Science.gov

Sample records for advanced ceramic fabrics

  1. Strength and flexibility properties of advanced ceramic fabrics

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Tran, H. K.

    1985-01-01

    The mechanical properties of four advanced ceramic fabrics are measured at a temperature range of 23 C to 1200 C. The fabrics evaluated are silica, high-and low-boria content aluminoborosilicate, and silicon carbide. Properties studied include fabric break strengths from room temperature to 1200 C, and bending durability after temperature conditioning at 1200 C and 1400 C. The interaction of the fabric and ceramic insulation is also studied for shrinkage, appearance, bend resistance, and fabric-to-insulation bonding. Based on these tests, the low-boria content aluminoborosilicate fabric retains more strength and fabric durability than the other fabrics studied at high temperature.

  2. Fabrication of ceramic components for advanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Liu, F.; Solidum, E.

    1985-01-01

    The AGT101 ceramic gas turbine engine feasibility study has made use of the slip casting of silicon or silicon nitride powders to produce either reaction-bonded or sintered components such as turbine rotors, turbine shrouds, and inner and outer diffusers. Attention is given to the effects of processing parameters on the microstructure and properties of the finished components; the parameters encompass powder particle size distribution, casting slip viscosity, pH, and solid content fraction. The green slip cast components were consolidated by nitriding, sintering, or sinter/HIPping.

  3. Testing of advanced ceramic fabric heat pipe for a Stirling engine

    SciTech Connect

    Antoniak, Z.I.; Webb, B.J.; Bates, J.M.

    1991-09-01

    The development and application of Stirling engines for space power production requires concomitant development of an advanced heat rejection system. We are currently involved in the design, development, and testing of advanced ceramic fabric (ACF) water heat pipes for optimal heat rejection from the Stirling cycle without the use of hazardous working fluids such as mercury. Our testing to-date has been with a 200-{mu}m thick titanium heat pipe utilizing Nextel {trademark} fabric as both the outer structural component and as a wick. This heat pipe has been successfully started up from a frozen condition against a negative 4 degree tilt (i.e., fluid return to evaporator was against gravity), with 75 W heat input, in ambient air. In a horizontal orientation, up to 100 W heat input was tolerated without experiencing dryout. 7 refs., 5 figs., 2 tabs.

  4. Advanced ceramic fabric body mounted radiator for Space Station Freedom Phase O design

    SciTech Connect

    Webb, B.J.; Antoniak, Z.I.; Pauley, K.A.

    1990-06-01

    A body mounted radiator concept constructed of advanced ceramic fabric materials for use with the Phase 0 design of Space Station Freedom is described. The radiator is expected to weigh between 1.4 and 3.5 kg/m{sup 2} of single sided radiating surface, use ammonia working fluid, be highly deployable, and exhibit good reliability characteristics. This compares well with the 11.8 kg/m{sup 2} for two sided radiators proposed for the current space station design.

  5. Prototype Development of Remote Operated Hot Uniaxial Press (ROHUP) to Fabricate Advanced Tc-99 Bearing Ceramic Waste Forms - 13381

    SciTech Connect

    Alaniz, Ariana J.; Delgado, Luc R.; Werbick, Brett M.; Hartmann, Thomas

    2013-07-01

    The objective of this senior student project is to design and build a prototype construction of a machine that simultaneously provides the proper pressure and temperature parameters to sinter ceramic powders in-situ to create pellets of rather high densities of above 90% (theoretical). This ROHUP (Remote Operated Hot Uniaxial Press) device is designed specifically to fabricate advanced ceramic Tc-99 bearing waste forms and therefore radiological barriers have been included in the system. The HUP features electronic control and feedback systems to set and monitor pressure, load, and temperature parameters. This device operates wirelessly via portable computer using Bluetooth{sup R} technology. The HUP device is designed to fit in a standard atmosphere controlled glove box to further allow sintering under inert conditions (e.g. under Ar, He, N{sub 2}). This will further allow utilizing this HUP for other potential applications, including radioactive samples, novel ceramic waste forms, advanced oxide fuels, air-sensitive samples, metallic systems, advanced powder metallurgy, diffusion experiments and more. (authors)

  6. Optical Properties Of Ceramic Fabrics

    NASA Technical Reports Server (NTRS)

    Covington, M. A.; Sawko, P. M.

    1990-01-01

    Report discusses optical properties of ceramic fabrics woven from silica, aluminoborosilicate, and silicon carbide yarns. Directional hemispheric reflectance and transmittance data given for several different weave patterns, yarn constructions, and fabric weights.

  7. Ceramic Fabric Coated With Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Smith, M.; Goldstein, H.; Zimmerman, N.

    1988-01-01

    Material used as high-temperature shell. Ceramic fabric coated with silicon carbide (SiC) serves as tough, heat-resistant covering for other refractory materials. Developed to protect reusable insulating tiles on advanced space transportation systems. New covering makes protective glaze unnecessary. Used on furnace bricks or on insulation for engines.

  8. Fabrication Of Ceramic Mats

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1991-01-01

    Process to make mats of fine zirconia filaments proposed. Ceramic mats formed by sintering mats of partially dried filaments extruded from slurry of ceramic powder, binder, and solvent. Mats of fine zirconia fibers easier to ball-mill than commercially available zirconia powder.

  9. Ceramic Technology for Advanced Heat Engines Project

    SciTech Connect

    Not Available

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  10. Advanced Ceramics Property Measurements

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan; Helfinstine, John; Quinn, George; Gonczy, Stephen

    2013-01-01

    Mechanical and physical properties of ceramic bodies can be difficult to measure correctly unless the proper techniques are used. The Advanced Ceramics Committee of ASTM, C-28, has developed dozens of consensus test standards and practices to measure various properties of a ceramic monolith, composite, or coating. The standards give the "what, how, how not, and why" for measurement of many mechanical, physical, thermal, and performance properties. Using these standards will provide accurate, reliable, and complete data for rigorous comparisons with other test results from your test lab, or another. The C-28 Committee has involved academics, producers, and users of ceramics to write and continually update more than 45 standards since the committee's inception in 1986. Included in this poster is a pictogram of the C-28 standards and information on how to obtain individual copies with full details or the complete collection of standards in one volume.

  11. Ceramic technology for Advanced Heat Engines Project

    SciTech Connect

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  12. Nondestructive evaluation of advanced ceramics

    NASA Technical Reports Server (NTRS)

    Klima, Stanley J.; Kautz, Harold E.

    1988-01-01

    A review is presented of Lewis Research Center efforts to develop nondestructive evaluation techniques for characterizing advanced ceramic materials. Various approaches involved the use of analytical ultrasonics to characterize monolythic ceramic microstructures, acousto-ultrasonics for characterizing ceramic matrix composites, damage monitoring in impact specimens by microfocus X-ray radiography and scanning ultrasonics, and high resolution computed X-ray tomography to identify structural features in fiber reinforced ceramics.

  13. NDE of advanced ceramics

    NASA Technical Reports Server (NTRS)

    Klima, S. J.

    1986-01-01

    Radiographic, ultrasonic, and scanning laser acoustic microscopy (SLAM) techniques were used to characterize silicon nitride and silicon carbide modulus-of-rupture test specimens in various stages of fabrication. Conventional and microfocus X-ray techniques were found capable of detecting minute high-density inclusions in as-received powders, green compacts, and fully densified specimens. Significant density gradients in sintered bars were observed by radiography, ultrasonic velocity, and SLAM. Ultrasonic attenuation was found sensitive to microstructural variations due to grain and void morphology and distribution. SLAM was capable also of detecting voids, inclusions, and cracks in finished test bars. Consideration is given to the potential for applying thermoacoustic microscopy techniques to green and densified ceramics. Some limitations and the detection probability statistics of the aforementioned nondestructive evaluation (NDE) processes are also discussed.

  14. Fabrication of large ceramic electrolyte disks

    NASA Technical Reports Server (NTRS)

    Ring, S. A.

    1972-01-01

    Process for sintering compressed ceramic powders produces large ceramic disks for use as electrolytes in high-temperature electrolytic cells. Thin, strain-free uniformly dense disks as large as 30 cm squared have been fabricated by slicing ceramic slugs produced by this technique.

  15. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography

    NASA Astrophysics Data System (ADS)

    Bae, Chang-Jun

    Superalloy airfoils are produced by investment casting (IC), which uses ceramic cores and wax patterns with ceramic shell molds. Hollow cored superalloy airfoils in a gas turbine engine are an example of complex IC parts. The complex internal hollow cavities of the airfoil are designed to conduct cooling air through one or more passageways. These complex internal passageways have been fabricated by a lost wax process requiring several processing steps; core preparation, injection molding for wax pattern, and dipping process for ceramic shell molds. Several steps generate problems such as high cost and decreased accuracy of the ceramic mold. For example, costly tooling and production delay are required to produce mold dies for complex cores and wax patterns used in injection molding, resulting in a big obstacle for prototypes and smaller production runs. Rather than using separate cores, patterns, and shell molds, it would be advantageous to directly produce a mold that has the casting cavity and the ceramic core by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This dissertation addresses the integrally cored casting ceramic mold (ICCM), the ceramic core with a ceramic mold shell in a single patternless construction, fabricated by ceramic stereolithography (CerSLA). CerSLA is considered as an alternative method to replace lost wax processes, for small production runs or designs too complex for conventional cores and patterns. The main topic is the development of methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as related issues. The related issues are the segregation of coarse fused silica powders in a layer, the degree of segregation parameter to

  16. Ceramic nanostructures and methods of fabrication

    DOEpatents

    Ripley, Edward B.; Seals, Roland D.; Morrell, Jonathan S.

    2009-11-24

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  17. Composite metal foil and ceramic fabric materials

    DOEpatents

    Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.

    1992-03-24

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.

  18. Composite metal foil and ceramic fabric materials

    DOEpatents

    Webb, Brent J.; Antoniak, Zen I.; Prater, John T.; DeSteese, John G.

    1992-01-01

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed.

  19. Challenges and Opportunities in Design, Fabrication, and Testing of High Temperature Joints in Ceramics and Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Levine, S. R. (Technical Monitor)

    2001-01-01

    Ceramic joining has been recognized as an enabling technology for successful utilization of advanced ceramics and composite materials. A number of joint design and testing issues have been discussed for ceramic joints in silicon carbide-based ceramics and fiber-reinforced composites. These joints have been fabricated using an affordable, robust ceramic joining technology (ARCJoinT). The microstructure and good high temperature mechanical capability (compressive and flexural strengths) of ceramic joints in silicon carbide-based ceramics and composite materials are reported.

  20. Process for producing advanced ceramics

    DOEpatents

    Kwong, Kyei-Sing

    1996-01-01

    A process for the synthesis of homogeneous advanced ceramics such as SiC+AlN, SiAlON, SiC+Al.sub.2 O.sub.3, and Si.sub.3 N.sub.4 +AlN from natural clays such as kaolin, halloysite and montmorillonite by an intercalation and heat treatment method. Included are the steps of refining clays, intercalating organic compounds into the layered structure of clays, drying the intercalated mixture, firing the treated atmospheres and grinding the loosely agglomerated structure. Advanced ceramics produced by this procedure have the advantages of homogeneity, cost effectiveness, simplicity of manufacture, ease of grind and a short process time. Advanced ceramics produced by this process can be used for refractory, wear part and structure ceramics.

  1. Ultrastructure processing of advanced ceramics

    SciTech Connect

    Mackenzie, J.D.; Ulrich, D.R.

    1988-01-01

    Experimental investigations and applications of advanced ceramics are discussed in reviews and reports presented at the Third International Conference on Ultrastructure Processing of Ceramics, Glasses, and Composites held in San Diego in February 1987. Sections are devoted to precursors and chemistry for ultrastructure processing; sol-gel science and technology; powders and colloids; advanced ceramics; and composites, new materials, and techniques. Particular attention is given to silicon oxynitride and sialon ceramics from organosilicon powders, fluoropolymer-modified silicate glasses, Raman and FTIR spectroscopy of rapid sol-gel processes, a low-temperature route to high-purity Ti/Zr/Hf diboride powders and films, and sol-gel methods for SiO2 optical-fiber coatings. Diagrams, drawings, graphs, micrographs, and tables of numerical data are included.

  2. Fabrication Routes for Continuous Fiber-Reinforced Ceramic Composites (CFCC)

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Bansal, Narottam P.

    1998-01-01

    The primary approaches used for fabrication of continuous fiber-reinforced ceramic composite (CFCC) components have been reviewed. The CFCC fabrication issues related to fiber, interface, and matrix have been analyzed. The capabilities. advantages and limitations of the five matrix-infiltration routes have been compared and discussed. Today. the best fabrication route for the CFCC end-user is not clear and compromises need to be made depending on the details of the CFCC application. However, with time, this problem should be reduced as research continues to develop advanced CFCC constituents and fabrication routes.

  3. Fabrication Routes for Continuous Fiber-Reinforced Ceramic Composites (CFCC)

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Bansal, Narottam P.

    1998-01-01

    The primary approaches used for fabrication of continuous fiber-reinforced ceramic composite (CFCC) components have been reviewed. The CFCC fabrication issues related to fiber, interface, and matrix have been analyzed. The capabilities, advantages and limitations of the five matrix-infiltration routes have been compared and discussed. Today, the best fabrication route for the CFCC end-user is not clear and compromises need to be made depending on the details of the CFCC application. However, with time, this problem should be reduced as research continues to develop advanced CFCC constituents and fabrication routes.

  4. FOREWORD: Focus on Advanced Ceramics Focus on Advanced Ceramics

    NASA Astrophysics Data System (ADS)

    Ohashi, Naoki

    2011-06-01

    Much research has been devoted recently to developing technologies for renewable energy and improving the efficiency of the processes and devices used in industry and everyday life. Efficient solutions have been found using novel materials such as platinum and palladium-based catalysts for car exhaust systems, samarium-cobalt and neodymium-iron-boron permanent magnets for electrical motors, and so on. However, their realization has resulted in an increasing demand for rare elements and in their deficit, the development of new materials based on more abundant elements and new functionalities of traditional materials. Moreover, increasing environmental and health concerns demand substitution of toxic or hazardous substances with nature-friendly alternatives. In this context, this focus issue on advanced ceramics aims to review current trends in ceramics science and technology. It is related to the International Conference on Science and Technology of Advanced Ceramics (STAC) held annually to discuss the emerging issues in the field of ceramics. An important direction of ceramic science is the collaboration between experimental and theoretical sciences. Recent developments in density functional theory and computer technology have enabled the prediction of physical and chemical properties of ceramics, thereby assisting the design of new materials. Therefore, this focus issue includes articles devoted to theory and advanced characterization techniques. As mentioned above, the potential shortage of rare elements is becoming critical to the industry and has resulted in a Japanese government initiative called the 'Ubiquitous Element Strategy'. This focus issue also includes articles related to this strategy and to the associated topics of energy conversion, such as phosphors for high-efficiency lighting and photocatalysts for solar-energy harvesting. We hope that this focus issue will provide a timely overview of current trends and problems in ceramics science and

  5. Transparent Ceramic Scintillator Fabrication, Properties and Applications

    SciTech Connect

    Cherepy, N J; Kuntz, J D; Roberts, J J; Hurst, T A; Drury, O B; Sanner, R D; Tillotson, T M; Payne, S A

    2008-08-24

    Transparent ceramics offer an alternative to single crystals for scintillator applications such as gamma ray spectroscopy and radiography. We have developed a versatile, scaleable fabrication method, using Flame Spray Pyrolysis (FSP) to produce feedstock which is readily converted into phase-pure transparent ceramics. We measure integral light yields in excess of 80,000 Ph/MeV with Cerium-doped Garnets, and excellent optical quality. Avalanche photodiode readout of Garnets provides resolution near 6%. For radiography applications, Lutetium Oxide offers a high performance metric and is formable by ceramics processing. Scatter in transparent ceramics due to secondary phases is the principal limitation to optical quality, and afterglow issues that affect the scintillation performance are presently being addressed.

  6. Environment Conscious Ceramics (Ecoceramics): An Eco-Friendly Route to Advanced Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2001-01-01

    Environment conscious ceramics (Ecoceramics) are a new class of materials, which can be produced with renewable natural resources (wood) or wood wastes (wood sawdust). This technology provides an eco-friendly route to advanced ceramic materials. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. Silicon carbide-based ecoceramics have been fabricated by reactive infiltration of carbonaceous preforms by molten silicon or silicon-refractory metal alloys. The fabrication approach, microstructure, and mechanical properties of SiC-based ecoceramics are presented.

  7. Fabrication of transparent ceramics using nanoparticles

    DOEpatents

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  8. Recent advances in ceramics for dentistry.

    PubMed

    Deany, I L

    1996-01-01

    For the last ten years, the application of high-technology processes to dental ceramics allowed for the development of new materials such as heat-pressed, injection-molded, and slip-cast ceramics and glass-ceramics. The purpose of the present paper is to review advances in new materials and processes available for making all-ceramic dental restorations. Concepts on the structure and strengthening mechanisms of dental ceramics are provided. Major developments in materials for all-ceramic restorations are addressed. These advances include improved processing techniques and greater mechanical properties. An overview of the processing techniques available for all-ceramic materials is given, including sintering, casting, machining, slip-casting, and heat-pressing. The most recent ceramic materials are reviewed with respect to their principal crystalline phases, including leucite, alumina, forsterite, zirconia, mica, hydroxyapatite, lithium disilicate, sanidine, and spinel. Finally, a summary of flexural strength data available for all-ceramic materials is included. PMID:8875028

  9. Nondestructive characterization of woven fabric ceramic composites

    SciTech Connect

    Hsu, D.K.; Saini, V.; Liaw, P.K.; Yu, N.; Miriyala, N.; McHargue, C.J.; Snead, L.L.; Lowden, R.A.

    1995-10-01

    Woven fabric ceramic composites fabricated by the chemical vapor infiltration method are susceptible to high void content and inhomogeneity. The condition of such materials may be characterized nondestructively with ultrasonic methods. In this work, longitudinal and shear waves were used in the quantitative determination of elastic constants of Nicalon{trademark}/SiC composites as a function of volume percent of porosity. Elastic stiffness constants were obtained for both the in-plane and out-of-plane directions with respect to fiber fabric. The effect of porosity on the modulus of woven fabric composites was also modeled and compared to the measured results. Scan images based on the amplitude and time-of-flight of radio frequency (RF) ultrasonic pulses were used for evaluating the material homogeneity for the purpose of optimizing the manufacturing process and for correlation with the mechanical testing results.

  10. Direct-write fabrication of integrated, multilayer ceramic components

    SciTech Connect

    Dimos, D.; Yang, P.; Garino, T.J.; Raymond, M.V.; Rodriguez, M.A.

    1997-08-01

    The need for advanced (electronic) ceramic components with smaller size, greater functionality, and enhanced reliability requires the ability to integrate electronic ceramics in complex 3-D architectures. For rapid prototyping and small-lot manufacturing, traditional tape casting and screen printing approaches are poorly suited. To address this need, the authors are developing a direct-write approach for fabricating highly integrated, multilayer components using a micropen to deposit slurries in precise patterns. With this technique, components can be constructed layer by layer, simplifying fabrication. It can also be used to produce structures combining several materials in a single layer. The parts are either cofired or sequentially fired, after each layer is deposited. Since differential shrinkage can lead to defects in these multilayer structures, they are characterizing the sintering behavior of individual layers. This technique has been used to fabricate devices such integrated RC filters, multilayer voltage transformers, and other passive components. The direct-write approach provides the ability to fabricate multifunctional, multimaterial integrated ceramic components (MMICCs) in an agile and rapid way.

  11. Gradient porous hydroxyapatite ceramics fabricated by freeze casting method

    NASA Astrophysics Data System (ADS)

    Zuo, Kai-hui; zhang, Yuan; Jiang, Dongliang; Zeng, Yu-Ping

    2011-04-01

    By controlling the cooling rates and the composition of slurries, the gradient porous hydroxyapatite ceramics are fabricated by the freeze casting method. According to the different cooling rate, the pores of HAP ceramics fabricated by gradient freeze casting are divided into three parts: one is lamellar pores, another is column pore and the last one is fine round pores. The laminated freeze casting is in favour of obtaining the gradient porous ceramics composed of different materials and the ceramics have unclear interfaces.

  12. Ceramic Integration Technologies for Advanced Energy Systems: Critical Needs, Technical Challenges, and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2010-01-01

    Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.

  13. Thin-Film Ceramic Thermocouples Fabricated and Tested

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Farmer, Serene C.; Sayir, Ali; Gregory, Otto J.; Blaha, Charles A.

    2004-01-01

    The Sensors and Electronics Technology Branch of the NASA Glenn Research Center is developing thin-film-based sensors for surface measurement in propulsion system research. Thin-film sensors do not require special machining of the components on which they are mounted, and they are considerably thinner than wire- or foil-based sensors. One type of sensor being advanced is the thin-film thermocouple, specifically for applications in high-temperature combustion environments. Ceramics are being demonstrated as having the potential to meet the demands of thin-film thermocouples in advanced aerospace environments. The maximum-use temperature of noble metal thin-film thermocouples, 1500 C (2700 F), may not be adequate for components used in the increasingly harsh conditions of advanced aircraft and next-generation launch vehicles. Ceramic-based thermocouples are known for their high stability and robustness at temperatures exceeding 1500 C, but are typically in the form of bulky rods or probes. As part of ASTP, Glenn's Sensors and Electronics Technology Branch is leading an in-house effort to apply ceramics as thin-film thermocouples for extremely high-temperature applications as part of ASTP. Since the purity of the ceramics is crucial for the stability of the thermocouples, Glenn's Ceramics Branch and Case Western Reserve University are developing high-purity ceramic sputtering targets for fabricating high-temperature sensors. Glenn's Microsystems Fabrication Laboratory, supported by the Akima Corporation, is using these targets to fabricate thermocouple samples for testing. The first of the materials used were chromium silicide (CrSi) and tantalum carbide (TaC). These refractory materials are expected to survive temperatures in excess of 1500 C. Preliminary results indicate that the thermoelectric voltage output of a thin-film CrSi versus TaC thermocouple is 15 times that of the standard type R (platinum-rhodium versus platinum) thermocouple, producing 20 mV with a 200

  14. Ceramic fabrication R D final technical progress report

    SciTech Connect

    Not Available

    1991-01-01

    The goal of this research and development project has been to develop the cohesive ceramic fabrication (CCF) process and to demonstrate its application to various defense-related systems. The CCF process, which is proprietary to Ceramic Binder Systems, Inc. (CBSi), involves a binder system that yields a green ceramic having rubbery yet plastic and tacky properties. The tackiness allows green parts to be pressed together with light (hand) pressure, and the bond is maintained through firing. Fabricating of complex parts is possible via the assembly of simple shapes, easily fabricated by plastic forming and followed by firing to produce a ceramic bond. For some applications, this approach offers substantial potential cost savings over more conventional methods. Other possibilities include the potential for fabricating ceramic parts having graded properties and fabricating ceramic matrix composites.

  15. Ceramic fabrication R&D final technical progress report

    SciTech Connect

    Not Available

    1991-12-31

    The goal of this research and development project has been to develop the cohesive ceramic fabrication (CCF) process and to demonstrate its application to various defense-related systems. The CCF process, which is proprietary to Ceramic Binder Systems, Inc. (CBSi), involves a binder system that yields a green ceramic having rubbery yet plastic and tacky properties. The tackiness allows green parts to be pressed together with light (hand) pressure, and the bond is maintained through firing. Fabricating of complex parts is possible via the assembly of simple shapes, easily fabricated by plastic forming and followed by firing to produce a ceramic bond. For some applications, this approach offers substantial potential cost savings over more conventional methods. Other possibilities include the potential for fabricating ceramic parts having graded properties and fabricating ceramic matrix composites.

  16. Sialon ceramic compositions and methods of fabrication

    DOEpatents

    O'Brien, Michael H.; Park, Blair H.

    1994-01-01

    A method of fabricating a SiAlON ceramic body includes: a) combining quantities of Si.sub.3 N.sub.4, Al.sub.2 O.sub.3 and CeO.sub.2 to produce a mixture; b) forming the mixture into a desired body shape; c) heating the body to a densification temperature of from about 1550.degree. C. to about 1850.degree. C.; c) maintaining the body at the densification temperature for a period of time effective to densify the body; d) cooling the densified body to a devitrification temperature of from about 1200.degree. C. to about 1400.degree. C.; and e) maintaining the densified body at the devitrification temperature for a period of time effective to produce a .beta.'-SiAlON crystalline phase in the body having elemental or compound form Ce incorporated in the .beta.'-SiAlON crystalline phase. Further, a SiAlON ceramic body comprises: a) an amorphous phase; and b) a crystalline phase, the crystalline phase comprising .beta.'-SiAlON having lattice substituted elemental or compound form Ce.

  17. Apparatus for fabricating composite ceramic members

    DOEpatents

    Roy, P.; Simpson, J.L.; Aitken, E.A.

    1975-10-28

    Methods and apparatus for fabrication of composite ceramic members having particular application for measuring oxygen activities in liquid sodium are described. The method involves the simultaneous deposition of ThO$sub 2$: 15 percent Y$sub 2$O$sub 3$ on a sintered stabilized zirconia member by decomposition of gaseous ThCl$sub 4$ and YCl$sub 3$ and by reacting with oxygen gas. Means are provided for establishing an electrical potential gradient across the zirconia member whereby oxygen ions, from a source on one side of the member portion to be coated, are migrated to the opposite side where a reaction and said decomposition and deposition are effected.

  18. Bone formation: The rules for fabricating a composite ceramic

    SciTech Connect

    Caplan, A.I. )

    1990-01-01

    Bone, teeth and shells are complex composite ceramics which are fabricated at low temperature by living organisms. The detailed understanding of this fabrication process is required if we are to attempt to mimic this low temperature assembly process. The guiding principles and major components are outlined with the intent of establishing non-vital fabrication schemes to form a complex composite ceramic consisting of an organix matrix inorganic crystalline phase. 19 refs.

  19. Advanced ceramic cladding for water reactor fuel

    SciTech Connect

    Feinroth, H.

    2000-07-01

    Under the US Department of Energy's Nuclear Energy Research Initiatives (NERI) program, continuous fiber ceramic composites (CFCCs) are being developed as cladding for water reactor fuel elements. The purpose is to substantially increase the passive safety of water reactors. A development effort was initiated in 1991 to fabricate CFCC-clad tubes using commercially available fibers and a sol-gel process developed by McDermott Technologies. Two small-diameter CFCC tubes were fabricated using pure alumina and alumina-zirconia fibers in an alumina matrix. Densities of {approximately}60% of theoretical were achieved. Higher densities are required to guarantee fission gas containment. This NERI work has just begun, and only preliminary results are presented herein. Should the work prove successful, further development is required to evaluate CFCC cladding and performance, including in-pile tests containing fuel and exploring a marriage of CFCC cladding materials with suitable advanced fuel and core designs. The possibility of much higher temperature core designs, possibly cooled with supercritical water, and achievement of plant efficiencies {ge}50% would be examined.

  20. Fabrication and wire extrusion of ceramic superconductors

    SciTech Connect

    Poeppel, R.B.; Balachandran, U.; Singh, J.P.; Dusek, J.T.; Picciolo, J.J.; Dorris, S.E.; Lanagan, M.T.; Goretta, K.C.; Youngdahl, C.A.; Hull, J.R.

    1991-05-01

    Many applications of high-temperature superconductors (HTSs) will depend on the ability to fabricate these materials into long lengths with suitable electrical and mechanical properties maintained over the entire length. The program described in this paper is focused on improvement of the relevant material properties of HTSs and on development of fabrication methods that can be transferred to industry for production of commercial conductors. Our research has resulted in advances in fabrication methods that improve the performance of long lengths of polycrystalline HTS wires and tapes. We have examined the Y-Ba-Cu-O (YBCO), Bi-Sr-Ca-Cu-O (BSCCO), and Tl- Ba-Ca-Cu-O (TBCCO) classes of HTSs. Significant results from our research and work by contemporaries are reported in the various sections of the paper. 28 refs.

  1. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    DOEpatents

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  2. Construction and testing of ceramic fabric heat pipe with water working fluid

    NASA Technical Reports Server (NTRS)

    Antoniak, Zenen I.; Webb, Brent J.; Bates, James M.; Cooper, Matthew F.

    1991-01-01

    A prototype ceramic fabric/titanium water heat pipe has been constructed and tested; it transported 25 to 80 W of power at 423 K. Component development and testing is continuing with the aim of providing an improved prototype, with a 38 micron stainless steel liner covered by a biaxially-braided Nextel (trademark) sleeve that is approximately 300 microns thick. This fabric has been tested to 800 K, and its emittance is about 0.5 at that temperature. Advanced versions of the water heat pipe will probably require a coating over the ceramic fabric in order to increase this emittance to the 0.8 to 0.9 range.

  3. Development of Advanced Ceramic Manufacturing Technology

    SciTech Connect

    Pujari, V.K.

    2001-04-05

    Advanced structural ceramics are enabling materials for new transportation engine systems that have the potential for significantly reducing energy consumption and pollution in automobiles and heavy vehicles. Ceramic component reliability and performance have been demonstrated in previous U.S. DOE initiatives, but high manufacturing cost was recognized as a major barrier to commercialization. Norton Advanced Ceramics (NAC), a division of Saint-Gobain Industrial Ceramics, Inc. (SGIC), was selected to perform a major Advanced Ceramics Manufacturing Technology (ACMT) Program. The overall objectives of NAC's program were to design, develop, and demonstrate advanced manufacturing technology for the production of ceramic exhaust valves for diesel engines. The specific objectives were (1) to reduce the manufacturing cost by an order of magnitude, (2) to develop and demonstrate process capability and reproducibility, and (3) to validate ceramic valve performance, durability, and reliability. The program was divided into four major tasks: Component Design and Specification, Component Manufacturing Technology Development, Inspection and Testing, and Process Demonstration. A high-power diesel engine valve for the DDC Series 149 engine was chosen as the demonstration part for this program. This was determined to be an ideal component type to demonstrate cost-effective process enhancements, the beneficial impact of advanced ceramics on transportation systems, and near-term commercialization potential. The baseline valve material was NAC's NT451 SiAION. It was replaced, later in the program, by an alternate silicon nitride composition (NT551), which utilized a lower cost raw material and a simplified powder-processing approach. The material specifications were defined based on DDC's engine requirements, and the initial and final component design tasks were completed.

  4. Ceramic component processing development for advanced gas-turbine engines

    NASA Technical Reports Server (NTRS)

    Mcentire, B. J.; Hengst, R. R.; Collins, W. T.; Taglialavore, A. P.; Yeckley, R. L.; Bright, E.; Bingham, M. G.

    1991-01-01

    A review of ceramic component advancements directed at developing manufacturing technologies for rotors, stators, vane-seat platforms and scrolls is presented. The first three components are being produced from HIPed Si3N4, while scrolls were prepared from a series of siliconized silicon-carbide materials. Developmental work has been conducted on all aspects of the fabrication process utilizing Taguchi experimental design methods. An assessment of material properties for various components from each process and material are made.

  5. Advanced Ceramic Materials for Future Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  6. Novel fabrication of silicon carbide based ceramics for nuclear applications

    NASA Astrophysics Data System (ADS)

    Singh, Abhishek Kumar

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These materials include refractory alloys based on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as SiC--SiCf; carbon--carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the fuel can lower the center-line temperature and, thereby, enhance power production capabilities and reduce the risk of premature fuel pellet failure. Crystalline silicon carbide has superior characteristics as a structural material from the viewpoint of its thermal and mechanical properties, thermal shock resistance, chemical stability, and low radioactivation. Therefore, there have been many efforts to develop SiC based composites in various forms for use in advanced energy systems. In recent years, with the development of high yield preceramic precursors, the polymer infiltration and pyrolysis (PIP) method has aroused interest for the fabrication of ceramic based materials, for various applications ranging from disc brakes to nuclear reactor fuels. The pyrolysis of preceramic polymers allow new types of ceramic materials to be processed at relatively low temperatures. The raw materials are element-organic polymers whose composition and architecture can be tailored and varied. The primary focus of this study is to use a pyrolysis based process to fabricate a host of novel silicon carbide-metal carbide or oxide composites, and to synthesize new materials based on mixed-metal silicocarbides that cannot be processed using conventional techniques. Allylhydridopolycarbosilane (AHPCS), which is an organometal polymer, was used as the precursor for silicon carbide. Inert gas pyrolysis of AHPCS produces near-stoichiometric amorphous

  7. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    SciTech Connect

    Not Available

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  8. Fabrication of anatase precipitated glass-ceramics possessing high transparency

    SciTech Connect

    Masai, Hirokazu; Toda, Tatsuya; Takahashi, Yoshihiro; Fujiwara, Takumi

    2009-04-13

    Transparent anatase precipitated glass-ceramics were fabricated using ZnO as a component. The particle size of precipitated anatase is several nanometers enough to possess high transparency. The preparation of the Bi-free transparent TiO{sub 2} glass-ceramic was attained by substitution of two different kinds of oxides for bismuth oxide. It is also noteworthy that we have demonstrated the crystallization of metastable anatase in the glass-ceramics as a main phase. The present bulk anatase glass-ceramics will open up an application field for a TiO{sub 2}-containing photocatalyst.

  9. Recent advantages in processing and fabrication of ceramic superconductors

    NASA Astrophysics Data System (ADS)

    Balachandran, U.; Poeppel, R. B.; Ferrando, W. A.; Karmarkar, S. D.; Kerr, J.; Hess, P. W.; Divecha, A. P.

    1991-08-01

    The properties of ceramic superconductors are greatly influenced by the temperature, heating rate, pressure, and gas atmosphere used during processing and fabrication. For example, transport critical current density decreases drastically in the presence of trace amounts of CO2 in the sintering atmosphere. The grain boundaries of samples sintered in O2 atmospheres containing various levels of CO2 have been thoroughly characterized by high-resolution electron microscopy. Reduced total pressure during binder removal and sintering was found to prevent decomposition of the superconductor. We have developed a low-oxygen-pressure technique for calcining precursors and sintering long lengths of wires and coils. Other advances include the improvement of critical current density and levitation force through melt-growth processing, incorporating of insulating coatings, and powder-in-tube processing of superconductors.

  10. Nondestructive Characterization of As-Fabricated Composite Ceramic Panels

    NASA Astrophysics Data System (ADS)

    Green, W. H.; Brennan, R. E.

    2011-06-01

    Decreasing the weight of protective systems, while minimizing the decrease in ballistic performance, is an ongoing goal of the Army. Ceramic materials are currently combined with other materials in these types of structures in order to decrease weight without losing ballistic performance. This includes structures in which the ceramic material is confined in some way and in which the ceramic material is completely encapsulated. Confinement or encapsulation of ceramic material within a structure generally adds complexity and cost. Relatively simple panel specimens fabricated with ceramic tiles on aluminum backings and side confinement using steel were evaluated using nondestructive methods, including x-ray computed tomography and ultrasonic testing. The nondestructive evaluation results will be discussed and compared, including the detectability and mapping of fabrication features.

  11. Nondestructive characterization of as-fabricated composite ceramic panels

    SciTech Connect

    Green, W. H.; Brennan, R. E.

    2011-06-23

    Decreasing the weight of protective systems, while minimizing the decrease in ballistic performance, is an ongoing goal of the Army. Ceramic materials are currently combined with other materials in these types of structures in order to decrease weight without losing ballistic performance. This includes structures in which the ceramic material is confined in some way and in which the ceramic material is completely encapsulated. Confinement or encapsulation of ceramic material within a structure generally adds complexity and cost. Relatively simple panel specimens fabricated with ceramic tiles on aluminum backings and side confinement using steel were evaluated using nondestructive methods, including x-ray computed tomography and ultrasonic testing. The nondestructive evaluation results will be discussed and compared, including the detectability and mapping of fabrication features.

  12. Advanced Ceramics Property and Performance Measurements

    NASA Technical Reports Server (NTRS)

    Jenkins, Michael; Salem, Jonathan; Helfinstine, John; Quinn, George; Gonczy, Stephen

    2015-01-01

    Mechanical and physical properties of ceramic bodies can be difficult to measure correctly unless the proper techniques are used. The Advanced Ceramics Committee of ASTM, C-28, has developed dozens of consensus test standards and practices to measure various properties of a ceramic monolith, composite, or coating. The standards give the what, how, how not, and why for measurement of many mechanical, physical, thermal, and performance properties. Using these standards will provide accurate, reliable, and complete data for rigorous comparisons with other test results from your test lab, or another. The C-28 Committee has involved academics, producers, and users of ceramics to write and continually update more than 45 standards since the committees inception in 1986. Included in this poster is a pictogram of the C-28 standards and information on how to obtain individual copies with full details or the complete collection of all of the standards in one volume.

  13. Robust Joining and Integration of Advanced Ceramics and Composites: Challenges, Opportunities, and Realities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2006-01-01

    Advanced ceramics and fiber reinforced composites are under active consideration for use in a wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite components require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition, these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in advanced ceramics and ceramic matrix composites will be presented. Silicon carbide based advanced ceramics and fiber reinforced composites in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology. In addition, some examples of metal-ceramic brazing will also be presented. Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and composites will be reported. Various joint design philosophies and design issues in joining of ceramics and composites will be discussed.

  14. Design of ceramic fabric heat pipe with water working fluid

    NASA Astrophysics Data System (ADS)

    Antoniak, Z. I.; Bates, J. M.; Webb, B. J.

    1989-08-01

    A novel class of space radiators, constructed of ceramic fabric materials selected for their high-temperature strength and optical characteristics, is under development at Pacific Northwest Laboratory (PNL). An earlier study indicated that heat pipe radiators constructed of fabric tubes lined with metal foil will have superior performance characteristics with lower mass than most other radiator types. Test results confirm these earlier predictions.

  15. Simplified Fabrication of an Esthetic Implant-Supported Crown With a Novel CAD/CAM Glass Ceramic.

    PubMed

    Conejo, Julián; Blatz, Markus B

    2016-06-01

    Implant therapy and CAD/CAM technologies are advancing quickly, providing predictable esthetic and functional treatment options. A recent development involves the use of zirconia-reinforced lithium-silicate ceramic for fabrication of implant-supported restorations. Suitable for monolithic crowns, the material provides the optical advantages of a silicate ceramic with improved physical strength. Several prerequisites, however, are necessary to fabricate screw-retained monolithic restorations in the anterior maxilla. This case report demonstrates the clinical steps to fabricate a monolithic ceramic CAD/CAM crown on an immediately placed dental implant in the esthetic zone. PMID:27517477

  16. Development of sensors for ceramic components in advanced propulsion systems

    NASA Technical Reports Server (NTRS)

    Atkinson, William H.; Cyr, M. A.; Strange, R. R.

    1994-01-01

    The 'Development of Sensors for Ceramics Components in Advanced Propulsion Systems' program was divided into two phases. The objectives of Phase 1 were to analyze, evaluate and recommend sensor concepts for the measurement of surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. The results of this effort were previously published in NASA CR-182111. As a result of Phase 1, three approaches were recommended for further development: pyrometry, thin-film sensors, and thermographic phosphors. The objectives of Phase 2 were to fabricate and conduct laboratory demonstration tests of these systems. A summary report of the Phase 2 effort, together with conclusions and recommendations for each of the categories evaluated, has been submitted to NASA. Emittance tests were performed on six materials furnished by NASA Lewis Research Center. Measurements were made of various surfaces at high temperature using a Thermogage emissometer. This report describes the emittance test program and presents a summary of the results.

  17. High Temperature Wear of Advanced Ceramics

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.

    2005-01-01

    It was initially hypothesized that advanced ceramics would exhibit favorable high te- friction and wear properties because of their high hot hardness and low achievable surface roughness welding observed in metals does not occur in ceramics. More recent tribological studies of many nitride, carbide, oxide and composite ceramics, however, have revealed that ceramics often exhibit high friction and wear in non-lubricated, high temperature sliding contacts. A summary is given to measure friction and wear factor coefficients for a variety of ceramics from self mated ceramic pin-on-disk tests at temperatures from 25 to up to 1200 C. Observed steady state friction coefficients range from about 0.5 to 1.0 or above. Wear factor coefficients are also very high and range from about to 10(exp -5) to 10(exp -2) cubic millimeters per N-m. By comparison, oil lubricated steel sliding results in friction coefficients of 0.1 or less and wear factors less than 10(exp -9) cubic millimeters per N-m.

  18. Development in laser peening of advanced ceramics

    NASA Astrophysics Data System (ADS)

    Shukla, Pratik; Smith, Graham C.; Waugh, David G.; Lawrence, Jonathan

    2015-07-01

    Laser peening is a well-known process applicable to surface treat metals and alloys in various industrial sectors. Research in the area of laser peening of ceramics is still scarce and a complete laser-ceramic interaction is still unreported. This paper focuses on laser peening of SiC ceramics employed for cutting tools, armor plating, dental and biomedical implants, with a view to elucidate the unreported work. A detailed investigation was conducted with 1064nm Nd:YAG ns pulse laser to first understand the surface effects, namely: the topography, hardness, KIc and the microstructure of SiC advanced ceramics. The results showed changes in surface roughness and microstructural modification after laser peening. An increase in surface hardness was found by almost 2 folds, as the diamond footprints and its flaws sizes were considerably reduced, thus, enhancing the resistance of SiC to better withstand mechanical impact. This inherently led to an enhancement in the KIc by about 42%. This is attributed to an induction of compressive residual stress and phase transformation. This work is a first-step towards the development of a 3-dimensional laser peening technique to surface treat many advanced ceramic components. This work has shown that upon tailoring the laser peening parameters may directly control ceramic topography, microstructure, hardness and the KIc. This is useful for increasing the performance of ceramics used for demanding applications particularly where it matters such as in military. Upon successful peening of bullet proof vests could result to higher ballistic strength and resistance against higher sonic velocity, which would not only prevent serious injuries, but could also help to save lives of soldiers on the battle fields.

  19. Advanced Gas Turbine (AGT) Technology Development Project, ceramic component developments

    NASA Technical Reports Server (NTRS)

    Teneyck, M. O.; Macbeth, J. W.; Sweeting, T. B.

    1987-01-01

    The ceramic component technology development activity conducted by Standard Oil Engineered Materials Company while performing as a principal subcontractor to the Garrett Auxiliary Power Division for the Advanced Gas Turbine (AGT) Technology Development Project (NASA Contract DEN3-167) is summarized. The report covers the period October 1979 through July 1987, and includes information concerning ceramic technology work categorized as common and unique. The former pertains to ceramic development applicable to two parallel AGT projects established by NASA contracts DEN3-168 (AGT100) and DEN3-167 (AGT101), whereas the unique work solely pertains to Garrett directed activity under the latter contract. The AGT101 Technology Development Project is sponsored by DOE and administered by NASA-Lewis. Standard Oil directed its efforts toward the development of ceramic materials in the silicon-carbide family. Various shape forming and fabrication methods, and nondestructive evaluation techniques were explored to produce the static structural components for the ceramic engine. This permitted engine testing to proceed without program slippage.

  20. Ceramic technology for advanced heat engines project

    SciTech Connect

    Not Available

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  1. Multilayered ceramic/metal composites by extrusion freeform fabrication

    NASA Astrophysics Data System (ADS)

    Kasichainula, Sridhar

    Metal layers within a laminar ceramic can improve damage tolerance of ceramics by arresting large cracks either by ductile bridging or by crack deflection at the ceramic/metal interface, which will allow engineers to design reliable ceramics for structural applications. At low volume fractions of the metal ductile bridging is not very effective, mainly owing to decreased distance between the crack tip and next ceramic layer. Significant increase in the energy absorption during fracture can come from delamination, but depends on the interfacial fracture resistance. A two-fold increase in energy absorption is realized in the case of glass-ceramic/silver laminates prepared by extrusion freeform fabrication. Interfacial fracture energy for glass-ceramic/silver is found to be 100 J/m2 in comparison to 15 J/m2 for glass-ceramic/SiC, which should explain the sporadic crack deflection in notched four-point bend. For a short beam flexural test shear failure is more favorable in four-point than in three-point bending. In four-point tests, the shear stresses between the outer and inner loading pins can precipitate shear delamination prior to tensile cracking of the layers. Damage modes under low velocity impact tests are similar to four-point bend showing delamination as primary energy dissipation mechanism.

  2. Fabrication and Testing of Ceramic Matrix Composite Rocket Propulsion Components

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Clinton, R. G., Jr.; Dennis, Jay; Elam, Sandy; Genge, Gary; Eckel, Andy; Jaskowiak, Matha; Kiser, J. Doug; Lang, Jerry

    1999-01-01

    The National Aeronautics and Space Administration (NASA) is pursuing using ceramic matrix composites (CMC) as primary structural components for advanced rocket engines. This endeavor is due to the requirement of increasing safety by two orders of magnitude and reducing costs from $10,000/lb to $1,000/lb both within ten years. Out year goals are even more aggressive. Safety gains, through using CMCS, will be realized by increasing temperature margins, tolerance for extreme thermal transients, and damping capability of components and systems, by using components with lower weight and thermal conductivity, etc. Gains in cost reduction, through using CMCS, are anticipated by enabling higher performance systems, using lighter weight components and systems, enabling 100 mission reusability without system refurbishment, greatly reducing cooling requirements and erosion rates, selecting safe fabrication processes that are ideally cost competitive with metal processes at low volume production, etc. This philosophy contrasts the previous philosophy of rocket engine development focused largely on achieving the highest performance with metals and ablatives -- cost and safety were not the focal point of the initial design. Rocket engine components currently being pursued, largely C/SiC and SiC/SiC, include blisks or rotors, 10 foot by 8 foot nozzle ramps, gas generators, thrust chambers, and upperstage nozzles. The Simplex Turbopump CMC blisk effort has just successfully completed a 4.5 year development and test program. The other components mentioned are in the design or fabrication stage. Although the temperature limits of the CMC materials are not quantified in a realistic environment yet, CMC materials are projected to be the only way to achieve significant safety risks mitigation and cost reductions simultaneously. We, the end-users, material fabricators, technology facilitators, and government organizations are charged with developing and demonstrating a much safer and a

  3. DoE Advanced Ceramic Microturbine

    SciTech Connect

    IR Energy Systems

    2004-05-31

    order for this critical component were accomplished in Task 2. Task 3 focused on the design and release of the other non-ceramic components, including the gas generator turbine housing, the power turbine and housing, the combustor, and a new compressor section On September 4, 2002, Milestone No.4 was completed with a Detailed Design Review of the 72 kW 'Ceramic Microturbine'. The customer's concurrence at that design review triggered the release of critical components for manufacturing (Milestone 5). In Task 4, the principle components of the CMT were fabricated and delivered to our Portsmouth facility Manufacturing was mostly completed with the exception of the final machining of the GT and PT housings, the machining of the compressor diffuser, and the fabrication of the compressor cover.

  4. Mechanical Properties and Microstructure of Biomorphic Silicon Carbide Ceramics Fabricated from Wood Precursors

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Salem, J. A.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Silicon carbide based, environment friendly, biomorphic ceramics have been fabricated by the pyrolysis and infiltration of natural wood (maple and mahogany) precursors. This technology provides an eco-friendly route to advanced ceramic materials. These biomorphic silicon carbide ceramics have tailorable properties and behave like silicon carbide based materials manufactured by conventional approaches. The elastic moduli and fracture toughness of biomorphic ceramics strongly depend on the properties of starting wood preforms and the degree of molten silicon infiltration. Mechanical properties of silicon carbide ceramics fabricated from maple wood precursors indicate the flexural strengths of 3441+/-58 MPa at room temperature and 230136 MPa at 1350C. Room temperature fracture toughness of the maple based material is 2.6 +/- 0.2 MPa(square root of)m while the mahogany precursor derived ceramics show a fracture toughness of 2.0 +/- 0.2 Mpa(square root of)m. The fracture toughness and the strength increase as the density of final material increases. Fractographic characterization indicates the failure origins to be pores and chipped pockets of silicon.

  5. Light emitting ceramic device and method for fabricating the same

    DOEpatents

    Valentine, Paul; Edwards, Doreen D.; Walker Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard

    2004-11-30

    A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, and alternative methods of fabrication for the same are claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

  6. Fabrication of low density ceramic material

    DOEpatents

    Meek, T.T.; Blake, R.D.; Sheinberg, H.

    1985-01-01

    A precursor mixture and a method of making a low-density ceramic structural material are disclosed. The precursor mixture includes hollow microballoons, typically made of glass, together with a cementing agent capable of being cured by microwave irradiation. A preferred cementing agent is liquid hydrated potassium silicate, which is mixed with the glass microballoons to form a slurry. Upon irradiation the potassium silicate is dehydrated to form a solid porous matrix in which the microballoons are evenly distributed. Ground glass or other filling agents may be included in the slurry to enhance the properties of the final product. Low-density structural ceramics having densities on the order of 0.1 to 0.3 are obtained.

  7. Ceramic package fabrication for YMP nuclear waste disposal

    SciTech Connect

    Wilfinger, K.

    1994-08-01

    The purpose of this work is to develop alternate materials/design concepts to metal barriers for the Nevada Nuclear Waste Storage Investigations Project. There is some potential that site conditions may prove to be too aggressive for successful employment of the metal alloys under current consideration or that performance assessment models will predict metal container degradation rates that are inconsistent with the goal of substantially complete containment included in the NRC regulations. In the event that the anticipated lifetimes of metal containers are considered inadequate, alternate materials (i.e. ceramics or ceramic/metal composites) will be chosen due to superior corrosion resistance. This document was prepared using information taken from the open literature, conversations and correspondence with vendors, news releases and data presented at conferences to determine what form such a package might take. This discussion presents some ceramic material selection criteria, alternatives for the materials which might be used and alternatives for potential fabrication routes. This includes {open_quotes}stand alone{close_quotes} ceramic components and ceramic coatings/linings for metallic structures. A list of companies providing verbal or written information concerning the production of ceramic or ceramic lined waste containers appears at the end of this discussion.

  8. Reliability and strength of all-ceramic dental restorations fabricated by direct ceramic machining (DCM).

    PubMed

    Filser, F; Kocher, P; Weibel, F; Lüthy, H; Schärer, P; Gauckler, L J

    2001-04-01

    All-ceramic dental bridges for the molar region are not yet available at reasonable costs. The novel direct ceramic machining (DCM) process allows an easy, reliable and rapid fabrication for all-ceramic dental restorations with high mechanical strength and good biocompatibility. In DCM, an enlarged framework is easily milled out of a pre-fabricated porous ceramic blank made of zirconia. After sintering to full density, no further time-consuming hard machining with diamond tools is needed. For individual esthetical requirements, the framework is coated with a veneer porcelain. Compared to the commercially available In-Ceram Alumina and IPS Empress2 restorations, the mechanical strength of zirconia frameworks is twice as high, allowing the restorations to bear the high mastication forces in the molar region. In terms of reliability, zirconia bridges fabricated by the DCM process are also superior to In-Ceram Alumina and IPS Empress2. A clinical study of three-unit dental bridges in the molar region found no problems after the first year of observation. PMID:11697309

  9. a Study on the Role of Sintering Additives for Fabrication of sic Ceramic

    NASA Astrophysics Data System (ADS)

    Yoon, Han Ki; Lee, Young Ju; Cho, Ho Jun; Kim, Tae Gyu

    Silicon carbide (SiC) materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine. The SiC ceramics have been fabricated by a NITE (Nano Infiltration Transient Eutectic Phase) Process, using Nano-SiC powder. The sintering additives used for forming liquid phase under sintering process, used the sintering additives ratios were an Al2O3-Y2O3 system or add SiO2 contents. A major R&D focus for the SiC ceramics is the production to obtain high purity SiC ceramics. In this study, we investigated roles of the sintering additives(Al2O3:Y2O3) to fabrication of the SiC ceramics. The effects of SiO2 contents and density properties of the SiC ceramics were also investigated. To investigate the effects of SiO2, Al2O3/Y2O3 composition were fixed and then SiO2 ratios were changed as several kinds, and to confirm the effects of sintering additives ratios (Al2O3:Y2O3) they were changed between 4:6 and 6:4 in x wt.%.

  10. Making Ceramic Components For Advanced Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Franklin, J. E.; Ezis, A.

    1994-01-01

    Lightweight, oxidation-resistant silicon nitride components containing intricate internal cooling and hydraulic passages and capable of withstanding high operating temperatures made by ceramic-platelet technology. Used to fabricate silicon nitride test articles of two types: components of methane-cooled regenerator for air turbo ramjet engine and components of bipropellant injector for rocket engine. Procedures for development of more complex and intricate components established. Technology has commercial utility in automotive, aircraft, and environmental industries for manufacture of high-temperature components for use in regeneration of fuels, treatment of emissions, high-temperature combustion devices, and application in which other high-temperature and/or lightweight components needed. Potential use in fabrication of combustors and high-temperature acoustic panels for suppression of noise in future high-speed aircraft.

  11. AGT 101: Ceramic component development: Advanced Gas Turbine Program: Topical report, October 1979-July 1987

    SciTech Connect

    Ten Eyck, M.O.; MacBeth, J.W.; Sweeting, T.B.

    1987-11-01

    This topical report summarizes the ceramic component technology development activity conducted by Standard Oil Engineered Materials Company. Standard Oil, acting as a principal subcontractor and supplier of ceramic components, directed its efforts toward the development of ceramic materials in the silicon-carbide family. Various shape forming and fabrication methods, and non-destructive evaluation techniques were explored to produce the static structural components for the ceramic engine. This enabled engine testing to proceed without program slippage, and developed the approaches for producing low-cost, production quantity processes. Standard Oil contributed to the acceptance of ceramics as a viable approach for automotive gas turbine engines and to the advancement of this vital ceramic technology. 174 figs., 33 tabs.

  12. Construction and testing of ceramic fabric heat pipe with water working fluid

    SciTech Connect

    Antoniak, Z.I.; Webb, B.J.; Bates, J.M.; Cooper, M.F.

    1991-01-01

    A prototype ceramic fabric/titanium water heat pipe has been constructed and tested; it transported 25 to 80 W of power at 423 K. Component development and testing is continuing with the aim of providing an improved prototype, with a 38-{mu}m stainless steel linear covered by a biaxially-braided Nextel (trademark of the 3M Co., St. Paul Minnesota) sleeve that is approximately 300-{mu}m thick. This fabric has been tested to 800 K, and its emittance is about 0.5 at that temperature. Advanced versions of the water heat pipe will probably require a coating over the ceramic fabric in order to increase this emittance to the 0.8 to 0.9 range. 2 refs., 3 figs., 1 tab.

  13. Joining and Assembly of Silicon Carbide-based Advanced Ceramics and Composites for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2004-01-01

    Silicon carbide based advanced ceramics and fiber reinforced composites are under active consideration for use in wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite component require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing o high temperature joints in ceramic matrix composites will be presented. Silicon carbide based advanced ceramics (CVD and hot pressed), and C/SiC and SiC/SiC composites, in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology (ARCJoinT). Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and CVI and melt infiltrated SiC matrix composites will,be reported. Various joint design philosophies and design issues in joining of ceramics and composites well be discussed.

  14. Fabrication of translucent boron nitride dispersed polycrystalline silicon nitride ceramics

    NASA Astrophysics Data System (ADS)

    Joshi, B.; Fu, Z.; Niihara, K.; Lee, S. W.

    2011-03-01

    Optical transparency was achieved at infrared region and overall translucent silicon nitride was fabricated using hot press sintering (HPS). The increase in h-BN content decreased the optical transparency. Microstructral observations shows that the optical, mechanical and tribological properties of BN dispersed polycrystalline Si3N4 ceramics were affected by the density, α:β-phase ratio and content of h-BN in sintered ceramics. The hot pressed samples were prepared from the mixture of α-Si3N4, AlN, MgO and h-BN at 1850°C. The composite contained from 0.25 to 2 mass % BN powder with sintering aids (9% AlN + 3% MgO). Maximum transmittance of 57% was achieved for 0.25 mass % BN doped Si3N4 ceramics. Fracture toughness was increased and wear volume and friction coefficient were decreased with increase in BN content.

  15. Fabrication of ceramic components using mold shape deposition manufacturing

    NASA Astrophysics Data System (ADS)

    Cooper, Alexander G.

    Mold Shape Deposition Manufacturing (Mold SDM) is a new process for the fabrication of geometrically complex, structural ceramic components. This thesis describes the development of the Mold SDM process, including process steps, materials selection, planning strategies and automation. Initial characterization results are presented and these are used to compare the process to competing manufacturing processes. A range of current and potential applications for ceramic, as well as metal and polymer parts are discussed. The benefits and limitations of ceramic materials for structural applications are discussed to motivate the need for a manufacturing process capable of rapidly producing high quality, geometrically complex, structural ceramic components. The Mold SDM process was developed to address this need. Mold SDM is based on Shape Deposition Manufacturing (SDM) and uses SDM techniques to build fugitive wax molds which can then be used to build ceramic parts by gelcasting. SDM is an additive-subtractive layered manufacturing process which allows it to build geometrically complex parts. The subtraction step differentiates Mold SDM from other layered manufacturing processes and allows accurate, high quality surfaces to be produced. The performance of the process was increased by identifying the key material properties and then selecting improved materials combinations. Candidate materials were evaluated in terms of machinability, shrinkage, heat resistance and chemical compatibility. A number of preferred materials combinations were developed and used to produce ceramic, metal and polymer parts. A number of new process planning strategies and build techniques were developed. The manufacturability analysis determines whether a part is manufacturable and the orientation selection guidelines help in the selection of optimum build directions. New decomposition techniques take advantage of process capabilities to improve part quality and build rate. Initial process

  16. Functionalized bio-artifact fabricated via selective slurry extrusion. Part 2: Fabrication of ceramic dental crown.

    PubMed

    Zhu, D B; Liang, J P; Qu, Y X; Duan, G L

    2014-05-01

    Functionalized ceramic dental crown was successfully fabricated through selective slurry extrusion (SSE) based technique of solid freeform fabrication (also known as rapid prototyping). After sintering, the decomposed tourmaline powders were embedded in ZrO2 matrix. The far infrared emission properties of the ceramic dental crown were improved due to the increase of the numbers of infrared active bonds from tourmaline. This new dental restoration process presents potential to provide dental patients with functionalized artificial teeth, which benefits the body health by the way of emitting far infrared rays in ambient temperatures. PMID:24734617

  17. NDE (nondestructive examination) development for ceramics for advanced heat engines

    SciTech Connect

    McClung, R.W. , Powell, TN ); Johnson, D.R. )

    1991-01-01

    The Department of Energy (DOE) Ceramic Technology for Advanced Heat Engines (CTAHE) project was initiated in 1983 to meet the ceramic technology needs of DOE's advanced heat engines programs (i.e., advanced gas turbines and low heat rejection diesels). The objective is to establish an industrial ceramic technology base for reliable and cost-effective high-temperature components. Reliability of ceramics was recognized as the major technology need. To increase the material reliability of current and new ceramics, advances were needed in component design methodology, materials processing technology, and data base/life prediction. Nondestructive examination (NDE) was identified as one of the key elements in the approach to high-reliability components. An assessment was made of the current status of NDE for structural ceramics, and a report was prepared containing the results and recommendations for needed development. Based on these recommendations, a long-range NDE development program has been established in the CTAHE project to address these needs.

