Chen, Guangbo; Zhao, Yufei; Shang, Lu; Waterhouse, Geoffrey I N; Kang, Xiaofeng; Wu, Li-Zhu; Tung, Chen-Ho; Zhang, Tierui
2016-07-01
Monovalent Zn + (3d 10 4s 1 ) systems possess a special electronic structure that can be exploited in heterogeneous catalysis and photocatalysis, though it remains challenge to synthesize Zn + -containing materials. By careful design, Zn + -related species can be synthesized in zeolite and layered double hydroxide systems, which in turn exhibit excellent catalytic potential in methane, CO and CO 2 activation. Furthermore, by utilizing advanced characterization tools, including electron spin resonance, X-ray absorption fine structure and density functional theory calculations, the formation mechanism of the Zn + species and their structure-performance relationships can be understood. Such advanced characterization tools guide the rational design of high-performance Zn + -containing catalysts for efficient energy conversion.
Chen, Guangbo; Zhao, Yufei; Shang, Lu; Waterhouse, Geoffrey I. N.; Kang, Xiaofeng; Wu, Li‐Zhu; Tung, Chen‐Ho
2016-01-01
Monovalent Zn+ (3d104s1) systems possess a special electronic structure that can be exploited in heterogeneous catalysis and photocatalysis, though it remains challenge to synthesize Zn+‐containing materials. By careful design, Zn+‐related species can be synthesized in zeolite and layered double hydroxide systems, which in turn exhibit excellent catalytic potential in methane, CO and CO2 activation. Furthermore, by utilizing advanced characterization tools, including electron spin resonance, X‐ray absorption fine structure and density functional theory calculations, the formation mechanism of the Zn+ species and their structure‐performance relationships can be understood. Such advanced characterization tools guide the rational design of high‐performance Zn+‐containing catalysts for efficient energy conversion. PMID:27818902
State-of-the-art characterization techniques for advanced lithium-ion batteries
NASA Astrophysics Data System (ADS)
Lu, Jun; Wu, Tianpin; Amine, Khalil
2017-03-01
To meet future needs for industries from personal devices to automobiles, state-of-the-art rechargeable lithium-ion batteries will require both improved durability and lowered costs. To enhance battery performance and lifetime, understanding electrode degradation mechanisms is of critical importance. Various advanced in situ and operando characterization tools developed during the past few years have proven indispensable for optimizing battery materials, understanding cell degradation mechanisms, and ultimately improving the overall battery performance. Here we review recent progress in the development and application of advanced characterization techniques such as in situ transmission electron microscopy for high-performance lithium-ion batteries. Using three representative electrode systems—layered metal oxides, Li-rich layered oxides and Si-based or Sn-based alloys—we discuss how these tools help researchers understand the battery process and design better battery systems. We also summarize the application of the characterization techniques to lithium-sulfur and lithium-air batteries and highlight the importance of those techniques in the development of next-generation batteries.
Advanced 3D Characterization and Reconstruction of Reactor Materials FY16 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fromm, Bradley; Hauch, Benjamin; Sridharan, Kumar
2016-12-01
A coordinated effort to link advanced materials characterization methods and computational modeling approaches is critical to future success for understanding and predicting the behavior of reactor materials that operate at extreme conditions. The difficulty and expense of working with nuclear materials have inhibited the use of modern characterization techniques on this class of materials. Likewise, mesoscale simulation efforts have been impeded due to insufficient experimental data necessary for initialization and validation of the computer models. The objective of this research is to develop methods to integrate advanced materials characterization techniques developed for reactor materials with state-of-the-art mesoscale modeling and simulationmore » tools. Research to develop broad-ion beam sample preparation, high-resolution electron backscatter diffraction, and digital microstructure reconstruction techniques; and methods for integration of these techniques into mesoscale modeling tools are detailed. Results for both irradiated and un-irradiated reactor materials are presented for FY14 - FY16 and final remarks are provided.« less
NASA Astrophysics Data System (ADS)
Foucher, Johann; Filippov, Pavel; Penzkofer, Christian; Irmer, Bernd; Schmidt, Sebastian W.
