    NASA Technical Reports Server (NTRS)

    Gregory, J. A.; Burke, B. E.; Cooper, M. J.; Mountain, R. W.; Kosicki, B. B.

    1995-01-01

    In this report on the fabrication of a 1024 x 1024 charge coupled device (CCD) imager to be used as a soft x-ray sensor onboard the Advanced X-ray Astronomical Facility (AXAF), the following conclusions were found: the dislocations that limited the performance of the high resistivity imager were characterized; the sources of stress were identified and the dislocations found were eliminated; and a charge transfer inefficiency (CTI) of 10(exp -6) and read noise as low as 1.3/e was demonstrated. This sensor must have low noise and a low CTI and must be radiation hardened to withstand any radiation damage from a space environment.

  2. Dual-Sampler Processor Digitizes CCD Output

    NASA Technical Reports Server (NTRS)

    Salomon, P. M.

    1986-01-01

    Circuit for processing output of charge-coupled device (CCD) imager provides increased time for analog-to-digital conversion, thereby reducing bandwidth required for video processing. Instead of one sampleand-hold circuit of conventional processor, improved processor includes two sample-and-hold circuits alternated with each other. Dual-sampler processor operates with lower bandwidth and with timing requirements less stringent than those of single-sample processor.

  3. Preclinical imaging in oncology: advances and perspectives.

    PubMed

    Iommelli, Francesca; DE Rosa, Viviana; Terlizzi, Cristina; Del Vecchio, Silvana

    2017-03-01

    Preclinical imaging with radiolabeled probes became an integral part of the complex translational process that moves a newly developed compound from laboratory to clinical application. Imaging studies in animal tumor models may be undertaken to test a newly synthesized tracer, a newly developed drug or to interrogate, in the living organism, specific molecular and biological processes underlying tumor growth and progression. The aim of the present review is to outline the current knowledge and future perspectives of preclinical imaging in oncology by providing examples from recent literature. Among the biological processes and molecular targets that can be visualized with radiolabeled probes in animal tumor models, we focused on proliferation, expression of targets suitable for therapy, glycolytic phenotype, metastatic dissemination, tumor angiogenesis and survival. The major contribution of preclinical imaging emerging from these studies is the development and validation of imaging biomarkers that can be translated into the clinical context for patient selection and evaluation of tumor response to molecularly targeted agents.

  4. Advanced Imaging Optics Utilizing Wavefront Coding.

    SciTech Connect

    Scrymgeour, David; Boye, Robert; Adelsberger, Kathleen

    2015-06-01

    Image processing offers a potential to simplify an optical system by shifting some of the imaging burden from lenses to the more cost effective electronics. Wavefront coding using a cubic phase plate combined with image processing can extend the system's depth of focus, reducing many of the focus-related aberrations as well as material related chromatic aberrations. However, the optimal design process and physical limitations of wavefront coding systems with respect to first-order optical parameters and noise are not well documented. We examined image quality of simulated and experimental wavefront coded images before and after reconstruction in the presence of noise. Challenges in the implementation of cubic phase in an optical system are discussed. In particular, we found that limitations must be placed on system noise, aperture, field of view and bandwidth to develop a robust wavefront coded system.

  5. Flight Test Results of the Earth Observing-1 Advanced Land Imager Advanced Land Imager

    NASA Astrophysics Data System (ADS)

    Mendenhall, Jeffrey A.; Lencioni, Donald E.; Hearn, David R.; Digenis, Constantine J.

    2002-09-01

    The Advanced Land Imager (ALI) is the primary instrument on the Earth Observing-1 spacecraft (EO-1) and was developed under NASA's New Millennium Program (NMP). The NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass, and schedule for future, Landsat-like, Earth Science Enterprise instruments. ALI contains a number of innovative features designed to achieve this objective. These include the basic instrument architecture, which employs a push-broom data collection mode, a wide field-of-view optical design, compact multi-spectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics, and a multi-level solar calibration technique. The sensor includes detector arrays that operate in ten bands, one panchromatic, six VNIR and three SWIR, spanning the range from 0.433 to 2.35 μm. Launched on November 21, 2000, ALI instrument performance was monitored during its first year on orbit using data collected during solar, lunar, stellar, and earth observations. This paper will provide an overview of EO-1 mission activities during this period. Additionally, the on-orbit spatial and radiometric performance of the instrument will be compared to pre-flight measurements and the temporal stability of ALI will be presented.

  6. Advanced ultrasound probes for medical imaging

    NASA Astrophysics Data System (ADS)

    Wildes, Douglas G.; Smith, L. Scott

    2012-05-01

    New medical ultrasound probe architectures and materials build upon established 1D phased array technology and provide improved imaging performance and clinical value. Technologies reviewed include 1.25D and 1.5D arrays for elevation slice thickness control; electro-mechanical and 2D array probes for real-time 3D imaging; catheter probes for imaging during minimally-invasive procedures; single-crystal piezoelectric materials for greater frequency bandwidth; and cMUT arrays using silicon MEMS in place of piezo materials.

  7. Distortion of the pixel grid in HST WFC3/UVIS and ACS/WFC CCD detectors and its astrometric correction

    NASA Astrophysics Data System (ADS)

    Kozhurina-Platais, Vera; Mackenty, John; Golimovski, David; Sirianni, Marco; Borncamp, David; Anderson, Jay; Grogin, Norman

    2016-07-01

    The geometric distortion of the CCD detectors used in the Hubble Space TelescopeWide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) instruments is characterized by both large and fine-scale distortions. The large-scale distortion, due to the complexity of the HST optical assembly, can be modeled by a high-order polynomial. The majority of fine-distortion is inherent to the CCD detectors themselves, which manifests itself as fine-scale, correlated systematic offsets in the residuals from the best-fit polynomial solution. Such systematic offsets across the CCD chip introduce astrometric errors at the level of about 0.1 pix (up to 1.5 μm within the 15 μm pixels). These fine-scale and low-amplitude distortions apparently arise from the spatial irregularities in the pixel grid. For the WFC3/UVIS CCD chips, there is a clear pattern of periodic skew in the lithographic-mask stencil imprinted onto the detector. Similar irregularities in the pixel grid of ACS/WFC CCD chips are even more pronounced by the narrow (68×2048 pixel) lithographic-mask stencil. To remove these distortions, a 2-D correction in the form of a look-up table has been developed using HST images of very dense stellar fields. The post-correction of fine-scale astrometric errors can be removed down to the level of 0.01 pix (0.15 μm) or better.

  8. Combining advanced imaging processing and low cost remote imaging capabilities

    NASA Astrophysics Data System (ADS)

    Rohrer, Matthew J.; McQuiddy, Brian

    2008-04-01

    Target images are very important for evaluating the situation when Unattended Ground Sensors (UGS) are deployed. These images add a significant amount of information to determine the difference between hostile and non-hostile activities, the number of targets in an area, the difference between animals and people, the movement dynamics of targets, and when specific activities of interest are taking place. The imaging capabilities of UGS systems need to provide only target activity and not images without targets in the field of view. The current UGS remote imaging systems are not optimized for target processing and are not low cost. McQ describes in this paper an architectural and technologic approach for significantly improving the processing of images to provide target information while reducing the cost of the intelligent remote imaging capability.

  9. Advanced Pediatric Brain Imaging Research and Training Program

    DTIC Science & Technology

    2014-10-01

    AD_________________ Award Number: W81XWH-11-2-0198 TITLE: Advanced Pediatric Brain Imaging... Brain Imaging Research Program 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-2-0198 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Catherine...AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES Brain injury is a leading cause of

  10. Advanced Image Search: A Strategy for Creating Presentation Boards

    ERIC Educational Resources Information Center

    Frey, Diane K.; Hines, Jean D.; Swinker, Mary E.

    2008-01-01

    Finding relevant digital images to create presentation boards requires advanced search skills. This article describes a course assignment involving a technique designed to develop students' literacy skills with respect to locating images of desired quality and content from Internet databases. The assignment was applied in a collegiate apparel…

  11. Advances in Small Animal Imaging Systems

    NASA Astrophysics Data System (ADS)

    Loudos, George K.

    2007-11-01

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided.

  12. Advances in scintillators for medical imaging applications

    NASA Astrophysics Data System (ADS)

    van Loef, Edgar V.; Shah, Kanai S.

    2014-09-01

    A review is presented of some recent work in the field of inorganic scintillator research for medical imaging applications, in particular scintillation detectors for Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET).

  13. Center for Advanced Signal and Imaging Sciences Workshop 2004

    SciTech Connect

    McClellan, J H; Carrano, C; Poyneer, L; Palmer, D; Baker, K; Chen, D; London, R; Weinert, G; Brase, J; Paglieroni, D; Lopez, A; Grant, C W; Wright, W; Burke, M; Miller, W O; DeTeresa, S; White, D; Toeppen, J; Haugen, P; Kamath, C; Nguyen, T; Manay, S; Newsam, S; Cantu-Paz, E; Pao, H; Chang, J; Chambers, D; Leach, R; Paulson, C; Romero, C E; Spiridon, A; Vigars, M; Welsh, P; Zumstein, J; Romero, K; Oppenheim, A; Harris, D B; Dowla, F; Brown, C G; Clark, G A; Ong, M M; Clance, T J; Kegelmeyer, l M; Benzuijen, M; Bliss, E; Burkhart, S; Conder, A; Daveler, S; Ferguson, W; Glenn, S; Liebman, J; Norton, M; Prasad, R; Salmon, T; Kegelmeyer, L M; Hafiz, O; Cheung, S; Fodor, I; Aufderheide, M B; Bary, A; Martz, Jr., H E; Burke, M W; Benson, S; Fisher, K A; Quarry, M J

    2004-11-15

    Welcome to the Eleventh Annual C.A.S.I.S. Workshop, a yearly event at the Lawrence Livermore National Laboratory, presented by the Center for Advanced Signal & Image Sciences, or CASIS, and sponsored by the LLNL Engineering Directorate. Every November for the last 10 years we have convened a diverse set of engineering and scientific talent to share their work in signal processing, imaging, communications, controls, along with associated fields of mathematics, statistics, and computing sciences. This year is no exception, with sessions in Adaptive Optics, Applied Imaging, Scientific Data Mining, Electromagnetic Image and Signal Processing, Applied Signal Processing, National Ignition Facility (NIF) Imaging, and Nondestructive Characterization.

  14. TOPICAL REVIEW: Recent advances in diffuse optical imaging

    NASA Astrophysics Data System (ADS)

    Gibson, A. P.; Hebden, J. C.; Arridge, S. R.

    2005-02-01

    We review the current state-of-the-art of diffuse optical imaging, which is an emerging technique for functional imaging of biological tissue. It involves generating images using measurements of visible or near-infrared light scattered across large (greater than several centimetres) thicknesses of tissue. We discuss recent advances in experimental methods and instrumentation, and examine new theoretical techniques applied to modelling and image reconstruction. We review recent work on in vivo applications including imaging the breast and brain, and examine future challenges.

  15. Advanced endoscopic imaging in gastric neoplasia and preneoplasia

    PubMed Central

    Lee, Jonathan W J; Lim, Lee Guan; Yeoh, Khay Guan

    2017-01-01

    Conventional white light endoscopy remains the current standard in routine clinical practice for early detection of gastric cancer. However, it may not accurately diagnose preneoplastic gastric lesions. The technological advancements in the field of endoscopic imaging for gastric lesions are fast growing. This article reviews currently available advanced endoscopic imaging modalities, in particular chromoendoscopy, narrow band imaging and confocal laser endomicroscopy, and their corresponding evidence shown to improve diagnosis of preneoplastic gastric lesions. Raman spectrometry and polarimetry are also introduced as promising emerging technologies. PMID:28176895

  16. Advances in Optical Spectroscopy and Imaging of Breast Lesions

    SciTech Connect

    Demos, S; Vogel, A J; Gandjbakhche, A H

    2006-01-03

    A review is presented of recent advances in optical imaging and spectroscopy and the use of light for addressing breast cancer issues. Spectroscopic techniques offer the means to characterize tissue components and obtain functional information in real time. Three-dimensional optical imaging of the breast using various illumination and signal collection schemes in combination with image reconstruction algorithms may provide a new tool for cancer detection and monitoring of treatment.

  17. Solid state imagers and their applications; Proceedings of the Meeting, Cannes, France, November 26, 27, 1985

    NASA Technical Reports Server (NTRS)

    Declerck, Gilbert J. (Editor)

    1986-01-01

    Topics treated include the use of semiconductor imagers in high energy particle physics, an X-ray image sensor based on an optical TDI-CCD imager, and an electron-sensitive CCD readout array for a circular-scan streak tube. Papers are presented on the pan-imager, high resolution linear arrays, the reduction of reflection losses in solid-state image sensors, a high resolution CCD imager module with swing operation, large area CCD image sensors for scientific applications, and new readout techniques for frame transfer CCDs. Consideration is given to advanced optoelectronical sensors for autonomous rendezvous/docking and proximity operations in space, the testing and characterization of CCDs for the Rosat star sensors, an advanced radial camera for the Hubble Space Telescope, and scanning or staring infrared imagers.

  18. Advances in computer imaging/applications in facial plastic surgery.

    PubMed

    Papel, I D; Jiannetto, D F

    1999-01-01

    Rapidly progressing computer technology, ever-increasing expectations of patients, and a confusing medicolegal environment requires a clarification of the role of computer imaging/applications. Advances in computer technology and its applications are reviewed. A brief historical discussion is included for perspective. Improvements in both hardware and software with the advent of digital imaging have allowed great increases in speed and accuracy in patient imaging. This facilitates doctor-patient communication and possibly realistic patient expectations. Patients seeking cosmetic surgery now often expect preoperative imaging. Although society in general has become more litigious, a literature search up to 1998 reveals no lawsuits directly involving computer imaging. It appears that conservative utilization of computer imaging by the facial plastic surgeon may actually reduce liability and promote communication. Recent advances have significantly enhanced the value of computer imaging in the practice of facial plastic surgery. These technological advances in computer imaging appear to contribute a useful technique for the practice of facial plastic surgery. Inclusion of computer imaging should be given serious consideration as an adjunct to clinical practice.

  19. Comparison of a CCD and an APS for soft X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Stewart, Graeme; Bates, R.; Blue, A.; Clark, A.; Dhesi, S. S.; Maneuski, D.; Marchal, J.; Steadman, P.; Tartoni, N.; Turchetta, R.

    2011-12-01

    We compare a new CMOS Active Pixel Sensor (APS) to a Princeton Instruments PIXIS-XO: 2048B Charge Coupled Device (CCD) with soft X-rays tested in a synchrotron beam line at the Diamond Light Source (DLS). Despite CCDs being established in the field of scientific imaging, APS are an innovative technology that offers advantages over CCDs. These include faster readout, higher operational temperature, in-pixel electronics for advanced image processing and reduced manufacturing cost. The APS employed was the Vanilla sensor designed by the MI3 collaboration and funded by an RCUK Basic technology grant. This sensor has 520 x 520 square pixels, of size 25 μm on each side. The sensor can operate at a full frame readout of up to 20 Hz. The sensor had been back-thinned, to the epitaxial layer. This was the first time that a back-thinned APS had been demonstrated at a beam line at DLS. In the synchrotron experiment soft X-rays with an energy of approximately 708 eV were used to produce a diffraction pattern from a permalloy sample. The pattern was imaged at a range of integration times with both sensors. The CCD had to be operated at a temperature of -55°C whereas the Vanilla was operated over a temperature range from 20°C to -10°C. We show that the APS detector can operate with frame rates up to two hundred times faster than the CCD, without excessive degradation of image quality. The signal to noise of the APS is shown to be the same as that of the CCD at identical integration times and the response is shown to be linear, with no charge blooming effects. The experiment has allowed a direct comparison of back thinned APS and CCDs in a real soft x-ray synchrotron experiment.

  20. Advanced communications technologies for image processing

    NASA Technical Reports Server (NTRS)

    Likens, W. C.; Jones, H. W.; Shameson, L.

    1984-01-01

    It is essential for image analysts to have the capability to link to remote facilities as a means of accessing both data bases and high-speed processors. This can increase productivity through enhanced data access and minimization of delays. New technology is emerging to provide the high communication data rates needed in image processing. These developments include multi-user sharing of high bandwidth (60 megabits per second) Time Division Multiple Access (TDMA) satellite links, low-cost satellite ground stations, and high speed adaptive quadrature modems that allow 9600 bit per second communications over voice-grade telephone lines.

  1. Advances in Lymphatic Imaging and Drug Delivery

    SciTech Connect

    Nune, Satish K.; Gunda, Padmaja; Majeti, Bharat K.; Thallapally, Praveen K.; Laird, Forrest M.

    2011-09-10

    Cancer remains the second leading cause of death after heart disease in the US. While metastasized cancers such as breast, prostate, and colon are incurable, before their distant spread, these diseases will have invaded the lymphatic system as a first step in their progression. Hence, proper evaluation of the disease state of the lymphatics which drain a tumor site is crucial to staging and the formation of a treatment plan. Current lymphatic imaging modalities with visible dyes and radionucleotide tracers offer limited sensitivity and poor resolution; however, newer tools using nanocarriers, quantum dots, and magnetic resonance imaging promise to vastly improve the staging of lymphatic spread without needless biopsies. Concurrent with the improvement of lymphatic imaging agents, has been the development of drug carriers that can localize chemotherapy to the lymphatic system, thus improving the treatment of localized disease while minimizing the exposure of healthy organs to cytotoxic drugs. This review will focus on polymeric systems that have been developed for imaging and drug delivery to the lymph system, how these new devices improve upon current technologies, and where further improvement is needed.

  2. A CCD offset guider for the KAO

    NASA Technical Reports Server (NTRS)

    Colgan, Sean W. J.; Erickson, Edwin F.; Haynes, Fredric B.; Rank, David M.

    1995-01-01

    We describe a focal plane guider for the Kuiper Airborne Observatory which consists of a CCD camera interfaced to an AMIGA personal computer. The camera is made by Photometrics Ltd. and utilizes a Thomson 576 x 384 pixel CCD chip operated in Frame Transfer mode. Custom optics produce a scale of 2.4 arc-sec/pixel, yielding an approx. 12 ft. diameter field of view. Chopped images of stars with HST Guide Star Catalog magnitudes fainter than 14 have been used for guiding at readout rates greater than or equal to 0.5 Hz. The software includes automatic map generation, subframing and zooming, and correction for field rotation when two stars are in the field of view.

  3. A microprocessor-controlled CCD star tracker

    NASA Technical Reports Server (NTRS)

    Salomon, P. M.; Goss, W. C.

    1976-01-01

    The STELLAR (Star Tracker for Economical Long Life Attitude Reference) utilizes an image sensing Charge-Coupled Device (CCD) operating under microprocessor control. This approach results in a new type of high-accuracy star tracker which can be adapted to a wide variety of different space flight applications through software changes only. The STELLAR determines two-axis star positions by computing the element and the interelement interpolated centroid positions of the star images. As many as 10 stars may be tracked simultaneously, providing significantly increased stability and accuracy. A detailed description of the STELLAR is presented along with measurements of system performance obtained from an operating breadboard model.

  4. A 128K-bit CCD buffer memory system

    NASA Technical Reports Server (NTRS)

    Siemens, K. H.; Wallace, R. W.; Robinson, C. R.

    1976-01-01

    A prototype system was implemented to demonstrate that CCD's can be applied advantageously to the problem of low power digital storage and particularly to the problem of interfacing widely varying data rates. 8K-bit CCD shift register memories were used to construct a feasibility model 128K-bit buffer memory system. Peak power dissipation during a data transfer is less than 7 W., while idle power is approximately 5.4 W. The system features automatic data input synchronization with the recirculating CCD memory block start address. Descriptions are provided of both the buffer memory system and a custom tester that was used to exercise the memory. The testing procedures and testing results are discussed. Suggestions are provided for further development with regards to the utilization of advanced versions of CCD memory devices to both simplified and expanded memory system applications.

  5. Advanced Research into Imaging of Moving Targets

    DTIC Science & Technology

    2009-12-01

    antenna. The antenna currents are measured and the radar receiver collects a time-varying voltage srec(t) [1]. Signal processing of the measured...produce images from the collected radar systems. 2. Radar Measurables Radar systems determine information about the target by various means ...elimination), or none when drawing a standard see-through wireframe. The current colormap determines the edge color [9]. The surf function is similar to

  6. Conventional and advanced imaging in neuromyelitis optica.

    PubMed

    Barnett, Y; Sutton, I J; Ghadiri, M; Masters, L; Zivadinov, R; Barnett, M H

    2014-08-01

    Myelitis and optic neuritis are prototypic clinical presentations of both multiple sclerosis and neuromyelitis optica. Once considered a subtype of multiple sclerosis, neuromyelitis optica, is now known to have a discrete pathogenesis in which antibodies to the water channel, aquaporin 4, play a critical role. Timely differentiation of neuromyelitis optica from MS is imperative, determining both prognosis and treatment strategy. Early, aggressive immunosuppression is required to prevent the accrual of severe disability in neuromyelitis optica; conversely, MS-specific therapies may exacerbate the disease. The diagnosis of neuromyelitis optica requires the integration of clinical, MR imaging, and laboratory data, but current criteria are insensitive and exclude patients with limited clinical syndromes. Failure to recognize the expanding spectrum of cerebral MR imaging patterns associated with aquaporin 4 antibody seropositivity adds to diagnostic uncertainty in some patients. We present the state of the art in conventional and nonconventional MR imaging in neuromyelitis optica and review the place of neuroimaging in the diagnosis, management, and research of the condition.

  7. Recent advances in radiology and medical imaging

    SciTech Connect

    Steiner, R.E.; Sherwood, T.

    1986-01-01

    The first chapter, on the radiology of arthritis, is an overview. The second and seventh chapters are on the chest the former, on adult respiratory distress syndrome, is a brief summary, and the latter, on digital radiography of the chest with the prototype slit-scanning technique. The third chapter reviews computed tomography of the lumbar spine. The following two chapters are on MR imaging, one on the central nervous system (covering demyelinating diseases, cardiovascular disease, infections, and tumors), with excellent illustrations; and one on MR imaging of the body. The illustrations are good. The following chapter is on extracardiac digital subtraction angiography (DSA), with an interesting table comparing and contrasting conventional angiography with both intraveneous and intraarterial DSA. The eighth chapter on pediatric imaging fits a world of experience. Chapter 9 is an update on contrast media, while the next chapter is on barium infusion examination of the small intestine. The final three chapters are concerned with the present state of angioplasty, interventional radiology in the urinary tract.

  8. Enhanced performance CCD output amplifier

    DOEpatents

    Dunham, Mark E.; Morley, David W.

    1996-01-01

    A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

  9. Recent advances in echocardiography: strain and strain rate imaging

    PubMed Central

    Mirea, Oana; Duchenne, Jurgen; Voigt, Jens-Uwe

    2016-01-01

    Deformation imaging by echocardiography is a well-established research tool which has been gaining interest from clinical cardiologists since the introduction of speckle tracking. Post-processing of echo images to analyze deformation has become readily available at the fingertips of the user. New parameters such as global longitudinal strain have been shown to provide added diagnostic value, and ongoing efforts of the imaging societies and industry aimed at harmonizing methods will improve the technique further. This review focuses on recent advances in the field of echocardiographic strain and strain rate imaging, and provides an overview on its current and potential future clinical applications. PMID:27158476

  10. Advanced High-Speed Framing Camera Development for Fast, Visible Imaging Experiments

    SciTech Connect

    Amy Lewis, Stuart Baker, Brian Cox, Abel Diaz, David Glass, Matthew Martin

    2011-05-11

    The advances in high-voltage switching developed in this project allow a camera user to rapidly vary the number of output frames from 1 to 25. A high-voltage, variable-amplitude pulse train shifts the deflection location to the new frame location during the interlude between frames, making multiple frame counts and locations possible. The final deflection circuit deflects to five different frame positions per axis, including the center position, making for a total of 25 frames. To create the preset voltages, electronically adjustable {+-}500 V power supplies were chosen. Digital-to-analog converters provide digital control of the supplies. The power supplies are clamped to {+-}400 V so as not to exceed the voltage ratings of the transistors. A field-programmable gated array (FPGA) receives the trigger signal and calculates the combination of plate voltages for each frame. The interframe time and number of frames are specified by the user, but are limited by the camera electronics. The variable-frame circuit shifts the plate voltages of the first frame to those of the second frame during the user-specified interframe time. Designed around an electrostatic image tube, a framing camera images the light present during each frame (at the photocathode) onto the tube’s phosphor. The phosphor persistence allows the camera to display multiple frames on the phosphor at one time. During this persistence, a CCD camera is triggered and the analog image is collected digitally. The tube functions by converting photons to electrons at the negatively charged photocathode. The electrons move quickly toward the more positive charge of the phosphor. Two sets of deflection plates skew the electron’s path in horizontal and vertical (x axis and y axis, respectively) directions. Hence, each frame’s electrons bombard the phosphor surface at a controlled location defined by the voltages on the deflection plates. To prevent the phosphor from being exposed between frames, the image tube

  11. Advanced and Conventional Magnetic Resonance Imaging in Neuropsychiatric Lupus

    PubMed Central

    Sarbu, Nicolae; Bargalló, Núria; Cervera, Ricard

    2015-01-01

    Neuropsychiatric lupus is a major diagnostic challenge, and a main cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). Magnetic resonance imaging (MRI) is, by far, the main tool for assessing the brain in this disease. Conventional and advanced MRI techniques are used to help establishing the diagnosis, to rule out alternative diagnoses, and recently, to monitor the evolution of the disease. This review explores the neuroimaging findings in SLE, including the recent advances in new MRI methods. PMID:26236469

  12. Charge-coupled device /CCD/ trackers for high accuracy guidance applications

    NASA Technical Reports Server (NTRS)

    Salomon, P. M.

    1979-01-01

    Recent advances in large area charge coupled device (CCD) imaging detectors and high speed microprocessors have prompted the development of a new class of electro-optical tracking instruments at the Jet Propulsion Laboratory (JPL). These instruments are designed for standardized NASA-wide usage and are characterized by their extremely high pointing accuracy and stability and performance capabilities which are largely software defined and thus easily adapted to a variety of mission requirements. This paper presents an examination of the methods by which CCD detectors are being incorporated in star tracker instruments and the performance capabilities that can be expected from currently available devices. The multi-function sensor concept, in which a single sensor can function in a variety of guidance applications, is described. Software algorithms designed to provide efficient extraction of guidance information from both point and extended images are also presented. CCD star tracker implementations currently underway at JPL are described, and performance data obtained during laboratory testing is presented and discussed.

  13. Recent advances in molecular, multimodal and theranostic ultrasound imaging.

    PubMed

    Kiessling, Fabian; Fokong, Stanley; Bzyl, Jessica; Lederle, Wiltrud; Palmowski, Moritz; Lammers, Twan

    2014-06-01

    Ultrasound (US) imaging is an exquisite tool for the non-invasive and real-time diagnosis of many different diseases. In this context, US contrast agents can improve lesion delineation, characterization and therapy response evaluation. US contrast agents are usually micrometer-sized gas bubbles, stabilized with soft or hard shells. By conjugating antibodies to the microbubble (MB) surface, and by incorporating diagnostic agents, drugs or nucleic acids into or onto the MB shell, molecular, multimodal and theranostic MBs can be generated. We here summarize recent advances in molecular, multimodal and theranostic US imaging, and introduce concepts how such advanced MB can be generated, applied and imaged. Examples are given for their use to image and treat oncological, cardiovascular and neurological diseases. Furthermore, we discuss for which therapeutic entities incorporation into (or conjugation to) MB is meaningful, and how US-mediated MB destruction can increase their extravasation, penetration, internalization and efficacy.

  14. Advanced Imaging Catheter: Final Project Report

    SciTech Connect

    Krulevitch, P; Colston, B; DaSilva, L; Hilken, D; Kluiwstra, J U; Lee, A P; London, R; Miles, R; Schumann, D; Seward, K; Wang, A

    2001-07-20

    Minimally invasive surgery (MIS) is an approach whereby procedures conventionally performed with large and potentially traumatic incisions are replaced by several tiny incisions through which specialized instruments are inserted. Early MIS, often called laparoscopic surgery, used video cameras and laparoscopes to visualize and control the medical devices, which were typically cutting or stapling tools. More recently, catheter-based procedures have become a fast growing sector of all surgeries. In these procedures, small incisions are made into one of the main arteries (e.g. femoral artery in the thigh), and a long thin hollow tube is inserted and positioned near the target area. The key advantage of this technique is that recovery time can be reduced from months to a matter of days. In the United States, over 700,000 catheter procedures are performed annually representing a market of over $350 million. Further growth in this area will require significant improvements in the current catheter technology. In order to effectively navigate a catheter through the tortuous vessels of the body, two capabilities must exist: imaging and positioning. In most cases, catheter procedures rely on radiography for visualization and manual manipulation for positioning of the device. Radiography provides two-dimensional, global images of the vasculature and cannot be used continuously due to radiation exposure to both the patient and physician. Intravascular ultrasound devices are available for continuous local imaging at the catheter tip, but these devices cannot be used simultaneously with therapeutic devices. Catheters are highly compliant devices, and manipulating the catheter is similar to pushing on a string. Often, a guide wire is used to help position the catheter, but this procedure has its own set of problems. Three characteristics are used to describe catheter maneuverability: (1) pushability -- the amount of linear displacement of the distal end (inside body) relative to

  15. Experimental research on femto-second laser damaging array CCD cameras

    NASA Astrophysics Data System (ADS)

    Shao, Junfeng; Guo, Jin; Wang, Ting-feng; Wang, Ming

    2013-05-01

    Charged Coupled Devices (CCD) are widely used in military and security applications, such as airborne and ship based surveillance, satellite reconnaissance and so on. Homeland security requires effective means to negate these advanced overseeing systems. Researches show that CCD based EO systems can be significantly dazzled or even damaged by high-repetition rate pulsed lasers. Here, we report femto - second laser interaction with CCD camera, which is probable of great importance in future. Femto - second laser is quite fresh new lasers, which has unique characteristics, such as extremely short pulse width (1 fs = 10-15 s), extremely high peak power (1 TW = 1012W), and especially its unique features when interacting with matters. Researches in femto second laser interaction with materials (metals, dielectrics) clearly indicate non-thermal effect dominates the process, which is of vast difference from that of long pulses interaction with matters. Firstly, the damage threshold test are performed with femto second laser acting on the CCD camera. An 800nm, 500μJ, 100fs laser pulse is used to irradiate interline CCD solid-state image sensor in the experiment. In order to focus laser energy onto tiny CCD active cells, an optical system of F/5.6 is used. A Sony production CCDs are chose as typical targets. The damage threshold is evaluated with multiple test data. Point damage, line damage and full array damage were observed when the irradiated pulse energy continuously increase during the experiment. The point damage threshold is found 151.2 mJ/cm2.The line damage threshold is found 508.2 mJ/cm2.The full-array damage threshold is found to be 5.91 J/cm2. Although the phenomenon is almost the same as that of nano laser interaction with CCD, these damage thresholds are substantially lower than that of data obtained from nano second laser interaction with CCD. Then at the same time, the electric features after different degrees of damage are tested with electronic multi

  16. Advanced imaging assessment of bone quality.

    PubMed

    Genant, Harry K; Jiang, Yebin

    2006-04-01

    Noninvasive and/or nondestructive techniques can provide structural information about bone, beyond simple bone densitometry. While the latter provides important information about osteoporotic fracture risk, many studies indicate that bone mineral density (BMD) only partly explains bone strength. Quantitative assessment of macrostructural characteristics, such as geometry, and microstructural features, such as relative trabecular volume, trabecular spacing, and connectivity, may improve our ability to estimate bone strength. Methods for quantitatively assessing macrostructure include (besides conventional radiographs) dual X ray absorptiometry (DXA) and computed tomography (CT), particularly volumetric quantitative computed tomography (vQCT). Methods for assessing microstructure of trabecular bone noninvasively and/or nondestructively include high-resolution computed tomography (hrCT), microcomputed tomography (micro-CT), high-resolution magnetic resonance (hrMR), and micromagnetic resonance (micro-MR). vQCT, hrCT, and hrMR are generally applicable in vivo; micro-CT and micro-MR are principally applicable in vitro. Despite progress, problems remain. The important balances between spatial resolution and sampling size, or between signal-to-noise and radiation dose or acquisition time, need further consideration, as do the complexity and expense of the methods versus their availability and accessibility. Clinically, the challenges for bone imaging include balancing the advantages of simple bone densitometry versus the more complex architectural features of bone, or the deeper research requirements versus the broader clinical needs. The biological differences between the peripheral appendicular skeleton and the central axial skeleton must be further addressed. Finally, the relative merits of these sophisticated imaging techniques must be weighed with respect to their applications as diagnostic procedures, requiring high accuracy or reliability, versus their monitoring

  17. Determination of the STIS CCD Gain

    NASA Astrophysics Data System (ADS)

    Riley, Allyssa; Monroe, TalaWanda R.; Lockwood, Sean A.