  18. Fabrication of porous silicon nitride ceramics using binder jetting technology

    NASA Astrophysics Data System (ADS)

    Rabinskiy, L.; Ripetsky, A.; Sitnikov, S.; Solyaev, Y.; Kahramanov, R.

    2016-07-01

    This paper presents the results of the binder jetting technology application for the processing of the Si3N4-based ceramics. The difference of the developed technology from analogues used for additive manufacturing of silicon nitride ceramics is a method of the separate deposition of the mineral powder and binder without direct injection of suspensions/slurries. It is assumed that such approach allows reducing the technology complexity and simplifying the process of the feedstock preparation, including the simplification of the composite materials production. The binders based on methyl ester of acrylic acid with polyurethane and modified starch were studied. At this stage of the investigations, the technology of green body's fabrication is implemented using a standard HP cartridge mounted on the robotic arm. For the coordinated operation of the cartridge and robot the specially developed software was used. Obtained green bodies of silicon powder were used to produce the ceramic samples via reaction sintering. The results of study of ceramics samples microstructure and composition are presented. Sintered ceramics are characterized by fibrous α-Si3N4 structure and porosity up to 70%.

  19. Fabrication of transparent ceramic laser media for high energy laser applications

    NASA Astrophysics Data System (ADS)

    Serivalsatit, Karn

    nanopowders with average particle size 40 and 60 nm, respectively. Transparent sesquioxide ceramics were successfully fabricated by vacuum sintering compacts of nanopowders at high temperature. These ceramics had relatively large grain sizes, ranging from tens to hundreds of micrometers, due to significant grain growth at the final stage of sintering. These large-grained ceramics tend to not offer significant enhancements to strength or thermal shock resistance that smaller grain-sized transparent ceramics afford. Sub-micrometer-grained highly transparent sesquioxide ceramics were fabricated using a two-step sintering process followed by hot isostatic pressing (HIP). This process yielded full densification of the sesquioxide ceramics with drastically reduced grain growth. These sub-micrometer-grained ceramics exhibited a transparency equivalent to that of single crystals in the near-infrared spectral. The microhardness and fracture toughness of transparent ceramics fabricated by this method were found to exceed those of transparent ceramics fabricated by conventional sintering. The single-crystal-like transmittance of the sub-micrometer-grained yttria ceramics in the visible and IR region with high mechanical properties is an important advancement for the use of these materials in more extreme environments, including high power laser systems where reduction of scattering and thermal shock resistance are critical.

  20. Improved ceramic slip casting technique. [application to aircraft model fabrication

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M. (Inventor); Vasquez, Peter (Inventor)

    1993-01-01

    A primary concern in modern fluid dynamics research is the experimental verification of computational aerothermodynamic codes. This research requires high precision and detail in the test model employed. Ceramic materials are used for these models because of their low heat conductivity and their survivability at high temperatures. To fabricate such models, slip casting techniques were developed to provide net-form, precision casting capability for high-purity ceramic materials in aqueous solutions. In previous slip casting techniques, block, or flask molds made of plaster-of-paris were used to draw liquid from the slip material. Upon setting, parts were removed from the flask mold and cured in a kiln at high temperatures. Casting detail was usually limited with this technique -- detailed parts were frequently damaged upon separation from the flask mold, as the molded parts are extremely delicate in the uncured state, and the flask mold is inflexible. Ceramic surfaces were also marred by 'parting lines' caused by mold separation. This adversely affected the aerodynamic surface quality of the model as well. (Parting lines are invariably necessary on or near the leading edges of wings, nosetips, and fins for mold separation. These areas are also critical for flow boundary layer control.) Parting agents used in the casting process also affected surface quality. These agents eventually soaked into the mold, the model, or flaked off when releasing the case model. Different materials were tried, such as oils, paraffin, and even an algae. The algae released best, but some of it remained on the model and imparted an uneven texture and discoloration on the model surface when cured. According to the present invention, a wax pattern for a shell mold is provided, and an aqueous mixture of a calcium sulfate-bonded investment material is applied as a coating to the wax pattern. The coated wax pattern is then dried, followed by curing to vaporize the wax pattern and leave a shell

  1. Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.

    2012-01-01

    With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].

  2. Fabrication of ceramic substrate-reinforced and free forms by mandrel plasma spraying metal-ceramic composites

    NASA Technical Reports Server (NTRS)

    Quentmeyer, R. J.; Mcdonald, G.; Hendricks, R. C.

    1985-01-01

    Components fabricated of, or coated with, ceramics have lower parasitic cooling requirements. Techniques are discussed for fabricating thin-shell ceramic components and ceramic coatings for applications in rocket or jet engine environments. Thin ceramic shells with complex geometric forms involving convolutions and reentrant surfaces were fabricated by mandrel removal. Mandrel removal was combined with electroplating or plasma spraying and isostatic pressing to form a metal support for the ceramic. Rocket engine thrust chambers coated with 0.08 mm (3 mil) of ZrO2-8Y2O3 had no failures and a tenfold increase in engine life. Some measured mechanical properties of the plasma-sprayed ceramic are presented.

  3. Advanced Safeguards Approaches for New TRU Fuel Fabrication Facilities

    SciTech Connect

    Durst, Philip C.; Ehinger, Michael H.; Boyer, Brian; Therios, Ike; Bean, Robert; Dougan, A.; Tolk, K.

    2007-12-15

    This second report in a series of three reviews possible safeguards approaches for the new transuranic (TRU) fuel fabrication processes to be deployed at AFCF – specifically, the ceramic TRU (MOX) fuel fabrication line and the metallic (pyroprocessing) line. The most common TRU fuel has been fuel composed of mixed plutonium and uranium dioxide, referred to as “MOX”. However, under the Advanced Fuel Cycle projects custom-made fuels with higher contents of neptunium, americium, and curium may also be produced to evaluate if these “minor actinides” can be effectively burned and transmuted through irradiation in the ABR. A third and final report in this series will evaluate and review the advanced safeguards approach options for the ABR. In reviewing and developing the advanced safeguards approach for the new TRU fuel fabrication processes envisioned for AFCF, the existing international (IAEA) safeguards approach at the Plutonium Fuel Production Facility (PFPF) and the conceptual approach planned for the new J-MOX facility in Japan have been considered as a starting point of reference. The pyro-metallurgical reprocessing and fuel fabrication process at EBR-II near Idaho Falls also provided insight for safeguarding the additional metallic pyroprocessing fuel fabrication line planned for AFCF.

  4. Ceramic applications in the advanced Stirling automotive engine

    NASA Technical Reports Server (NTRS)

    Tomazic, W. A.; Cairelli, J. E.

    1977-01-01

    The ideal cycle, its application to a practical machine, and the specific advantages of high efficiency, low emissions, multi-fuel capability, and low noise of the stirling engine are discussed. Certain portions of the Stirling engine must operate continuously at high temperature. Ceramics offer the potential of cost reduction and efficiency improvement for advanced engine applications. Potential applications for ceramics in Stirling engines, and some of the special problems pertinent to using ceramics in the Stirling engine are described. The research and technology program in ceramics which is planned to support the development of advanced Stirling engines is outlined.

  5. ADVANCED SECOND GENERATION CERAMIC CANDLE FILTERS

    SciTech Connect

    M.A. Alvin

    2002-01-31

    Through sponsorship from the Department of Energy's National Energy Technology Laboratory (DOE/NETL), development and manufacture of advanced second generation candle filters was undertaken in the early 1990's. Efforts were primarily focused on the manufacture of fracture toughened, 1.5 m, continuous fiber ceramic composite (CFCC) and filament wound candle filters by 3M, McDermott, DuPont Lanxide Composites, and Techniweave. In order to demonstrate long-term thermal, chemical, and mechanical stability of the advanced second generation candle filter materials, Siemens Westinghouse initiated high temperature, bench-scale, corrosion testing of 3M's CVI-SiC and DuPont's PRD-66 mini-candles, and DuPont's CFCC SiC-SiC and IF&P Fibrosic{sup TM} coupons under simulated, pressurized fluidized-bed combustion (PFBC) conditions. This effort was followed by an evaluation of the mechanical and filtration performance of the advanced second generation filter elements in Siemens Westinghouse's bench-scale PFBC test facility in Pittsburgh, Pennsylvania. Arrays of 1.4-1.5 m 3M CVI-SiC, DuPont PRD-66, DuPont SiC-SiC, and IF&P Fibrosic{sup TM} candles were subjected to steady state process operating conditions, increased severity thermal transients, and accelerated pulse cycling test campaigns which represented {approx}1760 hours of equivalent filter operating life. Siemens Westinghouse subsequently participated in early material surveillance programs which marked entry of the 3M CVI-SiC and DuPont PRD-66 candle filters in Siemens Westinghouse Advanced Particulate Filtration (APF) system at the American Electric Power (AEP) Tidd Demonstration Plant in Brilliant, Ohio. Siemens Westinghouse then conducted an extended, accelerated life, qualification program, evaluating the performance of the 3M, McDermott, and Techniweave oxide-based CFCC filter elements, modified DuPont PRD-66 elements, and the Blasch, Scapa Cerafil{sup TM}, and Specific Surface monolithic candles for use in the APF

  6. Development of advanced composite ceramic tool material

    SciTech Connect

    Huang Chuanzhen; Ai Xing

    1996-08-01

    An advanced ceramic cutting tool material has been developed by means of silicon carbide whisker (SiCw) reinforcement and silicon carbide particle (SiCp) dispersion. The material has the advantage of high bending strength and fracture toughness. Compared with the mechanical properties of Al{sub 2}O{sub 3}/SiCp(AP), Al{sub 2}O{sub 3}/SiCw(JX-1), and Al{sub 2}O{sub 3}/SiCp/SiCw(JX-2-I), it confirms that JX-2-I composites have obvious additive effects of both reinforcing and toughening. The reinforcing and toughening mechanisms of JX-2-I composites were studied based on the analysis of thermal expansion mismatch and the observation of microstructure. The cutting performance of JX-2-I composites was investigated primarily.

  7. Challenges and Opportunities in Reactive Processing and Applications of Advanced Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2003-01-01

    Recently, there has been a great deal of interest in the research, development, and commercialization of innovative synthesis and processing technologies for advanced ceramics and composite materials. Reactive processing approaches have been actively considered due to their robustness, flexibility, and affordability. A wide variety of silicon carbide-based advanced ceramics and composites are currently being fabricated using the processing approaches involving reactive infiltration of liquid and gaseous species into engineered fibrous or microporous carbon performs. The microporous carbon performs have been fabricated using the temperature induced phase separation and pyrolysis of two phase organic (resin-pore former) mixtures and fiber reinforcement of carbon and ceramic particulate bodies. In addition, pyrolyzed native plant cellulose tissues also provide unique carbon templates for manufacturing of non-oxide and oxide ceramics. In spite of great interest in this technology due to their affordability and robustness, there is a lack of scientific basis for process understanding and many technical challenges still remain. The influence of perform properties and other parameters on the resulting microstructure and properties of final material is not well understood. In this presentation, mechanism of silicon-carbon reaction in various systems and the effect of perform microstructure on the mechanical properties of advanced silicon carbide based materials will be discussed. Various examples of applications of reactively processed advanced silicon carbide ceramics and composite materials will be presented.

  8. Integration Science and Technology of Advanced Ceramics for Energy and Environmental Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2012-01-01

    The discovery of new and innovative materials has been known to culminate in major turning points in human history. The transformative impact and functional manifestation of new materials have been demonstrated in every historical era by their integration into new products, systems, assemblies, and devices. In modern times, the integration of new materials into usable products has a special relevance for the technological development and economic competitiveness of industrial societies. Advanced ceramic technologies dramatically impact the energy and environmental landscape due to potential wide scale applications in all aspects of energy production, storage, distribution, conservation, and efficiency. Examples include gas turbine propulsion systems, fuel cells, thermoelectrics, photovoltaics, distribution and transmission systems based on superconductors, nuclear power generation, and waste disposal. Robust ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic components starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance under different operating conditions, the detailed understanding of various thermochemical and thermomechanical factors is critical. Different approaches are required for the integration of ceramic-metal and ceramic-ceramic systems across length scales (macro to nano). In this presentation, a few examples of integration of ceramic to metals and ceramic to ceramic systems will be presented. Various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and

  9. Development of ASTM standards in support of advanced ceramics development

    SciTech Connect

    Brinkman, C.R.; Quinn, G.D.; McClung, R.W.

    1993-01-01

    The ASTM Committee C-28 on Advanced Ceramics was organized in 1986 when it became apparent that ceramics were being considered for extensive use in such applications as heat engines in the automotive and aerospace industries. It was determined that these standards should be written for the production, inspection, testing, data analysis, reliability, and probabilistic design for utilization of advanced ceramics. Advanced ceramics include both monolithic and composite materials. The ASTM Committee C-28 is organized into five subcommittees as follows: Properties and performance, design and evaluation, characterization and processing, ceramic composites, and nomenclature. A summary overview is given of work performed to date and ongoing efforts in developing standards by these various subcommittees.

  10. Factors Affecting Fiber Design and Selection for Advanced Ceramic Composites

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.

    1998-01-01

    Structural Ceramic Matrix Composites (CMC) have the potential for application in the hot sections of a variety of advanced propulsion and power systems. It is therefore necessary to have a general understanding of the key properties of CMC and Reinforcing Fibers. This need is complicated by the wide variety of application conditions and structural requirements for which CMC's will be used, and the proprietary concerns of the design engineers. CMC's, to be successful, must display properties which are competitive with the currently used high temperature structural materials: (i.e., Iron and Nickel based superalloys, tough monolithic ceramics, and carbon/carbon composites.) Structural CMC offers several areas of competition: (1) performance, (i.e., strength and strength retention, creep resistance, and thermal conductivity), (2) reliability (i.e., environmental durability, and damage tolerance) and (3) processing (i.e., capability for varying sizes and shapes, and cost effective fabrication). The presentation further discusses, and illustrates with fiber and CMC data the key fiber properties and processes which strongly affect each CMC area of competition. The presentation further discusses the current knowledge of the important factors which control the key fiber properties. A design guidelines for the optimum fiber characteristics is developed, and the currently available fibers are compared against those guidelines.

  11. Dental ceramics: An update

    PubMed Central

    Shenoy, Arvind; Shenoy, Nina

    2010-01-01

    In the last few decades, there have been tremendous advances in the mechanical properties and methods of fabrication of ceramic materials. While porcelain-based materials are still a major component of the market, there have been moves to replace metal ceramics systems with all ceramic systems. Advances in bonding techniques have increased the range and scope for use of ceramics in dentistry. In this brief review, we will discuss advances in ceramic materials and fabrication techniques. Examples of the microstructure property relationships for these ceramic materials will also be addressed. PMID:21217946

  12. Fabrication and Characterization of Fully Ceramic Microencapsulated Fuels

    SciTech Connect

    Terrani, Kurt A; Kiggans, Jim; Katoh, Yutai; Shimoda, Kazuya; Montgomery, Fred C; Armstrong, Beth L; Parish, Chad M; Hinoki, Tatsuya; Hunn, John D; Snead, Lance Lewis

    2012-01-01

    The current generation of fully ceramic microencapsulated fuels, consisting of Tristructural Isotropic fuel particles embedded in a silicon carbide matrix, is fabricated by hot pressing. Matrix powder feedstock is comprised of alumina - yttria additives thoroughly mixed with silicon carbide nanopowder using polyethyleneimine as a dispersing agent. Fuel compacts are fabricated by hot pressing the powder - fuel particle mixture at a temperature of 1800-1900 C using compaction pressures of 10-20 MPa. Detailed microstructural characterization of the final fuel compacts shows that oxide additives are limited in extent and are distributed uniformly at silicon carbide grain boundaries, at triple joints between silicon carbide grains, and at the fuel particle-matrix interface.

  13. Fabrication and characterization of fully ceramic microencapsulated fuels

    NASA Astrophysics Data System (ADS)

    Terrani, K. A.; Kiggans, J. O.; Katoh, Y.; Shimoda, K.; Montgomery, F. C.; Armstrong, B. L.; Parish, C. M.; Hinoki, T.; Hunn, J. D.; Snead, L. L.

    2012-07-01

    The current generation of fully ceramic microencapsulated fuels, consisting of Tristructural Isotropic fuel particles embedded in a silicon carbide matrix, is fabricated by hot pressing. Matrix powder feedstock is comprised of alumina-yttria additives thoroughly mixed with silicon carbide nanopowder using polyethyleneimine as a dispersing agent. Fuel compacts are fabricated by hot pressing the powder-fuel particle mixture at a temperature of 1800-1900 °C using compaction pressures of 10-20 MPa. Detailed microstructural characterization of the final fuel compacts shows that oxide additives are limited in extent and are distributed uniformly at silicon carbide grain boundaries, at triple joints between silicon carbide grains, and at the fuel particle-matrix interface.

  14. Ceramic applications in the advanced Stirling automotive engine

    NASA Technical Reports Server (NTRS)

    Tomazic, W. A.; Cairelli, J. E.

    1978-01-01

    The requirements of the ideal Stirling cycle, as well as basic types of practical engines are described. Advantages, disadvantages, and problem areas of these Stirling engines are discussed. The potential for ceramic components is also considered. Currently ceramics are used in only two areas, the air preheater and insulating tiles between the burner and the heater head. For the advanced Stirling engine to achieve high efficiency and low cost, the principal components are expected to be made from ceramic materials, including the heater head, air preheater, regenerator, the burner and the power piston. Supporting research and technology programs for ceramic component development are briefly described.

  15. Test model designs for advanced refractory ceramic materials

    NASA Technical Reports Server (NTRS)

    Tran, Huy Kim

    1993-01-01

    The next generation of space vehicles will be subjected to severe aerothermal loads and will require an improved thermal protection system (TPS) and other advanced vehicle components. In order to ensure the satisfactory performance system (TPS) and other advanced vehicle materials and components, testing is to be performed in environments similar to space flight. The design and fabrication of the test models should be fairly simple but still accomplish test objectives. In the Advanced Refractory Ceramic Materials test series, the models and model holders will need to withstand the required heat fluxes of 340 to 817 W/sq cm or surface temperatures in the range of 2700 K to 3000 K. The model holders should provide one dimensional (1-D) heat transfer to the samples and the appropriate flow field without compromising the primary test objectives. The optical properties such as the effective emissivity, catalytic efficiency coefficients, thermal properties, and mass loss measurements are also taken into consideration in the design process. Therefore, it is the intent of this paper to demonstrate the design schemes for different models and model holders that would accommodate these test requirements and ensure the safe operation in a typical arc jet facility.

  16. Ceramic technology for advanced heat engines program data base

    SciTech Connect

    Booker, M.K.

    1987-12-01

    A large amount and wide variety of data on the behavior of advanced ceramic materials is currently being generated within the Ceramic Technology for Advanced Heat Engines Program. This paper summarizes efforts to date to develop a computer data base system for the management of those data. The system is based on the use of desktop microcomputers, which provides a maximum of efficiency, economy, and convenience in the operation of the system. 4 refs., 8 tabs.

  17. Advancements in Binder Systems for Solid Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Munafo, Paul (Technical Monitor)

    2002-01-01

    Paper will present recent developments in advanced material binder systems for solid freeform fabrication (SFF) technologies. The advantage of SFF is the capability to custom fabricate complex geometries directly from computer aided design data in layer- by-layer fashion, eliminated the need for traditional fixturing and tooling. Binders allow for the low temperature processing of 'green' structural materials, either metal, ceramic or composite, in traditional rapid prototyping machines. The greatest obstacle comes when green parts must then go through a sintering or burnout process to remove the binders and fully densify the parent material, without damaging or distorting the original part geometry. Critical issues and up-to-date assessments will be delivered on various material systems.

  18. NIST Materials Properties Databases for Advanced Ceramics

    PubMed Central

    Munro, R. G.

    2001-01-01

    The NIST Ceramics Division maintains two databases on the physical, mechanical, thermal, and other properties of high temperature superconductors and structural ceramics. Crystallographic data are featured prominently among the physical property data and serve several important functions in the classification and evaluation of the property values. The scope of materials, properties, and data evaluation protocols are discussed for the two databases.

  19. Fracture behavior of advanced ceramic hot gas filters: Final report

    SciTech Connect

    Singh, J.P.; Majumdar, S.; Sutaria, M.; Bielke, W.

    1997-03-01

    This report presents the results of mechanical/microstructural evaluation, thermal shock/fatigue testing, and stress analyses of advanced hot-gas filters obtained from different manufacturers. These filters were fabricated from both monolithic ceramics and composites. The composite filters, made of both oxide and nonoxide materials, were in both as-fabricated and exposed conditions, whereas the monolithic filters were made only of nonoxide materials. Mechanical property measurement of composite filters included diametral compression testing with O-ring specimens and burst-testing of short filter segments with rubber plugs. In-situ strength of fibers in the composite filters was evaluated by microscopic technique. Thermal shock/fatigue resistance was estimated by measuring the strengths of filter specimens before and after thermal cycling from an air environment at elevated temperatures to a room temperature oil bath. Filter performance during mechanical and thermal shock/fatigue loadings was correlated with microstructural observations. Micromechanical models were developed to derive properties of composite filter constituents on the basis of measured mechanical properties of the filters. Subsequently, these properties were used to analytically predict the performance of composite filters during thermal shock loading.

  20. Advanced Ceramic Matrix Composites (CMCs) for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2005-01-01

    Advanced ceramic matrix composites (CMCs) are enabling materials for a number of demanding applications in aerospace, energy, and nuclear industries. In the aerospace systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, vanes, nozzle components, nose cones, leading edges of reentry vehicles, and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters, and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. In the last few years, a number of CMC components have been developed and successfully tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. They include robust fabrication and manufacturing, assembly and integration, coatings, property modeling and life prediction, design codes and databases, repair and refurbishment, and cost. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, a number of examples of successful CMC component development and testing will be provided. In addition, critical need for robust manufacturing, joining and assembly technologies in successful implementation of these systems will be discussed.

  1. Recent Advances in Materials for All-Ceramic Restorations

    PubMed Central

    Griggs, Jason A.

    2010-01-01

    SYNOPSIS The past three years of research on materials for all-ceramic veneers, inlays, onlays, single-unit crowns, and multi-unit restorations are reviewed. The primary changes in the field were the proliferation of zirconia-based frameworks and computer-aided fabrication of prostheses, as well as, a trend toward more clinically relevant in vitro test methods. This report includes an overview of ceramic fabrication methods, suggestions for critical assessment of material property data, and a summary of clinical longevity for prostheses constructed of various materials. PMID:17586152

  2. Fabrication of Dispersed CERamic-CERamic and Ceramic-METallic pellets for the Transmutation of Actinides

    NASA Astrophysics Data System (ADS)

    Fernández, A.; Haas, D.; Konings, R. J. M.; Somers, J.

    2003-07-01

    This paper describes the development of fabrication technology for target materials to be used in irradiation experiments, in the PHENIX and HFR reactors. Several target concepts will be tested: micro- as well as macrodispersed composites of (Am,Y,Zr)O2 in MgO (cercer) and macrodispersed composites of (Pu,Y,Zr)O2 in Stainless Steel (cermet) material. Results of the completed fabrication campaigns for cermet and cercer will be presented.

  3. Microwave systems for the processing of advanced ceramics

    SciTech Connect

    Wilson, O. Jr.; Carmel, Y.; Lloyd, I.

    1999-07-01

    Microwave processing systems are continually evolving to incorporate more unique capabilities and design features. These new developments are instrumental in expanding the scope of microwave systems for studying complex phenomena in materials synthesis and processing. On a more fundamental level, questions concerning the nature of interactions between microwaves and ceramic materials systems can be addressed to provide direct impact on processing strategies for advanced ceramic materials. A novel microwave processing system is being developed to study fundamental issues in the sintering of advanced ceramic materials with enhanced dielectric, thermal, optical, and mechanical properties for applications in microelectronics, biomaterials, and structural applications. The system consists of a single and dual frequency microwave furnace that operates at 2.45 and 28 GHz, an optical pyrometric temperature measuring system, and an optical, non-invasive, non-contact, extensometer for measuring sintering shrinkage and kinetics. The additional ability to process at 28 GHz provides opportunities to sinter a wider range of ceramic materials by direct coupling. An even more exciting benefit of the dual frequency system is the potential to process ceramics at two frequencies simultaneously. This capability can provide a unique way to tailor the microstructure of advanced ceramics by controlling the extent of both volumetric and surface heating. Experimental results for microwave sintering studies involving ZnO, hydroxyapatite, AlN-SiC composites, and alumina composites will be presented, with an emphasis on the processing of nanograin ceramics. In particular, the role of surface modification and microwave field intensification effects will be discussed.

  4. Research on chemical vapor deposition processes for advanced ceramic coatings

    NASA Technical Reports Server (NTRS)

    Rosner, Daniel E.

    1993-01-01

    Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work.

  5. Probabilistic Evaluation of Advanced Ceramic Matrix Composite Structures

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Chamis, Christos C.

    2003-01-01

    The objective of this report is to summarize the deterministic and probabilistic structural evaluation results of two structures made with advanced ceramic composites (CMC): internally pressurized tube and uniformly loaded flange. The deterministic structural evaluation includes stress, displacement, and buckling analyses. It is carried out using the finite element code MHOST, developed for the 3-D inelastic analysis of structures that are made with advanced materials. The probabilistic evaluation is performed using the integrated probabilistic assessment of composite structures computer code IPACS. The affects of uncertainties in primitive variables related to the material, fabrication process, and loadings on the material property and structural response behavior are quantified. The primitive variables considered are: thermo-mechanical properties of fiber and matrix, fiber and void volume ratios, use temperature, and pressure. The probabilistic structural analysis and probabilistic strength results are used by IPACS to perform reliability and risk evaluation of the two structures. The results will show that the sensitivity information obtained for the two composite structures from the computational simulation can be used to alter the design process to meet desired service requirements. In addition to detailed probabilistic analysis of the two structures, the following were performed specifically on the CMC tube: (1) predicted the failure load and the buckling load, (2) performed coupled non-deterministic multi-disciplinary structural analysis, and (3) demonstrated that probabilistic sensitivities can be used to select a reduced set of design variables for optimization.

  6. SiAlON ceramic compositions and methods of fabrication

    DOEpatents

    O'Brien, M.H.; Park, B.H.

    1994-05-31

    A method of fabricating a SiAlON ceramic body includes: (a) combining quantities of Si[sub 3]N[sub 4], Al[sub 2]O[sub 3] and CeO[sub 2] to produce a mixture; (b) forming the mixture into a desired body shape; (c) heating the body to a densification temperature of from about 1,550 C to about 1,850 C; (d) maintaining the body at the densification temperature for a period of time effective to densify the body; (e) cooling the densified body to a devitrification temperature of from about 1,200 C to about 1,400 C; and (f) maintaining the densified body at the devitrification temperature for a period of time effective to produce a [beta][prime]-SiAlON crystalline phase in the body having elemental or compound form Ce incorporated in the [beta][prime]-SiAlON crystalline phase. Further, a SiAlON ceramic body comprises: (a) an amorphous phase; and (b) a crystalline phase, the crystalline phase comprising [beta][prime]-SiAlON having lattice substituted elemental or compound form Ce.

  7. Laser fabricated microchannels inside photostructurable glass-ceramic

    NASA Astrophysics Data System (ADS)

    Fernández-Pradas, J. M.; Serrano, D.; Serra, P.; Morenza, J. L.

    2009-03-01

    Microchannels have been fabricated by laser direct-write in photostructurable glass-ceramic (Foturan) for their application in 3D-microfluidic systems. A Nd:YAG laser delivering 10 ns pulses at 355 nm wavelength has been used for irradiation. Afterwards, thermal treatment and chemical etching have been required for channel formation. The kinetics of channel formation and the channel morphology have been studied by optical and electron microscopy. A minimum accumulated energy (pulse energy multiplied by the number of pulses in a same site) is required to induce channel formation. Channels with symmetric round apertures at both ends can be obtained when using low pulse energies. On the contrary, irradiation with too high energetic pulses produces direct material damage in Foturan and provokes the formation of non-symmetric channels. One millimetre long channels with a minimum radius of 15 μm can be opened through Foturan slides after 15 min of chemical etching.

  8. Rapid fabrication of ceramic composite tubes using chemical vapor infiltration

    SciTech Connect

    Starr, T.L.; Chiang, D.; Besmann, T.M.; Stinton, D.P.; McLaughlin, J.C.; Matlin, W.M.

    1996-06-01

    Ceramic composite tubes can be fabricated with silicon carbide matrix and Nicalon fiber reinforcement using forced flow-thermal gradient chemical vapor infiltration (FCVI). The process model GTCVI is used to design the equipment configuration and to identify conditions for rapid, uniform densification. The initial injector and mandrel design produced radial and longitudinal temperature gradients too large for uniform densification. Improved designs have been evaluated with the model. The most favorable approach utilizes a free-standing preform and an insulated water-cooled gas injector. Selected process conditions are based on the temperature limit of the fiber, matrix stoichiometry and reagent utilization efficiency. Model runs for a tube 12 inches long, 4 inches OD and 1/4 inch wall thickness show uniform densification in approximately 15 hours.

  9. Custom fabrication of reinforced lithium disilicate ceramic ingot.

    PubMed

    Chander, Gopi Naveen; Sasikala, C; Mutukumar, B; Dhanasekar, N

    2016-01-01

    A method of formulating a reinforcement lithium disilicate ceramic ingot was proposed. The ceramic ingot was broken manually with a mallet to finer particles. The sectioned ingot is ball milled along with 10% of nano zirconia by weight to obtain the desired powder. The reinforced powder is condensed in a 5 ml disposable syringe by powder slurry technique. The compacted ceramic were sintered at 900°C to obtain ceramic ingots. The reinforced ceramic ingots were used in pressable ceramic machines to obtain the desired advantages of zirconia reinforcement and pressable ceramic system. PMID:27134457

  10. Custom fabrication of reinforced lithium disilicate ceramic ingot

    PubMed Central

    Chander, Gopi Naveen; Sasikala, C.; Mutukumar, B.; Dhanasekar, N.

    2016-01-01

    A method of formulating a reinforcement lithium disilicate ceramic ingot was proposed. The ceramic ingot was broken manually with a mallet to finer particles. The sectioned ingot is ball milled along with 10% of nano zirconia by weight to obtain the desired powder. The reinforced powder is condensed in a 5 ml disposable syringe by powder slurry technique. The compacted ceramic were sintered at 900°C to obtain ceramic ingots. The reinforced ceramic ingots were used in pressable ceramic machines to obtain the desired advantages of zirconia reinforcement and pressable ceramic system. PMID:27134457

  11. Controlled ceramic porosity and membrane fabrication via alumoxane nanoparticles

    NASA Astrophysics Data System (ADS)

    Jones, Christopher Daniel

    Carboxylate-alumoxanes, [Al(O)x(OH)y(O2CR) z]n, are organic substituted alumina nano-particles synthesized from boehmite in aqueous solution which are an inexpensive and environmentally-benign precursor for the fabrication of aluminum based ceramic bodies. The carboxylate-ligand on the alumoxane determines the morphology and the porosity of the derived alumina. Investigations of A-, MA-, MEA-, and MEEA-alumoxanes, were undertaken to determine the effects of these organic peripheries on the properties of the alumina at different sintering temperatures including the morphology, surface area, pore volume, pore size, pore size distribution, and crystal phase. The effects of physically or chemically mixing different carboxylate-alumoxanes were also investigated. The alumina derived from the thermolysis of the carboxylate-alumoxanes exhibits small pore diameters and narrow pore size distributions that are desirable for use in ceramic ultrafiltration membranes. In addition, it is possible to form alumina membranes with a range of pore sizes and porosity by changing the organic periphery. This lead to investigating the ability to produce asymmetric alumina filters with characteristics that at the lower end of the ultrafiltration range. The flux, permeability, molecular weight cut-off, roughness, and wettability of the asymmetric alumina membranes derived from carboxylate-alumoxanes are determined. Comparisons of these filters are made with commercially available filters. The ability to dope carboxylate-alumoxanes via a transmetallation reaction followed by thermolysis has previously shown to result in catalytically active alumina based materials. This lead to investigations into forming catalytically active membranes. Dip-coating aqueous solutions of the doped carboxylate-alumoxanes onto porous alumina supports, followed by thermolysis, resulted in the formation of doped-alumina asymmetric filters. In addition, a novel method to form surface-modified carboxylate

  12. CAD/CAM fabricated single-unit all-ceramic post–core–crown restoration

    PubMed Central

    Vinothkumar, Thilla Sekar; Kandaswamy, Deivanayagam; Chanana, Pallavi

    2011-01-01

    This case report explains about an innovative treatment strategy for the management of damaged anterior teeth with reduced incisal clearance by means of a single-unit all-ceramic post–core–crown zirconia ceramic restoration fabricated by Computer-aided designing and computer-aided manufacturing (CAD/CAM) technology. The reinforced zirconia ceramics allow fabrication of durable esthetic restorations in cases with high functional loading and the unification of the post, core, and crown in a single unit decreases the frequency of failure by creating a monobloc effect. In addition, the use of CAD/CAM technology for designing and fabricating ceramic restorations offers the option of expeditiously preparing these high-strength all-ceramic restorations. PMID:21691515

  13. Advanced ceramic material for high temperature turbine tip seals

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.; Solomon, N. G.; Stetson, A. R.

    1980-01-01

    Forty-one material systems were evaluated for potential use in turbine blade tip seal applications at 1370 C. Both ceramic blade tip inserts and abradable ceramic tip shoes were tested. Hot gas erosion, impact resistance, thermal stability, and dynamic rub performance were the criteria used in rating the various materials. Silicon carbide and silicon nitride were used, both as blade tips and abradables. The blade tip inserts were fabricated by hot pressing while low density and honeycomb abradables were sintered or reaction bonded.

  14. Novel fabrication method for zirconia restorations: bonding strength of machinable ceramic to zirconia with resin cements.

    PubMed

    Kuriyama, Soichi; Terui, Yuichi; Higuchi, Daisuke; Goto, Daisuke; Hotta, Yasuhiro; Manabe, Atsufumi; Miyazaki, Takashi

    2011-01-01

    A novel method was developed to fabricate all-ceramic restorations which comprised CAD/CAM-fabricated machinable ceramic bonded to CAD/CAM-fabricated zirconia framework using resin cement. The feasibility of this fabrication method was assessed in this study by investigating the bonding strength of a machinable ceramic to zirconia. A machinable ceramic was bonded to a zirconia plate using three kinds of resin cements: ResiCem (RE), Panavia (PA), and Multilink (ML). Conventional porcelain-fused-to-zirconia specimens were also prepared to serve as control. Shear bond strength test (SBT) and Schwickerath crack initiation test (SCT) were carried out. SBT revealed that PA (40.42 MPa) yielded a significantly higher bonding strength than RE (28.01 MPa) and ML (18.89 MPa). SCT revealed that the bonding strengths of test groups using resin cement were significantly higher than those of Control. Notably, the bonding strengths of RE and ML were above 25 MPa even after 10,000 times of thermal cycling -adequately meeting the ISO 9693 standard for metal-ceramic restorations. These results affirmed the feasibility of the novel fabrication method, in that a CAD/CAM-fabricated machinable ceramic is bonded to a CAD/CAM-fabricated zirconia framework using a resin cement. PMID:21597207

  15. Advanced lightweight ceramic candle filter module

    SciTech Connect

    Zievers, J.F.; Eggerstedt, P.

    1992-01-01

    To determine the economic effect of light weight ceramics, several sizes of filters were cost estimated for operation at 217.5 psi (15 bar) based on the use of all light weight ceramics (Fibro/Fibro) vs. the use of cooled alloy (RA300) tubesheets and silicon carbide candles (Alloy/SiC). A jet pulse delivery system was included in both estimates. The Fibro/Fibro system was estimated with the plenum design while the Alloy/SiC system was based on header/nozzle design. Battery limits were the filters and jet pulse delivery systems, Ex-works, with no main valves or dust removal systems. It was found that the cost of Fibro/Fibro components were consistently lower than the cost of the Alloy/SiC components; this comparison is illustrated in Figure 8.

  16. Advanced lightweight ceramic candle filter module

    SciTech Connect

    Zievers, J.F.; Eggerstedt, P.

    1992-11-01

    To determine the economic effect of light weight ceramics, several sizes of filters were cost estimated for operation at 217.5 psi (15 bar) based on the use of all light weight ceramics (Fibro/Fibro) vs. the use of cooled alloy (RA300) tubesheets and silicon carbide candles (Alloy/SiC). A jet pulse delivery system was included in both estimates. The Fibro/Fibro system was estimated with the plenum design while the Alloy/SiC system was based on header/nozzle design. Battery limits were the filters and jet pulse delivery systems, Ex-works, with no main valves or dust removal systems. It was found that the cost of Fibro/Fibro components were consistently lower than the cost of the Alloy/SiC components; this comparison is illustrated in Figure 8.

  17. Fabrication and characterization of spark plasma sintered Ce:LuAG ceramic for scintillation application

    NASA Astrophysics Data System (ADS)

    Kumar, S. Arun; Senthilselvan, J.

    2016-05-01

    Rare earth Cerium doped Lutetium Aluminum Garnet (Ce:LuAG) ceramics are widely used as phosphor material in medical imaging and high-energy physics. Due to its technological importance, an attempt has been made to fabricate Ce:LuAG ceramics by using spark plasma sintering (SPS) technique. XRD patterns of SPS sintered Ce:LuAG ceramics reveals a mixed LuAG and CeO2 (antisite defect) phases. The microstructures of SPS sintered Ce:LuAG ceramics shows limited densification, inappropriate compaction of particles and existence of residual pores, voids between the grain boundaries affects the transparency of Ce:LuAG ceramics. Relative density and hardness of post sintered Ce:LuAG ceramic is also determined. The effect of Ce3+ doping concentration and sintering temperature on optical luminescence behavior of Ce:LuAG ceramic is presented.

  18. Advanced Measurements of Silicon Carbide Ceramic Matrix Composites

    SciTech Connect

    Farhad Farzbod; Stephen J. Reese; Zilong Hua; Marat Khafizov; David H. Hurley

    2012-08-01

    Silicon carbide (SiC) is being considered as a fuel cladding material for accident tolerant fuel under the Light Water Reactor Sustainability (LWRS) Program sponsored by the Nuclear Energy Division of the Department of Energy. Silicon carbide has many potential advantages over traditional zirconium based cladding systems. These include high melting point, low susceptibility to corrosion, and low degradation of mechanical properties under neutron irradiation. In addition, ceramic matrix composites (CMCs) made from SiC have high mechanical toughness enabling these materials to withstand thermal and mechanical shock loading. However, many of the fundamental mechanical and thermal properties of SiC CMCs depend strongly on the fabrication process. As a result, extrapolating current materials science databases for these materials to nuclear applications is not possible. The “Advanced Measurements” work package under the LWRS fuels pathway is tasked with the development of measurement techniques that can characterize fundamental thermal and mechanical properties of SiC CMCs. An emphasis is being placed on development of characterization tools that can used for examination of fresh as well as irradiated samples. The work discuss in this report can be divided into two broad categories. The first involves the development of laser ultrasonic techniques to measure the elastic and yield properties and the second involves the development of laser-based techniques to measurement thermal transport properties. Emphasis has been placed on understanding the anisotropic and heterogeneous nature of SiC CMCs in regards to thermal and mechanical properties. The material properties characterized within this work package will be used as validation of advanced materials physics models of SiC CMCs developed under the LWRS fuels pathway. In addition, it is envisioned that similar measurement techniques can be used to provide process control and quality assurance as well as measurement of

  19. Fracture Toughness in Advanced Monolithic Ceramics - SEPB Versus SEVENB Methods

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Gyekenyesi, J. P.

    2005-01-01

    Fracture toughness of a total of 13 advanced monolithic ceramics including silicon nitrides, silicon carbide, aluminas, and glass ceramic was determined at ambient temperature by using both single edge precracked beam (SEPB) and single edge v-notched beam (SEVNB) methods. Relatively good agreement in fracture toughness between the two methods was observed for advanced ceramics with flat R-curves; whereas, poor agreement in fracture toughness was seen for materials with rising R-curves. The discrepancy in fracture toughness between the two methods was due to stable crack growth with crack closure forces acting in the wake region of cracks even in SEVNB test specimens. The effect of discrepancy in fracture toughness was analyzed in terms of microstructural feature (grain size and shape), toughening exponent, and stable crack growth determined using back-face strain gaging.

  20. Fabrication and deformation of three-dimensional hollow ceramic nanostructures

    NASA Astrophysics Data System (ADS)

    Jang, Dongchan; Meza, Lucas R.; Greer, Frank; Greer, Julia R.

    2013-10-01

    Creating lightweight, mechanically robust materials has long been an engineering pursuit. Many siliceous skeleton species—such as diatoms, sea sponges and radiolarians—have remarkably high strengths when compared with man-made materials of the same composition, yet are able to remain lightweight and porous. It has been suggested that these properties arise from the hierarchical arrangement of different structural elements at their relevant length scales. Here, we report the fabrication of hollow ceramic scaffolds that mimic the length scales and hierarchy of biological materials. The constituent solids attain tensile strengths of 1.75 GPa without failure even after multiple deformation cycles, as revealed by in situ nanomechanical experiments and finite-element analysis. We discuss the high strength and lack of failure in terms of stress concentrators at surface imperfections and of local stresses within the microstructural landscape. Our findings suggest that the hierarchical design principles offered by hard biological organisms can be applied to create damage-tolerant lightweight engineering materials.

  1. Design fabrication and testing of ceramic solar absorber plates

    SciTech Connect

    Sisson, J.C.

    1983-01-01

    The effects of fabrication procedures on the thermal performance of various ceramic systems for active solar applications were investigated. A shale-based structural clay body was used as a standard. This body was also coated with silicon carbide, a glossy black glaze and a matte black glaze. Metal samples used included copper, aluminum and aluminum coated with a flat black paint. Experiments were performed using a solar test box linked to an automated data acquisition system. Temperatures of samples were recorded at 3 min. intervals for 4 h solar periods. An F-statistical analysis was performed on the resulting data and was correlated with total solar emittance, total solar reflectance and monochromatic reflectance as a function of incident wavelength. The information above was also utilized in developing a computer model used to simulate the performance of various materials in active solar testing. Results suggest that a structural clay body fired to maturity and coated with a matte black glaze could be commercially useful for applications requiring large quantities of heated water.

  2. Development of Sensors for Ceramic Components in Advanced Propulsion Systems. Phase 2; Temperature Sensor Systems Evaluation

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1994-01-01

    The 'development of sensors for ceramic components in advanced propulsion systems' program is divided into two phases. The objectives of Phase 1 were to analyze, evaluate and recommend sensor concepts for the measurement of surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. The results of this effort were previously published in NASA CR-182111. As a result of Phase 1, three approaches were recommended for further development: pyrometry, thin-film sensors, and thermographic phosphors. The objective of Phase 2 were to fabricate and conduct laboratory demonstration tests of these systems. Six materials, mutually agreed upon by NASA and Pratt & Whitney, were investigated under this program. This report summarizes the Phase 2 effort and provides conclusions and recommendations for each of the categories evaluated.

  3. Fracture Toughness of Advanced Structural Ceramics: Applying ASTM C1421

    DOE PAGESBeta

    Swab, Jeffrey J.; Tice, Jason; Wereszczak, Andrew A.; Kraft, Reuben H.

    2014-11-03

    The three methods of determining the quasi-static Mode I fracture toughness (KIc) (surface crack in flexure – SC, single-edge precracked beam – PB, and chevron notched beam – VB) found in ASTM C1421 were applied to a variety of advanced ceramic materials. All three methods produced valid and comparable KIc values for the Al2O3, SiC, Si3N4 and SiAlON ceramics examined. However, not all methods could successfully be applied to B4C, ZrO2 and WC ceramics due to a variety of material factors. The coarse-grained microstructure of one B4C hindered the ability to observe and measure the precracks generated in the SCmore » and PB methods while the transformation toughening in the ZrO2 prevented the formation of the SC and PB precracks and thus made it impossible to use either method on this ceramic. The high strength and elastic modulus of the WC made it impossible to achieve stable crack growth using the VB method because the specimen stored a tremendous amount of energy prior to fracture. Even though these methods have passed the rigors of the standardization process there are still some issues to be resolved when the methods are applied to certain classes of ceramics. We recommend that at least two of these methods be employed to determine the KIc, especially when a new or unfamiliar ceramic is being evaluated.« less

  4. Economical Fabrication of Thick-Section Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Babcock, Jason; Ramachandran, Gautham; Williams, Brian; Benander, Robert

    2010-01-01

    A method was developed for producing thick-section [>2 in. (approx.5 cm)], continuous fiber-reinforced ceramic matrix composites (CMCs). Ultramet-modified fiber interface coating and melt infiltration processing, developed previously for thin-section components, were used for the fabrication of CMCs that were an order of magnitude greater in thickness [up to 2.5 in. (approx.6.4 cm)]. Melt processing first involves infiltration of a fiber preform with the desired interface coating, and then with carbon to partially densify the preform. A molten refractory metal is then infiltrated and reacts with the excess carbon to form the carbide matrix without damaging the fiber reinforcement. Infiltration occurs from the inside out as the molten metal fills virtually all the available void space. Densification to <5 vol% porosity is a one-step process requiring no intermediate machining steps. The melt infiltration method requires no external pressure. This prevents over-infiltration of the outer surface plies, which can lead to excessive residual porosity in the center of the part. However, processing of thick-section components required modification of the conventional process conditions, and the means by which the large amount of molten metal is introduced into the fiber preform. Modification of the low-temperature, ultraviolet-enhanced chemical vapor deposition process used to apply interface coatings to the fiber preform was also required to accommodate the high preform thickness. The thick-section CMC processing developed in this work proved to be invaluable for component development, fabrication, and testing in two complementary efforts. In a project for the Army, involving SiC/SiC blisk development, nominally 0.8 in. thick x 8 in. diameter (approx. 2 cm thick x 20 cm diameter) components were successfully infiltrated. Blisk hubs were machined using diamond-embedded cutting tools and successfully spin-tested. Good ply uniformity and extremely low residual porosity (<2

  5. Method for fabricating a seal between a ceramic and a metal alloy

    DOEpatents

    Kelsey, Jr., Paul V.; Siegel, William T.

    1983-01-01

    A method of fabricating a seal between a ceramic and an alloy comprising the steps of prefiring the alloy in an atmosphere with a very low partial pressure of oxygen, firing the assembled alloy and ceramic in air, and gradually cooling the fired assembly to avoid the formation of thermal stress in the ceramic. The method forms a bond between the alloy and the ceramic capable of withstanding the environment of a pressurized water reactor and suitable for use in an electrical conductivity sensitive liquid level transducer.

  6. Method for fabricating a seal between a ceramic and a metal alloy

    DOEpatents

    Kelsey, P.V. Jr.; Siegel, W.T.

    1983-08-16

    A method of fabricating a seal between a ceramic and an alloy comprising the steps of prefiring the alloy in an atmosphere with a very low partial pressure of oxygen, firing the assembled alloy and ceramic in air, and gradually cooling the fired assembly to avoid the formation of thermal stress in the ceramic. The method forms a bond between the alloy and the ceramic capable of withstanding the environment of a pressurized water reactor and suitable for use in an electrical conductivity sensitive liquid level transducer.

  7. Fabrication of Zirconia-Reinforced Lithium Silicate Ceramic Restorations Using a Complete Digital Workflow

    PubMed Central

    Rinke, Sven; Rödiger, Matthias; Ziebolz, Dirk; Schmidt, Anne-Kathrin

    2015-01-01

    This case report describes the fabrication of monolithic all-ceramic restorations using zirconia-reinforced lithium silicate (ZLS) ceramics. The use of powder-free intraoral scanner, generative fabrication technology of the working model, and CAD/CAM of the restorations in the dental laboratory allows a completely digitized workflow. The newly introduced ZLS ceramics offer a unique combination of fracture strength (>420 MPa), excellent optical properties, and optimum polishing characteristics, thus making them an interesting material option for monolithic restorations in the digital workflow. PMID:26509088

  8. Fabrication of Zirconia-Reinforced Lithium Silicate Ceramic Restorations Using a Complete Digital Workflow.

    PubMed

    Rinke, Sven; Rödiger, Matthias; Ziebolz, Dirk; Schmidt, Anne-Kathrin

    2015-01-01

    This case report describes the fabrication of monolithic all-ceramic restorations using zirconia-reinforced lithium silicate (ZLS) ceramics. The use of powder-free intraoral scanner, generative fabrication technology of the working model, and CAD/CAM of the restorations in the dental laboratory allows a completely digitized workflow. The newly introduced ZLS ceramics offer a unique combination of fracture strength (>420 MPa), excellent optical properties, and optimum polishing characteristics, thus making them an interesting material option for monolithic restorations in the digital workflow. PMID:26509088

  9. Ceramic matrix composites -- Advanced high-temperature structural materials

    SciTech Connect

    Lowden, R.A.; Ferber, M.K.; Hellmann, J.R.; Chawla, K.K.; DiPietro, S.G.

    1995-10-01

    This symposium on Ceramic Matrix Composites: Advanced High-Temperature Structural Materials was held at the 1994 MRS Fall Meeting in Boston, Massachusetts on November 28--December 2. The symposium was sponsored by the Department of Energy`s Office of Industrial Technology`s Continuous Fiber Ceramic Composites Program, the Air Force Office of Scientific Research, and NASA Lewis Research Center. Among the competing materials for advanced, high-temperature applications, ceramic matrix composites are leading candidates. The symposium was organized such that papers concerning constituents--fibers and matrices--were presented first, followed by composite processing, modeling of mechanical behavior, and thermomechanical testing. More stable reinforcements are necessary to enhance the performance and life of fiber-reinforced ceramic composites, and to ensure final acceptance of these materials for high-temperature applications. Encouraging results in the areas of polymer-derived SiC fibers and single crystal oxide filaments were given, suggesting composites with improved thermomechanical properties and stability will be realized in the near future. The significance of the fiber-matrix interface in the design and performance of these materials is evident. Numerous mechanical models to relate interface properties to composite behavior, and interpret test methods and data, were enthusiastically discussed. One issue of great concern for any advanced material for use in extreme environments is stability. This theme arose frequently throughout the symposium and was the topic of focus on the final day. Fifty nine papers have been processed separately for inclusion on the data base.

  10. Development of silicon nitride rotors for the ATTAP program at Garrett Ceramic Components. [Advanced Turbine Technology Applications Project

    NASA Technical Reports Server (NTRS)

    Busovne, B. J., Jr.; Pollinger, J. P.

    1991-01-01

    The development and fabrication of reliable high temperature-high strength silicon nitride rotors by Garrett Ceramic Components (GCC) for the Advanced Turbine Technology Applications Project (ATTAP) is discussed. GCC's progress will be presented, including mechanical properties characterization, in-process monitoring development, and extensive NDE analysis. The current status of material, process, and part properties of the rotors being developed will be compared to properties required for implementation and successful operation of advanced gas turbine engines at 2500 F.

  11. Fabrication of advanced design (grooved) cermet anodes

    NASA Astrophysics Data System (ADS)

    Windisch, C. F., Jr.; Huettig, F. R.

    1993-05-01

    Attempts were made to fabricate full-size anodes with advanced, or grooved, design using isostatic pressing, slip casting injection molding. Of the three approaches, isostatic pressing produced an anode with dimensions nearest to the target specifications, without serious macroscopic flaws. This approach is considered the most promising for making advanced anodes for aluminum smelting. However, significant work still remains to optimize the physical properties and microstructure of the anode, both of which were significantly different from that of previous anodes. Injection molding and slip casting yielded anode materials with serious deficiencies, including cracks and holes. Injection molding gave cermet material with the best intrinsic microstructure, i.e., the microstructure of the material between macroscopic flaws was very similar to that of anodes previously made at PNL. The reason for the similarity may have to do with amount of residual binder in the material prior to sintering.

  12. Fabrication of advanced design (grooved) cermet anodes

    SciTech Connect

    Windisch, C.F. Jr.; Huettig, F.R.

    1993-05-01

    Attempts were made to fabricate full-size anodes with advanced, or grooved, design using isostatic pressing, slip casting injection molding. Of the three approaches, isostatic pressing produced an anode with dimensions nearest to the target specifications, without serious macroscopic flaws. This approach is considered the most promising for making advanced anodes for aluminum smelting. However, significant work still remains to optimize the physical properties and microstructure of the anode, both of which were significantly different from that of previous anodes. Injection molding and slip casting yielded anode materials with serious deficiencies, including cracks and holes. Injection molding gave cermet material with the best intrinsic microstructure, i.e., the microstructure of the material between macroscopic flaws was very similar to that of anodes previously made at PNL. Reason for the similarity may have to do with amount of residual binder in the material prior to sintering.

  13. Processing Methods Established To Fabricate Porous Oxide Ceramic Spheres for Thermal Barrier Coating Applications

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.

    2003-01-01

    As gas turbine technology advances, the demand for efficient engines and emission reduction requires a further increase in operating temperatures, but combustion temperatures are currently limited by the temperature capability of the engine components. The existing thermal barrier coating (TBC) technology does not provide sufficient thermal load reduction at a 3000 F (1649 C) operating condition. Advancement in thermal barrier coating technology is needed to meet this aggressive goal. One concept for improving thermal barrier coating effectiveness is to design coating systems that incorporate a layer that reflects or scatters photon radiation. This can be achieved by using porous structures. The refractive index mismatch between the solid and pore, the pore size, and the pore density can be engineered to efficiently scatter photon radiation. Under NASA s Ultra-Efficient Engine Technology (UEET) Program, processing methods to fabricate porous ceramic spheres suitable for scattering photon radiation at elevated temperatures have been established. A straightforward templating process was developed at the NASA Glenn Research Center that requires no special processing equipment. The template was used to define particle shape, particle size, and pore size. Spherical organic cation exchange resins were used as a structure-directing template. The cation exchange resins have dual template capabilities that can produce different pore architectures. This process can be used to fabricate both metal oxide and metal carbide spheres.

  14. Chairside Fabrication of an All-Ceramic Partial Crown Using a Zirconia-Reinforced Lithium Silicate Ceramic

    PubMed Central

    Pabel, Anne-Kathrin; Rödiger, Matthias

    2016-01-01

    The chairside fabrication of a monolithic partial crown using a zirconia-reinforced lithium silicate (ZLS) ceramic is described. The fully digitized model-free workflow in a dental practice is possible due to the use of a powder-free intraoral scanner and the computer-aided design/computer-assisted manufacturing (CAD/CAM) of the restorations. The innovative ZLS material offers a singular combination of fracture strength (>370 Mpa), optimum polishing characteristics, and excellent optical properties. Therefore, this ceramic is an interesting alternative material for monolithic restorations produced in a digital workflow. PMID:27042362

  15. Chairside Fabrication of an All-Ceramic Partial Crown Using a Zirconia-Reinforced Lithium Silicate Ceramic.

    PubMed

    Rinke, Sven; Pabel, Anne-Kathrin; Rödiger, Matthias; Ziebolz, Dirk

    2016-01-01

    The chairside fabrication of a monolithic partial crown using a zirconia-reinforced lithium silicate (ZLS) ceramic is described. The fully digitized model-free workflow in a dental practice is possible due to the use of a powder-free intraoral scanner and the computer-aided design/computer-assisted manufacturing (CAD/CAM) of the restorations. The innovative ZLS material offers a singular combination of fracture strength (>370 Mpa), optimum polishing characteristics, and excellent optical properties. Therefore, this ceramic is an interesting alternative material for monolithic restorations produced in a digital workflow. PMID:27042362

  16. Advanced ceramic material for high temperature turbine tip seals

    NASA Technical Reports Server (NTRS)

    Solomon, N. G.; Vogan, J. W.

    1978-01-01

    Ceramic material systems are being considered for potential use as turbine blade tip gas path seals at temperatures up to 1370 1/4 C. Silicon carbide and silicon nitride structures were selected for study since an initial analysis of the problem gave these materials the greatest potential for development into a successful materials system. Segments of silicon nitride and silicon carbide materials over a range of densities, processed by various methods, a honeycomb structure of silicon nitride and ceramic blade tip inserts fabricated from both materials by hot pressing were tested singly and in combination. The evaluations included wear under simulated engine blade tip rub conditions, thermal stability, impact resistance, machinability, hot gas erosion and feasibility of fabrication into engine components. The silicon nitride honeycomb and low-density silicon carbide using a selected grain size distribution gave the most promising results as rub-tolerant shroud liners. Ceramic blade tip inserts made from hot-pressed silicon nitride gave excellent test results. Their behavior closely simulated metal tips. Wear was similar to that of metals but reduced by a factor of six.

  17. High resolution computed tomography of advanced composite and ceramic materials

    NASA Technical Reports Server (NTRS)

    Yancey, R. N.; Klima, S. J.

    1991-01-01

    Advanced composite and ceramic materials are being developed for use in many new defense and commercial applications. In order to achieve the desired mechanical properties of these materials, the structural elements must be carefully analyzed and engineered. A study was conducted to evaluate the use of high resolution computed tomography (CT) as a macrostructural analysis tool for advanced composite and ceramic materials. Several samples were scanned using a laboratory high resolution CT scanner. Samples were also destructively analyzed at the locations of the scans and the nondestructive and destructive results were compared. The study provides useful information outlining the strengths and limitations of this technique and the prospects for further research in this area.

  18. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  19. Refractory ceramic has wide usage, low fabrication cost

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Particulate, fused amorphous silica is formed into complex shapes by casting in plaster molds. High temperature firing is not required. This ceramic is resistant to thermal shock and exhibits good strength properties.

  20. Fracture toughness of advanced ceramics at room temperature

    NASA Technical Reports Server (NTRS)

    Quinn, George D.; Salem, Jonathan; Bar-On, Isa; Cho, Kyu; Foley, Michael; Fang, HO

    1992-01-01

    Results of round-robin fracture toughness tests on advanced ceramics are reported. A gas-pressure silicon nitride and a zirconia-toughened alumina were tested using three test methods: indentation fracture, indentation strength, and single-edge precracked beam. The latter two methods have produced consistent results. The interpretation of fracture toughness test results for the zirconia alumina composite is shown to be complicated by R-curve and environmentally assisted crack growth phenomena.