2013-04-01
Atomic force microscopy (AFM) is increasingly used in the semiconductor industry as a versatile monitoring tool for highly critical lithography and etching process steps. Applications range from the inspection of the surface roughness of new materials, over accurate depth measurements to the determination of critical dimension structures. The aim to address the rapidly growing demands on measurement uncertainty and throughput more and more shifts the focus of attention to the AFM tip, which represents the crucial link between AFM tool and the sample to be monitored. Consequently, in order to reach the AFM tool's full potential, the performance of the AFM tip has to be considered as a determining parameter. Currently available AFM tips made from silicon are generally limited by their diameter, radius, and sharpness, considerably restricting the AFM measurement capabilities on sub-30nm spaces. In addition to that, there's lack of adequate characterization structures to accurately characterize sub-25nm tip diameters. Here, we present and discuss a recently introduced AFM tip design (T-shape like design) with precise tip diameters down to 15nm and tip radii down to 5nm fabricated from amorphous, high density diamond-like carbon (HDC/DLC) using electron beam induced processing (EBIP). In addition to that advanced design, we propose a new characterizer structure, which allows for accurate characterization and design control of sub-25nm tip diameters and sub-10nm tip edges radii. We demonstrate the potential advantages of combining a small tip shape design, i.e. tip diameter and tip edge radius, and an advanced tip characterizer for the semiconductor industry by the measurement of advanced lithography patterns.
The Exoplanet Characterization ToolKit (ExoCTK)
NASA Astrophysics Data System (ADS)
Stevenson, Kevin; Fowler, Julia; Lewis, Nikole K.; Fraine, Jonathan; Pueyo, Laurent; Valenti, Jeff; Bruno, Giovanni; Filippazzo, Joseph; Hill, Matthew; Batalha, Natasha E.; Bushra, Rafia
2018-01-01
The success of exoplanet characterization depends critically on a patchwork of analysis tools and spectroscopic libraries that currently require extensive development and lack a centralized support system. Due to the complexity of spectroscopic analyses and initial time commitment required to become productive, there are currently a limited number of teams that are actively advancing the field. New teams with significant expertise, but without the proper tools, face prohibitively steep hills to climb before they can contribute. As a solution, we are developing an open-source, modular data analysis package in Python and a publicly facing web interface focused primarily on atmospheric characterization of exoplanets and exoplanet transit observation planning with JWST. The foundation of these software tools and libraries exist within pockets of the exoplanet community. Our project will gather these seedling tools and grow a robust, uniform, and well maintained exoplanet characterization toolkit.
New Tools for Investigating Chemical and Product Use
- The timely characterization of the human and ecological risk posed by thousands of existing and emerging commercial chemicals is a critical challenge - High throughput (HT) risk prioritization relies on hazard and exposure characterization - While advances have been made ...
Advancing Exposure Characterization for Chemical Evaluation and Risk Assessment
A new generation of scientific tools has emerged to rapidly measure signals from cells, tissues, and organisms following exposure to chemicals. High-visibility efforts to apply these tools for efficient toxicity testing raise important research questions in exposure science. As v...
A review of genome-wide approaches to study the genetic basis for spermatogenic defects.
Aston, Kenneth I; Conrad, Donald F
2013-01-01
Rapidly advancing tools for genetic analysis on a genome-wide scale have been instrumental in identifying the genetic bases for many complex diseases. About half of male infertility cases are of unknown etiology in spite of tremendous efforts to characterize the genetic basis for the disorder. Advancing our understanding of the genetic basis for male infertility will require the application of established and emerging genomic tools. This chapter introduces many of the tools available for genetic studies on a genome-wide scale along with principles of study design and data analysis.
ESH assessment of advanced lithography materials and processes
NASA Astrophysics Data System (ADS)
Worth, Walter F.; Mallela, Ram
2004-05-01
The ESH Technology group at International SEMATECH is conducting environment, safety, and health (ESH) assessments in collaboration with the lithography technologists evaluating the performance of an increasing number of new materials and technologies being considered for advanced lithography such as 157nm photresist and extreme ultraviolet (EUV). By performing data searches for 75 critical data types, emissions characterizations, and industrial hygiene (IH) monitoring during the use of the resist candidates, it has been shown that the best performing resist formulations, so far, appear to be free of potential ESH concerns. The ESH assessment of the EUV lithography tool that is being developed for SEMATECH has identified several features of the tool that are of ESH concern: high energy consumption, poor energy conversion efficiency, tool complexity, potential ergonomic and safety interlock issues, use of high powered laser(s), generation of ionizing radiation (soft X-rays), need for adequate shielding, and characterization of the debris formed by the extreme temperature of the plasma. By bringing these ESH challenges to the attention of the technologists and tool designers, it is hoped that the processes and tools can be made more ESH friendly.