    2017-01-01

    The Space Telescope Imaging Spectrograph (STIS) has been aboard the Hubble Space Telescope (HST) for almost 20 years. The STIS instrument team at Space Telescope Science Institute has continuously endeavored to provide high quality scientific data to the astronomical community, in part by monitoring the health and stability of the instrument. Because the change in gain value over time is a proxy for detector health, we measured the gain of the STIS CCD for amplifiers A, C and D using the mean-variance method, which has not been used to measure the CCD gain on STIS since before it was installed on HST. Here we present our methodology and results using data from the HST program 14424, which indicate a <3.5% change in the gain for amplifier D from when it was originally calculated pre-flight. We compare the various CCD gain measurements made over the history of STIS and discuss the extent to which the data and the different measurement techniques allow real changes to be distinguished from small systematic measurement errors. For the time being, we recommend the continued use of the currently adopted calibration pipeline values of 1.000 and 4.016 e-/DN for amplifier D at the nominal gain settings 1 and 4 e-/DN, respectively, as these are the values that were adopted when determining the other instrument calibrations.

  18. Advanced digital image archival system using MPEG technologies

    NASA Astrophysics Data System (ADS)

    Chang, Wo

    2009-08-01

    Digital information and records are vital to the human race regardless of the nationalities and eras in which they were produced. Digital image contents are produced at a rapid pace from cultural heritages via digitalization, scientific and experimental data via high speed imaging sensors, national defense satellite images from governments, medical and healthcare imaging records from hospitals, personal collection of photos from digital cameras. With these mass amounts of precious and irreplaceable data and knowledge, what standards technologies can be applied to preserve and yet provide an interoperable framework for accessing the data across varieties of systems and devices? This paper presents an advanced digital image archival system by applying the international standard of MPEG technologies to preserve digital image content.

  19. CCD centroiding experiment for JASMINE and ILOM

    NASA Astrophysics Data System (ADS)

    Yano, Taihei; Araki, Hiroshi; Gouda, Naoteru; Kobayashi, Yukiyasu; Tsujimoto, Takuji; Nakajima, Tadashi; Kawano, Nobuyuki; Tazawa, Seiichi; Yamada, Yoshiyuki; Hanada, Hideo; Asari, Kazuyoshi; Tsuruta, Seiitsu

    2006-06-01

    JASMINE and ILOM are space missions which are in progress at the National Astronomical Observatory of Japan. These two projects need a common astrometric technique to obtain precise positions of star images on solid state detectors to accomplish the objectives. We have carried out measurements of centroid of artificial star images on a CCD to investigate the accuracy of the positions of the stars, using an algorithm for estimating them from photon weighted means of the stars. We find that the accuracy of the star positions reaches 1/300 pixel for one measurement. We also measure positions of stars, using an algorithm for correcting the distorted optical image. Finally, we find that the accuracy of the measurement for the positions of the stars from the strongly distorted image is under 1/150 pixel for one measurement.

  20. X-ray Diffraction and Multi-Frame Phase Contrast Imaging Diagnostics for IMPULSE at the Advanced Photon Source

    SciTech Connect

    Iverson, Adam; Carlson, Carl; Young, Jason; Curtis, Alden; Jensen, Brian; Ramos, Kyle; Yeager, John; Montgomery, David; Fezza, Kamel

    2013-07-08

    The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSE experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.

  1. MR pulmonary angiography and perfusion imaging: recent advances.

    PubMed

    Hatabu, H

    1997-10-01

    Recent advances in MR pulmonary angiography and MR perfusion imaging are reviewed, focusing on two principal areas of technical development: (1) the availability of MR scanners equipped with enhanced gradient systems; and (2) new trends in MR angiography using gadolinium contrast agents or labeling of blood with an inversion recovery radiofrequency pulse in place of the more traditional methods using naturally flowing spins as the source of intravascular signal. These recent developments in MR have significant potential for clinical imaging of the pulmonary vasculature, particularly for the diagnosis of pulmonary embolism, and are now opening windows to functional MR imaging of the lung.

  2. Recent Advances of Radionuclide-based Molecular Imaging of Atherosclerosis

    PubMed Central

    Kazuma, Soraya M.; Sultan, Deborah; Zhao, Yongfeng; Detering, Lisa; You, Meng; Luehmann, Hannah P.; Abdalla, Dulcineia S.P.; Liu, Yongjian

    2015-01-01

    Atherosclerosis is a systemic disease characterized by the development of multifocal plaque lesions within vessel walls and extending into the vascular lumen. The disease takes decades to develop symptomatic lesions, affording opportunities for accurate detection of plaque progression, analysis of risk factors responsible for clinical events, and planning personalized treatment. Of the available molecular imaging modalities, radionuclide-based imaging strategies have been favored due to their sensitivity, quantitative detection and pathways for translational research. This review summarizes recent advances of radiolabeled small molecules, peptides, antibodies and nanoparticles for atherosclerotic plaque imaging during disease progression. PMID:26369676

  3. Recent Advances in Microwave Imaging for Breast Cancer Detection

    PubMed Central

    Kwon, Sollip

    2016-01-01

    Breast cancer is a disease that occurs most often in female cancer patients. Early detection can significantly reduce the mortality rate. Microwave breast imaging, which is noninvasive and harmless to human, offers a promising alternative method to mammography. This paper presents a review of recent advances in microwave imaging for breast cancer detection. We conclude by introducing new research on a microwave imaging system with time-domain measurement that achieves short measurement time and low system cost. In the time-domain measurement system, scan time would take less than 1 sec, and it does not require very expensive equipment such as VNA. PMID:28096808

  4. AXIOM: Advanced X-Ray Imaging Of the Magnetosheath

    NASA Technical Reports Server (NTRS)

    Sembay, S.; Branduardi-Rayrnont, G.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C; Kataria, D.; Kemble, S.; Milan, S.; Owen, C. J.; Read, A. M.; Peacocke, L.; Arridge, C. S.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.

    2012-01-01

    AXIOM (Advanced X-ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide-field soft X-ray imaging and spectroscopy of the magnetosheath. magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X-ray emission from the interaction of high charge-state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near-interplanetary space.

  5. Advances in molecular preclinical therapy mediated by imaging.

    PubMed

    Greco, Adelaide; Albanese, Sandra; Auletta, Luigi; DE Carlo, Flavia; Salvatore, Marco; Howard, Candace M; Claudio, Pier P

    2017-03-01

    Several advances have been made toward understanding the biology of cancer and most of them are due to robust genetic studies that led to the scientific recognition that although many patients have the same type of cancer their tumors may have harbored different molecular alterations. Personalized therapy and the development of advanced techniques of preclinical imaging and new murine models of disease are emerging concepts that are allowing mapping of disease markers in vivo and in some cases also receptor targeted therapy. Aim of this review is to illustrate some emerging models of disease that allow patient tumor implantation in mice for subsequent drug testing and advanced approaches for therapy mediated by preclinical imaging. In particular we discuss targeted therapy mediated by high frequency ultrasound and magnetic resonance, two emerging techniques in molecular preclinical therapy.

  6. Optoacoustic tomography and its recent advances in biomedical imaging

    NASA Astrophysics Data System (ADS)

    Su, Yixiong; Wang, Ruikang K.

    2005-01-01

    Optoacoustic tomography, which maps the distribution of the optical absorption within biological tissues by use of time-resolved laser-induced ultrasonic signals, is attracting increasing interests in biomedical imaging. As a hybrid imaging technique, it takes the advantages of both optical and ultrasonic techniques in that the tomography image has the optical contrast similar to the optical techniques while enjoying the high spatial resolution comparable to the ultrasound. In theories, this technique can image the objects embedded several centimeters deep within targets with a resolution of several tens of microns. In this paper, the current-state-of-the-art time-resolved optoacoustic tomography in biomedical imaging is reviewed. This paper consists of four sections: principles of optoacoustic tomography, signal acquisition and process, recent progress and advance, and problems and outlooks for the technique.

  7. Insights into dendritic cell function using advanced imaging modalities.

    PubMed

    Vyas, Jatin M

    2012-11-15

    The application of advanced imaging techniques to fundamental questions in immunology has provided insight into dendritic cell function and has challenged dogma created using static imaging of lymphoid tissue. The history of dendritic cell biology has a storied past and is tightly linked to imaging. The development of imaging techniques that emphasize live cell imaging in situ has provided not only breath-taking movies, but also novel insights into the importance of spatiotemporal relationships between antigen presenting cells and T cells. This review serves to provide a primer on two-photon microscopy, TIRF microscopy, spinning disk confocal microscopy and optical trapping and provides selective examples of insights gained from these tools on dendritic cell biology.

  8. Advanced technology development for image gathering, coding, and processing

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.

    1990-01-01

    Three overlapping areas of research activities are presented: (1) Information theory and optimal filtering are extended to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing. (2) Focal-plane processing techniques and technology are developed to combine effectively image gathering with coding. The emphasis is on low-level vision processing akin to the retinal processing in human vision. (3) A breadboard adaptive image-coding system is being assembled. This system will be used to develop and evaluate a number of advanced image-coding technologies and techniques as well as research the concept of adaptive image coding.

  9. Technology Advances in Support of Fusion Plasma Imaging Diagnostics

    NASA Astrophysics Data System (ADS)

    Jiang, Qi; Lai, Jiali; Hu, Fengqi; Li, Maijou; Chang, Yu-Ting; Domier, Calvin; Luhmann, Neville, Jr.

    2012-10-01

    Innovative technologies are under investigation in key areas to enhance the performance of microwave and millimeter-wave fusion plasma imaging diagnostics. Novel antenna and mixer configurations are being developed at increasingly higher frequencies, to facilitate the use of electron cyclotron emission imaging (ECEI) on high field (> 2.6 T) plasma devices. Low noise preamplifier-based imaging antenna arrays are being developed to increase the sensitivity and dynamic range of microwave imaging reflectometry (MIR) diagnostics for the localized measurement of turbulent density fluctuations. High power multi-frequency sources, fabricated using advanced CMOS technology, offer the promise of allowing MIR-based diagnostic instruments to image these density fluctuations in 2-D over an extended plasma volume in high performance tokamak plasmas. Details regarding each of these diagnostic development areas will be presented.

  10. CCD emulator design for LSST camera

    NASA Astrophysics Data System (ADS)

    Lu, W.; O'Connor, P.; Fried, J.; Kuczewski, J.

    2016-07-01

    As part of the LSST project, a comprehensive CCD emulator that operates three CCDs simultaneously has been developed for testing multichannel readout electronics. Based on an Altera Cyclone V FPGA for timing and control, the emulator generates 48 channels of simulated video waveform in response to appropriate sequencing of parallel and serial clocks. Two 256Mb serial memory chips are adopted for storage of arbitrary grayscale images. The arbitrary image or fixed pattern image can be generated from the emulator in triple as three real CCDs perform, for qualifying and testing the LSST 3-stripe Science Raft Electronics Board (REB) simultaneously. Using the method of comparator threshold scanning, all 24 parallel clocks and 24 serial clocks from the REB are qualified for sequence, duration and level before the video signal is generated. In addition, 66 channels of input bias and voltages are sampled through the multi-channel ADC to verify that correct values are applied to the CCD. In addition, either a Gigabit Ethernet connector or USB bus can be used to control and read back from the emulator board. A user-friendly PC software package has been developed for controlling and communicating with the emulator.

  11. Anti-Stokes effect CCD camera and SLD based optical coherence tomography for full-field imaging in the 1550nm region

    NASA Astrophysics Data System (ADS)

    Kredzinski, Lukasz; Connelly, Michael J.

    2012-06-01

    Full-field Optical coherence tomography is an en-face interferometric imaging technology capable of carrying out high resolution cross-sectional imaging of the internal microstructure of an examined specimen in a non-invasive manner. The presented system is based on competitively priced optical components available at the main optical communications band located in the 1550 nm region. It consists of a superluminescent diode and an anti-stokes imaging device. The single mode fibre coupled SLD was connected to a multi-mode fibre inserted into a mode scrambler to obtain spatially incoherent illumination, suitable for OCT wide-field modality in terms of crosstalk suppression and image enhancement. This relatively inexpensive system with moderate resolution of approximately 24um x 12um (axial x lateral) was constructed to perform a 3D cross sectional imaging of a human tooth. To our knowledge this is the first 1550 nm full-field OCT system reported.

  12. A miniture spectrometer using color CCD and frame calculus technique

    NASA Astrophysics Data System (ADS)

    Wan, Wei; Zhang, Guoping; Chen, Minghong; Liu, Minmin

    2005-01-01

    A design of spectrometer is presented, which uses a holographic grating and a two-dimensional color CCD camera connected with PC via video format port. And in the image post-procession, a real-time frame calculus technique and a non-linear filter were applied to provider higher image quality and better resistant to background noise. With improved designed zoom mechanics, the device has a wide resolution dynamic range and high frequency, since it can gather more spectrum information than linear black-white CCD. The spectrum analysis experiments for water quality detection indicate that the device can meet variant requirements of analysis at low cost.

  13. Establishing advanced practice for medical imaging in New Zealand

    SciTech Connect

    Yielder, Jill; Young, Adrienne; Park, Shelley; Coleman, Karen

    2014-02-15

    Introduction: This article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). Methods: The study sought to support the development of profiles and criteria that could be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. Results: Findings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. Conclusions: The authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ.

  14. Challenges and recent advances in mass spectrometric imaging of neurotransmitters

    PubMed Central

    Gemperline, Erin; Chen, Bingming; Li, Lingjun

    2014-01-01

    Mass spectrometric imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules, from small molecules to large proteins, by creating detailed distribution maps of selected compounds. To date, MSI has demonstrated its versatility in the study of neurotransmitters and neuropeptides of different classes toward investigation of neurobiological functions and diseases. These studies have provided significant insight in neurobiology over the years and current technical advances are facilitating further improvements in this field. neurotransmitters, focusing specifically on the challenges and recent Herein, we advances of MSI of neurotransmitters. PMID:24568355

  15. Advances in imaging explosive blast mild traumatic brain injury.

    PubMed

    Hetherington, H; Bandak, A; Ling, G; Bandak, F A

    2015-01-01

    In the past, direct physical evidence of mild traumatic brain injury (mTBI) from explosive blast has been difficult to obtain through conventional imaging modalities such as T1- and T2-weighted magnetic resonance imaging (MRI) and computed tomography (CT). Here, we review current progress in detecting evidence of brain injury from explosive blast using advanced imaging, including diffusion tensor imaging (DTI), functional MRI (fMRI), and the metabolic imaging methods such as positron emission tomography (PET) and magnetic resonance spectroscopic imaging (MRSI), where each targets different aspects of the pathology involved in mTBI. DTI provides a highly sensitive measure to detect primary changes in the microstructure of white matter tracts. fMRI enables the measurement of changes in brain activity in response to different stimuli or tasks. Remarkably, all three of these paradigms have found significant success in conventional mTBI where conventional clinical imaging frequently fails to provide definitive differences. Additionally, although used less frequently for conventional mTBI, PET has the potential to characterize a variety of neurotransmitter systems using target agents and will undoubtedly play a larger role, once the basic mechanisms of injury are better understood and techniques to identify the injury are more common. Finally, our MRSI imaging studies, although acquired at much lower spatial resolution, have demonstrated selectivity to different metabolic and physiologic processes, uncovering some of the most profound differences on an individual by individual basis, suggesting the potential for utility in the management of individual patients.

  16. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    NASA Astrophysics Data System (ADS)

    Sinharay, Sanhita; Pagel, Mark D.

    2016-06-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection.

  17. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    PubMed Central

    Sinharay, Sanhita; Pagel, Mark D.

    2016-01-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection. PMID:27049630

  18. Ultra-clean CCD Cryostats

    NASA Astrophysics Data System (ADS)

    Deiries, S.; Iwert, O.; Cavadore, C.; Geimer, C.; Hummel, E.

    A reproducible method to achieve ultra-clean CCD cryostats is presented, including a list of suitable materials and necessary treatments. In addition, proper handling under clean-room conditions and suitable molecular sieves to eliminate contamination on the detector surface in cold cryostats for years are described.

  19. CCD centroiding analysis for Nano-JASMINE observation data

    NASA Astrophysics Data System (ADS)

    Niwa, Yoshito; Yano, Taihei; Araki, Hiroshi; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Tazawa, Seiichi; Hanada, Hideo

    2010-07-01

    Nano-JASMINE is a very small satellite mission for global space astrometry with milli-arcsecond accuracy, which will be launched in 2011. In this mission, centroids of stars in CCD image frames are estimated with sub-pixel accuracy. In order to realize such a high precision centroiding an algorithm utilizing a least square method is employed. One of the advantages is that centroids can be calculated without explicit assumption of the point spread functions of stars. CCD centroiding experiment has been performed to investigate whether this data analysis is available, and centroids of artificial star images on a CCD are determined with a precision of less than 0.001 pixel. This result indicates parallaxes of stars within 300 pc from Sun can be observed in Nano-JASMINE.

  20. Acousto-optic/CCD real-time SAR data processor

    NASA Technical Reports Server (NTRS)

    Psaltis, D.

    1983-01-01

    The SAR processor which uses an acousto-optic device as the input electronic-to-optical transducer and a 2-D CCD image sensor, which is operated in the time-delay-and-integrate (TDI) mode is presented. The CCD serves as the optical detector, and it simultaneously operates as an array of optically addressed correlators. The lines of the focused SAR image form continuously (at the radar PRF) at the final row of the CCD. The principles of operation of this processor, its performance characteristics, the state-of-the-art of the devices used and experimental results are outlined. The methods by which this processor can be made flexible so that it can be dynamically adapted to changing SAR geometries is discussed.

  1. Printed circuit board for a CCD camera head

    DOEpatents

    Conder, Alan D.

    2002-01-01

    A charge-coupled device (CCD) camera head which can replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating x-rays, such as within a target chamber where laser produced plasmas are studied. The camera head is small, capable of operating both in and out of a vacuum environment, and is versatile. The CCD camera head uses PC boards with an internal heat sink connected to the chassis for heat dissipation, which allows for close (0.04" for example) stacking of the PC boards. Integration of this CCD camera head into existing instrumentation provides a substantial enhancement of diagnostic capabilities for studying high energy density plasmas, for a variety of military industrial, and medical imaging applications.

  2. Advanced Imaging Modalities in the Detection of Cerebral Vasospasm

    PubMed Central

    Mills, Jena N.; Mehta, Vivek; Russin, Jonathan; Amar, Arun P.; Rajamohan, Anandh; Mack, William J.

    2013-01-01

    The pathophysiology of cerebral vasospasm following aneurysmal subarachnoid hemorrhage (SAH) is complex and is not entirely understood. Mechanistic insights have been gained through advances in the capabilities of diagnostic imaging. Core techniques have focused on the assessment of vessel caliber, tissue metabolism, and/or regional perfusion parameters. Advances in imaging have provided clinicians with a multifaceted approach to assist in the detection of cerebral vasospasm and the diagnosis of delayed ischemic neurologic deficits (DIND). However, a single test or algorithm with broad efficacy remains elusive. This paper examines both anatomical and physiological imaging modalities applicable to post-SAH vasospasm and offers a historical background. We consider cerebral blood flow velocities measured by Transcranial Doppler Ultrasonography (TCD). Structural imaging techniques, including catheter-based Digital Subtraction Angiography (DSA), CT Angiography (CTA), and MR Angiography (MRA), are reviewed. We examine physiologic assessment by PET, HMPAO SPECT, 133Xe Clearance, Xenon-Enhanced CT (Xe/CT), Perfusion CT (PCT), and Diffusion-Weighted/MR Perfusion Imaging. Comparative advantages and limitations are discussed. PMID:23476766

  3. Recent Advances in Computed Tomographic Technology: Cardiopulmonary Imaging Applications.

    PubMed

    Tabari, Azadeh; Lo Gullo, Roberto; Murugan, Venkatesh; Otrakji, Alexi; Digumarthy, Subba; Kalra, Mannudeep

    2017-03-01

    Cardiothoracic diseases result in substantial morbidity and mortality. Chest computed tomography (CT) has been an imaging modality of choice for assessing a host of chest diseases, and technologic advances have enabled the emergence of coronary CT angiography as a robust noninvasive test for cardiac imaging. Technologic developments in CT have also enabled the application of dual-energy CT scanning for assessing pulmonary vascular and neoplastic processes. Concerns over increasing radiation dose from CT scanning are being addressed with introduction of more dose-efficient wide-area detector arrays and iterative reconstruction techniques. This review article discusses the technologic innovations in CT and their effect on cardiothoracic applications.

  4. Advances in molecular imaging for breast cancer detection and characterization

    PubMed Central

    2012-01-01

    Advances in our ability to assay molecular processes, including gene expression, protein expression, and molecular and cellular biochemistry, have fueled advances in our understanding of breast cancer biology and have led to the identification of new treatments for patients with breast cancer. The ability to measure biologic processes without perturbing them in vivo allows the opportunity to better characterize tumor biology and to assess how biologic and cytotoxic therapies alter critical pathways of tumor response and resistance. By accurately characterizing tumor properties and biologic processes, molecular imaging plays an increasing role in breast cancer science, clinical care in diagnosis and staging, assessment of therapeutic targets, and evaluation of responses to therapies. This review describes the current role and potential of molecular imaging modalities for detection and characterization of breast cancer and focuses primarily on radionuclide-based methods. PMID:22423895

  5. Advanced ground-penetrating, imaging radar for bridge inspection

    SciTech Connect

    Warhus, J.P.; Mast, J.E.; Johansson, E.M.; Nelson, S.E.; Lee, Hua

    1993-08-01

    Inspecting high-value structures, like bridges and buildings using Ground Penetrating Radar (GPR) is an application of the technology that is growing in importance. In a typical inspection application, inspectors use GPR to locate structural components, like reinforcing bars embedded in concrete, to avoid weakening the structure while collecting core samples for detailed inspection. Advanced GPR, integrated with imaging technologies for use as an NDE tool, can provide the capability to locate and characterize construction flaws and wear- or age-induced damage in these structures without the need for destructive techniques like coring. In the following sections, we discuss an important inspection application, namely, concrete bridge deck inspection. We describe an advanced bridge deck inspection system concept and provide an overview of a program aimed at developing such a system. Examples of modeling, image reconstruction, and experimental results are presented.

  6. Advanced indium antimonide monolithic charge coupled infrared imaging arrays

    NASA Technical Reports Server (NTRS)

    Koch, T. L.; Merilainen, C. A.; Thom, R. D.

    1981-01-01

    The continued process development of SiO2 insulators for use in advanced InSb monolithic charge coupled infrared imaging arrays is described. Specific investigations into the use of plasma enhanced chemical vapor deposited (PECVD) SiO2 as a gate insulator for InSb charge coupled devices is discussed, as are investigations of other chemical vapor deposited SiO2 materials.

  7. Advanced Pediatric Brain Imaging Research and Training Program

    DTIC Science & Technology

    2013-10-01

    injury in children. Dr. Dobson’s project was an investigation of the mechanisms of brain injury in premature infants , and potential neuroprotective...study hypoxic ischemic brain injury in newborns treated with therapeutic hypothermia. Dr. Massaro has a long standing interest in identifying early...TE.Understanding brain injury and neurodevelopmental disabilities in the preterm infant : the evolving role of advanced magnetic resonance imaging.Semin

  8. Advances in Magnetic Resonance Imaging of the Skull Base

    PubMed Central

    Kirsch, Claudia F.E.

    2014-01-01

    Introduction Over the past 20 years, magnetic resonance imaging (MRI) has advanced due to new techniques involving increased magnetic field strength and developments in coils and pulse sequences. These advances allow increased opportunity to delineate the complex skull base anatomy and may guide the diagnosis and treatment of the myriad of pathologies that can affect the skull base. Objectives The objective of this article is to provide a brief background of the development of MRI and illustrate advances in skull base imaging, including techniques that allow improved conspicuity, characterization, and correlative physiologic assessment of skull base pathologies. Data Synthesis Specific radiographic illustrations of increased skull base conspicuity including the lower cranial nerves, vessels, foramina, cerebrospinal fluid (CSF) leaks, and effacement of endolymph are provided. In addition, MRIs demonstrating characterization of skull base lesions, such as recurrent cholesteatoma versus granulation tissue or abscess versus tumor, are also provided as well as correlative clinical findings in CSF flow studies in a patient pre- and post-suboccipital decompression for a Chiari I malformation. Conclusions This article illustrates MRI radiographic advances over the past 20 years, which have improved clinicians' ability to diagnose, define, and hopefully improve the treatment and outcomes of patients with underlying skull base pathologies. PMID:25992137

  9. Imaging of skull base pathologies: Role of advanced magnetic resonance imaging techniques

    PubMed Central

    Mathur, Ankit; Kesavadas, C; Thomas, Bejoy; Kapilamoorthy, TR

    2015-01-01

    Imaging plays a vital role in evaluation of skull base pathologies as this region is not directly accessible for clinical evaluation. Computerized tomography (CT) and magnetic resonance imaging (MRI) have played complementary roles in the diagnosis of the various neoplastic and non-neoplastic lesions of the skull base. However, CT and conventional MRI may at times be insufficient to correctly pinpoint the accurate diagnosis. Advanced MRI techniques, though difficult to apply in the skull base region, in conjunction with CT and conventional MRI can however help in improving the diagnostic accuracy. This article aims to highlight the importance of advanced MRI techniques like diffusion-weighted imaging, susceptibility-weighted imaging, perfusion-weighted imaging, and MR spectroscopy in differentiation of various lesions involving the skull base. PMID:26427895

  10. Advanced Echocardiographic Imaging of the Congenitally Malformed Heart

    PubMed Central

    Black, D; Vettukattil, J

    2013-01-01

    There have been significant advancements in the ability of echocardiography to provide both morphological and functional information in children with congenitally malformed hearts. This progress has come through the development of improved technology such as matrix array probes and software which allows for the off line analysis of images to a high standard. This article focuses on these developments and discusses some newer concepts in advanced echocardiography such is multi-planar reformatting [MPR] and tissue motion annular displacement [TMAD]. Our aim is to discuss important aspects related to the quality and reproducibility of data, to review the most recent published data regarding advanced echocardiography in the malformed heart and to guide the reader to appropriate text for overcoming the technical challenges of using these methods. Many of the technical aspects of image acquisition and post processing have been discussed in recent reviews by the authors and we would urge readers to study these texts to gain a greater understanding [1]. The quality of the two dimensional image is paramount in both strain analysis and three dimensional echocardiography. An awareness of how to improve image quality is vital to acquiring accurate and usable data. Three dimensional echocardiography (3DE) is an attempt to visualise the dynamic morphology of the heart. Although published media is the basis for theoretical knowledge of how to practically acquire images, electronic media [eg.www.3dechocardiography.com] is the only way of visualising the advantages of this technology in real time. It is important to be aware of the limitations of this technology and that much of the data gleaned from using these methods is at a research stage and not yet in regular clinical practice. PMID:23228075

  11. A pulsed THz imaging system with a line focus and a balanced 1-D detection scheme with two industrial CCD line-scan cameras.

    PubMed

    Wiegand, Christian; Herrmann, Michael; Bachtler, Sebastian; Klier, Jens; Molter, Daniel; Jonuscheit, Joachim; Beigang, René

    2010-03-15

    We present a pulsed THz Imaging System with a line focus intended to speed up measurements. A balanced 1-D detection scheme working with two industrial line-scan cameras is used. The instrument is implemented without the need for an amplified laser system, increasing the industrial applicability. The instrumental characteristics are determined.