  1. Fracture Toughness of Advanced Structural Ceramics: Applying ASTM C1421

    SciTech Connect

    Swab, Jeffrey J.; Tice, Jason; Wereszczak, Andrew A.; Kraft, Reuben H.

    2014-11-03

    The three methods of determining the quasi-static Mode I fracture toughness (KIc) (surface crack in flexure – SC, single-edge precracked beam – PB, and chevron notched beam – VB) found in ASTM C1421 were applied to a variety of advanced ceramic materials. All three methods produced valid and comparable KIc values for the Al2O3, SiC, Si3N4 and SiAlON ceramics examined. However, not all methods could successfully be applied to B4C, ZrO2 and WC ceramics due to a variety of material factors. The coarse-grained microstructure of one B4C hindered the ability to observe and measure the precracks generated in the SC and PB methods while the transformation toughening in the ZrO2 prevented the formation of the SC and PB precracks and thus made it impossible to use either method on this ceramic. The high strength and elastic modulus of the WC made it impossible to achieve stable crack growth using the VB method because the specimen stored a tremendous amount of energy prior to fracture. Even though these methods have passed the rigors of the standardization process there are still some issues to be resolved when the methods are applied to certain classes of ceramics. We recommend that at least two of these methods be employed to determine the KIc, especially when a new or unfamiliar ceramic is being evaluated.

  2. Advanced optic fabrication using ultrafast laser radiation

    NASA Astrophysics Data System (ADS)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2016-03-01

    Advanced fabrication and finishing techniques are desired for freeform optics and integrated photonics. Methods including grinding, polishing and magnetorheological finishing used for final figuring and polishing of such optics are time consuming, expensive, and may be unsuitable for complex surface features while common photonics fabrication techniques often limit devices to planar geometries. Laser processing has been investigated as an alternative method for optic forming, surface polishing, structure writing, and welding, as direct tuning of laser parameters and flexible beam delivery are advantageous for complex freeform or photonics elements and material-specific processing. Continuous wave and pulsed laser radiation down to the nanosecond regime have been implemented to achieve nanoscale surface finishes through localized material melting, but the temporal extent of the laser-material interaction often results in the formation of a sub-surface heat affected zone. The temporal brevity of ultrafast laser radiation can allow for the direct vaporization of rough surface asperities with minimal melting, offering the potential for smooth, final surface quality with negligible heat affected material. High intensities achieved in focused ultrafast laser radiation can easily induce phase changes in the bulk of materials for processing applications. We have experimentally tested the effectiveness of ultrafast laser radiation as an alternative laser source for surface processing of monocrystalline silicon. Simulation of material heating associated with ultrafast laser-material interaction has been performed and used to investigate optimized processing parameters including repetition rate. The parameter optimization process and results of experimental processing will be presented.

  3. Ceramic Technology for Advanced Heat Engines Project data base: September 1988 summary report

    SciTech Connect

    Booker, B.L.P.

    1989-03-01

    A large volume and wide variety of data on the behavior of advanced ceramic materials are currently being generated within the Ceramic Technology for Advanced Heat Engines project (CTAHE). This is the second in a series of reports summarizing the data stored in the microcomputer-based CTAHE data base. Each report features a different class of ceramics, with as much information on materials in that class as has then been processed. This report concentrates on zirconia-based ceramics.

  4. Design, fabrication and spin testing of ceramic blade metal disk attachment

    NASA Technical Reports Server (NTRS)

    Calvert, G.

    1979-01-01

    A ceramic turbine blade-metal disk attachment was designed for small, non man-rated turbine engine applications. The selected design consisted of a hot pressed silicon nitride blade having a skewed dovetail attachment with a compliant interlayer between the disk and the blade. Two-dimensional and three-dimensional analyses predicted that life goals could be achieved, considering both NDE limitations and crack growth rates for the ceramic material. Twenty ceramic blades were fabricated to closely-held manufacturing tolerances. New fracture mechanics data at elevated temperature are presented.

  5. Advanced Ceramics for NASA's Current and Future Needs

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.

    2006-01-01

    Ceramic composites and monolithics are widely recognized by NASA as enabling materials for a variety of aerospace applications. Compared to traditional materials, ceramic materials offer higher specific strength which can enable lighter weight vehicle and engine concepts, increased payloads, and increased operational margins. Additionally, the higher temperature capabilities of these materials allows for increased operating temperatures within the engine and on the vehicle surfaces which can lead to improved engine efficiency and vehicle performance. To meet the requirements of the next generation of both rocket and air-breathing engines, NASA is actively pursuing the development and maturation of a variety of ceramic materials. Anticipated applications for carbide, nitride and oxide-based ceramics will be presented. The current status of these materials and needs for future goals will be outlined. NASA also understands the importance of teaming with other government agencies and industry to optimize these materials and advance them to the level of maturation needed for eventual vehicle and engine demonstrations. A number of successful partnering efforts with NASA and industry will be highlighted.

  6. Parametric Weight Comparison of Advanced Metallic, Ceramic Tile, and Ceramic Blanket Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Myers, David E.; Martin, Carl J.; Blosser, Max L.

    2000-01-01

    A parametric weight assessment of advanced metallic panel, ceramic blanket, and ceramic tile thermal protection systems (TPS) was conducted using an implicit, one-dimensional (I-D) finite element sizing code. This sizing code contained models to account for coatings fasteners, adhesives, and strain isolation pads. Atmospheric entry heating profiles for two vehicles, the Access to Space (ATS) vehicle and a proposed Reusable Launch Vehicle (RLV), were used to ensure that the trends were not unique to a certain trajectory. Ten TPS concepts were compared for a range of applied heat loads and substructural heat capacities to identify general trends. This study found the blanket TPS concepts have the lightest weights over the majority of their applicable ranges, and current technology ceramic tiles and metallic TPS concepts have similar weights. A proposed, state-of-the-art metallic system which uses a higher temperature alloy and efficient multilayer insulation was predicted to be significantly lighter than the ceramic tile stems and approaches blanket TPS weights for higher integrated heat loads.

  7. Annual Conference on Composites and Advanced Ceramic Materials, 9th, Cocoa Beach, FL, January 20-23, 1985, Proceedings

    SciTech Connect

    Not Available

    1985-08-01

    The present conference discusses testing methods for ceramic matrix composites, developments in ceramic fibers, space transportation systems thermal protection materials, ceramics for heat engines and other severe environments, thermal sprayed coatings, the development status of ceramic tribology, and the fabrication of ceramics and hard metals. Specific attention is given to the mechanical characterization of ceramic and glass matrix composites, the application of fracture mechanics to fiber composites, the degradation properties of Nicalon SiC fibers, ceramic matrix toughening, SiC/glass composite phases, ceramic composite manufacture by infiltration, and ceramic coatings for the Space Shuttle's surface insulation. Also treated are design principles for anisotropic brittle materials, ceramics for intense radiant heat applications, ceramic-coated tip seals for turbojet engines, composite production by low pressure plasma deposition, tribology in military systems, lubrication for ceramics, a systems approach to the grinding of structural ceramics, and the fabrication of inorganic foams by microwave irradiation.

  8. Design and fabrication of specific ceramic?metallic fuels and targets

    NASA Astrophysics Data System (ADS)

    Fernández, A.; Konings, R. J. M.; Somers, J.

    2003-06-01

    The fabrication of ceramic-metallic (cermet) composite fuel, containing (Y,An,Zr)O 2- x spheres, by dust free processes has been studied. The influence of several process parameters, such as, ceramic volume fraction, compaction pressure and sintering temperature, on the microstructure of the final composite have been investigated and optimised using cerium as a stand for americium and two metal matrices namely molybdenum and stainless steel. In addition, a cermet fuel with (near) spherical (Y,Pu,Zr)O 2- x particles, dispersed in stainless steel matrix, has been successfully fabricated and characterized.

  9. Fabrication of Fine-Grained Positive Temperature Coefficient Ceramics from Chemically Prepared Powder

    NASA Astrophysics Data System (ADS)

    Deguchi, Takeshi; Sumiyama, Tomoko; Yamaguchi, Iwao; Kinugasa, Masanori; Igarashi, Hideji

    1991-09-01

    Fine barium titanate powders were prepared by chemical synthesis to fabricate positive temperature coefficient ceramics. The calcining condition adapted for the chemical powder was experimentally determined to be a lower temperature than that for conventional powders. Microstructure and temperature dependence of resistivity of the fired samples were examined as a function of firing temperature. Niobium ions doped at a synthesizing stage of barium titanate were homogeneously diffused into a titanium lattice at a low temperature of 1150°C, and fine-grained PTC ceramics with grain sizes of 2˜3 μm were fabricated at that temperature.

  10. Fabrication of a metal-ceramic crown to fit an existing partial removable dental prosthesis using ceramic pressed to metal technique: a clinical report

    PubMed Central

    Seo, Jae-Min

    2014-01-01

    Fabricating a crown to retrofit an existing abutment tooth for a partial removable dental prosthesis (PRDP) is one of the most time-consuming and labor-intensive clinical procedures. In particular, when the patient is concerned with esthetic aspects of restoration, the task of fabricating becomes more daunting. Many techniques for the fabrication of all-metallic or metal-ceramic crowns have been discussed in the literature. This article was aimed to describe a simple fabrication method in which a retrofitting crown was fabricated for a precise fit using a ceramic-pressed-to-metal system. PMID:25006389

  11. Engineered emissivity of textile fabrics by the inclusion of ceramic particles.

    PubMed

    Pooley, Matthew A; Anderson, David M; Beckham, Haskell W; Brennan, James F

    2016-05-16

    Composite textile materials, created from a blend of different fibers, have long been used to engineer the properties and performance of fabrics to combine comfort with functionality, such as to create materials with differing optical properties. Some changes to the optical properties of materials in the infrared are subtle and difficult to measure. We present a measurement technique, experimental apparatus, and associated data analysis procedure for detecting small changes in the emissivity of fabrics in the mid-infrared wavelength range (7.5-14 µm). Using this technique, we demonstrate that the emissivity of polyester fabric can be engineered controllably via the inclusion of ceramic microparticles within the fabric fibers. PMID:27409878

  12. Fabrication of advanced electrochemical energy materials using sol-gel processing techniques

    NASA Technical Reports Server (NTRS)

    Chu, C. T.; Chu, Jay; Zheng, Haixing

    1995-01-01

    Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.

  13. Fabrication of uranium dioxide ceramic pellets with controlled porosity from oxide microspheres

    NASA Astrophysics Data System (ADS)

    Remy, E.; Picart, S.; Delahaye, T.; Jobelin, I.; Dugne, O.; Bisel, I.; Blanchart, P.; Ayral, A.

    2014-05-01

    This study concerns the fabrication of uranium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Details are given about oxide microsphere synthesis and particularly about loading operation and heat treatments. The fabrication of ceramic pellets is also described and discussed. Results showed that this process allows the preparation of either dense or porous pellets by mixing U3O8 and UO2-like microspheres before pressing and sintering.

  14. Fabrication of lightweight ceramic mirrors by means of a chemical vapor deposition process

    NASA Technical Reports Server (NTRS)

    Goela, Jitendra S. (Inventor); Taylor, Raymond L. (Inventor)

    1991-01-01

    A process to fabricate lightweigth ceramic mirrors, and in particular, silicon/silicon carbide mirrors, involves three chemical vapor deposition steps: one to produce the mirror faceplate, the second to form the lightweight backstructure which is deposited integral to the faceplate, and the third and final step which results in the deposition of a layer of optical grade material, for example, silicon, onto the front surface of the faceplate. The mirror figure and finish are fabricated into this latter material.

  15. Crystalline Ceramic Waste Forms: Comparison Of Reference Process For Ceramic Waste Form Fabrication

    SciTech Connect

    Brinkman, K. S.; Marra, J. C.; Amoroso, J.; Tang, M.

    2013-08-22

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be produced from a melting and crystallization process. The objective of this report is to explore the phase formation and microstructural differences between lab scale melt processing in varying gas environments with alternative densification processes such as Hot Pressing (HP) and Spark Plasma Sintering (SPS). The waste stream used as the basis for the development and testing is a simulant derived from a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. Melt processing as well as solid state sintering routes SPS and HP demonstrated the formation of the targeted phases; however differences in microstructure and elemental partitioning were observed. In SPS and HP samples, hollandite, pervoskite/pyrochlore, zirconolite, metallic alloy and TiO{sub 2} and Al{sub 2}O{sub 3} were observed distributed in a network of fine grains with small residual pores

  16. Fabrication and thermal effects of highly transparent polycrystalline Nd:YAG ceramics

    NASA Astrophysics Data System (ADS)

    Fu, Yuelong; Li, Jiang; Liu, Yang; Wang, Zhe; Liu, Lei; Zhao, Hong; Pan, Yubai

    2015-11-01

    Highly transparent polycrystalline 2.0 at.% Nd:YAG ceramics were fabricated by a solid-state reactive sintering method using commercial α-Al2O3, Y2O3 and Nd2O3 powders as starting materials. The in-line transmittances of the Nd:YAG ceramics vacuum sintered at 1750 °C for 50 h with the thickness of 5.8 mm are 83.9% at 1064 nm and 82.5% at 400 nm. The thermal effects in the Nd:YAG ceramics were mainly investigated in detail. It is found that the thermal focal length decreases with the increase of pump power. The experimental results of thermal focal lengths are in accordance with the theoretical calculations. The observed depolarized beam patterns and depolarization phenomena illustrate the detailed change of thermally induced birefringence in Nd:YAG ceramics. The depolarization shows a obvious nonlinear change tendency at low pump power.

  17. Characterization of the metal particles fraction in ceramic matrix composites fabricated under high pressure

    SciTech Connect

    Konopka, K. . E-mail: Kako@inmat.pw.edu.pl; Bucki, J.J.; Gierlotka, S.; Kurzydlowski, K.J.

    2006-06-15

    This paper presents preliminary results concerning Al{sub 2}O{sub 3}-Ni composites fabricated by sintering under a high pressure of 7.7 GPa, at a temperature below the melting temperature of nickel. The microstructure of composites was characterized by scanning and transmission electron microscopy. Quantitative measurements of size, shape and distribution of metal particles were based on image analysis. A correlation between the size of the Ni particles and their location has been found. Small Ni particles, with a grain size in the range of 50-500 nm, are mostly located inside the ceramic grains. Some Ni particles are also situated at the grain boundaries, and large particles are surrounded by ceramic grains. The shape of the ceramic grains suggests that the ceramic powder particles underwent deformation during the process of consolidation under high pressure.

  18. Tga Characteristic and Fabrication of Porous SiC Ceramics

    NASA Astrophysics Data System (ADS)

    Kim, Seong Hoon; Yoon, Han Ki; Kim, Seon Jin; Park, Yi Hyun

    The long-range aim of this research is to develop porous ceramics with high strength, excellent thermal resistance and chemical stability at high temperature in environmental industry. The Cf/SiC was made by hot pressing method with SiC powder whose particle size is 50nm and less on the average also Al2O3, Y2O3 and SiO2 as additive. The carbon fibers of oxidation property are investigated by TGA for finding out decarburization point. As a result, decarburization point selected the specific temperature of TGA curve and the Cf/SiC composites occurred perfectly decarburization at carbon fibers so the clearly porous SiC ceramics were formed many holes of 3-5µm diameters through length direction by its reaction.

  19. Fabrication of all-ceramic crowns by a new method.

    PubMed

    Masuda, Takayuki; Kakimoto, Kazutoshi; Takahashi, Kazuya; Komasa, Yutaka

    2016-01-01

    A new method of all-ceramic production using alumina coping has been developed. The present study investigates the influence of secondary firing (glass infiltration firing) conditions. Samples of porcelain build-up without secondary firing were also assessed. The suitability of coping that included secondary firing was found to be affected by the rate of temperature increase during the secondary firing. However, cracking developed in the fired porcelain if porcelain was built up onto secondarily-fired coping. In contrast, cracking did not occur with coping that was not secondarily fired. The bending strength after porcelain build-up was 70 MPa or higher, suggesting the possibility of clinical applications as an anterior crown. These findings establish that this is method of producing all-ceramic crowns that allows for low-cost manufacture in a short period of about 1 h. PMID:27041020

  20. Low temperature fabrication from nano-size ceramic powders

    SciTech Connect

    Gonzalez, E.J.; Piermarini, G.J.; Hockey, B.

    1995-06-01

    The objective of the compaction process is to produce a dense green-state compact from a nanosize powder that subsequently can be sintered at high temperatures to form a dense ceramic piece. High density in the green-state after pressing is of primary importance for achieving high densities after sintering. Investigation of the compaction behavior of ceramic powders, therefore, is an important part of characterization of raw ceramic powders and evaluation of their compaction behavior, analysis of interaction between particles, and the study of microstructure of green body (unsintered) during pressure-forming processes. The compaction of nanosize ceramic particles into high density green bodies is very difficult. For the nanosize materials used in this study (amorphous Si{sub 3}N{sub 4} and {gamma} Al{sub 2}O{sub 3}), there is no evidence by TEM of partial sintering after synthesis. Nevertheless, strong aggregation forces, such as the van der Waals surface forces of attraction, exist and result in moderate precursor particle agglomeration. More importantly, these attractive surface forces, which increase in magnitude with decreasing particle size, inhibit interparticle sliding necessary for particle rearrangement to denser bodies during subsequent compaction. Attempts to produce high density green body compacts of nanosize particles, therefore, generally have been focused on overcoming these surface forces of attraction by using either dispersive fluids or high pressures with or without lubricating liquids. In the present work, the use of high pressure has been employed as a means of compacting nanosize powders to relatively high green densities.

  1. Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1990-01-01

    Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.

  2. Advanced Constituents and Processes for Ceramic Composite Engine Components

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.; Bhatt, R. T.

    2004-01-01

    The successful replacement of metal alloys by ceramic matrix composites (CMC) in hot-section engine components will depend strongly on optimizing the processes and properties of the CMC microstructural constituents so that they can synergistically provide the total CMC system with improved temperature capability and with the key properties required by the components for long-term structural service. This presentation provides the results of recent activities at NASA aimed at developing advanced silicon carbide (Sic) fiber-reinforced hybrid Sic matrix composite systems that can operate under mechanical loading and oxidizing conditions for hundreds of hours at 2400 and 2600 F, temperatures well above current metal capability. These SiC/SiC composite systems are lightweight (-30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive engine environments. It is shown that the improved temperature capability of the SiC/SiC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays high thermal stability, creep resistance, rupture resistance, and thermal conductivity, and possesses an in-situ grown BN surface layer for added environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics. Further capability is then derived by using chemical vapor infiltration (CVI) to form the initial portion of the hybrid Sic matrix. Because of its high creep resistance and thermal conductivity, the CVI Sic matrix is a required base constituent for all the high temperature SiC/SiC systems. By subsequently thermo- mechanical-treating the CMC preform, which consists of the S ylramic-iBN fibers and CVI Sic matrix, process-related defects in the matrix are removed, further improving matrix and CMC creep resistance and conductivity.

  3. Advances in superconducting quantum electronic microcircuit fabrication

    NASA Technical Reports Server (NTRS)

    Kirschman, R. K.; Notarys, H. A.; Mercereau, J. E.

    1975-01-01

    Standard microelectronic fabrication techniques have been utilized to produce batch quantities of superconducting quantum electronic devices and circuits. The overall goal is a fabrication technology yielding circuits that are rugged and stable and capable of being fabricated controllably and reproducibly in sizeable quantities. Our progress toward this goal is presented, with primary emphasis on the most recent work, which includes the use of electron-beam lithography and techniques of hybrid microelectronics. Several prototype microcircuits have been successfully fabricated. These microcircuits are formed in a thin-film parent material consisting of layers of superconducting and normal metals, and use proximity-effect structures as the active circuit elements.

  4. Advanced Environmental Barrier Coatings Development for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, R. Sung; Robinson, Raymond C.; Lee, Kang N.; Bhatt, Ramakrishna T.; Miller, Robert A.

    2005-01-01

    Advanced environmental barrier coating concepts based on multi-component HfO2 (ZrO2) and modified mullite systems are developed for monolithic Si3N4 and SiC/SiC ceramic matrix composite (CMC) applications. Comprehensive testing approaches were established using the water vapor cyclic furnace, high pressure burner rig and laser heat flux steam rig to evaluate the coating water vapor stability, cyclic durability, radiation and erosion resistance under simulated engine environments. Test results demonstrated the feasibility and durability of the environmental barrier coating systems for 2700 to 3000 F monolithic Si3N4 and SiC/SiC CMC component applications. The high-temperature-capable environmental barrier coating systems are being further developed and optimized in collaboration with engine companies for advanced turbine engine applications.

  5. Evaluation of ceramics for stator applications: Gas turbine engines interim report. Stator fabrication and evaluation

    NASA Technical Reports Server (NTRS)

    Arnon, N.; Trela, W.

    1983-01-01

    The objective was to assess current ceramic materials, fabrication processes, reliability prediction, and stator durability when subjected to simulated automotive gas turbine engine operating conditions. Ceramic one-piece stators were fabricated of two materials, silicon nitride and silicon carbide, using two near-net-shape processes, slip casting and injection molding. Non-destructive evaluation tests were conducted on all stators identifying irregularities which could contribute to failures under durability testing. Development of the test rig and automatic control system for repeatably controlling air flow rate and temperature over a highly transient durability duty cycle is discussed. Durability results are presented for repeated thermal cycle testing of the ceramic one-piece stators. Two duty cycles were used, encompassing the temperature ranges of 704 to 1204 C (1300 to 2200 F) and 871 to 1371 C (1600 to 2500 F). Tests were conducted on 28 stators, accumulating 135,551 cycles in 2441 hours of hot testing. Cyclic durability for the ceramic one-piece stator was demonstrated to be in excess of 500 hours, accumulating over 28,850 thermal cycles. Ceramic interface forces were found to be the significant factor in limiting stator life rather than the scatter in material strength properties or the variation in component defects encountered.

  6. Recent experience in the fabrication and brazing of ceramic beam tubes for kicker magnets at FNAL

    SciTech Connect

    Ader, C.R.; Jensen, C.; Reilly, R.; Snee, D.; Wilson, J.H.; /Fermilab

    2008-06-01

    Ceramic beam tubes are utilized in numerous kicker magnets in different accelerator rings at Fermi National Accelerator Laboratory. Kovar flanges are brazed onto each beam tube end, since kovar and high alumina ceramic have similar expansion curves. The tube, kovar flange, end piece, and braze foil (titanium/incusil) alloy brazing material are stacked in the furnace and then brazed in the furnace at 1000 C. The ceramic specified is 99.8% Alumina, Al{sub 2}O{sub 3}, a strong recrystallized high-alumina fabricated by slip casting. Recent experience at Fermilab with the fabrication and brazing of these tubes has brought to light numerous problems including tube breakage and cracking and also the difficulty of brazing the tube to produce a leak-tight joint. These problems may be due to the ceramic quality, voids in the ceramic, thinness of the wall, and micro-cracks in the ends which make it difficult to braze because it cannot fill tiny surface cracks which are caused by grain pullout during the cutting process. Solutions which are being investigated include lapping the ends of the tubes before brazing to eliminate the micro-cracks and also metallization of the tubes.

  7. Ceramic fabrication process before firing-surface treatment of ceramic powder

    NASA Technical Reports Server (NTRS)

    Tsunoda, T.

    1984-01-01

    The surface treatment of powders is discussed. Stability of ceramic powders and surfaces and the improvement of moldability are addressed. Characteristics of surface treatment technology are given, including formation of inorganic surface-treated layers, liquid phase reactions, gas treatment, surface treatment by coupling agents, and the formation of results of surface treatment.

  8. Advances in modeling of chemical vapor infiltration for tube fabrication

    SciTech Connect

    Starr, T.L.

    1998-04-01

    The forced flow/thermal gradient chemical vapor infiltration process (FCVI) can be used for fabrication of tube-shaped components of ceramic matrix composites. Recent experimental work at Oak Ridge National Laboratory (ORNL) includes process and materials development studies using a small tube reactor. Use of FCVI for this geometry involves significant changes in fixturing as compared to disk-shaped preforms previously fabricated. The authors have used their computer model of the CVI process to simulate tube densification and to identify process modifications that will decrease processing time. This report presents recent model developments and applications.

  9. Fabrication of strain-isolated ceramic coated combustor components

    NASA Technical Reports Server (NTRS)

    Rutter, S.

    1985-01-01

    The use of strain-isolated ceramic coated material to produce an AGT1500 combustor scroll-shaped transition duct which requires no air for film cooling is investigated. The scroll receives the exhaust of the can-style combustor liner and turns it into the annular inlet of the high pressure gas producer turbine nozzle. Strain-isolation of plasma sprayed thermal barrier coating is achieved by placing a compliant pad between the structural base metal and the ceramic coating. The compliant pad is brazed to the metal structure. In order to achieve a good braze bond, the strain-isolating compliant pad and base metal must be closely matched in shape and tightly fixtured for joining. The complex geometry of the AGT1500 scroll makes it impractical to attack pads to the supporting structure in its finished shape. Instead the pads are brazed to flat stock and post-formed into scroll sections. While test samples were successfully post-formed, plasma sprayed, and subjected to cyclic heating, the forming of full scale parts by normal methods resulted in tearing of the Hastelloy-X base metal because of embrittlement by the braze material. Several solutions were explored which finally resulted in the successful forming of full scale scroll parts.

  10. Lost Mold Rapid Infiltration Forming of Mesoscale Ceramics: Part 1, Fabrication

    PubMed Central

    Antolino, Nicholas E.; Hayes, Gregory; Kirkpatrick, Rebecca; Muhlstein, Christopher L.; Frecker, Mary I.; Mockensturm, Eric M.; Adair, James H.

    2009-01-01

    Free-standing mesoscale (340 μm × 30 μm × 20 μm) bend bars with an aspect ratio over 15:1 and an edge resolution as fine as a single grain diameter (∼400 nm) have been fabricated in large numbers on refractory ceramic substrates by combining a novel powder processing approach with photoresist molds and an innovative lost-mold thermal process. The colloid and interfacial chemistry of the nanoscale zirconia particulates has been modeled and used to prepare highly concentrated suspensions. Engineering solutions to challenges in mold fabrication and casting have yielded free-standing, crack-free parts. Molds are fabricated using high-aspect-ratio photoresist on ceramic substrates. Green parts are formed using a rapid infiltration method that exploits the shear thinning behavior of the highly concentrated ceramic suspension in combination with gelcasting. The mold is thermally decomposed and the parts are sintered in place on the ceramic substrate. Chemically aided attrition milling disperses and concentrates the as-received 3Y-TZP powder to produce a dense, fine-grained sintered microstructure. Initial three-point bend strength data are comparable to that of conventional zirconia; however, geometric irregularities (e.g., trapezoidal cross sections) are present in this first generation and are discussed with respect to the distribution of bend strength. PMID:19809595

  11. Method for fabricating ceramic filaments and high density tape casting method

    NASA Technical Reports Server (NTRS)

    Collins, Jr., Earl R. (Inventor)

    1990-01-01

    An apparatus and method is disclosed for fabricating mats of ceramic material comprising preparing a slurry of ceramic particles in a binder/solvent, charging the slurry into a vessel, forcing the slurry from the vessel into spinneret nozzles, discharging the slurry from the nozzles into the path of airjets to enhance the sinuous character of the slurry exudate and to dry it, collecting the filaments on a moving belt so that the filaments overlap each other thereby forming a mat, curing the binder therein, compressing and sintering the mat to form a sintered mat, and crushing the sintered mat to produce filament shaped fragments. A process is also disclosed for producing a tape of densely packed, bonded ceramic particles comprising forming a slurry of ceramic particles and a binder/solvent, applying the slurry to a rotating internal molding surface, applying a large centrifugal force to the slurry to compress it and force excess binder/solvent from the particles, evaporating solvent and curing the binder thereby forming layers of bonded ceramic particles and cured binder, and separating the binder layer from the layer of particles. Multilayers of ceramic particles are cast in an analogous manner on top of previously formed layers. When all of the desired layers have been cast the tape is fired to produce a sintered tape. For example, a three-layer tape is produced having outer layers of highly compressed filament shaped fragments of strontium doped lanthanum (LSM) particles and a center layer of yttria stabilized zicronia (YSZ) particles.

  12. Subcritical crack-growth behavior in advanced silicon nitride ceramics

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Ajay

    Advanced silicon nitride ceramics (Sisb3Nsb4) are leading candidates for structural components in gas turbine and reciprocating engines. However, widespread use of these materials has been deterred due to their low fracture toughness under tensile loads. In the last decade, novel processing techniques have allowed extrinsic toughening of this material through grain bridging processes. The extrinsic toughening mechanisms, however, are prone to subcritical crack-growth processes through environmental, mechanical and high temperature degradation mechanisms. Understanding these failure mechanisms is critical for long term reliability and design. In the first part of this study, fracture and environmentally-assisted subcritical crack-growth processes were examined in bulk Y-Si-Al-O-N oxynitride glasses with compositions typical of the grain boundary phase of silicon nitride ceramics. Both long crack as well as short crack behavior were investigated to establish a reliable fracture toughness value and to elucidate the anomalous densification behavior of the oxynitride glass under indentation loads. Environmentally assisted subcritical crack-growth processes were studied in inert, moist and wet environments under both cyclic and static loading conditions and compared to commercial soda lime and borosilicate glasses. The second part of this study involved the effect of loading, microstructure and temperature on subcritical crack-growth behavior in silicon nitride ceramics. Crack-growth rates under an alternating applied stress intensity were compared to those under static loads. The effect of microstructure on fatigue crack-growth rates was determined in silicon nitrides sintered using different processing techniques and with different grain sizes. Unique experimental techniques were used to determine subcritical crack-growth behavior from room temperature to elevated temperatures of 1250sp°C. Frictional wear models were used to explain the trends in experimental data at

  13. Process for fabrication of large titanium diboride ceramic bodies

    DOEpatents

    Moorhead, Arthur J.; Bomar, E. S.; Becher, Paul F.

    1989-01-01

    A process for manufacturing large, fully dense, high purity TiB.sub.2 articles by pressing powders with a sintering aid at relatively low temperatures to reduce grain growth. The process requires stringent temperature and pressure applications in the hot-pressing step to ensure maximum removal of sintering aid and to avoid damage to the fabricated article or the die.

  14. New gelling systems to fabricate complex-shaped transparent ceramics

    NASA Astrophysics Data System (ADS)

    Yang, Yan; Wu, Yiquan

    2013-06-01

    The aim of this work was to prepare transparent ceramics with large size and complex-shapes by a new water-soluble gelling agent poly(isobutylene-alt-maleic anhydride). Alumina was used as an example of the application of the new gelling system. A stable suspension with 38vol% was prepared by ball milling. Trapped bubbles were removed before casting to obtain homogenous green bodies. The microstructure and particle distribution of alumina raw material were tested. The thermal behavior of the alumina green body was investigated, which exhibited low weight loss when compared with other gelling processes. The influence of solid loading and gelling agent addition were studied on the basis of rheological behavior of the suspension. The microstructures of alumina powders, green bodies before and after de-bindering process, were compared to understand the gelling condition between alumina particles and gelling agent.

  15. In situ fabrication of blue ceramic coatings on wrought Al Alloy 2024 by plasma electrolytic oxidation

    SciTech Connect

    Wang Zhijiang; Nie Xueyuan; Hu, Henry; Hussein, Riyad O.

    2012-03-15

    In situ formation of ceramic coatings on 2024 Al alloy with a blue color was successfully achieved using a plasma electrolytic oxidation process working at atmospheric pressure. This novel blue ceramic coating overcomes the shortcomings of surface treatments resulting from conventional dyeing processes by depositing organic dyes into the porous structure of anodic film, which has poor resistance to abrasion and rapid fading when exposed to sunlight. X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy were employed to characterize the microstructure of the blue ceramic coating. The fabricated ceramic coating was composed of CoAl{sub 2}O{sub 4}, {alpha}-Al{sub 2}O{sub 3}, and {gamma}-Al{sub 2}O{sub 3.} By controlling the working parameters, the distribution of the CoAl{sub 2}O{sub 4} phase on the surface can be adjusted, and plays a key role in the appearance of the coating. Electrochemical testing, thermal cycling method, and pin-on-disk sliding wear testing were employed to evaluate corrosion, thermal cycling, and wear resistance of the ceramic coatings. The results indicate that the blue ceramic coating has a similar polarization resistance to that of conventional anodic film and can significantly enhance the corrosion resistance of aluminum alloy. There are no destructive horizontal cracks observed within the blue ceramic coating when subjected to 120 times of thermal cycling, which heats the samples up to 573 K and followed by submersion in water at room temperature for 10 min. Compared with the aluminum substrate as well as a conventional anodic film coated aluminum sample, the wear resistance of the blue ceramic coating coated sample was significantly increased while the coefficient of friction was decreased from 0.34 to 0.14.

  16. The effect of ceramic thickness and number of firings on the color of a zirconium oxide based all ceramic system fabricated using CAD/CAM technology

    PubMed Central

    Aras, Meena Ajay

    2011-01-01

    PURPOSE Ceramics have a long history in fixed prosthodontics for achieving optimal esthetics and various materials have been used to improve ceramic core strength. However, there is a lack of information on how color is affected by fabrication procedure. The purpose of this study was to evaluate the effects of various dentin ceramic thicknesses and repeated firings on the color of zirconium oxide all-ceramic system (Lava™) fabricated using CAD/CAM technology. MATERIALS AND METHODS Thirty disc-shaped cores, 12 mm in diameter with a 1 mm thickness were fabricated from zirconium oxide based all ceramic systems (Lava™, 3M ESPE, St Paul, MN, USA) and divided into three groups (n = 10) according to veneering with dentin ceramic thicknesses: as 0.5, 1, or 1.5 mm. Repeated firings (3, 5, 7, or 9) were performed, and the color of the specimens was compared with the color after the initial firing. Color differences among ceramic specimens were measured using a spectrophotometer (VITA Easyshade, VITA Zahnfabrik, Bad Säckingen, Germany) and data were expressed in CIELAB system coordinates. A repeated measures ANOVA and Bonferroni post hoc test were used to analyze the data (n = 10, α=.05). RESULTS L*a*b* values of the ceramic systems were affected by the number of firings (3, 5, 7, or 9 firings) (P<.001) and ceramic thickness (0.5, 1, or 1.5 mm) (P<.001). Significant interactions were present in L*a*b* values between the number of firings and ceramic thickness (P<.001). An increase in number of firings resulted in significant increase in L* values for both 0.5 mm and 1.5 mm thicknesses (P<.01, P=.013); however it decreased for 1 mm thickness (P<.01). The a* values increased for 1 mm and 1.5 mm thicknesses (P<.01), while it decreased for 0.5 mm specimens. The b* values increased significantly for all thicknesses (P<.01, P=.022). As the dentin ceramic thickness increased, significant reductions in L* values (P<.01) were recorded. There were significant increases in both a

  17. Replication of microstructures in polymers using laser-fabricated glass-ceramic stamps

    NASA Astrophysics Data System (ADS)

    Kim, Joohan; Uppuluri, Sreemanth M.; Xu, Xianfan

    2004-07-01

    Recently much research on fabrication of polymer micro structures has been carried out. One of the main advantages of using polymer in micro structure fabrication is the easiness of applying replication processes for mass production. A micro stamping process applying heat and pressure, also referred to as hot embossing lithography, can replicate micro-structures on polymer surfaces. By reforming thermoplastics, many micro features can be transferred directly to polymer surfaces. The micro stamping consists of two main steps: a stamp fabrication step and a replication step. Until now, metal or silicon stamps have been used. In this work, photo-etchable glass-ceramic micro stamps are used, which are micro-machined using an excimer laser processing technique. With the laser process, a glass-ceramic stamp can be fabricated quickly and precisely. In addition, a micro stamping device has been designed and developed for this process. Polyvinylchloride (PVC) is used as the replicating polymer because it has a low glass transition temperature (65 C) and good formability. Many micro structures such as micro channels have been produced. The advantages and the limits of using glass-ceramics stamps and stamping with the PVC material are discussed.

  18. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    SciTech Connect

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  19. Fabrication of micro accelerometer and magnetoresistive sensor directly on a ceramic substrate

    NASA Astrophysics Data System (ADS)

    Aoyagi, Seiji

    2012-06-01

    Micro-electro-mechanical systems (MEMS) sensors have movable parts: thus, it is difficult to handle them at fabrication because of the possibility of fracture. If a MEMS sensor could be fabricated not only on a silicon substrate but also on a ceramic substrate, which can be used for a package of the end product, the above-mentioned problem about handling would be solved, and its fabrication cost would be reduced. In this presentation, as demonstrations of the sensors directly fabricated on a ceramic package, an accelerometer and a magnetoresistive (MR) sensor are focused on. A micro accelerometer is proposed, which consists of a proof mass and ferroelectric substrate under it. A screen-printed barium titanate (BTO) film on an alumina substrate was employed as ferroelectrics. The sensitivity of the fabricated accelerometer was 0.1 pF g‑1. A triaxis MR sensor is proposed, which detects not only x- and y-axes' magnetic field intensities but also that of the z-axis. Namely, not only azimuth but also angle of elevation of the sensor can be detected from triaxis components of the geomagnetic field. A permalloy (FeNi) plate is stood aside from the MR element. The plate distorts magnetic field and generates the x- (or y-) component from the originally z-directional field. A triaxis geomagnetic field was successfully detected by the fabricated sensor.

  20. Fabrication and Characterization of Dual Phase Magnesia-Zirconia Ceramics Doped with Plutonia

    SciTech Connect

    P. G. Medvedev; J. F. Jue; S. M. Frank; M.K. Meyer

    2005-05-01

    Dual phase magnesia-zirconia ceramics doped with plutonia are being studied as an inert matrix fuel (IMF) for light water reactors. The motivation of this work is to develop an IMF with a thermal conductivity superior to that of the fuels based on yttria stabilized zirconia. The concept uses the MgO phase as an efficient heat conductor to increase thermal conductivity of the composite. In this paper ceramic fabrication and characterization by scanning electron microscopy, energy and wavelength dispersive xray spectroscopy is discussed. Characterization shows that the ceramics consist of the two-phase matrix and PuO2-rich inclusions. The matrix is comprised of pure MgO phase and MgO-ZrO2-PuO2 solid solution. The PuO2-rich inclusion contained dissolved MgO and ZrO2.

  1. Fabrication and characterization of dual phase magnesia zirconia ceramics doped with plutonia

    NASA Astrophysics Data System (ADS)

    Medvedev, P. G.; Jue, J. F.; Frank, S. M.; Meyer, M. K.

    2006-06-01

    Dual phase magnesia-zirconia ceramics doped with plutonia are being studied as an inert matrix fuel (IMF) for light water reactors. The motivation of this work is to develop an IMF with a thermal conductivity superior to that of the fuels based on yttria stabilized zirconia. The concept uses the MgO phase as an efficient heat conductor to increase thermal conductivity of the composite. In this paper ceramic fabrication and characterization by scanning electron microscopy, energy and wavelength dispersive X-ray spectroscopy is discussed. Characterization shows that the ceramics consist of the two-phase matrix and PuO2-rich inclusions. The matrix is comprised of pure MgO phase and MgO-ZrO2-PuO2 solid solution. The PuO2-rich inclusion contained dissolved MgO and ZrO2.

  2. Liquid-assisted laser ablation of advanced ceramics and glass-ceramic materials

    NASA Astrophysics Data System (ADS)

    Garcia-Giron, A.; Sola, D.; Peña, J. I.

    2016-02-01

    In this work, results obtained by laser ablation of advanced ceramics and glass-ceramic materials assisted by liquids are reported. A Q-switched Nd:YAG laser at its fundamental wavelength of 1064 nm with pulse-width in the nanosecond range was used to machine the materials, which were immersed in water and ethylene glycol. Variation in geometrical parameters, morphology, and ablation yields were studied by using the same laser working conditions. It was observed that machined depth and removed volume depended on the thermal, optical, and mechanical features of the processed materials as well as on the properties of the surrounding medium in which the laser processing was carried out. Variation in ablation yields was studied in function of the liquid used to assist the laser process and related to refractive index and viscosity. Material features and working conditions were also related to the obtained results in order to correlate ablation parameters with respect to the hardness of the processed materials.

  3. Advanced SiC/SiC Ceramic Composites For Gas-Turbine Engine Components

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.; Easler, T. E.

    2004-01-01

    NASA Glenn Research Center (GRC) is developing a variety of advanced SiC/SiC ceramic composite (ASC) systems that allow these materials to operate for hundreds of hours under stress in air at temperatures approaching 2700 F. These SiC/SiC composite systems are lightweight (approximately 30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive gas-turbine engine environments. The key for the ASC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays higher thermal stability than any other SiC- based ceramic fibers and possesses an in-situ grown BN surface layer for higher environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics (COIC). Further capability is then derived by using chemical vapor infiltration (CVI) and/or polymer infiltration and pyrolysis (PIP) to form a Sic-based matrix with high creep and rupture resistance as well as high thermal conductivity. The objectives of this study were (1) to optimize the constituents and processing parameters for a Sylramic-iBN fiber reinforced ceramic composite system in which the Sic-based matrix is formed at COIC almost entirely by PIP (full PIP approach), (2) to evaluate the properties of this system in comparison to other 2700 F Sylramic-iBN systems in which the matrix is formed by full CVI and CVI + PIP, and (3) to examine the pros and cons of the full PIP approach for fabricating hot-section engine components. A key goal is the development of a composite system with low porosity, thereby providing high modulus, high matrix cracking strength, high interlaminar strength, and high thermal conductivity, a major property requirement for engine components that will experience high thermal gradients during service. Other key composite property goals are demonstration at

  4. Chemical vapor deposition for silicon cladding on advanced ceramics

    NASA Technical Reports Server (NTRS)

    Goela, Jitendra S.; Taylor, Raymond L.

    1989-01-01

    Polycrystalline Si was used to clad several advanced ceramic materials such as SiC, Si3N4, sapphire Al2O3, pyrolytic BN, and Si by a CVD process. The thickness of Si cladding ranged from 0.025 to 3.0 mm. CVD Si adhered quite well to all the above materials except Al3O, where the Si cladding was highly stressed and cracked or delaminated. A detailed material characterization of Si-clad SiC samples showed that Si adherence to SiC does not depend much on the substrate surface preparation; that the thermal cycling and polishing of the samples do not cause delamination; and that, in four-point bend tests, the Si-SiC bond remains intact, with the failure occurring in the Si.

  5. Fabrication and photoluminescence properties of Cr:YAG and Yb,Cr:YAG transparent ceramic

    NASA Astrophysics Data System (ADS)

    Chen, Xingtao; Lu, Tiecheng; Wei, Nian; Lu, Zhongwen; Chen, Lijia; Zhang, Qinghua; Cheng, Gang; Qi, Jianqi

    2015-11-01

    Cr:YAG and Yb/Cr:YAG transparent ceramics containing Ca as charge counter element were fabricated by vacuum sintering technique using the co-precipitation synthesis of raw powders. Their spectral and luminescence properties as well as the influence of Cr3+ concentration on the optical properties of Yb,Cr:YAG ceramic were investigated. Results show the transmittance of 10 at.% Yb, 0.25 at.% Cr:YAG and 0.25 at.% Cr:YAG reaches 83% at 1200 nm and 81% at 1400 nm, respectively. And the Yb,Cr:YAG ceramics exhibit a pore free structure with an average grain size of about 5 μm. After annealing, most of Cr3+ ions transform into Cr4+. In the case of excitation wavelength of 440 nm, a sharp emission peak of 694 nm appeared in the Yb,Cr:YAG ceramic before annealing and the band enhanced with the increase of the Cr3+ concentration, which is attributed to the 4T2g-4A2g fluorescence transition. The emission spectrums and fluorescence decays manifest that both the luminescent intensity and the lifetimes of Yb,Cr:YAG are lower than Yb:YAG ceramic and the lifetimes of Yb,Cr:YAG and Yb:YAG are 0.93 and 2.38 ms, respectively. This results demonstrate the existence of the ground state absorption of Cr4+ in the Yb,Cr:YAG ceramic. Experimental evidence proved that Yb,Cr:YAG transparent ceramics could be a potential material for passive self-Q-switched solid-state laser.

  6. Ceramic fiber ceramic matrix filter development

    SciTech Connect

    Judkins, R.R.; Stinton, D.P.; Smith, R.G.; Fischer, E.M.

    1994-09-01

    The objectives of this project were to develop a novel type of candle filter based on a ceramic fiber-ceramic matrix composite material, and to extend the development to full-size, 60-mm OD by 1-meter-long candle filters. The goal is to develop a ceramic filter suitable for use in a variety of fossil energy system environments such as integrated coal gasification combined cycles (IGCC), pressurized fluidized-bed combustion (PFBC), and other advanced coal combustion environments. Further, the ceramic fiber ceramic matrix composite filter, hereinafter referred to as the ceramic composite filter, was to be inherently crack resistant, a property not found in conventional monolithic ceramic candle filters, such as those fabricated from clay-bonded silicon carbide. Finally, the adequacy of the filters in the fossil energy system environments is to be proven through simulated and in-plant tests.

  7. Advanced fabrication technologies for nano-electronics

    SciTech Connect

    Simmons, J.A.; Weckwerth, M.V.; Baca, W.E.

    1996-03-01

    Three novel fabrication technologies are presented which greatly increase the tools available for the realization of nano-electronic devices. First, a sub-micron area post structure descending from a metallic airbridge allows gating of regions as small as 0.1 {mu}m in diameter. This has enabled the study of such quantum phenomena as coupling of parallel quantum point contacts, and electron focusing around a tunable quantum antidot. We also describe two new techniques for backgating multiquantum well structures with submicron lateral resolution. These techniques enable separate ohmic contacts to individual quantum wells spaced as closely as 100 {Angstrom}, and thus allow the fabrication of novel quantum tunneling devices. The first technique uses regrowth over a patterned ion-implanted substrate. The second involves a novel epoxy-bond-and-stop-etch (EBASE) processing scheme, whereby the original substrate is etched away and the backside then patterned using conventional methods.

  8. Advanced Ceramic Matrix Composites with Multifunctional and Hybrid Structures

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Morscher, Gregory N.

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, and nuclear industries. Potential composite applications differ in their requirements for thickness. For example, many space applications such as "nozzle ramps" or "heat exchangers" require very thin (< 1 mm) structures whereas turbine blades would require very thick parts (> or = 1 cm). Little is known about the effect of thickness on stress-strain behavior or the elevated temperature tensile properties controlled by oxidation diffusion. In this study, composites consisting of woven Hi-Nicalon (trademark) fibers a carbon interphase and CVI SiC matrix were fabricated with different numbers of plies and thicknesses. The effect of thickness on matrix crack formation, matrix crack growth and diffusion kinetics will be discussed. In another approach, hybrid fiber-lay up concepts have been utilized to "alloy" desirable properties of different fiber types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the C(sub I)-SiC and SiC(sub f)-SiC composite systems. CVI SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon (trademark)) layers were fabricated. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear properties of these composites at different temperatures will also be presented. Other design and implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  9. Fabrication and evaluation of advanced titanium and composite structural panels

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Hoffman, E. L.; Payne, L.; Carter, A. L.

    1976-01-01

    Advanced manufacturing methods for titanium and composite material structures are being developed and evaluated. The focus for the manufacturing effort is the fabrication of full-scale structural panels which replace an existing shear panel on the upper wing surface of the NASA YF-12 aircraft. The program involves design, fabrication, ground testing, and Mach 3 flight service of full-scale structural panels and laboratory testing of representative structural element specimens.

  10. Fabrication and spectral properties of Nd 3+-doped yttrium lanthanum oxide transparent ceramics

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoman; Yang, Qiuhong; Dou, Chuanguo; Xu, Jun; Zhou, Hongxu

    2008-06-01

    Transparent 1 at% Nd3+:Y1.9La0.1O3 ceramics were fabricated with nanopowders prepared by carbonate coprecipitation method. The powder compacts were sintered in H2 atmosphere at 1550 °C for 30 h. The Nd3+:Y1.9La0.1O3 ceramics display uniform grains of about 50 μm and high transparency. The highest transmittance of the ceramics reaches 67%. The strongest absorption peak is in the wavelength of 820 nm with absorption cross section of 2.48 × 10-20 cm2. The absorption is still high at LD wavelength 806 nm with absorption cross section of 1.78 × 10-20 cm2 and broad full width at half maximum (FWHM) of about 6.3 nm. The strongest emission peak was centered at 1078 nm with large stimulated emission cross section of 9.63 × 10-20 cm2 and broad FWHM of about 7.8 nm. The broad absorption and emission bandwidth of Nd3+:Y1.9La0.1O3 transparent ceramics are favorable to achieve the miniaturized LD pumping apparatus and ultrashort modelocked pulse laser output, respectively.

  11. Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Levine, S. R.

    1995-01-01

    A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

  12. Low cost fabrication of silicon carbide based ceramics and fiber reinforced composites

    SciTech Connect

    Singh, M.; Levine, S.R.

    1995-07-01

    A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC`s) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

  13. Recent developments in freeform fabrication of dense ceramics from slurry deposition

    SciTech Connect

    Cesarano, J. III; Baer, T.A.; Calvert, P.

    1997-11-01

    A freeform fabrication technique for dense ceramics and composites has been developed. The technique requires less than 2 volume percent of organic additives and relies on the principle of layerwise deposition of highly loaded colloidal slurries. Components can be manufactured into complex geometries with thick solid sections as well as with thin-walled sections with high aspect ratios. Process feasibility and quality is dependent on the processing parameters of solids loading, slurry rheology, deposition rate, and drying rate. These interrelated parameters must be controlled so that sintering defects are prevented and shape tolerance is maintained. A review of this freeform fabrication technique, called robocasting, will be discussed for fabrication of aluminum oxide parts. Recent developments for a finite element analysis technique for modeling the drying process will also be presented.

  14. Reactive Processing of Environment Conscious, Biomorphic Ceramics: A Novel and Eco-friendly Route to Advanced Ceramic

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2002-01-01

    Environment-conscious, biomorphic ceramics (Ecoceramics) are a new class of materials that can be produced with renewable resources (wood) and wood wastes (wood sawdust). These materials have tailorable properties with numerous potential applications. Silicon carbide-based ecoceramics have been fabricated by the infiltration of wood-derived carbonaceous preforms with oxide and silicon based materials. The wood-derived carbonaceous preforms have been shown to be quite useful in producing porous or dense materials with different microstructures and compositions. The microstructure and mechanical properties (flexural strength, fracture toughness, elastic modulus, and compressive strength) of a wide variety of Sic-based ecoceramics have been measured. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. In this presentation the fabrication approach, microstructure, and thermomechanical properties of a wide variety of Sic-based Ecoceramics will be reported.

  15. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 1, Final report

    SciTech Connect

    Cuccio, J.C.; Brehm, P.; Fang, H.T.

    1995-03-01

    Emphasis of this program is to develop and demonstrate ceramics life prediction methods, including fast fracture, stress rupture, creep, oxidation, and nondestructive evaluation. Significant advancements were made in these methods and their predictive capabilities successfully demonstrated.

  16. Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    2009-01-01

    The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heatflux environments (150 W/cm2) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same pick location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by

  17. Ceramic planar waveguide laser of non-aqueous tape casting fabricated YAG/Yb:YAG/YAG

    PubMed Central

    Wang, Chao; Li, Wenxue; Yang, Chao; Bai, Dongbi; Li, Jiang; Ge, Lin; Pan, Yubai; Zeng, Heping

    2016-01-01

    Ceramic YAG/Yb:YAG/YAG planar waveguide lasers were realized on continuous-wave and mode-locked operations. The straight waveguide, fabricated by non-aqueous tape casting and solid state reactive sintering, enabled highly efficient diode-pumped waveguide continuous-wave laser with the slope efficiency of 66% and average output power of more than 3 W. The influence of the waveguide structure on the wavelength tunability was also experimentally investiccgated with a dispersive prism. Passively mode-locked operation of the ceramic waveguide laser was achieved by using a semiconductor saturable absorber mirror (SESAM), output 2.95 ps pulses with maximum power of 385 mW at the central wavelength of 1030 nm. PMID:27535577

  18. Fabrication and characterization of Li 3TaO 4 ceramic pebbles by wet process

    NASA Astrophysics Data System (ADS)

    Zhu, Deqiong; Peng, Shuming; Chen, Xiaojun; Gao, Xiaoling; Yang, Tongzai

    2010-01-01

    Lithium-containing ceramics have long been recognized as the tritium breeding materials in the fusion-fission or fusion reactor blanket. Li3TaO4 (lithium orthotantalate) pebbles, with high melting point (∼1406 °C), good thermal stability, and high thermal conductivity, were fabricated by wet process (freeze-drying) as a new potential candidate of tritium breeder. The diameter of ceramic pebbles is 0.7-1.0 mm, density is over 90% (TD), pore diameter is 1.86 μm (a.v), grain size is 15 μm (a.v), crush load is up to 46.7 N (a.v).

  19. Fabrication of Porous and Dense Ceramics from Transitional Nano-Alumina

    NASA Astrophysics Data System (ADS)

    Fidancevska, Emilija; Bossert, Joerg; Vassilev, Venceslav; Milosevski, Milosav

    Porous alumina ceramics (density 0.75 TD) with a typical vermicular microstructure were obtained from transitional nano-alumina powder by cold isostatic pressing (P = 500 MPa) and sintering at non-isothermal conditions from RT to 1,500°C. Mechanical activation, realized by attriting, was used to reduce the α-Al2O3 transformation to a temperature of 1,038°C. Conventional pressing (P = 500 MPa) and sintering at 1,500°C were used to fabricate 0.96 TD dense alumina ceramics. Electrophoretic deposition was applied to the mechanically activated powder followed by isostatic pressing and sintering. Compacts with a density of 0.94 TD were obtained at 1,400°C/30 min. The microstructure was homogenous with grain sizes of 300 ± 100 nm.

  20. Fabrication of ceramic microspheres by diffusion-induced sol-gel reaction in double emulsions.

    PubMed

    Zhang, Lei; Hao, Shaochang; Liu, Bing; Shum, Ho Cheung; Li, Jiang; Chen, Haosheng

    2013-11-27

    We demonstrate an approach to prepare zirconium dioxide (ZrO2) microspheres by carrying out a diffusion-induced sol-gel reaction inside double emulsion droplets. A glass capillary microfluidic device is introduced to generate monodisperse water-in-oil-in-water (W/O/W) double emulsions with a zirconium precursor as the inner phase. By adding ammonia to the continuous aqueous phase, the zirconium precursor solution is triggered to gel inside the emulsions. The double emulsion structure enhances the uniformity in the rate of the sol-gel reaction, resulting in sol-gel microspheres with improved size uniformity and sphericity. ZrO2 ceramic microspheres are formed following subsequent drying and sintering steps. Our approach, which combines double-emulsion-templating and sol-gel synthesis, has great potential for fabricating versatile ceramic microspheres for applications under high temperature and pressure. PMID:23865771

  1. Ceramic planar waveguide laser of non-aqueous tape casting fabricated YAG/Yb:YAG/YAG.

    PubMed

    Wang, Chao; Li, Wenxue; Yang, Chao; Bai, Dongbi; Li, Jiang; Ge, Lin; Pan, Yubai; Zeng, Heping

    2016-01-01

    Ceramic YAG/Yb:YAG/YAG planar waveguide lasers were realized on continuous-wave and mode-locked operations. The straight waveguide, fabricated by non-aqueous tape casting and solid state reactive sintering, enabled highly efficient diode-pumped waveguide continuous-wave laser with the slope efficiency of 66% and average output power of more than 3 W. The influence of the waveguide structure on the wavelength tunability was also experimentally investiccgated with a dispersive prism. Passively mode-locked operation of the ceramic waveguide laser was achieved by using a semiconductor saturable absorber mirror (SESAM), output 2.95 ps pulses with maximum power of 385 mW at the central wavelength of 1030 nm. PMID:27535577

  2. Ceramic Technology for Advanced Heat Engines Program data base: A summary report

    SciTech Connect

    Booker, M.K.

    1988-01-01

    A large amount and wide variety of data on the behavior of advanced ceramic materials is currently being generated within the Ceramic Technology for Advanced Heat Engines Program. This paper summarizes efforts to date to develop a computer data base system for the management of those data. The system is based on the use of desktop microcomputers, which provides a maximum of efficiency, economy, and convenience in the operation of the system.

  3. Advanced ceramic coating development for industrial/utility gas turbines

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.; Stetson, A. R.

    1982-01-01

    A program was conducted with the objective of developing advanced thermal barrier coating (TBC) systems. Coating application was by plasma spray. Duplex, triplex and graded coatings were tested. Coating systems incorporated both NiCrAly and CoCrAly bond coats. Four ceramic overlays were tested: ZrO2.82O3; CaO.TiO2; 2CaO.SiO2; and MgO.Al2O3. The best overall results were obtained with a CaO.TiO2 coating applied to a NiCrAly bond coat. This coating was less sensitive than the ZrO2.8Y2O3 coating to process variables and part geometry. Testing with fuels contaminated with compounds containing sulfur, phosphorus and alkali metals showed the zirconia coatings were destabilized. The calcium titanate coatings were not affected by these contaminants. However, when fuels were used containing 50 ppm of vanadium and 150 ppm of magnesium, heavy deposits were formed on the test specimens and combustor components that required frequent cleaning of the test rig. During the program Mars engine first-stage turbine blades were coated and installed for an engine cyclic endurance run with the zirconia, calcium titanate, and calcium silicate coatings. Heavy spalling developed with the calcium silicate system. The zirconia and calcium titanate systems survived the full test duration. It was concluded that these two TBC's showed potential for application in gas turbines.

  4. Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications

    SciTech Connect

    McMurtry, C.H.; Ten Eyck, M.O.

    1992-10-01

    Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90[degree] shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45[degree] angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

  5. Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications

    SciTech Connect

    McMurtry, C.H.; Ten Eyck, M.O.

    1992-10-01

    Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90{degree} shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45{degree} angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

  6. Innovative grinding wheel design for cost-effective machining of advanced ceramics

    SciTech Connect

    Licht, R.H.; Kuo, P.; Liu, S.; Murphy, D.; Picone, J.W.; Ramanath, S.

    2000-05-01

    This Final Report covers the Phase II Innovative Grinding Wheel (IGW) program in which Norton Company successfully developed a novel grinding wheel for cost-effective cylindrical grinding of advanced ceramics. In 1995, Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics using small prototype wheels. The Phase II program was initiated to scale-up the new superabrasive wheel specification to larger diameters, 305-mm to 406-mm, required for most production grinding of cylindrical ceramic parts, and to perform in-house and independent validation grinding tests.