USDA-ARS?s Scientific Manuscript database
Recent advances in DNA sequencing technologies have revolutionized the way we study bacterial biological control strains. These advances have provided the ability to rapidily characterize the secondary metabolite potential of these bacterial strains. A variety of bioinformatics tools have been devel...
Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging
Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.
2015-01-01
Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288
Information of urban morphological features at high resolution is needed to properly model and characterize the meteorological and air quality fields in urban areas. We describe a new project called National Urban Database with Access Portal Tool, (NUDAPT) that addresses this nee...
Friction Stir Spot Welding of Advanced High Strength Steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.
Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spotmore » welding in advanced high strength steels.« less
Microfabricated X-Ray Optics Technology Development for the Constellation-X Mission
NASA Technical Reports Server (NTRS)
Schattenburg, Mark L.
2003-01-01
During the period of this Cooperative Agreement, MIT developed advanced methods for applying silicon micro-stuctures for the precision assembly of foil x-ray optics in support of the Constellution-X Spectroscopy X-ray Telescope (SXT) development effort at Goddard Space Flight Center (GSFC). MIT developed improved methods for fabricating and characterizing the precision silicon micro-combs. MIT also developed and characterized assembly tools and several types of metrology tools in order to characterize and reduce the errors associated with precision assembly of foil optics. Results of this effort were published and presented to the scientific community and the GSFC SXT team.
Well log characterization of natural gas-hydrates
Collett, Timothy S.; Lee, Myung W.
2012-01-01
In the last 25 years there have been significant advancements in the use of well-logging tools to acquire detailed information on the occurrence of gas hydrates in nature: whereas wireline electrical resistivity and acoustic logs were formerly used to identify gas-hydrate occurrences in wells drilled in Arctic permafrost environments, more advanced wireline and logging-while-drilling (LWD) tools are now routinely used to examine the petrophysical nature of gas-hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Resistivity- and acoustic-logging tools are the most widely used for estimating the gas-hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. Recent integrated sediment coring and well-log studies have confirmed that electrical-resistivity and acoustic-velocity data can yield accurate gas-hydrate saturations in sediment grain-supported (isotropic) systems such as sand reservoirs, but more advanced log-analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. New well-logging tools designed to make directionally oriented acoustic and propagation-resistivity log measurements provide the data needed to analyze the acoustic and electrical anisotropic properties of both highly interbedded and fracture-dominated gas-hydrate reservoirs. Advancements in nuclear magnetic resonance (NMR) logging and wireline formation testing (WFT) also allow for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids(i.e., free water along with clay- and capillary-bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms controlling the formation and occurrence of gas hydrate in nature along with data on gas-hydrate reservoir properties (i.e., porosities and permeabilities) needed to accurately predict gas production rates for various gas-hydrate production schemes.
Image-based deep learning for classification of noise transients in gravitational wave detectors
NASA Astrophysics Data System (ADS)
Razzano, Massimiliano; Cuoco, Elena
2018-05-01
The detection of gravitational waves has inaugurated the era of gravitational astronomy and opened new avenues for the multimessenger study of cosmic sources. Thanks to their sensitivity, the Advanced LIGO and Advanced Virgo interferometers will probe a much larger volume of space and expand the capability of discovering new gravitational wave emitters. The characterization of these detectors is a primary task in order to recognize the main sources of noise and optimize the sensitivity of interferometers. Glitches are transient noise events that can impact the data quality of the interferometers and their classification is an important task for detector characterization. Deep learning techniques are a promising tool for the recognition and classification of glitches. We present a classification pipeline that exploits convolutional neural networks to classify glitches starting from their time-frequency evolution represented as images. We evaluated the classification accuracy on simulated glitches, showing that the proposed algorithm can automatically classify glitches on very fast timescales and with high accuracy, thus providing a promising tool for online detector characterization.
Toutios, Asterios; Narayanan, Shrikanth S
2016-01-01
Real-time magnetic resonance imaging (rtMRI) of the moving vocal tract during running speech production is an important emerging tool for speech production research providing dynamic information of a speaker's upper airway from the entire mid-sagittal plane or any other scan plane of interest. There have been several advances in the development of speech rtMRI and corresponding analysis tools, and their application to domains such as phonetics and phonological theory, articulatory modeling, and speaker characterization. An important recent development has been the open release of a database that includes speech rtMRI data from five male and five female speakers of American English each producing 460 phonetically balanced sentences. The purpose of the present paper is to give an overview and outlook of the advances in rtMRI as a tool for speech research and technology development.
TOUTIOS, ASTERIOS; NARAYANAN, SHRIKANTH S.