  12. Charged-coupled device (CCD) detectors for Lab-on-a Chip (LOC) optical analysis.

    PubMed

    Rasooly, Avraham; Kostov, Yordan; Bruck, Hugh A

    2013-01-01

    A critical element of any Lab-on-a-Chip (LOC) is a detector; among the many detection approaches, optical detection is very widely used for biodetection. One challenge for advancing the development of LOC for biodetection has been to enhance the portability and lower the cost for Point-of-Care diagnostics, which has the potential to enhance the quality of healthcare delivery for underserved populations and for global health. We describe a simple and relatively low cost charged-coupled device (CCD)-based detector that can be integrated with a conventional microtiter plate or a portable LOC assay for various optical detection modalities including fluorescence, chemiluminescence, densitometry, and colorimetric assays. In general, the portable battery-operated CCD-based detection system consists of four modules: (1) a cooled CCD digital camera to monitor light emission, (2) a LOC or microtiter plate to perform assays, (3) a light source to illuminate the assay (such as electroluminescence (EL) or light emitting diode (LED)), and (4) a portable computer to acquire and analyze images. The configuration of the fluorescence detector presented here was designed to measure fluorogenic excitation at 490 nm and to monitor emission at 523 nm used for FITC detection.The LOC used for this detection system was fabricated with laminated object manufacturing (LOM) technology, and was designed to detection activity of botulinum neurotoxin serotype A (BoNT-A) using a fluorogenic peptide substrate (SNAP-25) for botulinum neurotoxin serotype A (BoNT-A) labeled with FITC. The limit of detection (LOD) for the CCD detector is 0.5 nM (25 ng/ml). The portable system is small and is powered by a 12 V source. The modular detector was designed with easily interchangeable LEDs, ELs, filters, lenses, and LOC, and can be used and adapted for a wide variety of densitometry, florescence and colorimetric assays.

  13. CCD Measurements of Visual Double Stars

    NASA Astrophysics Data System (ADS)

    Buchheim, Robert K.

    2008-05-01

    The CCD-imaging equipment that many amateur astronomers use for astrophotography and photometry can also be used to measure the separation, position angle, and magnitude difference of visual double stars. There are a few imaging and data analysis procedures that are unique to this project. I describe a simple PSF-model that provides good accuracy and repeatability in measurements of pairs which -- due to their close spacing and/or large magnitude difference -- would be beyond the reach of standard astrometric software. This project has some conceptual similarities to asteroid lightcurve determination: in both cases, we are presented with a huge number of potential targets that need observation; repeated observation at different epochs adds value to the initial observations; there are very few professional astronomers pursuing these studies; and there exists a Journal devoted to publication of these observations so that they will be available to the professional community. Hence, double star measurement may be a fruitful area for amateur contributions.

  14. Evryscope Robotilter automated camera / ccd alignment system

    NASA Astrophysics Data System (ADS)

    Ratzloff, Jeff K.; Law, Nicholas M.; Fors, Octavi; Ser, Daniel d.; Corbett, Henry T.

    2016-08-01

    We have deployed a new class of telescope, the Evryscope, which opens a new parameter space in optical astronomy - the ability to detect short time scale events across the entire sky simultaneously. The system is a gigapixel-scale array camera with an 8000 sq. deg. field of view, 13 arcsec per pixel sampling, and the ability to detect objects brighter than g = 16 in each 2-minute exposure. The Evryscope is designed to find transiting exoplanets around exotic stars, as well as detect nearby supernovae and provide continuous records of distant relativistic explosions like gamma-ray-bursts. The Evryscope uses commercially available CCDs and optics; the machine and assembly tolerances inherent in the mass production of these parts introduce problematic variations in the lens / CCD alignment which degrades image quality. We have built an automated alignment system (Robotilters) to solve this challenge. In this paper we describe the Robotilter system, mechanical and software design, image quality improvement, and current status.

  15. Advanced gastrointestinal endoscopic imaging for inflammatory bowel diseases

    PubMed Central

    Tontini, Gian Eugenio; Rath, Timo; Neumann, Helmut

    2016-01-01

    Gastrointestinal luminal endoscopy is of paramount importance for diagnosis, monitoring and dysplasia surveillance in patients with both, Crohn’s disease and ulcerative colitis. Moreover, with the recent recognition that mucosal healing is directly linked to the clinical outcome of patients with inflammatory bowel disorders, a growing demand exists for the precise, timely and detailed endoscopic assessment of superficial mucosal layer. Further, the novel field of molecular imaging has tremendously expanded the clinical utility and applications of modern endoscopy, now encompassing not only diagnosis, surveillance, and treatment but also the prediction of individual therapeutic responses. Within this review, we describe how novel endoscopic approaches and advanced endoscopic imaging methods such as high definition and high magnification endoscopy, dye-based and dye-less chromoendoscopy, confocal laser endomicroscopy, endocytoscopy and molecular imaging now allow for the precise and ultrastructural assessment of mucosal inflammation and describe the potential of these techniques for dysplasia detection. PMID:26811662

  16. Imaging spectroscopic analysis at the Advanced Light Source

    SciTech Connect

    MacDowell, A. A.; Warwick, T.; Anders, S.; Lamble, G.M.; Martin, M.C.; McKinney, W.R.; Padmore, H.A.

    1999-05-12

    One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications.

  17. Advances in imaging secondary ion mass spectrometry for biological samples

    DOE PAGES

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this hasmore » been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.« less

  18. Advances in imaging secondary ion mass spectrometry for biological samples

    SciTech Connect

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this has been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.

  19. Brain Imaging Using T-Rays Instrumentation Advances

    NASA Astrophysics Data System (ADS)

    Treviño-Palacios, C. G.; Celis-López, M. A.; Lárraga-Gutiérrez, J. M.; García-Garduño, A.; Zapata-Nava, O. J.; Díaz, A. Orduña; Torres-Jácome, A.; de-la-Hidalga-Wade, J.; Iturbe-Castillo, M. D.

    2010-12-01

    We present the advances on a brain imaging setup using submillimeter detectors and terahertz laser source. Terahertz radiation, known as T-rays, falls in the far infrared region of the electromagnetic spectrum close to the microwaves and fraction of millimeter wavelengths. These T-rays are ideal candidates for medical imaging because the wavelength is long enough to be dispersed by molecular structures and sufficient small to produce images with a reasonable resolution, in a non-ionizing way. The millimeter detectors used in this proposal are being developed in parallel to the detectors used in the large Millimeter Telescope (LMT/GTM). Using the non-ionizing water absorption to terahertz radiation by different tissues we study the absorption difference between healthy and tumors in spite of the large absorption by water present in the body.

  20. Recent Advances in Higher-Order, Multimodal, Biomedical Imaging Agents.

    PubMed

    Rieffel, James; Chitgupi, Upendra; Lovell, Jonathan F

    2015-09-16

    Advances in biomedical imaging have spurred the development of integrated multimodal scanners, usually capable of two simultaneous imaging modes. The long-term vision of higher-order multimodality is to improve diagnostics or guidance through the analysis of complementary, data-rich, co-registered images. Synergies achieved through combined modalities could enable researchers to better track diverse physiological and structural events, analyze biodistribution and treatment efficacy, and compare established and emerging modalities. Higher-order multimodal approaches stand to benefit from molecular imaging probes and, in recent years, contrast agents that have hypermodal characteristics have increasingly been reported in preclinical studies. Given the chemical requirements for contrast agents representing various modalities to be integrated into a single entity, the higher-order multimodal agents reported so far tend to be of nanoparticulate form. To date, the majority of reported nanoparticles have included components that are active for magnetic resonance. Herein, recent progress in higher-order multimodal imaging agents is reviewed, spanning a range of material and structural classes, and demonstrating utility in three (or more) imaging modalities.

  1. Advanced Imaging and Robotics Technologies for Medical Applications

    NASA Astrophysics Data System (ADS)

    Masamune, Ken; Hong, Jaesung

    2011-10-01

    Due to the importance of surgery in the medical field, a large amount of research has been conducted in this area. Imaging and robotics technologies provide surgeons with the advanced eye and hand to perform their surgeries in a safer and more accurate manner. Recently medical images have been utilized in the operating room as well as in the diagnostic stage. If the image to patient registration is done with sufficient accuracy, medical images can be used as "a map" for guidance to the target lesion. However, the accuracy and reliability of the surgical navigation system should be sufficiently verified before applying it to the patient. Along with the development of medical imaging, various medical robots have also been developed. In particular, surgical robots have been researched in order to reach the goal of minimal invasiveness. The most important factors to consider are determining the demand, the strategy for their use in operating procedures, and how it aids patients. In addition to the above considerations, medical doctors and researchers should always think from the patient's point of view. In this article, the latest medical imaging and robotic technologies focusing on surgical applications are reviewed based upon the factors described in the above.

  2. Advances in Spectral-Spatial Classification of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Fauvel, Mathieu; Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.

    2012-01-01

    Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation and contrast of the spatial structures present in the image. Then the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines using the available spectral information and the extracted spatial information. Spatial post-processing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple classifier system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral-spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.

  3. Diagnostic imaging advances in murine models of colitis.

    PubMed

    Brückner, Markus; Lenz, Philipp; Mücke, Marcus M; Gohar, Faekah; Willeke, Peter; Domagk, Dirk; Bettenworth, Dominik

    2016-01-21

    Inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis are chronic-remittent inflammatory disorders of the gastrointestinal tract still evoking challenging clinical diagnostic and therapeutic situations. Murine models of experimental colitis are a vital component of research into human IBD concerning questions of its complex pathogenesis or the evaluation of potential new drugs. To monitor the course of colitis, to the present day, classical parameters like histological tissue alterations or analysis of mucosal cytokine/chemokine expression often require euthanasia of animals. Recent advances mean revolutionary non-invasive imaging techniques for in vivo murine colitis diagnostics are increasingly available. These novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. For the first time, in vivo imaging techniques allow for longitudinal examinations and evaluation of intra-individual therapeutic response. This review discusses the latest developments in the different fields of ultrasound, molecularly targeted contrast agent ultrasound, fluorescence endoscopy, confocal laser endomicroscopy as well as tomographic imaging with magnetic resonance imaging, computed tomography and fluorescence-mediated tomography, discussing their individual limitations and potential future diagnostic applications in the management of human patients with IBD.

  4. Advancing the Technology of Monolithic CMOS detectors for their use as X-ray Imaging Spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus

    The Smithsonian Astrophysical Observatory (SAO) proposes a two year program to further advance the scientific capabilities of monolithic CMOS detectors for use as x-ray imaging spectrometers. This proposal will build upon the progress achieved with funding from a previous APRA proposal that ended in 2013. As part of that previous proposal, x- ray optimized, highly versatile, monolithic CMOS imaging detectors and technology were developed and tested. The performance and capabilities of these devices were then demonstrated, with an emphasis on the performance advantages these devices have over CCDs and other technologies. The developed SAO/SRI-Sarnoff CMOS devices incorporate: Low noise, high sensitivity ("gain") pixels; Highly parallel on-chip signal chains; Standard and very high resistivity (30,000Ohm-cm) Si; Back-Side thinning and passivation. SAO demonstrated the performance benefits of each of these features in these devices. This new proposal high-lights the performance of this previous generation of devices, and segues into new technology and capability. The high sensitivity ( 135uV/e) 6 Transistor (6T) Pinned Photo Diode (PPD) pixels provided a large charge to voltage conversion gain to the detect and resolve even small numbers of photo electrons produced by x-rays. The on-chip, parallel signal chain processed an entire row of pixels in the same time that a CCD requires to processes a single pixel. The resulting high speed operation ( 1000 times faster than CCD) provide temporal resolution while mitigating dark current and allowed room temperature operation. The high resistivity Si provided full (over) depletion for thicker devices which increased QE for higher energy x-rays. In this proposal, SAO will investigate existing NMOS and existing PMOS devices as xray imaging spectrometers. Conventional CMOS imagers are NMOS. NMOS devices collect and measure photo-electrons. In contrast, PMOS devices collect and measure photo-holes. PMOS devices have various

  5. VizieR Online Data Catalog: CCD photometry of CY Aqr 2012-2015 (Wiedemair+, 2016)

    NASA Astrophysics Data System (ADS)

    Wiedemair, C.; Sterken, C.; Eenmae, T.; Tuvikene, T.; Niederkofler, D.; Franzinelli, P.; Durnwalder, J.; Nardi, R.; Franzinelli, T.; Morawetz, I.; Nugroho, S. K.; Damini Hofer, J.; Seeber, J.

    2016-10-01

    All photometric data reported in this paper were obtained through CCD imaging obtained over more than 50 partial nights comprising a total of more than 20000 useful CCD frames. Table 1 gives the journal of observations. Heliocentric Julian Date, differential magnitudes ys,bs,vs,us in the standard system, and instrumental differential magnitudes yi,bi,vi,ui. (4 data files).

  6. Computer program for ccd measurements of visual double stars based on the adjustment of a light surface (in c language) : part 2 (French Title: Logiciel de mesure d'étoiles doubles sur images ccd par ajustement d'une surface de lumière (en langage c) : 2ème partie)

    NASA Astrophysics Data System (ADS)

    Morlet, G.; Salaman, M.

    2006-06-01

    We present the description and the source code of a computer program in C++ language, made for CCD measurements of visual double stars. The algorithm we used is based on the adjustment of a tridimensional mathematical surface. The program allows to measure close binaries.

  7. Computer program for CCD measurements of visual double stars based on the adjustment of a light surface (in c language)(French Title: Logiciel de mesure d'é doubles sur images CCD par ajustement d'une surface de lumière (en langage c))

    NASA Astrophysics Data System (ADS)

    Morlet, G.; Salaman, M.

    2005-12-01

    We present the description and the source code of a computer program in C++ language, made for CCD measurements of visual double stars. The algorithm we used is based on the adjustment of a tridimensional mathematical surface. The program allows to measure close binaries.

  8. The OCA CCD Camera Controller

    DTIC Science & Technology

    1996-01-01

    blank) -2. REPORT DATE 3 . REPORT TYPE AND DATES COVERED •. . ..December 1996 , 1996 Final Report - Ř. TITLE AND SUBTITLE 5. FUNDING NUMBERS The OCA...Physical. implementation of a multi CCD camera Appendix 1: Contrbller schematics Appendix 2: Data sheets of the the major components Appendix 3 ...the final-report for EOARD cbntract ##SPC-93-4007. R? 3 %o-/ Ob. 7(, It contains the following sections: - Requirements analysis - Description of the

  9. High-performance LLLTV CCD camera for nighttime pilotage

    NASA Astrophysics Data System (ADS)

    Williams, George M., Jr.

    1992-06-01

    Nighttime, nap-of-the-earth pilotage requires information from several sensors including thermal and image intensified sensors. Traditionally, the thermal imagery is displayed on a CRT; the image intensified imagery is displayed with a night vision goggle (NVG), a direct- view device worn immediately in front of the pilot''s eyes. If electronic output data from the image intensifier could be displayed on a CRT, the pilot''s safety and mission effectiveness would be greatly enhanced. Conventional approaches to using charge coupled devices fiberoptically coupled to image intensifier tubes have failed to provide the resolution, contrast, and sensitivity that pilots are accustomed to with night vision goggles. To produce image intensified sensors with performance comparable to an NVG, an intensified sensor that is optimized for coupling to solid state sensors and eliminates all fiberoptic-to-fiberoptic interfaces was fabricated. The Integrated Taper Assembly (ITA) sensor has a fiberoptic taper built into the vacuum of the image tube. The fiberoptic taper minifies the 18 or 25 millimeter (mm) output of the image intensifier tube to the 11 mm diagonal of the high resolution CCD. This requires one optical coupling -- at the CCD surface. By offering high resolution, high sensitivity, and a simplified optical path, the ITA image intensifier overcomes the shortcomings that normally limit the performance of intensified CCD cameras.

  10. Recent advances in medical imaging: anatomical and clinical applications.

    PubMed

    Grignon, Bruno; Mainard, Laurence; Delion, Matthieu; Hodez, Claude; Oldrini, Guillaume

    2012-10-01

    The aim of this paper was to present an overview of the most important recent advances in medical imaging and their potential clinical and anatomical applications. Dramatic changes have been particularly observed in the field of computed tomography (CT) and magnetic resonance imaging (MRI). Computed tomography (CT) has been completely overturned by the successive development of helical acquisition, multidetector and large area-detector acquisition. Visualising brain function has become a new challenge for MRI, which is called functional MRI, currently based principally on blood oxygenation level-dependent sequences, which could be completed or replaced by other techniques such as diffusion MRI (DWI). Based on molecular diffusion due to the thermal energy of free water, DWI offers a spectrum of anatomical and clinical applications, ranging from brain ischemia to visualisation of large fibrous structures of the human body such as the anatomical bundles of white matter with diffusion tensor imaging and tractography. In the field of X-ray projection imaging, a new low-dose device called EOS has been developed through new highly sensitive detectors of X-rays, allowing for acquiring frontal and lateral images simultaneously. Other improvements have been briefly mentioned. Technical principles have been considered in order to understand what is most useful in clinical practice as well as in the field of anatomical applications. Nuclear medicine has not been included.

  11. MDCT imaging of the stomach: advances and applications.

    PubMed

    Nagpal, Prashant; Prakash, Anjali; Pradhan, Gaurav; Vidholia, Aditi; Nagpal, Nishant; Saboo, Sachin S; Kuehn, David M; Khandelwal, Ashish

    2017-01-01

    The stomach may be involved by a myriad of pathologies ranging from benign aetiologies like inflammation to malignant aetiologies like carcinoma or lymphoma. Multidetector CT (MDCT) of the stomach is the first-line imaging for patients with suspected gastric pathologies. Conventionally, CT imaging had the advantage of simultaneous detection of the mural and extramural disease extent, but advances in MDCT have allowed mucosal assessment by virtual endoscopy (VE). Also, better three-dimensional (3D) post-processing techniques have enabled more robust and accurate pre-operative planning in patients undergoing gastrectomy and even predict the response to surgery for patients undergoing laparoscopic sleeve gastrectomy for weight loss. The ability of CT to obtain stomach volume (for bariatric surgery patients) and 3D VE images depends on various patient and protocol factors that are important for a radiologist to understand. We review the appropriate CT imaging protocol in the patients with suspected gastric pathologies and highlight the imaging pearls of various gastric pathologies on CT and VE.

  12. Quantitative Computed Tomography and Image Analysis for Advanced Muscle Assessment

    PubMed Central

    Edmunds, Kyle Joseph; Gíslason, Magnus K.; Arnadottir, Iris D.; Marcante, Andrea; Piccione, Francesco; Gargiulo, Paolo

    2016-01-01

    Medical imaging is of particular interest in the field of translational myology, as extant literature describes the utilization of a wide variety of techniques to non-invasively recapitulate and quantity various internal and external tissue morphologies. In the clinical context, medical imaging remains a vital tool for diagnostics and investigative assessment. This review outlines the results from several investigations on the use of computed tomography (CT) and image analysis techniques to assess muscle conditions and degenerative process due to aging or pathological conditions. Herein, we detail the acquisition of spiral CT images and the use of advanced image analysis tools to characterize muscles in 2D and 3D. Results from these studies recapitulate changes in tissue composition within muscles, as visualized by the association of tissue types to specified Hounsfield Unit (HU) values for fat, loose connective tissue or atrophic muscle, and normal muscle, including fascia and tendon. We show how results from these analyses can be presented as both average HU values and compositions with respect to total muscle volumes, demonstrating the reliability of these tools to monitor, assess and characterize muscle degeneration. PMID:27478562

  13. Solid state television camera (CCD-buried channel), revision 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    An all solid state television camera was designed which uses a buried channel charge coupled device (CCD) as the image sensor. A 380 x 488 element CCD array is utilized to ensure compatibility with 525-line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (1) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (2) techniques for the elimination or suppression of CCD blemish effects, and (3) automatic light control and video gain control techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a deliverable solid state TV camera which addressed the program requirements for a prototype qualifiable to space environment conditions.

  14. Solid state television camera (CCD-buried channel)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development of an all solid state television camera, which uses a buried channel charge coupled device (CCD) as the image sensor, was undertaken. A 380 x 488 element CCD array is utilized to ensure compatibility with 525 line transmission and display monitor equipment. Specific camera design approaches selected for study and analysis included (a) optional clocking modes for either fast (1/60 second) or normal (1/30 second) frame readout, (b) techniques for the elimination or suppression of CCD blemish effects, and (c) automatic light control and video gain control (i.e., ALC and AGC) techniques to eliminate or minimize sensor overload due to bright objects in the scene. Preferred approaches were determined and integrated into a deliverable solid state TV camera which addressed the program requirements for a prototype qualifiable to space environment conditions.

  15. Determination of visible coordinates of the low-orbit space objects and their photometry by the CCD camera with the analogue output. Initial image processing

    NASA Astrophysics Data System (ADS)

    Shakun, L. S.; Koshkin, N. I.

    2014-06-01

    The number of artificial space objects in the low Earth orbit has been continuously increasing. That raises the requirements for the accuracy of measurement of their coordinates and for the precision of the prediction of their motion. The accuracy of the prediction can be improved if the actual current orientation of the non-spherical satellite is taken into account. In so doing, it becomes possible to directly determine the atmospheric density along the orbit. The problem solution is to regularly conduct the photometric surveillances of a large number of satellites and monitor the parameters of their rotation around the centre of mass. To do that, it is necessary to get and promptly process large video arrays, containing pictures of a satellite against the background stars. In the present paper, the method for the simultaneous measurement of coordinates and brightness of the low Earth orbit space objects against the background stars when they are tracked by telescope KT-50 with the mirror diameter of 50 cm and with video camera WAT-209H2 is considered. The problem of determination of the moments of exposures of images is examined in detail. The estimation of the accuracy of measuring both the apparent coordinates of stars and their photometry is given on the example of observation of the open star cluster. In the presented observations, the standard deviation of one position measured is 1σ, the accuracy of determination of the moment of exposure of images is better than 0.0001 s. The estimate of the standard deviation of one measurement of brightness is 0.1m. Some examples of the results of surveillances of satellites are also presented in the paper.

  16. A CCD camera for guidance of 100-cm balloon-borne far-infrared telescope

    NASA Astrophysics Data System (ADS)

    D'Costa, S. L.; Ghosh, S. K.; Tandon, S. N.

    1991-08-01

    A charge coupled device (CCD) camera using the 488 x 380 element Fairchild CCD 222 imaging device has been developed for guidance of the 100 cm balloonborne far infrared telescope. The hardware consists of an imaging device along with its associated optics, a clock generating circuitry, the clock drivers, an 8086 microprocessor-based system, and the power supplies. The software processes the CCD image data and uses a selected star in its field of view as the guide star for pointing the telescope with an accuracy of around 4 arc s.

  17. TU-EF-207-00: Advances in Breast Imaging

    SciTech Connect

    2015-06-15

    Breast imaging technology is advancing on several fronts. In digital mammography, the major technological trend has been on optimization of approaches for performing combined mammography and tomosynthesis using the same system. In parallel, photon-counting slot-scan mammography is now in clinical use and more efforts are directed towards further development of this approach for spectral imaging. Spectral imaging refers to simultaneous acquisition of two or more energy-windowed images. Depending on the detector and associated electronics, there are a number of ways this can be accomplished. Spectral mammography using photon-counting detectors can suppress electronic noise and importantly, it enables decomposition of the image into various material compositions of interest facilitating quantitative imaging. Spectral imaging can be particularly important in intravenously injected contrast mammography and eventually tomosynthesis. The various approaches and applications of spectral mammography are discussed. Digital breast tomosynthesis relies on the mechanical movement of the x-ray tube to acquire a number of projections in a predefined arc, typically from 9 to 25 projections over a scan angle of +/−7.5 to 25 degrees depending on the particular system. The mechanical x-ray tube motion requires relatively long acquisition time, typically between 3.7 to 25 seconds depending on the system. Moreover, mechanical scanning may have an effect on the spatial resolution due to internal x-ray filament or external mechanical vibrations. New x-ray source arrays have been developed and they are aimed at replacing the scanned x-ray tube for improved acquisition time and potentially for higher spatial resolution. The potential advantages and challenges of this approach are described. Combination of digital mammography and tomosynthesis in a single system places increased demands on certain functional aspects of the detector and overall performance, particularly in the tomosynthesis

  18. Technology in radiology: advances in diagnostic imaging & therapeutics.

    PubMed

    Stern, S M

    1993-01-01

    Nearly 100 years from its birth, radiology continues to grow as though still in adolescence. Although some radiologic technologies have matured more than others, new applications and techniques appear regularly in the literature. Radiology has evolved from purely diagnostic devices to interventional technologies. New contrast agents in MRI, X ray and ultrasound enable physicians to make diagnoses and plan therapies with greater precision than ever before. Techniques are less and less invasive. Advances in computer technology have given supercomputer-like power to high-end nuclear medicine and MRI systems. Imaging systems in most modalities are now designed with upgrades in mind instead of "planned obsolescence." Companies routinely upgrade software and other facets of their products, sometimes at no additional charge to existing customers. Hospitals, radiology groups and imaging centers will face increasing demands to justify what they do according to patient outcomes and management criteria. Did images make the diagnosis or confirm it? Did the images determine optimal treatment strategies or confirm which strategies might be appropriate? Third-party payers, especially the government, will view radiology in those terms. The diagnostic imaging and therapy systems of today require increasingly sophisticated technical support for maintenance and repair. Hospitals, radiology groups and imaging centers will have to determine the most economic and effective ways to guarantee equipment up-time. Borrowing from the automotive industry, some radiology manufacturers have devised transtelephonic software systems to facilitate remote troubleshooting. To ensure their fiscal viability, hospitals continue to acquire new imaging and therapy technologies for competitive and access-to-services reasons.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Millimeter-Wave Imaging Technology Advancements for Plasma Diagnostics Applications

    NASA Astrophysics Data System (ADS)

    Kong, Xiangyu

    To realize fusion plant, the very first step is to understand the fundamental physics of materials under fusion conditions, i.e. to understand fusion plasmas. Our research group, Plasma Diagnostics Group, focuses on developing advanced tools for physicists to extract as much information as possible from fusion plasmas at millions degrees. The Electron Cyclotron Emission Imaging (ECEI) diagnostics is a very useful tool invented in this group to study fusion plasma electron temperature and it fluctuations. This dissertation presents millimeter wave imaging technology advances recently developed in this group to improve the ECEI system. New technologies made it more powerful to image and visualize magneto-hydrodynamics (MHD) activities and micro-turbulence in fusion plasmas. Topics of particular emphasis start from development of miniaturized elliptical substrate lens array. This novel substrate lens array replaces the previous generation substrate lens, hyper-hemispherical substrate lens, in terms of geometry. From the optical performance perspective, this substitution not only significantly simplifies the optical system with improved optical coupling, but also enhances the RF/LO coupling efficiency. By the benefit of the mini lens focusing properties, a wideband dual-dipole antenna array is carefully designed and developed. The new antenna array is optimized simultaneously for receiving both RF and LO, with sharp radiation patterns, low side-lobe levels, and less crosstalk between adjacent antennas. In addition, a high frequency antenna is also developed, which extends the frequency limit from 145 GHz to 220 GHz. This type of antenna will be used on high field operation tokamaks with toroidal fields in excess of 3 Tesla. Another important technology advance is so-called extended bandwidth double down-conversion electronics. This new electronics extends the instantaneous IF coverage from 2 to 9.2 GHz to 2 to 16.4 GHz. From the plasma point of view, it means that the

  20. The Advanced Gamma-ray Imaging System (AGIS): Simulation studies

    SciTech Connect

    Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Funk, S.; Konopelko, A.; Vassiliev, V.V.; /UCLA

    2011-06-14

    The Advanced Gamma-ray Imaging System (AGIS) is a next-generation ground-based gamma-ray observatory being planned in the U.S. The anticipated sensitivity of AGIS is about one order of magnitude better than the sensitivity of current observatories, allowing it to measure gamma-ray emission from a large number of Galactic and extra-galactic sources. We present here results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance - collecting area, angular resolution, background rejection, and sensitivity - are discussed.

  1. The Advanced Gamma-ray Imaging System (AGIS) - Simulation Studies

    SciTech Connect

    Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Vassiliev, V. V.; Funk, S.; Konopelko, A.

    2008-12-24

    The Advanced Gamma-ray Imaging System (AGIS) is a US-led concept for a next-generation instrument in ground-based very-high-energy gamma-ray astronomy. The most important design requirement for AGIS is a sensitivity of about 10 times greater than current observatories like Veritas, H.E.S.S or MAGIC. We present results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.

  2. Advanced Imaging of Athletes: Added Value of Coronary Computed Tomography and Cardiac Magnetic Resonance Imaging.

    PubMed

    Martinez, Matthew W

    2015-07-01

    Cardiac magnetic resonance imaging and cardiac computed tomographic angiography have become important parts of the armamentarium for noninvasive diagnosis of cardiovascular disease. Emerging technologies have produced faster imaging, lower radiation dose, improved spatial and temporal resolution, as well as a wealth of prognostic data to support usage. Investigating true pathologic disease as well as distinguishing normal from potentially dangerous is now increasingly more routine for the cardiologist in practice. This article investigates how advanced imaging technologies can assist the clinician when evaluating all athletes for pathologic disease that may put them at risk.

  3. Recent Advances in the Imaging of Frontotemporal Dementia

    PubMed Central

    Whitwell, Jennifer L.; Josephs, Keith A.

    2012-01-01

    Neuroimaging has played an important role in the characterization of the frontotemporal dementia (FTD) syndromes, demonstrating neurodegenerative signatures that can aid in the differentiation of FTD from other neurodegenerative disorders. Recent advances have been driven largely by the refinement of the clinical syndromes that underlie FTD, and by the discovery of new genetic and pathological features associated with FTD. Many new imaging techniques and modalities are also now available that allow the assessment of other aspects of brain structure and function, such as diffusion tensor imaging and resting state functional MRI. Studies have utilized these recent techniques, as well as traditional volumetric MRI, to provide further insight into disease progression across the many clinical, genetic and pathological variants of FTD. Importantly, neuroimaging signatures have been identified that will improve the clinician’s ability to predict underlying genetic and pathological features, and hence ultimately improve patient diagnosis. PMID:23015371

  4. Advances in imaging ultrastructure yield new insights into presynaptic biology

    PubMed Central

    Bruckner, Joseph J.; Zhan, Hong; O’Connor-Giles, Kate M.