  7. Fabrication and characterization of all-ceramic solid oxide fuel cells based on composite oxide anode

    NASA Astrophysics Data System (ADS)

    Kim, Jeonghee; Shin, Dongwook; Son, Ji-Won; Lee, Jong-Ho; Kim, Byung-Kook; Je, Hae-June; Lee, Hae-Weon; Yoon, Kyung Joong

    2013-11-01

    All-ceramic solid oxide fuel cells (SOFCs), which offer advantages in carbon tolerance, sulfur resistance and redox stability, are fabricated and evaluated. The electrolyte-supported cells are composed of a La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM)-Ce0.9Gd0.1O1.95-δ (GDC) anode, an Y2O3-stabilized ZrO2 (YSZ) electrolyte, a GDC interdiffusion barrier layer, and a La0.8Sr0.2Co0.2Fe0.8O3-δ (LSCF)-GDC cathode. A particle-dispersed glycine-nitrate process is developed to synthesize extremely fine and homogeneous LSCM-GDC ceramic composite powders. The electrochemical performance of the LSCM-GDC anode is comparable to that of conventional Ni-based anodes. The impedance spectra of the all-ceramic SOFCs are successfully interpreted by the independent characterization of the individual electrodes via half-cell measurements. The impedance of the LSCM-GDC anode is dominated by a low-frequency arc originating from the “chemical capacitance”, which is associated with the variation of the oxygen nonstoichiometry in the mixed conducting ceramic electrode. In addition, the impedance arc associated with the electrode-gas interaction is observed in the LSCM-GDC anode. The rate-limiting processes for the LSCF-GDC cathode are observed to be solid-state oxygen diffusion and surface chemical exchange. Herein, the reaction mechanisms and rate-limiting processes of the all-ceramic SOFCs are discussed in detail and compared with those of conventional Ni-based SOFCs.

  8. ADVANCED ELECTROSTATIC STIMULATION OF FABRIC FILTRATION: PERFORMANCE AND ECONOMICS

    EPA Science Inventory

    The paper discusses the performance and economics of advanced electrostatic stimulation of fabric filtration (AESFF), in which a high-voltage electrode is placed coaxially inside a filter bag to establish an electric field between the electrode and the bag surface. The electric f...

  9. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  10. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high-quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  11. SERS substrates fabricated using ceramic filters for the detection of bacteria

    NASA Astrophysics Data System (ADS)

    Mosier-Boss, P. A.; Sorensen, K. C.; George, R. D.; Obraztsova, A.

    2016-01-01

    SERS substrates were fabricated by filtering either Ag or Au colloidal particles onto rigid, ceramic filters - onto which suspensions of bacteria were then filtered. SERS spectra of the bacteria were obtained using a Raman spectrometer that has an 'orbital raster scan' capability. It was shown that bacteria samples prepared in this manner were uniformly distributed onto the surface of the SERS substrate. The effect of common buffer systems on the SERS spectra was investigated and the utility of using the SERS technique for speciation of bacteria was explored.

  12. Standardization Efforts for Mechanical Testing and Design of Advanced Ceramic Materials and Components

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Jenkins, Michael G.

    2003-01-01

    Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.

  13. Annual Conference on Composites and Advanced Ceramic Materials, 11th, Cocoa Beach, FL, Jan. 18-23, 1987, Proceedings

    SciTech Connect

    Not Available

    1987-08-01

    The present conference on advanced ceramic materials discusses topics in the fields of NDE, coating/joining/tribology techniques, fracture and interface phenomena, whisker- and particulate-reinforced composites, fiber and whisker properties, SiC and Si/sub 3/N/sub 4/, glass/glass-ceramic matrix composites, alumina-matrix composites, ceramic materials for space structures, and SiC- and Si/sub 3/N/sub 4/-matrix composites. Attention is given to ceramic characterization by thermal wave imaging, an advanced ceramic-to-metal joining process, the fracture modes of brittle-matrix unidirectional composites, the oxidation of SiC-containing composites, particulate matter in SiC whiskers, corrosion reactions in SiC ceramics, melt-infiltrated ceramic-matrix composites, environmental effects in toughened ceramics, and a ceramic composite heat exchanger.

  14. Advanced Ceramic Technology for Space Applications at NASA MSFC

    NASA Technical Reports Server (NTRS)

    Alim, Mohammad A.

    2003-01-01

    The ceramic processing technology using conventional methods is applied to the making of the state-of-the-art ceramics known as smart ceramics or intelligent ceramics or electroceramics. The sol-gel and wet chemical processing routes are excluded in this investigation considering economic aspect and proportionate benefit of the resulting product. The use of ceramic ingredients in making coatings or devices employing vacuum coating unit is also excluded in this investigation. Based on the present information it is anticipated that the conventional processing methods provide identical performing ceramics when compared to that processed by the chemical routes. This is possible when sintering temperature, heating and cooling ramps, peak temperature (sintering temperature), soak-time (hold-time), etc. are considered as variable parameters. In addition, optional calcination step prior to the sintering operation remains as a vital variable parameter. These variable parameters constitute a sintering profile to obtain a sintered product. Also it is possible to obtain identical products for more than one sintering profile attributing to the calcination step in conjunction with the variables of the sintering profile. Overall, the state-of-the-art ceramic technology is evaluated for potential thermal and electrical insulation coatings, microelectronics and integrated circuits, discrete and integrated devices, etc. applications in the space program.

  15. Fabrication and testing of a ceramic two-cycle diesel engine. Final report, 29 November 1983-31 January 1986

    SciTech Connect

    MacBeth, J.W.

    1986-03-31

    The project effort was focused around evaluating the friction horsepower performance of a single-cylinder two-stroke opposed-piston diesel engine, fabricated from conventional metal components and then with the substitution of ceramic components for the cylinder liner and pistons. The ceramic configurations were run ringless and without cylinder lubrication. Frictional torque measurements were 50% lower than in the standard baseline case.

  16. Fabrication and phase transition of Gd2Zr2O7 ceramics immobilized various simulated radionuclides

    NASA Astrophysics Data System (ADS)

    Fan, Long; Shu, Xiaoyan; Ding, Yi; Duan, Tao; Song, Mianxin; Lu, Xirui

    2015-01-01

    To investigate the feasibility of Gd2Zr2O7 used for disposal waste of multi-nuclides with multi-valence, simulated trialkyl phosphine oxides (TRPO) waste was chosen to research the fabrication method and phase evolution. A series of (Gd,A)2(Zr,B)2O7 ceramics were successfully fabricated through a solid-state reaction sintering at 1500 °C for 72 h. XRD studies reveal that the compositions containing up to 35 wt.% simulated TRPO waste exhibit a single pyrochlore structure, while the doping content varies from 35 to 65 wt.%, the samples adopt a single defect fluorite structure. In the discussed range, the lattice parameter decreases with the increased doping content, and the rA/rB ratio decreases from 1.43 to 1.27, while the degree order increases in turn. Furthermore, the densification and grain growth in pyrochlore structure are promoted by an enhanced doping content.

  17. Zero expansion glass ceramic ZERODUR® roadmap for advanced lithography

    NASA Astrophysics Data System (ADS)

    Westerhoff, Thomas; Jedamzik, Ralf; Hartmann, Peter

    2013-04-01

    The zero expansion glass ceramic ZERODUR® is a well-established material in microlithography in critical components as wafer- and reticle-stages, mirrors and frames in the stepper positioning and alignment system. The very low coefficient of thermal expansion (CTE) and its extremely high CTE homogeneity are key properties to achieve the tight overlay requirements of advanced lithography processes. SCHOTT is continuously improving critical material properties of ZERODUR® essential for microlithography applications according to a roadmap driven by the ever tighter material specifications broken down from the customer roadmaps. This paper will present the SCHOTT Roadmap for ZERODUR® material property development. In the recent years SCHOTT established a physical model based on structural relaxation to describe the coefficient of thermal expansion's temperature dependence. The model is successfully applied for the new expansion grade ZERODUR® TAILORED introduced to the market in 2012. ZERODUR® TAILORED delivers the lowest thermal expansion of ZERODUR® products at microlithography tool application temperature allowing for higher thermal stability for tighter overlay control in IC production. Data will be reported demonstrating the unique CTE homogeneity of ZERODUR® and its very high reproducibility, a necessary precondition for serial production for microlithography equipment components. New data on the bending strength of ZERODUR® proves its capability to withstand much higher mechanical loads than previously reported. Utilizing a three parameter Weibull distribution it is possible to derive minimum strength values for a given ZERODUR® surface treatment. Consequently the statistical uncertainties of the earlier approach based on a two parameter Weibull distribution have been eliminated. Mechanical fatigue due to stress corrosion was included in a straightforward way. The derived formulae allows calculating life time of ZERODUR® components for a given stress

  18. Evaluation of shear bond strength between zirconia core and ceramic veneers fabricated by pressing and layering techniques: In vitro study

    PubMed Central

    Subash, M.; Vijitha, D.; Deb, Saikat; Satish, A.; Mahendirakumar, N.

    2015-01-01

    Statement of Problem: Although ceramic veneered on to zirconia core have been in use for quite some time, information regarding the comparative evaluation of the Shear bond strength of Pressable & Layered ceramic veneered on to zirconia core is limited. Purpose of study: To evaluate the shear bond strength of zirconia core and ceramic veneer fabricated by two different techniques, Layering (Noritake CZR) and Pressing (Noritake, CZR Press). Materials and Method: 20 samples of zirconia blocks were fabricated and the samples were divided into group A & B. Group A - Ceramic Veneered over zirconia core by pressing using Noritake CZR Press. Group B - Ceramic Veneered over zirconia core by layering using Noritake CZR. The veneered specimens were mounted on to the center of a PVC tube using self-cure acrylic resin leaving 3 mm of the veneered surface exposed as cantilever. Using a Universal testing machine the blocks were loaded up to failure. Result: The results were tabulated by using independent samples t-test. The mean shear bond strength for Pressed specimens was 12.458 ± 1.63(S.D) MPa and for layered specimens was 8.458 ± 0.845(S.D) MPa. Conclusion: Pressed specimens performed significantly better than the layered specimen with a P value 0.001. Clinicians and dental laboratory technicians should consider the use of pressed ceramics as an alternative to traditional layering procedures to reduce the chances of chipping or de-lamination of ceramics PMID:26538929

  19. Fabrication of ceramic layer-by-layer infrared wavelength photonic band gap crystals

    NASA Astrophysics Data System (ADS)

    Kang, Henry Hao-Chuan

    Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibiting spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in submicron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers. The goal of this dissertation research is to explore techniques for fabricating 3D ceramic layer-by-layer (LBL) photonic crystals operating in the infrared frequency range, and to characterize the infilling materials properties that affect the fabrication process as well as the structural and optical properties of the crystals. While various approaches have been reported in literature for the fabrication of LBL structure, the uniqueness of this work ties with its cost-efficiency and relatively short process span. Besides, very few works have been reported on fabricating ceramic LBL crystals at mid-IR frequency range so far. The fabrication techniques reported here are mainly based on the concepts of microtransfer molding with the use of polydimethyl siloxane (PDMS) as molds/stamps. The infilling materials studied include titanium alkoxide precursors and aqueous suspensions of nanosize titania particles (slurries). Various infilling materials were synthesized to determine viscosities, effects on drying and firing shrinkages, effects on film surface roughness, and their moldability. Crystallization and phase transformation of the materials were also monitored using DTA, TGA and XRD. Mutilayer crystal

  20. Life prediction methodology for ceramic components of advanced heat engines. Phase 1: Volume 2, Appendices

    SciTech Connect

    1995-03-01

    This volume presents the following appendices: ceramic test specimen drawings and schematics, mixed-mode and biaxial stress fracture of structural ceramics for advanced vehicular heat engines (U. Utah), mode I/mode II fracture toughness and tension/torsion fracture strength of NT154 Si nitride (Brown U.), summary of strength test results and fractography, fractography photographs, derivations of statistical models, Weibull strength plots for fast fracture test specimens, and size functions.

  1. Ceramic matrix composite applications in advanced liquid fuel rocket engine turbomachinery

    NASA Technical Reports Server (NTRS)

    Brockmeyer, Jerry W.

    1992-01-01

    Fiber-reinforced ceramic matrix composites have been identified with properties suitable for near term applications. Conceptual design studies indicate the feasibility of applying C/SiC, and subelements were manufactured that verify selected fabrication features and key material properties. Tests and inspection of these subelements confirmed their capabilities.

  2. Design and fabrication of advanced EUV diffractive elements

    SciTech Connect

    Naulleau, Patrick P.; Liddle, J. Alexander; Salmassi, Farhad; Anderson, Erik H.; Gullikson, Eric M.

    2003-11-16

    As extreme ultraviolet (EUV) lithography approaches commercial reality, the development of EUV-compatible diffractive structures becomes increasingly important. Such devices are relevant to many aspects of EUV technology including interferometry, illumination, and spectral filtering. Moreover, the current scarcity of high power EUV sources makes the optical efficiency of these diffractive structures a paramount concern. This fact has led to a strong interest in phase-enhanced diffractive structures. Here we describe recent advancements made in the fabrication of such devices.

  3. Fabrication of large-volume, low-cost ceramic lanthanum halide scintillators for gamma ray detection : final report for DHS/DNDO/TRDD project TA-01-SL01.

    SciTech Connect

    Boyle, Timothy J.; Ottley, Leigh Anna M.; Yang, Pin; Chen, Ching-Fong; Sanchez, Margaret R.; Bell, Nelson Simmons

    2008-10-01

    This project uses advanced ceramic processes to fabricate large, optical-quality, polycrystalline lanthanum halide scintillators to replace small single crystals produced by the conventional Bridgman growth method. The new approach not only removes the size constraint imposed by the growth method, but also offers the potential advantages of both reducing manufacturing cost and increasing production rate. The project goal is to fabricate dense lanthanum halide ceramics with a preferred crystal orientation by applying texture engineering and solid-state conversion to reduce the thermal mechanical stress in the ceramic and minimize scintillation light scattering at grain boundaries. Ultimately, this method could deliver the sought-after high sensitivity and <3% energy resolution at 662 keV of lanthanum halide scintillators and unleash their full potential for advanced gamma ray detection, enabling rapid identification of radioactive materials in a variety of practical applications. This report documents processing details from powder synthesis, seed particle growth, to final densification and texture development of cerium doped lanthanum bromide (LaBr{sub 3}:Ce{sup +3}) ceramics. This investigation demonstrated that: (1) A rapid, flexible, cost efficient synthesis method of anhydrous lanthanum halides and their solid solutions was developed. Several batches of ultrafine LaBr{sub 3}:Ce{sup +3} powder, free of oxyhalide, were produced by a rigorously controlled process. (2) Micron size ({approx} 5 {micro}m), platelet shape LaBr{sub 3} seed particles of high purity can be synthesized by a vapor phase transport process. (3) High aspect-ratio seed particles can be effectively aligned in the shear direction in the ceramic matrix, using a rotational shear-forming process. (4) Small size, highly translucent LaBr{sub 3} (0.25-inch diameter, 0.08-inch thick) samples were successfully fabricated by the equal channel angular consolidation process. (5) Large size, high density

  4. Design and fabrication of cast orthopedic implants with freeform surface textures from 3-D printed ceramic shell.

    PubMed

    Curodeau, A; Sachs, E; Caldarise, S

    2000-09-01

    Three-dimensional printing is a solid freeform fabrication process, which creates parts directly from a computer model. The parts are built by repetitively spreading a layer of powder and selectively joining the powder in the layer by ink-jet printing of a binder material. 3D printing was applied to the fabrication of sub-millimeter surface textures with overhang and undercut geometries for use in orthopedic prostheses as bony ingrowth structures. 3D printing is used to fabricate ceramic molds of alumina powder and silica binder, and these molds are used to cast the bony ingrowth surfaces of Co-Cr (ASTM F75) alloy. Minimum positive feature sizes of the ceramic mold and, therefore, minimum negative feature sizes of castings were determined to be approximately 200 x 200 x 175 microm and were limited by the strength of ceramic needed to withstand handling. Minimum negative feature sizes in the ceramic mold and, therefore, minimum positive features in the casting were found to be approximately 350 x 350 x 175 microm and were determined by limitations on removal of powder from the ceramic and the pressure required to fill these small features with molten metal during casting. Textures were designed with 5 layers of distinct geometric definition, allowing for the design of overhung geometry with overall porosity ranging from 30-70%. Features as small as 350 x 350 x 200 microm were included in these designs and successfully cast. PMID:10984701

  5. Overview of ASTM standard activities in support of advanced structural ceramics development

    SciTech Connect

    Brinkman, C.R.; Quinn, G.D.; McClung, R.W.

    1995-07-01

    An overview is presented of the activities of ASTM Committee C-28 on Advanced Ceramics. This activity originated in 1986 when it became apparent that advanced ceramics were being considered for extensive use in applications such as advanced heat engines, heat exchangers, combustors, etc. in aerospace and energy conservation activities. These applications require optimum material behavior with physical and mechanical property reproducibility, component reliability, and well defined methods of data treatment and material analysis for both monolithic and composite ceramic materials. As new materials are introduced into the market place, these issues are best dealt with via standard methods. Therefore, a progress report is given describing activities of the five standard writing subcommittees who support the ASTM Committee C-28 effort. Accomplishments to date are given, as well as likely future activities, including a brief summary of joint cooperative efforts with international standard formulating organizations.

  6. Ho:YAG transparent ceramics based on nanopowders produced by laser ablation method: Fabrication, optical properties, and laser performance

    NASA Astrophysics Data System (ADS)

    Bagayev, S. N.; Osipov, V. V.; Vatnik, S. M.; Shitov, V. A.; Vedin, I. A.; Platonov, V. V.; Steinberg, I. Sh.; Maksimov, R. N.

    2015-12-01

    We fabricate Ho:YAG transparent ceramics based on nanopowders produced by laser ablation method via two approaches. Higher transmittance (82% in the infrared region) is achieved in ceramics prepared with an additional round of pre-calcining before sintering. We evaluate the average volume of the scattering centers in the ceramics and their distribution along the sample depth by the direct count method using an optical microscope and by the novel method of collinear two-photon interband photoexcitation, respectively. The laser characteristics of the 1% Ho:YAG ceramics are investigated using an intracavity pumping scheme. The slope efficiency is ∼40% relative to the absorbed pumping power at 1.85 μm.

  7. Ceramic Technology Project

    SciTech Connect

    Not Available

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  8. The effects of process parameters on injection-molded PZT ceramics part fabrication- compounding process rheology.

    SciTech Connect

    Halbleib, Laura L.; Yang, Pin; Mondy, Lisa Ann; Burns, George Robert

    2005-05-01

    Solid solutions of lead-based perovskites are the backbone materials of the piezoelectric components for transducer, actuator, and resonator applications. These components, typically small in size, are fabricated from large sintered ceramic slugs using grinding and lapping processes. These operations increase manufacturing costs and produce a large hazardous waste stream, especially when component size decreases. To reduce costs and hazardous wastes associated with the production of these components, an injection molding technique is being investigated to replace the machining processes. The first step in the new technique is to compound an organic carrier with a ceramic powder. The organic carrier is a thermoplastic based system composed of a main carrier, a binder, and a surfactant. Understanding the rheology of the compounded material is necessary to minimize the creation of defects such as voids or cavities during the injection-molding process. An experiment was performed to model the effects of changes in the composition and processing of the material on the rheological behavior. Factors studied included: the surfactant of the organic carrier system, the solid loading of the compounded material, and compounding time. The effects of these factors on the viscosity of the material were investigated.

  9. Advances in freeform optics fabrication for conformal window and dome applications

    NASA Astrophysics Data System (ADS)

    DeGroote Nelson, Jessica; Gould, Alan; Smith, Nathan; Medicus, Kate; Mandina, Michael

    2013-06-01

    Freeform optical shapes or optical surfaces that are designed with non-symmetric features are gaining popularity with lens designers and optical system integrators. This enabling technology allows for conformal sensor windows and domes that provide enhanced aerodynamic properties as well as environmental and ballistic protection. In order to provide ballistic and environmental protection, these conformal windows and domes are typically fabricated from hard ceramic materials. Hard ceramic conformal windows and domes provide two challenges to the optical fabricator. The material hardness, polycrystalline nature and non-traditional shape demand creative optical fabrication techniques to produce these types of optics cost-effectively. This paper will overview a complete freeform optical fabrication process that includes ultrasonic generation of hard ceramic surfaces, high speed VIBE polishing, sub-aperture figure correction of polycrystalline materials and final testing of freeform surfaces. This paper will highlight the progress made to each of the processes as well as the challenges associated with each of them.

  10. Fabrication of SiC whisker-reinforced SiC ceramics

    SciTech Connect

    Miyahara, Kaoru; Watanabe, Takashi; Koga, Shin; Sasa, Tadashi

    1992-10-01

    A fabrication process of SiC whisker-reinforced SiC ceramics consisting of whisker CVD-coating for the control of interfacial bonding, slurry-pressing and HIP consolidation has been developed. Microstructural observation confirmed the incorporation of the interfacial carbon layer in the composites brought about remarkable whisker bridging/pull-out in the fracture. Whisker-bridging was considered to be a predominant toughening mechanism. To optimize the interfacial properties, the effect of coating conditions, i.e., amount of coating and CVD temperature, on the fracture toughness were studied. The effect of whisker diameter on the fracture toughness and anisotropy in the fracture toughness were also investigated. 12 refs.

  11. Fabrication development for the Advanced Neutron Source Reactor

    SciTech Connect

    Pace, B.W.; Copeland, G.L.

    1995-08-01

    This report presents the fuel fabrication development for the Advanced Neutron Source (ANS) reactor. The fuel element is similar to that successfully fabricated and used in the High Flux Isotope Reactor (HFIR) for many years, but there are two significant differences that require some development. The fuel compound is U{sub 3}Si{sub 2} rather than U{sub 3}O{sub 8}, and the fuel is graded in the axial as well as the radial direction. Both of these changes can be accomplished with a straightforward extension of the HFIR technology. The ANS also requires some improvements in inspection technology and somewhat more stringent acceptance criteria. Early indications were that the fuel fabrication and inspection technology would produce a reactor core meeting the requirements of the ANS for the low volume fraction loadings needed for the highly enriched uranium design (up to 1.7 Mg U/m{sup 3}). Near the end of the development work, higher volume fractions were fabricated that would be required for a lower- enrichment uranium core. Again, results look encouraging for loadings up to {approx}3.5 Mg U/m{sup 3}; however, much less evaluation was done for the higher loadings.

  12. MRS International Meeting on Advanced Materials, 1st, Tokyo, Japan, May 31-June 3, 1988, Proceedings. Volume 5 - Structural ceramics/Fracture mechanics

    SciTech Connect

    Hamano, Yoshiteru; Kamigaito, Osami; Kishi, Teruo; Sakai, Mototsugu.

    1989-01-01

    Papers on structural ceramics and fracture mechanics are presented, covering topics such as the effects of additives on sintering silicon oxynitride, toughening Y-tetragonal zirconia polycrystal, stress-induced transformation in Mg-PSZ, and the properties of fine-grained zirconia-toughened alumina, nitride ceramics, sintered silicon nitride, and SiC. Other topics include processing Si{sub 3}N{sub 4}-SiC composites, whisker reinforced glass-ceramics, Al{sub 2}O{sub 3} ceramics, black and machinable glass ceramics in the CaO-Y{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2}-TR(x)O(y) system, grinding technologies, advanced materials for heat engine components, ceramic composites for high-temperature gas turbines, toughening brittle matrix composites, crack resistance measurements, dynamic fracture toughenss in ceramics and on brittle materials, softening in MgAl2O4 single crystal, computer simulation of fracture in small crystals, stress triaxiality effects on fracture morphology in Al-Zn-Mg-Cu alloys, crack identification by acoustic emission and boundary element method, the micromechanics of dilatancy in brittle materials, nonlinear stress-strain behavior predictions, erosive wear of Si{sub 3}N{sub 4}-SiC composites, whisker/glass composites fabricated from hydrothermally oxidized Si{sub 3}N{sub 4} whisker, subcritical crack extension in ceramics, and crack propagation behavior of sintered Si{sub 3}N{sub 4} under static and cyclic load.

  13. Subscale Testing of a Ceramic Composite Cooled Panel Led to Its Design and Fabrication for Scramjet Engine Testing

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.

    2004-01-01

    In a partnership between the NASA Glenn Research Center and Pratt & Whitney, a ceramic heat exchanger panel intended for use along the hot-flow-path walls of future reusable launch vehicles was designed, fabricated, and tested. These regeneratively cooled ceramic matrix composite (CMC) panels offer lighter weight, higher operating temperatures, and reduced coolant requirements in comparison to their more traditional metallic counterparts. A maintainable approach to the design was adopted which allowed the panel components to be assembled with high-temperature fasteners rather than by permanent bonding methods. With this approach, the CMC hot face sheet, the coolant containment system, and backside structure were all fabricated separately and could be replaced individually as the need occurred during use. This maintainable design leads to both ease of fabrication and reduced cost.

  14. Advanced Fibre Bragg Grating and Microfibre Bragg Grating Fabrication Techniques

    NASA Astrophysics Data System (ADS)

    Chung, Kit Man

    Fibre Bragg gratings (FBGs) have become a very important technology for communication systems and fibre optic sensing. Typically, FBGs are less than 10-mm long and are fabricated using fused silica uniform phase masks which become more expensive for longer length or non-uniform pitch. Generally, interference UV laser beams are employed to make long or complex FBGs, and this technique introduces critical precision and control issues. In this work, we demonstrate an advanced FBG fabrication system that enables the writing of long and complex gratings in optical fibres with virtually any apodisation profile, local phase and Bragg wavelength using a novel optical design in which the incident angles of two UV beams onto an optical fibre can be adjusted simultaneously by moving just one optical component, instead of two optics employed in earlier configurations, to vary the grating pitch. The key advantage of the grating fabrication system is that complex gratings can be fabricated by controlling the linear movements of two translation stages. In addition to the study of advanced grating fabrication technique, we also focus on the inscription of FBGs written in optical fibres with a cladding diameter of several ten's of microns. Fabrication of microfibres was investigated using a sophisticated tapering method. We also proposed a simple but practical technique to filter out the higher order modes reflected from the FBG written in microfibres via a linear taper region while the fundamental mode re-couples to the core. By using this technique, reflection from the microfibre Bragg grating (MFBG) can be effectively single mode, simplifying the demultiplexing and demodulation processes. MFBG exhibits high sensitivity to contact force and an MFBG-based force sensor was also constructed and tested to investigate their suitability for use as an invasive surgery device. Performance of the contact force sensor packaged in a conforming elastomer material compares favourably to one

  15. Polymer, metal and ceramic matrix composites for advanced aircraft engine applications

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.

    1985-01-01

    Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  16. Advanced Manufacturing Techniques Demonstrated for Fabricating Developmental Hardware

    NASA Technical Reports Server (NTRS)

    Redding, Chip

    2004-01-01

    NASA Glenn Research Center's Engineering Development Division has been working in support of innovative gas turbine engine systems under development by Glenn's Combustion Branch. These one-of-a-kind components require operation under extreme conditions. High-temperature ceramics were chosen for fabrication was because of the hostile operating environment. During the designing process, it became apparent that traditional machining techniques would not be adequate to produce the small, intricate features for the conceptual design, which was to be produced by stacking over a dozen thin layers with many small features that would then be aligned and bonded together into a one-piece unit. Instead of using traditional machining, we produced computer models in Pro/ENGINEER (Parametric Technology Corporation (PTC), Needham, MA) to the specifications of the research engineer. The computer models were exported in stereolithography standard (STL) format and used to produce full-size rapid prototype polymer models. These semi-opaque plastic models were used for visualization and design verification. The computer models also were exported in International Graphics Exchange Specification (IGES) format and sent to Glenn's Thermal/Fluids Design & Analysis Branch and Applied Structural Mechanics Branch for profiling heat transfer and mechanical strength analysis.

  17. Characterization of ceramics and intermetallics fabricated by self-propagating high-temperature synthesis

    NASA Technical Reports Server (NTRS)

    Hurst, Janet B.

    1989-01-01

    Three efforts aimed at investigating the process of self-propagating high temperature synthesis (SHS) for the fabrication of structural ceramics and intermetallics are summarized. Of special interest was the influence of processing variables such as exothermic dopants, gravity, and green state morphology in materials produced by SHS. In the first effort directed toward the fabrication of SiC, exothermic dopants of yttrium and zirconium were added to SiO2 or SiO2 + NiO plus carbon powder mix and processed by SHS. This approach was unsuccessful since it did not produce the desired product of crystalline SiC. In the second effort, the influence of gravity was investigated by examining Ni-Al microstructures which were produced by SHS combustion waves traveling with and opposite the gravity direction. Although final composition and total porosities of the combusted Ni-Al compounds were found to be gravity independent, larger pores were created in those specimens which were combusted opposite to the gravity force direction. Finally, it was found that green microstructure has a significant effect on the appearance of the combusted piece. Severe pressing laminations were observed to arrest the combustion front for TiC samples.

  18. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Xue, D.; Shi, Y.

    2013-01-01

    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  19. In vitro evaluation of the bond strength between various ceramics and cobalt-chromium alloy fabricated by selective laser sintering

    PubMed Central

    Bae, Eun-Jeong; Kim, Hae-Young; Kim, Woong-Chul

    2015-01-01

    PURPOSE This study aimed to present the clinical applicability of restorations fabricated by a new method, by comparing the bond strength of between ceramic powder with different coefficient of thermal expansion and alloys fabricated by Selective laser sintering (SLS). MATERIALS AND METHODS Fifty Co-Cr alloy specimens (25.0 × 3.0 × 0.5 mm) were prepared by SLS and fired with the ceramic (8.0 × 3.0 × 0.5 mm) (ISO 9693:1999). For comparison, ceramics with different coefficient of thermal expansion were used. The bond strength was measured by three-point bending testing and surfaces were observed with FE-SEM. Results were analyzed with a one-way ANOVA (α=.05). RESULTS The mean values of Duceram Kiss (61.18 ± 6.86 MPa), Vita VM13 (60.30 ± 7.14 MPa), Ceramco 3 (58.87 ± 5.33 MPa), Noritake EX-3 (55.86 ± 7.53 MPa), and Vintage MP (55.15 ± 7.53 MPa) were found. No significant difference was observed between the bond strengths of the various metal-ceramics. The surfaces of the specimens possessed minute gaps between the additive manufactured layers. CONCLUSION All the five powders have bond strengths higher than the required 25 MPa minimum (ISO 9693); therefore, various powders can be applied to metal structures fabricated by SLS. PMID:26330978

  20. Ceramics

    NASA Astrophysics Data System (ADS)

    Yao, Lichun; Yang, Jian; Qiu, Tai

    2014-09-01

    The effects of CuO addition on phase composition, microstructure, sintering behavior, and microwave dielectric properties of 0.80Sm(Mg0.5Ti0.5)O3-0.20 Ca0.8Sr0.2TiO3(8SMT-2CST) ceramics prepared by a conventional solid-state ceramic route have been studied. CuO addition shows no obvious influence on the phase of the 8SMT-2CST ceramics and all the samples exhibit pure perovskite structure. Appropriate CuO addition can effectively promote sintering and grain growth, and consequently improve the dielectric properties of the ceramics. The sintering temperature of the ceramics decreases by 50°C by adding 1.00 wt.%CuO. Superior microwave dielectric properties with a ɛ r of 29.8, Q × f of 85,500 GHz, and τ f of 2.4 ppm/°C are obtained for 1.00 wt.%CuO doped 8SMT-2CST ceramics sintered at 1500°C, which shows dense and uniform microstructure as well as well-developed grain growth.

  1. Studies of dynamic contact of ceramics and alloys for advanced heat engines: Final report

    SciTech Connect

    Dufrane, K.F.; Glaeser, W.A.; Rosenfield, A.R.

    1988-03-01

    In support of the efforts to apply ceramics in advanced heat engines, a study was made of the sliding performance of ceramics at the ring/cylinder interface of low heat rejection engines. The objective was to understand the basic mechanisms controlling the wear of candidate ceramics and thereby identify means for applying these ceramics effectively. Attempts to operate three different zirconias, silicon carbide, silicon nitride, and several plasma-sprayed ceramic coatings without lubrication were unsuccessful because of high friction and high wear rates. Experiments using a polyalphaolefin lubricant at temperatures to 260 C identified several combinations having wear rates in the general range likely to be acceptable for engines. Plasma-sprayed coatings of chromium oxide and hypersonic powder flame sprayed coatings of cobalt-bonded tungsten carbide performed particularly well as ring coatings. Similar performance was obtained with these ring coatings operating against silicon carbide, silicon nitride, silicon carbide whisker-reinforced alumina, and chromium oxide coatings. Zirconia experienced high wear rates because of thermal-shock-induced surface cracking. Low thermal conductivity of zirconia allows local areas to heat excessively from friction. Periodic heating induces thermal shock cracking and subsequent spalling. The study demonstrated the importance of lubrication to successful sliding of ceramics and the need for lubricants capable of operating at temperatures in the range of 250 to 650 C. 42 refs., 32 figs., 8 tabs.

  2. Test Standard Developed for Determining the Slow Crack Growth of Advanced Ceramics at Ambient Temperature

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.

    1998-01-01

    The service life of structural ceramic components is often limited by the process of slow crack growth. Therefore, it is important to develop an appropriate testing methodology for accurately determining the slow crack growth design parameters necessary for component life prediction. In addition, an appropriate test methodology can be used to determine the influences of component processing variables and composition on the slow crack growth and strength behavior of newly developed materials, thus allowing the component process to be tailored and optimized to specific needs. At the NASA Lewis Research Center, work to develop a standard test method to determine the slow crack growth parameters of advanced ceramics was initiated by the authors in early 1994 in the C 28 (Advanced Ceramics) committee of the American Society for Testing and Materials (ASTM). After about 2 years of required balloting, the draft written by the authors was approved and established as a new ASTM test standard: ASTM C 1368-97, Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Flexural Testing at Ambient Temperature. Briefly, the test method uses constant stress-rate testing to determine strengths as a function of stress rate at ambient temperature. Strengths are measured in a routine manner at four or more stress rates by applying constant displacement or loading rates. The slow crack growth parameters required for design are then estimated from a relationship between strength and stress rate. This new standard will be published in the Annual Book of ASTM Standards, Vol. 15.01, in 1998. Currently, a companion draft ASTM standard for determination of the slow crack growth parameters of advanced ceramics at elevated temperatures is being prepared by the authors and will be presented to the committee by the middle of 1998. Consequently, Lewis will maintain an active leadership role in advanced ceramics standardization within ASTM

  3. Innovative grinding wheel design for cost-effective machining of advanced ceramics. Phase I, final report

    SciTech Connect

    Licht, R.H.; Ramanath, S.; Simpson, M.; Lilley, E.

    1996-02-01

    Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics. This program was a cooperative effort involving three Norton groups representing a superabrasive grinding wheel manufacturer, a diamond film manufacturing division and a ceramic research center. The program was divided into two technical tasks, Task 1, Analysis of Required Grinding Wheel Characteristics, and Task 2, Design and Prototype Development. In Task 1 we performed a parallel path approach with Superabrasive metal-bond development and the higher technical risk, CVD diamond wheel development. For the Superabrasive approach, Task 1 included bond wear and strength tests to engineer bond-wear characteristics. This task culminated in a small-wheel screening test plunge grinding sialon disks. In Task 2, an improved Superabrasive metal-bond specification for low-cost machining of ceramics in external cylindrical grinding mode was identified. The experimental wheel successfully ground three types of advanced ceramics without the need for wheel dressing. The spindle power consumed by this wheel during test grinding of NC-520 sialon is as much as to 30% lower compared to a standard resin bonded wheel with 100 diamond concentration. The wheel wear with this improved metal bond was an order of magnitude lower than the resin-bonded wheel, which would significantly reduce ceramic grinding costs through fewer wheel changes for retruing and replacements. Evaluation of ceramic specimens from both Tasks 1 and 2 tests for all three ceramic materials did not show evidence of unusual grinding damage. The novel CVD-diamond-wheel approach was incorporated in this program as part of Task 1. The important factors affecting the grinding performance of diamond wheels made by CVD coating preforms were determined.

  4. Fabrication and application of advanced functional materials from lignincellulosic biomass

    NASA Astrophysics Data System (ADS)

    Hu, Sixiao

    This dissertation explored the conversion of lignocellulosic biomass into advanced functional materials and their potential applications. Lignocellulosic biomass represents an as-of-yet underutilized renewable source for not only biofuel production but also functional materials fabrication. This renewable source is a great alternative for fossil fuel based chemicals, which could be one of the solutions to energy crisis. In this work, it was demonstrated a variety of advanced materials including functional carbons, metal and silica nanoparticles could be derived from lignocellulosic biomass. Chapter 1 provided overall reviewed of the lignin structures, productions and its utilizations as plastics, absorbents and carbons, as well as the preparation of nano-structured silver, silica and silicon carbide/nitride from biomass. Chapter 2, 3 and 4 discussed the fabrication of highly porous carbons from isolated lignin, and their applications as electric supercapacitors for energy storage. In chapter 2, ultrafine porous carbon fibers were prepared via electrospinning followed by simultaneous carbonization and activation. Chapter 3 covered the fabrication of supercapacitor based on the porous carbon fibers and the investigation of their electrochemical performances. In chapter 4, porous carbon particulates with layered carbon nano plates structures were produced by simple oven-drying followed by simultaneous carbonization and activation. The effects of heat processing parameters on the resulting carbon structures and their electrochemical properties were discussed in details. Chapter 5 and 6 addressed the preparation of silver nanoparticles using lignin. Chapter 5 reported the synthesis, underlying kinetics and mechanism of monodispersed silver nanospheres with diameter less than 25 nm in aqueous solutions using lignin as dual reducing and capping agents. Chapter 6 covered the preparation of silver nanoparticles on electrospun celluloses ultrafine fibers using lignin as both

  5. Advanced Process Model for Polymer Pyrolysis and Uranium Ceramic Material Processing

    SciTech Connect

    Wang, Xiaolin; Zunjarrao, Suraj C.; Zhang, Hui; Singh, Raman P.

    2006-07-01

    Silicon carbide (SiC) based uranium ceramic material can be fabricated as hosts for ultra high temperature applications, such as gas-cooled fast reactor fuels and in-core materials. A pyrolysis-based material processing technique allows for the fabrication of SiC based uranium ceramic materials at a lower temperature compared to sintering route. Modeling of the process is considered important for optimizing the fabrication and producing material with high uniformity. This study presents a process model describing polymer pyrolysis and uranium ceramic material processing, including heat transfer, polymer pyrolysis, SiC crystallization, chemical reactions, and species transport of a porous uranium oxide mixed polymer. Three key reactions for polymer pyrolysis and one key reaction for uranium oxide polymer interaction are established for the processing. Included in the model formulation are the effects of transport processes such as heat-up, polymer decomposition, and volatiles escape. The model is capable of accurately predicting the polymer pyrolysis and chemical reactions of the source material. Processing of a sample with certain geometry is simulated. The effects of heating rate, particle size and volume ratio of uranium oxide and polymer on porosity evolution, species uniformity, reaction rate are investigated. (authors)

  6. Development of a constitutive model for creep and life prediction of advanced silicon nitride ceramics

    SciTech Connect

    Ding, J.L.; Liu, K.C.; Brinkman, C.R.

    1992-12-31

    A constitutive model capable of describing deformation and predicting rupture life was developed for high temperature ceramic materials under general thermal-mechanical loading conditions. The model was developed based on the deformation and fracture behavior observed from a systematic experimental study on an advanced silicon nitride (Si{sub 3}N{sub 4}) ceramic material. Validity of the model was evaluated with reference to creep and creep rupture data obtained under constant and stepwise-varied loading conditions, including the effects of annealing on creep and creep rupture behavior.

  7. Crack Branching and Fracture Mirror Data of Glasses and Advanced Ceramics

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    1998-01-01

    The fracture mirror and crack branching constants were determined from three glasses and nine advanced ceramics tested under various loading and specimen configurations in an attempt to use the constants as a data base for fractography. The ratios of fracture mirror or crack branching constant to fracture toughness were found to be approximately two for most ceramic materials tested. A demonstration of how to use the two constants as a tool for verifying stress measurements was presented for silicon nitride disk specimens subjected to high-temperature, constant stress-rate biaxial flexure testing.

  8. Annual Conference on Composites and Advanced Ceramic Materials, 12th, Cocoa Beach, FL, Jan. 17-22, 1988, Proceedings. Parts 1 and 2

    SciTech Connect

    Not Available

    1988-10-01

    The present conference discusses topics in the development status of advanced ceramics, the engineering applications of ceramic-matrix composites, modeling and theoretical considerations of engineering ceramics, the role of interfaces in ceramic-matrix composites, and polycrystalline oxide-matrix composites. Also discussed are glass- and glass-ceramic-matrix composites, carbide- and nitride-matrix composites, the synthesis methods as well as the properties and applications of ceramic matrix-reinforcing whiskers, fibers, and powders, and various SDI-related advanced ceramic materials for use in orbital systems.

  9. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Estili, Mehdi; Sakka, Yoshio

    2014-12-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT-ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  10. Ceramic composites: Fabrication by rolling of highly loaded suspensions, and their mechanical characterization

    NASA Astrophysics Data System (ADS)

    Menon, Mohan

    A novel technique for fabrication of dense, crack free ceramic composites by repeated rolling and folding of highly loaded suspensions has been developed. Coagulated suspensions of Alsb2Osb3 and CeOsb2 stabilized ZrOsb2 tetragonal polycrystals (Ce-TZP) were prepared. The rheology of the highly loaded suspensions were characterized. The suspensions were shear thinning and possessed a yield stress, which was a function of the salt concentration, confirming Lange and co-workers' studies. The Alsb2Osb3 and Ce-TZP suspensions were rolled to obtain tapes. Laminates were fabricated by repeated rolling and folding of these tapes. The flat interface separating suspensions with differing yield stress was found to be unstable under rolling, and was distorted to a wavy shape. When the perturbation was of the order of layer thickness the layered structure broke down into a cellular one, with the harder phase as the included one. The critical number of foldings at which the microstructural transition occurs was found to depend on the yield stress ratio of the constituent suspensions. Typically, it takes from 6 to 9 foldings of 50% thickness reduction to induce the microstructural transition. The rolled samples were dried and pressureless sintered in air to near full density regardless of the number of foldings. The shrinkage anisotropy (in direction parallel and perpendicular to rolling) in shrinkage was found to decrease with decreasing thickness and especially after the microstructural transition, with the cellular material showing no anisotropy. Sintering cracks were formed in some layers thicker than 60 mum and the crack spacing increased with increasing layer thickness. In the layers devoid of sintering cracks, thermal cracks formed during cooling in layers thicker than 50 mum and the crack spacing decreased with increasing layer thickness and saturated at 150 mum. The strength in three point flexure, R-curve behavior and indentation behavior of these composites were

  11. Ceramic capacitor exhibiting graceful failure by self-clearing, method for fabricating self-clearing capacitor

    DOEpatents

    Kaufman, David Y.; Saha, Sanjib

    2006-08-29

    A short-resistant capacitor comprises an electrically conductive planar support substrate having a first thickness, a ceramic film deposited over the support substrate, thereby defining a ceramic surface; and a metallic film deposited over the ceramic surface, said film having a second thickness which is less than the first thickness and which is between 0.01 and 0.1 microns.

  12. Ceramics

    NASA Astrophysics Data System (ADS)

    Chen, Song; Zhu, De-Gui; Cai, Xu-Sheng

    2014-08-01

    The dense monoclinic-SrAl2Si2O8 ceramics have been prepared by a two-step sintering process at a sintering temperature of 1173 K (900 °C). Firstly, the pre-sintered monoclinic-SrAl2Si2O8 powders containing small SiO2·Al2O3 crystal phases were obtained by continuously sintering a powder mixture of SrCO3 and kaolin at 1223 K (950 °C) for 6 hours and 1673 K (1400 °C) for 4 hours, respectively. Subsequently, by the combination of the pre-sintered ceramic powders with the composite flux agents, which are composed of a SrO·3B2O3 flux agent and α-Al2O3, the low-temperature densification sintering of the monoclinic-SrAl2Si2O8 ceramics was accomplished at 1173 K (900 °C). The low-temperature sintering behavior and microstructure evolvement of the monoclinic-SrAl2Si2O8 ceramics have been investigated in terms of Al2O3 in addition to the composite flux agents. It shows that due to the low-meting characteristics, the SrO·3B2O3 flux agent can urge the dense microstructure formation of the monoclinic-SrAl2Si2O8 ceramics and the re-crystallization of the grains via a liquid-phase sintering. The introduction of α-Al2O3 to the SrO·3B2O3 flux agent can apparently lead to more dense microstructures for the monoclinic-SrAl2Si2O8 ceramics but also cause the re-precipitation of SiO2·Al2O3 compounds because of an excessive Al2O3 content in the SrO·3B2O3 flux agent.

  13. Application of Self-Propagating High Temperature Synthesis to the Fabrication of Actinide Bearing Nitride and Other Ceramic Nuclear Fuels

    SciTech Connect

    Moore, John J.; Reigel, Marissa M.; Donohoue, Collin D.

    2009-04-30

    The project uses an exothermic combustion synthesis reaction, termed self-propagating high-temperature synthesis (SHS), to produce high quality, reproducible nitride fuels and other ceramic type nuclear fuels (cercers and cermets, etc.) in conjunction with the fabrication of transmutation fuels. The major research objective of the project is determining the fundamental SHS processing parameters by first using manganese as a surrogate for americium to produce dense Zr-Mn-N ceramic compounds. These fundamental principles will then be transferred to the production of dense Zr-Am-N ceramic materials. A further research objective in the research program is generating fundamental SHS processing data to the synthesis of (i) Pu-Am-Zr-N and (ii) U-Pu-Am-N ceramic fuels. In this case, Ce will be used as the surrogate for Pu, Mn as the surrogate for Am, and depleted uranium as the surrogate for U. Once sufficient fundamental data has been determined for these surrogate systems, the information will be transferred to Idaho National Laboratory (INL) for synthesis of Zr-Am-N, Pu-Am-Zr-N and U-Pu-Am-N ceramic fuels. The high vapor pressures of americium (Am) and americium nitride (AmN) are cause for concern in producing nitride ceramic nuclear fuel that contains Am. Along with the problem of Am retention during the sintering phases of current processing methods, are additional concerns of producing a consistent product of desirable homogeneity, density and porosity. Similar difficulties have been experienced during the laboratory scale process development stage of producing metal alloys containing Am wherein compact powder sintering methods had to be abandoned. Therefore, there is an urgent need to develop a low-temperature or low–heat fuel fabrication process for the synthesis of Am-containing ceramic fuels. Self-propagating high temperature synthesis (SHS), also called combustion synthesis, offers such an alternative process for the synthesis of Am nitride fuels. Although SHS

  14. Sensors for ceramic components in advanced propulsion systems

    NASA Technical Reports Server (NTRS)

    Koller, A. C.; Bennethum, W. H.; Burkholder, S. D.; Brackett, R. R.; Harris, J. P.

    1995-01-01

    This report includes: (1) a survey of the current methods for the measurement of surface temperature of ceramic materials suitable for use as hot section flowpath components in aircraft gas turbine engines; (2) analysis and selection of three sensing techniques with potential to extend surface temperature measurement capability beyond current limits; and (3) design, manufacture, and evaluation of the three selected techniques which include the following: platinum rhodium thin film thermocouple on alumina and mullite substrates; doped silicon carbide thin film thermocouple on silicon carbide, silicon nitride, and aluminum nitride substrates; and long and short wavelength radiation pyrometry on the substrates listed above plus yttria stabilized zirconia. Measurement of surface emittance of these materials at elevated temperature was included as part of this effort.

  15. Ultrastructure processing of advanced ceramics; Proceedings of the Third International Conference on Ultrastructure Processing of Ceramics, Glasses, and Composites, San Diego, CA, Feb. 23-27, 1987

    SciTech Connect

    Mackenzie, J.D.; Ulrich, D.R.

    1988-01-01

    The present conference on advanced ceramics production by ultrastructural processes discusses topics in the chemistry of precursor materials, sol-gel technologies, powder and colloid preparation, characteristic advanced ceramics produced by ultrastructural means, ceramic-matrix composites, and numerous unique ultrastructurally-derived materials. Attention is given to novel Al- and Si-containing metallacarbonates, boron nitride preceramic polymers, the optical properties of silica-gel glasses, the fundamentals of sol-gel film formation, 'sonocatalytic' polymerization reactions employing ultrasound, the magnetic properties of sol-gel ferrites, the mechanical properties of wet silica gels, disclination structures in carbon and graphite, gel-derived nanocomposites, the strength-limiting features of polymer-derived ceramic fibers, fluoropolymer-modified silicate glasses, and chemically-derived refractory coatings.

  16. "Ultra"-Fast Fracture Strength of Advanced Structural Ceramic Materials Studied at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    1999-01-01

    The accurate determination of inert strength is important in reliable life prediction of structural ceramic components. At ambient temperature, the inert strength of a brittle material is typically regarded as free of the effects of slow crack growth due to stress corrosion. Therefore, the inert strength can be determined either by eliminating active species, especially moisture, with an appropriate inert medium, or by using a very high test rate. However, at elevated temperatures, the concept or definition of the inert strength of brittle ceramic materials is not clear, since temperature itself is a degrading environment, resulting in strength degradation through slow crack growth and/or creep. Since the mechanism to control strength is rate-dependent viscous flow, the only conceivable way to determine the inert strength at elevated temperatures is to utilize a very fast test rate that either minimizes the time for or eliminates slow crack growth. Few experimental studies have measured the elevated-temperature, inert (or "ultra"-fast fracture) strength of advanced ceramics. At the NASA Lewis Research Center, an experimental study was initiated to better understand the "ultra"-fast fracture strength behavior of advanced ceramics at elevated temperatures. Fourteen advanced ceramics - one alumina, eleven silicon nitrides, and two silicon carbides - have been tested using constant stress-rate (dynamic fatigue) testing in flexure with a series of stress rates including the "ultra"-fast stress rate of 33 000 MPa/sec with digitally controlled test frames. The results for these 14 advanced ceramics indicate that, notwithstanding possible changes in flaw populations as well as flaw configurations because of elevated temperatures, the strength at 33 000 MPa/sec approached the room-temperature strength or reached a higher value than that determined at the conventional test rate of 30 MPa/sec. On the basis of the experimental data, it can be stated that the elevated

  17. Effect of fabrication routes on the properties of Mn-doped BaTi2O5 ceramics

    NASA Astrophysics Data System (ADS)

    Liu, Wenfeng; Tsukada, Shinya; Akishige, Yukikuni

    2014-01-01

    In the present study, 0, 0.2, and 0.4 wt % MnO2 doped BaTi2O5 ceramics were fabricated by three different routes, i.e., sol-gel deriving powders and spark plasma sintering (SPS) sintering, solid state calcining and SPS sintering, sol-gel deriving powders and two times sintering. Only through the sol-gel technique and conventional sintering route, Mn could substitute for Ti as the acceptor doping and consequently caused the sharp drop of the Curie temperature as well as the enhanced dielectric constant and restricted ferroelectricity. Besides, the 0.2 wt % MnO2 doped BaTi2O5 ceramics fabricated by sol-gel deriving powders and SPS sintering exhibited the most superior dielectric and ferroelectric properties.

  18. Award-Winning CARES/Life Ceramics Durability Evaluation Software Is Making Advanced Technology Accessible

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Products made from advanced ceramics show great promise for revolutionizing aerospace and terrestrial propulsion and power generation. However, ceramic components are difficult to design because brittle materials in general have widely varying strength values. The CARES/Life software developed at the NASA Lewis Research Center eases this by providing a tool that uses probabilistic reliability analysis techniques to optimize the design and manufacture of brittle material components. CARES/Life is an integrated package that predicts the probability of a monolithic ceramic component's failure as a function of its time in service. It couples commercial finite element programs--which resolve a component's temperature and stress distribution - with reliability evaluation and fracture mechanics routines for modeling strength - limiting defects. These routines are based on calculations of the probabilistic nature of the brittle material's strength.

  19. PREFACE: Symposium 1: Advanced Structure Analysis and Characterization of Ceramic Materials

    NASA Astrophysics Data System (ADS)

    Yashima, Masatomo

    2011-05-01

    Preface to Symposium 1 (Advanced Structure Analysis and Characterization of Ceramic Materials) of the International Congress of Ceramics III, held 14-18 November 2010 in Osaka, Japan Remarkable developments have been made recently in the structural analysis and characterization of inorganic crystalline and amorphous materials, such as x-ray, neutron, synchrotron and electron diffraction, x-ray/neutron scattering, IR/Raman scattering, NMR, XAFS, first-principle calculations, computer simulations, Rietveld analysis, the maximum-entropy method, in situ measurements at high temperatures/pressures and electron/nuclear density analysis. These techniques enable scientists to study not only static and long-range periodic structures but also dynamic and short-/intermediate-range structures. Multi-scale characterization from the electron to micrometer levels is becoming increasingly important as a means of understanding phenomena at the interfaces, grain boundaries and surfaces of ceramic materials. This symposium has discussed the structures and structure/property relationships of various ceramic materials (electro, magnetic and optical ceramics; energy and environment related ceramics; bio-ceramics; ceramics for reliability secure society; traditional ceramics) through 38 oral presentations including 8 invited lectures and 49 posters. Best poster awards were given to six excellent poster presentations (Y-C Chen, Tokyo Institute of Technology; C-Y Chung, Tohoku University; T Stawski, University of Twente; Y Hirano, Nagoya Institute of Technology; B Bittova, Charles University Prague; Y Onodera, Kyoto University). I have enjoyed working with my friends in the ICC3 conference. I would like to express special thanks to other organizers: Professor Scott T Misture, Alfred University, USA, Professor Xiaolong Chen, Institute of Physics, CAS, China, Professor Takashi Ida, Nagoya Institute of Technology, Japan, Professor Isao Tanaka, Kyoto University, Japan. I also acknowledge the

  20. New advanced surface modification technique: titanium oxide ceramic surface implants: long-term clinical results

    NASA Astrophysics Data System (ADS)

    Szabo, Gyorgy; Kovacs, Lajos; Barabas, Jozsef; Nemeth, Zsolt; Maironna, Carlo

    2001-11-01

    The purpose of this paper is to discuss the background to advanced surface modification technologies and to present a new technique, involving the formation of a titanium oxide ceramic coating, with relatively long-term results of its clinical utilization. Three general techniques are used to modify surfaces: the addition or removal of material and the change of material already present. Surface properties can also be changed without the addition or removal of material, through the laser or electron beam thermal treatment. The new technique outlined in this paper relates to the production of a corrosion-resistant 2000-2500 A thick, ceramic oxide layer with a coherent crystalline structure on the surface of titanium implants. The layer is grown electrochemically from the bulk of the metal and is modified by heat treatment. Such oxide ceramic-coated implants have a number of advantageous properties relative to implants covered with various other coatings: a higher external hardness, a greater force of adherence between the titanium and the oxide ceramic coating, a virtually perfect insulation between the organism and the metal (no possibility of metal allergy), etc. The coated implants were subjected to various physical, chemical, electronmicroscopic, etc. tests for a qualitative characterization. Finally, these implants (plates, screws for maxillofacial osteosynthesis and dental root implants) were applied in surgical practice for a period of 10 years. Tests and the experience acquired demonstrated the good properties of the titanium oxide ceramic-coated implants.

  1. Fabrication and characterization of LiH ceramic pebbles by wet process

    NASA Astrophysics Data System (ADS)

    Xiang, Maoqiao; Zhang, Yingchun; Hong, Ming; Liu, Zhiang; Leng, Jiaxun; Zhang, Yun; Zhang, Jialiang; Wang, Wenchang

    2014-09-01

    Lithium hydride (LiH) ceramic pebbles, a new potential tritium breeding material in fusion-fission or fusion reactor blanket, were prepared by wet process for the first time. XRD results showed that LiOH, LiOH·H2O, Li2CO3 and Li2O were found in the surface of LiH pebbles. However, the pure phase of LiH pebbles without cracks could be obtained by paraffin wax coating technique. The average value (a.v.) of the sphericity and the diameter were 1.01 and 0.98 mm, respectively. The LiH pebbles sintered at 450 °C for 3 h under 80 ml/min flowing argon, reached ∼92.3% of the theoretical density, with the grain size of 5.59 μm (a.v.). And the crush load was measured to be 15 N on average. The described wet process exhibited multiple advantages for fabricating LiH pebbles.

  2. Design fabrication and testing of a low cost ceramic collector panel. Final report

    SciTech Connect

    Earl, W.A.; Johnson, P.F.; Sisson, J.C.

    1983-02-01

    The effects of fabrication procedures on the thermal performance of various ceramic systems for active solar applications were investigated. A shale-based structural clay body was used as a standard. This body was also coated with silicon carbide, a glossy black glaze and a matte black glaze. Metal samples used included copper, aluminum and aluminum coated with a flat black paint. Experiments were performed using a solar test box linked to an automated data acquisition system. Temperatures of samples were recorded at 3 min. intervals for 4 h solar periods. An F-statistical analysis was performed on the resulting data and was correlated with total solar emittance, total solar reflectance and monochromatic reflectance as a function of incident wavelength. The information above was also utilized in developing a computer model used to simulate the performance of various materials in active solar testing. Results suggest that a structural clay body fired to maturity and coated with a matte black glaze could be commercially useful for applications requiring large quantities of heated water.

  3. Ceramics

    NASA Astrophysics Data System (ADS)

    Bin, Tang; Feng, Si; Ying-xiang, Li; He-tuo, Chen; Xiao, Zhang; Shu-ren, Zhang

    2014-11-01

    The effects of Ta2O5/Y2O3 codoping on the microstructure and microwave dielectric properties of Ba(Co0.56Zn0.40)1/3Nb2/3O3- xA- xB (A = 0.045 wt.% Ta2O5; B = 0.113 wt.% Y2O3) ceramics ( x = 0, 1, 2, 4, 8, 16, 32) prepared according to the conventional solid-state reaction technique were investigated. The x-ray diffraction (XRD) results showed that the main crystal phase in the sintered ceramics was BaZn0.33Nb0.67O3-Ba3CoNb2O9. The additional surface phase of Ba8CoNb6O24 and trace amounts of Ba5Nb4O15 second phase were present when Ta2O5/Y2O3 was added to the ceramics. The 1:2 B-site cation ordering was affected by the substitution of Ta5+ and Y3+ in the crystal lattice, especially for x = 4. Scanning electron microscopy (SEM) images of the optimally doped ceramics sintered at 1340°C for 20 h showed a compact microstructure with crystal grains in dense contact. Though the dielectric constant increased with the x value, appropriate addition would result in a tremendous modification of the Q × f and τ f values. Excellent microwave dielectric properties ( ɛ r = 35.4, Q × f = 62,993 GHz, and τ f = 2.6 ppm/°C) were obtained for the ceramic with x = 0.4 sintered in air at 1340°C for 20 h.