2016-01-01
Real-time magnetic resonance imaging (rtMRI) of the moving vocal tract during running speech production is an important emerging tool for speech production research providing dynamic information of a speaker's upper airway from the entire mid-sagittal plane or any other scan plane of interest. There have been several advances in the development of speech rtMRI and corresponding analysis tools, and their application to domains such as phonetics and phonological theory, articulatory modeling, and speaker characterization. An important recent development has been the open release of a database that includes speech rtMRI data from five male and five female speakers of American English each producing 460 phonetically balanced sentences. The purpose of the present paper is to give an overview and outlook of the advances in rtMRI as a tool for speech research and technology development. PMID:27833745
Using Micro-Synchrophasor Data for Advanced Distribution Grid Planning and Operations Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Emma; Kiliccote, Sila; McParland, Charles
2014-07-01
This report reviews the potential for distribution-grid phase-angle data that will be available from new micro-synchrophasors (µPMUs) to be utilized in existing distribution-grid planning and operations analysis. This data could augment the current diagnostic capabilities of grid analysis software, used in both planning and operations for applications such as fault location, and provide data for more accurate modeling of the distribution system. µPMUs are new distribution-grid sensors that will advance measurement and diagnostic capabilities and provide improved visibility of the distribution grid, enabling analysis of the grid’s increasingly complex loads that include features such as large volumes of distributed generation.more » Large volumes of DG leads to concerns on continued reliable operation of the grid, due to changing power flow characteristics and active generation, with its own protection and control capabilities. Using µPMU data on change in voltage phase angle between two points in conjunction with new and existing distribution-grid planning and operational tools is expected to enable model validation, state estimation, fault location, and renewable resource/load characterization. Our findings include: data measurement is outstripping the processing capabilities of planning and operational tools; not every tool can visualize a voltage phase-angle measurement to the degree of accuracy measured by advanced sensors, and the degree of accuracy in measurement required for the distribution grid is not defined; solving methods cannot handle the high volumes of data generated by modern sensors, so new models and solving methods (such as graph trace analysis) are needed; standardization of sensor-data communications platforms in planning and applications tools would allow integration of different vendors’ sensors and advanced measurement devices. In addition, data from advanced sources such as µPMUs could be used to validate models to improve/ensure accuracy, providing information on normally estimated values such as underground conductor impedance, and characterization of complex loads. Although the input of high-fidelity data to existing tools will be challenging, µPMU data on phase angle (as well as other data from advanced sensors) will be useful for basic operational decisions that are based on a trend of changing data.« less
Proteomic analyses of the environmental toxicity of carcinogenic chemicals
Protein expression and posttranslational modifications consistently change in response to the exposure to environmental chemicals. Recent technological advances in proteomics provide new tools for more efficient characterization of protein expression and posttranslational modific...
Whole-genome CNV analysis: advances in computational approaches.
Pirooznia, Mehdi; Goes, Fernando S; Zandi, Peter P
2015-01-01
Accumulating evidence indicates that DNA copy number variation (CNV) is likely to make a significant contribution to human diversity and also play an important role in disease susceptibility. Recent advances in genome sequencing technologies have enabled the characterization of a variety of genomic features, including CNVs. This has led to the development of several bioinformatics approaches to detect CNVs from next-generation sequencing data. Here, we review recent advances in CNV detection from whole genome sequencing. We discuss the informatics approaches and current computational tools that have been developed as well as their strengths and limitations. This review will assist researchers and analysts in choosing the most suitable tools for CNV analysis as well as provide suggestions for new directions in future development.
Fabrication and Metrology of High-Precision Foil Mirror Mounting Elements
NASA Technical Reports Server (NTRS)
Schattenburg, Mark L.
2002-01-01
During the period of this Cooperative Agreement, MIT (Massachusetts Institute of Technology) developed advanced methods for applying silicon microstructures for the precision assembly of foil x-ray optics in support of the Constellation-X Spectroscopy X-ray Telescope (SXT) development effort at Goddard Space Flight Center (GSFC). MIT developed improved methods for fabricating and characterizing the precision silicon micro-combs. MIT also developed and characterized assembly tools and several types of metrology tools in order to characterize and reduce the errors associated with precision assembly of foil optics. Results of this effort were published and presented to the scientific community and the GSFC SXT team. A bibliography of papers and presentations is offered.
EPA Water Strategy: Advancing Technologies
National Risk Management Research Laboratory conducts innovative research to manage contaminants in water supplies that pose a threat to human health and the environment, and to develop approaches and tools to monitor, treat, characterize, protect, and restore impaired waterways,...