    2015-01-01

    Synapses are the fundamental functional units of neural circuits, and their dysregulation has been implicated in diverse neurological disorders. At presynaptic terminals, neurotransmitter-filled synaptic vesicles are released in response to calcium influx through voltage-gated calcium channels activated by the arrival of an action potential. Decades of electrophysiological, biochemical, and genetic studies have contributed to a growing understanding of presynaptic biology. Imaging studies are yielding new insights into how synapses are organized to carry out their critical functions. The development of techniques for rapid immobilization and preservation of neuronal tissues for electron microscopy (EM) has led to a new renaissance in ultrastructural imaging that is rapidly advancing our understanding of synapse structure and function. PMID:26052269

  5. Advanced DTM Generation from Very High Resolution Satellite Stereo Images

    NASA Astrophysics Data System (ADS)

    Perko, R.; Raggam, H.; Gutjahr, K. H.; Schardt, M.

    2015-03-01

    This work proposes a simple filtering approach that can be applied to digital surface models in order to extract digital terrain models. The method focusses on robustness and computational efficiency and is in particular tailored to filter DSMs that are extracted from satellite stereo images. It represents an evolution of an existing DTM generation method and includes distinct advancement through the integration of multi-directional processing as well as slope dependent filtering, thus denoted "MSD filtering". The DTM generation workflow is fully automatic and requires no user interaction. Exemplary results are presented for a DSM generated from a Pléiades tri-stereo image data set. Qualitative and quantitative evaluations with respect to highly accurate reference LiDAR data confirm the effectiveness of the proposed algorithm.

  6. Advances and challenges in deformable image registration: From image fusion to complex motion modelling.

    PubMed

    Schnabel, Julia A; Heinrich, Mattias P; Papież, Bartłomiej W; Brady, Sir J Michael

    2016-10-01

    Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field.

  7. Studies on the interaction between the YAG laser and the MNOS-type CCD

    SciTech Connect

    Ni, X.W.; Lu, J.

    1995-12-31

    Owing to its small size, little distortion of image, not being incomplete images and long life, the charge-coupled devices (CCD) has been used widely in photography, detection, information processing and storage. In some special situations, CCD was used together with laser sources, so it was unavoidable that the laser interacted with the CCD or even produced damage. In this paper, the interaction process of high-power Q-switched YAG laser and MNOS-type CCD is studied with the help of plasma shape and structure under the repeated actions of laser pulses. Mach-Zehnder interferograms of plasmas and related experimental results produced by a 1,064 nm laser beam with a pulse width of 15 ns acted upon the MNOS-type CCD are obtained for the first time.

  8. Diagnosis by Endoscopy and Advanced Imaging of Barrett's Neoplasia.

    PubMed

    Swager, Anne-Fré; Curvers, Wouter L; Bergman, Jacques J

    Evaluation of patients with Barrett's esophagus (BE) using dye-based chromoendoscopy, optical chromoendoscopy, autofluorescence imaging, or confocal laser endomicroscopy does not significantly increase the number of patients with a diagnosis of early neoplasia compared with high-definition white light endoscopy (HD-WLE) with random biopsy analysis. These newer imaging techniques are not more effective in standard surveillance of patients with BE because the prevalence of early neoplasia is low and HD-WLE with random biopsy analysis detects most cases of neoplasia. The evaluation and treatment of patients with BE and early stage neoplasia should be centralized in tertiary referral centers, where procedures are performed under optimal conditions, by expert endoscopists. Lesions that require resection are almost always detected by HD-WLE, although advanced imaging techniques can detect additional flat lesions. However, these are of limited clinical significance because they are effectively eradicated by ablation therapy. No endoscopic imaging technique can reliably assess submucosal or lymphangio invasion. Endoscopic resection of early stage neoplasia in patients with BE is important for staging and management. Optical chromoendoscopy can also be used to evaluate lesions before endoscopic resection and in follow-up after successful ablation therapy.

  9. Recent Advances in Techniques for Hyperspectral Image Processing

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; Marconcini, Mattia; Tilton, James C.; Trianni, Giovanna

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  10. Microwave imaging for breast cancer detection: advances in three--dimensional image reconstruction.

    PubMed

    Golnabi, Amir H; Meaney, Paul M; Epstein, Neil R; Paulsen, Keith D

    2011-01-01

    Microwave imaging is based on the electrical property (permittivity and conductivity) differences in materials. Microwave imaging for biomedical applications is particularly interesting, mainly due to the fact that available range of dielectric properties for different tissues can provide important functional information about their health. Under the assumption that a 3D scattering problem can be reasonably represented as a simplified 2D model, one can take advantage of the simplicity and lower computational cost of 2D models to characterize such 3D phenomenon. Nonetheless, by eliminating excessive model simplifications, 3D microwave imaging provides potentially more valuable information over 2D techniques, and as a result, more accurate dielectric property maps may be obtained. In this paper, we present some advances we have made in three-dimensional image reconstruction, and show the results from a 3D breast phantom experiment using our clinical microwave imaging system at Dartmouth Hitchcock Medical Center (DHMC), NH.

  11. The ratio between CcdA and CcdB modulates the transcriptional repression of the ccd poison-antidote system.

    PubMed

    Afif, H; Allali, N; Couturier, M; Van Melderen, L

    2001-07-01

    The ccd operon of the F plasmid encodes CcdB, a toxin targeting the essential gyrase of Escherichia coli, and CcdA, the unstable antidote that interacts with CcdB to neutralize its toxicity. Although work from our group and others has established that CcdA and CcdB are required for transcriptional repression of the operon, the underlying mechanism remains unclear. The results presented here indicate that, although CcdA is the DNA-binding element of the CcdA-CcdB complex, the stoichiometry of the two proteins determines whether or not the complex binds to the ccd operator-promoter region. Using electrophoretic mobility shift assays, we show that a (CcdA)2-(CcdB)2 complex binds DNA. The addition of extra CcdB to that protein-DNA complex completely abolishes DNA retardation. Based on these results, we propose a model in which the ratio between CcdA and CcdB regulates the repression state of the ccd operon. When the level of CcdA is superior or equal to that of CcdB, repression results. In contrast, derepression occurs when CcdB is in excess of CcdA. By ensuring an antidote-toxin ratio greater than one, this mechanism could prevent the harmful effect of CcdB in plasmid-containing bacteria.

  12. Low voltage electron multiplying CCD in a CMOS process

    NASA Astrophysics Data System (ADS)

    Dunford, Alice; Stefanov, Konstantin; Holland, Andrew

    2016-07-01

    Low light level and high-speed image sensors as required for space applications can suffer from a decrease in the signal to noise ratio (SNR) due to the photon-starved environment and limitations of the sensor's readout noise. The SNR can be increased by the implementation of Time Delay Integration (TDI) as it allows photoelectrons from multiple exposures to be summed in the charge domain with no added noise. Electron Multiplication (EM) can further improve the SNR and lead to an increase in device performance. However, both techniques have traditionally been confined to Charge Coupled Devices (CCD) due to the efficient charge transfer required. With the increase in demand for CMOS sensors with equivalent or superior functionality and performance, this paper presents findings from the characterisation of a low voltage EMCCD in a CMOS process using advanced design features to increase the electron multiplying gain. By using the CMOS process, it is possible to increase chip integration and functionality and achieve higher readout speeds and reduced pixel size. The presented characterisation results include analysis of the photon transfer curve, the dark current, the electron multiplying gain and analysis of the parameters' dependence on temperature and operating voltage.

  13. CCD observations of old nova fields

    NASA Technical Reports Server (NTRS)

    Downes, Ronald A.; Szkody, Paula

    1989-01-01

    The discovery of CK Vulpeculae (Nova 1670) has prompted a major review of ideas concerning the long-term development of novae. Unfortunately, there are very few recovered novae old enough to provide confirmation (or rejection) of the new 'hibernation' scenario. CCD images of seven old nova fields, and R band photometry for four fields, have been obtained in an attempt to recover these objects in quiescence. A strong candidate for U Leonis, and a possible counterpart for T Bootis, are found. For three other fields, weak candidates have been found. Finding charts and colors are presented for the seven fields observed. The R light curves of U Leo, indicating an orbital period of 192.5 or 385.0 min, are shown.

  14. CCD observations of old nova fields

    SciTech Connect

    Downes, R.A.; Szkody, P.; Washington Uni., Seattle )

    1989-06-01

    The discovery of CK Vulpeculae (Nova 1670) has prompted a major review of ideas concerning the long-term development of novae. Unfortunately, there are very few recovered novae old enough to provide confirmation (or rejection) of the new hibernation scenario. CCD images of seven old nova fields, and R band photometry for four fields, have been obtained in an attempt to recover these objects in quiescence. A strong candidate for U Leonis, and a possible counterpart for T Bootis, are found. For three other fields, weak candidates have been found. Finding charts and colors are presented for the seven fields observed. The R light curves of U Leo, indicating an orbital period of 192.5 or 385.0 min, are shown. 14 refs.

  15. Resolved CCD Photometry of Pluto and Charon

    SciTech Connect

    Jones, J.H.; Waddell, P.; Christian, C.A.

    1988-04-01

    Highly resolved CCD images of Pluto and Charon near maximum separation are measured with point spread function fitting techniques to determine independent magnitudes and an accurate separation for Pluto and Charon. A measured separation of 0.923 + or - 0.005 arcsec at a position angle of 173.3 + or - 0.3 deg on June 18, 1987 UT produced a value of 19558.0 + or - 153.0 km for the radius of Charon's orbit. An apparent B magnitude of 14.877 + or - 0.009 and (B-I) color of 1.770 + or - 0.015 are determined for Pluto, while Charon is fainter with B = 18.826 + or - 0.011 and slightly bluer with (B-I) = 1.632 + or - 0.018. 18 references.

  16. Advances in automated 3-D image analyses of cell populations imaged by confocal microscopy.

    PubMed

    Ancin, H; Roysam, B; Dufresne, T E; Chestnut, M M; Ridder, G M; Szarowski, D H; Turner, J N

    1996-11-01

    Automated three-dimensional (3-D) image analysis methods are presented for rapid and effective analysis of populations of fluorescently labeled cells or nuclei in thick tissue sections that have been imaged three dimensionally using a confocal microscope. The methods presented here greatly improve upon our earlier work (Roysam et al.:J Microsc 173: 115-126, 1994). The principal advances reported are: algorithms for efficient data pre-processing and adaptive segmentation, effective handling of image anisotrophy, and fast 3-D morphological algorithms for separating overlapping or connected clusters utilizing image gradient information whenever available. A particular feature of this method is its ability to separate densely packed and connected clusters of cell nuclei. Some of the challenges overcome in this work include the efficient and effective handling of imaging noise, anisotrophy, and large variations in image parameters such as intensity, object size, and shape. The method is able to handle significant inter-cell, intra-cell, inter-image, and intra-image variations. Studies indicate that this method is rapid, robust, and adaptable. Examples were presented to illustrate the applicability of this approach to analyzing images of nuclei from densely packed regions in thick sections of rat liver, and brain that were labeled with a fluorescent Schiff reagent.

  17. Data acquisition system based on the Nios II for a CCD camera

    NASA Astrophysics Data System (ADS)

    Li, Binhua; Hu, Keliang; Wang, Chunrong; Liu, Yangbing; He, Chun

    2006-06-01

    The FPGA with Avalon Bus architecture and Nios soft-core processor developed by Altera Corporation is an advanced embedded solution for control and interface systems. A CCD data acquisition system with an Ethernet terminal port based on the TCP/IP protocol is implemented in NAOC, which is composed of a piece of interface board with an Altera's FPGA, 32MB SDRAM and some other accessory devices integrated on it, and two packages of control software used in the Nios II embedded processor and the remote host PC respectively. The system is used to replace a 7200 series image acquisition card which is inserted in a control and data acquisition PC, and to download commands to an existing CCD camera and collect image data from the camera to the PC. The embedded chip in the system is a Cyclone FPGA with a configurable Nios II soft-core processor. Hardware structure of the system, configuration for the embedded soft-core processor, and peripherals of the processor in the PFGA are described. The C program run in the Nios II embedded system is built in the Nios II IDE kits and the C++ program used in the PC is developed in the Microsoft's Visual C++ environment. Some key techniques in design and implementation of the C and VC++ programs are presented, including the downloading of the camera commands, initialization of the camera, DMA control, TCP/IP communication and UDP data uploading.

  18. The Effectiveness of Advance Organizers on the Signification of Poetic Images

    ERIC Educational Resources Information Center

    Bayat, Nihat

    2007-01-01

    Advance organizers activate the most suitable schema to learn new material. Poetic images are signified in schemata and the elements which are not expressed may be called by advance organizers. The purpose of this investigation is to discern the effectiveness of advance organizers on the signification of poetic images. Pretest-posttest…

  19. Dosimetry of heavy ions by use of CCD detectors

    NASA Technical Reports Server (NTRS)

    Schott, J. U.

    1994-01-01

    The design and the atomic composition of Charge Coupled Devices (CCD's) make them unique for investigations of single energetic particle events. As detector system for ionizing particles they detect single particles with local resolution and near real time particle tracking. In combination with its properties as optical sensor, particle transversals of single particles are to be correlated to any objects attached to the light sensitive surface of the sensor by simple imaging of their shadow and subsequent image analysis of both, optical image and particle effects, observed in affected pixels. With biological objects it is possible for the first time to investigate effects of single heavy ions in tissue or extinguished organs of metabolizing (i.e. moving) systems with a local resolution better than 15 microns. Calibration data for particle detection in CCD's are presented for low energetic protons and heavy ions.

  20. Mosaic CCD method: A new technique for observing dynamics of cometary magnetospheres

    NASA Technical Reports Server (NTRS)

    Saito, T.; Takeuchi, H.; Kozuba, Y.; Okamura, S.; Konno, I.; Hamabe, M.; Aoki, T.; Minami, S.; Isobe, S.

    1992-01-01

    On April 29, 1990, the plasma tail of Comet Austin was observed with a CCD camera on the 105-cm Schmidt telescope at the Kiso Observatory of the University of Tokyo. The area of the CCD used in this observation is only about 1 sq cm. When this CCD is used on the 105-cm Schmidt telescope at the Kiso Observatory, the area corresponds to a narrow square view of 12 ft x 12 ft. By comparison with the photograph of Comet Austin taken by Numazawa (personal communication) on the same night, we see that only a small part of the plasma tail can be photographed at one time with the CCD. However, by shifting the view on the CCD after each exposure, we succeeded in imaging the entire length of the cometary magnetosphere of 1.6 x 10(exp 6) km. This new technique is called 'the mosaic CCD method'. In order to study the dynamics of cometary plasma tails, seven frames of the comet from the head to the tail region were twice imaged with the mosaic CCD method and two sets of images were obtained. Six microstructures, including arcade structures, were identified in both the images. Sketches of the plasma tail including microstructures are included.

  1. The LSST CCD Development Program

    NASA Astrophysics Data System (ADS)

    Kotov, Ivan; Frank, J. S.; Geary, J.; Gilmore, K.; O'Connor, P.; Radeka, V.; Takacs, P.; Tyson, J. A.

    2007-12-01

    The LSST focal plane array (FPA) will be the largest ever made. The sensors must produce low read noise, high QE in the red, and a very tight PSF. This will all be necessary to do the science at the LSST. The principle underlying the development plan is that for an FPA involving about 200 large format (4k x 4k) sensors, an industrial approach has to be developed and adopted. In this initial phase of CCD development, we have targeted specific technology challenges at competitively selected vendors, with the goal of establishing both the technical characteristics of actual sensors, based on our projected requirements, and the industrial feasibility of their production. The CCD technology challenges we have targeted in particular are over-depleted high resistivity devices in the 100 micron thickness range with a biased conductive window. Initial test results from the first devices in a smaller format resulting from this study program will be presented, demonstrating that these challenges can be overcome.

  2. Advanced Imaging in Femoroacetabular Impingement: Current State and Future Prospects.

    PubMed

    Bittersohl, Bernd; Hosalkar, Harish S; Hesper, Tobias; Tiderius, Carl Johan; Zilkens, Christoph; Krauspe, Rüdiger

    2015-01-01

    Symptomatic femoroacetabular impingement (FAI) is now a known precursor of early osteoarthritis (OA) of the hip. In terms of clinical intervention, the decision between joint preservation and joint replacement hinges on the severity of articular cartilage degeneration. The exact threshold during the course of disease progression when the cartilage damage is irreparable remains elusive. The intention behind radiographic imaging is to accurately identify the morphology of osseous structural abnormalities and to accurately characterize the chondrolabral damage as much as possible. However, both plain radiographs and computed tomography (CT) are insensitive for articular cartilage anatomy and pathology. Advanced magnetic resonance imaging (MRI) techniques include magnetic resonance arthrography and biochemically sensitive techniques of delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), T1rho (T1ρ), T2/T2* mapping, and several others. The diagnostic performance of these techniques to evaluate cartilage degeneration could improve the ability to predict an individual patient-specific outcome with non-surgical and surgical care. This review discusses the facts and current applications of biochemical MRI for hip joint cartilage assessment covering the roles of dGEMRIC, T2/T2*, and T1ρ mapping. The basics of each technique and their specific role in FAI assessment are outlined. Current limitations and potential pitfalls as well as future directions of biochemical imaging are also outlined.

  3. Advanced Imaging in Femoroacetabular Impingement: Current State and Future Prospects

    PubMed Central

    Bittersohl, Bernd; Hosalkar, Harish S.; Hesper, Tobias; Tiderius, Carl Johan; Zilkens, Christoph; Krauspe, Rüdiger

    2015-01-01

    Symptomatic femoroacetabular impingement (FAI) is now a known precursor of early osteoarthritis (OA) of the hip. In terms of clinical intervention, the decision between joint preservation and joint replacement hinges on the severity of articular cartilage degeneration. The exact threshold during the course of disease progression when the cartilage damage is irreparable remains elusive. The intention behind radiographic imaging is to accurately identify the morphology of osseous structural abnormalities and to accurately characterize the chondrolabral damage as much as possible. However, both plain radiographs and computed tomography (CT) are insensitive for articular cartilage anatomy and pathology. Advanced magnetic resonance imaging (MRI) techniques include magnetic resonance arthrography and biochemically sensitive techniques of delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), T1rho (T1ρ), T2/T2* mapping, and several others. The diagnostic performance of these techniques to evaluate cartilage degeneration could improve the ability to predict an individual patient-specific outcome with non-surgical and surgical care. This review discusses the facts and current applications of biochemical MRI for hip joint cartilage assessment covering the roles of dGEMRIC, T2/T2*, and T1ρ mapping. The basics of each technique and their specific role in FAI assessment are outlined. Current limitations and potential pitfalls as well as future directions of biochemical imaging are also outlined. PMID:26258129

  4. AXIOM: Advanced X-Ray Imaging of the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Branduardi-Raymont, G.; Sembay, S. F.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C.; Kataria, D.; Kemble, S.; Milan, S. E.; Owen, C. J.; Peacocke, L.; Read, A. M.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G. W.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.; Yeoman, T. K.

    2011-01-01

    Planetary plasma and magnetic field environments can be studied in two complementary ways by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose AXIOM: Advanced X-ray Imaging Of the Magnetosphere, a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterize the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction

  5. AXIOM: Advanced X-ray Imaging of the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Branduardi-Raymont, G.; Sembay, S. F.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C.; Kataria, D.; Kemble, S.; Milan, S. E.; Owen, C. J.; Peacocke, L.; Read, A. M.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G. W.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.; Yeoman, T. K.

    2012-01-01

    Planetary plasma and magnetic field environments can be studied in two complementary ways - by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques. which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located. X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock. with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose 'AXIOM: Advanced X-ray Imaging Of the Magnetosphere', a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth - Moon Ll point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterize the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and

  6. CCD Analog Programmable Microprocessor (APUP) Study

    DTIC Science & Technology

    1980-08-01

    failing module. Furthermore, the analog nature of charge- coupled devices (CCD’s) gives the prospect of a small-area, low-power, cost-effective...category, the data to be processed occur naturally in serial form and with storage times short enough that this category is a close match for CCD-based...future digital processors. Nonetheless, its pipeline nature might make it more suitable for a CCD type of implementation. The envelope detection block is

  7. Advanced imaging in acute and chronic deep vein thrombosis

    PubMed Central

    Karande, Gita Yashwantrao; Sanchez, Yadiel; Baliyan, Vinit; Mishra, Vishala; Ganguli, Suvranu; Prabhakar, Anand M.

    2016-01-01

    Deep venous thrombosis (DVT) affecting the extremities is a common clinical problem. Prompt imaging aids in rapid diagnosis and adequate treatment. While ultrasound (US) remains the workhorse of detection of extremity venous thrombosis, CT and MRI are commonly used as the problem-solving tools either to visualize the thrombosis in central veins like superior or inferior vena cava (IVC) or to test for the presence of complications like pulmonary embolism (PE). The cross-sectional modalities also offer improved visualization of venous collaterals. The purpose of this article is to review the established modalities used for characterization and diagnosis of DVT, and further explore promising innovations and recent advances in this field. PMID:28123971

  8. Recent advances in tissue (pro)renin imaging.

    PubMed

    Prokai, Agnes; Peti-Peterdi, Janos

    2010-06-01

    Due to its pivotal role in blood pressure control and renal pathologies there is renewed interest in renin and its precursor prorenin. Also, the newly discovered (pro)renin receptor is a new element of the ever broadening renin-angiotensin system (RAS). The complexity of RAS including the recently recognized collecting duct site of (pro)renin (a term denoting both renin and prorenin) synthesis requires the use of advanced research techniques such as multiphoton fluorescence microscopy. With the help of this technology we have pioneered an imaging approach to directly visualize (pro)renin content, release and tissue activity in the living kidney. The use of this technology is reviewed here and exemplified by the direct visualization of (pro)renin activity in the collecting duct. New pharmacological tools, the renin inhibitor aliskiren and the handle region peptide (decoy peptide) was used to further characterize the intra-renal, collecting duct RAS.

  9. Recent advances in tissue (pro)renin imaging

    PubMed Central

    Prokai, Agnes; Peti-Peterdi, Janos

    2010-01-01

    1. ABSTRACT Due to its pivotal role in blood pressure control and renal pathologies there is renewed interest in renin and its precursor prorenin. Also, the newly discovered (pro)renin receptor is a new element of the ever broadening renin-angiotensin system (RAS). The complexity of RAS including the recently recognized collecting duct site of (pro)renin (a term denoting both renin and prorenin) synthesis requires the use of advanced research techniques such as multiphoton fluorescence microscopy. With the help of this technology we have pioneered an imaging approach to directly visualize (pro)renin content, release and tissue activity in the living kidney. The use of this technology is reviewed here and exemplified by the direct visualization of (pro)renin activity in the collecting duct. New pharmacological tools, the renin inhibitor aliskiren and the handle region peptide (decoy peptide) was used to further characterize the intra-renal, collecting duct RAS. PMID:20515794

  10. Recent advances in hydrogen peroxide imaging for biological applications.

    PubMed

    Guo, Hengchang; Aleyasin, Hossein; Dickinson, Bryan C; Haskew-Layton, Renée E; Ratan, Rajiv R

    2014-01-01

    Mounting evidence supports the role of hydrogen peroxide (H2O2) in physiological signaling as well as pathological conditions. However, the subtleties of peroxide-mediated signaling are not well understood, in part because the generation, degradation, and diffusion of H2O2 are highly volatile within different cellular compartments. Therefore, the direct measurement of H2O2 in living specimens is critically important. Fluorescent probes that can detect small changes in H2O2 levels within relevant cellular compartments are important tools to study the spatial dynamics of H2O2. To achieve temporal resolution, the probes must also be photostable enough to allow multiple readings over time without loss of signal. Traditional fluorescent redox sensitive probes that have been commonly used for the detection of H2O2 tend to react with a wide variety of reactive oxygen species (ROS) and often suffer from photostablilty issues. Recently, new classes of H2O2 probes have been designed to detect H2O2 with high selectivity. Advances in H2O2 measurement have enabled biomedical scientists to study H2O2 biology at a level of precision previously unachievable. In addition, new imaging techniques such as two-photon microscopy (TPM) have been employed for H2O2 detection, which permit real-time measurements of H2O2 in vivo. This review focuses on recent advances in H2O2 probe development and optical imaging technologies that have been developed for biomedical applications.

  11. Diffusion Tensor Imaging and Its Application to Traumatic Brain Injury: Basic Principles and Recent Advances

    DTIC Science & Technology

    2012-12-01

    Diffusion Tensor Imaging and Its Application to Traumatic Brain Injury: Basic Principles and Recent Advances Ping-Hong Yeh1*, Terrence R. Oakes2,3...00-2012 4. TITLE AND SUBTITLE Diffusion Tensor Imaging and Its Application to Traumatic Brain Injury: Basic Principles and Recent Advances 5a...Gerard Riedy1,2,3,4 1Traumatic Brain Injury Image Analysis Lab, Henry Jackson Foundation for the Advancement of Military Medicine, Rockville, USA

  12. Titanium dioxide nanoparticles in advanced imaging and nanotherapeutics.

    PubMed

    Rajh, Tijana; Dimitrijevic, Nada M; Rozhkova, Elena A

    2011-01-01

    Semiconductor photocatalysis using nanoparticulate TiO(2) has proven to be a promising technology for use in catalytic reactions, in the cleanup of water contaminated with hazardous industrial by-products, and in nanocrystalline solar cells as a photoactive material. Metal oxide semiconductor colloids are of considerable interest because of their photocatalytic properties. The coordination sphere of the surface metal atoms is incomplete and thus traps light-induced charges, but also exhibits high affinity for oxygen-containing ligands and gives the opportunity for chemical modification. We use enediol linkers, such as dopamine and its analogs, to bridge the semiconductors to biomolecules such as DNA or proteins. Nanobio hybrids that combine the physical robustness and chemical reactivity of nanoscale metal oxides with the molecular recognition and selectivity of biomolecules were developed. Control of chemical processes within living cells was achieved using TiO(2) nanocomposites in order to develop new tools for advanced nanotherapeutics. Here, we describe general experimental approaches for synthesis and characterization of high crystallinity, water soluble 5 nm TiO(2) particles and their nanobio composites, methods of cellular sample preparation for advanced Synchrotron-based imaging of nanoparticles in single cell X-ray fluorescence, and a detailed experimental setup for application of the high-performance TiO(2)-based nanobio photocatalyst for targeted lysis of cancerous or other disordered cells.

  13. The Pulkovo CCD Spectroheliograph - Magnetograph

    NASA Astrophysics Data System (ADS)

    Pafinenko, L. D.

    The CCD spectroheliograph-magnetograph is a focal plane ancillary instrument for Pulkovo horizontal solar telescope ACU-5. The instrument is placed at an exit port of an isothermal high-resolution diffraction-grating spectrograph. The modified Leighton optical scheme for registration of sunspot magnetic fields is used. The instrument provides obtaining FITS digital video cards of radial velocities, magnetic fields and spectroheliogram in any line of spectral region 3900A - 11000A. The time of obtaining of one video card by the size 91[double prime or second] times154[double prime or second] is equal 10.24sec. The angular resolution of the instrument is 0[double prime or second].8; spectral resolution is 0.01-0.03A. There is remote access to a solar telescope in real time on the basis of Internet - process engineerings.

  14. The 2060 Chiron: CCD photometry

    NASA Technical Reports Server (NTRS)

    Bus, Schelte J.; Bowell, Edward; Harris, Alan W.

    1987-01-01

    R-band CCD photometry of 2060 was carried out on nine nights in Nov. and Dec. 1986. The rotation period is 5.9181 + or - 0.0003 hr and the peak to peak lightcurve amplitude is 0.088 + or - 0.0003 mag. Photometric parameters are H sub R = 6.24 + or - 0.02 mag and G sub R = + or - 0.15, though formal errors may not be realistic. The lightcurve has two pairs of extrema, but its asymmetry, as evidenced by the presence of significant odd Fourier harmonics, suggests macroscopic surface irregularities and/or the presence of some large scale albedo variegation. The observational rms residual is + or - 0.015 mag. On time scales from minutes to days there is no evidence for nonperiodic (cometary) brightness changes at the level of a few millimagnitudes.

  15. Dissecting cell adhesion architecture using advanced imaging techniques

    PubMed Central

    Morton, Penny E

    2011-01-01

    Cell adhesion to extracellular matrix proteins or to other cells is essential for the control of embryonic development, tissue integrity, immune function and wound healing. Adhesions are tightly spatially regulated structures containing over one hundred different proteins that coordinate both dynamics and signaling events at these sites. Extensive biochemical and morphological analysis of adhesion types over the past three decades has greatly improved understanding of individual protein contributions to adhesion signaling and, in some cases, dynamics. However, it is becoming increasingly clear that these diverse macromolecular complexes contain a variety of protein sub-networks, as well as distinct sub-domains that likely play important roles in regulating adhesion behavior. Until recently, resolving these structures, which are often less than a micron in size, was hampered by the limitations of conventional light microscopy. However, recent advances in optical techniques and imaging methods have revealed exciting insight into the intricate control of adhesion structure and assembly. Here we provide an overview of the recent data arising from such studies of cell:matrix and cell:cell contact and an overview of the imaging strategies that have been applied to study the intricacies and hierarchy of proteins within adhesions. PMID:21785274

  16. Advances in submicron infrared vibrational band chemical imaging

    NASA Astrophysics Data System (ADS)

    Dragnea, Bogdan; Leone, Stephen R.

    The technique of infrared near-field microscopy with submicron resolution is an important addition to the chemical sciences arsenal in the last few years. Although related to highly successful scanning optical probe microscopies in the visible, infrared near-field microscopy had to overcome several obstacles, which slowed its development. This review illustrates the history as well as the state of the art of this new field, its limitations and perspectives. At present, two main experimental approaches have been successful: the apertureless metal tip approach and the fibre tip aperture approach. The two variants are compared from the point of view of resolution, ease of implementation in the laboratory and image formation mechanisms. The techniques using chemically specific vibrational absorption contrast are emphasized here, in the general context of chemical microscopy, which includes other methods such as chemical force, Raman and fluorescence microscopies. The phenomenon of surface-enhanced infrared absorption is also mentioned in relation to near-field infrared microscopy, with regard to important aspects of image formation and possible improvements. The main advantages of spatial resolution, chemical sensitivity, non-intrusiveness, minute amounts of specimen and the possibility of quantitative analytical measurements make infrared near-field microscopy a powerful tool. We also examine here possible future applications that go beyond the limits of classical vibrational microspectroscopy, as well as directions for additional advances.

  17. Advanced infrared detection and image processing for automated bat censusing

    NASA Astrophysics Data System (ADS)

    Frank, Jeffery D.; Kunz, Tomas H.; Horn, Jason; Cleveland, Cutler; Petronio, Susan M.