  4. Ceramics

    NASA Astrophysics Data System (ADS)

    Li, Enzhu; Zou, Mengying; Duan, Shuxin; Xu, Ning; Yuan, Ying; Zhou, Xiaohua

    2014-11-01

    The effects of excess Li content on the phase structure and microwave dielectric properties, especially on the temperature coefficient, of LiNb0.6 Ti0.5O3 (LNT) ceramics were studied. The results show that small amounts of Li effectively enhanced the sintering process due to the compensation of high volatility of Li, leading to a densification and homogenous microstructure, and therefore enhanced the dielectric properties. However, too much Li leads to a secondary phase and cause abnormal grain growth. The LNT + 5 wt.% Li ceramic sintered at 1075°C in the air shows the best properties of ɛ r = 69.73, Q × f = 5543 GHz, and τ f = -4.4 ppm/°C.

  5. FY2015 ceramic fuels development annual highlights

    SciTech Connect

    Mcclellan, Kenneth James

    2015-09-22

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2015 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY15 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  6. Design, Fabrication, and Characterization of High Temperature Joints in Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1999-01-01

    Ceramic joining has been recognized as one of the enabling technologies for the successful utilization of ceramic components in a number of demanding, high temperature applications. Various joint design philosophies and design issues have been discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of silicon carbide-based composite materials, in different shapes and sizes, have been joined using this technology. This technique is capable of producing joints with tailorable thickness and composition. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. These joints maintain their mechanical strength up to 1200C in air. This technology is suitable for the joining of large and complex shaped ceramic composite components and with certain modifications, can be applied to repair of ceramic components damaged in service.

  7. Fracture behavior of advanced ceramic hot-gas filters

    SciTech Connect

    Singh, J.P.; Majumdar, S.; Sutaria, M.; Bielke, W.

    1996-05-01

    We have evaluated the microstructural/mechanical, and thermal shock/fatigue behavior and have conducted stress analyses of hot-gas candle filters made by various manufacturers. These filters include both monolithic and composite ceramics. Mechanical-property measurement of the composite filters included diametral compression testing with O-ring specimens and burst testing of short filter segments using rubber plug. In general, strength values obtained by burst testing were lower than those obtained by O-ring compression testing. During single-cycle thermal-shock tests, the composite filters showed little or no strength degradation when quenched from temperatures between 900 and 1000{degrees}C. At higher quenching temperatures, slow strength degradation was observed. The monolithic SiC filters showed no strength degradation when quenched from temperatures of up to {approx}700-900{degrees}C, but displayed decreased strength at a relatively sharp rate when quenched from higher temperatures. On the other hand, a recrystallized monolithic SiC filter showed higher initial strength and retained this strength to higher quenching temperatures than did regular SiC filters. This may be related to the difference in strength of grain boundary phases in the two cases. In thermal cycles between room temperature and 800- 1000{degrees}C, both monolithic and composite filters show a small strength degradation up to three cycles, beyond which the strength remained unchanged. Results of rubber-plug burst testing on composite filters were analyzed to determine the anisotropic elastic constants of the composite in the hoop direction. When these results are combined with axial elastic constants determined from axial tensile tests, the composite can be analyzed for stress due to mechanical (e. g., internal pressure) or thermal loading (thermal shock during pulse cleaning). The stresses can be compared with the strength of the composite to predict filter performance.

  8. CERAMIC FUEL ELEMENT MATERIAL FOR A NEUTRONIC REACTOR AND METHOD OF FABRICATING SAME

    DOEpatents

    Duckworth, W.H.

    1957-12-01

    This patent relates to ceramic composition, and to neutronic reactor fuel elements formed therefrom. These ceramic elements have high density and excellent strength characteristics and are formed by conventional ceramic casting and sintering at a temperature of about 2700 deg F in a nitrogen atmosphere. The composition consists of silicon carbide, silicon, uranium oxide and a very small percentage of molybdenum. Compositions containing molybdenum are markedly stronger than those lacking this ingredient.

  9. High performance fibers for structurally reliable metal and ceramic composites. [advanced gas turbine engine materials

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1984-01-01

    Very few of the commercially available high performance fibers with low densities, high Young's moduli, and high tensile strengths possess all the necessary property requirements for providing either metal matrix composites (MMC) or ceramic matrix composites (CMC) with high structural reliability. These requirements are discussed in general and examples are presented of how these property guidelines are influencing fiber evaluation and improvement studies at NASA aimed at developing structurally reliable MMC and CMC for advanced gas turbine engines.

  10. Next generation grinding spindle for cost-effective manufacture of advanced ceramic components

    SciTech Connect

    Kovach, J.A.; Laurich, M.A.

    2000-01-01

    Finish grinding of advanced structural ceramics has generally been considered an extremely slow and costly process. Recently, however, results from the High-Speed, Low-Damage (HSLD) program have clearly demonstrated that numerous finish-process performance benefits can be realized by grinding silicon nitride at high wheel speeds. A new, single-step, roughing-process capable of producing high-quality silicon nitride parts at high material removal rates while dramatically reducing finishing costs has been developed.

  11. Design, Fabrication and Certification of Advanced Modular PV Power Systems

    NASA Astrophysics Data System (ADS)

    Minyard, Glen E.; Lambarski, Timothy J.

    1997-02-01

    The Design, Fabrication and Certification of Advanced Modular PV Power Systems contract is a Photovoltaic Manufacturing Technology (PVMaT) cost-shared contract under Phase 4A1 for Product Driven Systems and Component Technologies. Phase 4A1 has the goals to improve the cost-effectiveness and manufacturing efficiency of PV end-products, optimize manufacturing and packaging methods, and generally improve balance-of-system performance, integration and manufacturing. This contract has the specific goal to reduce the installed PV system life cycle costs to the customer with the ultimate goal of increasing PV system marketability and customer acceptance. The specific objectives of the project are to develop certified, standardized, modular, pre-engineered products lines of our main stand-alone systems, the Modular Autonomous PV Power Supply (MAPPS) and PV-Generator Hybrid System (Photogenset). To date, we have designed a 200 W MAPPS and a 1 kW Photogenset and are in the process of having the MAPPS certified by Underwriters Laboratories (UL Listed) and approved for hazardous locations by Factory Mutual (FM). We have also developed a manufacturing plan for product line expansion for the MAPPS. The Photogenset will be fabricated in February 1997 and will also be UL Listed. Functionality testing will be performed at NREL and Sandia with the intentions of providing verification of performance and reliability and of developing test-based performance specifications. In addition to an expansion on the goals, objectives and status of the project, specific accomplishments and benefits are also presented in this paper.

  12. Fabrication, spectral and laser performance of 5 at.% Yb3+ doped (La0.10Y0.90)2O3 transparent ceramic

    NASA Astrophysics Data System (ADS)

    Zhang, Haojia; Yang, Qiuhong; Lu, Shenzhou; Huang, Dongdong; Wang, Yonggang; Wei, Zhiyi; Wang, Qing; Zhang, Yongdong

    2013-02-01

    A 5 at.% Yb3+ doped (La0.10Y0.90)2O3 transparent ceramic was fabricated with nano-powders and sintered in H2 atmosphere. Spectroscopic properties and laser performance of Yb:(La0.10Y0.90)2O3 ceramic were studied. The ceramic exhibits excellent spectroscopic properties, with broad absorption and emission bands, and its refractive index (n) is close to 2. The gain cross-section (σg) was calculated at different population inversion ratio (β) values. In addition, among Yb3+ doped YAG crystal, Y2O3 and (YLa)2O3 ceramic, (YLa)2O3 ceramic has the least pump intensity (Imin) of 1.25 KW cm-2. Furthermore, a diode-pumped C-W ceramic laser output has been demonstrated at 1075 nm with a slope-efficiency of 60.2%.

  13. Advanced composites: Fabrication processes for selected resin matrix materials

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    This design note is based on present state of the art for epoxy and polyimide matrix composite fabrication technology. Boron/epoxy and polyimide and graphite/epoxy and polyimide structural parts can be successfully fabricated. Fabrication cycles for polyimide matrix composites have been shortened to near epoxy cycle times. Nondestructive testing has proven useful in detecting defects and anomalies in composite structure elements. Fabrication methods and tooling materials are discussed along with the advantages and disadvantages of different tooling materials. Types of honeycomb core, material costs and fabrication methods are shown in table form for comparison. Fabrication limits based on tooling size, pressure capabilities and various machining operations are also discussed.

  14. Evaluation of the color reproducibility of all-ceramic restorations fabricated by the digital veneering method

    PubMed Central

    Kim, Jae-Hong; Kim, Ki-Baek; Kim, Woong-Chul; Kim, Hae-Young

    2014-01-01

    PURPOSE The objective of this study was to evaluate the clinical acceptability of all-ceramic crowns fabricated by the digital veneering method vis-à-vis the traditional method. MATERIALS AND METHODS Zirconia specimens manufactures by two different manufacturing method, conventional vs digital veneering, with three different thickness (0.3 mm, 0.5 mm, 0.7 mm) were prepared for analysis. Color measurement was performed using a spectrophotometer for the prepared specimens. The differences in shade in relation to the build-up method were calculated by quantifying ΔE* (mean color difference), with the use of color difference equations representing the distance from the measured values L*, a*, and b*, to the three-dimensional space of two colors. Two-way analysis of variance (ANOVA) combined with a Tukey multiple-range test was used to analyze the data (α=0.05). RESULTS In comparing means and standard deviations of L*, a*, and b* color values there was no significant difference by the manufacturing method and zirconia core thickness according to a two-way ANOVA. The color differences between two manufacturing methods were in a clinically acceptable range less than or equal to 3.7 in all the specimens. CONCLUSION Based on the results of this study, a carefully consideration is necessary while selecting upper porcelain materials, even if it is performed on a small scale. However, because the color reproducibility of the digital veneering system was within the clinically acceptable range when comparing with conventional layering system, it was possible to estimate the possibility of successful aesthetic prostheses in the latest technology. PMID:24843390

  15. Robust Joining and Integration Technologies for Advanced Metallic, Ceramic, and Composite Systems

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, Tarah; Morscher, Gregory N.; Halbig, Michael H.; Asthana, Rajiv

    2006-01-01

    Robust integration and assembly technologies are critical for the successful implementation of advanced metallic, ceramic, carbon-carbon, and ceramic matrix composite components in a wide variety of aerospace, space exploration, and ground based systems. Typically, the operating temperature of these components varies from few hundred to few thousand Kelvin with different working times (few minutes to years). The wide ranging system performance requirements necessitate the use of different integration technologies which includes adhesive bonding, low temperature soldering, active metal brazing, diffusion bonding, ARCJoinT, and ultra high temperature joining technologies. In this presentation, a number of joining examples and test results will be provided related to the adhesive bonding and active metal brazing of titanium to C/C composites, diffusion bonding of silicon carbide to silicon carbide using titanium interlayer, titanium and hastelloy brazing to silicon carbide matrix composites, and ARCJoinT joining of SiC ceramics and SiC matrix composites. Various issues in the joining of metal-ceramic systems including thermal expansion mismatch and resulting residual stresses generated during joining will be discussed. In addition, joint design and testing issues for a wide variety of joints will be presented.

  16. Structural Ceramics Database

    National Institute of Standards and Technology Data Gateway

    SRD 30 NIST Structural Ceramics Database (Web, free access)   The NIST Structural Ceramics Database (WebSCD) provides evaluated materials property data for a wide range of advanced ceramics known variously as structural ceramics, engineering ceramics, and fine ceramics.

  17. Fabrication of porous ceramic via recycling of glass with paper fiber as sacrificial fugitive

    NASA Astrophysics Data System (ADS)

    Badarulzaman, N. A.; Hamidon, A.; Nor, M. A. A. M.

    2015-05-01

    Recycled glass powder was added with ball clay and feldspar using ratio 90:5:5. The blend were mixed into different amount of paper fiber and cast into porous ceramic. Samples prepared with different compositions (2, 4, 6, 8, and 10 wt % of paper fiber) were heat treated at constant temperature (750 °C) for an hour. Samples with high percentage of paper fiber gave the largest pore size in the ceramic body, meanwhile lower percentage of paper fiber produced ceramic body with smaller pore size.

  18. Development of ASTM standards in support of advanced ceramics -- continuing efforts

    SciTech Connect

    Brinkman, C.R.

    1998-02-01

    An update is presented of the activities of the American Society for Testing and Materials (ASTM) Committee C-28 on Advanced Ceramics. Since its inception in 1986, this committee, which has five standard producing subcommittees, has written and published over 32 consensus standards. These standards are concerned with mechanical testing of monolithic and composite ceramics, nondestructive examination, statistical analysis and design, powder characterization, quantitative microscopy, fractography, and terminology. These standards ensure optimum material behavior with physical and mechanical property reproducibility, component reliability, and well-defined methods of data treatment and material analysis for both monolithic and composite materials. Committee C-28 continues to sponsor technical symposia and to cooperate in the development of international standards. An update of recent and current activities as well as possible new areas of standardization work will be presented.

  19. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  20. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  1. ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS

    SciTech Connect

    Marra, J.

    2010-09-29

    proliferation), the worldwide community is working to develop and deploy new nuclear energy systems and advanced fuel cycles. These new nuclear systems address the key challenges and include: (1) extracting the full energy value of the nuclear fuel; (2) creating waste solutions with improved long term safety; (3) minimizing the potential for the misuse of the technology and materials for weapons; (4) continually improving the safety of nuclear energy systems; and (5) keeping the cost of energy affordable.

  2. Fabrication and characterization of Eu3+-doped Lu2O3 scintillation ceramics

    NASA Astrophysics Data System (ADS)

    Kopylov, Yu. L.; Kravchenko, V. B.; Dulina, N. A.; Lopin, А. V.; Parkhomenko, S. V.; Tolmachev, A. V.; Yavetskiy, R. P.; Zelenskaya, O. V.

    2013-02-01

    Density, morphology, optical transmittance and luminescence of undoped and europium-doped Lu2O3 ceramics have been studied. It has been revealed that europium ions in concentration of 5 at.% act as a solid-state sintering aids in Lu2O3 ceramics promoting its densification. Lu2O3:Eu3+ optical ceramics with relative density of 98 ± 2%, with an average grain size of 50 μm and in-line transmittance of 41% in the visible wavelength range has been produced by vacuum sintering at Т = 1850 °С. The scintillation characteristics of Lu2O3:Eu3+ ceramics under excitation with α-particles (238Рu source, E = 5.46 МeV) have been determined for the first time (S = 500 ± 50 photons/МeV, R = 26.5%).

  3. Coated Feedstock for Fabrication of Ceramic Parts by CAM-LEM

    NASA Technical Reports Server (NTRS)

    Liu, Zhien; Suppakarn, N.; Cawley, James D.; Levine, Stanley R. (Technical Monitor)

    2000-01-01

    In laminated object manufacturing of ceramic components, lamination is one of the most important materials issues. Good lamination ensures monolithic component after firing. Otherwise, lamination defects that inevitably will occur in the parts will affect the properties of ceramic components. Adhesive (both liquid and non-liquid) lamination processes were developed for the cut-then-stack (CAM-LEM) procedure. The non-liquid adhesive lamination is discussed in detail.

  4. The status of ceramic turbine component fabrication and quality assurance relevant to automotive turbine needs

    SciTech Connect

    Richerson, D.W.

    2000-02-01

    This report documents a study funded by the U.S. Department of Energy (DOE) Office of Transportation Technologies (OTT) with guidance from the Ceramics Division of the United States Automotive Materials Partnership (USAMP). DOE and the automotive companies have funded extensive development of ceramic materials for automotive gas turbine components, the most recent effort being under the Partnership for a New Generation of Vehicles (PNGV) program.

  5. Advanced materials and fabrication processes for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Guess, M. K.; Kaneko, R. S.; Wald, G. G.

    1981-01-01

    Research and development programs to develop high-strength aluminum alloys and low-cost materials and fabrication techniques for titanium alloys are being conducted. Thirteen aluminum alloy compositions are being evaluated. A section of a production component was fabricated using superplastic forming and diffusion bonding (SPF/DB) and fabrication studies are being conducted on three low temperature forming beta titanium alloys. Cost studies indicate substantial structural cost reduction potentials resulting from the use of both aluminum alloys and low-cost titanium fabrication techniques. Lowest overall costs are indicated for a composite/aluminum or composite titanium structure.

  6. Fabrication of high-power piezoelectric transformers using lead-free ceramics for application in electronic ballasts.

    PubMed

    Yang, Song-Ling; Chen, Shih-Ming; Tsai, Cheng-Che; Hong, Cheng-Shong; Chu, Sheng-Yuan

    2013-02-01

    CuO is doped into (Na(0.5)K(0.5))NbO(3) (NKN) ceramics to improve the piezoelectric properties and thus obtain a piezoelectric transformer (PT) with high output power. In X-ray diffraction patterns, the diffraction angles of the CuO-doped NKN ceramics shift to lower values because of an expansion of the lattice volume, thus inducing oxygen vacancies and enhancing the mechanical quality factor. A homogeneous microstructure is obtained when NKN is subjected to CuO doping, leading to improved electrical properties. PTs with different electrode areas are fabricated using the CuO-doped NKN ceramics. Considering the efficiency, voltage gain, and temperature rise of PTs at a load resistance of 1 kΩ, PTs with an electrode with an inner diameter of 15 mm are combined with the circuit design for driving a 13-W T5 fluorescent lamp. A temperature rise of 6°C and a total efficiency of 82.4% (PT and circuit) are obtained using the present PTs. PMID:23357915

  7. Advances in Ceramic Matrix Composite Blade Damping Characteristics for Aerospace Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Min, James B.; Harris, Donald L.; Ting, J. M.

    2011-01-01

    For advanced aerospace propulsion systems, development of ceramic matrix composite integrally-bladed turbine disk technology is attractive for a number of reasons. The high strength-to-weight ratio of ceramic composites helps to reduce engine weight and the one-piece construction of a blisk will result in fewer parts count, which should translate into reduced operational costs. One shortcoming with blisk construction, however, is that blisks may be prone to high cycle fatigue due to their structural response to high vibration environments. Use of ceramic composites is expected to provide some internal damping to reduce the vibratory stresses encountered due to unsteady flow loads through the bladed turbine regions. A goal of our research was to characterize the vibration viscous damping behavior of C/SiC composites. The vibration damping properties were measured and calculated. Damping appeared to decrease with an increase in the natural frequency. While the critical damping amount of approximately 2% is required for typical aerospace turbomachinery engines, the C/SiC damping at high frequencies was less than 0.2% from our study. The advanced high-performance aerospace propulsion systems almost certainly will require even more damping than what current vehicles require. A purpose of this paper is to review some work on C/SiC vibration damping by the authors for the NASA CMC turbine blisk development program and address an importance of the further investigation of the blade vibration damping characteristics on candidate CMC materials for the NASA s advanced aerospace turbomachinery engine systems.

  8. Annual Conference on Composites and Advanced Ceramic Materials, 13th, Cocoa Beach, FL, Jan. 15-18, 1989, Collection of Papers. Parts 1 2

    SciTech Connect

    Not Available

    1989-10-01

    The present conference on advanced ceramics discusses topics in matrix-infiltration and processing techniques, the failure analysis of monolithic ceramics, the processing of polycrystalline oxide-matrix ceramic composites, the processing and properties of monolithic ceramics, ceramic composite interface phenomena, and ceramic NDE and characterization. Attention is given to chemical vapor infiltration for composites, dense ceramics via controlled melt oxidation, supertough silicon nitride, the properties of pressureless-sintered alumina-matrix/30 vol pct SiC composites, and toughening in metal particulate/glass-ceramic composites. Also discussed are the joining of silicon nitride for heat-engine applications, nitridation mechanisms in silicon powder compacts, the synthesis and properties of ceramic fibers, a technique for interfacial bond strength measurement, the degradation of SiC whiskers at elevated temperatures, and the correlation of NDE and fractography in Si3N4.

  9. Prediction of Corrosion of Advanced Materials and Fabricated Components

    SciTech Connect

    A. Anderko; G. Engelhardt; M.M. Lencka; M.A. Jakab; G. Tormoen; N. Sridhar

    2007-09-29

    The goal of this project is to provide materials engineers, chemical engineers and plant operators with a software tool that will enable them to predict localized corrosion of process equipment including fabricated components as well as base alloys. For design and revamp purposes, the software predicts the occurrence of localized corrosion as a function of environment chemistry and assists the user in selecting the optimum alloy for a given environment. For the operation of existing plants, the software enables the users to predict the remaining life of equipment and help in scheduling maintenance activities. This project combined fundamental understanding of mechanisms of corrosion with focused experimental results to predict the corrosion of advanced, base or fabricated, alloys in real-world environments encountered in the chemical industry. At the heart of this approach is the development of models that predict the fundamental parameters that control the occurrence of localized corrosion as a function of environmental conditions and alloy composition. The fundamental parameters that dictate the occurrence of localized corrosion are the corrosion and repassivation potentials. The program team, OLI Systems and Southwest Research Institute, has developed theoretical models for these parameters. These theoretical models have been applied to predict the occurrence of localized corrosion of base materials and heat-treated components in a variety of environments containing aggressive and non-aggressive species. As a result of this project, a comprehensive model has been established and extensively verified for predicting the occurrence of localized corrosion as a function of environment chemistry and temperature by calculating the corrosion and repassivation potentials.To support and calibrate the model, an experimental database has been developed to elucidate (1) the effects of various inhibiting species as well as aggressive species on localized corrosion of nickel

  10. Degradation of SPS-Fabricated YSZ and Nd2O3-YSZ Ceramics in Supercritical Water

    NASA Astrophysics Data System (ADS)

    Siebert-Timmer, A.; Bichler, L.

    2016-04-01

    Zirconia (ZrO2) ceramics are being considered as a candidate material for thermal insulating barriers in pressure tubes used in the supercritical water (SCW) nuclear reactors. However, the literature suggests that zirconia may undergo a detrimental phase transformation which is accelerated in aqueous environments. In this research, 8 mol% Yttria-Stabilized Zirconia (YSZ) ceramics with the addition of 5 and 10 mol% Nd2O3 were manufactured via spark plasma sintering (SPS) process and subsequently subjected to a SCW environment. The weight losses and microstructural evolutions of these materials during SCW exposure were studied. The results suggest that doping YSZ with Nd2O3 significantly decreased the degradation rate of the YSZ ceramic and improved its structural stability. X-ray diffraction studies revealed that after degradation testing, the Nd2O3 helped to retain the desirable cubic phase of YSZ matrix. In the case of pure YSZ ceramic, a phase change of the matrix toward the monoclinic lattice was observed and likely contributed to the ceramic's disintegration in SCW environment.

  11. Direct fabrication of superhydrophobic ceramic surfaces with ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Chung, Jihoon; Lee, Sukyung; Yong, Hyungseok; Lee, Sangmin; Park, Yong Tae

    2016-02-01

    Super-hydrophobic surfaces having contact angles > 150° for water are of great interest due to their potential use in a wide variety of applications. Although many reports on the wettability of different surfaces have been published, few or no studies have been done on the formation of a super-hydrophobic surface on a ceramic substrate. In this paper, we demonstrate the creation of a super-hydrophobic surface on a ceramic substrate by using zinc oxide nanowires (ZnO NWs) prepared by using a direct hydrothermal method. A self-assembled monolayer of heptadecafluoro- 1,1,2,2-tetrahydrodecyl trichlorosilane (HDFS) lowered the surface energy between the water droplet and the nano-textured surface. The length of the ZnO NWs was found to play a key role in the formation of a nanostructure that increased the surface roughness of the substrate. Furthermore, the length of the ZnO NWs could be controlled by changing the growth time, and HDFS-coated ZnO NWs were found to be super-hydrophobic after a growth time of 3 h. We have demonstrated the potential application of this nanostructure for ceramic tableware by introducing a ZnO-NW-textured surface on a ceramic cup, which resulted in water and alcohol repellency. This method is a simple and practical way to achieve a super-hydrophobic surface; hence, our method is expected to be widely used in various ceramic applications.

  12. Mechanical and in vitro performance of apatite-wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing.

    PubMed

    Suwanprateeb, J; Sanngam, R; Suvannapruk, W; Panyathanmaporn, T

    2009-06-01

    In situ hydroxyapatite/apatite-wollastonite glass ceramic composite was fabricated by a three dimensional printing (3DP) technique and characterized. It was found that the as-fabricated mean green strength of the composite was 1.27 MPa which was sufficient for general handling. After varying sintering temperatures (1050-1300 degrees C) and times (1-10 h), it was found that sintering at 1300 degrees C for 3 h gave the greatest flexural modulus and strength, 34.10 GPa and 76.82 MPa respectively. This was associated with a decrease in porosity and increase in densification ability of the composite resulting from liquid phase sintering. Bioactivity tested by soaking in simulated body fluid (SBF) and In Vitro toxicity studies showed that 3DP hydroxyapatite/A-W glass ceramic composite was non-toxic and bioactive. A new calcium phosphate layer was observed on the surface of the composite after soaking in SBF for only 1 day while osteoblast cells were able to attach and attain normal morphology on the surface of the composite. PMID:19225870

  13. Advanced beaded and tubular structural panels. Volume 2: Fabrication

    NASA Technical Reports Server (NTRS)

    Musgrove, M. D.; Northrop, R. F.

    1974-01-01

    A study was conducted to exploit the efficiency of curved elements in the design of lightweight structural panels under combined loads of axial compression, inplane shear, and bending. A summary of the total program (analysis, fabrication and test) is presented in document NASA CR-2514. Detailed descriptions of the analysis effort and of the panel tests are contained in supplementary documents NASA CR-132460 and NASA-CR-132515 respectively. Data are also given on the development of economical fabrication techniques to minimize the effects of fabrication limitations on optimum panel designs.

  14. Uses of Advanced Ceramic Composites in the Thermal Protection Systems of Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.

    1994-01-01

    Current ceramic composites being developed and characterized for use in the thermal protection systems (TPS) of future space vehicles are reviewed. The composites discussed include new tough, low density ceramic insulation's, both rigid and flexible; ultra-high temperature ceramic composites; nano-ceramics; as well as new hybrid ceramic/metallic and ceramic/organic systems. Application and advantage of these new composites to the thermal protection systems of future reusable access to space vehicles and small spacecraft is reviewed.

  15. Fabrication and optical studies of transparent Tm, Ho:YAG ceramics

    NASA Astrophysics Data System (ADS)

    Sidorowicz, Agata; Nakielska, Magdalena; Wajler, Anna; Węglarz, Helena; Jach, Katarzyna; Olszyna, Andrzej

    2015-12-01

    The aim of this work has been to obtain transparent Tm, Ho:YAG ceramics (thulium doping range: 2-6 at.%, holmium doping range: 0.1-1.0 at.%) by reaction sintering using commercial powders. It has been proved that the particle size, purity and degree of agglomeration of the powders used are crucial from the point of view of the optical quality of ceramics. The spectroscopic measurements of Tm, Ho:YAG ceramics with different concentration of active ions (including transmission and emission spectra measurements) have been presented and discussed. As has been found, both concentration of holmium and thulium separately as well as the balance between them are of great importance. Energy transfer between Tm and Ho ions has been demonstrated.

  16. Fabrication of highly dense SiN4 ceramics without additives by high pressure sintering

    NASA Technical Reports Server (NTRS)

    Takatori, K.; Shimade, M.; Koizumi, M.

    1984-01-01

    Silicon nitride (Si3N4) is one of candidate materials for the engineering ceramics which is used at high temperatures. The mechanical strengths of hot pressed or sintered Si2N4 ceramics containing some amount of additives, however, are deteriorated at elevated temperatures. To improve the high temperature strength of Si3N4 ceramics, an attempt to consolidate Si3N4 without additives was made by high pressure sintering technique. Scanning electron micrographs of fracture surfaces of the sintered bodies showed the bodies had finely grained and fully self-bonded sintered bodies were 310N sq m at room temperature and 174N/sq m at 1200 C.

  17. Development and fabrication of an advanced liquid cooling garment

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1978-01-01

    A tube/fin concept liquid cooling garment head cooler was developed, fabricated and delivered to NASA-ARC. The head cooler was fabricated from polyurethane film which sandwiches the transport fluid tubing and a thermally conductive fin material. The head cooler garment is sewn to form a skull cap and covered with a comfort liner. In addition, two Neonate heating garments were fabricated and supplied to NASA for further finishing and use in medical tests. The resulting garment is flexible, elastic and conforms to the head comfortably. Tests on a tube/fin element of identical construction as the head cooler demonstrated good thermal effectiveness. Use of commercially available materials and development of relatively simple fabrication techniques give the potential for a low garment cost.

  18. DEVELOPMENT OF CRYSTALLINE CERAMICS FOR IMMOBILIZATION OF ADVANCED FUEL CYCLE REPROCESSING WASTES

    SciTech Connect

    Fox, K.; Brinkman, K.

    2011-09-22

    The Savannah River National Laboratory (SRNL) is developing crystalline ceramic waste forms to incorporate CS/LN/TM high Mo waste streams consisting of perovskite, hollandite, pyrochlore, zirconolite, and powellite phase assemblages. Simple raw materials, including Al{sub 2}O{sub 3}, CaO, and TiO{sub 2} were combined with simulated waste components to produce multiphase crystalline ceramics. Fiscal Year 2011 (FY11) activities included (i) expanding the compositional range by varying waste loading and fabrication of compositions rich in TiO{sub 2}, (ii) exploring the processing parameters of ceramics produced by the melt and crystallize process, (iii) synthesis and characterization of select individual phases of powellite and hollandite that are the target hosts for radionuclides of Mo, Cs, and Rb, and (iv) evaluating the durability and radiation stability of single and multi-phase ceramic waste forms. Two fabrication methods, including melting and crystallizing, and pressing and sintering, were used with the intent of studying phase evolution under various sintering conditions. An analysis of the XRD and SEM/EDS results indicates that the targeted crystalline phases of the FY11 compositions consisting of pyrochlore, perovskite, hollandite, zirconolite, and powellite were formed by both press and sinter and melt and crystallize processing methods. An evaluation of crystalline phase formation versus melt processing conditions revealed that hollandite, perovskite, zirconolite, and residual TiO{sub 2} phases formed regardless of cooling rate, demonstrating the robust nature of this process for crystalline phase development. The multiphase ceramic composition CSLNTM-06 demonstrated good resistance to proton beam irradiation. Electron irradiation studies on the single phase CaMoO{sub 4} (a component of the multiphase waste form) suggested that this material exhibits stability to 1000 years at anticipated self-irradiation doses (2 x 10{sup 10}-2 x 10{sup 11} Gy), but that

  19. Standard practice for reporting uniaxial strength data and estimating Weibull distribution parameters for advanced ceramics

    NASA Astrophysics Data System (ADS)

    1994-04-01

    This practice covers the evaluation and subsequent reporting of uniaxial strength data and the estimation of probability distribution parameters for advanced ceramics that fail in a brittle fashion. The failure strength of advanced ceramics is treated as a continuous random variable. Typically, a number of test specimens with well-defined geometry are failed under well-defined isothermal loading conditions. The load at which each specimen fails is recorded. The resulting failure stresses are used to obtain parameter estimates associated with the underlying population distribution. This practice is restricted to the assumption that the distribution underlying the failure strengths is the two parameter Weibull distribution with size scaling. Furthermore, this practice is restricted to test specimens (tensile, flexural, pressurized ring, etc.) that are primarily subjected to uniaxial stress states. Section 8 outlines methods to correct for bias errors in the estimated Weibull parameters and to calculate confidence bounds on those estimates from data sets where all failures originate from a single flaw population (that is, a single failure mode). In samples where failures originate from multiple independent flaw populations (for example, competing failure modes), the methods outlined in Section 8 for bias correction and confidence bounds are not applicable. Measurements of the strength at failure are taken for one of two reasons: either for a comparison of the relative quality of two materials, or the prediction of the probability of failure (or, alternatively, the fracture strength) for a structure of interest. This practice will permit estimates of the distribution parameters that are needed for either.

  20. Fabrication and microstructure of cerium doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics by solid-state reaction method

    SciTech Connect

    Li, Junlang; Xu, Jian; Shi, Ying; Qi, Hongfang; Xie, Jianjun; Lei, Fang

    2014-07-01

    Highlights: • We fabricate Ce doped lutetium aluminum garnet ceramics by solid-state method. • The raw materials include Lu{sub 2}O{sub 3} nanopowders synthesized by co-precipitation method. • The density of the transparent ceramics reach 99.7% of the theoretical value. • The optical transmittance of the bulk ceramic at 550 nm was 57.48%. • Some scattering centers decrease the optical characteristic of the ceramic. - Abstract: Polycrystalline Ce{sup 3+} doped lutetium aluminum garnet (Ce:LuAG) transparent ceramics fabricated by one step solid-state reaction method using synthetic nano-sized Lu{sub 2}O{sub 3}, commercial α-Al{sub 2}O{sub 3} and CeO{sub 2} powders were investigated in this paper. The green compacts shaped by the mixed powders were successfully densified into Ce:LuAG transparent ceramics after vacuum sintering at 1750 °C for 10 h. The in-line optical transmittance of the Ce:LuAG ceramic made by home-made Lu{sub 2}O{sub 3} powders could reach 57.48% at 550 nm, which was higher than that of the ceramic made by commercial Lu{sub 2}O{sub 3} powders (22.96%). The microstructure observation showed that light scattering centers caused by micro-pores, aluminum segregation and refraction index inhomogeneities induced the decrease of optical transparency of the Ce:LuAG ceramics, which should be removed and optimized in the future work.

  1. Plasma-Spraying Ceramics Onto Smooth Metallic Substrates

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Brindley, William J.; Rouge, Carl J.; Leissler, George

    1992-01-01

    In fabrication process, plasma-sprayed ceramic coats bonded strongly to smooth metallic surfaces. Principal use of such coats in protecting metal parts in hot-gas paths of advanced gas turbine engines. Process consists of application of initial thin layer of ceramic on smooth surface by low-pressure-plasma spraying followed by application of layer of conventional, low-thermal-conductivity atmospheric-pressure plasma-sprayed ceramic.

  2. Fabrication of Silicon Nitride Dental Core Ceramics with Borosilicate Veneering material

    NASA Astrophysics Data System (ADS)

    Wananuruksawong, R.; Jinawath, S.; Padipatvuthikul, P.; Wasanapiarnpong, T.

    2011-10-01

    Silicon nitride (Si3N4) ceramic is a great candidate for clinical applications due to its high fracture toughness, strength, hardness and bio-inertness. This study has focused on the Si3N4 ceramic as a dental core material. The white Si3N4 was prepared by pressureless sintering at relative low sintering temperature of 1650 °C in nitrogen atmosphere. The coefficient of thermal expansion (CTE) of Si3N4 ceramic is lower than that of Zirconia and Alumina ceramic which are popular in this field. The borosilicate glass veneering was employed due to its compatibility in thermal expansion. The sintered Si3N4 specimens represented the synthetic dental core were paintbrush coated by a veneer paste composed of borosilicate glass powder (<150 micrometer, Pyrex) with 5 wt% of zirconia powder (3 wt% Y2O3 - partial stabilized zirconia) and 30 wt% of polyvinyl alcohol (5 wt% solution). After coating the veneer on the Si3N4 specimens, the firing was performed in electric tube furnace between 1000-1200°C. The veneered specimens fired at 1100°C for 15 mins show good bonding, smooth and glossy without defect and crazing. The veneer has thermal expansion coefficient as 3.98×10-6 °C-1, rather white and semi opaque, due to zirconia addition, the Vickers hardness as 4.0 GPa which is closely to the human teeth.

  3. Graded Yb:YAG ceramic structures: design, fabrication and characterization of the laser performances

    NASA Astrophysics Data System (ADS)

    Toci, Guido; Lapucci, Antonio; Ciofini, Marco; Esposito, Laura; Hostaša, Jan; Piancastelli, Andreana; Gizzi, Leonida A.; Labate, Luca; Ferrara, Paolo; Pirri, Angela; Vannini, Matteo

    2015-05-01

    Significant improvements in efficiency in high power, high repetition rate laser systems should come from the use of ceramic laser active elements suitably designed to mitigate the thermal and thermo-mechanical effects (TEs and TMEs) deriving from the laser pumping process. Laser active media exhibiting a controlled and gradual distribution of the active element(s) could therefore find useful applications in the laser-driven inertial confinement fusion systems, which are considered among the most promising energy source of the future (ultraintense laser pulses), and in medical applications (ultrashort laser pulses) The present work explores the flexibility of the ceramic process for the construction of YAG (Y3Al5O12) ceramic laser elements with a controlled distribution of the Yb doping, in view of the realization of structures modelled to respond to specific application. Two processing techniques are presented to prepare layered structures with a tailored modulation of the doping level, with the goal of reducing the peak temperature, the temperature gradients and also the thermally-induced deformation of the laser material, thus mitigating the overall thermal effects. Tape casting in combination with thermal compression of ceramic tapes with a varying doping level is one of the presented techniques. To make this process as more adaptable as possible, commercial micrometric ceramic powders have been used. The results are compared with those obtained using nanometric powders and a shaping process based on the subsequent pressing of spray dried powders with a different doping level. Laser performance has been characterized in a longitudinally diode pumped laser cavity. The laser efficiency under high thermal load conditions has been compared to those obtained from samples with uniform doping, and for samples obtained with press shaping and tape casting, under the same conditions.

  4. Development and fabrication of an advanced liquid cooling garment

    NASA Technical Reports Server (NTRS)

    Leith, J. R.; Hixon, C. W.

    1976-01-01

    The elastomeric film fin/tube concept which was developed is a composite of polyurethane film, fine expanded silver mesh, a serpentine pattern polyurethane transport tubing and an integral comfort liner, all bonded via adhesive application and vacuum-bagged for final cure. As demonstrated by thermal analysis, the composite garment material is capable of removing a 293 watt (1000 BTU/hr) metabolic load through a head and torso cooling area of .46 sq m (5 sq ft) with tube spacing of slightly under one inch. A total of 60 test elements, each .15m x .15m (6 in. x 6 in.) were fabricated in support of the liquid cooling garment concept development. In parallel with the fabrication of these elements a continuing series of laboratory tests to support the fabrication techniques was carried out. The elements and supporting tests are described.

  5. Ceramic Technology Project semiannual progress report, April 1992--September 1992

    SciTech Connect

    Johnson, D.R.

    1993-07-01

    This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  6. The Comparative Evaluation of the Translucency of Crowns Fabricated with Three Different All-Ceramic Materials: An in Vitro Study

    PubMed Central

    Ramani, Y.V.; Rathod, Asha M.; Ram, Sabita M.; Turakhia, Hetal

    2015-01-01

    Introduction: All-ceramic crowns with different core materials of different strength and aesthetics are available in recent years. The aesthetics of the crown depends mainly on the shade and translucency. Clinician should be aware of the quality and characteristics of these materials so that they will be able to opt for good material for successful clinical use. Aim and Objective: The aim of this study was to evaluate and compare the translucency of crowns fabricated with three different commercially available all-ceramic materials viz. Alumina - CAD-CAM Procera, Lithium disilicate - Pressable IPS e.max Press, Zirconia - CAD-CAM Lava. Materials and Methods: All-ceramic crowns (5 per each group and total of 15 samples) were made of Alumina – CAD-CAM Procera (Group I), Lithium disilicate – Pressable IPS e.max Press (Group II), Zirconia – CAD-CAM Lava (Group III) and veneered with their respective layering ceramic. Evaluation for the Translucency (CR=Yb/Yw) over the White (Yw) and Black (Yb) backgrounds at the Incisal, Middle, Cervical, Mesial and Distal thirds of each crown were done using the Spectrophotometer. The results obtained were statistically analyzed by Paired t-test (p<0.05) and Analysis of Variance (p<0.05) for the test of significance among the groups. Results: Significant differences in the contrast ratios were obtained among the three Groups (p<0.001). In this study, Group II Lithium disilicate–Pressable IPS e.max Press showed higher translucency (0.54). Group III Zirconia – CAD-CAM Lava showed the least translucency (0.75) and the translucency of Group I Alumina – CAD-CAM Procera (0.7) was in between both the groups. Conclusion: Translucency of material gives fair idea to clinician for the choice of material in different zones during replacement and suitability for restoration in aesthetic zone. Selection of all ceramic system depends on the translucency needed for successful prosthesis of artificial tooth so that it mimics patient

  7. DEVELOPMENT OF ADVANCED ESFF (ELECTRICAL STIMULATION OF FABRIC FILTRATION) TECHNOLOGY

    EPA Science Inventory

    The report summarizes work on electrical stimulation of fabric filtration (ESFF) with the major objectives of defining the role of some primary variables and understanding the mechanisms of electrostatic enhancement. It was concluded that the magnitude of particle charge has a st...

  8. Fabrication of freeform bone-filling calcium phosphate ceramics by gypsum 3D printing method.

    PubMed

    Lowmunkong, Rungnapa; Sohmura, Taiji; Suzuki, Yumiko; Matsuya, Shigeki; Ishikawa, Kunio

    2009-08-01

    Transformation of gypsum model fabricated by three-dimensional printing (3DP) into hydroxyapatite (HA) by treating in ammonium phosphate solution is possible. However, 3DP powder supplied by the manufacturer contains unknown additives which may be questionable for biomaterials. Accordingly, pure plaster of Paris (POP) powder was used for fabrication in the present study. For accurate fabrication, reduction of supplied binder ink to 80% of standard amount for 3DP powder supplied by the manufacturer was found to be the optimal condition for POP fabrication. Transformation from POP to HA was done by immersing into 1 mol/L ammonium phosphate solution. However, preheating of fabricated POP specimen at 200 degrees C for 30 min to change from calcium sulfate dihydrate into calcium sulfate hemihydrate could accelerate the transformation into HA effectively. To increase compressive strength, HA transformed specimen was sintering at 1150 degrees C for 3 h. The compressive strength increased four times comparing with as transformed HA specimen. However, crystal structure was transformed to beta-TCP due to the chemical reaction between the transformed HA and remained phosphate from ammonium phosphate solution at the sintering temperature. A sophisticated application of the present 3DP method to fabricate the freeform bioceramic for osseous defect was attempted, and jaw bone defect filling biomaterial of beta-TCP and scaffold with macroporous structures could be fabricated. Present 3DP method has possibility to fabricate freeform bioceramic for osseous defect or scaffold. PMID:19145633

  9. A US perspective on fast reactor fuel fabrication technology and experience. Part II: Ceramic fuels

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Fielding, Randall S.; Porter, Douglas L.; Meyer, Mitchell K.; Makenas, Bruce J.

    2009-08-01

    This paper is Part II of a review focusing on the United States experience with oxide, carbide, and nitride fast reactor fuel fabrication. Over 60 years of research in fuel fabrication by government, national laboratories, industry, and academia has culminated in a foundation of research and resulted in significant improvements to the technologies employed to fabricate these fuel types. This part of the review documents the current state of fuel fabrication technologies in the United States for each of these fuel types, some of the challenges faced by previous researchers, and how these were overcome. Knowledge gained from reviewing previous investigations will aid both researchers and policy makers in forming future decisions relating to nuclear fuel fabrication technologies.

  10. Fabrication of transparent lead-free KNN glass ceramics by incorporation method

    PubMed Central

    2012-01-01

    The incorporation method was employed to produce potassium sodium niobate [KNN] (K0.5Na0.5NbO3) glass ceramics from the KNN-SiO2 system. This incorporation method combines a simple mixed-oxide technique for producing KNN powder and a conventional melt-quenching technique to form the resulting glass. KNN was calcined at 800°C and subsequently mixed with SiO2 in the KNN:SiO2 ratio of 75:25 (mol%). The successfully produced optically transparent glass was then subjected to a heat treatment schedule at temperatures ranging from 525°C -575°C for crystallization. All glass ceramics of more than 40% transmittance crystallized into KNN nanocrystals that were rectangular in shape and dispersed well throughout the glass matrix. The crystal size and crystallinity were found to increase with increasing heat treatment temperature, which in turn plays an important role in controlling the properties of the glass ceramics, including physical, optical, and dielectric properties. The transparency of the glass samples decreased with increasing crystal size. The maximum room temperature dielectric constant (εr) was as high as 474 at 10 kHz with an acceptable low loss (tanδ) around 0.02 at 10 kHz. PMID:22340426

  11. The Fabrication of Nano-Particles in Aqueous Solution From Oxyfluoride Glass Ceramics by Thermal Induction and Corrosion Treatment

    PubMed Central

    2008-01-01

    An innovative route is reported to fabricate nano-particles in aqueous solution from oxyfluoride glass by the thermal induction and corrosion treatment in this letter. The investigations of X-ray diffraction and transmission electron microscope based on nano-particles in glass ceramics (GCs) and aqueous solution indicate that the nano-particles formed in glass matrix during the thermal induction process are released to aqueous solution and their structure, shape and luminescent properties in glass host can be kept. Owing to the designable composition of the nano-particles during glass preparation process, the method is a novel way to obtain nano-particles in aqueous solution from GCs. PMID:20596443

  12. Fabrication and Electromagnetic Wave-Absorbing Property of Si3N4 Ceramics with Gradient Pyrolytic Carbon Distribution

    NASA Astrophysics Data System (ADS)

    Li, Xiangming; Gao, Mingjun

    2016-04-01

    A Si3N4 ceramic with gradient distribution of pyrolytic carbon (Gradient-PyC-Si3N4) was fabricated by a combined technique of precursor infiltration pyrolysis and directional oxidation. An electromagnetic wave could enter Gradient-PyC-Si3N4 with little reflection because of a weak impedance mismatch at its surface, and the electromagnetic wave entering Gradient-PyC-Si3N4 could propagate forward along the PyC changing belt and simultaneously be absorbed by PyC with little reflection. The electromagnetic reflectivity of the Gradient-PyC-Si3N4 with an absence of PyC could reach a low level of -12.1 dB, which means that about 94% of the incident energy is absorbed and so makes the Gradient-PyC-Si3N4 a promising electromagnetic absorbing material for covert action.

  13. Fabrication and Electromagnetic Wave-Absorbing Property of Si3N4 Ceramics with Gradient Pyrolytic Carbon Distribution

    NASA Astrophysics Data System (ADS)

    Li, Xiangming; Gao, Mingjun

    2016-07-01

    A Si3N4 ceramic with gradient distribution of pyrolytic carbon (Gradient-PyC-Si3N4) was fabricated by a combined technique of precursor infiltration pyrolysis and directional oxidation. An electromagnetic wave could enter Gradient-PyC-Si3N4 with little reflection because of a weak impedance mismatch at its surface, and the electromagnetic wave entering Gradient-PyC-Si3N4 could propagate forward along the PyC changing belt and simultaneously be absorbed by PyC with little reflection. The electromagnetic reflectivity of the Gradient-PyC-Si3N4 with an absence of PyC could reach a low level of -12.1 dB, which means that about 94% of the incident energy is absorbed and so makes the Gradient-PyC-Si3N4 a promising electromagnetic absorbing material for covert action.

  14. A High-Performance LC Wireless Passive Pressure Sensor Fabricated Using Low-Temperature Co-Fired Ceramic (LTCC) Technology

    PubMed Central

    Li, Chen; Tan, Qiulin; Xue, Chenyang; Zhang, Wendong; Li, Yunzhi; Xiong, Jijun

    2014-01-01

    An LC resonant pressure sensor with improved performance is presented in this paper. The sensor is designed with a buried structure, which protects the electrical components from contact with harsh environments and reduces the resonant-frequency drift of the sensor in high-temperature environments. The pressure-sensitive membrane of the sensor is optimized according to small-deflection-plate theory, which allows the sensor to operate in high-pressure environments. The sensor is fabricated using low-temperature co-fired ceramic (LTCC) technology, and a fugitive film is used to create a completed sealed embedded cavity without an evacuation channel. The experimental results show that the frequency drift of the sensor versus the temperature is approximately 0.75 kHz/°C, and the responsivity of the sensor can be up to 31 kHz/bar within the pressure range from atmospheric pressure to 60 bar. PMID:25490593

  15. 3D nanostructures fabricated by advanced stencil lithography.

    PubMed

    Yesilkoy, F; Flauraud, V; Rüegg, M; Kim, B J; Brugger, J

    2016-03-01

    This letter reports on a novel fabrication method for 3D metal nanostructures using high-throughput nanostencil lithography. Aperture clogging, which occurs on the stencil membranes during physical vapor deposition, is leveraged to create complex topographies on the nanoscale. The precision of the 3D nanofabrication method is studied in terms of geometric parameters and material types. The versatility of the technique is demonstrated by various symmetric and chiral patterns made of Al and Au. PMID:26884085

  16. 3D nanostructures fabricated by advanced stencil lithography

    NASA Astrophysics Data System (ADS)

    Yesilkoy, F.; Flauraud, V.; Rüegg, M.; Kim, B. J.; Brugger, J.

    2016-02-01

    This letter reports on a novel fabrication method for 3D metal nanostructures using high-throughput nanostencil lithography. Aperture clogging, which occurs on the stencil membranes during physical vapor deposition, is leveraged to create complex topographies on the nanoscale. The precision of the 3D nanofabrication method is studied in terms of geometric parameters and material types. The versatility of the technique is demonstrated by various symmetric and chiral patterns made of Al and Au.

  17. Ceramics for the advanced automotive gas turbine engine: A look at a single shaft design

    NASA Technical Reports Server (NTRS)

    Nosek, S. M.

    1977-01-01

    The results of a preliminary analysis of a single shaft regenerative design with a single stage radial turbine are presented to show the fuel economy that can be achieved at high turbine inlet temperatures, with this particular advanced design, if the turbine tip speed and regenerator inlet temperature are not limited. The engine size was 100 hp for application to a 3500 lb auto. The fuel economy was analyzed by coupling the engine to the auto through a continuously variable speed-ratio transmission and operating the system at constant turbine inlet temperature over the Composite Driving Cycle. The fuel was gasoline and the analysis was for a 85 F day. With a turbine inlet temperature of 2500 F the fuel economy was 26.2 mpg, an improvement of 18 percent over that of 22.3 mpg with a turbine inlet temperature of 1900 F. The turbine tip speed needed for best economy with the 2500 F engine was 2530 ft/sec. The regenerator temperature was approximately 2200 F at idle. Disk stresses were estimated for one single stage radial turbine and two two-stage radial-axial turbines and compared with maximum allowable stress curves estimated for a current ceramic material. Results show a need for higher Weibull Modulus, higher strength ceramics.

  18. Ceramic Processing

    SciTech Connect

    EWSUK,KEVIN G.

    1999-11-24

    Ceramics represent a unique class of materials that are distinguished from common metals and plastics by their: (1) high hardness, stiffness, and good wear properties (i.e., abrasion resistance); (2) ability to withstand high temperatures (i.e., refractoriness); (3) chemical durability; and (4) electrical properties that allow them to be electrical insulators, semiconductors, or ionic conductors. Ceramics can be broken down into two general categories, traditional and advanced ceramics. Traditional ceramics include common household products such as clay pots, tiles, pipe, and bricks, porcelain china, sinks, and electrical insulators, and thermally insulating refractory bricks for ovens and fireplaces. Advanced ceramics, also referred to as ''high-tech'' ceramics, include products such as spark plug bodies, piston rings, catalyst supports, and water pump seals for automobiles, thermally insulating tiles for the space shuttle, sodium vapor lamp tubes in streetlights, and the capacitors, resistors, transducers, and varistors in the solid-state electronics we use daily. The major differences between traditional and advanced ceramics are in the processing tolerances and cost. Traditional ceramics are manufactured with inexpensive raw materials, are relatively tolerant of minor process deviations, and are relatively inexpensive. Advanced ceramics are typically made with more refined raw materials and processing to optimize a given property or combination of properties (e.g., mechanical, electrical, dielectric, optical, thermal, physical, and/or magnetic) for a given application. Advanced ceramics generally have improved performance and reliability over traditional ceramics, but are typically more expensive. Additionally, advanced ceramics are typically more sensitive to the chemical and physical defects present in the starting raw materials, or those that are introduced during manufacturing.

  19. Single-step fabrication of nanolamellar structured oxide ceramic coatings by metal-organic chemical vapor deposition.

    PubMed

    Eils, Nadine K; Mechnich, Peter; Keune, Hartmut; Wahl, Georg; Klages, Claus-Peter

    2011-09-01

    Oxide ceramic coatings in the system Y2O3-Al2O3-ZrO2 were fabricated in laboratory scale by using a MOCVD unit. A hot wall reactor was used along with different precursor feeding systems. Most experiments were carried out by using powder flash evaporation including a screw feeder for precursor powder delivery. For comparison, further samples were fabricated by using band flash evaporation and continuous evaporation from a crucible. Oxygen was used in all cases as reactant gas. Aluminium-tris-2,4-pentanedione (Al(acac)3), yttrium-tris-2,2,6,6-tetramethyl-3,5-heptanedione (Y(thd)3) and zirconium-tetrakis-2,2,6,6-tetramethyl-3,5-heptanedione (Zr(thd)4) were applied as metal-organic precursors because of their similar vaporization behaviour under the given conditions. The coating stoichiometry was varied from pure alumina to complex ternary compositions in the system Y2O3-Al2O3-ZrO2. Both kinds of ternary coatings fabricated by using flash evaporation methods show a nanolamellar microstructure in the as deposited state. Heat treating experiments at 1200 degrees C for up to 5 days enhance the lamellar character of the coating deposited by using powder flash evaporation. The lamellar microstructure is due to alternating YSZ enriched layers and YAG enriched layers in this state. However, the coating fabricated by using band flash evaporation shows a dense interpenetrating network of YSZ and YAG after heat treating instead of a lamellar microstructure observed in the as deposited state. PMID:22097592

  20. ENERGY EFFICIENCY CHALLENGES ADDRESSED THROUGH THE USE OF ADVANCED REFRACTORY CERAMIC MATERIALS

    SciTech Connect

    Hemrick, James Gordon

    2014-01-01

    Refractory ceramics can play a critical role in improving the energy efficiency of traditional industrial processes through increased furnace efficiency brought about by the employment of novel refractory systems and techniques. Examples of advances in refractory materials related to aluminum, gasification, glass, and lime are highlighted. Energy savings are realized based on reduction of chemical reactions, elimination of mechanical degradation caused by the service environment, reduction of temperature limitations of materials, and elimination of costly installation and repair needs. Key results of projects resulting from US Department of Energy (DOE) funded research programs are discussed with emphasis on applicability of these results to high temperature furnace applications and needed research directions for the future.

  1. Power Law Versus Exponential Form of Slow Crack Growth of Advanced Structural Ceramics: Dynamic Fatigue

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2002-01-01

    The life prediction analysis based on an exponential crack velocity formulation was examined using a variety of experimental data on glass and advanced structural ceramics in constant stress-rate ("dynamic fatigue") and preload testing at ambient and elevated temperatures. The data fit to the strength versus In (stress rate) relation was found to be very reasonable for most of the materials. It was also found that preloading technique was equally applicable for the case of slow crack growth (SCG) parameter n > 30. The major limitation in the exponential crack velocity formulation, however, was that an inert strength of a material must be known priori to evaluate the important SCG parameter n, a significant drawback as compared to the conventional power-law crack velocity formulation.

  2. Fabrication of Advanced Thermoelectric Materials by Hierarchical Nanovoid Generation

    NASA Technical Reports Server (NTRS)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor); Chu, Sang-Hyon (Inventor); Elliott, James R. (Inventor); King, Glen C. (Inventor); Kim, Jae-Woo (Inventor); Lillehei, Peter T. (Inventor); Stoakley, Diane M. (Inventor)

    2011-01-01

    A novel method to prepare an advanced thermoelectric material has hierarchical structures embedded with nanometer-sized voids which are key to enhancement of the thermoelectric performance. Solution-based thin film deposition technique enables preparation of stable film of thermoelectric material and void generator (voigen). A subsequent thermal process creates hierarchical nanovoid structure inside the thermoelectric material. Potential application areas of this advanced thermoelectric material with nanovoid structure are commercial applications (electronics cooling), medical and scientific applications (biological analysis device, medical imaging systems), telecommunications, and defense and military applications (night vision equipments).

  3. Optimization of segmented alignment marks for advanced semiconductor fabrication processes

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Lu, Zhijian G.; Williams, Gary; Zach, Franz X.; Liegl, Bernhard

    2001-08-01

    The continued downscaling of semiconductor fabrication ground rule has imposed increasingly tighter overlay tolerances, which becomes very challenging at the 100 nm lithographic node. Such tight tolerances will require very high performance in alignment. Past experiences indicate that good alignment depends largely on alignment signal quality, which, however, can be strongly affected by chip design and various fabrication processes. Under some extreme circumstances, they can even be reduced to the non- usable limit. Therefore, a systematic understanding of alignment marks and a method to predict alignment performance based on mark design are necessary. Motivated by this, we have performed a detailed study of bright field segmented alignment marks that are used in current state-of- the-art fabrication processes. We find that alignment marks at different lithographic levels can be organized into four basic categories: trench mark, metal mark, damascene mark, and combo mark. The basic principles of these four types of marks turn out to be so similar that they can be characterized within the theoretical framework of a simple model based on optical gratings. An analytic expression has been developed for such model and it has been tested using computer simulation with the rigorous time-domain finite- difference (TD-FD) algorithm TEMPEST. Consistent results have been obtained; indicating that mark signal can be significantly improved through the optimization of mark lateral dimensions, such as segment pitch and segment width. We have also compared simulation studies against experimental data for alignment marks at one typical lithographic level and a good agreement is found.

  4. Preparation, Fabrication, and Evaluation of Advanced Polymeric and Composite Materials

    NASA Technical Reports Server (NTRS)

    Orwoll, Robert A.

    1997-01-01

    The thesis titles are given below: physical and mechanical behavior of amorphous poly(arylene ether-co-imidasole)s and poly(arylene ether-co-imidasole) modification epoxies; the requirements of patentability as applied to the chemical arts; fabrication of thermoplastic polymer composite ribbon; blend of reactive diluents with phenylethynyl-terminated arylene ether oligomers; the synthesis, characterization, and application of ether-containing polyimides; the synthesis of reflective and electrically conductive polyimide films via an in-situ self-metalization procedure using silver (I) complexes; the thermal cure of phenylethynyl terminated polyimides and selected model compounds; and the synthesis, characterization, and molecular modeling of cyclic arylene ether oligomers.