Discovering and understanding oncogenic gene fusions through data intensive computational approaches
Latysheva, Natasha S.; Babu, M. Madan
2016-01-01
Abstract Although gene fusions have been recognized as important drivers of cancer for decades, our understanding of the prevalence and function of gene fusions has been revolutionized by the rise of next-generation sequencing, advances in bioinformatics theory and an increasing capacity for large-scale computational biology. The computational work on gene fusions has been vastly diverse, and the present state of the literature is fragmented. It will be fruitful to merge three camps of gene fusion bioinformatics that appear to rarely cross over: (i) data-intensive computational work characterizing the molecular biology of gene fusions; (ii) development research on fusion detection tools, candidate fusion prioritization algorithms and dedicated fusion databases and (iii) clinical research that seeks to either therapeutically target fusion transcripts and proteins or leverages advances in detection tools to perform large-scale surveys of gene fusion landscapes in specific cancer types. In this review, we unify these different—yet highly complementary and symbiotic—approaches with the view that increased synergy will catalyze advancements in gene fusion identification, characterization and significance evaluation. PMID:27105842
The state of advanced measurement and verification technology and industry application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granderson, Jessica; Fernandes, Samuel
2017-09-28
With the expansion of advanced metering and increased use of energy analytics tools, the energy efficiency community has begun to explore the application of advanced measurement and verification (or ‘M & V 2.0') technologies. Current literature recognizes their promise, but does not offer in-depth assessment of technical underpinnings. Here, this paper assesses the state of the technology and its application. Sixteen commercially available technologies were characterized and combined with a national review of their use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitanidis, Peter
As large-scale, commercial storage projects become operational, the problem of utilizing information from diverse sources becomes more critically important. In this project, we developed, tested, and applied an advanced joint data inversion system for CO 2 storage modeling with large data sets for use in site characterization and real-time monitoring. Emphasis was on the development of advanced and efficient computational algorithms for joint inversion of hydro-geophysical data, coupled with state-of-the-art forward process simulations. The developed system consists of (1) inversion tools using characterization data, such as 3D seismic survey (amplitude images), borehole log and core data, as well as hydraulic,more » tracer and thermal tests before CO 2 injection, (2) joint inversion tools for updating the geologic model with the distribution of rock properties, thus reducing uncertainty, using hydro-geophysical monitoring data, and (3) highly efficient algorithms for directly solving the dense or sparse linear algebra systems derived from the joint inversion. The system combines methods from stochastic analysis, fast linear algebra, and high performance computing. The developed joint inversion tools have been tested through synthetic CO 2 storage examples.« less
Development of Next Generation Synthetic Biology Tools for Use in Streptomyces venezuelae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelan, Ryan M.; Sachs, Daniel; Petkiewicz, Shayne J.
Streptomyces have a rich history as producers of important natural products and this genus of bacteria has recently garnered attention for its potential applications in the broader context of synthetic biology. However, the dearth of genetic tools available to control and monitor protein production precludes rapid and predictable metabolic engineering that is possible in hosts such as Escherichia coli or Saccharomyces cerevisiae. In an effort to improve genetic tools for Streptomyces venezuelae, we developed a suite of standardized, orthogonal integration vectors and an improved method to monitor protein production in this host. These tools were applied to characterize heterologous promotersmore » and various attB chromosomal integration sites. A final study leveraged the characterized toolset to demonstrate its use in producing the biofuel precursor bisabolene using a chromosomally integrated expression system. In conclusion, these tools advance S. venezuelae to be a practical host for future metabolic engineering efforts.« less
The expanding universe of alkaloid biosynthesis.
De Luca, V; Laflamme, P
2001-06-01
Characterization of many of the major gene families responsible for the generation of central intermediates and for their decoration, together with the development of large genomics and proteomics databases, has revolutionized our capability to identify exotic and interesting natural-product pathways. Over the next few years, these tools will facilitate dramatic advances in our knowledge of the biosynthesis of alkaloids, which will far surpass that which we have learned in the past 50 years. These tools will also be exploited for the rapid characterization of regulatory genes, which control the development of specialized cell factories for alkaloid biosynthesis.
Extensional rheometry with a handheld mobile device
NASA Astrophysics Data System (ADS)
Marshall, Kristin A.; Liedtke, Aleesha M.; Todt, Anika H.; Walker, Travis W.