    2003-09-01

    The Brazilian free-tailed bat (Tadarida brasiliensis) forms some of the largest aggregations of mammals known to mankind. However, little is known about population sizes and nightly foraging activities. An advanced infrared (IR) thermal imaging system with a real time imaging and data acquisition system is described for censusing Brazilian free-tailed bats during nightly emergences at selected Texas caves. We developed a statistically-based algorithm suitable for counting emerging bats in columns with relative constant trajectories and velocities. Individual bats are not identified and tracked, but instead column density is calculated at intervals of 1/30th of a second and counts are accumulated based upon column velocity. Preliminary evaluation has shown this method to be far more accurate than those previously used to census large bat populations. This real-time automated censusing system allows us to make accurate and repeatable estimates of the number of bats present independent of colony size, ambient light, or weather conditions, and without causing disturbance to the colony.

  18. Sharpening advanced land imager multispectral data using a sensor model

    USGS Publications Warehouse

    Lemeshewsky, G.P.; ,

    2005-01-01

    The Advanced Land Imager (ALI) instrument on NASA's Earth Observing One (EO-1) satellite provides for nine spectral bands at 30m ground sample distance (GSD) and a 10m GSD panchromatic band. This report describes an image sharpening technique where the higher spatial resolution information of the panchromatic band is used to increase the spatial resolution of ALI multispectral (MS) data. To preserve the spectral characteristics, this technique combines reported deconvolution deblurring methods for the MS data with highpass filter-based fusion methods for the Pan data. The deblurring process uses the point spread function (PSF) model of the ALI sensor. Information includes calculation of the PSF from pre-launch calibration data. Performance was evaluated using simulated ALI MS data generated by degrading the spatial resolution of high resolution IKONOS satellite MS data. A quantitative measure of performance was the error between sharpened MS data and high resolution reference. This report also compares performance with that of a reported method that includes PSF information. Preliminary results indicate improved sharpening with the method reported here.

  19. Intensified-CCD focal plane detector for space applications A second generation

    NASA Technical Reports Server (NTRS)

    Torr, M. R.; Torr, D. G.; Baum, R.; Spielmaker, R.

    1986-01-01

    An intensified-CCD detector system developed for space applications from commercially available components is described. This detector uses components which are readily available and are mechanically, thermally, and optically coupled to produce the final compact system. The CCD is cooled using a Peltier-effect thermoelectric cooler to reduce thermal noise. The image is formed on the photocathode of a proximity-focused image intensifier and is transferred fiber-optically from the intensifier to the CDD. Various photocathode and window materials are used to optimize the system for use within the wavelength range extending from the far UV to the near IR. The basic design, including the image intensifier, intensifier-CCD interface, CCD array, cooling, electronics, and mounting, and the detector performance are described in detail.

  20. Advances in target imaging of deep Earth structure

    NASA Astrophysics Data System (ADS)

    Masson, Y.; Romanowicz, B. A.; Clouzet, P.

    2015-12-01

    A new generation of global tomographic models (Lekić and Romanowicz, 2011; French et al, 2013, 2014) has emerged with the development of accurate numerical wavefield computations in a 3D earth combined with access to enhanced HPC capabilities. These models have sharpened up mantle images and unveiled relatively small scale structures that were blurred out in previous generation models. Fingerlike structures have been found at the base of the oceanic asthenosphere, and vertically oriented broad low velocity plume conduits extend throughout the lower mantle beneath those major hotspots that are located within the perimeter of the deep mantle large low shear velocity provinces (LLSVPs). While providing new insights into our understanding of mantle dynamics, the detailed morphology of these features, requires further efforts to obtain higher resolution images. The focus of our ongoing effort is to develop advanced tomographic methods to image remote regions of the Earth at fine scales. We have developed an approach in which distant sources (located outside of the target region) are replaced by an equivalent set of local sources located at the border of the computational domain (Masson et al., 2014). A limited number of global simulations in a reference 3D earth model is then required. These simulations are computed prior to the regional inversion, while iterations of the model need to be performed only within the region of interest, potentially allowing us to include shorter periods at limited additional computational cost. Until now, the application was limited to a distribution of receivers inside the target region. This is particularly suitable for studies of upper mantle structure in regions with dense arrays (e.g. see our companion presentation Clouzet et al., this Fall AGU). Here we present our latest development that now can include teleseismic data recorded outside the imaged region. This allows us to perform regional waveform tomography in the situation where

  1. Advanced Airborne Hyperspectral Imaging System (AAHIS): an imaging spectrometer for maritime applications

    NASA Astrophysics Data System (ADS)

    Voelker, Mark A.; Resmini, Ronald G.; Mooradian, Gregory C.; McCord, Thomas B.; Warren, Christopher P.; Fene, Michael W.; Coyle, Christopher C.; Anderson, Richard

    1995-06-01

    The Advanced Airborne Hyperspectral Imaging System (AAHIS) is a compact, lightweight visible and near IR pushbroom hyperspectral imaging spectrometer flown on a Piper Aztec aircraft. AAHIS is optimized for use in shallow water, littoral, and vegetation remote sensing. Data are collected at up to 55 frames/second and may be displayed and analyzed inflight or recorded for post-flight processing. Swath width is 200 meters at a flight altitude of 1 km. Each image pixel contains hyperspectral data simultaneously recorded in up to 288 contiguous spectral channels covering the 432 to 832 nm spectral region. Pixel binning typically yields pixels 1.0 meter square with a spectral channel width of 5.5 nm. Design and performance of the AAHIS is presented, including processed imagery demonstrating feature detection and materials discrimination on land and underwater at depths up to 27 meters.

  2. Robotic CCD microscope for enhanced crystal recognition

    DOEpatents

    Segelke, Brent W.; Toppani, Dominique

    2007-11-06

    A robotic CCD microscope and procedures to automate crystal recognition. The robotic CCD microscope and procedures enables more accurate crystal recognition, leading to fewer false negative and fewer false positives, and enable detection of smaller crystals compared to other methods available today.

  3. Status Of Sofradir IR-CCD Detectors

    NASA Astrophysics Data System (ADS)

    Tribolet, Philippe; Radisson, Patrick

    1988-05-01

    The topics of this paper deal with the IR-CCD detectors manufactured by SOFRADIR the new French joint venture. Description of the IRCCD technology and the advantages of this approach are given. In conclusion, some IR-CCD typical results are given.

  4. Application of Advanced Magnetic Resonance Imaging Techniques in Evaluation of the Lower Extremity

    PubMed Central

    Braun, Hillary J.; Dragoo, Jason L.; Hargreaves, Brian A.; Levenston, Marc E.; Gold, Garry E.

    2012-01-01

    Synopsis This article reviews current magnetic resonance imaging techniques for imaging the lower extremity, focusing on imaging of the knee, ankle, and hip joints. Recent advancements in MRI include imaging at 7 Tesla, using multiple receiver channels, T2* imaging, and metal suppression techniques, allowing more detailed visualization of complex anatomy, evaluation of morphological changes within articular cartilage, and imaging around orthopedic hardware. PMID:23622097

  5. The Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO)

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Bookbinder, Jay; Petre, Robert; Smith, Randall; Ptak, Andrew; Tananbaum, Harvey; Garcia, Michael

    2012-01-01

    Following recommendations from the 2010 "New Worlds, New Horizons" (NWNH) report, the Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO) concept streamlines the International X-ray Observatory (IXO) mission to concentrate on the science objectives that are enabled by high-resolution spectroscopic capabilities. AXSIO will trace orbits close to the event horizon of black holes, measure black hole spin for tens of supermassive black holes (SMBH), use spectroscopy to characterize outflows and the environment of AGN during their peak activity, observe 5MBH out to redshift z=6, map bulk motions and turbulence in galaxy clusters, find the missing baryons in the cosmic web using background quasars, and observe the process of cosmic feedback where black holes and supernovae inject energy on galactic and intergalactic scales. These measurements are enabled by a 0.9 sq m collecting area at 1.25 keV, a micro calorimeter array providing high-resolution spectroscopic imaging and a deployable high efficiency grating spectrometer. AXSIO delivers a 30-fold increase in effective area for high resolution spectroscopy. The key simplifications are guided by recommendations in the NWNH panel report include a reduction in focal length from 20m to 10m, eliminating the extendable optical bench, and a reduction in the instrument complement from six to two, avoiding a movable instrument platform. A focus on spectroscopic science allows the spatial resolution requirement to be relaxed to 10 arc sec (with a 5 arc sec goal). These simplifications decrease the total mission cost to under the $2B cost to NASA recommended by NWNH. AXSIO will be available to the entire astronomical community with observing allocations based on peer-review.

  6. Low temperature multi-alkali photocathode processing technique for sealed intensified CCD tubes

    NASA Technical Reports Server (NTRS)

    Doliber, D. L.; Dozier, E. E.; Wenzel, H.; Beaver, E. A.; Hier, R. G.

    1989-01-01

    A low temperature photocathode process has been used to fabricate an intensified CCD visual photocathode image tube, by incorporating a thinned, backside-illumined CCD as the target anode of a digicon tube of Hubble Space Telescope (HST) design. The CCD digicon tube employs the HST's sodium bialkali photocathode and MgF2 substrate, thereby allowing a direct photocathode quantum efficiency comparison between photocathodes produced by the presently employed low temperature process and those of the conventional high temperature process. Attention is given to the processing chamber used, as well as the details of gas desorption and photocathode processing.

  7. Advanced imaging techniques for the study of plant growth and development

    PubMed Central

    Sozzani, Rosangela; Busch, Wolfgang; Spalding, Edgar P.; Benfey, Philip N.

    2014-01-01

    A variety of imaging methodologies are being used to collect data for quantitative studies of plant growth and development from living plants. Multi-level data, from macroscopic to molecular, and from weeks to seconds, can be acquired. Furthermore, advances in parallelized and automated image acquisition enable the throughput to capture images from large populations of plants under specific growth conditions. Image-processing capabilities allow for 3D or 4D reconstruction of image data and automated quantification of biological features. These advances facilitate the integration of imaging data with genome-wide molecular data to enable systems-level modeling. PMID:24434036

  8. Advanced imaging techniques for the study of plant growth and development.

    PubMed

    Sozzani, Rosangela; Busch, Wolfgang; Spalding, Edgar P; Benfey, Philip N

    2014-05-01

    A variety of imaging methodologies are being used to collect data for quantitative studies of plant growth and development from living plants. Multi-level data, from macroscopic to molecular, and from weeks to seconds, can be acquired. Furthermore, advances in parallelized and automated image acquisition enable the throughput to capture images from large populations of plants under specific growth conditions. Image-processing capabilities allow for 3D or 4D reconstruction of image data and automated quantification of biological features. These advances facilitate the integration of imaging data with genome-wide molecular data to enable systems-level modeling.

  9. Design and performance of the EO-1 Advanced Land Imager

    NASA Astrophysics Data System (ADS)

    Lencioni, Donald E.; Digenis, Constantine J.; Bicknell, William E.; Hearn, David R.; Mendenhall, Jeffrey A.

    1999-12-01

    An Advanced Land Imager (ALI) will be flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). The ALI contains a number of key NMP technologies. These include a 15 degree wide field-of-view, push-broom instrument architecture with a 12.5 cm aperture diameter, compact multispectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics, and a multi-level solar calibration technique. The focal plane contains multispectral and panchromatic (MS/Pan) detector arrays with a total of 10 spectral bands spanning the 0.4 to 2.5 micrometer wavelength region. Seven of these correspond to the heritage Landsat bands. The instantaneous fields of view of the detectors are 14.2 (mu) rad for the Pan band and 42.6 (mu) rad for the MS bands. The partially populated focal plane provides a 3 degree cross-track coverage corresponding to 37 km on the ground. The focal plane temperature is maintained at 220 K by means of a passive radiator. The instrument environmental and performance testing has been completed. Preliminary data analysis indicates excellent performance. This paper presents an overview of the instrument design, the calibration strategy, and results of the pre-flight performance measurements. It also discusses the potential impact of ALI technologies to future Landsat-like instruments.

  10. Recent Advances in Metabolic Profiling And Imaging of Prostate Cancer

    PubMed Central

    Thapar, Roopa; Titus, Mark A

    2015-01-01

    Cancer is a metabolic disease. Cancer cells, being highly proliferative, show significant alterations in metabolic pathways such as glycolysis, respiration, the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, lipid metabolism, and amino acid metabolism. Metabolites like peptides, nucleotides, products of glycolysis, the TCA cycle, fatty acids, and steroids can be an important read out of disease when characterized in biological samples such as tissues and body fluids like urine, serum, etc. The cancer metabolome has been studied since the 1960s by analytical techniques such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Current research is focused on the identification and validation of biomarkers in the cancer metabolome that can stratify high-risk patients and distinguish between benign and advanced metastatic forms of the disease. In this review, we discuss the current state of prostate cancer metabolomics, the biomarkers that show promise in distinguishing indolent from aggressive forms of the disease, the strengths and limitations of the analytical techniques being employed, and future applications of metabolomics in diagnostic imaging and personalized medicine of prostate cancer. PMID:25632377

  11. Advances in functional magnetic resonance imaging: technology and clinical applications.

    PubMed

    Dickerson, Bradford C

    2007-07-01

    Functional MRI (fMRI) is a valuable method for use by clinical investigators to study task-related brain activation in patients with neurological or neuropsychiatric illness. Despite the relative infancy of the field, the rapid adoption of this functional neuroimaging technology has resulted from, among other factors, its ready availability, its relatively high spatial and temporal resolution, and its safety as a noninvasive imaging tool that enables multiple repeated scans over the course of a longitudinal study, and thus may lend itself well as a measure in clinical drug trials. Investigators have used fMRI to identify abnormal functional brain activity during task performance in a variety of patient populations, including those with neurodegenerative, demyelinating, cerebrovascular, and other neurological disorders that highlight the potential utility of fMRI in both basic and clinical spheres of research. In addition, fMRI studies reveal processes related to neuroplasticity, including compensatory hyperactivation, which may be a universally-occurring, adaptive neural response to insult. Functional MRI is being used to study the modulatory effects of genetic risk factors for neurological disease on brain activation; it is being applied to differential diagnosis, as a predictive biomarker of disease course, and as a means to identify neural correlates of neurotherapeutic interventions. Technological advances are rapidly occurring that should provide new applications for fMRI, including improved spatial resolution, which promises to reveal novel insights into the function of fine-scale neural circuitry of the human brain in health and disease.

  12. Earth Observing-1 Advanced Land Imager: Imaging Performance On-Orbit

    NASA Technical Reports Server (NTRS)

    Hearn, D. R.

    2002-01-01

    This report analyzes the on-orbit imaging performance of the Advanced Land Imager (ALI) on the Earth Observing-1 satellite. The pre-flight calibrations are first summarized. The methods used to reconstruct and geometrically correct the image data from this push-broom sensor are described. The method used here does not refer to the position and attitude telemetry from the spacecraft. Rather, it is assumed that the image of the scene moves across the focal plane with a constant velocity, which can be ascertained from the image data itself. Next, an assortment of the images so reconstructed is presented. Color images sharpened with the 10-m panchromatic band data are shown, and the algorithm for producing them from the 30-m multispectral data is described. The approach taken for assessing spatial resolution is to compare the sharpness of features in the on-orbit image data with profiles predicted on the basis of the pre-flight calibrations. A large assortment of bridge profiles is analyzed, and very good fits to the predicted shapes are obtained. Lunar calibration scans are analyzed to examine the sharpness of the edge-spread function at the limb of the moon. The darkness of the space beyond the limb is better for this purpose than anything that could be simulated on the ground. From these scans, we find clear evidence of scattering in the optical system, as well as some weak ghost images. Scans of planets and stars are also analyzed. Stars are useful point sources of light at all wavelengths, and delineate the point-spread functions of the system. From a quarter-speed scan over the Pleiades, we find that the ALI can detect 6th magnitude stars. The quality of the reconstructed images verifies the capability of the ALI to produce Landsat-type multi spectral data. The signal-to-noise and panchromatic spatial resolution are considerably superior to those of the existing Landsat sensors. The spatial resolution is confirmed to be as good as it was designed to be.

  13. Cryostat and CCD for MEGARA at GTC

    NASA Astrophysics Data System (ADS)

    Castillo-Domínguez, E.; Ferrusca, D.; Tulloch, S.; Velázquez, M.; Carrasco, E.; Gallego, J.; Gil de Paz, A.; Sánchez, F. M.; Vílchez Medina, J. M.

    2012-09-01

    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is the new integral field unit (IFU) and multi-object spectrograph (MOS) instrument for the GTC. The spectrograph subsystems include the pseudo-slit, the shutter, the collimator with a focusing mechanism, pupil elements on a volume phase holographic grating (VPH) wheel and the camera joined to the cryostat through the last lens, with a CCD detector inside. In this paper we describe the full preliminary design of the cryostat which will harbor the CCD detector for the spectrograph. The selected cryogenic device is an LN2 open-cycle cryostat which has been designed by the "Astronomical Instrumentation Lab for Millimeter Wavelengths" at INAOE. A complete description of the cryostat main body and CCD head is presented as well as all the vacuum and temperature sub-systems to operate it. The CCD is surrounded by a radiation shield to improve its performance and is placed in a custom made mechanical mounting which will allow physical adjustments for alignment with the spectrograph camera. The 4k x 4k pixel CCD231 is our selection for the cryogenically cooled detector of MEGARA. The characteristics of this CCD, the internal cryostat cabling and CCD controller hardware are discussed. Finally, static structural finite element modeling and thermal analysis results are shown to validate the cryostat model.

  14. Imaging Multimodalities for Dissecting Alzheimer's Disease: Advanced Technologies of Positron Emission Tomography and Fluorescence Imaging

    PubMed Central

    Shimojo, Masafumi; Higuchi, Makoto; Suhara, Tetsuya; Sahara, Naruhiko

    2015-01-01

    The rapid progress in advanced imaging technologies has expanded our toolbox for monitoring a variety of biological aspects in living subjects including human. In vivo radiological imaging using small chemical tracers, such as with positron emission tomography, represents an especially vital breakthrough in the efforts to improve our understanding of the complicated cascade of neurodegenerative disorders including Alzheimer's disease (AD), and it has provided the most reliable visible biomarkers for enabling clinical diagnosis. At the same time, in combination with genetically modified animal model systems, the most recent innovation of fluorescence imaging is helping establish diverse applications in basic neuroscience research, from single-molecule analysis to animal behavior manipulation, suggesting the potential utility of fluorescence technology for dissecting the detailed molecular-based consequence of AD pathophysiology. In this review, our primary focus is on a current update of PET radiotracers and fluorescence indicators beneficial for understanding the AD cascade, and discussion of the utility and pitfalls of those imaging modalities for future translational research applications. We will also highlight current cutting-edge genetic approaches and discuss how to integrate individual technologies for further potential innovations. PMID:26733795

  15. Practical performance evaluation of a 10k × 10k CCD for electron cryo-microscopy

    PubMed Central

    Bammes, Benjamin E.; Rochat, Ryan H.; Jakana, Joanita; Chiu, Wah

    2011-01-01

    Electron cryo-microscopy (cryo-EM) images are commonly collected using either charge-coupled devices (CCD) or photographic film. Both film and the current generation of 16 megapixel (4k × 4k) CCD cameras have yielded high-resolution structures. Yet, despite the many advantages of CCD cameras, more than two times as many structures of biological macromolecules have been published in recent years using photographic film. The continued preference to film, especially for subnanometer-resolution structures, may be partially influenced by the finer sampling and larger effective specimen imaging area offered by film. Large format digital cameras may finally allow them to overtake film as the preferred detector for cryo-EM. We have evaluated a 111-megapixel (10k × 10k) CCD camera with a 9 μm pixel size. The spectral signal-to-noise ratios of low dose images of carbon film indicate that this detector is capable of providing signal up to at least 2/5 Nyquist frequency potentially retrievable for 3-D reconstructions of biological specimens, resulting in more than double the effective specimen imaging area of existing 4k × 4k CCD cameras. We verified our estimates using frozen-hydrated ε15 bacteriophage as a biological test specimen with previously determined structure, yielding a ~7 Å resolution single particle reconstruction from only 80 CCD frames. Finally, we explored the limits of current CCD technology by comparing the performance of this detector to various CCD cameras used for recording data yielding subnanometer resolution cryo-EM structures submitted to the Electron Microscopy Data Bank (http://www.emdatabank.org/). PMID:21619932

  16. CCD Multi-Function Processor Test Bed.

    DTIC Science & Technology

    1982-01-01

    AD-A111 335 MITRE CORP BEDFORDMA F/6 9/5 CCD MULTIFUNCTION PROCESSOR TEST BED.(U) JAN 82 M W PACZAN. S M WALOSTEIN F19628-81-C-OO01 UNCLASSIFIED MTR...HAIAf III 4 ESD-TR-81-394 MTR-8417 CCD MULTI-FUNCTION PROCESSOR TEST BED By M. W. Paczan and S. M. Waldstein JANUARY 1982 Prepared for DEPUTY FOR...TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED CCD MULTI-FUNCTION PROCESSOR TEST BED 6. PERFORMING ORG. REPORT NUMBER MTR-8417 7 AUT-OR(s) S

  17. Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry.

    PubMed

    Krstajić, Nikola; Doran, Simon J

    2006-04-21

    Optical tomography of gel dosimeters is a promising and cost-effective avenue for quality control of radiotherapy treatments such as intensity-modulated radiotherapy (IMRT). Systems based on a laser coupled to a photodiode have so far shown the best results within the context of optical scanning of radiosensitive gels, but are very slow ( approximately 9 min per slice) and poorly suited to measurements that require many slices. Here, we describe a fast, three-dimensional (3D) optical computed tomography (optical-CT) apparatus, based on a broad, collimated beam, obtained from a high power LED and detected by a charged coupled detector (CCD). The main advantages of such a system are (i) an acquisition speed approximately two orders of magnitude higher than a laser-based system when 3D data are required, and (ii) a greater simplicity of design. This paper advances our previous work by introducing a new design of focusing optics, which take information from a suitably positioned focal plane and project an image onto the CCD. An analysis of the ray optics is presented, which explains the roles of telecentricity, focusing, acceptance angle and depth-of-field (DOF) in the formation of projections. A discussion of the approximation involved in measuring the line integrals required for filtered backprojection reconstruction is given. Experimental results demonstrate (i) the effect on projections of changing the position of the focal plane of the apparatus, (ii) how to measure the acceptance angle of the optics, and (iii) the ability of the new scanner to image both absorbing and scattering gel phantoms. The quality of reconstructed images is very promising and suggests that the new apparatus may be useful in a clinical setting for fast and accurate 3D dosimetry.

  18. CCD Photometry of bright stars using objective wire mesh

    SciTech Connect

    Kamiński, Krzysztof; Zgórz, Marika; Schwarzenberg-Czerny, Aleksander

    2014-06-01

    Obtaining accurate photometry of bright stars from the ground remains problematic due to the danger of overexposing the target and/or the lack of suitable nearby comparison stars. The century-old method of using objective wire mesh to produce multiple stellar images seems promising for the precise CCD photometry of such stars. Furthermore, our tests on β Cep and its comparison star, differing by 5 mag, are very encouraging. Using a CCD camera and a 20 cm telescope with the objective covered by a plastic wire mesh, in poor weather conditions, we obtained differential photometry with a precision of 4.5 mmag per two minute exposure. Our technique is flexible and may be tuned to cover a range as big as 6-8 mag. We discuss the possibility of installing a wire mesh directly in the filter wheel.

  19. The CCD/Transit Instrument (CTI) data-analysis system

    NASA Technical Reports Server (NTRS)

    Cawson, M. G. M.; Mcgraw, J. T.; Keane, M. J.

    1986-01-01

    An account is given of the Kitt Peak CCD/Transit Instrument's software for the automated archiving, analysis, and interrogation of each observation night's nearly 450 Mbytes of image data. The analysis phase is performed by a pair of linked algorithms, one of which operates on the absolute pixel-values and the other on the spatial derivative of the data, so that both isolated and merged images are reliably detected in a single pass. This is in due course followed by the automatic comparison of each new detection with a set of predefined templates in parameter space, in order to find such interesting objects as supernovae, quasars, and variable stars.

  20. The Advanced Gamma-Ray Imaging System (AGIS): Science Highlights

    SciTech Connect

    Buckley, J.; Coppi, P.; Digel, S.; Funk, S.; Krawczynski, H.; Krennrich, F.; Pohl, M.; Romani, R.; Vassiliev, V.; /UCLA

    2011-11-21

    The Advanced Gamma-ray Imaging System (AGIS), a future gamma-ray telescope consisting of an array of {approx}50 atmospheric Cherenkov telescopes distributed over an area of {approx}1 km{sup 2}, will provide a powerful new tool for exploring the high-energy universe. The order-of-magnitude increase in sensitivity and improved angular resolution could provide the first detailed images of {gamma}-ray emission from other nearby galaxies or galaxy clusters. The large effective area will provide unprecedented sensitivity to short transients (such as flares from AGNs and GRBs) probing both intrinsic spectral variability (revealing the details of the acceleration mechanism and geometry) as well as constraining the high-energy dispersion in the velocity of light (probing the structure of spacetime and Lorentz invariance). A wide field of view ({approx}4 times that of current instruments) and excellent angular resolution (several times better than current instruments) will allow for an unprecedented survey of the Galactic plane, providing a deep unobscured survey of SNRs, X-ray binaries, pulsar-wind nebulae, molecular cloud complexes and other sources. The differential flux sensitivity of {approx}10{sup -13} erg cm{sup -2} sec{sup -1} will rival the most sensitive X-ray instruments for these extended Galactic sources. The excellent capabilities of AGIS at energies below 100 GeV will provide sensitivity to AGN and GRBs out to cosmological redshifts, increasing the number of AGNs detected at high energies from about 20 to more than 100, permitting population studies that will provide valuable insights into both a unified model for AGN and a detailed measurement of the effects of intergalactic absorption from the diffuse extragalactic background light. A new instrument with fast-slewing wide-field telescopes could provide detections of a number of long-duration GRBs providing important physical constraints from this new spectral component. The new array will also have excellent

  1. [Dolichoectatic intracranial arteries. Advances in images and therapeutics].

    PubMed

    Casas Parera, I; Abruzzi, M; Lehkuniec, E; Schuster, G; Muchnik, S

    1995-01-01

    Dolichoectasia of intracranial arteries is an infrequent disease with an incidence less than 0.05% in general population. It represents 7% of all intracranial aneurysms. Commonly seen in middle age patients with severe atherosclerosis and hypertension, the affected arteries include the basilar artery, supraclinoid segment of the internal carotid artery, middle, anterior and posterior cerebral arteries; males are more frequently affected. The clinical features of these fusiform aneurysms are divided in three categories: ische-mic, cranial nerve compression and signs from mass effect. Hemorrhage may also occur. Nine patients with symptomatic cerebral blood vessel dolichoectasias are presented. Six of them were males with moderate or severe hypertension. Lesions were confined to the basilar artery in 3 cases, carotid arteries and the middle cerebral artery in 1 case, and both systems were affected in 4 patients. Middle cerebral arteries were affected in 5 cases and the anterior cerebral artery in one. An isolated fusiform aneurysm of the posterior cerebral artery is also presented (case 8) (Table 3). Motor or sensory deficits, ataxia, dementia, hemifacial spasm and parkinsonism were observed. One patient died from cerebro-meningeal hemorrhage (Table 2). All patients were studied with computerized axial tomography of the brain, 5 cases with four vessel cerebral angiography, 4 cases with magnetic resonance imaging (MRI) and case 5 with MRI angiography. Clinical symptoms depend on the affected vascular territory, size of the aneurysm and compression of adjacent structures. The histopathologic findings are atheromatous lesions, disruption of the internal elastic membrane and fibrosis of the muscular wall. The resultant is a diffuse deficiency of the muscular wall and the internal elastic membrane. Recent advances in neuroimaging such as better resolution of CT scan, magnetic resonance images (MRI) and MRI angiography increased the diagnosis of this pathology showing

  2. CCD TV focal plane guider development and comparison to SIRTF applications

    NASA Technical Reports Server (NTRS)

    Rank, David M.

    1989-01-01

    It is expected that the SIRTF payload will use a CCD TV focal plane fine guidance sensor to provide acquisition of sources and tracking stability of the telescope. Work has been done to develop CCD TV cameras and guiders at Lick Observatory for several years and have produced state of the art CCD TV systems for internal use. NASA decided to provide additional support so that the limits of this technology could be established and a comparison between SIRTF requirements and practical systems could be put on a more quantitative basis. The results of work carried out at Lick Observatory which was designed to characterize present CCD autoguiding technology and relate it to SIRTF applications is presented. Two different design types of CCD cameras were constructed using virtual phase and burred channel CCD sensors. A simple autoguider was built and used on the KAO, Mt. Lemon and Mt. Hamilton telescopes. A video image processing system was also constructed in order to characterize the performance of the auto guider and CCD cameras.

  3. MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery.

    PubMed

    Siewerdsen, J

    2016-06-01

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: (1) Keyvan Farahani, "Image-guided focused ultrasound surgery and therapy" (2) Jeffrey H. Siewerdsen, "Advances in image registration and reconstruction for image-guided neurosurgery" (3) Tina Kapur, "Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite" (4) Raj Shekhar, "Multimodality image-guided interventions: Multimodality for the rest of us" Learning Objectives: 1. Understand the principles and applications of HIFU in surgical ablation. 2. Learn about recent advances in 3D-2D and 3D deformable image registration in support of surgical safety and precision. 3. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. 4. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. 5. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and

  4. Radiation load to the SNAP CCD

    SciTech Connect

    N. V. Mokhov, I. L. Rakhno and S. I. Striganov

    2003-08-14

    Results of an express Monte Carlo analysis with the MARS14 code of radiation load to the CCD optical detectors in the Supernova Acceleration Project (SNAP) mission presented for realistic radiation environment over the satellite orbit.