  5. Advanced technologies for fabrication and testing of large flat mirrors

    NASA Astrophysics Data System (ADS)

    Yellowhair, Julius Eldon

    Classical fabrication methods alone do not enable manufacturing of large flat mirrors that are much larger than 1 meter. This dissertation presents the development of enabling technologies for manufacturing large high performance flat mirrors and lays the foundation for manufacturing very large flat mirrors. The enabling fabrication and testing methods were developed during the manufacture of a 1.6 meter flat. The key advantage over classical methods is that our method is scalable to larger flat mirrors up to 8 m in diameter. Large tools were used during surface grinding and coarse polishing of the 1.6 m flat. During this stage, electronic levels provided efficient measurements on global surface changes in the mirror. The electronic levels measure surface inclination or slope very accurately. They measured slope changes across the mirror surface. From the slope information, we can obtain surface information. Over 2 m, the electronic levels can measure to 50 nm rms of low order aberrations that include power and astigmatism. The use of electronic levels for flatness measurements is analyzed in detail. Surface figuring was performed with smaller tools (size ranging from 15 cm to 40 cm in diameter). A radial stroker was developed and used to drive the smaller tools; the radial stroker provided variable tool stroke and rotation (up to 8 revolutions per minute). Polishing software, initially developed for stressed laps, enabled computer controlled polishing and was used to generate simulated removal profiles by optimizing tool stroke and dwell to reduce the high zones on the mirror surface. The resulting simulations from the polishing software were then applied to the real mirror. The scanning pentaprism and the 1 meter vibration insensitive Fizeau interferometer provided accurate and efficient surface testing to guide the remaining fabrication. The scanning pentaprism, another slope test, measured power to 9 nm rms over 2 meters. The Fizeau interferometer measured 1

  6. DEVELOPMENT OF CERAMIC WASTE FORMS FOR AN ADVANCED NUCLEAR FUEL CYCLE

    SciTech Connect

    Marra, J.; Billings, A.; Brinkman, K.; Fox, K.

    2010-11-30

    A series of ceramic waste forms were developed and characterized for the immobilization of a Cesium/Lanthanide (CS/LN) waste stream anticipated to result from nuclear fuel reprocessing. Simple raw materials, including Al{sub 2}O{sub 3} and TiO{sub 2} were combined with simulated waste components to produce multiphase ceramics containing hollandite-type phases, perovskites (particularly BaTiO{sub 3}), pyrochlores and other minor metal titanate phases. Three fabrication methodologies were used, including melting and crystallizing, pressing and sintering, and Spark Plasma Sintering (SPS), with the intent of studying phase evolution under various sintering conditions. X-Ray Diffraction (XRD) and Scanning Electron Microscopy coupled with Energy Dispersive Spectroscopy (SEM/EDS) results showed that the partitioning of the waste elements in the sintered materials was very similar, despite varying stoichiometry of the phases formed. Identification of excess Al{sub 2}O{sub 3} via XRD and SEM/EDS in the first series of compositions led to a Phase II study, with significantly reduced Al{sub 2}O{sub 3} concentrations and increased waste loadings. The Phase II compositions generally contained a reduced amount of unreacted Al{sub 2}O{sub 3} as identified by XRD. Chemical composition measurements showed no significant issues with meeting the target compositions. However, volatilization of Cs and Mo was identified, particularly during melting, since sintering of the pressed pellets and SPS were performed at lower temperatures. Partitioning of some of the waste components was difficult to determine via XRD. SEM/EDS mapping showed that those elements, which were generally present in small concentrations, were well distributed throughout the waste forms.

  7. Flexible Fabrics with High Thermal Conductivity for Advanced Spacesuits

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.; Bue, Grant; Orndoff, Evelyne; Kesterson, Matt; Connel, John W.; Smith, Joseph G., Jr.; Southward, Robin E.; Working, Dennis; Watson, Kent A.; Delozier, Donovan M.

    2006-01-01

    This paper describes the effort and accomplishments for developing flexible fabrics with high thermal conductivity (FFHTC) for spacesuits to improve thermal performance, lower weight and reduce complexity. Commercial and additional space exploration applications that require substantial performance enhancements in removal and transport of heat away from equipment as well as from the human body can benefit from this technology. Improvements in thermal conductivity were achieved through the use of modified polymers containing thermally conductive additives. The objective of the FFHTC effort is to significantly improve the thermal conductivity of the liquid cooled ventilation garment by improving the thermal conductivity of the subcomponents (i.e., fabric and plastic tubes). This paper presents the initial system modeling studies, including a detailed liquid cooling garment model incorporated into the Wissler human thermal regulatory model, to quantify the necessary improvements in thermal conductivity and garment geometries needed to affect system performance. In addition, preliminary results of thermal conductivity improvements of the polymer components of the liquid cooled ventilation garment are presented. By improving thermal garment performance, major technology drivers will be addressed for lightweight, high thermal conductivity, flexible materials for spacesuits that are strategic technical challenges of the Exploration

  8. Recent advances in the fabrication of nanostructured barrier films.

    PubMed

    Gokhale, Ankush A; Lee, Ilsoon

    2014-03-01

    The fabrication of barrier packaging films has gained significant momentum in recent years. Besides its dominance in the food industry as a means to extend the shelf-life of perishable goods and facilitate ease of handling and transportation, the use of barrier films to protect semiconductor and flexible electronics from dust, oxidation and moisture has generated considerable interest in recent years. This has ushered in new challenges for researchers to design and develop novel thin film barrier coatings that could be made available at a fraction of the cost. The emergence of the multidisciplinary field of nanotechnology has provided innovative solutions in the fields of medicine, catalysis and energy. In this review, we will be examining the integration of nanoscience driven techniques with barrier film technology with applications in both food and electronics industry. Details regarding permeation theory, some key parameters governing gas/moisture barrier properties and the market potential of nanostructured barrier films have been included. This review also explores several past and current examples of successful inclusion of functional nanostructured or colloidal materials to fabricate tailor-made barrier films. Finally a brief discussion regarding novel emerging trends for this industry has been included. PMID:24745209

  9. PRELIMINARY STUDY OF CERAMICS FOR IMMOBILIZATION OF ADVANCED FUEL CYCLE REPROCESSING WASTES

    SciTech Connect

    Fox, K.; Billings, A.; Brinkman, K.; Marra, J.

    2010-09-22

    The Savannah River National Laboratory (SRNL) developed a series of ceramic waste forms for the immobilization of Cesium/Lanthanide (CS/LN) and Cesium/Lanthanide/Transition Metal (CS/LN/TM) waste streams anticipated to result from nuclear fuel reprocessing. Simple raw materials, including Al{sub 2}O{sub 3}, CaO, and TiO{sub 2} were combined with simulated waste components to produce multiphase ceramics containing hollandite-type phases, perovskites (particularly BaTiO{sub 3}), pyrochlores, zirconolite, and other minor metal titanate phases. Identification of excess Al{sub 2}O{sub 3} via X-ray Diffraction (XRD) and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS) in the first series of compositions led to a Phase II study, with significantly reduced Al{sub 2}O{sub 3} concentrations and increased waste loadings. Three fabrication methodologies were used, including melting and crystallizing, pressing and sintering, and Spark Plasma Sintering (SPS), with the intent of studying phase evolution under various sintering conditions. XRD and SEM/EDS results showed that the partitioning of the waste elements in the sintered materials was very similar, despite varying stoichiometry of the phases formed. The Phase II compositions generally contained a reduced amount of unreacted Al{sub 2}O{sub 3} as identified by XRD, and had phase assemblages that were closer to the initial targets. Chemical composition measurements showed no significant issues with meeting the target compositions. However, volatilization of Cs and Mo was identified, particularly during melting, since sintering of the pressed pellets and SPS were performed at lower temperatures. Partitioning of some of the waste components was difficult to determine via XRD. SEM/EDS mapping showed that those elements, which were generally present in small concentrations, were well distributed throughout the waste forms. Initial studies of radiation damage tolerance using ion beam irradiation at Los

  10. Design, Fabrication, and Testing of Ceramic Joints for High Temperature SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Lara-Curzio, Edgar

    2000-01-01

    Various issues associated with the design and mechanical evaluation of joints of ceramic matrix composites are discussed. The specific case of an affordable, robust ceramic joining technology (ARCJoinT) to join silicon carbide (CG-Nicalon(sup TM)) fiber-reinforced-chemically vapor infiltrated (CVI) silicon carbide matrix composites is addressed. Experimental results are presented for the time and temperature dependence of the shear strength of these joints in air up to 1200 C. From compression testing of double-notched joint specimens with a notch separation of 4 mm, it was found that the apparent shear strength of the joints decreased from 92 MPa at room temperature to 71 MPa at 1200 C. From shear stress-rupture testing in air at 1200 C it was found that the shear strength of the joints decreased rapidly with time from an initial shear strength of 71 to 17.5 MPa after 14.3 hr. The implications of these results in relation to the expected long-term service life of these joints in applications at elevated temperatures are discussed.

  11. Fabrication of Dual Phase Magnesia-Zirconia Ceramics Doped with Plutonia and Erbia

    SciTech Connect

    Paul A. Lessing; Timothy A. Hyde

    2006-06-01

    Dual phase magnesia-zirconia ceramics doped with plutonia and erbia are being evaluated as an inert matrix fuel (IMF) for light water reactors (LWR). The motivation for this work is to develop an IMF with a thermal conductivity superior to that of the fuels based on single-phase yttria stabilized zirconia. The innovative fuel developed at INL is comprised of two major phases: pure MgO and quaternary solid solution consisting of MgO, ZrO{sub 2}, Er{sub 2}O{sub 3} and PuO{sub 2}. Pure MgO phase acts as an efficient heat conductor. It has been shown [1] that dual phase MgO-ZrO{sub 2} ceramics have the thermal conductivity superior to that of UO{sub 2} and have notable chemical resistance to water at the temperature of 573 K and pressure 8.6 MPa, which makes them attractive for use as an IMF matrix in LWRs.

  12. Fabrication of dual phase magnesia-zirconia ceramics doped with plutonia and erbia

    SciTech Connect

    P. G. Medvedev; J. F. Jue; S. M. Frank

    2006-06-01

    Dual phase magnesia-zirconia ceramics doped with plutonia and erbia are being evaluated as an inert matrix fuel (IMF) for light water reactors (LWR). The motivation for this work is to develop an IMF with a thermal conductivity superior to that of the fuels based on single-phase yttria stabilized zirconia. The innovative fuel developed at INL is comprised of two major phases: pure MgO and quaternary solid solution consisting of MgO, ZrO{sub 2}, Er{sub 2}O{sub 3} and PuO{sub 2}. Pure MgO phase acts as an efficient heat conductor. It has been shown [1] that dual phase MgO-ZrO{sub 2} ceramics have the thermal conductivity superior to that of UO{sub 2} and have notable chemical resistance to water at the temperature of 573 K and pressure 8.6 MPa, which makes them attractive for use as an IMF matrix in LWRs.

  13. Environment-oriented low-cost porous mullite ceramic membrane supports fabricated from coal gangue and bauxite.

    PubMed

    Lü, Qikai; Dong, Xinfa; Zhu, Zhiwen; Dong, Yingchao

    2014-05-30

    Porous mullite ceramic supports for filtration membrane were successfully fabricated via recycling of coal gangue and bauxite at sintering temperatures from 1100 to 1500°C with corn starch as pore-forming agent. The dynamic sintering behaviors, phase evolution, shrinkage, porosity and pore size, gas permeation flux, microstructure and mechanical property were systematically studied. A unique volume-expansion stage was observed at increased temperatures from 1276 to 1481°C caused by a mullitization-crystal-growth process. During this stage, open porosity increases and pore size distributions broaden, which result in a maximum of nitrogen gas flux at 1400°C. The X-ray diffraction results reveal that secondary mullitization took place from 1100°C and the major phase is mullite with a content of ∼84.7wt.% at 1400°C. SEM images show that the as-fabricated mullite supports have a porous microstructure composed of sintered glassy particles embedded with inter-locked mullite crystals, which grew gradually with increasing temperature from rod-like into blocky-like morphologies. To obtain mullite membrane supports with sufficient porosity and acceptable mechanical strength, the relationship between porosity and mechanical strength was investigated, which was fitted using a parabolic equation. PMID:24727016

  14. High temperature corrosion of advanced ceramic materials for hot gas filters. Topical report for part 1 of high temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    SciTech Connect

    Spear, K.E.; Crossland, C.E.; Shelleman, D.L.; Tressler, R.E.

    1997-12-11

    This program consists of two separate research areas. Part 1, for which this report is written, studied the high temperature corrosion of advanced ceramic hot gas filters, while Part 2 studied the long-term durability of ceramic heat exchangers to coal combustion environments. The objectives of Part 1 were to select two candidate ceramic filter materials for flow-through hot corrosion studies and subsequent corrosion and mechanical properties characterization. In addition, a thermodynamic database was developed so that thermochemical modeling studies could be performed to simulate operating conditions of laboratory reactors and existing coal combustion power plants, and to predict the reactions of new filter materials with coal combustion environments. The latter would make it possible to gain insight into problems that could develop during actual operation of filters in coal combustion power plants so that potential problems could be addressed before they arise.

  15. Variable UV laser exposure processing of photosensitive glass-ceramics: maskless micro- to meso-scale structure fabrication

    NASA Astrophysics Data System (ADS)

    Livingston, F. E.; Helvajian, H.

    2005-12-01

    A novel variable UV laser processing technique was developed that enables the concurrent fabrication of structures in photosensitive glass-ceramic (PSGC) materials that range from the micro-scale to the meso-scale domains. This technique combines the advantages of direct-write volumetric laser patterning and batch chemical processing. The merged non-thermal laser fabrication approach relies on the ability to precisely and selectively alter the chemical etch rate of the PSGC by varying the laser exposure during pattern formation. The present study determined that the chemical etch rate of a commercial photosensitive glass-ceramic (FoturanTM, Schott Corp., Germany) in dilute hydrofluoric (HF) acid is strongly dependent on the incident laser irradiance during patterning at λ=266 nm and λ=355 nm. For low laser irradiances, the etch rate ratio (Rexposed/Runexposed) increased nearly linearly with laser irradiance. The slopes of the linear ranges of the etch rate ratios were measured to be 435.9±46.7 μm2/mW and 46.2±2.3 μm2/mW for λ=266 nm and λ=355 nm, respectively. For high laser irradiances, the measured etch rate ratio saturated at ˜30:1 with a maximum absolute etch rate of 18.62±0.30 μm/min. The maximum absolute chemical etch rate was independent of the exposure wavelength. Consequently, variation of the laser exposure during direct-write patterning permits the formation of variegated and proximal high and low aspect ratio structures on a common substrate. The results show that adjacent microstructures with aspect ratios ranging from <1:1 to ˜30:1 can be fabricated in a single, simultaneous batch chemical etch step without the need for a complex masking sequence or post-process ablation step. This new technique facilitates rapid prototype processing with pattern and component uniformity, and achieves material processing over large areas without incurring high cost.

  16. Design, Fabrication, and Characterization of Carbon Nanotube Field Emission Devices for Advanced Applications

    NASA Astrophysics Data System (ADS)

    Radauscher, Erich Justin

    Carbon nanotubes (CNTs) have recently emerged as promising candidates for electron field emission (FE) cathodes in integrated FE devices. These nanostructured carbon materials possess exceptional properties and their synthesis can be thoroughly controlled. Their integration into advanced electronic devices, including not only FE cathodes, but sensors, energy storage devices, and circuit components, has seen rapid growth in recent years. The results of the studies presented here demonstrate that the CNT field emitter is an excellent candidate for next generation vacuum microelectronics and related electron emission devices in several advanced applications. The work presented in this study addresses determining factors that currently confine the performance and application of CNT-FE devices. Characterization studies and improvements to the FE properties of CNTs, along with Micro-Electro-Mechanical Systems (MEMS) design and fabrication, were utilized in achieving these goals. Important performance limiting parameters, including emitter lifetime and failure from poor substrate adhesion, are examined. The compatibility and integration of CNT emitters with the governing MEMS substrate (i.e., polycrystalline silicon), and its impact on these performance limiting parameters, are reported. CNT growth mechanisms and kinetics were investigated and compared to silicon (100) to improve the design of CNT emitter integrated MEMS based electronic devices, specifically in vacuum microelectronic device (VMD) applications. Improved growth allowed for design and development of novel cold-cathode FE devices utilizing CNT field emitters. A chemical ionization (CI) source based on a CNT-FE electron source was developed and evaluated in a commercial desktop mass spectrometer for explosives trace detection. This work demonstrated the first reported use of a CNT-based ion source capable of collecting CI mass spectra. The CNT-FE source demonstrated low power requirements, pulsing

  17. Advances in LIGA-Based Post-Mold Fabrication

    SciTech Connect

    Christenson, T.R.

    1998-10-21

    The establishment of a process to allow planarization of deep x-ray lithography based microfabncated metal components via diamond lapping has enabled examination of three additional microfabrication issues. The areas of improvement that are discussed include materials, microassembly and packaging, and multilevel fabrication. New materials work has centered on magnetic materials including precision micromagnets and surface treatments of electrodeposited materials. Assembly and packaging has been aided by deep silicon etch processing and the use of conventional precision milling equipment combined with press-tit assembly. Diffhsion bonding is shown to be a particularly important approach to achieving multilevel metal mechanisms and furthermore shows promise for achieving batch assembled and packaged high aspect-ratio metal micromechanics,

  18. Advanced fabrication techniques for hydrogen-cooled engine structures

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.; Arefian, V. V.; Warren, H. A.; Vuigner, A. A.; Pohlman, M. J.

    1985-01-01

    Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.

  19. Design and fabrication of advanced hybrid circuits for high energy physics

    SciTech Connect

    Haller, G.M.; Moss, J.; Freytag, D.R.; Nelson, D.; Yim, A.; Lo, C.C.

    1987-10-01

    Current design and fabrication techniques of hybrid devices are explained for the Drift Chamber and the Liquid Argon Calorimeter for the Stanford Linear Collider Large Detector (SLD) at SLAC. Methods of developing layouts, ranging from hand-cut templates to advanced designs utilizing CAD tools with special hybrid design software were applied. Physical and electrical design rules for good yield and performance are discussed. Fabrication and assembly of the SLD hybrids are described. 7 refs., 10 figs.

  20. Advances in fabrication of Ag-clad Bi-2223 superconductors.

    SciTech Connect

    Balachandran, U.

    1998-09-04

    Powder-in-tube (PIT) processing was used to fabricate multifilamentary Ag-clad Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (Bi-2223) superconductors for various electric power applications. Enhancements in the transport current properties of long lengths of multifilament tapes were achieved by increasing the packing density of the precursor powder, improving the mechanical deformation, and adjusting the cooling rate. The dependence of the critical current density on magnetic field and temperature for the optimally processed tapes was measured. J{sub c} was greater than 10{sup 4} (A/cm{sup 2}) at 20 K for magnetic field up to 3 T and parallel to the c-axis which is of interest for use in refrigerator coded magnets. An attempt was made to combine the good alignment of Bi-2223 grains in Ag-sheathed superconducting tapes to obtain high J{sub c} values at high temperature and low field, and good intrinsic pinning of YBa{sub 2}Cu{sub 3}O{sub 7{minus}d} (Y-123) thin film to maintain high J{sub c} values in high fields. A new composite multifilament tape was fabricated such that the central part contained Bi-2223 filaments, with the primary function of conducting the transport current. The central Bi-2223 filaments were surrounded by Y-123 thin film to shield the applied magnetic field and protect the Bi-2223 filaments. The J{sub c} values of the composite tape were better than those of an uncoated tape. In the case of 77 K applications, an I{sub c} of about 60 A was obtained in a 150 m long tape and zero applied magnetic field. In-situ strain characteristics of the mono- and multifilament tapes were conducted.

  1. Fabrication and evaluation of advanced titanium structural panels for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Payne, L.

    1977-01-01

    Flightworthy primary structural panels were designed, fabricated, and tested to investigate two advanced fabrication methods for titanium alloys. Skin-stringer panels fabricated using the weldbraze process, and honeycomb-core sandwich panels fabricated using a diffusion bonding process, were designed to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 research aircraft. The investigation included ground testing and Mach 3 flight testing of full-scale panels, and laboratory testing of representative structural element specimens. Test results obtained on full-scale panels and structural element specimens indicate that both of the fabrication methods investigated are suitable for primary structural applications on future civil and military supersonic cruise aircraft.

  2. Joining Ceramics By Brazing

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Sudsina, Michael W.

    1992-01-01

    Certain ceramic materials tightly bond together by brazing with suitable alloys. Enables fabrication of parts of wide variety of shapes from smaller initial pieces of ceramics produced directly in only limited variety of shapes.

  3. Method of fabricating metal- and ceramic- matrix composites and functionalized textiles

    SciTech Connect

    Maxwell, James L.; Chavez, Craig A.; Black, Marcie R.

    2012-04-17

    A method of manufacturing an article comprises providing a first sheet, wetting the first sheet with a liquid precursor to provide a first wet sheet, and irradiating the first wet sheet in a pattern corresponding to a first cross section of the article such that the liquid precursor is at least partially converted to a solid in the first cross section. A second sheet is disposed adjacent to the first sheet. The method further comprises wetting the second sheet with the liquid precursor to provide a second wet sheet, and irradiating the second wet sheet in a pattern corresponding to a second cross section of the article such that the liquid precursor is at least partially converted to a solid in the second cross section. In particular the liquid precursor may be converted to a metal, ceramic, semiconductor, semimetal, or a combination of these materials.

  4. Fabrication and characterization of bioactive glass-ceramic using soda-lime-silica waste glass.

    PubMed

    Abbasi, Mojtaba; Hashemi, Babak

    2014-04-01

    Soda-lime-silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity. PMID:24582266

  5. Development of sensors for ceramic components in advanced propulsion systems: Survey and evaluation of measurement techniques for temperature, strain and heat flux for ceramic components in advanced propulsion systems

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1988-01-01

    The report presents the final results of Tasks 1 and 2, Development of Sensors for Ceramic Components in Advanced Propulsion Systems (NASA program NAS3-25141). During Task 1, an extensive survey was conducted of sensor concepts which have the potential for measuring surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. Each sensor concept was analyzed and evaluated under Task 2; sensor concepts were then recommended for further development. For temperature measurement, both pyrometry and thermographic phosphors are recommended for measurements up to and beyond the melting point of ceramic materials. For lower temperature test programs, the thin-film techniques offer advantages in the installation of temperature sensors. Optical strain measurement techniques are recommended because they offer the possibility of being useful at very high temperature levels. Techniques for the measurement of heat flux are recommended for development based on both a surface mounted sensor and the measurement of the temperature differential across a portion of a ceramic component or metallic substrate.

  6. Long-term testing of advanced ceramics: Concerns, insights, and recommendations

    SciTech Connect

    Jenkins, M.G.

    1996-10-01

    Advanced ceramics have reached a level of material development to warrant serious consideration for use in advanced heat engine designs. Typically, design requirements based on service conditions may include 25,000 h lifetimes under stresses and temperatures of up to 250 MPa and 1,370 C, respectively, with probabilities of failure of < 0.1%. To assure that materials meet these stringent requirements requires long-term testing under the service conditions. Tensile tests at 1,370 C in ambient air have been conducted on silicon nitride alloys to 5,000 h with reports of 10,000 h tests for silicon carbide. To provide useful data, such long-term tests must incorporate such meticulous attention to detail as: strict temperature control ({+-} 5 C); accurate temperature measurement (1% of the nominal temperature); close control of grip cooling ({+-} 0.1 C) and ambient environment ({+-} 0.25 C); stable, high-resolution extensometry ({+-} 0.5 {micro}m); reliable heating (MTBF > 10,000 h) and load control (gravity-controlled, dead load), and responsive data acquisition systems (12-bit, digital collection). Data thus obtained can be used as input into design codes such as NASA CARES/LIFE to predict and confirm reliability/durability.

  7. Fabrication of synthetic diffractive elements using advanced matrix laser lithography

    NASA Astrophysics Data System (ADS)

    Škereň, M.; Svoboda, J.; Květoň, M.; Fiala, P.

    2013-02-01

    In this paper we present a matrix laser writing device based on a demagnified projection of a micro-structure from a computer driven spatial light modulator. The device is capable of writing completely aperiodic micro-structures with resolution higher than 200 000 DPI. An optical system is combined with ultra high precision piezoelectric stages with an elementary step ~ 4 nm. The device operates in a normal environment, which significantly decreases the costs compared to competitive technologies. Simultaneously, large areas can be exposed up to 100 cm2. The capabilities of the constructed device will be demonstrated on particular elements fabricated for real applications. The optical document security is the first interesting field, where the synthetic image holograms are often combined with sophisticated aperiodic micro-structures. The proposed technology can easily write simple micro-gratings creating the color and kinetic visual effects, but also the diffractive cryptograms, waveguide couplers, and other structures recently used in the field of optical security. A general beam shaping elements and special photonic micro-structures are another important applications which will be discussed in this paper.

  8. MICRO-SEISMOMETERS VIA ADVANCED MESO-SCALE FABRICATION

    SciTech Connect

    Garcia, Caesar A; Onaran, Guclu; Avenson, Brad; Hall, Neal

    2014-11-07

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) seek revolutionary sensing innovations for the monitoring of nuclear detonations. Performance specifications are to be consistent with those obtainable by only an elite few products available today, but with orders of magnitude reduction in size, weight, power, and cost. The proposed commercial innovation calls upon several technologies including the combination of meso-scale fabrication and assembly, photonics-based displacement / motion detection methods, and the use of digital control electronics . Early Phase II development has demonstrated verified and repeatable sub 2ng noise floor from 3Hz to 100Hz, compact integration of 3-axis prototypes, and robust deployment exercises. Ongoing developments are focusing on low frequency challenges, low power consumption, ultra-miniature size, and low cross axis sensitivity. We are also addressing the rigorous set of specifications required for repeatable and reliable long-term explosion monitoring, including thermal stability, reduced recovery time from mass re-centering and large mechanical shocks, sensitivity stability, and transportability. Successful implementation will result in small, hand-held demonstration units with the ability to address national security needs of the DOE/NNSA. Additional applications envisioned include military/defense, scientific instrumentation, oil and gas exploration, inertial navigation, and civil infrastructure monitoring.

  9. Characterization and modeling of tensile behavior of ceramic woven fabric composites

    NASA Technical Reports Server (NTRS)

    Kuo, Wen-Shyong; Chen, Wennei Y.; Parvizi-Majidi, Azar; Chou, Tsu-Wei

    1991-01-01

    This paper examines the tensile behavior of SiC/SiC fabric composites. In the characterization effort, the stress-strain relation and damage evolution are studied with a series of loading and unloading tensile test experiments. The stress-strain relation is linear in response to the initial loading and becomes nonlinear when loading exceeds the proportional limit. Transverse cracking has been observed to be a dominant damage mode governing the nonlinear deformation. The damage is initiated at the inter-tow pores where fiber yarns cross over each other. In the modeling work, the analysis is based upon a fiber bundle model, in which fiber undulation in the warp and fill directions and gaps among fiber yarns have been taken into account. Two limiting cases of fabric stacking arrangements are studied. Closed form solutions are obtained for the composite stiffness and Poisson's ratio. Transverse cracking in the composite is discussed by applying a constant failure strain criterion.

  10. Glass ceramics for explosive device headers

    SciTech Connect

    Ballard, C. P.; Eagan, R. J.; Kjeldgaard, E. A.

    1980-01-01

    The desired features of a header for our advanced explosive devices include small size; 700 Mpa static burst strength; corrosion resistant alloys for electrodes, bridgewire, and housing; integral charge holder; high thermal conductivity (approaching that of alumina ceramic); no braze around the electrodes; design flexibility and quick turnaround time for fabrication of development prototypes; and low cost.

  11. Fabrication and characterization of dense ceramic membranes for partial oxidation of methane

    SciTech Connect

    Balachandran, U.; Ma, B.; Dusek, J.T.; Picciolo, J.J.; Mieville, R.L.; Maiya, P.S.; Kleefisch, M.S.; Udovich, C.A.

    1995-06-01

    In this technology, air is used as the oxidant for methane conversion reactions, thiu eliminating tne need for an expensive oxygen plant. Mixed-conducting ceramic materials have been produced from mixed-oxide system of the La-Sr-Fe-Co-O (SFC) type, in the form of tubes and bars. Thermodynamic stability of the tubes was studied vs oxygen partial pressure by high-temperature XRD. Mechanical properties of the SFC-2 (SrFeCo{sub 0.5}O{sub x}) material were adequate for reactor use. Electronic and ionic conductivities showed that SFC-2 is unique in that its ratio of ionic to electronic conductance is close to unity. Performance of the membrane tubes was good only with SFC-2. Fracture of other SFC tubes was consequence of an oxygen gradient that introduced a volumetric lattice difference between the inner and outer walls. SFC-2 tubes provided methane conversion efficiencies >99% in a reactor and have operated successfully for >1000 h.

  12. Fabrication and modeling of bismuth titanate-PZT ceramic transducers for high temperature applications

    NASA Astrophysics Data System (ADS)

    Reinhardt, B.; Searfass, C.; Cyphers, R.; Sinding, K.; Pheil, C.; Tittmann, B.

    2013-01-01

    Utilization of a spray-on deposition technique of ferroelectric bismuth titanate (Bi4Ti3O12) composites has a competitive advantage to standard ultrasonic transducers. These can conform to curved surfaces, can operate at high temperature (Curie-Weiss temperature 685 °C) and are mechanically well-coupled to a substrate. However, an issue with many high temperature transducers such as bismuth titanate ceramics is that they have relatively low transduction efficiency, i.e. d33 is about 12-14 pC/F in Bi4Ti3O12 versus 650 pC/F in PZT-5H. It is a common conception that high-temperature capability comes at the cost of electro-mechanical coupling. It will be shown that the high temperature capability of bismuth-titanate-PZT composite transducers using the spray-on deposition technique previously developed, improves the electro-mechanical coupling while maintaining the high temperature performance and mechanical coupling. This material could provide advantages in harsh environments where high signal-to-noise ratios are needed.

  13. Materials design considerations involved in the fabrication of implantable bionics by metallization of ceramic substrates.

    PubMed

    Patel, Sunil; Guenther, Thomas; Dodds, Christopher W D; Kolke, Sergej; Privat, Karen L; Matteucci, Paul B; Suaning, Gregg J

    2013-01-01

    The Pt metallization of co-fired Al2O3/SiO2 substrates containing Pt feedthroughs was shown to be a suitable means to construct implantable bionics. The use of forge welding to join an electrode to such a metallized feedthrough was demonstrated and subsequently evaluated through the use of metallography and electron microscopy. Metallurgical phenomena involved in forge welding relevant to the fabrication of all types of biomedical implants are discussed within this paper. The affect of thermal profiles used in brazing or welding to build implantable devices from metal components is analysed and the case for considered selection of alloys in implant design is put forward. PMID:24109798

  14. Micropen direct-write technique for fabrication of advanced electroceramic and optical materials

    NASA Astrophysics Data System (ADS)

    Sun, Jingjing

    Direct-write technologies, a subset of the rapid prototyping, have been applied for many applications including electronics, photonics and biomedical engineering. Among them, Micropen(TM) is a promising technique, providing precision deposition of materials with various viscosities, on-line design changes and writing on nonplanar substrates. The objective of this project was to directly write two- and three-dimensional novel structures by Micropen(TM) for potential optical and transducer applications. First, to gain a basic understanding of Micropen(TM) operation, poly(methyl methacrylate) (PMMA) solutions were developed as a model system. The effects of solution rheological properties on deposition conditions were investigated. Secondly, PMMA/SiO2 hybrids were developed using sol-gel process. The effects of organic/inorganic ratios on thermal stability, microstructure and optical properties were studied. The solution with 80 wt% PMMA loading was chosen to deposit lines for optical applications. Another application was the direct-write of lead zirconate titanate (PZT) thick films (6-70 mum) for MEMS or high frequency medical imaging applications. Pastes consisting of 15-30 vol% ceramic loading in a sol-gel solution were prepared for the deposition of films on various substrates. The PZT sol was used as a binder as well as to achieve low temperature heat treatment of the films. Using the 15 vol% paste with a 250-mum pen tip, a four-layer film was deposited on a silicon substrate. This 16-mum film with 1 cm 2 area had K of 870, tandelta of 4.1%, Pr of 12.2 muC/cm 2 and Ec of 27 kV/cm. Furthermore, Micropen(TM) was utilized for the direct-write of ceramic skeletal structures to develop PZT ceramic/polymer composites with 2-2 connectivity for medical ultrasound transducers. Ceramic/binder based pastes were developed as writing materials. The 35 vol% paste exhibited shear thinning with a viscosity of 45 Pa˙s at lower shear rate and 3 Pa˙s at higher shear rate. Using a

  15. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed engine design and development activity included engine mechanical design, power turbine flow-path design and mechanical layout, and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology

  16. Comparison of the properties of tonpilz transducers fabricated with 001 fiber-textured lead magnesium niobate-lead titanate ceramic and single crystals.

    PubMed

    Brosnan, Kristen H; Messing, Gary L; Markley, Douglas C; Meyer, Richard J

    2009-11-01

    Tonpilz transducers are fabricated from 001 fiber-textured 0.72Pb(Mg(1/3)Nb(2/3))O(3)-0.28PbTiO(3) (PMN-28PT) ceramics, obtained by the templated grain growth process, and PMN-28PT ceramic and Bridgman grown single crystals of the same composition. In-water characterization of single element transducers shows higher source levels, higher in-water coupling, and more usable bandwidth for the 81 vol % textured PMN-28PT device than for the ceramic PMN-28PT element. The 81 vol % textured PMN-28PT tonpilz element measured under large signals shows linearity in sound pressure levels up to 0.23 MV/m drive field but undergoes a phase transition due to a lowered transition temperature from the SrTiO(3) template particles. Although the textured ceramic performs well in this application, it could be further improved with compositional tailoring to raise the transition temperature and better processing to improve the texture quality. With these improvements textured piezoelectric ceramics will be viable options for medical ultrasound, actuators, and sonar applications because of their ease of processing, compositional homogeneity, and potentially lower cost than single crystal. PMID:19894807

  17. Fabrication of glass-ceramics containing spin-chain compound SrCuO{sub 2} and its high thermal conductivity

    SciTech Connect

    Terakado, Nobuaki Watanabe, Kouki; Kawamata, Takayuki; Yokochi, Yuudai; Takahashi, Yoshihiro; Koike, Yoji; Fujiwara, Takumi

    2015-04-06

    High thermal conductivity materials are in great demand for heat-flow control and heat dissipation in electronic devices. In this study, we have produced a glass-ceramics that contains spin-chain compound SrCuO{sub 2} and have found that the glass-ceramics yields high thermal conductivity of ∼5 W K{sup −1} m{sup −1} even at room temperature. The glass-ceramics is fabricated through crystallization of inhomogeneous melt-quenched oxides made from SrCO{sub 3}, CuO, Li{sub 2}CO{sub 3}, Ga{sub 2}O{sub 3}, and Al{sub 2}O{sub 3}. Transmission electron microscopy and X-ray and electron diffraction reveal that SrCuO{sub 2} crystallites with a size of 100–200 nm are precipitated in the glass-ceramics. The highness of the thermal conductivity is attributable to two sources: one is elongation of phonon mean free path due to the crystallization of the inhomogeneous structure or structural ordering. The other is emergence of the heat carriers, spinons, in the SrCuO{sub 2}. This highly thermal conductive glass-ceramics is expected to be utilized as base materials for heat-flow control devices.

  18. ATTAP/AGT101 - Year 2 progress in ceramic technology development

    NASA Technical Reports Server (NTRS)

    Kidwell, J. R.; Lindberg, L. J.; Morey, R. E.

    1990-01-01

    The progress made by the Advanced Turbine Technology Applications Project (ATTAP) is summarized, with emphasis on the following areas: ceramic materials assessment and characterization, ceramic impact damage assessment, ceramic combustor evaluation, turbine inlet particle separator development, impact-tolerant turbine designs, and net-shape ceramic component fabrications. In the evolutionary ceramics development in the Automotive Gas Turbine (AGT101) and ATTAP programs initial designs were conceived to reduce stresses by using well-established criteria: bodies of revolution were preferred over nonaxisymmetric geometries, sharp corners were avoided, the contact area between components was kept as large as possible, and small parts were preferred over large when feasible. Projects discussed include: initial ceramic component fabrication by ceramic suppliers in 1990, engine test to 1371 C in 1991, 100-hr test bed engine durability test in 1991, and 300-hr test bed engine durability in 1992.

  19. Development of an advanced ceramic turbine wheel for an air turbine starter

    NASA Astrophysics Data System (ADS)

    Poplawsky, Carl J.; Lindberg, Laura; Robb, Scott; Roundy, James

    1992-10-01

    A ceramic turbine wheel has been designed as a retrofit for Waspaloy for a military cartridge mode air turbine starter. This results in reduced cost and weight while increasing resistance to temperature, erosion, and corrosion. Techniques used to perform ceramic turbine three-dimensional fast fracture reliability analysis were verified with spin testing of ceramic test rotors and correlated well with burst speed predictions. Reliability estimates have been made for design and proof conditions, providing guidance for selecting a ceramic supplier and for determining proof test yield. Room temperature whirlpit burst testing is planned to verify the mechanical design and reliability of the wheel.

  20. Development of an advanced ceramic turbine wheel for an air turbine starter

    SciTech Connect

    Poplawsky, C.J.; Lindberg, L.; Robb, S.; Roundy, J.

    1992-01-01

    A ceramic turbine wheel has been designed as a retrofit for Waspaloy for a military cartridge mode air turbine starter. This results in reduced cost and weight while increasing resistance to temperature, erosion, and corrosion. Techniques used to perform ceramic turbine three-dimensional fast fracture reliability analysis were verified with spin testing of ceramic test rotors and correlated well with burst speed predictions. Reliability estimates have been made for design and proof conditions, providing guidance for selecting a ceramic supplier and for determining proof test yield. Room temperature whirlpit burst testing is planned to verify the mechanical design and reliability of the wheel. 9 refs.

  1. Multilayer ceramic oxide solid electrolyte for fuel cells and electrolysis cells and method for fabrication thereof

    NASA Technical Reports Server (NTRS)

    Schroeder, James E. (Inventor); Anderson, Harlan U. (Inventor)

    1990-01-01

    An unitary layered ceramic structure is disclosed which comprises co-sintered layers. The co-sintered structure comprises a sintered central layer of yttria stabilized zirconia (YSZ) which is about 8 mole percent yttria and having a density of at least about 95% of theoretical, and sintered outer layers of strontium lanthanum manganite (LSM) having the approximate molecular composition La.sub.0.8 Sr.sub.0.2 MnO.sub.3, having a density from about 50 to about 60% of theoretical, and having interconnected porosity from about 40 to 50% with an interconnected pore diameter from about one micron to about five microns. The sintered central layer is sandwiched by and bonded and sintered to the outer layers and is essentially free of significant amounts of manganese. A process for making the unitary composition-of-matter is also disclosed which involves tape casting a LSM tape and then on top thereof casting a YSZ tape. The process comprises presintering LSM powder at 1250.degree. F., crushing the presintered commercially available LSM powder, forming a slurry with the crushed LSM, a binder and solvent, tape casting the slurry and allowing the slurry to air dry. A mixture of commercially available submicron size particle YSZ powder is milled with a dispersant and solvent to disperse the YSZ particles thereby forming a dispersed YSZ slurry. The YSZ slurry is then tape cast on the dried LSM tape. If desired, a third layer of LSM can be cast on top of the dried YSZ layer. After drying the composite LSM/YSZ and LSM/YSZ/LSM tapes are fired at 1300.degree. C. No migration of manganese into the YSZ layer was observed with scanning electron microscope/edax in the sintered multilayer tape.

  2. Oxidation Characterization of Hafnium-Based Ceramics Fabricated by Hot Pressing and Electric Field-Assisted Sintering

    NASA Technical Reports Server (NTRS)

    Gasch, Matt; Johnson, Sylvia; Marschall, Jochen

    2010-01-01

    Ceramic borides, such as hafnium diboride (HfB2) and zirconium diboride (ZrB2), are members of a family of materials with extremely high melting temperatures referred to as Ultra High Temperature Ceramics (UHTCs). UHTCs constitute a class of promising materials for use in high temperature applications, such as sharp leading edges on future-generation hypersonic flight vehicles, because of their high melting points. The controlled development of microstructure has become important to the processing of UHTCs, with the prospect of improving their mechanical and thermal properties. The improved oxidation resistance of HfB2 has also become important if this material is to be successfully used at temperatures above 2000 C. Furthermore, the use of UHTCs on the leading edges of vehicles traveling at hypersonic speeds will mean exposure to a mixed oxidation environment comprised of both molecular and atomic oxygen. The current study has investigated the high-temperature oxidation behavior of HfB2-based materials in a pure O2 environment, as well as in environments containing different levels of dissociated oxygen (O/O2). Materials were processed by two techniques: conventional hot pressing (HP) and electric field-assisted sintering (FAS). Their oxidation behavior was evaluated in both a tube furnace at 1250 C for 3 hours and in a simulated re-entry environment in the Advanced Heating Facility (AHF) arcjet at NASA Ames Research Center, during a 10-minute exposure to a cold wall heat flux of 250W/sq cm and stagnation pressure of 0.1-0.2 atm. The microstructure of the different materials was characterized before and after oxidation using scanning electron microscopy (SEM).

  3. The Low Pressure Gas Effects On The Potency Of An Electron Beam On Ceramic Fabric Materials For Space Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.; Fragomeni, James M.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This investigation was undertaken to evaluate if molten metal or electron beam impingement could damage or burn through the fabric of the astronauts Extravehicular Mobility Unit (EMU) during electron beam welding exercises performed in space. An 8 kilovolt electron beam with a current in the neighborhood of 100 milliamps from the Ukrainian space welding "Universal Hand Tool" burned holes in Nextel AF-62 ceramic cloth designed to withstand temperatures up to 1427 C. The burnthrough time was on the order of 8 seconds at standoff distances between UHT and cloth ranging from 6 to 24 inches. At both closer (2") and farther (48") standoff distances the potency of the beam against the cloth declined and the burnthrough time went up significantly. Prior to the test it had been expected that the beam would lay down a static charge on the cloth and be deflected without damaging the cloth. The burnthrough is thought to be an effect of partial transmission of beam power by a stream of positive ions generated by the high voltage electron beam from contaminant gas in the "vacuum" chamber. A rough quantitative theoretical computation appears to substantiate this possibility.

  4. Capsule fabrication for in-situ measurement of radiation induced electrical degradation (RIED) of ceramics in HFIR

    SciTech Connect

    Eatherly, W.S.; Heatherly, D.W.; Hurst, M.T.; Qualls, A.L.

    1996-04-01

    A collaborative DOE/Monbusho series of irradiation experiments is being implemented to determine, in situ, the effects of irradiation on the electrical resistivity of ceramic materials. The first experiment, TRIST-ER1, has been designed to irradiate 15 Al{sub 2}O{sub 3} test specimens at 450{degrees}C in an RB position of the High Flux Isotope Reactor (HFIR). Each test specimen is located in a sealed vanadium subcapsule with instrumentation provided to each subcapsule to measure temperature and resistance, and to place a biasing voltage across the specimen. Twelve of the specimens will be biased with 200 V/mm across the sample at all times, while three will not be biased, but can be if so desired during the irradiation. The experiment design, component fabrication, and subcapsule assembly have been completed. A three cycle irradiation, to a fast neutron (E>0.1 MeV) fluence of about 3x10{sup 25}n/m{sup 2} ({approx}3 dpa in Al{sub 2}O{sub 3}), is expected to begin early in March 1996.

  5. Design and fabrication of an advanced, lightweight, high stiffness, railgun barrel concept

    SciTech Connect

    Vrable, D.L.; Rosenwasser, S.N.; Korican, J.A. )

    1991-01-01

    An advanced lightweight and high stiffness railgun barrel design and incorporates several new design features and advanced materials is being developed by SPARTA, Inc. The program is sponsored by the U.S. Army Armament Research, Development, and Engineering Center ARDEC and by the Defense Advanced Research Projects Agency (DARPA). The railgun is 7 m long and has a 90 mm round bore. It is designed to accommodate both solid and plasma armatures. Muzzle energies are expected in the range of 9 to 15 MJ. Analysis and final design has been completed and the barrel and other railgun subassemblies are in the fabrication stage at SPARTA, Inc. in San Diego, California. Initial testing will be conducted at Maxwell Laboratories Green Farm facility in September 1990 and will subsequently be shipped to the ARDEC Railgun Laboratory in October 1990 for full power operation and testing. This paper discusses the design features and fabrication approaches for this high performance, lightweight railgun barrel system.

  6. Advances in Understanding of Swift Heavy-Ion Tracks in Complex Ceramics

    SciTech Connect

    Lang, Maik; Devanathan, Ram; Toulemonde, Marcel; Trautmann, Christina

    2015-02-01

    Tracks produced by swift heavy ions in ceramics are of interest for fundamental science as well as for applications covering different fields such as nanotechnology or fission-track dating of minerals. In the case of pyrochlores with general formula A2B2O7, the track structure and radiation sensitivity shows a clear dependence on the composition. Ion irradiated Gd2Zr2O7, e.g., retains its crystallinity while amorphous tracks are produced in Gd2Ti2O7. Tracks in Ti-containing compositions have a complex morphology consisting of an amorphous core surrounded by a shell of a disordered, defect-fluorite phase. The size of the amorphous core decreases with decreasing energy loss and with increasing Zr content, while the shell thickness seems to be similar over a wide range of energy loss values. The large data set and the complex track structure has made pyrochlore an interesting model system for a general theoretical description of track formation including thermal spike calculations (providing the spatial and temporal evolution of temperature around the ion trajectory) and molecular dynamics (MD) simulations (describing the response of the atomic system).Recent MD advances consider the sudden temperature increase by inserting data from the thermal spike. The combination allows the reproduction of the core-shell track characteristic and sheds light on the early stages of track formation including recrystallization of the molten material produced by the thermal spike.

  7. Thermal Conductivity of Advanced Ceramic Thermal Barrier Coatings Determined by a Steady-state Laser Heat-flux Approach

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    The development of low conductivity and high temperature capable thermal barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity under future high-performance and low-emission engine heat-flux conditions. In this paper, a unique steady-state CO2 laser (wavelength 10.6 microns) heat-flux approach is described for determining the thermal conductivity and conductivity deduced cyclic durability of ceramic thermal and environmental barrier coating systems at very high temperatures (up to 1700 C) under large thermal gradients. The thermal conductivity behavior of advanced thermal and environmental barrier coatings for metallic and Si-based ceramic matrix composite (CMC) component applications has also been investigated using the laser conductivity approach. The relationships between the lattice and radiation conductivities as a function of heat flux and thermal gradient at high temperatures have been examined for the ceramic coating systems. The steady-state laser heat-flux conductivity approach has been demonstrated as a viable means for the development and life prediction of advanced thermal barrier coatings for future turbine engine applications.

  8. Sintering, properties and fabrication of Si3N4 + Y2O3 based ceramics

    NASA Technical Reports Server (NTRS)

    Quackenbush, C. L.; Smith, J. T.; Neil, J. T.; French, K. W.

    1983-01-01

    Pure silicon nitride shows a remarkable resistance to sintering without the use of densification additives. The present investigation is concerned with results which show the effect of chemical content on sinterability, taking into account the composition, raw material impurities, and processing contaminants. Aspects of sintering are discussed along with strength characteristics, and oxidation relations. Attention is given to phase field I and II materials, phase field III and IV materials, tungsten carbide and oxidation at 600 C, and studies involving shape fabrication by injection molding. It was found that in sintering Si3N4 + Y2O3 an increase in the amount of Y2O3 and, in particular, the addition of Al2O3 enhances the fluidity of the liquid phase.

  9. Studies of dynamic contact of ceramics and alloys for advanced heat engines. Final report

    SciTech Connect

    Gaydos, P.A.; Dufrane, K.F.

    1993-06-01

    Advanced materials and coatings for low heat rejection engines have been investigated for almost a decade. Much of the work has concentrated on the critical wear interface between the piston ring and cylinder liner. Simplified bench tests have identified families of coatings with high temperature wear performance that could meet or exceed that of conventional engine materials at today`s operating temperatures. More recently, engine manufacturers have begun to optimize material combinations and manufacturing processes so that the materials not only have promising friction and wear performance but are practical replacements for current materials from a materials and manufacturing cost standpoint. In this study, the advanced materials supplied by major diesel engine manufacturers were evaluated in an experimental apparatus that simulates many of the in-cylinder conditions of a low heat rejection diesel engine. Results include ring wear factors and average dynamic friction coefficients measured at intervals during the test. These results are compared with other advanced materials tested in the past as well as the baseline wear of current engines. Both fabricated specimens and sections of actual ring and cylinder liners were used in the testing. Observations and relative friction and wear performance of the individual materials are provided.

  10. Marginal and internal fit of heat pressed versus CAD/CAM fabricated all-ceramic onlays after exposure to thermo-mechanical fatigue

    PubMed Central

    Guess, Petra C.; Vagopoulou, Thaleia; Zhang, Yu; Wolkewitz, Martin; Strub, Joerg R.

    2015-01-01

    Objectives The aim of the study was to evaluate the marginal and internal fit of heat-pressed and CAD/CAM fabricated all-ceramic onlays before and after luting as well as after thermo-mechanical fatigue. Materials and Methods Seventy-two caries-free, extracted human mandibular molars were randomly divided into three groups (n=24/group). All teeth received an onlay preparation with a mesio-occlusal-distal inlay cavity and an occlusal reduction of all cusps. Teeth were restored with heat-pressed IPS-e.max-Press* (IP, *Ivoclar-Vivadent) and Vita-PM9 (VP, Vita-Zahnfabrik) as well as CAD/CAM fabricated IPS-e.max-CAD* (IC, Cerec 3D/InLab/Sirona) all-ceramic materials. After cementation with a dual-polymerizing resin cement (VariolinkII*), all restorations were subjected to mouth-motion fatigue (98N, 1.2 million cycles; 5°C/55°C). Marginal fit discrepancies were examined on epoxy replicas before and after luting as well as after fatigue at 200x magnification. Internal fit was evaluated by multiple sectioning technique. For the statistical analysis, a linear model was fitted with accounting for repeated measurements. Results Adhesive cementation of onlays resulted in significantly increased marginal gap values in all groups, whereas thermo-mechanical fatigue had no effect. Marginal gap values of all test groups were equal after fatigue exposure. Internal discrepancies of CAD/CAM fabricated restorations were significantly higher than both press manufactured onlays. Conclusions Mean marginal gap values of the investigated onlays before and after luting as well as after fatigue were within the clinically acceptable range. Marginal fit was not affected by the investigated heat-press versus CAD/CAM fabrication technique. Press fabrication resulted in a superior internal fit of onlays as compared to the CAD/CAM technique. Clinical Relevance Clinical requirements of 100 μm for marginal fit were fulfilled by the heat-press as well as by the CAD/CAM fabricated all-ceramic onlays

  11. Fundamentals and advances in the development of remote welding fabrication systems

    NASA Technical Reports Server (NTRS)

    Agapakis, J. E.; Masubuchi, K.; Von Alt, C.

    1986-01-01

    Operational and man-machine issues for welding underwater, in outer space, and at other remote sites are investigated, and recent process developments are described. Probable remote welding missions are classified, and the essential characteristics of fundamental remote welding tasks are analyzed. Various possible operational modes for remote welding fabrication are identified, and appropriate roles for humans and machines are suggested. Human operator performance in remote welding fabrication tasks is discussed, and recent advances in the development of remote welding systems are described, including packaged welding systems, stud welding systems, remotely operated welding systems, and vision-aided remote robotic welding and autonomous welding systems.

  12. Robocasting of Ceramics and Composites Using Fine Particle Suspensions

    SciTech Connect

    CESARANO III,JOSEPH

    1999-10-28

    Solid freeform fabrication is the near-net-shape manufacturing of components by sequentially stacking thin layers of material until complicated three dimensional shapes are produced. The operation is computer controlled and requires no molds. This exciting new field of technology provides engineers with the ability to rapidly produce prototype parts directly from CAD drawings and oftentimes little or no machining is necessary after fabrication. Techniques for freeform fabrication with several types of plastics and metals are already quite advanced and maybe reviewed in references 1 and 2. Very complicated plastic models can be fabricated by stereolithography, selective laser sintering, fused deposition modeling, or three-dimensional ink jet printing. Metals may be freeformed by the LENS{trademark} technique and porous ceramic bodies by three dimensional printing into a porous powder bed. However, methods for freeform fabrication that utilize particulate slurries to build dense ceramics and composites are not as well developed. The techniques that are being developed for the freeform fabrication of dense structural ceramics primarily revolve around the sequential layering of ceramic loaded polymers or waxes. Laminated Object Manufacturing and CAM-LEM processing use controlled stacking and laser cutting of ceramic tapes [2,3]. Similar to fused deposition modeling, ceramic loaded polymer/wax filaments are being used for the fused deposition of ceramics [2,4]. Extrusion freeform fabrication uses high pressure extrusion to deposit layers of ceramic loaded polymer/wax systems[1]. Modified stereolithographic techniques are also being developed using ceramic loaded ultraviolet curable resins [2]. Pre-sintered parts made with any of these techniques typically have 40-55 vol.% polymeric binder. In this regard, these techniques are analogous to powder injection molding of ceramics. Very long and complicated burnout heat treatments are necessary to produce a dense ceramic

  13. Fabric space radiators

    SciTech Connect

    Antoniak, Z.I.; Krotiuk, W.J.; Webb, B.J.; Prater, J.T.; Bates, J.M.

    1988-01-01

    Future Air Force space missions will require thermal radiators that both survive in the hostile space environment and stow away for minimal bulk during launch. Advances in all aspects of radiator design, construction, and analysis will be necessary to enable such future missions. Currently, the best means for obtaining high strength along with flexibility is through structures known as fabrics. The development of new materials and bonding techniques has extended the application range of fabrics into areas traditionally dominated by monolithic and/or metallic structures. Given that even current spacecraft heat rejection considerations tend to dominate spacecraft design and mass, the larger and more complex designs of the future face daunting challenges in thermal control. Ceramic fabrics bonded to ultra-thin metal liners (foils) have the potential of achieving radiator performance levels heretofore unattainable, and of readily matching the advances made in other branches of spacecraft design. The research effort documented here indicates that both pumped loops and heat pipes constructed in ceramic fabrics stand to benefit in multiple ways. Flexibility and low mass are the main advantages exhibited by fabric radiators over conventional metal ones. We feel that fabric radiators have intrinsic merits not possessed by any other radiator design and need to be researched further. 26 refs., 16 figs., 17 tabs.

  14. TOPICAL REVIEW: Recent advances in the fabrication and adhesion testing of biomimetic dry adhesives

    NASA Astrophysics Data System (ADS)

    Sameoto, D.; Menon, C.

    2010-10-01

    In the past two years, there have been a large number of publications on the topic of biomimetic dry adhesives from modeling, fabrication and testing perspectives. We review and compare the most recent advances in fabrication and testing of these materials. While there is increased convergence and consensus as to what makes a good dry adhesive, the fabrication of these materials is still challenging, particularly for anisotropic or hierarchal designs. Although qualitative comparisons between different adhesive designs can be made, quantifying the exact performance and rating each design is significantly hampered by the lack of standardized testing methods. Manufacturing dry adhesives, which can reliably adhere to rough surfaces, show directional and self-cleaning behavior and are relatively simple to manufacture, is still very challenging—great strides by multiple research groups have however made these goals appear achievable within the next few years.

  15. Advanced experimental applications for x-ray transmission gratings spectroscopy using a novel grating fabrication method.

    PubMed

    Hurvitz, G; Ehrlich, Y; Strum, G; Shpilman, Z; Levy, I; Fraenkel, M

    2012-08-01

    A novel fabrication method for soft x-ray transmission grating and other optical elements is presented. The method uses focused-ion-beam technology to fabricate high-quality free standing grating bars on transmission electron microscopy grids. High quality transmission gratings are obtained with superb accuracy and versatility. Using these gratings and back-illuminated CCD camera, absolutely calibrated x-ray spectra can be acquired for soft x-ray source diagnostics in the 100-3000 eV spectral range. Double grating combinations of identical or different parameters are easily fabricated, allowing advanced one-shot application of transmission grating spectroscopy. These applications include spectroscopy with different spectral resolutions, bandwidths, dynamic ranges, and may serve for identification of high-order contribution, and spectral calibrations of various x-ray optical elements. PMID:22938276

  16. Advanced experimental applications for x-ray transmission gratings spectroscopy using a novel grating fabrication method

    NASA Astrophysics Data System (ADS)

    Hurvitz, G.; Ehrlich, Y.; Strum, G.; Shpilman, Z.; Levy, I.; Fraenkel, M.

    2012-08-01

    A novel fabrication method for soft x-ray transmission grating and other optical elements is presented. The method uses focused-ion-beam technology to fabricate high-quality free standing grating bars on transmission electron microscopy grids. High quality transmission gratings are obtained with superb accuracy and versatility. Using these gratings and back-illuminated CCD camera, absolutely calibrated x-ray spectra can be acquired for soft x-ray source diagnostics in the 100-3000 eV spectral range. Double grating combinations of identical or different parameters are easily fabricated, allowing advanced one-shot application of transmission grating spectroscopy. These applications include spectroscopy with different spectral resolutions, bandwidths, dynamic ranges, and may serve for identification of high-order contribution, and spectral calibrations of various x-ray optical elements.

  17. Fabrication and characterization of Er+3 doped SiO2/SnO2 glass-ceramic thin films for planar waveguide applications

    NASA Astrophysics Data System (ADS)

    Guddala, S.; Chiappini, A.; Armellini, C.; Turell, S.; Righini, G. C.; Ferrari, M.; Narayana Rao, D.

    2015-02-01

    Glass-ceramics are a kind of two-phase materials constituted by nanocrystals embedded in a glass matrix and the respective volume fractions of crystalline and amorphous phase determine the properties of the glass-ceramics. Among these properties transparency is crucial in particular when confined structures, such as, dielectric optical waveguides, are considered. Moreover, the segregation of dopant rare-earth ions, like erbium, in low phonon energy crystalline medium makes these structures more promising in the development of waveguide amplifiers. Here we are proposing a new class of low phonon energy tin oxide semiconductor medium doped silicate based planar waveguides. Er3+ doped (100-x) SiO2-xSnO2 (x= 10, 20, 25 and 30mol%), glass-ceramic planar waveguide thin films were fabricated by a simple sol-gel processing and dip coating technique. XRD and HRTEM studies indicates the glass-ceramic phase of the film and the dispersion of ~4nm diameter of tin oxide nanocrystals in the amorphous phase of silica. The spectroscopic assessment indicates the distribution of the dopant erbium ions in the crystalline medium of tin oxide. The observed low losses, 0.5±0.2 dB/cm, at 1.54 μm communication wavelength makes them a quite promising material for the development of high gain integrated optical amplifiers.