  5. Design of 300 frames per second 16-port CCD video processing circuit

    NASA Astrophysics Data System (ADS)

    Yang, Shao-hua; Guo, Ming-an; Li, Bin-kang; Xia, Jing-tao; Wang, Qunshu

    2011-08-01

    It is hard to achieve the speed of hundreds frames per second in high resolution charge coupled device (CCD) cameras, because the pixels' charge must be read out one by one in serial mode, this cost a lot of time. The multiple-port CCD technology is a new efficiency way to realize high frame rate high resolution solid state imaging systems. The pixel charge is read out from a multiple-port CCD through several ports in parallel mode, witch decrease the reading time of the CCD. But it is hard for the multiple-port CCDs' video processing circuit design, and the real time high speed image data acquisition is also a knotty problem. A 16-port high frame rate CCD video processing circuit based on Complex Programmable Logic Device (CPLD) and VSP5010 has been developed around a specialized back illuminated, 512 x 512 pixels, 400fps (frames per second) frame transfer CCD sensor from Sarnoff Ltd. A CPLD is used to produce high precision sample clock and timing, and the high accurate CCD video voltage sample is achieved with Correlated Double Sampling (CDS) technology. 8 chips of VSP5010 with CDS function is adopted to achieve sample and digitize CCD analog signal into 12 bit digital image data. Thus the 16 analog CCD output was digitized into 192 bit 6.67MHz parallel digital image data. Then CPLD and Time Division Multiplexing (TDM) technology are used to encode the 192 bit wide data into two 640MHz serial data and transmitted to remote data acquisition module via two fibers. The acquisition module decodes the serial data into original image data and stores the data into a frame cache, and then the software reads the data from the frame cache based on USB2.0 technology and stores the data in a hard disk. The digital image data with 12bit per pixel was collected and displayed with system software. The results show that the 16-por 300fps CCD output signals could be digitized and transmitted with the video processing circuit, and the remote data acquisition has been realized.

  6. English 591, 592, and 593--Advance Program: Images of Man.

    ERIC Educational Resources Information Center

    Jefferson County Board of Education, Louisville, KY.

    For those students who qualify, the Advance Program offers an opportunity to follow a stimulating curriculum designed for the academically talented. The purposes of the course outlined in this guide for twelfth grade English are to bring the previous three years' studies in Advance Program English to a meaningful culmination; to provide a…

  7. Correcting STIS CCD Point-Source Spectra for CTE Loss

    NASA Technical Reports Server (NTRS)

    Goudfrooij, Paul; Bohlin, Ralph C.; Maiz-Apellaniz, Jesus

    2006-01-01

    We review the on-orbit spectroscopic observations that are being used to characterize the Charge Transfer Efficiency (CTE) of the STIS CCD in spectroscopic mode. We parameterize the CTE-related loss for spectrophotometry of point sources in terms of dependencies on the brightness of the source, the background level, the signal in the PSF outside the standard extraction box, and the time of observation. Primary constraints on our correction algorithm are provided by measurements of the CTE loss rates for simulated spectra (images of a tungsten lamp taken through slits oriented along the dispersion axis) combined with estimates of CTE losses for actual spectra of spectrophotometric standard stars in the first order CCD modes. For point-source spectra at the standard reference position at the CCD center, CTE losses as large as 30% are corrected to within approx.1% RMS after application of the algorithm presented here, rendering the Poisson noise associated with the source detection itself to be the dominant contributor to the total flux calibration uncertainty.

  8. Instrumentation for the U.S. Naval Observatory CCD Astrograph

    NASA Astrophysics Data System (ADS)

    Rafferty, T. J.; Germain, M. E.; Zacharias, N.

    The U.S. Naval Observatory CCD Astrograph will start an observing program in mid-1997 on Cerro Tololo (CTIO) in Chile to produce a high density, high accuracy, astrometric catalog of the southern hemisphere stars down to 16th magnitude. The program will be done using a robotic, refracting telescope with a 8-inch five-element red-corrected lens. A Kodak 4k x 4k (9 micron pixels) CCD camera will allow a one square-degree field of view, which is large enough to provide the necessary reference stars. The dome rotation, setting and clamping the X-Y slide for the guidescope, setting and clamping the focus, telescope setting, and use of a Hartman screen for determining the focus will be done automatically. The system is controlled via an embedded single-board computer. A host PC sends commands to the embedded computer, receives status information, controls the camera, saves the images to disk, and does the on-line reduction of the previous CCD frame.

  9. Recent advances in CZT strip detectors and coded mask imagers

    NASA Astrophysics Data System (ADS)

    Matteson, J. L.; Gruber, D. E.; Heindl, W. A.; Pelling, M. R.; Peterson, L. E.; Rothschild, R. E.; Skelton, R. T.; Hink, P. L.; Slavis, K. R.; Binns, W. R.; Tumer, T.; Visser, G.

    1999-09-01

    The UCSD, WU, UCR and Nova collaboration has made significant progress on the necessary techniques for coded mask imaging of gamma-ray bursts: position sensitive CZT detectors with good energy resolution, ASIC readout, coded mask imaging, and background properties at balloon altitudes. Results on coded mask imaging techniques appropriate for wide field imaging and localization of gamma-ray bursts are presented, including a shadowgram and deconvolved image taken with a prototype detector/ASIC and MURA mask. This research was supported by NASA Grants NAG5-5111, NAG5-5114, and NGT5-50170.

  10. Imaging of CNS Tumors in Children: Advances and Limitations

    PubMed Central

    Vézina, Louis-Gilbert

    2009-01-01

    MR technology is constantly improving. Functional imaging techniques such as MR spectroscopy, perfusion imaging, diffusion imaging and diffusion tensor imaging are increasingly utilized in the pediatric patient with a brain tumor. However estimate of tumor size remains the primary imaging endpoint in the evaluation of response to treatment; validation across institutions and vendor platforms of MRI functional parameters is necessary given the relative uncommon occurrence of brain tumors in children. Pediatric neuroimaging can be challenging, and the optimal way to image children with CNS tumors is not uniformly applied across all centers. Application of proper scanning techniques and validation of functional imaging techniques should lead to improved care of children with CNS tumors PMID:18952579

  11. Survey of Advanced Technologies in Japan, Vol. 1: Executive Summary, Methodology and User’s Guide,

    DTIC Science & Technology

    1990-05-01

    internal ( reaction wheel ) disturbance models Head of the Advanced Technology Section of the Control System Engineering Department. Responsible for...SENSOR - DIGITAL 1206060A01 - CONTROL MOMENT GYRO - SINGLE GIMBAL 1206060A02 - CONTROL MOMENT GYRO - DOUBLE GIMBAL 1206060A03 - REACTION WHEEL TECHNOLOGY... REACTION WHEEL * RING LASER GYRO * SHAPE CONTROL * STAR SENSOR -CCD * STAR TRACKER-IMAGE DISSECTOR * SUN SENSOR * THRUSTER * VIBRATION CONTROL

  12. Recent Advances in Compressed Sensing: Discrete Uncertainty Principles and Fast Hyperspectral Imaging

    DTIC Science & Technology

    2015-03-26

    medical imaging , e.g., magnetic resonance imaging (MRI). Since the early 1980s, MRI has granted doctors the ability to distinguish between healthy tissue...chemical composition of a star. Conventional hyperspectral cameras are slow. Different methods of hyperspectral imaging either require time to process ...Recent Advances in Compressed Sensing: Discrete Uncertainty Principles and Fast Hyperspectral Imaging THESIS MARCH 2015 Megan E. Lewis, Second

  13. Fully depleted back-illuminated p-channel CCD development

    SciTech Connect

    Bebek, Chris J.; Bercovitz, John H.; Groom, Donald E.; Holland, Stephen E.; Kadel, Richard W.; Karcher, Armin; Kolbe, William F.; Oluseyi, Hakeem M.; Palaio, Nicholas P.; Prasad, Val; Turko, Bojan T.; Wang, Guobin

    2003-07-08

    An overview of CCD development efforts at Lawrence Berkeley National Laboratory is presented. Operation of fully-depleted, back-illuminated CCD's fabricated on high resistivity silicon is described, along with results on the use of such CCD's at ground-based observatories. Radiation damage and point-spread function measurements are described, as well as discussion of CCD fabrication technologies.

  14. Advanced endoscopic imaging: European Society of Gastrointestinal Endoscopy (ESGE) Technology Review.

    PubMed

    East, James E; Vleugels, Jasper L; Roelandt, Philip; Bhandari, Pradeep; Bisschops, Raf; Dekker, Evelien; Hassan, Cesare; Horgan, Gareth; Kiesslich, Ralf; Longcroft-Wheaton, Gaius; Wilson, Ana; Dumonceau, Jean-Marc

    2016-11-01

    Background and aim: This technical review is an official statement of the European Society of Gastrointestinal Endoscopy (ESGE). It addresses the utilization of advanced endoscopic imaging in gastrointestinal (GI) endoscopy. Methods: This technical review is based on a systematic literature search to evaluate the evidence supporting the use of advanced endoscopic imaging throughout the GI tract. Technologies considered include narrowed-spectrum endoscopy (narrow band imaging [NBI]; flexible spectral imaging color enhancement [FICE]; i-Scan digital contrast [I-SCAN]), autofluorescence imaging (AFI), and confocal laser endomicroscopy (CLE). The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was adopted to define the strength of recommendation and the quality of evidence. Main recommendations:1. We suggest advanced endoscopic imaging technologies improve mucosal visualization and enhance fine structural and microvascular detail. Expert endoscopic diagnosis may be improved by advanced imaging, but as yet in community-based practice no technology has been shown consistently to be diagnostically superior to current practice with high definition white light. (Low quality evidence.) 2. We recommend the use of validated classification systems to support the use of optical diagnosis with advanced endoscopic imaging in the upper and lower GI tracts (strong recommendation, moderate quality evidence). 3. We suggest that training improves performance in the use of advanced endoscopic imaging techniques and that it is a prerequisite for use in clinical practice. A learning curve exists and training alone does not guarantee sustained high performances in clinical practice. (Weak recommendation, low quality evidence.) Conclusion: Advanced endoscopic imaging can improve mucosal visualization and endoscopic diagnosis; however it requires training and the use of validated classification systems.

  15. High frame rate CCD camera with fast optical shutter

    SciTech Connect

    Yates, G.J.; McDonald, T.E. Jr.; Turko, B.T.

    1998-09-01

    A high frame rate CCD camera coupled with a fast optical shutter has been designed for high repetition rate imaging applications. The design uses state-of-the-art microchannel plate image intensifier (MCPII) technology fostered/developed by Los Alamos National Laboratory to support nuclear, military, and medical research requiring high-speed imagery. Key design features include asynchronous resetting of the camera to acquire random transient images, patented real-time analog signal processing with 10-bit digitization at 40--75 MHz pixel rates, synchronized shutter exposures as short as 200pS, sustained continuous readout of 512 x 512 pixels per frame at 1--5Hz rates via parallel multiport (16-port CCD) data transfer. Salient characterization/performance test data for the prototype camera are presented, temporally and spatially resolved images obtained from range-gated LADAR field testing are included, an alternative system configuration using several cameras sequenced to deliver discrete numbers of consecutive frames at effective burst rates up to 5GHz (accomplished by time-phasing of consecutive MCPII shutter gates without overlap) is discussed. Potential applications including dynamic radiography and optical correlation will be presented.

  16. CCD readout electronics for the Subaru Prime Focus Spectrograph

    NASA Astrophysics Data System (ADS)

    Hope, Stephen C.; Gunn, James E.; Loomis, Craig P.; Fitzgerald, Roger E.; Peacock, Grant O.

    2014-07-01

    The following paper details the design for the CCD readout electronics for the Subaru Telescope Prime Focus Spectrograph (PFS). PFS is designed to gather spectra from 2394 objects simultaneously, covering wavelengths that extend from 380 nm to 1260 nm. The spectrograph is comprised of four identical spectrograph modules, each collecting roughly 600 spectra. The spectrograph modules provide simultaneous wavelength coverage over the entire band through the use of three separate optical channels: blue, red, and near infrared (NIR). A camera in each channel images the multi-object spectra onto a 4k × 4k, 15 μm pixel, detector format. The two visible cameras use a pair of Hamamatsu 2k × 4k CCDs with readout provided by custom electronics, while the NIR camera uses a single Teledyne HgCdTe 4k × 4k detector and Teledyne's ASIC Sidecar to read the device. The CCD readout system is a custom design comprised of three electrical subsystems - the Back End Electronics (BEE), the Front End Electronics (FEE), and a Pre-amplifier. The BEE is an off-the-shelf PC104 computer, with an auxiliary Xilinx FPGA module. The computer serves as the main interface to the Subaru messaging hub and controls other peripheral devices associated with the camera, while the FPGA is used to generate the necessary clocks and transfer image data from the CCDs. The FEE board sets clock biases, substrate bias, and CDS offsets. It also monitors bias voltages, offset voltages, power rail voltage, substrate voltage and CCD temperature. The board translates LVDS clock signals to biased clocks and returns digitized analog data via LVDS. Monitoring and control messages are sent from the BEE to the FEE using a standard serial interface. The Pre-amplifier board resides behind the detectors and acts as an interface to the two Hamamatsu CCDs. The Pre-amplifier passes clocks and biases to the CCDs, and analog CCD data is buffered and amplified prior to being returned to the FEE. In this paper we describe the

  17. Recent Advances in Image Assisted Neurosurgical Procedures: Improved Navigational Accuracy and Patient Safety

    SciTech Connect

    Olivi, Alessandro, M.D.

    2010-08-28

    Neurosurgical procedures require precise planning and intraoperative support. Recent advances in image guided technology have provided neurosurgeons with improved navigational support for more effective and safer procedures. A number of exemplary cases will be presented.

  18. Recent Advances in Image Assisted Neurosurgical Procedures: Improved Navigational Accuracy and Patient Safety

    ScienceCinema

    Olivi, Alessandro, M.D.

    2016-07-12

    Neurosurgical procedures require precise planning and intraoperative support. Recent advances in image guided technology have provided neurosurgeons with improved navigational support for more effective and safer procedures. A number of exemplary cases will be presented.

  19. Advanced Concepts in Multi-Dimensional Radiation Detection and Imaging

    NASA Astrophysics Data System (ADS)

    Vetter, Kai; Haefner, Andy; Barnowski, Ross; Pavlovsky, Ryan; Torii, Tatsuo; Sanada, Yukihisa; Shikaze, Yoshiaki

    Recent developments in the detector fabrication, signal readout, and data processing enable new concepts in radiation detection that are relevant for applications ranging from fundamental physics to medicine as well as nuclear security and safety. We present recent progress in multi-dimensional radiation detection and imaging in the Berkeley Applied Nuclear Physics program. It is based on the ability to reconstruct scenes in three dimensions and fuse it with gamma-ray image information. We are using the High-Efficiency Multimode Imager HEMI in its Compton imaging mode and combining it with contextual sensors such as the Microsoft Kinect or visual cameras. This new concept of volumetric imaging or scene data fusion provides unprecedented capabilities in radiation detection and imaging relevant for the detection and mapping of radiological and nuclear materials. This concept brings us one step closer to the seeing the world with gamma-ray eyes.

  20. MISR Level 1A CCD, 1B1, 1B2, and Browse Products

    Atmospheric Science Data Center

    2013-04-01

    ... 1B1 Radiance, CCD Science;  Local Mode Data (Hi-Res Target Scenes): Terrain/Ellipsoid-Projected Radiance, 1B1 Radiance ... transform fix. ROI Image Matching improvements to blunder detection algorithm and to Image Coordinate Correction. New ancillary ...

  1. High-speed optical shutter coupled to fast-readout CCD camera

    NASA Astrophysics Data System (ADS)

    Yates, George J.; Pena, Claudine R.; McDonald, Thomas E., Jr.; Gallegos, Robert A.; Numkena, Dustin M.; Turko, Bojan T.; Ziska, George; Millaud, Jacques E.; Diaz, Rick; Buckley, John; Anthony, Glen; Araki, Takae; Larson, Eric D.

    1999-04-01

    A high frame rate optically shuttered CCD camera for radiometric imaging of transient optical phenomena has been designed and several prototypes fabricated, which are now in evaluation phase. the camera design incorporates stripline geometry image intensifiers for ultra fast image shutters capable of 200ps exposures. The intensifiers are fiber optically coupled to a multiport CCD capable of 75 MHz pixel clocking to achieve 4KHz frame rate for 512 X 512 pixels from simultaneous readout of 16 individual segments of the CCD array. The intensifier, Philips XX1412MH/E03 is generically a Generation II proximity-focused micro channel plate intensifier (MCPII) redesigned for high speed gating by Los Alamos National Laboratory and manufactured by Philips Components. The CCD is a Reticon HSO512 split storage with bi-direcitonal vertical readout architecture. The camera main frame is designed utilizing a multilayer motherboard for transporting CCD video signals and clocks via imbedded stripline buses designed for 100MHz operation. The MCPII gate duration and gain variables are controlled and measured in real time and up-dated for data logging each frame, with 10-bit resolution, selectable either locally or by computer. The camera provides both analog and 10-bit digital video. The camera's architecture, salient design characteristics, and current test data depicting resolution, dynamic range, shutter sequences, and image reconstruction will be presented and discussed.

  2. MO-C-BRE-01: The WMIS-AAPM Joint Symposium: Advances in Molecular Imaging

    SciTech Connect

    Contag, C; Pogue, B; Lewis, J

    2014-06-15

    This joint symposium of the World Molecular Imaging Society (WMIS) and the AAPM includes three luminary speakers discussing work in new paradigms of molecular imaging in cancer (Contag), applications of optical imaging technologies to radiation therapy (Pogue) and an update on PET imaging as a surrogate biomarker for cancer progression and response to therapy. Learning Objectives: Appreciate the current trends in molecular and systems imaging. Understand how optical imaging technologies, and particularly Cerenkov detectors, can be used in advancing radiation oncology. Stay current on new PET tracers - and targets - of interest in cancer treatment.

  3. Carbon nanotubes for biomedical imaging: the recent advances.

    PubMed

    Gong, Hua; Peng, Rui; Liu, Zhuang

    2013-12-01

    This article reviews the latest progresses regarding the applications of carbon nanotubes (CNTs), including single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs), as multifunctional nano-probes for biomedical imaging. Utilizing the intrinsic band-gap fluorescence of semi-conducting single-walled carbon nanotubes (SWNTs), fluorescence imaging in the near infrared II (NIR-II) region with enhanced tissue penetration and spatial resolution has shown great promise in recent years. Raman imaging based on the resonance Raman scattering of SWNTs has also been explored by a number of groups for in vitro and in vivo imaging of biological samples. The strong absorbance of CNTs in the NIR region can be used for photoacoustic imaging, and their photoacoustic signals can be dramatically enhanced by adding organic dyes, or coating with gold shells. Taking advantages of metal nanoparticle impurities attached to nanotubes, CNTs can also serve as a T2-contrast agent in magnetic resonance (MR) imaging. In addition, when labeled with radioactive isotopes, many groups have developed nuclear imaging with functionalized CNTs. Therefore CNTs are unique imaging probes with great potential in biomedical multimodal imaging.

  4. IR camera system with an advanced image processing technologies

    NASA Astrophysics Data System (ADS)

    Ohkubo, Syuichi; Tamura, Tetsuo

    2016-05-01

    We have developed image processing technologies for resolving issues caused by the inherent UFPA (uncooled focal plane array) sensor characteristics to spread its applications. For example, large time constant of an uncooled IR (infra-red) sensor limits its application field, because motion blur is caused in monitoring the objective moving at high speed. The developed image processing technologies can eliminate the blur and retrieve almost the equivalent image observed in still motion. This image processing is based on the idea that output of the IR sensor is construed as the convolution of radiated IR energy from the objective and impulse response of the IR sensor. With knowledge of the impulse response and moving speed of the objective, the IR energy from the objective can be de-convolved from the observed images. We have successfully retrieved the image without blur using the IR sensor of 15 ms time constant under the conditions in which the objective is moving at the speed of about 10 pixels/60 Hz. The image processing for reducing FPN (fixed pattern noise) has also been developed. UFPA having the responsivity in the narrow wavelength region, e.g., around 8 μm is appropriate for measuring the surface of glass. However, it suffers from severe FPN due to lower sensitivity compared with 8-13 μm. The developed image processing exploits the images of the shutter itself, and can reduce FPN significantly.

  5. Molecular Engineering of Vector-Based Oncolytic and Imaging Approaches for Advanced Prostate Cancer

    DTIC Science & Technology

    2006-02-01

    Oncolytic and Imaging Approaches for Advanced Prostate Cancer PRINCIPAL INVESTIGATOR: Lily Wu, M.D., Ph.D. CONTRACTING ORGANIZATION...SUBTITLE Molecular Engineering of Vector-based Oncolytic and Imaging Approaches for 5a. CONTRACT NUMBER Advanced Prostate Cancer 5b. GRANT...reproductions will be in black and white. 14. ABSTRACT Hormone refractory and metastatic prostate cancer are not well understood. Better animal models

  6. Scientific Problems for Small CCD Telescopes

    NASA Astrophysics Data System (ADS)

    Bykov, O. B.

    Astronomy in developing countries must be very effective and practical. Astrometry and celestial mechanics are attractive from this point of view because they pose several problems that require extensive observations of celestial bodies. The necessary equipment and software for such CCD observations are available to any country. It is important to underline that the results of CCD observations may be immediately obtained in interactive mode on an observer's display. The discovery of unknown objects gives a right to observers to name the discovered minor planets and to introduce their own countries into the World Sky Map. I can propose the following observational problems: 1. CCD observations of Near-Earth Objects on supershort arcs, for study of the Asteroid Hazard Problem, and determination of their orbits by means of the Pulkovo Apparent Parameters method; 2. Discovery of unknown asteroids or comets and their monitoring during several nights close together on the base of one's own ephemeris service from the use of the above method. 3. Study of the Main-Belt population of asteroids in the same mode; 4. CCD observations of slow space debris, i.e., geostationary satellites. 5. CCD observations of occultations of stars by asteroids.

  7. Advanced Technology Demonstrator for IR Imaging Missile Warning System

    DTIC Science & Technology

    2002-02-01

    13 Figure 9: Paraglider ...but also mountains, towers, other flying platform and e.g. paratroopers/ paragliders . Some of these objects have no plume, this excludes UV-devices for...Figure 9: Paraglider - The device also has to have the ability to recognize these a.m. objects, so it has to be an imaging device with intelligent image

  8. Advanced Image Processing Techniques for Maximum Information Recovery

    DTIC Science & Technology

    2006-11-01

    The program shown as A4 in the Appendix embeds the message “GOD BLESS AMERICA” in the 20th row of the clown image shown below. The encoded...is not 200 x 320, changed the values of i and j below. load(’ clown ’) % This will convert the matrix for the clown image. for i = 1:200

  9. [Advances in infrared spectrum zoom imaging system research].

    PubMed

    Bai, Yu; Xing, Ting-wen; Jiang, Ya-dong

    2014-12-01

    Compared with the infrared spectrum fixed focal length system and infrared spectrum dual-zoom system, infrared spectrum continuous zoom imaging system which has continuous variational field of view can track targets sequentially, so it is a research direction in infrared spectrum imaging technology. Some new technologies are presented overseas in order to improve the detection performance, reduce cost and have good athermalized performance in infrared spectrum continuous zoom imaging system. Infrared material, infrared detector and variable aperture, those new technologies are su mmarized and the idiographic application of those new technologies in infrared spectrum continuous zoom imaging system are presented in the paper, for example athermalization of an infrared spectrum zoom lens system with new infrared material for target detection, dual band infrared spectrum continuous zoom imaging system with mid-wave infrared and long-wave infrared, infrared spectrum continuous zoom imaging system with high ratio, nfrared spectrum continuous zoom imaging system with dual F/number. It is useful for the development of chinese infrared continuous zoom imaging system.

  10. Advanced Research into Moving Target Imaging Using Multistatic Radar

    DTIC Science & Technology

    2009-12-01

    From [2])...........................................................................................................5 Figure 6. SAR and ISAR schemes...SAR and ISAR schemes for imaging targets (From [2]) Synthetic aperture imaging can be accomplished using a stationary antenna and rotating target or a...with a series of pulses from the moving antenna (Figure 6). Inverse synthetic aperture radar ( ISAR ) assumes a stationary radar radiating a moving

  11. Recent advances in intravital imaging of dynamic biological systems.

    PubMed

    Kikuta, Junichi; Ishii, Masaru

    2012-01-01

    Intravital multiphoton microscopy has opened a new era in the field of biological imaging. Focal excitation of fluorophores by simultaneous attack of multiple (normally "two") photons generates images with high spatial resolution, and use of near-infrared lasers for multiphoton excitation allows penetration of thicker specimens, enabling biologists to visualize living cellular dynamics deep inside tissues and organs without thin sectioning. Moreover, the minimized photo-bleaching and toxicity associated with multiphoton techniques is beneficial for imaging of live specimens for extended observation periods. Here we focus on recent findings using intravital multiphoton imaging of dynamic biological systems such as the immune system and bone homeostasis. The immune system comprises highly dynamic networks, in which many cell types actively travel throughout the body and interact with each other in specific areas. Therefore, real-time intravital imaging represents a powerful tool for understanding the mechanisms underlying this dynamic system.

  12. PIFEX: An advanced programmable pipelined-image processor

    NASA Technical Reports Server (NTRS)

    Gennery, D. B.; Wilcox, B.

    1985-01-01

    PIFEX is a pipelined-image processor being built in the JPL Robotics Lab. It will operate on digitized raster-scanned images (at 60 frames per second for images up to about 300 by 400 and at lesser rates for larger images), performing a variety of operations simultaneously under program control. It thus is a powerful, flexible tool for image processing and low-level computer vision. It also has applications in other two-dimensional problems such as route planning for obstacle avoidance and the numerical solution of two-dimensional partial differential equations (although its low numerical precision limits its use in the latter field). The concept and design of PIFEX are described herein, and some examples of its use are given.

  13. CCD-photometry of comets at large heliocentric distances

    NASA Technical Reports Server (NTRS)

    Mueller, Beatrice E. A.

    1992-01-01

    CCD imaging and time series photometry are used to determine the state of activity, nuclear properties and eventually the rotational motion of cometary nuclei. Cometary activity at large heliocentric distances and mantle evolution are not yet fully understood. Results of observations carried out at the 2.1 telescope on Kitt Peak April 10-12 and May 15-16, 1991 are discussed. Color values and color-color diagrams are presented for several comets and asteroids. Estimations of nuclear radii and shapes are given.

  14. HST/WFC3: understanding and mitigating radiation damage effects in the CCD detectors

    NASA Astrophysics Data System (ADS)

    Baggett, S. M.; Anderson, J.; Sosey, M.; Gosmeyer, C.; Bourque, M.; Bajaj, V.; Khandrika, H.; Martlin, C.

    2016-07-01

    At the heart of the Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) UVIS channel is a 4096x4096 pixel e2v CCD array. While these detectors continue to perform extremely well after more than 7 years in low-earth orbit, the cumulative effects of radiation damage are becoming increasingly evident. The result is a continual increase of the hotpixel population and the progressive loss in charge-transfer efficiency (CTE) over time. The decline in CTE has two effects: (1) it reduces the detected source flux as the defects trap charge during readout and (2) it systematically shifts source centroids as the trapped charge is later released. The flux losses can be significant, particularly for faint sources in low background images. In this report, we summarize the radiation damage effects seen in WFC3/UVIS and the evolution of the CTE losses as a function of time, source brightness, and image-background level. In addition, we discuss the available mitigation options, including target placement within the field of view, empirical stellar photometric corrections, post-flash mode and an empirical pixel-based CTE correction. The application of a post-flash has been remarkably effective in WFC3 at reducing CTE losses in low-background images for a relatively small noise penalty. Currently, all WFC3 observers are encouraged to consider post-flash for images with low backgrounds. Finally, a pixel-based CTE correction is available for use after the images have been acquired. Similar to the software in use in the HST Advanced Camera for Surveys (ACS) pipeline, the algorithm employs an observationally-defined model of how much charge is captured and released in order to reconstruct the image. As of Feb 2016, the pixel-based CTE correction is part of the automated WFC3 calibration pipeline. Observers with pre-existing data may request their images from MAST (Mikulski Archive for Space Telescopes) to obtain the improved products.

  15. Photon counting micrometer and video CCD.

    NASA Astrophysics Data System (ADS)

    Tie, Qiongxian; Li, Chennfei

    The structure and observational method of the photon counting slotted micrometer are proposed. The micrometer is made up of a piece of slotted plate and a photomultiplier. The photon counting micrometer is replaced by a video CCD for regular trial observation and as a test for the equipment of one scientific CCD, because the micrometer transmission in the instrumental vertical angle transmission mechanism is dull, and the telescope is not able to observe regularly since the optical axis changes greatly as the telescope points to different vertical distance. The video CCD is fixed in the course of observation, recording a picture every forty milliseconds, or one hundred pictures within four seconds, resulting in simultaneously after smoothing treatment the moment and stellar zenith distance when a star passes through the meridian or prime vertical.

  16. New concepts in standing advanced diagnostic equine imaging.

    PubMed

    Porter, Erin G; Werpy, Natasha M

    2014-04-01

    This article addresses the clinical application of magnetic resonance imaging (MRI) and computed tomography (CT) as applied to the standing equine patient. This discussion includes the logistics, advantages, disadvantages, and limitations of imaging a standing horse. In addition, a brief review is given of the physics of these modalities as applied in clinical practice, and the currently available hardware and software required by these techniques for image acquisition and artifact reduction. The appropriate selection of clinical cases for standing MRI and CT is reviewed, focusing on cases that are capable of undergoing standing surgeries following lesion diagnosis.

  17. EO-1 Advanced Land Imager Technology Validation Report

    DTIC Science & Technology

    2007-11-02

    133 3-108 Ghosting effects observed in Mount Etna lava flows 134 3-109 Cross section of ALI SCA 135 3-110 Generation of Lunar ghosts by scattering...images from a typical Lunar calibration. 3.2.2.4.2.2 Lava Flow Observation Ghost images have also been observed in the Mount Etna observation on 203091955...7. Odd and even pixels appear shifted by 15 frames within the ghost image Figure 3-108. Ghosting effects observed in Mount Etna lava flows (Band 7

  18. Advances in fntd technology: Instrumentation, image processing and applications

    NASA Astrophysics Data System (ADS)

    Bartz, James Andrew

    Fluorescent Nuclear Track Detectors (FNTDs), based on Al2O 3:C,Mg single crystal material, enable diffraction limited imaging of ionization patterns. This fast, luminescent material is thermally and optically stable. This work expands and assesses the capability of FNTD technology to measure radiation dose quickly and accurately, especially neutron radition. Developments in FNTD instrumentation, software, image reconstruction, image processing and data processing improved ease of use, productivity and reliability and brought the technology into commercial viability. Descriptions of these developments are presented. Additionally, these developments were assessed and were found to comply with ANSI and ISO standards for personnel neutron dosimetry. (Abstract shortened by ProQuest.).

  19. 3D Imaging with Structured Illumination for Advanced Security Applications

    SciTech Connect

    Birch, Gabriel Carisle; Dagel, Amber Lynn; Kast, Brian A.; Smith, Collin S.

    2015-09-01

    Three-dimensional (3D) information in a physical security system is a highly useful dis- criminator. The two-dimensional data from an imaging systems fails to provide target dis- tance and three-dimensional motion vector, which can be used to reduce nuisance alarm rates and increase system effectiveness. However, 3D imaging devices designed primarily for use in physical security systems are uncommon. This report discusses an architecture favorable to physical security systems; an inexpensive snapshot 3D imaging system utilizing a simple illumination system. The method of acquiring 3D data, tests to understand illumination de- sign, and software modifications possible to maximize information gathering capability are discussed.

  20. Soft x-ray response of the x-ray CCD camera directly coated with optical blocking layer

    NASA Astrophysics Data System (ADS)

    Ikeda, S.; Kohmura, T.; Kawai, K.; Kaneko, K.; watanabe, T.; Tsunemi, H.; Hayashida, K.; Anabuki, N.; Nakajima, H.; Ueda, S.; Tsuru, T. G.; Dotani, T.; Ozaki, M.; Matsuta, K.; Fujinaga, T.; Kitamoto, S.; Murakami, H.; Hiraga, J.; Mori, K.; ASTRO-H SXI Team

    2012-03-01

    We have developed the back-illuminated X-ray CCD camera (BI-CCD) to observe Xray in space. The X-ray CCD has a sensitivity not only for in X-ray but also in both Optical and UV light, X-ray CCD has to equip a filter to cut off optical light as well as UV light. The X-ray Imaging Spectrometer (XIS) onboard Suzaku satellite equipped with a thin film (OBF: Optical Blocking Filter) to cut off optical light and UV light. OBF is always in danger tearing by the acousmato or vibration during the launch, and it is difficult to handle on the ground because of its thickness. Instead of OBF, we have newly developed and produced OBL (Optical Blocking Layer), which is directly coating on the X-ray CCD surface.

  1. Volumes to learn: advancing therapeutics with innovative computed tomography image data analysis.

    PubMed

    Maitland, Michael L

    2010-09-15

    Semi-automated methods for calculating tumor volumes from computed tomography images are a new tool for advancing the development of cancer therapeutics. Volumetric measurements, relying on already widely available standard clinical imaging techniques, could shorten the observation intervals needed to identify cohorts of patients sensitive or resistant to treatment.

  2. Role of Advanced Laryngeal Imaging in Glottic Cancer: Early Detection and Evaluation of Glottic Neoplasms.

    PubMed

    Tibbetts, Kathleen M; Tan, Melin

    2015-08-01

    Laryngeal cancer accounts for approximately 2.4% of new malignancies worldwide each year. Early identification of laryngeal neoplasms results in improved prognosis and functional outcomes. Imaging plays an integral role in the diagnosis, staging, and long-term follow-up of laryngeal cancer. This article highlights advanced laryngeal imaging techniques and their application to early glottic neoplasms.

  3. CICADA, CCD and Instrument Control Software

    NASA Astrophysics Data System (ADS)

    Young, Peter J.; Brooks, Mick; Meatheringham, Stephen J.; Roberts, William H.

    Computerised Instrument Control and Data Acquisition (CICADA) is a software system for control of telescope instruments in a distributed computing environment. It is designed using object-oriented techniques and built with standard computing tools such as RPC, SysV IPC, Posix threads, Tcl, and GUI builders. The system is readily extensible to new instruments and currently supports the Astromed 3200 CCD controller and MSSSO's new tip-tilt system. Work is currently underway to provide support for the SDSU CCD controller and MSSSO's Double Beam Spectrograph. A core set of processes handle common communication and control tasks, while specific instruments are ``bolted'' on using C++ inheritance techniques.

  4. Binary/Analog CCD Correlator Development.

    DTIC Science & Technology

    1981-07-01

    AD-AI04 438 TEXAS INSTRUMENTS INC DALLAS F/ 9 /5 BINARY/ANALOG CCD COPPEL TOR DE VELOPMEN.(U JUL 81 R A HAKEN F19628-78-C-0122 CLASSIFIED TI -08-79...ANALOG CCD CORRELATOR DEVELOPMENT Texas Instruments Inc. R. A. Hakln APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLMITED DTIC S ELECTE SEP 211981i D...transversal filter with split-electrode weighting is well recogniied as a useful tool liInumher of sampled-data filtering applications.’ However, these

  5. Optical and dark characterization of the PLATO CCD at ESA

    NASA Astrophysics Data System (ADS)

    Verhoeve, Peter; Prod'homme, Thibaut; Oosterbroek, Tim; Duvet, Ludovic; Beaufort, Thierry; Blommaert, Sander; Butler, Bart; Heijnen, Jerko; Lemmel, Frederic; van der Luijt, Cornelis; Smit, Hans; Visser, Ivo

    2016-07-01

    amount of charge lost from a star image are described. These results can serve as a direct input to the PLATO consortium to study the mission performance and as a basis for further optimization of the CCD operation.

  6. Advanced Tracers in PET Imaging of Cardiovascular Disease

    PubMed Central

    Zhang, Wei; Wu, Hua; Liu, Gang

    2014-01-01

    Cardiovascular disease is the leading cause of death worldwide. Molecular imaging with targeted tracers by positron emission tomography (PET) allows for the noninvasive detection and characterization of biological changes at the molecular level, leading to earlier disease detection, objective monitoring of therapies, and better prognostication of cardiovascular diseases progression. Here we review, the current role of PET in cardiovascular disease, with emphasize on tracers developed for PET imaging of cardiovascular diseases. PMID:25389529

  7. Advanced millimeter-wave security portal imaging techniques

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-03-01

    Millimeter-wave (mm-wave) imaging is rapidly gaining acceptance as a security tool to augment conventional metal detectors and baggage x-ray systems for passenger screening at airports and other secured facilities. This acceptance indicates that the technology has matured; however, many potential improvements can yet be realized. The authors have developed a number of techniques over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, and high-frequency high-bandwidth techniques. All of these may improve the performance of new systems; however, some of these techniques will increase the cost and complexity of the mm-wave security portal imaging systems. Reducing this cost may require the development of novel array designs. In particular, RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems. Highfrequency, high-bandwidth designs are difficult to achieve with conventional mm-wave electronic devices, and RF photonic devices may be a practical alternative. In this paper, the mm-wave imaging techniques developed at PNNL are reviewed and the potential for implementing RF photonic mm-wave array designs is explored.

  8. Visualizing Chemistry: The Progess and Promise of Advanced Chemical Imaging

    SciTech Connect

    Committee on Revealing Chemistry Through Advanced Chemical Imaging

    2006-09-01

    The field of chemical imaging can provide detailed structural, functional, and applicable information about chemistry and chemical engineering phenomena that have enormous impacts on medicine, materials, and technology. In recognizing the potential for more research development in the field of chemical imaging, the National Academies was asked by the National Science Foundation, Department of Energy, U.S. Army, and National Cancer Institute to complete a study that would review the current state of molecular imaging technology, point to promising future developments and their applications, and suggest a research and educational agenda to enable breakthrough improvements in the ability to image molecular processes simultaneously in multiple physical dimensions as well as time. The study resulted in a consensus report that provides guidance for a focused research and development program in chemical imaging and identifies research needs and possible applications of imaging technologies that can provide the breakthrough knowledge in chemistry, materials science, biology, and engineering for which we should strive. Public release of this report is expected in early October.

  9. Advanced Scintillator Detectors for Neutron Imaging in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Geppert-Kleinrath, Verena; Danly, Christopher; Merrill, Frank; Simpson, Raspberry; Volegov, Petr; Wilde, Carl

    2016-10-01

    The neutron imaging team at Los Alamos National Laboratory (LANL) has been providing two-dimensional neutron imaging of the inertial confinement fusion process at the National Ignition Facility (NIF) for over five years. Neutron imaging is a powerful tool in which position-sensitive detectors register neutrons emitted in the fusion reactions, producing a picture of the burning fuel. Recent images have revealed possible multi-dimensional asymmetries, calling for additional views to facilitate three-dimensional imaging. These will be along shorter lines of sight to stay within the existing facility at NIF. In order to field imaging capabilities equivalent to the existing system several technological challenges have to be met: high spatial resolution, high light output, and fast scintillator response to capture lower-energy neutrons, which have scattered from non-burning regions of fuel. Deuterated scintillators are a promising candidate to achieve the timing and resolution required; a systematic study of deuterated and non-deuterated polystyrene and liquid samples is currently ongoing. A test stand has been implemented to measure the response function, and preliminary data on resolution and light output have been obtained at the LANL Weapons Neutrons Research facility.

  10. Advances in computed radiography systems and their physical imaging characteristics.

    PubMed

    Cowen, A R; Davies, A G; Kengyelics, S M

    2007-12-01

    Radiological imaging is progressing towards an all-digital future, across the spectrum of medical imaging techniques. Computed radiography (CR) has provided a ready pathway from screen film to digital radiography and a convenient entry point to PACS. This review briefly revisits the principles of modern CR systems and their physical imaging characteristics. Wide dynamic range and digital image enhancement are well-established benefits of CR, which lend themselves to improved image presentation and reduced rates of repeat exposures. However, in its original form CR offered limited scope for reducing the radiation dose per radiographic exposure, compared with screen film. Recent innovations in CR, including the use of dual-sided image readout and channelled storage phosphor have eased these concerns. For example, introduction of these technologies has improved detective quantum efficiency (DQE) by approximately 50 and 100%, respectively, compared with standard CR. As a result CR currently affords greater scope for reducing patient dose, and provides a more substantive challenge to the new solid-state, flat-panel, digital radiography detectors.

  11. ADVANCED MAGNETIC RESONANCE IMAGING OF CEREBRAL CAVERNOUS MALFORMATIONS

    PubMed Central

    Shenkar, Robert; Venkatasubramanian, Palamadai N.; Wyrwicz, Alice M.; Zhao, Jin-cheng; Shi, Changbin; Akers, Amy; Marchuk, Douglas A.; Awad, Issam A.

    2008-01-01

    Objective We sought to assess the appearance of cerebral cavernous malformations (CCMs) on magnetic resonance (MR) imaging in murine Ccm1 and Ccm2 gene knockout models, and to develop a technique of lesion localization for correlative pathobiologic studies Methods Brains from eighteen CCM mutant mice (Ccm1+/-Trp53-/- and Ccm2+/-Trp53-/-) and 28 controls were imaged by gradient recalled echo (T2*)-weighted MR at 4.7 T and 14.1 T in vivo and/or ex vivo. After MR imaging, the brains were removed and stained with hematoxylin and eosin and cells were laser microdissected for molecular biologic studies. Results T2*-weighted MR imaging of brains in vivo and ex vivo revealed lesions similar to human CCMs in mutant mice, but not in control animals. Stereotactic localization and hematoxylin and eosin-staining of correlative tissue sections confirmed lesion histology, and revealed other areas of dilated capillaries in the same brains. Some lesions were identified by MR imaging at 14.1 T, but not at 4.7 T. PCR amplification from Ccm1 and β-actin genes was demonstrated from nucleic acids extracted from laser microdissected lesional and perilesional cells. Conclusions The high field MR imaging techniques offer new opportunities for further investigation of disease pathogenesis in vivo, and the localization, staging and histobiologic dissection of lesions, including the presumed earliest stages of CCM lesion development. PMID:18981891

  12. Advances and perspectives in lung cancer imaging using multidetector row computed tomography.

    PubMed

    Coche, Emmanuel

    2012-10-01

    The introduction of multidetector row computed tomography (CT) into clinical practice has revolutionized many aspects of the clinical work-up. Lung cancer imaging has benefited from various breakthroughs in computing technology, with advances in the field of lung cancer detection, tissue characterization, lung cancer staging and response to therapy. Our paper discusses the problems of radiation, image visualization and CT examination comparison. It also reviews the most significant advances in lung cancer imaging and highlights the emerging clinical applications that use state of the art CT technology in the field of lung cancer diagnosis and follow-up.

  13. Operation of the CCD/Transit Instrument (CTI)

    NASA Technical Reports Server (NTRS)

    Mcgraw, J. T.; Cawson, M. G. M.; Keane, M. J.

    1986-01-01

    The fully automated imaging survey telescope at Kitt Peak known as the CCD/Transit Instrument (CTI) has no moving parts, and employs two CCDs aligned east-west in the focal plane that are operated in the time delay and integrate mode, at the apparent sidereal rate, in order to produce a strip image of the sky. This image is 8.25-arcmin wide in declination and 8 hr in duration, to yield about 15 sq deg of sky from each night's survey; this, over the course of a year, represents more than 40 sq deg in a continuous strip. The CTI is addressing such astronomical tasks as the determination of the supernova production rate by counting, galactic structure investigations, and the definition of a complete sample of quasars. Attention is given to the CTI's bimetallic, thermally self-compensating structure and three-mirror wide-field optical system.

  14. The new kid on the block for advanced imaging in Barrett's esophagus: a review of volumetric laser endomicroscopy.

    PubMed

    Trindade, Arvind J; Smith, Michael S; Pleskow, Douglas K

    2016-05-01

    Advanced imaging techniques used in the management of Barrett's esophagus include electronic imaging enhancement (e.g. narrow band imaging, flexible spectral imaging color enhancement, and i-Scan), chromoendoscopy, and confocal laser endomicroscopy. Electronic imaging enhancement is used frequently in daily practice, but use of the other advanced technologies is not routine. High-definition white light endoscopy and random four quadrant biopsy remain the standard of care for evaluation of Barrett's esophagus; this is largely due to the value of advanced imaging technologies not having been validated in large studies or in everyday practice. A new advanced imaging technology called volumetric laser endomicroscopy is commercially available in the United States. Its ease of use and rapid acquisition of high-resolution images make this technology very promising for widespread application. In this article we review the technology and its potential for advanced imaging in Barrett's esophagus.

  15. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    PubMed Central

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  16. Image Understanding Proceedings of a Workshop Held at Washington, DC, April 23, 1981

    DTIC Science & Technology

    1981-04-01

    j ’S.i types, but it does provide an indication of the Thesis , to appear. robus•tness of the description process .= 7. A. Rosenfeld, "Cooperative...APRIL 1981 Sponsored by: Conducted in lnfornution Processing Techniques Office Conjunction with: Defense Advanced Rest-hr Projects Agency Society oif...necessarman mdirrittldwy by’ block umorbe,) D~igital Image Processing ; Image Understanding; Scene Analysis; EdgeI Detection; ImagE Segmentation; CCDArrays; CCD

  17. WE-H-206-00: Advances in Preclinical Imaging.

    PubMed

    La Riviere, Patrick

    2016-06-01

    Lihong V. Wang: Photoacoustic tomography (PAT), combining non-ionizing optical and ultrasonic waves via the photoacoustic effect, provides in vivo multiscale functional, metabolic, and molecular imaging. Broad applications include imaging of the breast, brain, skin, esophagus, colon, vascular system, and lymphatic system in humans or animals. Light offers rich contrast but does not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution pure optical imaging (e.g., confocal microscopy, two-photon microscopy, and optical coherence tomography) is limited to penetration within the optical diffusion limit (∼1 mm in the skin). Ultrasonic imaging, on the contrary, provides fine spatial resolution but suffers from both poor contrast in early-stage tumors and strong speckle artifacts. In PAT, pulsed laser light penetrates tissue and generates a small but rapid temperature rise, which induces emission of ultrasonic waves due to thermoelastic expansion. The ultrasonic waves, orders of magnitude less scattering than optical waves, are then detected to form high-resolution images of optical absorption at depths up to 7 cm, conquering the optical diffusion limit. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (up to whole-body small animals) with consistent contrast. This rapidly growing technology promises to enable multiscale biological research and accelerate translation from microscopic laboratory discoveries to macroscopic clinical practice. PAT may also hold the key to label-free early detection of cancer by in vivo quantification of hypermetabolism, the quintessential hallmark of malignancy.

  18. Advanced characterization of microscopic kidney biopsies utilizing image analysis techniques.

    PubMed

    Goudas, Theodosios; Doukas, Charalampos; Chatziioannou, Aristotle; Maglogiannis, Ilias

    2012-01-01

    Correct annotation and identification of salient regions in Kidney biopsy images can provide an estimation of pathogenesis in obstructive nephropathy. This paper presents a tool for the automatic or manual segmentation of such regions along with methodology for their characterization in terms of the exhibited pathology. The proposed implementation is based on custom code written in Java and the utilization of open source tools (i.e. RapidMiner, ImageJ). The corresponding implementation details along with the initial evaluation of the proposed integrated system are also presented in the paper.

  19. Thermal Infrared Imaging Spectrometer - An advanced optics technology instrument

    NASA Technical Reports Server (NTRS)

    Mahoney, Colin; Labaw, Clayton; Sobel, Harold; Kahle, Anne

    1990-01-01

    Through the use of a special optical filter, the Thermal Infrared Imaging Spectrometer, an airborne multispectral IR imaging instrument operating in the thermal emission region (7.5-14 microns), will achieve signal-to-noise ratios greater than 600 with ambient temperature optics. This instrument will be used to do compositional surface mapping of the terrain, and will refine the ability to categorize rock families and types by providing much higher spectral resolution in the emission region than was previously available. Details of the optical system, the detector, the cooler system, and the support electronics are described.

  20. Predicting Chandra CCD Degradation with the Chandra Radiation Model

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Blackwell, William C.; DePasquale, Joseph M.; Grant, Catherine E.; O'Dell, Stephen L.; Plucinsky, Paul P.; Schwartz, Daniel A.; Spitzbart, Bradley D.; Wolk, Scott J.

    2008-01-01

    Not long after launch of the Chandra X-Ray Observatory, it was discovered that the Advanced CCD Imaging Spectrometer (ACIS) detector was rapidly degrading due to radiation. Analysis by Chandra personnel showed that this degradation was due to 10w energy protons (100 - 200 keV) that scattered down the optical path onto the focal plane. In response to this unexpected problem, the Chandra Team developed a radiation-protection program that has been used to manage the radiation damage to the CCDs. This program consists of multiple approaches - scheduled sating of the ACIS detector from the radiation environment during passage through radiation belts, real-time monitoring of space weather conditions, on-board monitoring of radiation environment levels, and the creation of a radiation environment model for use in computing proton flux and fluence at energies that damage the ACIS detector. This radiation mitigation program has been very successful. The initial precipitous increase in the CCDs' charge transfer inefficiency (CTI) resulting from proton damage has been slowed dramatically, with the front-illuminated CCDS having an increase in CTI of only 2.3% per year, allowing the ASIS detector's expected lifetime to exceed requirements. This paper concentrates on one aspect of the Chandra radiation mitigation program, the creation of the Chandra Radiation Model (CRM). Because of Chandra's highly elliptical orbit, the spacecraft spends most of its time outside of the trapped radiation belts that present the severest risks to the ACIS detector. However, there is still a proton flux environment that must be accounted for in all parts of Chandra's orbit. At the time of Chandra's launch there was no engineering model of the radiation environment that could be used in the outer regions of the spacecraft's orbit, so the CRM was developed to provide the flux environment of 100 - 200 keV protons in the outer magnetosphere, magnetosheath, and solar wind regions of geospace. This

  1. Calibration of CCD detector after damage

    NASA Astrophysics Data System (ADS)

    Dudka, A. P.

    2015-11-01

    An Xcalibur X-ray diffractometer with a Sapphire 3 CCD detector (Rigaku Oxford Diffraction) has been calibrated to remove damage effects. Visual proof of the validity of the detector calibration map is obtained for the first time. The calibration has significantly improved the reliability of the structural data on Ba3TaFe3Si2O14 single crystal.

  2. The development of large-aperture test system of infrared camera and visible CCD camera

    NASA Astrophysics Data System (ADS)

    Li, Yingwen; Geng, Anbing; Wang, Bo; Wang, Haitao; Wu, Yanying

    2015-10-01

    Infrared camera and CCD camera dual-band imaging system is used in many equipment and application widely. If it is tested using the traditional infrared camera test system and visible CCD test system, 2 times of installation and alignment are needed in the test procedure. The large-aperture test system of infrared camera and visible CCD camera uses the common large-aperture reflection collimator, target wheel, frame-grabber, computer which reduces the cost and the time of installation and alignment. Multiple-frame averaging algorithm is used to reduce the influence of random noise. Athermal optical design is adopted to reduce the change of focal length location change of collimator when the environmental temperature is changing, and the image quality of the collimator of large field of view and test accuracy are also improved. Its performance is the same as that of the exotic congener and is much cheaper. It will have a good market.

  3. Advanced InSAR imaging for dune mapping

    NASA Astrophysics Data System (ADS)

    Havivi, Shiran; August, Yitzhak; Blumberg, Dan G.; Rotman, Stanley R.

    2015-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970's, remote sensing imagery both optical and radar, are used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of Aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two images or more. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This research aims to demonstrate how interferometric decorrelation, or, coherence change detection, can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the Nitzanim coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of varying levels of stability and vegetation cover and have been monitored meteorologically, geomorphologically and

  4. Advanced Computer Image Generation Techniques Exploiting Perceptual Characteristics. Final Report.

    ERIC Educational Resources Information Center

    Stenger, Anthony J.; And Others

    This study suggests and identifies computer image generation (CIG) algorithms for visual simulation that improve the training effectiveness of CIG simulators and identifies areas of basic research in visual perception that are significant for improving CIG technology. The first phase of the project entailed observing three existing CIG simulators.…

  5. Fabry-Perot MEMS Accelerometers for Advanced Seismic Imaging

    SciTech Connect

    Chisum, Brad

    2015-05-31

    This report summarizes the technical achievements that occurred over the duration of the project. On November 14th, 2014, Lumedyne Technologies Incorporated was acquired. As a result of the acquisition, the work toward seismic imaging applications was suspended indefinitely. This report captures the progress achieved up to that time.

  6. Advances in low energy neutral atom imaging techniques

    SciTech Connect

    Scime, E.E.; Funsten, H.O.; McComas, D.J.; Moore, K.R. ); Gruntman, M. . Space Sciences Center)

    1993-01-01

    Recently proposed low energy neutral atom (LENA) imaging techniques use a collisional process to convert the low energy neutrals into ions before detection. At low energies, collisional processes limit the angular resolution and conversion efficiencies of these devices. However, if the intense ultraviolet light background can be suppressed, direct LENA detection is possible. We present results from a series of experiments designed to develop a novel filtering structure based on free-standing transmission gratings. If the grating period is sufficiently small, free standing transmission gratings can be employed to substantially polarize ultraviolet (UV) light in the wavelength range 300 [Angstrom] to 1500 [Angstrom]. If a second grating is placed behind the first grating with its axis of polarization oriented at a right angle to the first's, a substantial attenuation of UV radiation is achievable. ne neutrals will pass through the remaining open area of two gratings and be detected without UV background complications. We have obtained nominal 2000 [Angstrom] period (1000 [Angstrom] bars with 1000 [Angstrom] slits) free standing, gold transmission gratings and measured their UV and atomic transmission characteristics. The geometric factor of a LENA imager based on this technology is comparable to that of other proposed LENA imagers. In addition, this of imager does not distort the neutral trajectories, allowing for high angular resolution.

  7. An overview on the advances in cardiovascular interventional MR imaging.

    PubMed

    Saborowski, Olaf; Saeed, Maythem

    2007-06-01

    Interventional cardiovascular magnetic resonance imaging (iCMR) represents a new discipline whose systematic development will foster minimally invasive interventional procedures without radiation exposure. New generations of open, wide and short bore MR scanners and real time sequences made cardiovascular intervention possible. MR compatible endovascular catheters and guide-wires are needed for delivery of devices such as stents or atrial septal defect (ASD) closures. Catheter tracking is based on active and passive approaches. Currently performed MR-guided procedures are used to monitor, navigate and track endovascular catheters and to deliver local therapeutic agents to targets, such as infarcted myocardium and vascular walls. Heating of endovascular MR catheters, guide-wires and devices during imaging still presents high safety risks. MR contrast media improve the capabilities of MR imaging by enhancing blood signal, pathologic targets (such as myocardial infarctions and atherosclerotic plaques), endovascular catheters and by tracking injected therapeutic agents. Labeling injected soluble therapeutic agents, genes or cells with MR contrast media enables interventionalists to ensure the administration of the drugs in the target and to trace their distribution in the targets. The future clinical use of this iCMR technique requires (1) high spatial and temporal resolution imaging, (2) special catheters and devices and (3) effective therapeutic agents, genes or cells. These conditions are available at a low scale at the present time and need to be developed in the near future. Such progress will lead to improved patient care and minimize invasiveness.

  8. Support for Advanced Imaging of Premixed Turbulent Combustion Processes

    DTIC Science & Technology

    2007-11-02

    quantifies mean flame properties (e.g., mean progress variable fields ), chemical reaction sheet wrinkling by turbulence (e. g., reaction sheet...orientation statistics, curvatures and surface density data) and important velocities (e. g., velocity field of reactants, reaction sheet displacement speeds...with stereo particle image velocimetry (SPIV) to measure flamelet wrinkling, flamelet speeds and the reactant velocity field in order to relate

  9. Advanced scanners and imaging systems for earth observations. [conferences

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Assessments of present and future sensors and sensor related technology are reported along with a description of user needs and applications. Five areas are outlined: (1) electromechanical scanners, (2) self-scanned solid state sensors, (3) electron beam imagers, (4) sensor related technology, and (5) user applications. Recommendations, charts, system designs, technical approaches, and bibliographies are included for each area.

  10. Advances in Focal Plane Wavefront Estimation for Directly Imaging Exoplanets

    NASA Astrophysics Data System (ADS)

    Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Groff, Tyler Dean

    2015-01-01

    To image cold exoplanets directly in visible light, an instrument on a telescope needs to suppress starlight by about 9 orders of magnitude at small separations from the star. A coronagraph changes the point spread function to create regions of high contrast where exoplanets or disks can be seen. Aberrations on the optics degrade the contrast by several orders of magnitude, so all high-contrast imaging systems incorporate one or more deformable mirrors (DMs) to recover regions of high contrast. With a coronagraphic instrument planned for the WFIRST-AFTA space telescope, there is a pressing need for faster, more robust estimation and control schemes for the DMs. Non-common path aberrations limit conventional phase conjugation schemes to medium star-to-planet contrast ratios of about 1e-6. High-contrast imaging requires estimation and control of both phase and amplitude in the same beam path as the science camera. Field estimation is a challenge since only intensity is measured; the most common approach, including that planned for WFIRST-AFTA, is to use DMs to create diversity, via pairs of small probe shapes, thereby allowing disambiguation of the electric field. Most implementations of DM Diversity require at least five images per electric field estimate and require narrowband measurements. This paper describes our new estimation algorithms that improve the speed (by using fewer images) and bandwidth of focal plane wavefront estimation. For narrowband estimation, we are testing nonlinear, recursive algorithms such as an iterative extended Kalman filter (IEKF) to use three images each iteration and build better, more robust estimates. We are also exploring the use of broadband estimation without the need for narrowband sub-filters and measurements. Here we present simulations of these algorithms with realistic noise and small signals to show how they might perform for WFIRST-AFTA. Once validated in simulations, we will test these algorithms experimentally in

  11. CCD observations of distant comets from Palomar and Steward Observatories

    NASA Astrophysics Data System (ADS)

    Lowry, Stephen C.; Weissman, Paul R.

    2003-08-01

    We are conducting a ground-based observational study of distant cometary nuclei with the aim of increasing the current database of physical parameters of individual objects, and to estimate the overall distributions of size, rotation period, axial ratio, and color indices. Additionally, we are obtaining CCD spectroscopy and photometry of established and potential targets of current and future spacecraft missions. The results presented here are derived from CCD imaging obtained using the 2.3-m Bok telescope of Steward Observatory (Arizona), obtained in May 2001, and the 5-m Hale telescope at Palomar Observatory (California), obtained in May 2000 and March 2001. Comets observed include 4P/Faye, 6P/d'Arrest, 22P/Kopff, 36P/Whipple, 50P/Arend, 78P/Gehrels 2, 92P/Sanguin, 107P/Wilson-Harrington, and 128P/Shoemaker-Holt 1-A. Of the nine comets observed, only Comets 4P/Faye and 50P/Arend displayed visible coma activity. We have performed either single R filter or multi-filter ( BVRI) measurements on these comets, from which we obtain radius and broadband color estimates as well as Afρ values for the active comets. For selected objects we have performed time-series R filter imaging from which we have derived the rotation period and lower limits on the nuclear axial ratio and density. The radius results obtained are included in the cometary nucleus size distribution estimate by Weissman and Lowry (2003).

  12. X-ray imaging in advanced studies of ophthalmic diseases

    SciTech Connect

    Antunes, Andrea; Safatle, Angelica M. V.; Barros, Paulo S. M.; Morelhao, Sergio L.