  18. Efficient laser operation based on transparent Nd:Lu2O3 ceramic fabricated by Spark Plasma Sintering.

    PubMed

    Xu, Changwen; Yang, Chengdong; Zhang, Han; Duan, Yanmin; Zhu, Haiyong; Tang, Dingyuan; Huang, Huihui; Zhang, Jian

    2016-09-01

    Efficient laser operation of Nd:Lu2O3 ceramic fabricated by Spark Plasma Sintering (SPS) was demonstrated. Transparent Nd:Lu2O3 ceramic was successfully fabricated by Spark Plasma Sintering and its laser experiment was done. On the 4F3/2 to 4I11/2 transition, the obtained maximum output is 1.25W at the absorbed pump power of 4.15W with a slope efficiency of 38% and two spectral lines at 1076.7nm and 1080.8nm oscillated simultaneously. The slope efficiency of 38% is near two times higher than the previously demonstrated SPSed Nd:Lu2O3 ceramic lasers. On the 4F3/2 to 4I13/2 transition, the laser operated at the wavelength of 1359.7nm and the maximum output of 200mW was obtained at the absorbed pump power of 2.7W. PMID:27607660

  19. Elevated-Temperature "Ultra" Fast Fracture Strength of Advanced Ceramics: An Approach to Elevated-Temperature "Inert" Strength

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Gyekenyesi, J. P.

    1999-01-01

    The determination of "ultra" fast fracture strengths of five silicon nitride ceramics at elevated temperatures has been made by using constant stress-rate ("dynamic fatigue") testing with a series of "ultra" fast test rates. The test material included four monolithic and one SiC whisker-reinforced composite silicon nitrides. Of the five test materials, four silicon nitrides exhibited the elevated -temperature strengths that approaches their respective room-temperature strengths at an "ultra" fast test rate of 3.3 x 10(exp 4) MPa/s. This implies that slow cracks growth responsible for elevated-temperature failure can be eliminated or minimized by using the "ultra" fast test rate. These ongoing experimental results have shed light on laying a theoretical and practical foundation on the concept and definition of elevated-temperature "inert" strength behavior of advanced ceramics.

  20. Ceramic-metal seals for advanced battery systems. [sodium sulfur and lithium sulfur batteries

    NASA Technical Reports Server (NTRS)

    Reed, L.

    1978-01-01

    The search for materials which are electrochemically compatible with the lithium sulfur and sodium sulfur systems is discussed. The use liquid or braze alloys, titanium hydrite coatings, and tungsten yttria for bonding beryllium with ceramic is examined.

  1. Advanced ceramics for land-based gas turbine applications. Final report

    SciTech Connect

    Schneibel, J.H.; Ludeman, E.; Sabol, S.M.

    1997-05-23

    In order to increase the efficiency of land-based gas turbines, inlet gas temperatures have to be increased, and the amount of air which cools the turbine vanes has to be reduced, to the maximum extent possible. Presently, thermal barrier coatings (TBC`s) are the state of the art in achieving these goals. However, since TBC`s are very thin (typically 100 {mu}m), they have clearly limitations. Since all-ceramic turbine vanes would be a very large and risky development step, Westinghouse is considering to protect the leading edges of turbine vanes with high-performance ceramics. This might be done by either replacing the leading edge with a suitably shaped ceramic part, or by modifying the vanes such that they can accommodate ceramic inserts. Among the most important criteria for the success of ceramics in such applications are (a) thermodynamic compatibility with the turbine vane alloy, (b) sufficient thermal shock resistance to survive the thermal cycling during operation and in particular during emergency shut-down, and a design considering the thermal expansion mismatch of the metallic and ceramic components. This paper presents results of work performed on SiC, SiN, and aluminas.

  2. Fabrication of the helical field coil components for the advanced toroidal facility

    SciTech Connect

    Cole, M.J.; Whitson, J.C.; Banks, B.J.

    1987-01-01

    The fabrication techniques used to manufacture the major components of the helical field (HF) coil segments for the Advanced Toroidal Facility (ATF) are described. The major components of an HF coil segment are 14 water-cooled, copper conductors and a T-shaped stainless steel support member (or ''tee''). Twenty-four of these segments were used in the fabrication of two coils for the ATF experiment. The helical shape, accurate position requirements, large size, and potential for high cost required unique approaches to the fabrication of these components. One method of fabrication was to use 44-mm-thick (standard size) plate to form the base and leg of the tee and to join the sections by welding. Because of the tolerance requirements, a thicker plate (70 mm) was used and then contour machined to the final shape. The second approach, conducted in parallel with the first, was to cast the tee as a single piece. The first attempts were to make the casting larger than required, then machine it to final size and shape. The cost of machining either the welded tee or the cast tee was extremely high, so several prototypes were fabricated until a cast tee that required no contour machining was produced. The shape and positional requirements were also the major problems in fabricating the copper conductors, or turns. The approach taken was to make an accurate fixture and position the turns in the fixture, then anneal to remove residual stresses and form the copper turns to the shape of the fixture. The lessons learned in pursuing these fabrication methods are presented. 5 refs., 3 figs.

  3. Ceramic Technology Project. Semiannual progress report, April 1991--September 1991

    SciTech Connect

    Not Available

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS`s Materials Development Program, was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  4. New nano-sized Al2O3-BN coating 3Y-TZP ceramic composites for CAD/CAM-produced all-ceramic dental restorations. Part I. Fabrication of powders.

    PubMed

    Yang, Se Fei; Yang, Li Qiang; Jin, Zhi Hao; Guo, Tian Wen; Wang, Lei; Liu, Hong Chen

    2009-06-01

    Partially sintered 3 mol % yttria-stabilized tetragonal zirconium dioxide (ZrO(2), zirconia) polycrystal (3Y-TZP) ceramics are used in dental posterior restorations with computer-aided design-computer-aided manufacturing (CAD/CAM) techniques. High strength is acquired after sintering, but shape distortion of preshaped compacts during their sintering is inevitable. The aim of this study is to fabricate new machinable ceramic composites with strong mechanical properties that are fit for all-ceramic dental restorations. Aluminum oxide (Al(2)O(3))-coated 3Y-TZP powders were first prepared by the heterogeneous precipitation method starting with 3Y-TZP, Al(NO(3))(3) . 9H(2)O, and ammonia, then amorphous boron nitride (BN) was produced and the as-received composite powders were coated via in situ reaction with boric acid and urea. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to analyze the status of Al(2)O(3)-BN on the surface of the 3Y-TZP particles. TEM micrographs show an abundance of Al(2)O(3) particles and amorphous BN appearing uniformly on the surface of the 3Y-TZP particles after the coating process. The size of the Al(2)O(3) particles is about 20 nm. The XRD pattern shows clearly the peak of amorphous BN among the peaks of ZrO(2). PMID:19223246

  5. Interdisciplinary research and development on the effects of the nature and properties of ceramic materials in the design of advanced structural components

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An educational development and supportive research program on ceramic materials established to advance design methodology, improve materials, and develop engineers knowledgable in design with and use of high performance ceramic materials is described. Emphasis is on the structures and related materials problems in a ceramic turbine engine, but applications in coal gasification, solar conversion, and magnetohydrodynamic technologies are considered. Progress of various research projects in the areas of new materials, processing, characterization, and nondestructive testing is reported. Fracture toughness determination, extended X-ray absorption fine structure measurements, and grain boundary effects in beta-alumina are among the topics covered.

  6. Ceramic Powders

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In developing its product line of specialty ceramic powders and related products for government and industrial customers, including companies in the oil, automotive, electronics and nuclear industries, Advanced Refractory Technologies sought technical assistance from NERAC, Inc. in specific areas of ceramic materials and silicon technology, and for assistance in identifying possible applications of these materials in government programs and in the automotive and electronics industry. NERAC conducted a computerized search of several data bases and provided extensive information in the subject areas requested. NERAC's assistance resulted in transfer of technologies that helped ART staff develop a unique method for manufacture of ceramic materials to precise customer specifications.

  7. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of several types of graphite/polyimide (GR/PI) bonded and bolted joints is reported. The program consists of two concurrent tasks: (1) design and test of specific built up attachments; and (2) evaluation of standard advanced bonded joint concepts. A data base for the design and analysis of advanced composite joints for use at elevated temperatures (561K (550 deg F)) to design concepts for specific joining applications, and the fundamental parameters controlling the static strength characteristics of such joints are evaluated. Data for design and build GR/PI of lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Results for compression and interlaminar shear strengths of Celion 6000/PMR-15 laminates are given. Static discriminator test results for type 3 and type 4 bonded and bolted joints and final joint designs for TASK 1.4 scale up fabrication and testing are presented.

  8. Design, fabrication and evaluation of two-dimensional to three-dimensional nanostructured ceramic/polymer composites for orthopedic regeneration and controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Liu, Huinan

    Desirable cytocompatibility properties of nano-sized ceramics were combined with the tunable degradability and deformability of a select polymer (poly-lactide-co-glycolide, or PLGA) to optimize biological and mechanical properties for orthopedic tissue regeneration. Nanophase ceramics mimic the size scale of constituent components of natural bone and enhance the adsorption of proteins that mediate bone cell adhesion. Results have shown significantly promoted osteoblast (bone-forming cell) adhesion and long-term functions (alkaline phosphatase activity and calcium deposition) on nanophase ceramics compared to conventional (micron-scale) ceramics. Therefore, nano-titania particles were first dispersed in a model polymer (PLGA) matrix using sonication to imitate the nano-sized surface features and distribution of nano-ceramics in/on bone. Surface characteristics of the composites (such as topography, surface area and surface roughness) were studied. Importantly, results showed that osteoblast adhesion was the greatest when surface roughness values of the composites were closer to that of natural bone; this was mediated by controlling the dispersion of titania in PLGA. Moreover, this study demonstrated that the dispersion of nanophase titania in PLGA decreased the harmful acidic pH changes of PLGA as it degrades. From the perspective of mechanical properties, compared to agglomerated nano-titania in PLGA, well-dispersed nanophase titania in PLGA improved the tensile and compressive moduli and strength of these composites. In order to mimic the hierarchical structure of bone, a novel aerosol-based 3D printing technique was used to further fabricate nanostructured 3D ceramic/polymer composites. Osteoblast interactions with these 3D scaffolds provided evidence of an even further promoted bone cell infiltration into such 3D structures. Lastly, nanocomposites were used as novel drug delivery systems to promote bone growth. Specifically, a bone morphogenetic protein (BMP-7

  9. Brazing of ceramic and graphite to metal in the fabrication of ICRF (ion cyclotron range of frequencies) antenna and feedthrough components

    SciTech Connect

    Schechter, D.E.; Sluss, F.; Hoffman, D.J.

    1987-01-01

    Fabrication of some of the more critical components of ion cyclotron range of frequencies (ICRF) antenna and feedthrough assemblies has involved the brazing of alumina ceramic and graphite to various metals. Copper end pieces have been successfully brazed to alumina cylinders for use in feedthroughs for TEXTOR and in feedthroughs and capacitors for a Tokamak Fusion Test Reactor (TFTR) antenna. Copper-plated Inconel rods and tubes have been armored with graphite for construction of Faraday shields on antennas for Doublet III-D and TFTR. Details of brazing procedures and test results, including rf performance, mechanical strength, and thermal capabilities, are presented. 14 figs.

  10. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.

  11. Ceramic technology for solar thermal receivers

    NASA Technical Reports Server (NTRS)

    Kudirka, A. A.; Smoak, R. H.

    1981-01-01

    The high-temperature capability, resistance to corrosive environments and non-strategic nature of ceramics have prompted applications in the solar thermal field whose advantages over metallic devices of comparable performance may begin to be assessed. It is shown by a survey of point-focusing receiver designs employing a variety of ceramic compositions and fabrication methods that the state-of-the-art in structural ceramics is not sufficiently advanced to fully realize the promised benefits of higher temperature capabilities at lower cost than metallic alternatives. The ceramics considered include alumina, berylia, magnesia, stabilized zirconia, fused silica, silicon nitride, silicon carbide, mullite and cordierite, processed by such methods as isostatic pressing, dry pressing, slip casting, extrusion, calendaring and injection molding.

  12. Lightweight ceramic filter components: Evaluation and application

    SciTech Connect

    Eggerstedt, P.M.

    1995-11-01

    Ceramic candle filtration is an attractive technology for particulate removal at high temperatures. The primary objective of this SBIR research program is to increase the performance, durability, and corrosion resistance of lightweight filter candles and filter tubesheet components (Fibrosic{trademark}), fabricated from vacuum formed chopped ceramic fiber (VFCCF), for use in advanced coal utilization applications. Phase 1 results proved that significant gains in material strength and particle retentivity are possible by treatment of VFCCF materials with colloidal ceramic oxides. Phase 2 effort will show how these treated materials tolerate high temperature and vapor-phase alkali species, on a long-term basis. With good durability and corrosion resistance, high temperature capability, and a low installed and replacement cost, these novel materials will help promote commercial acceptance of ceramic candle filter technology, as well as increase the efficiency and reliability of coal utilization processes in general.

  13. Assessment of Japanese technology in advanced glass and ceramic fibers. Final report

    SciTech Connect

    Messier, D.R.

    1992-06-01

    Summarized herein are the findings from a two month trip to Japan from mid-September to mid-November 1991 to evaluate Japanese technology in oxynitride glasses and fibers and in carbide and nitride fibers and whiskers. The information discussed was obtained through visits to universities, companies, Government institutes, and through attendance at three conferences. It was learned that the development of a process for the production of oxynitride glass fibers is still being actively pursued and that, while high temperature instability problems are well-recognized, the production of carbide or nitride fibers with good high temperature stability is still several years away. Also discussed are new developments in several research areas including ceramic matrix composites, sol-gel technology, ceramic powder preparation, and high strength ceramics.

  14. Fabrication and characterization of protonic-ceramic fuel cells and electrolysis cells utilizing infiltrated lanthanum nickelate electrodes

    NASA Astrophysics Data System (ADS)

    Babiniec, Sean M.

    High-temperature protonic ceramics (HTPCs) have gained interest as fuel cell and electrolysis cell electrolytes, as well as hydrogen separation membranes. The transport of hydrogen as opposed to oxygen results in several benefits and applications, including higher fuel efficiency, dehydrogenation of fuel streams, and hydrogen-based chemical synthesis. However, limited work has been done in the development of air/steam electrodes for these devices. This work presents the characterization of lanthanum nickelate, La 2NiO4+delta (LN), as a potential air/steam electrode material for use with BaCe0.2Zr0.7Y0.1O3-delta (BCZY27) HTPC electrolytes fabricated by the solid-state reactive sintering technique. Two types of devices were made; a symmetric cell used for electrode characterization, and a full fuel cell/electrolysis cell used for device performance characterization. The symmetric cell consists of a 1 mm thick BCZY27 substrate with identical air/steam electrodes on both sides. Air/steam electrodes were made by infiltrating ˜ 50 nm lanthanum nickelate nanoparticles into a BCZY27 porous backbone. The fuel cell/electrolysis cell consists of a 1mm thick Ni/BCZY27 anode support, a 25 mum thick BCZY27 electrolyte, and a 50 mum thick porous BCZY27 backbone infiltrated with lanthanum nickelate. Through symmetric cell testing, it was found that the electrode polarization resistance decreases with increasing oxygen content, indicating good oxygen reduction reaction characteristics. A minimum polarization resistance was found as 2.58 Ohm-cm2 in 3% humidied oxygen at 700 °C. Full cell testing revealed a peak power density of 27 mW-cm-2 at 700 °C. Hydrogen flux measurements were also taken in the both galvanic/post-galvanic and electrolytic operation. Galvanic/post-galvanic fluxes exhibit a very high faradaic efficiency. However, electrolytic hydrogen fluxes were much lower than the calculated hydrogen faradaic flux, indicating a different charge carrier other than protons is

  15. Fused deposition of ceramics: A comprehensive experimental, analytical and computational study of material behavior, fabrication process and equipment design

    NASA Astrophysics Data System (ADS)

    Bellini, Anna

    Customer-driven product customization and continued demand for cost and time savings have generated a renewed interest in agile manufacturing based on improvements on Rapid Prototyping (RP) technologies. The advantages of RP technologies are: (1) ability to shorten the product design and development time, (2) suitability for automation and decrease in the level of human intervention, (3) ability to build many geometrically complex shapes. A shift from "prototyping" to "manufacturing" necessitates the following improvements: (1) Flexibility in choice of materials; (2) Part integrity and built-in characteristics to meet performance requirements; (3) Dimensional stability and tolerances; (4) Improved surface finish. A project funded by ONR has been undertaken to develop an agile manufacturing technology for fabrication of ceramic and multi-component parts to meet various needs of the Navy, such as transducers, etc. The project is based on adaptation of a layered manufacturing concept since the program required that the new technology be developed based on a commercially available RP technology. Among various RP technologies available today, Fused Deposition Modeling (FDM) has been identified as the focus of this research because of its potential versatility in the choice of materials and deposition configuration. This innovative approach allows for designing and implementing highly complex internal architectures into parts through deposition of different materials in a variety of configurations in such a way that the finished product exhibit characteristics to meet the performance requirements. This implies that, in principle, one can tailor-make the assemble of materials and structures as per specifications of an optimum design. The program objectives can be achieved only through accurate process modeling and modeling of material behavior. Oftentimes, process modeling is based on some type of computational approach where as modeling of material behavior is based on

  16. Annual Conference on Composites and Advanced Ceramic Materials, 10th, Cocoa Beach, FL, January 19-24, 1986, Proceedings

    SciTech Connect

    Not Available

    1986-08-01

    The structures, performance characteristics, applications, and processing technology of ceramics, ceramic-matrix composites, and ceramic coatings are discussed in reviews and reports. Topics examined include ceramic-metal systems and self-propagating high-temperature synthesis, ceramics for heat engines and high performance, SiC-fiber and SiC-whisker composites, coatings, ceramic tribology, and cutting and grinding methods. Micrographs, graphs, photographs, and tables of numerical data are provided.

  17. Silicon-Based Ceramic-Matrix Composites for Advanced Turbine Engines: Some Degradation Issues

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U. J.

    2000-01-01

    SiC/BN/SiC composites are designed to take advantage of the high specific strengths and moduli of non-oxide ceramics, and their excellent resistance to creep, chemical attack, and oxidation, while circumventing the brittleness inherent in ceramics. Hence, these composites have the potential to take turbine engines of the future to higher operating temperatures than is achievable with metal alloys. However, these composites remain developmental and more work needs to be done to optimize processing techniques. This paper highlights the lingering issue of pest degradation in these materials and shows that it results from vestiges of processing steps and can thus be minimized or eliminated.

  18. Advanced ACTPol Multichroic Polarimeter Array Fabrication Process for 150 mm Wafers

    NASA Astrophysics Data System (ADS)

    Duff, S. M.; Austermann, J.; Beall, J. A.; Becker, D.; Datta, R.; Gallardo, P. A.; Henderson, S. W.; Hilton, G. C.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Pappas, C. G.; Salatino, M.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol (AdvACT) is a third-generation cosmic microwave background receiver to be deployed in 2016 on the Atacama Cosmology Telescope (ACT). Spanning five frequency bands from 25 to 280 GHz and having just over 5600 transition-edge sensor (TES) bolometers, this receiver will exhibit increased sensitivity and mapping speed compared to previously fielded ACT instruments. This paper presents the fabrication processes developed by NIST to scale to large arrays of feedhorn-coupled multichroic AlMn-based TES polarimeters on 150-mm diameter wafers. In addition to describing the streamlined fabrication process which enables high yields of densely packed detectors across larger wafers, we report the details of process improvements for sensor (AlMn) and insulator (SiN_x) materials and microwave structures, and the resulting performance improvements.

  19. Advanced ACTPol Multichroic Polarimeter Array Fabrication Process for 150 mm Wafers

    NASA Astrophysics Data System (ADS)

    Duff, S. M.; Austermann, J.; Beall, J. A.; Becker, D.; Datta, R.; Gallardo, P. A.; Henderson, S. W.; Hilton, G. C.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Pappas, C. G.; Salatino, M.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-03-01

    Advanced ACTPol (AdvACT) is a third-generation cosmic microwave background receiver to be deployed in 2016 on the Atacama Cosmology Telescope (ACT). Spanning five frequency bands from 25 to 280 GHz and having just over 5600 transition-edge sensor (TES) bolometers, this receiver will exhibit increased sensitivity and mapping speed compared to previously fielded ACT instruments. This paper presents the fabrication processes developed by NIST to scale to large arrays of feedhorn-coupled multichroic AlMn-based TES polarimeters on 150-mm diameter wafers. In addition to describing the streamlined fabrication process which enables high yields of densely packed detectors across larger wafers, we report the details of process improvements for sensor (AlMn) and insulator (SiN_x) materials and microwave structures, and the resulting performance improvements.

  20. Design and fabrication of brazed Rene 41 honeycomb sandwich structural panels for advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Swegle, A. R.

    1981-01-01

    The design and fabrication of two large brazed Rene 41 honeycomb panels, the establishment of a test plan, the design and fabrication of a test fixture to subject the panels to cyclic thermal gradients and mechanical loads equivalent to those imposed on an advanced space transportation vehicle during its boost and entry trajectories are discussed. The panels will be supported at four points, creating three spans. The outer spans are 45.7 cm (18 in.) and the center span 76.2 cm (30 in). Specimen width is 30.5 cm (12 in.). The panels were primarily designed by boost conditions simulated by subjecting the panels to liquid nitrogen, 77K (-320 F) on one side and 455K (360 F) on the other side and by mechanically imposing loads representing vehicle fuel pressure loads. Entry conditions were simulated by radiant heating to 1034K (1400 F). The test program subjected the panels to 500 boost thermal conditions. Results are presented.

  1. High-speed, low-damage grinding of advanced ceramics Phase 1. Final report

    SciTech Connect

    Kovach, J.A.; Malkin, S.

    1995-03-01

    In manufacture of structural ceramic components, grinding costs can comprise up to 80% of the entire manufacturing cost. Most of these costs arise from the conventional multi-step grinding process with numerous grinding wheels and additional capital equipment, perishable dressing tools, and labor. In an attempt to reduce structural ceramic grinding costs, a feasibility investigation was undertaken to develop a single step, roughing-finishing process suitable for producing high-quality silicon nitride ceramic parts at high material removal rates at lower cost than traditional, multi-stage grinding. This feasibility study employed combined use of laboratory grinding tests, mathematical grinding models, and characterization of resultant material surface condition. More specifically, this Phase 1 final report provides a technical overview of High-Speed, Low-Damage (HSLD) ceramic grinding and the conditions necessary to achieve the small grain depths of cut necessary for low damage grinding while operating at relatively high material removal rates. Particular issues addressed include determining effects of wheel speed and material removal rate on resulting mode of material removal (ductile or brittle fracture), limiting grinding forces, calculation of approximate grinding zone temperatures developed during HSLD grinding, and developing the experimental systems necessary for determining HSLD grinding energy partition relationships. In addition, practical considerations for production utilization of the HSLD process are also discussed.

  2. Fabrication

    NASA Technical Reports Server (NTRS)

    Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville

    1992-01-01

    What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is

  3. Fabrication and assembly of a superconducting undulator for the advanced photon source

    SciTech Connect

    Hasse, Quentin; Fuerst, J. D.; Ivanyushenkov, Y.; Doose, C.; Kasa, M.; Shiroyanagi, Y.; Trakhtenberg, E. M.; Skiadopoulos, D.

    2014-01-29

    A prototype superconducting undulator magnet (SCU0) has been built at the Advanced Photon Source (APS) of Argonne National Laboratory (ANL) and has successfully completed both cryogenic performance and magnetic measurement test programs. The SCU0 closed loop, zero-boil-off cryogenic system incorporates high temperature superconducting (HTS) current leads, cryocoolers, a LHe reservoir supplying dual magnetic cores, and an integrated cooled beam chamber. This system presented numerous challenges in the design, fabrication, and assembly of the device. Aspects of this R and D relating to both the cryogenic and overall assembly of the device are presented here. The SCU0 magnet has been installed in the APS storage ring.

  4. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    SciTech Connect

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E.

    1996-08-01

    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  5. Advanced ceramic matrix composite materials for current and future propulsion technology applications

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Beyer, S.; Knabe, H.; Immich, H.; Meistring, R.; Gessler, A.

    2004-08-01

    Current rocket engines, due to their method of construction, the materials used and the extreme loads to which they are subjected, feature a limited number of load cycles. Various technology programmes in Europe are concerned, besides developing reliable and rugged, low cost, throwaway equipment, with preparing for future reusable propulsion technologies. One of the key roles for realizing reusable engine components is the use of modern and innovative materials. One of the key technologies which concern various engine manufacturers worldwide is the development of fibre-reinforced ceramics—ceramic matrix composites. The advantages for the developers are obvious—the low specific weight, the high specific strength over a large temperature range, and their great damage tolerance compared to monolithic ceramics make this material class extremely interesting as a construction material. Over the past years, the Astrium company (formerly DASA) has, together with various partners, worked intensively on developing components for hypersonic engines and liquid rocket propulsion systems. In the year 2000, various hot-firing tests with subscale (scale 1:5) and full-scale nozzle extensions were conducted. In this year, a further decisive milestone was achieved in the sector of small thrusters, and long-term tests served to demonstrate the extraordinary stability of the C/SiC material. Besides developing and testing radiation-cooled nozzle components and small-thruster combustion chambers, Astrium worked on the preliminary development of actively cooled structures for future reusable propulsion systems. In order to get one step nearer to this objective, the development of a new fibre composite was commenced within the framework of a regionally sponsored programme. The objective here is to create multidirectional (3D) textile structures combined with a cost-effective infiltration process. Besides material and process development, the project also encompasses the development of

  6. Application feasibility of Pb(Zr,Ti)O{sub 3} ceramics fabricated from sol-gel derived powders using titanium and zirconium alkoxides

    SciTech Connect

    Huang, C.L.; Chen, B.H.; Wu, L

    2004-04-02

    It is believed that what may be termed the 'Nanoscaled Century' will lead to a new industrial revolution, particularly in terms of sol-gel methods of assembly for nanostructure devices. A propyl alcohol (1-Pro) based sol-gel chemical has been developed to replace 2-methoxyethanol (MOE), 1,1,1-tris(hydroxymethyl)ethane (THOME) for the fabrication of PbZr{sub 0.53}Ti{sub 0.47}O{sub 3} (PZT) piezoelectric ceramics. This chemical is prepared from sol-gel derived powders that are near to the morphotropic phase boundary (MPB). The pyrochlore phase was still apparent when calcining at 900 deg. C with a shorter calcining time, such as 30 min. However, it disappeared for longer calcining times, for example 3 h or more. From the results of the analysis, PZT ceramics calcinations at 900 deg. C for 4 h, and sintering at 1100 deg. C for 2 h could reach a pyrochlore-free crystal phase with relative density of approximately 7.9 g/cm{sup 3}--close to 98% of the theoretical value. The P-E hysteresis loop, measured by the Sawyer-Tower circuit, revealed that the remanent polarization (P{sub r}) and coercive field (E{sub c}) were 8.54 {mu}C/cm{sup 2} and 15.6 kV/cm, respectively. The vibration modes of the PZT ceramics were between 150 and 1.5 MHz. Morevoer, under such processing conditions the PZT piezoceramics had uniform grain size distribution less than 1 {mu}m and zero temperature coefficient of resonant frequency (TCF). In summary, the PZT ceramics derived from the sol-gel method were confirmed to possess excellent piezoelectric properties. Furthermore, the processing temperatures were scaled down by 100-200 deg. C, compared to conventional oxide reaction. Finally, from an energy-saving viewpoint, this experiment can potentially make a very positive contribution.

  7. In-situ fabricated TiB2 particle-whisker synergistically toughened Ti(C, N)-based ceramic cutting tool material

    NASA Astrophysics Data System (ADS)

    Liu, Hanlian; Shi, Qiang; Huang, Chuanzhen; Zou, Bin; Xu, Liang; Wang, Jun

    2015-03-01

    The mechanical properties of ceramic cutting tool materials can be modified by introducing proper content of nanoparticles or whiskers. However, the process of adding whiskers or nanoparticles has the disadvantages of high cost and health hazard as well as the agglomeration; although a new in-situ two-step sintering process can solve the above problems to some extent, yet the problems of low conversion ratio of the raw materials and the abnormal grain growth exist in this process. In this paper, an in-situ one-step synthesis technology is proposed, which means the growth of whiskers or nanoparticles and the sintering of the compact can be accomplished by one time in furnace. A kind of Ti(C, N)-based ceramic cutting tool material synergistically toughened by TiB2 particles and whiskers is fabricated with this new process. The phase compositions, relationships between microstructure and mechanical properties as well as the toughening mechanisms are analyzed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The composite which is sintered under a pressure of 32 MPa at a temperature of 1700°C in vacuum holding for 60 min can get the optimal mechanical properties. Its flexural strength, fracture toughness and Vickers hardness are 540 MPa, 7.81 MPa · m1/2 and 20.42 GPa, respectively. The composite has relatively high density, and the in-situ synthesized TiB2 whiskers have good surface integrity, which is beneficial for the improvement of the fracture toughness. It is concluded that the main toughening mechanisms of the present composite are whiskers pulling-out and crack deflection induced by whiskers, crack bridging by whiskers/particles and multi-scale particles synergistically toughening. This study proposes an in-situ one-step synthesis technology which can be well used for fabricating particles and whiskers synergistically toughened ceramic tool materials.

  8. FABRICATION PROCESS AND PRODUCT QUALITY IMPROVEMENTS IN ADVANCED GAS REACTOR UCO KERNELS

    SciTech Connect

    Charles M Barnes

    2008-09-01

    A major element of the Advanced Gas Reactor (AGR) program is developing fuel fabrication processes to produce high quality uranium-containing kernels, TRISO-coated particles and fuel compacts needed for planned irradiation tests. The goals of the AGR program also include developing the fabrication technology to mass produce this fuel at low cost. Kernels for the first AGR test (“AGR-1) consisted of uranium oxycarbide (UCO) microspheres that werre produced by an internal gelation process followed by high temperature steps tot convert the UO3 + C “green” microspheres to first UO2 + C and then UO2 + UCx. The high temperature steps also densified the kernels. Babcock and Wilcox (B&W) fabricated UCO kernels for the AGR-1 irradiation experiment, which went into the Advance Test Reactor (ATR) at Idaho National Laboratory in December 2006. An evaluation of the kernel process following AGR-1 kernel production led to several recommendations to improve the fabrication process. These recommendations included testing alternative methods of dispersing carbon during broth preparation, evaluating the method of broth mixing, optimizing the broth chemistry, optimizing sintering conditions, and demonstrating fabrication of larger diameter UCO kernels needed for the second AGR irradiation test. Based on these recommendations and requirements, a test program was defined and performed. Certain portions of the test program were performed by Oak Ridge National Laboratory (ORNL), while tests at larger scale were performed by B&W. The tests at B&W have demonstrated improvements in both kernel properties and process operation. Changes in the form of carbon black used and the method of mixing the carbon prior to forming kernels led to improvements in the phase distribution in the sintered kernels, greater consistency in kernel properties, a reduction in forming run time, and simplifications to the forming process. Process parameter variation tests in both forming and sintering steps led

  9. Advance in friction welding and ultrasonic welding of ceramics to metals

    SciTech Connect

    Greitmann, M.J.; Weib, R.

    1997-11-01

    The authors have joined four different ceramic materials (MgO-PSZ, Al{sub 2}O{sub 3}, SiC and Si{sub 3}N{sub 4} cylinders 10 mm in diameter and 50 mm in length) to the aluminum alloy Al-Si1MgMn by friction welding. Process parameters such as friction speed, axial force, burn-off and torque have been recorded continuously. For some specimens the authors recorded the temperature at the interface using thermocouples. The joints obtained were tested in tension. Fracture occurred either in the ceramic or at the interface. Heat conduction calculations to estimate the temperature distribution during welding have been conducted by the Finite Element Method (FEM), using experimental data for input. Afterwards, residual stresses introduced through thermal expansion mismatch and stresses introduced through a tensile test have been determined by FEM. Applying multiaxial Weibull statistics to the ceramic specimen, tensile strength for different geometries of the joint and different material combinations was estimated. Ultrasonic welded joints of MgO-PSZ and Steel X 4 CrNi 18-10 according to DIN EN (comparable to the US-steel AISI No. 304) could be realized using aluminum interlayers. In addition to a conventional ultrasonic welding equipment for metal welding a new molecular coldwelding technique (ultrasonic torsional welding system) was tested. In comparison to friction welding the ultrasonic welding technique results in limited deformation of the ceramic-metal joint parts and in a decreased welding time. Nevertheless a special solution must be found to the problem of tool wear and the vibration conditions.

  10. High speed low damage grinding of advanced ceramics - Phase II Final Report

    SciTech Connect

    Kovach, J.A.; Malkin, S.

    2000-02-01

    In the manufacture of structural ceramic components, grinding costs can comprise up to 80% of the entire manufacturing cost. As a result, one of the most challenging tasks faced by manufacturing process engineers is the development of a ceramic finishing process to maximize part throughput while minimizing costs and associated scrap levels. The efforts summarized in this report represent the second phase of a program whose overall objective was to develop a single-step, roughing-finishing process suitable for producing high-quality silicon nitride parts at high material removal rates and at substantially lower cost than traditional, multi-stage grinding processes. More specifically, this report provides a technical overview of High-Speed, Low-Damage (HSLD) ceramic grinding which employs elevated wheel speeds to achieve the small grain depths of cut necessary for low-damage grinding while operating at relatively high material removal rates. The study employed the combined use of laboratory grinding tests, mathematical grinding models, and characterization of the resultant surface condition. A single-step, roughing-finishing process operating at high removal rates was developed and demonstrated.

  11. Advanced ceramic coating development for industrial/utility gas turbine applications

    NASA Technical Reports Server (NTRS)

    Andersson, C. A.; Lau, S. K.; Bratton, R. J.; Lee, S. Y.; Rieke, K. L.; Allen, J.; Munson, K. E.

    1982-01-01

    The effects of ceramic coatings on the lifetimes of metal turbine components and on the performance of a utility turbine, as well as of the turbine operational cycle on the ceramic coatings were determined. When operating the turbine under conditions of constant cooling flow, the first row blades run 55K cooler, and as a result, have 10 times the creep rupture life, 10 times the low cycle fatigue life and twice the corrosion life with only slight decreases in both specific power and efficiency. When operating the turbine at constant metal temperature and reduced cooling flow, both specific power and efficiency increases, with no change in component lifetime. The most severe thermal transient of the turbine causes the coating bond stresses to approach 60% of the bond strengths. Ceramic coating failures was studied. Analytic models based on fracture mechanics theories, combined with measured properties quantitatively assessed both single and multiple thermal cycle failures which allowed the prediction of coating lifetime. Qualitative models for corrosion failures are also presented.

  12. Properties of advanced fibers for reinforcing metal and ceramic matrix composites

    SciTech Connect

    Porter, J.

    1993-12-31

    The mechanical properties of ceramic reinforcing fibers need to be well characterized before their incorporation into composite materials. Critical fiber properties include strength and Weibull modulus, bundle strength, modulus and creep resistance. Important composite properties include thermochemical stability, interface debond energy and interfacial sliding resistance. Tailoring these interfacial properties by fiber coating can, in turn, influence fiber properties. Methods of measuring strength related properties are addressed and the results of a computer simulation to assess the quality of measured data statistically are presented. The readily available monofilament fibers are mostly chemically vapor deposited (CVD) silicon carbide. Current aerospace programs have identified the need for new ceramic fibers as enabling materials for their success. Alternate fibers such as sapphire are therefore currently under development with several objectives including: a CTE greater than that of SiC, higher strength and creep resistance, and chemical stability in new candidate matrices. The strength of a ceramic fiber is statistical, being determined by the largest flaw in the flaw population of the tested length of fiber. In a brittle matrix material such as an intermetallic, for toughening by continuous fiber reinforcement, fibers need to exhibit pull-out during matrix crack propagation. However, the stress distribution along a bridging fiber has a maximum in the crack plane and for fiber failure to occur away from the crack plane, a prerequisite for pull-out, a weak link must also exist away from the crack plane.

  13. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing

  14. Fabrication of Lead-Free Lithium-Doped Na0.5K0.5NbO3 Piezoelectric Ceramics with Dense Grain Structure Using Sol-Gel Surface Coating

    NASA Astrophysics Data System (ADS)

    Lim, Sun Kyung; Han, Jeong Seon; Yoo, Ae Ri; Lee, Seong Eui; Lee, Hee Chul

    2013-10-01

    Lead-free piezoelectric 0.06(LiNbO3)-0.94(Na0.5K0.5)NbO3 (LNKN) ceramics in disc form were fabricated and characterized to acquire good electromechanical properties. A molding method including cold isostatic pressing (CIP) was used to form a dense and regular microstructure and suppress the cracking problems of LNKN ceramics during the following high-temperature sintering. The LNKN ceramic sintered at 1040 °C showed a high piezoelectric constant d33 of 170 pC/N owing to its high density. Furthermore, perovskite LNKN films with the same composition as the ceramics were fabricated using 2-methoxyethanol-based sol-gel solution. The sol-gel surface coating on the LNKN ceramics was found to be very effective for increasing the piezoelectric constant because of the interface stabilization effect leading to a uniform electric field in piezoelectric elements. As a result, we obtained the highest piezoelectric constant d33 of 183 pC/N. The lead-free LNKN ceramics are promising for applications in eco-friendly ferroelectric and piezoelectric devices.

  15. Slow Crack Growth Analysis of Advanced Structural Ceramics Under Combined Loading Conditions: Damage Assessment in Life Prediction Testing

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2000-01-01

    Slow crack growth analysis was performed with three different loading histories including constant stress-rate/constant stress-rate testing (Case I loading), constant stress/constant stress-rate testing (Case II loading), and cyclic stress/constant stress-rate testing (Case III loading). Strength degradation due to slow crack growth arid/or damage accumulation was determined numerically as a Function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case I loading history, and alumina for the Case II loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the test material&

  16. A technique to achieve uniform stress distribution in compressive creep testing of advanced ceramics at high temperatures

    SciTech Connect

    Liu, K.C.; Stevens, C.O.; Brinkman, C.R.; Holshauser, N.E.

    1996-05-01

    A technique to achieve stable and uniform uniaxial compression is offered for creep testing of advanced ceramic materials at elevated temperatures, using an innovative self-aligning load-train assembly. Excellent load-train alignment is attributed to the inherent ability of a unique hydraulic universal coupler to maintain self-aligning. Details of key elements, design concept, and pricniples of operation of the self-aligning coupler are described. A method of alignment verification using a strain-gaged specimen is then discussed. Results of verification tests indicate that bending below 1.5% is routinely achievable usin the load-train system. A successful compression creep test is demonstrated using a dumbbell-shpaed Si nitride specimen tested at 1300 C for over 4000 h.

  17. Slow Crack Growth Analysis of Advanced Structural Ceramics Under Combined Loading Conditions: Damage Assessment in Life Prediction Testing

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Gyekenyesi, J. P.

    2001-01-01

    Slow crack growth analysis was performed with three different loading histories including constant stress- rate/constant stress-rate testing (Case I loading), constant stress/constant stress-rate testing (Case II loading), and cyclic stress/constant stress-rate testing (Case III loading). Strength degradation due to slow crack growth and/or damage accumulation was determined numerically as a function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case I loading history, and alumina for the Case II loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the rest materials.

  18. Slow Crack Growth Analysis of Advanced Structural Ceramics Under Combined Loading Conditions: Damage Assessment in Life Prediction Testing

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2000-01-01

    Slow crack growth analysis was performed with three different loading histories including constant stress-rate/constant stress-rate testing (Case 1 loading), constant stress/constant stress-rate testing (Case 2 loading), and cyclic stress/constant stress-rate testing (Case 2 loading). Strength degradation due to slow crack growth and/or damage accumulation was determined numerically as a function of percentage of interruption time between the two loading sequences for a given loading history. The numerical solutions were examined with the experimental data determined at elevated temperatures using four different advanced ceramic materials, two silicon nitrides, one silicon carbide and one alumina for the Case 1 loading history, and alumina for the Case 3 loading history. The numerical solutions were in reasonable agreement with the experimental data, indicating that notwithstanding some degree of creep deformation presented for some test materials slow crack growth was a governing mechanism associated with failure for all the test materials.

  19. The use of CAD/CAM technology to fabricate a custom ceramic implant abutment: a clinical report.

    PubMed

    Bertolini, Martinna de Mendonça e; Kempen, Juan; Lourenço, Eduardo José Veras; Telles, Daniel de Moraes

    2014-05-01

    Well-placed dental implants are a prerequisite of functional and esthetically successful dental implant-supported crowns. The presence of soft tissue is essential for excellent esthetics because the dental implant or titanium abutment may become visible if the soft-tissue contour is not acceptable. This clinical report describes the use of a custom ceramic implant abutment designed with computer-aided design and computer-aided manufacturing (CAD/CAM) technology by milling a zirconia framework that was cemented extraorally to a prefabricated titanium abutment with a reduced diameter. This ceramic abutment has the strength and precise fit of a titanium interface and also the esthetic advantages of shaded custom-milled zirconia, with no visible metal. PMID:24433839

  20. Durability and CMAS Resistance of Advanced Environmental Barrier Coatings Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. This paper will emphasize advanced environmental barrier coating developments for SiCSiC turbine airfoil components, by using advanced coating compositions and processing, in conjunction with mechanical and environment testing and durability validations. The coating-CMC degradations and durability in the laboratory simulated engine fatigue-creep and complex operating environments are being addressed. The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will be discussed. The results help understand the advanced EBC-CMC system performance, aiming at the durability improvements of more robust, prime-reliant environmental barrier coatings for successful applications of the component technologies and lifing methodologies.

  1. Recent advances in design and fabrication of on-chip micro-supercapacitors

    NASA Astrophysics Data System (ADS)

    Beidaghi, Majid; Wang, Chunlei

    2012-06-01

    Recent development in miniaturized electronic devices has increased the demand for power sources that are sufficiently compact and can potentially be integrated on a chip with other electronic components. Miniaturized electrochemical capacitors (EC) or micro-supercapacitors have great potential to complement or replace batteries and electrolytic capacitors in a variety of applications. Recently, we have developed several types of micro-supercapacitors with different structural designs and active materials. Carbon-Microelectromechanical Systems (C-MEMS) with three dimensional (3D) interdigital structures are employed both as electrode material for electric double layer capacitor (EDLC) or as three dimensional (3D) current collectors of pseudo-capacitive materials. More recently, we have also developed microsupercapacitor based on hybrid graphene and carbon nanotube interdigital structures. In this paper, the recent advances in design and fabrication of on-chip micro-supercapacitors are reviewed.

  2. Fabrication of copper nanoparticles: advances in synthesis, morphology control, and chemical stability.

    PubMed

    Benavente, Eglantina; Lozano, Harold; González, Guillermo

    2013-06-01

    Metal nanoparticles have attracted great interest particularly because of the size dependence of physical and chemical properties and its enormous technological potential. Although most pioneering advancements refers to gold and silver, more recently there is growing interest in nanoparticles of copper, mostly due to its relatively low cost, which could allow the use of these small metal objects in large-scale nanotechnology applications, for example, antiseptics materials and metallic inks. However, the manufacture of copper nanoparticles stable in air with controlled size and shape has been a major challenge because of the relatively high reactivity of this element. Great efforts in getting the basic knowledge and synthesis know-how has gone into finding better ways to produce particles protected against oxidation and selfaggregation under normal conditions. In this review article, we briefly discuss a number of selected papers and recent patents on procedures and other issues related to the fabrication of copper nanoparticles. PMID:22974429

  3. Continuous Fiber Ceramic Composites

    SciTech Connect

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  4. New Advanced Fabrication Technique for Millimeter-Wave Planar Components based on Fluororesin Substrates using Graft Polymerization

    NASA Astrophysics Data System (ADS)

    Ito, Naoki; Mase, Atsushi; Kogi, Yuichiro; Seko, Noriaki; Tamada, Masao; Sakata, Eiji

    2008-06-01

    As the importance of advanced millimeter-wave diagnostics increases, a reliable and accurate fabrication technique for high-performance devices and relevant components is essential. We describe a new improved fabrication technique for millimeter-wave planar components, such as antennas using low-loss fluororesin substrates. A fragile adhesion between the copper foil and fluororesin substrate and the accuracy of the device pattern using conventional fabrication techniques have been prime suspects in the failure of the devices. In order to solve these problems, surface treatment of fluororesin films and a fabrication method using electro-fine-forming (EF2) are proposed. The peel adhesion strength between the metal and fluororesin films and the value of the dielectric constant of the fluororesin films before and after grafting are reported. A prototype antenna using conventional fluororesin substrates and grafted-poly(tetrafluoroethylene) (PTFE) films produced using the EF2 fabrication technique are also introduced.

  5. The Production of Advanced Glass Ceramic HLW Forms using Cold Crucible Induction Melter

    SciTech Connect

    Veronica J Rutledge; Vince Maio

    2013-10-01

    Cold Crucible Induction Melters (CCIMs) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in the 21st century. Unlike the existing Joule-Heated Melters (JHMs) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIMs offer unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. This paper discusses advantageous features of the CCIM, with emphasis on features that overcome the historical issues with the JHMs presently utilized, as well as the benefits of glass ceramic waste forms over borosilicate glass waste forms. These advantages are then validated based on recent INL testing to demonstrate a first-of-a-kind formulation of a non-radioactive ceramic-based waste form utilizing a CCIM.

  6. Life prediction methodology for ceramic components of advanced vehicular heat engines: Volume 1. Final report

    SciTech Connect

    Khandelwal, P.K.; Provenzano, N.J.; Schneider, W.E.

    1996-02-01

    One of the major challenges involved in the use of ceramic materials is ensuring adequate strength and durability. This activity has developed methodology which can be used during the design phase to predict the structural behavior of ceramic components. The effort involved the characterization of injection molded and hot isostatic pressed (HIPed) PY-6 silicon nitride, the development of nondestructive evaluation (NDE) technology, and the development of analytical life prediction methodology. Four failure modes are addressed: fast fracture, slow crack growth, creep, and oxidation. The techniques deal with failures initiating at the surface as well as internal to the component. The life prediction methodology for fast fracture and slow crack growth have been verified using a variety of confirmatory tests. The verification tests were conducted at room and elevated temperatures up to a maximum of 1371 {degrees}C. The tests involved (1) flat circular disks subjected to bending stresses and (2) high speed rotating spin disks. Reasonable correlation was achieved for a variety of test conditions and failure mechanisms. The predictions associated with surface failures proved to be optimistic, requiring re-evaluation of the components` initial fast fracture strengths. Correlation was achieved for the spin disks which failed in fast fracture from internal flaws. Time dependent elevated temperature slow crack growth spin disk failures were also successfully predicted.

  7. Accelerated Testing Methodology Developed for Determining the Slow Crack Growth of Advanced Ceramics

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    1998-01-01

    Constant stress-rate ("dynamic fatigue") testing has been used for several decades to characterize the slow crack growth behavior of glass and structural ceramics at both ambient and elevated temperatures. The advantage of such testing over other methods lies in its simplicity: strengths are measured in a routine manner at four or more stress rates by applying a constant displacement or loading rate. The slow crack growth parameters required for component design can be estimated from a relationship between strength and stress rate. With the proper use of preloading in constant stress-rate testing, test time can be reduced appreciably. If a preload corresponding to 50 percent of the strength is applied to the specimen prior to testing, 50 percent of the test time can be saved as long as the applied preload does not change the strength. In fact, it has been a common, empirical practice in the strength testing of ceramics or optical fibers to apply some preloading (<40 percent). The purpose of this work at the NASA Lewis Research Center is to study the effect of preloading on measured strength in order to add a theoretical foundation to the empirical practice.

  8. Accelerated Testing Methodology for the Determination of Slow Crack Growth of Advanced Ceramics

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.; Gyekenyesi, John P.

    1997-01-01

    Constant stress-rate (dynamic fatigue) testing has been used for several decades to characterize slow crack growth behavior of glass and ceramics at both ambient and elevated temperatures. The advantage of constant stress-rate testing over other methods lies in its simplicity: Strengths are measured in a routine manner at four or more stress rates by applying a constant crosshead speed or constant loading rate. The slow crack growth parameters (n and A) required for design can be estimated from a relationship between strength and stress rate. With the proper use of preloading in constant stress-rate testing, an appreciable saving of test time can be achieved. If a preload corresponding to 50 % of the strength is applied to the specimen prior to testing, 50 % of the test time can be saved as long as the strength remains unchanged regardless of the applied preload. In fact, it has been a common, empirical practice in strength testing of ceramics or optical fibers to apply some preloading (less then 40%). The purpose of this work is to study the effect of preloading on the strength to lay a theoretical foundation on such an empirical practice. For this purpose, analytical and numerical solutions of strength as a function of preloading were developed. To verify the solution, constant stress-rate testing using glass and alumina at room temperature and alumina silicon nitride, and silicon carbide at elevated temperatures was conducted in a range of preloadings from O to 90 %.

  9. The production of advanced glass ceramic HLW forms using cold crucible induction melter

    SciTech Connect

    Rutledge, V.J.; Maio, V.

    2013-07-01

    Cold Crucible Induction Melters (CCIM) will favorably change how High-Level radioactive Waste (from nuclear fuel recovery) is treated in a near future. Unlike the existing Joule-Heated Melters (JHM) currently in operation for the glass-based immobilization of High-Level Waste (HLW), CCIM offers unique material features that will increase melt temperatures, increase throughput, increase mixing, increase loading in the waste form, lower melter foot prints, eliminate melter corrosion and lower costs. These features not only enhance the technology for producing HLW forms, but also provide advantageous attributes to the waste form by allowing more durable alternatives to glass. It is concluded that glass ceramic waste forms that are tailored to immobilize fission products of HLW can be can be made from the HLW processed with the CCIM. The advantageous higher temperatures reached with the CCIM and unachievable with JHM allows the lanthanides, alkali, alkaline earths, and molybdenum to dissolve into a molten glass. Upon controlled cooling they go into targeted crystalline phases to form a glass ceramic waste form with higher waste loadings than achievable with borosilicate glass waste forms. Natural cooling proves to be too fast for the formation of all targeted crystalline phases.

  10. Advancements in fabrication process of microelectrode array for a retinal prosthesis using Liquid Crystal Polymer (LCP).

    PubMed

    Jeong, Joonsoo; Shin, Soowon; Lee, Geun Jae; Gwon, Tae Mok; Park, Jeong Hoan; Kim, Sung June

    2013-01-01

    Liquid Crystal Polymer (LCP) has been considered as an alternative biomaterial for implantable biomedical devices primarily for its low moisture absorption rate compared with conventional polymers such as polyimide, parylene and silicone elastomers. A novel retinal prosthetic device based on monolithic encapsulation of LCP is being developed in which entire neural stimulation circuitries are integrated into a thin and eye-conformable structure. Micromachining techniques for fabrication of a LCP retinal electrode array have been previously reported. In this research, however, for being used as a part of the LCP-based retinal implant, we developed advanced fabrication process of LCP retinal electrode through new approaches such as electroplating and laser-machining in order to achieve higher mechanical robustness, long-term reliability and flexibility. Thickened metal tracks could contribute to higher mechanical strength as well as higher long-term reliability when combined with laser-ablation process by allowing high-pressure lamination. Laser-thinning technique could improve the flexibility of LCP electrode. PMID:24110931

  11. PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY

    SciTech Connect

    S. T. Khericha

    2007-04-01

    The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to ‘Data Call’ for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.

  12. The Evolution and Fabrication of Implant-supported Full-arch Hybrid Prostheses. From Conventional Casted Metal to an All-Ceramic Zirconia.

    PubMed

    Ouzer, Amanda

    2015-11-01

    Implant-supported, full-arch hybrid prostheses have developed from cast-metal frameworks with acrylic or porcelain to all-ceramic zirconia frameworks. CAD/CAM manufacturing removed the inaccuracies seen with casting and made use of zirconia possible. The materials and processes for prosthodontic fabrication are explained. Zirconia is highly opaque and versatile. However, porcelain-veneered zirconia frameworks have shown higher enamel wear, among other problems. Lithium disilicate has been shown to be more translucent than zirconia. Improved stained and more translucent zirconia frameworks have been produced as well. These promising new methods have gained popularity, but long-term studies are scarce and, thus, more research is required. PMID:26749784

  13. Fabrication and physical testing of graphite composite panels utilizing woven graphite fabric with current and advanced state-of-the-art resin systems

    NASA Technical Reports Server (NTRS)

    Lee, S. C. S.

    1979-01-01

    Three weaves were evaluated; a balanced plain weave, a balanced 8-harness satin weave, and a semiunidirectional crowfoot satin weave. The current state-of-the-art resin system selected was Fiberite's 934 Epoxy; the advanced resin systems evaluated were Phenolic, Phenolic/Novolac, Benzyl and Bismaleimide. The panels were fabricated for testing on NASA/Ames Research Center's Composites Modification Program. Room temperature mechanical tests only were performed by Hitco; the results are presented.

  14. Discoloration of manually fabricated resins and industrially fabricated CAD/CAM blocks versus glass-ceramic: effect of storage media, duration, and subsequent polishing.

    PubMed

    Stawarczyk, Bogna; Sener, Beatrice; Trottmann, Albert; Roos, Malgorzata; Ozcan, Mutlu; Hämmerle, Christoph H F

    2012-01-01

    This study determined the discoloration of five CAD/CAM resins, four manually polymerized resins, and glass-ceramic as control group. Specimens were divided into three groups (N=300, n=30) to be stored in coffee, black tea and red wine (n=10). The discoloration was measured using a spectrophotometer after 1, 7, 29, 90, 180 days storage. All tested groups showed color change (ΔE) at all time points. The manually polymerized resin composites GD (Gradia) and CM (CronMix K), and the CAD/CAM resin composite HC (Blanc High-class) showed significantly higher ΔE compared to all other groups in all tested media. The discoloration was extrinsic and decreased after polishing for the majority of the tested materials. Except CAD/CAM resin HC (Blanc High-class), all CAD/CAM resins showed similar color stability compared to the control group. PMID:22673470

  15. Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) ceramic design manual

    SciTech Connect

    1997-10-01

    This ceramic component design manual was an element of the Advanced Turbine Technology Applications Project (ATTAP). The ATTAP was intended to advance the technological readiness of the ceramic automotive gas turbine engine as a primary power plant. Of the several technologies requiring development before such an engine could become a commercial reality, structural ceramic components represented the greatest technical challenge, and was the prime focus of the program. HVTE-TS, which was created to support the Hybrid Electric Vehicle (HEV) program, continued the efforts begun in ATTAP to develop ceramic components for an automotive gas turbine engine. In HVTE-TS, the program focus was extended to make this technology applicable to the automotive gas turbine engines that form the basis of hybrid automotive propulsion systems consisting of combined batteries, electric drives, and on-board power generators as well as a primary power source. The purpose of the ceramic design manual is to document the process by which ceramic components are designed, analyzed, fabricated, assembled, and tested in a gas turbine engine. Interaction with ceramic component vendors is also emphasized. The main elements of the ceramic design manual are: an overview of design methodology; design process for the AGT-5 ceramic gasifier turbine rotor; and references. Some reference also is made to the design of turbine static structure components to show methods of attaching static hot section ceramic components to supporting metallic structures.

  16. The Role of Ceramics in a Resurgent Nuclear Industry

    SciTech Connect

    Marra, J

    2006-02-28

    With fuel oil and natural gas prices near record highs and worldwide energy demands increasing at an alarming rate, there is growing interest in revitalization of the nuclear power industry within the United States and across the globe. Ceramic materials have long played a very important part in the commercial nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced fuel cycles that minimize waste and increase proliferation resistance, ceramic materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, ceramic processes are also being applied to fuel reprocessing operations. Ceramic materials continue to provide a vital contribution in ''closing the fuel cycle'' by stabilization of associated low-level and high-level wastes in highly durable grout, ceramics, and glass. In the next five years, programs that are currently in the conceptual phase will begin laboratory- and engineering-scale demonstrations. This will require production-scale demonstrations of several ceramic technologies from fuel form development to advanced stabilization methods. Within the next five to ten years, these demonstrations will move to even larger scales and will also include radioactive demonstrations of these advanced technologies. These radioactive demonstrations are critical to program success and will require advances in ceramic materials associated with nuclear energy applications.

  17. Fabrication and Comparison of Fuels for Advanced Gas Reactor Irradiation Tests

    SciTech Connect

    Jeffrey Phillips; Charles Barnes; John Hunn

    2010-10-01

    As part of the program to demonstrate TRISO-coated fuel for the Next Generation Nuclear Plant, a series of irradiation tests of Advanced Gas Reactor (AGR) fuel are being performed in the Advanced Test Reactor (ATR) at the Idaho National Laboratory. In the first test, called “AGR-1,” graphite compacts containing approximately 300,000 coated particles were irradiated from December 2006 until November 2009. Development of AGR-1 fuel sought to replicate the properties of German TRISO-coated particles. No particle failures were seen in the nearly 3-year irradiation to a burn up of 19%. The AGR-1 particles were coated in a two-inch diameter coater. Following fabrication of AGR-1 fuel, process improvements and changes were made in each of the fabrication processes. Changes in the kernel fabrication process included replacing the carbon black powder feed with a surface-modified carbon slurry and shortening the sintering schedule. AGR-2 TRISO particles were produced in a six-inch diameter coater using a change size about twenty-one times that of the two-inch diameter coater used to coat AGR-1 particles. Changes were also made in the compacting process, including increasing the temperature and pressure of pressing and using a different type of press. Irradiation of AGR-2 fuel began in late spring 2010. Properties of AGR-2 fuel compare favorably with AGR-1 and historic German fuel. Kernels are more homogeneous in shape, chemistry and density. TRISO-particle sphericity, layer thickness standard deviations, and defect fractions are also comparable. In a sample of 317,000 particles from deconsolidated AGR-2 compacts, 3 exposed kernels were found in a leach test. No SiC defects were found in a sample of 250,000 deconsolidated particles, and no IPyC defects in a sample of 64,000 particles. The primary difference in properties between AGR-1 and AGR-2 compacts is that AGR-2 compacts have a higher matrix density, 1.6 g/cm3 compared to about 1.3 g/cm3 for AGR-1 compacts. Based on

  18. Deformation mechanisms in advanced structural ceramics due to indentation and scratch processes

    NASA Astrophysics Data System (ADS)

    Ghosh, Dipankar

    Plasma pressure compaction technique was used to develop boron carbide (B4C) and zirconium diboride-silicon carbide (ZrB2-SiC) composite. B4C ceramics are extensively used as body armor in military and civilian applications, and ZrB2-SiC composite has been recognized as a potential candidate for high-temperature aerospace applications. In this dissertation, processing parameters, quasistatic and high-strain rate mechanical response, and fundamental deformation mechanisms of these materials have been investigated. In the case of B4C, the rate sensitivity of indentation hardness was determined using a dynamic indentation hardness tester that can deliver loads in 100 micros. By comparing dynamic hardness with the static hardness, it was found that B4C exhibits a lower hardness at high-strain rate, contrary to known behavior in many structural ceramics. However, these results are consistent with the ballistic testing of B4C armors as reported in recent literature. This behavior was further investigated using a series of spectroscopic techniques such as visible and UV micro-Raman, photoluminescence and infrared. These studies not only confirmed that structural transformation occurred during indentation experiments similar to that in ballistic testing of B4C but also suggested a greater degree of structural changes under dynamic loading compared to static loading. Due to the potential application as external heat shields in supersonic vehicles, scratch studies were conducted on the ZrB2-SiC composite. These studies revealed metal-like slip-line patterns which are indeed an unusual in brittle solids at room-temperature. Utilizing classical stress field solutions under combined normal and tangential loads, a rationale was developed for understanding the formation of scratch-induced deformation features. Also, an analytical framework was developed, combining the concept of 'blister field' and the 'secular equation' relating Raman peaks to strain, to measure scratch

  19. Hydrothermal fabrication of selectively doped organic assisted advanced ZnO nanomaterial for solar driven photocatalysis.