    2006-07-15

    Microscopic characterization of pathological tissues has one major intrinsic limitation, the small sampling areas with respect to the extension of the tissues. Mapping possible changes on vast tissues and correlating them with large ensembles of clinical cases is not a feasible procedure for studying most diseases, as for instance vision loss related diseases and, in particular, the cataract. Although intraocular lens implants are successful treatments, cataract still is a leading public-health issue that grows in importance as the population increases and life expectancy is extended worldwide. In this work we have exploited the radiation-tissue interaction properties of hard x-rays--very low absorption and scattering--to map distinct lesions on entire eye lenses. At the used synchrotron x-ray photon energy of 20 keV (wavelength {lambda}=0.062 nm), scattering and refraction are angular resolved effects. It allows the employed x-ray image technique to efficiently characterize two types of lesions in eye lenses under cataractogenesis: distributions of tiny scattering centers and extended areas of fiber cell compaction. The data collection procedure is relatively fast; allowing dozens of samples to be totally imaged (scattering, refraction, and mass absorption images) in a single day of synchrotron beam time. More than 60 cases of canine cataract, not correlated to specific causes, were investigated in this first application of x-rays to image entire lenses. Cortical opacity cases, or partial opacity, could be related to the presence of calcificated tissues at the cortical areas, clearly visible in the images, whose elemental contents were verified by micro x-ray fluorescence as very rich in calcium. Calcificated tissues were also observed at nuclear areas in some cases of hypermature cataract. Total opacity cases without distinguishable amount of scattering centers consist in 70% of the analyzed cases, where remarkable fissure marks owing to extended areas of fiber

  13. Multifunctional nanomaterials for advanced molecular imaging and cancer therapy

    NASA Astrophysics Data System (ADS)

    Subramaniam, Prasad

    Nanotechnology offers tremendous potential for use in biomedical applications, including cancer and stem cell imaging, disease diagnosis and drug delivery. The development of nanosystems has aided in understanding the molecular mechanisms of many diseases and permitted the controlled nanoscale manipulation of biological phenomena. In recent years, many studies have focused on the use of several kinds of nanomaterials for cancer and stem cell imaging and also for the delivery of anticancer therapeutics to tumor cells. However, the proper diagnosis and treatment of aggressive tumors such as brain and breast cancer requires highly sensitive diagnostic agents, in addition to the ability to deliver multiple therapeutics using a single platform to the target cells. Addressing these challenges, novel multifunctional nanomaterial-based platforms that incorporate multiple therapeutic and diagnostic agents, with superior molecular imaging and targeting capabilities, has been presented in this work. The initial part of this work presents the development of novel nanomaterials with superior optical properties for efficiently delivering soluble cues such as small interfering RNA (siRNA) into brain cancer cells with minimal toxicity. Specifically, this section details the development of non-toxic quantums dots for the imaging and delivery of siRNA into brain cancer and mesenchymal stem cells, with the hope of using these quantum dots as multiplexed imaging and delivery vehicles. The use of these quantum dots could overcome the toxicity issues associated with the use of conventional quantum dots, enabled the imaging of brain cancer and stem cells with high efficiency and allowed for the delivery of siRNA to knockdown the target oncogene in brain cancer cells. The latter part of this thesis details the development of nanomaterial-based drug delivery platforms for the co-delivery of multiple anticancer drugs to brain tumor cells. In particular, this part of the thesis focuses on

  14. Advanced synchronous luminescence imaging for chemical and medical diagnostics

    DOEpatents

    Vo-Dinh, Tuan

    2006-09-05

    A diagnostic method and associated system includes the steps of exposing at least one sample location with excitation radiation through a single optical waveguide or a single optical waveguide bundle, wherein the sample emits emission radiation in response to the excitation radiation. The same single optical waveguide or the single optical waveguide bundle receives at least a portion of the emission radiation from the sample, thus providing co-registration of the excitation radiation and the emission radiation. The wavelength of the excitation radiation and emission radiation is synchronously scanned to produce a spectrum upon which an image can be formed. An increased emission signal is generated by the enhanced overlap of the excitation and emission focal volumes provided by co-registration of the excitation and emission signals thus increasing the sensitivity as well as decreasing the exposure time necessary to obtain an image.

  15. Pulse laser imaging amplifier for advanced ladar systems

    NASA Astrophysics Data System (ADS)

    Khizhnyak, Anatoliy; Markov, Vladimir; Tomov, Ivan; Murrell, David

    2016-05-01

    Security measures sometimes require persistent surveillance of government, military and public areas Borders, bridges, sport arenas, airports and others are often surveilled with low-cost cameras. Their low-light performance can be enhanced with laser illuminators; however various operational scenarios may require a low-intensity laser illumination with the object-scattered light intensity lower than the sensitivity of the Ladar image detector. This paper discusses a novel type of high-gain optical image amplifier. The approach enables time-synchronization of the incoming and amplifying signals with accuracy <= 1 ns. The technique allows the incoming signal to be amplified without the need to match the input spectrum to the cavity modes. Instead, the incoming signal is accepted within the spectral band of the amplifier. We have gauged experimentally the performance of the amplifier with a 40 dB gain and an angle of view 20 mrad.

  16. [Status and advances of RGD molecular imaging in lung cancer].

    PubMed

    Yue, Ning; Yuan, Shuanghu; Yang, Guoren

    2014-12-01

    Lung cancer has been one of the most common and the highest mortality rates malignant tumors at home and abroad. Sustained angiogenesis was not only the characteristic of malignant tumors, but also the foundation of tumor proliferation, invasion, recurrence and metastasis, it was also one of the hot spots of treatments in lung cancer biology currently. Integrins played an important part in tumor angiogenesis. Arg-Gly-Asp (RGD) peptides could combine with integrins specifically, and the application of radionuclide-labeled RGD molecular probes enabled imaging of tumor blood vessels to reflect its changes. The lung cancer imaging of RGD peptides at home and abroad in recent years was reviewed in this article.

  17. Advanced technologies in image-guided radiation therapy.

    PubMed

    Balter, James M; Cao, Yue

    2007-10-01

    In addition to rapid developments in the use of stationary radiographs and computed tomography scans in treatment rooms, a variety of additional technologies is on the horizon to aid in guided treatment. Some of these (fluoroscopy and tomosynthesis) are variations on the use of existing hardware, whereas others (electromagnetic localization, magnetic resonance imaging) represent significant departures from recently adopted technologic concepts. This review introduces these methods and explores their potential for initial use in guidance.

  18. DoD Advanced, Image-Evaluation Program

    DTIC Science & Technology

    1974-06-01

    Module 40 14 Two-Port, Image- Evaluation Concept 43 15 Basic Schematic for System Responsivity Measurements 48 16 Basic Schematic for System Spatial...Response Measurements 49 17 Basic Schematic for System Resoltivity Response Measurements 50 18 Example of Point Source Spreading 62 viii TABLES Table...Hybrid Target Generator Component Specifications (Visible) 31 Target Pattern Specifications 32 6 Extended Basic Commands 38-39 Typical Software Supported

  19. Advanced imaging of the macrostructure and microstructure of bone

    NASA Technical Reports Server (NTRS)

    Genant, H. K.; Gordon, C.; Jiang, Y.; Link, T. M.; Hans, D.; Majumdar, S.; Lang, T. F.

    2000-01-01

    Noninvasive and/or nondestructive techniques are capable of providing more macro- or microstructural information about bone than standard bone densitometry. Although the latter provides important information about osteoporotic fracture risk, numerous studies indicate that bone strength is only partially explained by bone mineral density. Quantitative assessment of macro- and microstructural features may improve our ability to estimate bone strength. The methods available for quantitatively assessing macrostructure include (besides conventional radiographs) quantitative computed tomography (QCT) and volumetric quantitative computed tomography (vQCT). Methods for assessing microstructure of trabecular bone noninvasively and/or nondestructively include high-resolution computed tomography (hrCT), micro-computed tomography (muCT), high-resolution magnetic resonance (hrMR), and micromagnetic resonance (muMR). vQCT, hrCT and hrMR are generally applicable in vivo; muCT and muMR are principally applicable in vitro. Although considerable progress has been made in the noninvasive and/or nondestructive imaging of the macro- and microstructure of bone, considerable challenges and dilemmas remain. From a technical perspective, the balance between spatial resolution versus sampling size, or between signal-to-noise versus radiation dose or acquisition time, needs further consideration, as do the trade-offs between the complexity and expense of equipment and the availability and accessibility of the methods. The relative merits of in vitro imaging and its ultrahigh resolution but invasiveness versus those of in vivo imaging and its modest resolution but noninvasiveness also deserve careful attention. From a clinical perspective, the challenges for bone imaging include balancing the relative advantages of simple bone densitometry against the more complex architectural features of bone or, similarly, the deeper research requirements against the broader clinical needs. The

  20. HST/WFC3: Understanding and Mitigating Radiation Damage Effects in the CCD Detectors

    NASA Astrophysics Data System (ADS)

    Baggett, S.; Anderson, J.; Sosey, M.; MacKenty, J.; Gosmeyer, C.; Noeske, K.; Gunning, H.; Bourque, M.

    2015-09-01

    At the heart of the Hubble Space Telescope Wide Field Camera 3 (HST/WFC3) UVIS channel resides a 4096x4096 pixel e2v CCD array. While these detectors are performing extremely well after more than 5 years in low-earth orbit, the cumulative effects of radiation damage cause a continual growth in the hot pixel population and a progressive loss in charge transfer efficiency (CTE) over time. The decline in CTE has two effects: (1) it reduces the detected source flux as the defects trap charge during readout and (2) it systematically shifts source centroids as the trapped charge is later released. The flux losses can be significant, particularly for faint sources in low background images. Several mitigation options exist, including target placement within the field of view, empirical stellar photometric corrections, post-flash mode and an empirical pixel-based CTE correction. The application of a post-flash has been remarkably effective in WFC3 at reducing CTE losses in low background images for a relatively small noise penalty. Currently all WFC3 observers are encouraged to post-flash images with low backgrounds. Another powerful option in mitigating CTE losses is the pixel-based CTE correction. Analagous to the CTE correction software currently in use in the HST Advanced Camera for Surveys (ACS) pipeline, the algorithm employs an empirical observationally-constrained model of how much charge is captured and released in order to reconstruct the image. Applied to images (with or without post-flash) after they are acquired, the software is currently available as a standalone routine. The correction will be incorporated into the standard WFC3 calibration pipeline.

  1. Advanced human machine interaction for an image interpretation workstation

    NASA Astrophysics Data System (ADS)

    Maier, S.; Martin, M.; van de Camp, F.; Peinsipp-Byma, E.; Beyerer, J.

    2016-05-01

    In recent years, many new interaction technologies have been developed that enhance the usability of computer systems and allow for novel types of interaction. The areas of application for these technologies have mostly been in gaming and entertainment. However, in professional environments, there are especially demanding tasks that would greatly benefit from improved human machine interfaces as well as an overall improved user experience. We, therefore, envisioned and built an image-interpretation-workstation of the future, a multi-monitor workplace comprised of four screens. Each screen is dedicated to a complex software product such as a geo-information system to provide geographic context, an image annotation tool, software to generate standardized reports and a tool to aid in the identification of objects. Using self-developed systems for hand tracking, pointing gestures and head pose estimation in addition to touchscreens, face identification, and speech recognition systems we created a novel approach to this complex task. For example, head pose information is used to save the position of the mouse cursor on the currently focused screen and to restore it as soon as the same screen is focused again while hand gestures allow for intuitive manipulation of 3d objects in mid-air. While the primary focus is on the task of image interpretation, all of the technologies involved provide generic ways of efficiently interacting with a multi-screen setup and could be utilized in other fields as well. In preliminary experiments, we received promising feedback from users in the military and started to tailor the functionality to their needs

  2. Contrast-enhanced ultrasound for liver imaging: recent advances.

    PubMed

    Salvatore, Veronica; Borghi, Alberto; Piscaglia, Fabio

    2012-01-01

    Contrast-enhanced ultrasonography (CEUS), providing relevant informations not available with non-enhanced ultrasonography, greatly impacted the practice of liver imaging. The characterization of focal liver lesions (FLLs), is obtained in a rapid, accurate and safe way and is considered the main hepatic indication; however CEUS offers other established or emergent relevant applications. Metastases detection and assessment of response to locoregional tumor treatment are accepted applications with specific indications. Needle guidance in case of poorly or non visible target lesions at conventional ultrasound is also accepted. The early assessment of response to systemic treatment, and in particular to antiangiogenic ones, by quantification software is an emergent application. The manageability of CEUS determined also its use in the operating theatre, improving the accuracy of intraoperatory US with a significant impact on final surgical strategy. In cirrhotic patients, the role of CEUS was proven highly accurate and sensitive in the characterization of portal vein thrombosis, by identification of contrast arterial enhancement inside the thrombus, that occurs only in case of neoplastic origin. In recent years microbubbles taken up by Kupffer cells, thus possessing a "postvascular" phase, were registered as ultrasound contrast agent in Japan (Sonazoid). During the post-vascular phase tumoral tissue tend to appear as a contrast defect image due to the lack of Kupffer cells, strongly contributing to tumor staging beside characterization. Newly developed techniques, such as fusion imaging or real-time three dimensional US, in addition to other applications of CEUS, in terms of post-transplantation or cholecystitis-related complications, have been recently proposed and will be discussed.

  3. Advanced Thermal Emission Imaging Systems Definition and Development

    NASA Technical Reports Server (NTRS)

    Blasius, Karl; Nava, David (Technical Monitor)

    2002-01-01

    Santa Barbara Remote Sensing (SBRS), Raytheon Company, is pleased to submit this quarterly progress report of the work performed in the third quarter of Year 2 of the Advanced THEMIS Project, July through September 2002. We review here progress in the proposed tasks. During July through September 2002 progress was made in two major tasks, Spectral Response Characterization and Flight Instrument Definition. Because of staffing problems and technical problems earlier in the program we have refocused the remaining time and budget on the key technical tasks. Current technical problems with a central piece of test equipment has lead us to request a 1 quarter extension to the period of performance. This request is being made through a separate letter independent of this report.

  4. Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy

    NASA Astrophysics Data System (ADS)

    Pablico-Lansigan, Michele H.; Situ, Shu F.; Samia, Anna Cristina S.

    2013-05-01

    Magnetic particle imaging (MPI) is an emerging biomedical imaging technology that allows the direct quantitative mapping of the spatial distribution of superparamagnetic iron oxide nanoparticles. MPI's increased sensitivity and short image acquisition times foster the creation of tomographic images with high temporal and spatial resolution. The contrast and sensitivity of MPI is envisioned to transcend those of other medical imaging modalities presently used, such as magnetic resonance imaging (MRI), X-ray scans, ultrasound, computed tomography (CT), positron emission tomography (PET) and single photon emission computed tomography (SPECT). In this review, we present an overview of the recent advances in the rapidly developing field of MPI. We begin with a basic introduction of the fundamentals of MPI, followed by some highlights over the past decade of the evolution of strategies and approaches used to improve this new imaging technique. We also examine the optimization of iron oxide nanoparticle tracers used for imaging, underscoring the importance of size homogeneity and surface engineering. Finally, we present some future research directions for MPI, emphasizing the novel and exciting opportunities that it offers as an important tool for real-time in vivo monitoring. All these opportunities and capabilities that MPI presents are now seen as potential breakthrough innovations in timely disease diagnosis, implant monitoring, and image-guided therapeutics.

  5. Advanced Tomographic Imaging Methods for the Analysis of Materials

    DTIC Science & Technology

    1991-08-01

    practical point-of-view, these CT resultg suggest that machining -1.5 m from each side of the 38 mg/cm would produce a foam with a reasonably uniform...NMR spectra of samples taken from the left (closest to the cord) and right sides of the right hand layer show the elastomeric components of these to...12.8 mm. One two-component layer, due to the inner liner of the tire, is barely visible on the right side of the Figure 5. Image (80 x 80 x 500 um

  6. Mueller matrix signature in advanced fluorescence microscopy imaging

    NASA Astrophysics Data System (ADS)

    Mazumder, Nirmal; Qiu, Jianjun; Kao, Fu-Jen; Diaspro, Alberto

    2017-02-01

    We have demonstrated the measurement and characterization of the polarization properties of a fluorescence signal using four-channel photon counting based Stokes-Mueller polarization microscopy. Thus, Lu-Chipman decomposition was applied to extract the critical polarization properties such as depolarization, linear retardance and the optical rotation of collagen type I fiber. We observed the spatial distribution of anisotropic and helical molecules of collagen from the reconstructed 2D Mueller images based on the fluorescence signal in a pixel-by-pixel manner.

  7. Advanced imaging microscope tools applied to microgravity research investigations

    NASA Astrophysics Data System (ADS)

    Peterson, L.; Samson, J.; Conrad, D.; Clark, K.

    1998-01-01

    The inability to observe and interact with experiments on orbit has been an impediment for both basic research and commercial ventures using the shuttle. In order to open the frontiers of space, the Center for Microgravity Automation Technology has developed a unique and innovative system for conducting experiments at a distance, the ``Remote Scientist.'' The Remote Scientist extends laboratory automation capability to the microgravity environment. While the Remote Scientist conceptually encompasses a broad spectrum of elements and functionalities, the development approach taken is to: • establish a baseline capability that is both flexible and versatile • incrementally augment the baseline with additional functions over time. Since last year, the application of the Remote Scientist has changed from protein crystal growth to tissue culture, specifically, the development of skeletal muscle under varying levels of tension. This system includes a series of bioreactor chambers that allow for three-dimensional growth of muscle tissue on a membrane suspended between the two ends of a programmable force transducer that can provide automated or investigator-initiated tension on the developing tissue. A microscope objective mounted on a translation carriage allows for high-resolution microscopy along a large area of the tissue. These images will be mosaiced on orbit to detect features and structures that span multiple images. The use of fluorescence and pseudo-confocal microscopy will maximize the observational capabilities of this system. A series of ground-based experiments have been performed to validate the bioreactor, the force transducer, the translation carriage and the image acquisition capabilities of the Remote Scientist. • The bioreactor is capable of sustaining three dimensional tissue culture growth over time. • The force transducer can be programmed to provide static tension on cells or to simulate either slow or fast growth of underlying tissues in

  8. Advances in non-invasive imaging of intracranial vascular disease.

    PubMed Central

    Jäger, H. R.; Grieve, J. P.

    2000-01-01

    Intra-arterial catheter angiography has, in the past, been the mainstay for the investigation of intracranial vascular disease. It is, however, invasive, usually requires in-patients admission, and is associated with a rate of neurological complications between 1% and 3%. In recent years, magnetic resonance angiography (MRA) and CT angiography (CTA) have emerged as non-invasive alternatives for imaging blood vessels and have made a significant impact on neuroradiological investigations. It is the purpose of this article to explain the basic technical principles of these two methods and to give an overview of their current clinical applications. PMID:10700757

  9. Satellite onboard feature classification using CCD's. [in sampled analog processor

    NASA Technical Reports Server (NTRS)

    Benz, H. F.; Husson, C.

    1977-01-01

    In this paper discrete time analog signal processing applications of CCD's are discussed. The types of computations which can be performed in the CCD technology are discussed and compared with respect to their accuracy and required support hardware. The classification problem encountered in the reduction of multispectral data into features of terrestrial interest are decomposed into a CCD technology based hardware solution. The resulting system is readily implemented with existing and anticipated CCD devices. This system will be projected to spacecraft application.

  10. Dawn of Advanced Molecular Medicine: Nanotechnological Advancements in Cancer Imaging and Therapy

    PubMed Central

    Kaittanis, Charalambos; Shaffer, Travis M.; Thorek, Daniel L. J.; Grimm, Jan

    2014-01-01

    Nanotechnology plays an increasingly important role not only in our everyday life (with all its benefits and dangers) but also in medicine. Nanoparticles are to date the most intriguing option to deliver high concentrations of agents specifically and directly to cancer cells; therefore, a wide variety of these nanomaterials has been developed and explored. These span the range from simple nanoagents to sophisticated smart devices for drug delivery or imaging. Nanomaterials usually provide a large surface area, allowing for decoration with a large amount of moieties on the surface for either additional functionalities or targeting. Besides using particles solely for imaging purposes, they can also carry as a payload a therapeutic agent. If both are combined within the same particle, a theranostic agent is created. The sophistication of highly developed nanotechnology targeting approaches provides a promising means for many clinical implementations and can provide improved applications for otherwise suboptimal formulations. In this review we will explore nanotechnology both for imaging and therapy to provide a general overview of the field and its impact on cancer imaging and therapy. PMID:25271430

  11. INVITED REVIEW--IMAGE REGISTRATION IN VETERINARY RADIATION ONCOLOGY: INDICATIONS, IMPLICATIONS, AND FUTURE ADVANCES.

    PubMed

    Feng, Yang; Lawrence, Jessica; Cheng, Kun; Montgomery, Dean; Forrest, Lisa; Mclaren, Duncan B; McLaughlin, Stephen; Argyle, David J; Nailon, William H

    2016-01-01

    The field of veterinary radiation therapy (RT) has gained substantial momentum in recent decades with significant advances in conformal treatment planning, image-guided radiation therapy (IGRT), and intensity-modulated (IMRT) techniques. At the root of these advancements lie improvements in tumor imaging, image alignment (registration), target volume delineation, and identification of critical structures. Image registration has been widely used to combine information from multimodality images such as computerized tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) to improve the accuracy of radiation delivery and reliably identify tumor-bearing areas. Many different techniques have been applied in image registration. This review provides an overview of medical image registration in RT and its applications in veterinary oncology. A summary of the most commonly used approaches in human and veterinary medicine is presented along with their current use in IGRT and adaptive radiation therapy (ART). It is important to realize that registration does not guarantee that target volumes, such as the gross tumor volume (GTV), are correctly identified on the image being registered, as limitations unique to registration algorithms exist. Research involving novel registration frameworks for automatic segmentation of tumor volumes is ongoing and comparative oncology programs offer a unique opportunity to test the efficacy of proposed algorithms.

  12. Adaptation of commercial microscopes for advanced imaging applications

    NASA Astrophysics Data System (ADS)

    Brideau, Craig; Poon, Kelvin; Stys, Peter

    2015-03-01

    Today's commercially available microscopes offer a wide array of options to accommodate common imaging experiments. Occasionally, an experimental goal will require an unusual light source, filter, or even irregular sample that is not compatible with existing equipment. In these situations the ability to modify an existing microscopy platform with custom accessories can greatly extend its utility and allow for experiments not possible with stock equipment. Light source conditioning/manipulation such as polarization, beam diameter or even custom source filtering can easily be added with bulk components. Custom and after-market detectors can be added to external ports using optical construction hardware and adapters. This paper will present various examples of modifications carried out on commercial microscopes to address both atypical imaging modalities and research needs. Violet and near-ultraviolet source adaptation, custom detection filtering, and laser beam conditioning and control modifications will be demonstrated. The availability of basic `building block' parts will be discussed with respect to user safety, construction strategies, and ease of use.

  13. Advances in multiscale theoretical analysis and imaging aspects of turbulence

    NASA Astrophysics Data System (ADS)

    Shockro, Jennifer

    The work presented in this dissertation is focused on two aspects related to turbulent flow. The first of these is the one-dimensional theoretical analysis of the logarithmic spiral in terms of fractal dimension and spectrum. The second is on imaging methodologies and analysis of turbulent jet scalar interfaces in atmospheric conditions, with broad applicability to various studies where turbulence has a key role, such as urban contaminant dispersion or free space laser communications. The logarithmic spiral is of particular interest to studies of turbulence and natural phenomena as it appears frequently in nature with the "Golden Ratio" and is thought to play an important role in turbulent mixing. It is also an inherently anisotropic geometric structure and therefore provides information towards examining phenomena in which anisotropic properties might be expected to appear and is thought to be present as a structure within the fine scales of the turbulent hierarchy. In this work it is subjected to one-dimensional theoretical analysis, focusing on the development of a probability density function (pdf) for the spiral and the relation of the pdf to its fractal dimension. Results indicate that the logarithmic spiral does not have a constant fractal dimension and thus that it does not exhibit any form of self-similar statistical behavior, supporting previous theoretical suppositions about behavior at the fine scales within the turbulent hierarchy. A signal is developed from the pdf in order to evaluate its power spectrum. Results of this analysis provide information about the manner in which energy is carried at different scales of the spiral. To our knowledge, the logarithmic spiral in particular has not yet been examined in this fashion in literature. In order to further investigate this object, the multiscale minima meshless (M(3) ) method isextended and employed computationally to the two-dimensional logarithmic spiral as well as to experimental images of a

  14. Advanced electron crystallography through model-based imaging

    PubMed Central

    Van Aert, Sandra; De Backer, Annick; Martinez, Gerardo T.; den Dekker, Arnold J.; Van Dyck, Dirk; Bals, Sara; Van Tendeloo, Gustaaf

    2016-01-01

    The increasing need for precise determination of the atomic arrangement of non-periodic structures in materials design and the control of nanostructures explains the growing interest in quantitative transmission electron microscopy. The aim is to extract precise and accurate numbers for unknown structure parameters including atomic positions, chemical concentrations and atomic numbers. For this purpose, statistical parameter estimation theory has been shown to provide reliable results. In this theory, observations are considered purely as data planes, from which structure parameters have to be determined using a parametric model describing the images. As such, the positions of atom columns can be measured with a precision of the order of a few picometres, even though the resolution of the electron microscope is still one or two orders of magnitude larger. Moreover, small differences in average atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark-field scanning transmission electron microscopy images. In addition, this theory allows one to measure compositional changes at interfaces, to count atoms with single-atom sensitivity, and to reconstruct atomic structures in three dimensions. This feature article brings the reader up to date, summarizing the underlying theory and highlighting some of the recent applications of quantitative model-based transmisson electron microscopy. PMID:26870383

  15. Advanced image manipulation controller for cockpit LCD displays

    NASA Astrophysics Data System (ADS)

    Ramachandran, Gopal

    1998-09-01

    Key features of a family of LSI integrated circuits will be explained. These DSP devices are capable of taking digital inputs of either NTSC/PAL/SECAM video in YCrCb 4:2:2 format, or computer graphics data from a PC in RGB 8:8:8 format, de- interlacing the data (if required), then re-sizing the resolution of the image independently in the horizontal and vertical axes to fit arbitrary display resolutions. The devices use patented digital filter techniques to perform zoom-only or both zoom as well as shrink. The devices also include registers that allow for cropping the active input image, and registers to completely control horizontal and vertical timing parameters for LCD displays. Current members of this family work at clock rates of up to 84 MHz, at resolutions of 1024 X 768, and upcoming members of the family will raise both the target resolution and pixel rates. All these parts generate all timing signals required by the display. Typically, no external memory is required for zooming and shrinking. Cockpit display applications that could benefit from this chip include processing and display of video, FLIR, EFIS/EICAS displays, radar, digital terrain maps, ultrasonic/sonar, computer graphics/symbol generators, etc. The devices are members of the gmZx family of scaling chips, first introduced in April '97.

  16. Crosswell Imaging Technology & Advanced DSR Navigation for Horizontal Directional Drilling

    SciTech Connect

    Larry Stolarczyk

    2008-08-08

    The objective of Phase II is to develop and demonstrate real-time measurement-while-drilling (MWD) for guidance and navigation of drill strings during horizontal drilling operations applicable to both short and long holes. The end product of Phase II is a functional drill-string assembly outfitted with a commercial version of Drill String Radar (DSR). Project Objectives Develop and demonstrate a dual-phase methodology of in-seam drilling, imaging, and structure confirmation. This methodology, illustrated in Figure 1, includes: (1) Using RIM to image between drill holes for seam thickness estimates and in-seam structures detection. Completed, February 2005; and (2) Using DSR for real-time MWD guidance and navigation of drillstrings during horizontal drilling operations. Completed, November 2008. As of November 2008, the Phase II portion of Contract DE-FC26-04NT42085 is about 99% complete, including milestones and tasks original outlined as Phase II work. The one percent deficiency results from MSHA-related approvals which have yet to be granted (at the time of reporting). These approvals are pending and are do not negatively impact the scope of work or project objectives.

  17. Advanced 3D polarimetric flash ladar imaging through foliage

    NASA Astrophysics Data System (ADS)

    Murray, James T.; Moran, Steven E.; Roddier, Nicolas; Vercillo, Richard; Bridges, Robert; Austin, William

    2003-08-01

    High-resolution three-dimensional flash ladar system technologies are under development that enables remote identification of vehicles and armament hidden by heavy tree canopies. We have developed a sensor architecture and design that employs a 3D flash ladar receiver to address this mission. The receiver captures 128×128×>30 three-dimensional images for each laser pulse fired. The voxel size of the image is 3"×3"×4" at the target location. A novel signal-processing algorithm has been developed that achieves sub-voxel (sub-inch) range precision estimates of target locations within each pixel. Polarization discrimination is implemented to augment the target-to-foliage contrast. When employed, this method improves the range resolution of the system beyond the classical limit (based on pulsewidth and detection bandwidth). Experiments were performed with a 6 ns long transmitter pulsewidth that demonstrate 1-inch range resolution of a tank-like target that is occluded by foliage and a range precision of 0.3" for unoccluded targets.

  18. A slot-scanned photodiode-array/CCD hybrid detector for digital mammography.

    PubMed

    Mainprize, James G; Ford, Nancy L; Yin, Shi; Tümer, Türmay; Yaffe, Martin J

    2002-02-01

    We have developed a novel direct conversion detector for use in a slot-scanning digital mammography system. The slot-scan concept allows for dose efficient scatter rejection and the ability to use small detectors to produce a large-area image. The detector is a hybrid design with a 1.0 mm thick silicon PIN photodiode array (the x-ray absorber) indium-bump bonded to a CCD readout that is operated in time-delay integration (TDI) mode. Because the charge capacity requirement for good image quality exceeds the capabilities of standard CCDs, a novel CCD was developed. This CCD consists of 24 independent sections, each acting as a miniature CCD with eight rows for TDI. The signal from each section is combined off-chip to produce a full signal image. The MTF and DQE for the device was measured at several exposures and compared to a linear systems model of signal and noise propagation. Because of the scanning nature of TDI imaging, both the MTF(f) and DQE(f) are reduced along the direction of the scanning motion. For a 26 kVp spectrum, the DQE(0) was measured to be 0.75+/-0.02 for an exposure of 1.29 x 10(-5) C/kg (50 mR).

  19. VizieR Online Data Catalog: NGC 225 CCD UBV photometry (Bilir+, 2016)

    NASA Astrophysics Data System (ADS)

    Bilir, S.; Bostanci, Z. F.; Yontan, T.; Guver, T.; Bakis, V.; Ak, T.; Ak, S.; Paunzen, E.; Eker, Z.

    2016-11-01

    CCD UBVRI images of the open cluster NGC 225 and standard stars selected from Landolt (2009, Cat. J/AJ/137/4186) were acquired on 2012 July 18 using a 1-m Ritchey-Chretien telescope (T100) located at the TUBITAK National Observatory (TUG) in Bakirlitepe, Antalya/Turkey. (1 data file).

  20. VizieR Online Data Catalog: NGC 6819 CCD UBV photometry (Ak+, 2016)

    NASA Astrophysics Data System (ADS)

    Ak, T.; Bostanci, Z. F.; Yontan, T.; Bilir, S.; Guver, T.; Ak, S.; Urgup, H.; Paunzen, E.

    2016-11-01

    CCD UBVRI images of the open cluster NGC 6819 and standard stars selected from Landolt (2009, Cat. J/AJ/137/4186) were acquired on 2015 May 18 using a 1-m Ritchey-Chretien telescope (T100) located at the TUBITAK National Observatory (TUG) in Bakirlitepe, Antalya/Turkey. (1 data file).