    PubMed

    Namratha, K; Byrappa, K; Byrappa, S; Venkateswarlu, P; Rajasekhar, D; Deepthi, B K

    2015-08-01

    Hydrothermal fabrication of selectively doped (Ag(+)+Pd(3+)) advanced ZnO nanomaterial has been carried out under mild pressure temperature conditions (autogeneous; 150°C). Gluconic acid has been used as a surface modifier to effectively control the particle size and morphology of these ZnO nanoparticles. The experimental parameters were tuned to achieve optimum conditions for the synthesis of selectively doped ZnO nanomaterials with an experimental duration of 4 hr. These selectively doped ZnO nanoparticles were characterized using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy and scanning electron microscopy (SEM). The solar driven photocatalytic studies have been carried out for organic dyes, i.e., Procion MX-5B dye, Cibacron Brilliant Yellow dye, Indigo Carmine dye, separately and all three mixed, by using gluconic acid modified selectively doped advanced ZnO nanomaterial. The influence of catalyst, its concentration and initial dye concentration resulted in the photocatalytic efficiency of 89% under daylight. PMID:26257367

  20. Manufacturing tailored property ceramic composites

    SciTech Connect

    Ewsuk, K.G.; Harrison, L.W.

    1994-11-14

    Composite materials are desirable for many advanced engineering applications where the properties of a single phase material cannot meet all of the service requirements; however, existing process technology has limited the development and commercialization of composites. Lack of reproducible sintering to high density is one of the major obstacles to commercializing ceramic composites. Final-stage, non-reactive liquid phase sintering (NLPS) theory provides metrics for sinterability that can be used as guidelines to design and manufacture dense ceramic-filled-glass (CFG) composites. Additionally, within the constraints defined by the NLPS theory, sum-property models can be used to predict CFG composite properties, and to design composites with properties tailored to specific applications. By integrating composite process models with composite property models, processable, application-tailored CFG composites for microelectronics packaging have been designed and fabricated.

  1. A Blueprint for GNEP Advanced Burner Reactor Startup Fuel Fabrication Facility

    SciTech Connect

    S. Khericha

    2010-12-01

    The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the startup fuel for 10-15 years and would take 3 to 5 years to construct.

  2. Metallic and intermetallic-bonded ceramic composites

    SciTech Connect

    Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B.

    1995-05-01

    The purpose of this task is to establish a framework for the development and fabrication of metallic-phase-reinforced ceramic matrix composites with improved fracture toughness and damage resistance. The incorporation of metallic phases that plastically deform in the crack tip region, and thus dissipate strain energy, will result in an increase in the fracture toughness of the composite as compared to the monolithic ceramic. It is intended that these reinforced ceramic matrix composites will be used over a temperature range from 20{degrees}C to 800-1200{degrees}C for advanced applications in the industrial sector. In order to systematically develop these materials, a combination of experimental and theoretical studies must be undertaken.

  3. Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: Recent Advances and Future Directions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2016-01-01

    This presentation briefly reviews the SiC/SiC major environmental and environment-fatigue degradations encountered in simulated turbine combustion environments, and thus NASA environmental barrier coating system evolution for protecting the SiC/SiC Ceramic Matrix Composites for meeting the engine performance requirements. The presentation will review several generations of NASA EBC materials systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. This paper will also focus on the performance requirements and design considerations of environmental barrier coatings for next generation turbine engine applications. The current development emphasis is placed on advanced NASA candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be briefly discussed.

  4. Ceramic Automotive Stirling Engine Program

    SciTech Connect

    Not Available

    1986-08-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  5. Ceramic automotive Stirling engine program

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Ceramic Automotive Stirling Engine Program evaluated the application of advanced ceramic materials to an automotive Stirling engine. The objective of the program was to evaluate the technical feasibility of utilizing advanced ceramics to increase peak engine operating temperature, and to evaluate the performance benefits of such an increase. Manufacturing cost estimates were also developed for various ceramic engine components and compared with conventional metallic engine component costs.

  6. Advanced diesel engine component development program, tasks 4-14

    NASA Technical Reports Server (NTRS)

    Kaushal, Tony S.; Weber, Karen E.

    1994-01-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system

  7. Cost effective machining and inspection of structural ceramic components for advanced high temperature application. Final CRADA report for CRADA number Y-1292-0151

    SciTech Connect

    Abbatiello, L.A.; Haselkorn, M.

    1996-11-29

    This Cooperative Research and Development Agreement (CRADA) was a mutual research and development (R and D) effort among the participants to investigate a range of advanced manufacturing technologies for two silicon nitride (Si{sub 3}N{sub 4}) ceramic materials. The general objective was to identify the most cost-effective part manufacturing processes for the ceramic materials of interest. The focus was determining the relationship between material removal rates, surface quality, and the structural characteristics of each ceramic resulting from three innovative processes. These innovated machining processes were studied using silicon nitride advanced materials. The particular (Si{sub 3}N{sub 4}) materials of interest were sintered GS-44 from the Norton Company, and reaction-bonded Ceraloy 147-3. The processes studied included the following activities: (1) direct laser machining; (2) rotary ultrasonic machining; and (3) diamond abrasive grinding, including both resinoid and vitreous-bonded grinding wheels. Both friable and non-friable diamond types were included within the abrasive grinding study. The task also conducted a comprehensive survey of European experience in use of ceramic materials, principally aluminum oxide. Originally, the effort of this task was to extend through a prototype manufacturing demonstration of selected engine components. During the execution of this program, however changes were made to the scope of the project, altering the goals. The Program goal became only the development of assessment of their impacts on product strength and surface condition.

  8. Synthesis of high performance ceramic fibers by chemical vapor deposition for advanced metallics reinforcing

    NASA Technical Reports Server (NTRS)

    Revankar, Vithal; Hlavacek, Vladimir

    1991-01-01

    The chemical vapor deposition (CVD) synthesis of fibers capable of effectively reinforcing intermetallic matrices at elevated temperatures which can be used for potential applications in high temperature composite materials is described. This process was used due to its advantage over other fiber synthesis processes. It is extremely important to produce these fibers with good reproducible and controlled growth rates. However, the complex interplay of mass and energy transfer, blended with the fluid dynamics makes this a formidable task. The design and development of CVD reactor assembly and system to synthesize TiB2, CrB, B4C, and TiC fibers was performed. Residual thermal analysis for estimating stresses arising form thermal expansion mismatch were determined. Various techniques to improve the mechanical properties were also performed. Various techniques for improving the fiber properties were elaborated. The crystal structure and its orientation for TiB2 fiber is discussed. An overall view of the CVD process to develop CrB2, TiB2, and other high performance ceramic fibers is presented.

  9. Advanced Turbine Technology Applications Project (ATTAP). Annual report 1992

    SciTech Connect

    Not Available

    1993-03-01

    This report summarizes work performed by Garrett Auxiliary Power Division (GAPD), a unit of Allied-Signal Aerospace Company, during calendar year 1992, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the US Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATTAP). GAPD utilized the AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program as the ATTAP test bed for ceramic engine technology demonstration. ATTAP focussed on improving AGT101 test bed reliability, development of ceramic design methodologies, and improvement of fabrication and materials processing technology by domestic US ceramics fabricators. A series of durability tests was conducted to verify technology advancements. This is the fifth in a series of technical summary reports published annually over the course of the five-year contract.

  10. Method to Produce Flexible Ceramic Thermal Protection System Resistant to High Aeroacoustic Noise

    NASA Technical Reports Server (NTRS)

    Sawko, Paul M. (Inventor); Calamito, Dominic P. (Inventor); Jong, Anthony (Inventor)

    1997-01-01

    A method of producing a three dimensional angle interlock ceramic fiber which is stable to high aeroacoustic noise of about 170 decibels and to high temperatures of about 2500 F is disclosed. The method uses multiple separate strands of a ceramic fiber or ceramic tow suitable for weaving having multiple warp fibers and multiple fill fibers woven with a modified fly-shuttle loom or rapier shuttleless loom which has nip rolls, a modified fabric advancement mechanism and at least eight harnesses in connection with a Dobby pattern chain utilizing sufficient heddles for each warp fiber and a reed which accommodates at least 168 ends per inch. The method produces a multilayered top fabric, rib fabric and single-layered bottom fabric.

  11. Ceramic transactions: Advances in fusion and processing of glass. Volume 29

    SciTech Connect

    Varshneya, A.K.; Bickford, D.F.; Bihuniak, P.P.

    1993-01-01

    This is the third in a series of international conferences on Advances in Fusion and Processing of Glass, held in 1992. The book includes articles on fast forming, oxy-fuel combustion, recycling, hazardous and radioactive waste vitrification, redox equilibria, gas solubility, heat transfer and stress relaxation, furnace modeling, and non-fusion-based glass making. Individual articles are abstracted separately.

  12. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.

    1980-01-01

    Results of an experimental program to develop several types of graphite/polyimide (GR/PI) bonded and bolted joints for lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Tasks accomplished include: a literature survey; design of static discriminator specimens; design allowables testing; fabrication of test panels and specimens; small specimen testing; and standard joint testing. Detail designs of static discriminator specimens for each of the four major attachment types are presented. Test results are given for the following: (1) transverse tension of Celion 3000/PMR-15 laminate; (2) net tension of a laminate for both a loaded and unloaded bolt hole; (3) comparative testing of bonded and co-cured doublers along with pull-off tests of single and double bonded angles; (4) single lap shear tests, transverse tension and coefficient of thermal expansion tests of A7F (LARC-13 amide-imide modified) adhesive; and (5) tension tests of standard single lap, double lap, and symmetric step lap bonded joints. Also, included are results of a finite element analysis of a single lap bonded composite joint.

  13. Fabrication of the Advanced X-ray Astrophysics Facility (AXAF) Optics: A Deterministic, Precision Engineering Approach to Optical Fabrication

    NASA Technical Reports Server (NTRS)

    Gordon, T. E.

    1995-01-01

    The mirror assembly of the AXAF observatory consists of four concentric, confocal, Wolter type 1 telescopes. Each telescope includes two conical grazing incidence mirrors, a paraboloid followed by a hyperboloid. Fabrication of these state-or-the-art optics is now complete, with predicted performance that surpasses the goals of the program. The fabrication of these optics, whose size and requirements exceed those of any previous x-ray mirrors, presented a challenging task requiring the use of precision engineering in many different forms. Virtually all of the equipment used for this effort required precision engineering. Accurate metrology required deterministic support of the mirrors in order to model the gravity distortions which will not be present on orbit. The primary axial instrument, known as the Precision Metrology Station (PMS), was a unique scanning Fizeau interferometer. After metrology was complete, the optics were placed in specially designed Glass Support Fixtures (GSF's) for installation on the Automated Cylindrical Grinder/Polishers (ACG/P's). The GSF's were custom molded for each mirror element to match the shape of the outer surface to minimize distortions of the inner surface. The final performance of the telescope is expected to far exceed the original goals and expectations of the program.

  14. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    NARloy-Z alloy (Cu-3 percent, Ag-0.5 percent, Zr) is a state of the art alloy currently used for fabricating rocket engine combustion chamber liners. Research conducted at NASA-MSFC and Penn State – Applied Research Laboratory has shown that thermal conductivity of NARloy-Z can be increased significantly by adding diamonds to form a composite (NARloy-Z-D). NARloy-Z-D is also lighter than NARloy-Z. These attributes make this advanced composite material an ideal candidate for fabricating combustion chamber liner for an advanced rocket engine. Increased thermal conductivity will directly translate into increased turbopump power and increased chamber pressure for improved thrust and specific impulse. This paper describes the process development for fabricating a subscale high thermal conductivity NARloy-Z-D combustion chamber liner using Field Assisted Sintering Technology (FAST). The FAST process uses a mixture of NARloy-Z and diamond powders which is sintered under pressure at elevated temperatures. Several challenges were encountered, i.e., segregation of diamonds, machining the super hard NARloy-Z-D composite, net shape fabrication and nondestructive examination. The paper describes how these challenges were addressed. Diamonds coated with copper (CuD) appear to give the best results. A near net shape subscale combustion chamber liner is being fabricated by diffusion bonding cylindrical rings of NARloy-Z-CuD using the FAST process.

  15. Fabrication of mullite-bonded porous SiC ceramics from multilayer-coated SiC particles through sol-gel and in-situ polymerization techniques

    NASA Astrophysics Data System (ADS)

    Ebrahimpour, Omid

    second part of the project. Alumina sol was synthesized by the hydrolysis of Aluminum isopropoxide using the Yoldas method. Alumina sol was homogenous and had a needle-like shape with a thickness of 2--3 nm. Crystalline changes during the heating process of alumina sol were studied using XRD. In addition, Fourier transform infrared (FTIR) spectroscopy was performed to identify the functional groups on the alumina sol surface as a function of temperature. In the third part of the project, the feasibility of the in-situ polymerization technique was investigated to fabricate porous SiC ceramics. In this part, the mixture of SiC and calcined alumina powders were coated by polyethylene via in-situ polymerizing referred to as the polymerization compounding process in a slurry phase. The polymerization was conducted under very moderate operational conditions using the Ziegler-Natta catalyst system. Differential scanning calorimetry (DSC) and TGA analysis and morphological studies (SEM and TEM) revealed the presence of a high density of polyethylene on the surface of SiC and alumina powders. The amount of polymer was controlled by the polymerization reaction time. Most parts of particles were coated by a thin layer of polyethylene and polymer. The porous SiC ceramics, which were fabricated by these treated particles showed higher mechanical and physical properties compared to the samples made without any treatment. The relative intensity of mullite was higher compared to the samples prepared by the traditional process. The effects of the sintering temperature, forming pressure and polymer content were also studied on the physical and mechanical properties of the final product. In the last phase of this research work, the focus of the investigation was to take advantage of both the sol-gel processing and in-situ polymerization method to develop a new process to manufacture mullite-bonded porous SiC ceramic with enhanced mechanical and physical properties. Therefore, first the Si

  16. Composites: Processing and Fabrication Methodologies of Nonoxide Ceramic Composites. Processing HfB2 Composites for Use in Extreme Environments

    NASA Technical Reports Server (NTRS)

    Gusman, Michael I.; Stackpoole, M. M.; Ridge, J. W.; Johnson, S. M.; Ellerby, D. T.; Smith, M. D.; Arnold, Jim (Technical Monitor)

    2001-01-01

    HfB2 and ZrB2 composites containing SiC are known to have good thermal shock and configurational stability at elevated temperatures. These are promising ultra-high temperature ceramics (UHTCs) for use on the sharp leading edges of next generation space vehicles. Sharp leading edges on these vehicles will need to: withstand repeated exposures to temperatures > 2200 C in oxidizing environments; have good thermal shock and ablation resistance; and withstand the mechanical stress of launch and reentry. The HfB2/SiC composite is currently undergoing processing improvements in an effort to better the performance of a material that has been studied for approx. 35 years. The potential for HfB2/SiC composites to meet the requirements of hypersonic flight depends on controlling processing techniques. This presentation will focus on understanding processing steps now being undertaken to optimize the material properties of HfB2/SiC composites at NASA Ames Research Center. Correlation between processing techniques and microstructure will be shown. Preliminary oxidation studies will also be discussed.

  17. Modeling of Selected Ceramic Processing Parameters Employed in the Fabrication of 238PuO 2 Fuel Pellets

    NASA Astrophysics Data System (ADS)

    Brockman, R. A.; Kramer, D. P.; Barklay, C. D.; Cairns-Gallimore, D.; Brown, J. L.; Huling, J. C.; Van Pelt, C. E.

    Recent deep space missions utilize the thermal output of the radioisotope plutonium-238 as the fuel in the thermal to electrical power system. Since the application of plutonium in its elemental state has several disadvantages, the fuel employed in these deep space power systems is typically in the oxide form such as plutonium-238 dioxide (238PuO2). As an oxide, the processing of the plutonium dioxide into fuel pellets is performed via "classical" ceramic processing unit operations such as sieving of the powder, pressing, sintering, etc. Modeling of these unit operations can be beneficial in the understanding and control of processing parameters with the goal of further enhancing the desired characteristics of the 238PuO2 fuel pellets. A finite element model has been used to help identify the time-temperature-stress profile within a pellet during a furnace operation taking into account that 238PuO2 itself has a significant thermal output. Results of the modeling efforts will be discussed.

  18. Modeling of selected ceramic processing parameters employed in the fabrication of 238PuO2 fuel pellets

    DOE PAGESBeta

    Brockman, R. A.; Kramer, D. P.; Barklay, C. D.; Cairns-Gallimore, D.; Brown, J. L.; Huling, J. C.; Van Pelt, C. E.

    2011-10-01

    Recent deep space missions utilize the thermal output of the radioisotope plutonium-238 as the fuel in the thermal to electrical power system. Since the application of plutonium in its elemental state has several disadvantages, the fuel employed in these deep space power systems is typically in the oxide form such as plutonium-238 dioxide (238PuO2). As an oxide, the processing of the plutonium dioxide into fuel pellets is performed via ''classical'' ceramic processing unit operations such as sieving of the powder, pressing, sintering, etc. Modeling of these unit operations can be beneficial in the understanding and control of processing parameters withmore » the goal of further enhancing the desired characteristics of the 238PuO2 fuel pellets. A finite element model has been used to help identify the time-temperature-stress profile within a pellet during a furnace operation taking into account that 238PuO2 itself has a significant thermal output. The results of the modeling efforts will be discussed.« less

  19. Towards large scale preparation of graphene in molten salts and its use in the fabrication of highly toughened alumina ceramics.

    PubMed

    Kamali, Ali Reza; Feighan, John; Fray, Derek J

    2016-08-15

    Highly crystalline graphene nanosheets were reproducibly generated by the electrochemical exfoliation of graphite electrodes in molten LiCl containing protons. The graphene product has been successfully applied in several applications. This paper discusses the effect of molten salt produced graphene on the microstructures and mechanical properties of alumina articles produced by slip casting and pressureless sintering, which is one of the most convenient methods for the commercial production of alumina ceramics. In addition to graphene, graphite powder and multi-walled carbon nanotubes (CNTs) were also used to prepare alumina articles for comparative purposes. A graphene strengthening effect was realized through microstructural refinement and by influencing the formation of alumina nanorods during the sintering of α-Al2O3 articles. The fracture toughness of the sintered alumina articles increased to an impressive value of 6.98 MPa m(1/2) by adding 0.5 wt% graphene nanosheets. This was attributed to the unique microstructure obtained, comprised of micrometer sized alumina grains separated by alumina nanorods. PMID:27231211

  20. Incorporation of zinc for fabrication of low-cost spinel-based composite ceramic membrane support to achieve its stabilization.

    PubMed

    Li, Lingling; Dong, Xinfa; Dong, Yingchao; Zhu, Li; You, Sheng-Jie; Wang, Ya-Fen

    2015-04-28

    In order to reduce environment risk of zinc, a spinel-based porous membrane support was prepared by the high-temperature reaction of zinc and bauxite mineral. The phase evolution process, shrinkage, porosity, mechanical property, pore size distribution, gas permeation flux and microstructure were systematically studied. The XRD results, based on a Zn/Al stoichiometric composition of 1/2, show a formation of ZnAl2O4 structure starting from 1000°C and then accomplished at 1300°C. For spinel-based composite membrane, shrinkage and porosity are mainly influenced by a combination of an expansion induced by ZnAl2O4 formation and a general densification due to amorphous liquid SiO2. The highest porosity, as high as 44%, is observed in ZnAl4 membrane support among all the investigated compositions. Compared with pure bauxite (Al), ZnAl4 composite membrane support is reinforced by ZnAl2O4 phase and inter-locked mullite crystals, which is proved by the empirical strength-porosity relationships. Also, an increase in average pore diameter and gas flux can be observed in ZnAl4. A prolonged leaching experiment reveals the zinc can be successfully incorporated into ceramic membrane support via formation of ZnAl2O4, which has substantially better resistance toward acidic attack. PMID:25655422

  1. Fabrication and mechanical properties of ZrO{sub 2} solid solution and composite ceramics in the system ZrO{sub 2}(Y{sub 2}O{sub 3})-Al{sub 2}O{sub 3}

    SciTech Connect

    Yamaguchi, O.; Hirota, K.; Inamura, S.

    1995-12-31

    In the system ZrO2-Al2O3, dense ZrO2 solid solution ceramics containing 25 mol% Al2O3 are fabricated by the HIP technique using metastable ZrO2 solid solution powders prepared from alkoxides. The ceramics with nanometer grain size show excellent high fracture toughness of {approx}23 MPa{center_dot}m1/2, although they exhibit weak bending strength of {approx}600 MPa. To improve the strength, metastable ZrO2 solid solutions containing 25 mol% Al2O3 and (0.75-3.75) mol% Y2O3 are hot isostatically pressed at 1130{degrees}C and 1230{degrees}C. Two kinds of materials are fabricated: (1) ZrO2 solid solution ceramics and (2) composite ceramics of ZrO2 solid solution and {alpha}-Al2O3. Their mechanical properties are examined in connection with the microstructures and t/m ZrO2 ratios.

  2. Environment Conscious Ceramics (Ecoceramics)

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Levine, Stanley R. (Technical Monitor)

    2000-01-01

    Environment conscious ceramics (Ecoceramics) are a new class of materials, which can be produced with renewable natural resources (wood) or wood wastes (wood sawdust). Silicon carbide-based ecoceramics have been fabricated by reactive infiltration of carbonaceous preforms by molten silicon or silicon-refractory metal alloys. These carbonaceous preforms have been fabricated by pyrolysis of solid wood bodies at 1000 C. The fabrication approach, microstructure, and mechanical properties of SiC-based ecoceramics are presented. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches.

  3. Ceramic fiber reinforced filter

    DOEpatents

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  4. Nuclear Magnetic Resonance Used to Quantify the Effect of Pyrolysis Conditions on the Oxidative Stability of Silicon Oxycarbide Ceramics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This work was undertaken in support of the Low Cost Ceramic Composite Virtual Company, (LC^3), whose members include Northrop Grumman Corporation, AlliedSignal Inc., and Allison Advanced Development Company. LC^3 is a cost-shared effort funded by the Advanced Research Projects Agency (ARPA) and the LC^3 participants to develop a low-cost fabrication methodology for manufacturing ceramic matrix composite structural components. The program, which is being administered by the U.S. Air Force Wright Laboratory Materials Directorate, is focused on demonstrating a ceramic matrix composite turbine seal for a regional aircraft engine. This part is to be fabricated by resin transfer molding of a siloxane polymer into a fiber preform that will be transformed into a ceramic by pyrolytic conversion.

  5. An Advanced Electrospinning Method of Fabricating Nanofibrous Patterned Architectures with Controlled Deposition and Desired Alignment

    NASA Astrophysics Data System (ADS)

    Rasel, Sheikh Md

    We introduce a versatile advanced method of electrospinning for fabricating various kinds of nanofibrous patterns along with desired alignment, controlled amount of deposition and locally variable density into the architectures. In this method, we employed multiple electrodes whose potentials have been altered in milliseconds with the help of microprocessor based control system. Therefore, key success of this method was that the electrical field as well as charge carrying fibers could be switched shortly from one electrode's location to another, as a result, electrospun fibers could be deposited on the designated areas with desired alignment. A wide range of nanofibrous patterned architectures were constructed using proper arrangement of multiple electrodes. By controlling the concurrent activation time of two adjacent electrodes, we demonstrated that amount of fibers going into the pattern can be adjusted and desired alignment in electrospun fibers can be obtained. We also revealed that the deposition density of electrospun fibers in different areas of patterned architectures can be varied. We showed that by controlling the deposition time between two adjacent electrodes, a number of functionally graded patterns can be generated with uniaxial alignment. We also demonstrated that this handy method was capable of producing random, aligned, and multidirectional nanofibrous mats by engaging a number of electrodes and switching them in desired patterns. A comprehensive study using finite element method was carried out to understand the effects of electrical field. Simulation results revealed that electrical field strength alters shortly based on electrode control switch patterns. Nanofibrous polyvinyl alcohol (PVA) scaffolds and its composite reinforced with wollastonite and wood flour were fabricated using rotating drum electrospinning technique. Morphological, mechanical, and thermal, properties were characterized on PVA/wollastonite and PVA/wood flour nanocomposites

  6. Advanced Fuels for LWRs: Fully-Ceramic Microencapsulated and Related Concepts FY 2012 Interim Report

    SciTech Connect

    R. Sonat Sen; Brian Boer; John D. Bess; Michael A. Pope; Abderrafi M. Ougouag

    2012-03-01

    This report summarizes the progress in the Deep Burn project at Idaho National Laboratory during the first half of fiscal year 2012 (FY2012). The current focus of this work is on Fully-Ceramic Microencapsulated (FCM) fuel containing low-enriched uranium (LEU) uranium nitride (UN) fuel kernels. UO2 fuel kernels have not been ruled out, and will be examined as later work in FY2012. Reactor physics calculations confirmed that the FCM fuel containing 500 mm diameter kernels of UN fuel has positive MTC with a conventional fuel pellet radius of 4.1 mm. The methodology was put into place and validated against MCNP to perform whole-core calculations using DONJON, which can interpolate cross sections from a library generated using DRAGON. Comparisons to MCNP were performed on the whole core to confirm the accuracy of the DRAGON/DONJON schemes. A thermal fluid coupling scheme was also developed and implemented with DONJON. This is currently able to iterate between diffusion calculations and thermal fluid calculations in order to update fuel temperatures and cross sections in whole-core calculations. Now that the DRAGON/DONJON calculation capability is in place and has been validated against MCNP results, and a thermal-hydraulic capability has been implemented in the DONJON methodology, the work will proceed to more realistic reactor calculations. MTC calculations at the lattice level without the correct burnable poison are inadequate to guarantee zero or negative values in a realistic mode of operation. Using the DONJON calculation methodology described in this report, a startup core with enrichment zoning and burnable poisons will be designed. Larger fuel pins will be evaluated for their ability to (1) alleviate the problem of positive MTC and (2) increase reactivity-limited burnup. Once the critical boron concentration of the startup core is determined, MTC will be calculated to verify a non-positive value. If the value is positive, the design will be changed to require

  7. Application of graphite-based sacrificial layers for fabrication of LTCC (low temperature co-fired ceramic) membranes and micro-channels

    NASA Astrophysics Data System (ADS)

    Birol, H.; Maeder, T.; Ryser, P.

    2007-01-01

    Fabrication of sensors and micro-fluidic structures from low temperature co-fired ceramic (LTCC) sheets is a growing interest in the micro-packaging community. Such devices usually have inner cavities, whose production is quite complicated. The most elegant method to build such structures so far achieved is by a fugitive phase that is introduced into the multilayer and removed during firing. This paper, therefore, is aimed to introduce the graphite-based sacrificial paste developed for this purpose, and it is constructed in two sections: (i) selection of paste and determination of LTCC open-porosity elimination temperature, and (ii) fabrication and characterization of pressure sensitive LTCC membranes. In the former section, it is shown that increased heating rates (and decreasing tape thickness) shift the open porosity elimination temperature of LTCC by 20 °C, which is small compared to the shift of graphite oxidation temperature (about 100 °C). In the latter section, three parameters affecting the balance between the graphite oxidation and LTCC sintering are studied: heating rate, graphite phase thickness and width of the membrane inlet/outlet channels. As expected, larger heating rates and narrow inlet/outlet channels are found to hinder the oxidation of graphite and evacuation of the resulting products, which results in swollen membranes. Large graphite thickness, through the increased channel height, results in lower swelling in spite of the larger amount of graphite to be oxidized. Membranes with low swelling are found to exhibit excellent pressure sensing characteristics, whereas those with high swelling display hysteretic behavior.

  8. Design & fabrication of two seated aircraft with an advanced rotating leading edge wing

    NASA Astrophysics Data System (ADS)

    Al Ahmari, Saeed Abdullah Saeed

    The title of this thesis is "Design & Fabrication of two Seated Aircraft with an Advanced Rotating Leading Edge Wing", this gives almost a good description of the work has been done. In this research, the moving surface boundary-layer control (MSBC) concept was investigated and implemented. An experimental model was constructed and tested in wind tunnel to determine the aerodynamic characteristics using the leading edge moving surface of modified semi-symmetric airfoil NACA1214. The moving surface is provided by a high speed rotating cylinder, which replaces the leading edge of the airfoil. The angle of attack, the cylinder surfaces velocity ratio Uc/U, and the flap deflection angle effects on the lift and drag coefficients and the stall angle of attack were investigated. This new technology was applied to a 2-seat light-sport aircraft that is designed and built in the Aerospace Engineering Department at KFUPM. The project team is led by the aerospace department chairman Dr. Ahmed Z. AL-Garni and Dr. Wael G. Abdelrahman and includes graduate and under graduate student. The wing was modified to include a rotating cylinder along the leading edge of the flap portion. This produced very promising results such as the increase of the maximum lift coefficient at Uc/U=3 by 82% when flaps up and 111% when flaps down at 40° and stall was delayed by 8degrees in both cases. The laboratory results also showed that the effective range of the leading-edge rotating cylinder is at low angles of attack which reduce the need for higher angles of attack for STOL aircraft.

  9. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Reports technical effort by AlliedSignal Engines in sixth year of DOE/NASA funded project. Topics include: gas turbine engine design modifications of production APU to incorporate ceramic components; fabrication and processing of silicon nitride blades and nozzles; component and engine testing; and refinement and development of critical ceramics technologies, including: hot corrosion testing and environmental life predictive model; advanced NDE methods for internal flaws in ceramic components; and improved carbon pulverization modeling during impact. ATTAP project is oriented toward developing high-risk technology of ceramic structural component design and fabrication to carry forward to commercial production by 'bridging the gap' between structural ceramics in the laboratory and near-term commercial heat engine application. Current ATTAP project goal is to support accelerated commercialization of advanced, high-temperature engines for hybrid vehicles and other applications. Project objectives are to provide essential and substantial early field experience demonstrating ceramic component reliability and durability in modified, available, gas turbine engine applications; and to scale-up and improve manufacturing processes of ceramic turbine engine components and demonstrate application of these processes in the production environment.

  10. Clinical application of bio ceramics

    NASA Astrophysics Data System (ADS)

    Anu, Sharma; Gayatri, Sharma

    2016-05-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  11. The n-MAO/EPD bio-ceramic composite coating fabricated on ZK60 magnesium alloy using combined micro-arc oxidation with electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Xiong, Ying; Lu, Chao; Wang, Chao; Song, Renguo

    2014-12-01

    A bio-ceramic composite coating was fabricated on ZK60 magnesium (Mg) alloy using combined micro-arc oxidation (MAO) with electrophoretic deposition (EPD) technique. The MAO coating as the basal layer was produced in alkaline electrolyte with (n-MAO coating) and without (MAO coating) the addition of CeO2 and ZrO2 nano-particles, respectively. A hydroxyapatite (HA) coating as the covering layer was deposited on the n-MAO coating to improve the biological properties of the coating (n-MAO/EPD composite coating). The morphology and phase composition of three treated coatings were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The corrosion resistance of these coatings was evaluated with potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) at 36.5 ± 0.5 °C. The XRD spectra showed that the CeO2 and ZrO2 peaks can be collected in the n-MAO coating, and HA particles exists in the n-MAO/EPD composite coating. The results of corrosion tests indicated that the n-MAO/EPD composite coating owned increased bioactivity and long-term protective ability compared with the MAO coating and the n-MAO coating. Thus Mg alloy coated with the n-MAO/EPD composite coating should be more suited as biodegradable bone implants.

  12. Fabrication of an r-Al2Ti intermetallic matrix composite reinforced with α-Al2O3 ceramic by discontinuous mechanical milling for thermite reaction

    NASA Astrophysics Data System (ADS)

    Mosleh, A.; Ehteshamzadeh, M.; Taherzadeh Mousavian, R.

    2014-10-01

    In this study, a powder mixture with an Al/TiO2 molar ratio of 10/3 was used to form an r-Al2Ti intermetallic matrix composite (IMC) reinforced with α-Al2O3 ceramic by a novel milling technique, called discontinuous mechanical milling (DMM) instead of milling and ignition of the produced thermite. The results of energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) of samples with varying milling time indicate that this fabrication process requires considerable mechanical energy. It is shown that Al2Ti-Al2O3 IMC with small grain size was produced by DMM after 15 h of ball milling. Peaks for γ-TiAl as well as Al2Ti and Al2O3 are observed in XRD patterns after DMM followed by heat treatment. The microhardness of the DMM-treated composite produced after heat treatment was higher than Hv 700.

  13. Ceramic Honeycomb Structures and Method Thereof

    NASA Technical Reports Server (NTRS)

    Cagliostro, Domenick E.; Riccitiello, Salvatore R.

    1989-01-01

    The present invention relates to a method for producing ceramic articles and the articles, the process comprising the chemical vapor deposition (CVD) and/or chemical vapor infiltration (CVI) of a honeycomb structure. Specifically the present invention relates to a method for the production of a ceramic honeycomb structure, including: (a) obtaining a loosely woven fabric/binder wherein the fabric consists essentially of metallic, ceramic or organic fiber and the binder consists essentially of an organic or inorganic material wherein the fabric/binder has and retains a honeycomb shape, with the proviso that when the fabric is metallic or ceramic the binder is organic only; (b) substantially evenly depositing at least one layer of a ceramic on the fabric/binder of step (a); and (c) recovering the ceramic coated fiber honeycomb structure. In another aspect, the present invention relates to a method for the manufacture of a lightweight ceramic-ceramic composite honeycomb structure, which process comprises: (d) pyrolyzing a loosely woven fabric a honeycomb shaped and having a high char yield and geometric integrity after pyrolysis at between about 700 degrees and 1,100 degrees Centigrade; (e) substantially evenly depositing at least one layer of ceramic material on the pyrolyzed fabric of step (a); and (f) recovering the coated ceramic honeycomb structure. The ceramic articles produced have enhanced physical properties and are useful in aircraft and aerospace uses.

  14. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    This paper describes the process development for fabricating a high thermal conductivity NARloy-Z-Diamond composite (NARloy-Z-D) combustion chamber liner for application in advanced rocket engines. The fabrication process is challenging and this paper presents some details of these challenges and approaches used to address them. Prior research conducted at NASA-MSFC and Penn State had shown that NARloy-Z-40%D composite material has significantly higher thermal conductivity than the state of the art NARloy-Z alloy. Furthermore, NARloy-Z-40 %D is much lighter than NARloy-Z. These attributes help to improve the performance of the advanced rocket engines. Increased thermal conductivity will directly translate into increased turbopump power, increased chamber pressure for improved thrust and specific impulse. Early work on NARloy-Z-D composites used the Field Assisted Sintering Technology (FAST, Ref. 1, 2) for fabricating discs. NARloy-Z-D composites containing 10, 20 and 40vol% of high thermal conductivity diamond powder were investigated. Thermal conductivity (TC) data. TC increased with increasing diamond content and showed 50% improvement over pure copper at 40vol% diamond. This composition was selected for fabricating the combustion chamber liner using the FAST technique.

  15. Ceramic Integration Technologies for Aerospace and Energy Systems: Technical Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2007-01-01

    Ceramic integration technology has been recognized as an enabling technology for the implementation of advanced ceramic systems in a number of high-temperature applications in aerospace, power generation, nuclear, chemical, and electronic industries. Various ceramic integration technologies (joining, brazing, attachments, repair, etc.) play a role in fabrication and manufacturing of large and complex shaped parts of various functionalities. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Experimental results for bonding and integration of SiC based LDI fuel injector, high conductivity C/C composite based heat rejection system, solid oxide fuel cells system, ultra high temperature ceramics for leading edges, and ceramic composites for thermostructural applications will be presented. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be discussed.

  16. DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    SciTech Connect

    Unknown

    2002-03-31

    The objectives of this report period were to complete the development of the Gas Generator design, which was done; fabricate and test of the non-polluting unique power turbine drive gas Gas Generator, which has been postponed. Focus during this report period has been to complete the brazing and bonding necessary to fabricate the Gas Generator hardware, continue making preparations for fabricating and testing the Gas Generator, and continuing the fabrication of the Gas Generator hardware and ancillary hardware in preparation for the test program. Fabrication is more than 95% complete and is expected to conclude in early May 2002. the test schedule was affected by relocation of the testing to another test supplier. The target test date for hot fire testing is now not earlier than June 15, 2002.

  17. Thin Film Heat Flux Sensor Development for Ceramic Matrix Composite (CMC) Systems

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.; Zhu, Dongming; Laster, Kimala L.; Gonzalez, Jose M.; Gregory, Otto J.

    2010-01-01

    The NASA Glenn Research Center (GRC) has an on-going effort for developing high temperature thin film sensors for advanced turbine engine components. Stable, high temperature thin film ceramic thermocouples have been demonstrated in the lab, and novel methods of fabricating sensors have been developed. To fabricate thin film heat flux sensors for Ceramic Matrix Composite (CMC) systems, the rough and porous nature of the CMC system posed a significant challenge for patterning the fine features required. The status of the effort to develop thin film heat flux sensors specifically for use on silicon carbide (SiC) CMC systems with these new technologies is described.

  18. Fabrication of mullite-bonded porous SiC ceramics from multilayer-coated SiC particles through sol-gel and in-situ polymerization techniques

    NASA Astrophysics Data System (ADS)

    Ebrahimpour, Omid

    second part of the project. Alumina sol was synthesized by the hydrolysis of Aluminum isopropoxide using the Yoldas method. Alumina sol was homogenous and had a needle-like shape with a thickness of 2--3 nm. Crystalline changes during the heating process of alumina sol were studied using XRD. In addition, Fourier transform infrared (FTIR) spectroscopy was performed to identify the functional groups on the alumina sol surface as a function of temperature. In the third part of the project, the feasibility of the in-situ polymerization technique was investigated to fabricate porous SiC ceramics. In this part, the mixture of SiC and calcined alumina powders were coated by polyethylene via in-situ polymerizing referred to as the polymerization compounding process in a slurry phase. The polymerization was conducted under very moderate operational conditions using the Ziegler-Natta catalyst system. Differential scanning calorimetry (DSC) and TGA analysis and morphological studies (SEM and TEM) revealed the presence of a high density of polyethylene on the surface of SiC and alumina powders. The amount of polymer was controlled by the polymerization reaction time. Most parts of particles were coated by a thin layer of polyethylene and polymer. The porous SiC ceramics, which were fabricated by these treated particles showed higher mechanical and physical properties compared to the samples made without any treatment. The relative intensity of mullite was higher compared to the samples prepared by the traditional process. The effects of the sintering temperature, forming pressure and polymer content were also studied on the physical and mechanical properties of the final product. In the last phase of this research work, the focus of the investigation was to take advantage of both the sol-gel processing and in-situ polymerization method to develop a new process to manufacture mullite-bonded porous SiC ceramic with enhanced mechanical and physical properties. Therefore, first the Si

  19. Estimation of Slow Crack Growth Parameters for Constant Stress-Rate Test Data of Advanced Ceramics and Glass by the Individual Data and Arithmetic Mean Methods

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.; Holland, Frederic A.

    1997-01-01

    The two estimation methods, individual data and arithmetic mean methods, were used to determine the slow crack growth (SCG) parameters (n and D) of advanced ceramics and glass from a large number of room- and elevated-temperature constant stress-rate ('dynamic fatigue') test data. For ceramic materials with Weibull modulus greater than 10, the difference in the SCG parameters between the two estimation methods was negligible; whereas, for glass specimens exhibiting Weibull modulus of about 3, the difference was amplified, resulting in a maximum difference of 16 and 13 %, respectively, in n and D. Of the two SCG parameters, the parameter n was more sensitive to the estimation method than the other. The coefficient of variation in n was found to be somewhat greater in the individual data method than in the arithmetic mean method.

  20. Strain isolated ceramic coatings

    NASA Technical Reports Server (NTRS)

    Tolokan, R. P.; Brady, J. B.; Jarrabet, G. P.

    1985-01-01

    Plasma sprayed ceramic coatings are used in gas turbine engines to improve component temperature capability and cooling air efficiency. A compliant metal fiber strain isolator between a plasma sprayed ceramic coating and a metal substrate improves ceramic durability while allowing thicker coatings for better insulation. Development of strain isolated coatings has concentrated on design and fabrication of coatings and coating evaluation via thermal shock testing. In thermal shock testing, five types of failure are possible: buckling failure im compression on heat up, bimetal type failure, isothermal expansion mismatch failure, mudflat cracking during cool down, and long term fatigue. A primary failure mode for thermally cycled coatings is designated bimetal type failure. Bimetal failure is tensile failure in the ceramic near the ceramic-metal interface. One of the significant benefits of the strain isolator is an insulating layer protecting the metal substrate from heat deformation and thereby preventing bimetal type failure.

  1. Fabrication and nondestructive examination development for advanced components and materials for the SP-100 space reactor

    NASA Astrophysics Data System (ADS)

    Ring, Peter J.; Dobrzynski, Walter J.

    1993-01-01

    Significant progress has now been made in the development of fabrication and Nondestructive Examination techniques for the SP-100 Space Reactor. All major fabrication challenges have been faced and overcome. Methods are in place for the fabrication and inspection of composite fuel cladding, the reactor honeycomb core, cold forging of the core support nozzle course, and electron beam welding of the auxiliary cooling loop system. Specifications and procedures have been developed and proven on actual hardware for electron beam welding, gas tungsten arc welding, heat treatment, solvent cleaning, chemical cleaning, ultrasonic inspection, helium leak testing, dye penetrant and microfocus rod anode radiography. Signicant work remains to be done but no problems have been identified which would prevent fabrication of the high temperature SP-100 Space Reactor.

  2. DESIGN, FABRICATION, AND TESTING OF AN ADVANCED, NON-POLLUTING TURBINE DRIVE GAS GENERATOR

    SciTech Connect

    Unknown

    2002-01-31

    The objective of this report period was to continue the development of the Gas Generator design, fabrication and test of the non-polluting unique power turbine drive Gas Generator. Focus during this past report period has been to continue completion the Gas Generator design, completing the brazing and bonding experiments to determine the best method and materials necessary to fabricate the Gas Generator hardware, continuing to making preparations for fabricating and testing this Gas Generator and commencing with the fabrication of the Gas Generator hardware and ancillary hardware. Designs have been completed sufficiently such that Long Lead Items [LLI] have been ordered and upon arrival will be readied for the fabrication process. The keys to this design are the platelet construction of the injectors that precisely measures/meters the flow of the propellants and water all throughout the steam generating process and the CES patented gas generating cycle. The Igniter Assembly injector platelets fabrication process has been completed and bonded to the Igniter Assembly and final machined. The Igniter Assembly is in final assembly and is being readied for testing in the October 2001 time frame. Test Plan dated August 2001, was revised and finalized, replacing Test Plan dated May 2001.

  3. Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose composites.

    PubMed

    Hebeish, A; Farag, S; Sharaf, S; Shaheen, Th I

    2016-10-20

    Current research was undertaking with a view to innovate a new approach for development of conductive - coated textile materials through coating cotton fabrics with nanocellulose/polypyrrole composites. The study was designed in order to have a clear understanding of the role of nanocellulose as well as modified composite thereof under investigation. It is anticipated that incorporation of nanocellulose in the pyrrole/cotton fabrics/FeCl3/H2O system would form an integral part of the composites with mechanical, electrical or both properties. Three different nanocellulosic substrates are involved in the oxidation polymerization reaction of polypyrrole (Ppy) in presence of cotton fabrics. Polymerization was subsequently carried out by admixing at various ratios of FeCl3 and pyrrole viz. Ppy1, Ppy2 and pp3. The conductive, mechanical and thermal properties of cotton fabrics coated independently with different nanocellulose/polypyrrole were investigated. FTIR, TGA, XRD, SEM and EDX were also used for further characterization. Results signify that, the conductivity of cotton fabrics increases exponentially with increasing the dose of pyrrole and oxidant irrespective of nanocellulose substrate used. While, the mechanical properties of cotton fabrics are not significantly affected by the oxidant treatment. PMID:27474547

  4. Rapid Model Fabrication and Testing for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.

    2000-01-01

    Advanced methods for rapid fabrication and instrumentation of hypersonic wind tunnel models are being developed and evaluated at NASA Langley Research Center. Rapid aeroheating model fabrication and measurement techniques using investment casting of ceramic test models and thermographic phosphors are reviewed. More accurate model casting techniques for fabrication of benchmark metal and ceramic test models are being developed using a combination of rapid prototype patterns and investment casting. White light optical scanning is used for coordinate measurements to evaluate the fabrication process and verify model accuracy to +/- 0.002 inches. Higher-temperature (<210C) luminescent coatings are also being developed for simultaneous pressure and temperature mapping, providing global pressure as well as global aeroheating measurements. Together these techniques will provide a more rapid and complete experimental aerodynamic and aerothermodynamic database for future aerospace vehicles.

  5. Ceramic regenerator program

    NASA Technical Reports Server (NTRS)

    Franklin, Jerrold E.

    1991-01-01

    The feasibility of fabricating an Air Turbo Ramjet (ATR) regenerator containing intricate hydraulic passages from a ceramic material in order to allow operation with high temperature combustion gas and to reduce weight as compared with metallic materials was demonstrated. Platelet technology, ceramic tape casting, and multilayer ceramic packaging techniques were used in this fabrication of subscale silicon nitride components. Proof-of-concept demonstrations were performed to simulate a methane cooled regenerator for an ATR engine. The regenerator vane was designed to operate at realistic service conditions, i.e., 600 psi in a 3500 R (3040 F), 500 fps combustion gas environment. A total of six regenerators were fabricated and tested. The regenerators were shown to be able to withstand internal pressurization to 1575 psi. They were subjected to testing in 500 fps, 3560 R (3100 F) air/propane combustion products and were operated satisfactorily for an excess of 100 hr and 40 thermal cycles which exceeded 2460 R (2000 F).

  6. Design, fabrication, and calibration of curved integral coils for measuring transfer function, uniformity, and effective length of LBL ALS (Lawrence Berkeley Laboratory Advanced Light Source) Booster Dipole Magnets

    SciTech Connect

    Green, M.I.; Nelson, D.; Marks, S.; Gee, B.; Wong, W.; Meneghetti, J.

    1989-03-01

    A matched pair of curved integral coils has been designed, fabricated and calibrated at Lawrence Berkeley Laboratory for measuring Advanced Light Source (ALS) Booster Dipole Magnets. Distinctive fabrication and calibration techniques are described. The use of multifilar magnet wire in fabrication integral search coils is described. Procedures used and results of AC and DC measurements of transfer function, effective length and uniformity of the prototype booster dipole magnet are presented in companion papers. 8 refs.

  7. Portfolio: Ceramics.

    ERIC Educational Resources Information Center

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  8. Effect of sintering temperature variations on fabrication of 45S5 bioactive glass-ceramics using rice husk as a source for silica.

    PubMed

    Leenakul, Wilaiwan; Tunkasiri, Tawee; Tongsiri, Natee; Pengpat, Kamonpan; Ruangsuriya, Jetsada

    2016-04-01

    45S5 bioactive glass is a highly bioactive substance that has the ability to promote stem cell differentiation into osteoblasts--the cells that create bone matrix. The aim of this work is to analyze physical and mechanical properties of 45S5 bioactive glass fabricated by using rice husk ash as its silica source. The 45S5 bioactive glass was prepared by melting the batch at 1300 °C for 3h. The samples were sintered at different temperatures ranging from 900 to 1050 °C with a fixed dwell-time of 2h. The phase transitions, density, porosity and microhardness values were investigated and reported. DTA analysis was used to examine the crystallization temperatures of the glasses prepared. We found that the sintering temperature had a significant effect on the mechanical and physical properties of the bioactive glass. The XRD showed that when the sintering temperature was above 650 °C, crystallization occurred and bioactive glass-ceramics with Na2Ca2Si3O9, Na2Ca4(PO4)2SiO4 and Ca3Si2O7 were formed. The optimum sintering temperature resulting in maximum mechanical values was around 1050 °C, with a high density of 2.27 g/cm(3), 16.96% porosity and the vicker microhardness value of 364HV. Additionally, in vitro assay was used to examine biological activities in stimulated body fluid (SBF). After incubation in SBF for 7 days, all of the samples showed formations of apatite layers indicating that the 45S5 bioactive glasses using rice husk as a raw material were also bioactive. PMID:26838899

  9. Tailored Ceramics for Laser Applications

    SciTech Connect

    Hollingsworth, Joel

    2007-12-10

    Transparent ceramics match or exceed the performance of single-crystal materials in laser applications, with a more-robust fabrication process. Controlling the distribution of optical dopants in transparent ceramics would allow qualitative improvements in amplifier slab design by allowing gain and loss to be varied within the material. My work aims to achieve a controlled pattern or gradient of dopant prior to sintering, in order to produce tailored ceramics.

  10. Interfacial studies of refractory glass-ceramic matrix/advanced SiC fiber-reinforced composites. Annual report, 1 Feb 91-1 Feb 92

    SciTech Connect

    Brennan, J.J.

    1992-04-30

    The main objective of this program is to characterize the chemistry and structure of new advanced small diameter silicon based fibers and how these factors influence the nature of the fiber/matrix interface in refractory glass-ceramic matrix composites. It is the nature of this interface that then determines to a great degree the composite thermal, environmental, and mechanical properties. The fibers under investigation during the second year of this program included the new experimental polymer derived crystalline SiC fibers from Dow Corning Corp., the Si-N-C-O 'Black' fibers from Textron Specialty Materials, as well as the new low oxygen radiation cured Nicalon SiC type fibers from Nippon Carbon Co. Since the availability of all of these fibers was extremely limited, emphasis was placed on the mechanical, chemical, and microstructural characterization of the fibers through tensile testing, SEM of fiber fracture characteristics, scanning Auger depth profiling of fiber surfaces, and TEM of fiber thin sections, as well as their fracture behavior, bonding characteristics, and interfacial compatibility with various glass-ceramic matrix materials. Results of these analyses are discussed. Crystalline SiC fibers, Textron 'Black' fibers, low oxygen Nicalon fibers, SiC fiber/glass-ceramic matrix interfaces, TEM fiber analyses.

  11. Monolithic ceramics

    NASA Technical Reports Server (NTRS)

    Herbell, Thomas P.; Sanders, William A.

    1992-01-01

    A development history and current development status evaluation are presented for SiC and Si3N4 monolithic ceramics. In the absence of widely sought improvements in these materials' toughness, and associated reliability in structural applications, uses will remain restricted to components in noncritical, nonman-rated aerospace applications such as cruise missile and drone gas turbine engine components. In such high temperature engine-section components, projected costs lie below those associated with superalloy-based short-life/expendable engines. Advancements are required in processing technology for the sake of fewer and smaller microstructural flaws.

  12. Ceramic breeder materials

    SciTech Connect

    Johnson, C.E.; Kummerer, K.R.; Roth, E.

    1987-01-01

    Ceramic materials are under investigation as potential breeder material in fusion reactors. This paper will review candidate materials with respect to fabrication routes and characterization, properties in as-fabricated and irradiated condition, and experimental results from laboratory and inpile investigations on tritium transport and release. Also discussed are the resources of beryllium, which is being considered as a neutron multiplier. The comparison of ceramic properties that is attempted here aims at the identification of the most-promising material for use in a tritium breeding blanket. 82 refs., 12 figs., 5 tabs.

  13. Fabrication and Structure Characterization of Alumina-Aluminum Interpenetrating Phase Composites

    NASA Astrophysics Data System (ADS)

    Dolata, Anna J.

    2016-01-01

    Alumina-Aluminum composites with interpenetrating networks structure belong to advanced materials with potentially better properties when compared with composites reinforced by particles or fibers. The paper presents the experimental results of fabrication and structure characterization of Al matrix composites locally reinforced via Al2O3 ceramic foam. The composites were obtained using centrifugal infiltration of porous ceramics by liquid aluminum alloy. Both scanning electron microscopy (SEM + EDS) and x-ray tomography were used to determine the structure of foams and composites especially in reinforced areas. The quality of castings, degree of pore filling in ceramic foams by Al alloy, and microstructure in area of interface were assessed.

  14. Ceramic Technology Project, semiannual progress report for October 1993 through March 1994

    SciTech Connect

    Johnson, D.R.

    1994-09-01

    The Ceramic Technology Project was originally developed by the Department of Energy`s Office of Transportation Systems (OTS) in Conservation and Renewable Energy. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. In July 1990, the original plan was updated through the estimated completion of development in 1993. The original objective of the project was to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. During the course of the Ceramic Technology Project, remarkable progress has been made in the development of reliable structural ceramics. The direction of the Ceramic Technology Project is now shifting toward reducing the cost of ceramics to facilitate commercial introduction of ceramic components for near-term engine applications. In response to extensive input from industry, the plan is to extend the engine types which were previously supported (advanced gas turbine and low-heat-rejection diesel engines) to include near-term (5-10 years) applications in conventional automobile and diesel truck engines. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. A systematic approach to reducing the cost of components is envisioned.

  15. Recent advances in the welding technology on the fabrication of jackup drilling rig

    SciTech Connect

    Akahide, K.; Hashimoto, O.; Kikukawa, S.; Shimizu, T.

    1983-05-01

    This paper presents new techniques in the fabrication of rig components that satisfy various requirements for use in cold and/or deep waters such as the North Sea. Details discussed include: improving the toughness of heavy-walled HSLA steel pipes (700-800 MPa class) for the chords and legs of rigs, method of controlling welding deformation in the fabrication of chords, and the effect of post weld heat treatment (PWHT) on the toughness of welded joints. Data are presented from both field operations and laboratory tests of actual size specimens manufactured by industrial processes.

  16. Inorganic glass ceramic slip rings

    NASA Technical Reports Server (NTRS)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  17. A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology.

    PubMed

    Mandai, Shingo; Fishburn, Matthew W; Maruyama, Yuki; Charbon, Edoardo

    2012-03-12

    We present a single-photon avalanche diode (SPAD) with a wide spectral range fabricated in an advanced 180 nm CMOS process. The realized SPAD achieves 20 % photon detection probability (PDP) for wavelengths ranging from 440 nm to 820 nm at an excess bias of 4 V, with 30 % PDP at wavelengths from 520 nm to 720 nm. Dark count rates (DCR) are at most 5 kHz, which is 30 Hz/μm2, at an excess bias of 4V when we measure 10 μm diameter active area structure. Afterpulsing probability, timing jitter, and temperature effects on DCR are also presented. PMID:22418462

  18. Development of a Batch Fabrication Process for Chemical Nanosensors: Recent Advancements at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Biaggi-Labiosa, Azlin M.

    2014-01-01

    A major objective in aerospace sensor development is to produce sensors that are small in size, easy to batch fabricate and low in cost, and have low power consumption. Chemical sensors involving nanostructured materials can provide these characteristics as well as the potential for the development of sensor systems with unique properties and improved performance. However, the fabrication and processing of nanostructures for sensor applications currently is limited by the ability to control their location on the sensor platform, which in turn hinders the progress for batch fabrication. This presentation will discuss the following: the development of a novel room temperature methane (CH4) sensor fabricated using porous tin oxide (SnO2) nanorods as the sensing material, the advantages of using nanomaterials in sensor designs, the challenges encountered with the integration of nanostructures into microsensordevices, and the different methods that have been attempted to address these challenges. An approach for the mass production of sensors with nanostructures using a method developed by our group at the NASA Glenn Research Center to control the alignment of nanostructures onto a sensor platform will also be described.

  19. Process for fabrication of cermets

    DOEpatents

    Landingham, Richard L.

    2011-02-01

    Cermet comprising ceramic and metal components and a molten metal infiltration method and process for fabrication thereof. The light weight cermets having improved porosity, strength, durability, toughness, elasticity fabricated from presintered ceramic powder infiltrated with a molten metal or metal alloy. Alumina titanium cermets biocompatible with the human body suitable for bone and joint replacements.

  20. Advanced Turbine Technology Applications Project (ATTAP) 1993 annual report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report summarizes work performed by AlliedSignal Engines, a unit of AlliedSignal Aerospace Company, during calendar year 1993, toward development and demonstration of structural ceramic technology for automotive gas turbine engines. This work was performed for the U.S. Department of Energy (DOE) under National Aeronautics and Space Administration (NASA) Contract DEN3-335, Advanced Turbine Technology Applications Project (ATFAP). During 1993, the test bed used to demonstrate ceramic technology was changed from the AlliedSignal Engines/Garrett Model AGT101 regenerated gas turbine engine to the Model 331-200(CT) engine. The 331-200(CT) ceramic demonstrator is a fully-developed test platform based on the existing production AlliedSignal 331-200(ER) gas turbine auxiliary power unit (APU), and is well suited to evaluating ceramic turbine blades and nozzles. In addition, commonality of the 331-200(CT) engine with existing gas turbine APU's in commercial service provides the potential for field testing of ceramic components. The 1993 ATTAP activities emphasized design modifications of the 331-200 engine test bed to accommodate ceramic first-stage turbine nozzles and blades, fabrication of the ceramic components, ceramic component proof and rig tests, operational tests of the test bed equipped with the ceramic components, and refinement of critical ceramic design technologies.