2017-06-01
The on-site characterization of complex fluids is important for a number of academic and industrial applications. Consequently, a need exists to develop portable rheometers that can provide in the field diagnostics and serve as tools for rapid quality assurance. With the advancement of smartphone technology and the widespread global ownership of smart devices, mobile applications are attractive as platforms for rheological characterization. The present work investigates the use of a smartphone device for the extensional characterization of a series of Boger fluids composed of glycerol/water and poly(ethylene oxide), taking advantage of the increasing high-speed video capabilities (currently up to 240 Hz capture rate at 720p) of smartphone cameras. We report a noticeable difference in the characterization of samples with slight variations in polymer concentration and discuss current device limitations. Potential benefits of a handheld extensional rheometer include its use as a point-of-care diagnostic tool, especially in developing communities, as well as a simple and inexpensive tool for assessing product quality in industry.
Intentional defect array wafers: their practical use in semiconductor control and monitoring systems
NASA Astrophysics Data System (ADS)
Emami, Iraj; McIntyre, Michael; Retersdorf, Michael
2003-07-01
In the competitive world of semiconductor manufacturing today, control of the process and manufacturing equipment is paramount to success of the business. Consistent with the need for rapid development of process technology, is a need for development wiht respect to equipment control including defect metrology tools. Historical control methods for defect metrology tools included a raw count of defects detected on a characterized production or test wafer with little or not regard to the attributes of the detected defects. Over time, these characterized wafers degrade with multiple passes on the tools and handling requiring the tool owner to create and characterize new samples periodically. With the complex engineering software analysis systems used today, there is a strong reliance on the accuracy of defect size, location, and classification in order to provide the best value when correlating the in line to sort type of data. Intentional Defect Array (IDA) wafers were designed and manufacturered at International Sematech (ISMT) in Austin, Texas and is a product of collaboration between ISMT member companies and suppliers of advanced defect inspection equipment. These wafers provide the use with known defect types and sizes in predetermined locations across the entire wafer. The wafers are designed to incorporate several desired flows and use critical dimensions consistent with current and future technology nodes. This paper briefly describes the design of the IDA wafer and details many practical applications in the control of advanced defect inspection equipment.
Energy geotechnics: Advances in subsurface energy recovery, storage, exchange, and waste management
McCartney, John S.; Sanchez, Marcelo; Tomac, Ingrid
2016-02-17
Energy geotechnics involves the use of geotechnical principles to understand and engineer the coupled thermo-hydro-chemo-mechanical processes encountered in collecting, exchanging, storing, and protecting energy resources in the subsurface. In addition to research on these fundamental coupled processes and characterization of relevant material properties, applied research is being performed to develop analytical tools for the design and analysis of different geo-energy applications. In conclusion, the aims of this paper are to discuss the fundamental physics and constitutive models that are common to these different applications, and to summarize recent advances in the development of relevant analytical tools.
Energy geotechnics: Advances in subsurface energy recovery, storage, exchange, and waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCartney, John S.; Sanchez, Marcelo; Tomac, Ingrid
Energy geotechnics involves the use of geotechnical principles to understand and engineer the coupled thermo-hydro-chemo-mechanical processes encountered in collecting, exchanging, storing, and protecting energy resources in the subsurface. In addition to research on these fundamental coupled processes and characterization of relevant material properties, applied research is being performed to develop analytical tools for the design and analysis of different geo-energy applications. In conclusion, the aims of this paper are to discuss the fundamental physics and constitutive models that are common to these different applications, and to summarize recent advances in the development of relevant analytical tools.
Composite Characterization Using Ultrasonic Wavefield Techniques
NASA Technical Reports Server (NTRS)
Leckey, Cara A. C.; Juarez, Peter D.; Seebo, Jeffrey P.
2016-01-01
The large-scale use of composite components in aerospace applications is expected to continue due to the benefits of composite materials, such as reduced weight, increased strength, and tailorability. NASA's Advanced Composites Project (ACP) has the goals of reducing the timeline for certification of composite materials and enabling the expanded use of advanced composite materials. A key technical challenge area for accomplishing these goals is the need for nondestructive evaluation and materials characterization techniques that are optimized for rapid inspection and detailed defect/damage characterization in composite materials. This presentation will discuss ongoing research investigating the use of ultrasonic wavefield techniques for the characterization of defects such as fiber waviness and delamination damage. Ongoing work includes the development of realistic ultrasonic simulation tools for use in predicting the inspectability of composites and optimizing inspection methodologies. Recent studies on detecting/characterizing delamination damage and fiber waviness via wavefield methods will be described.
Model-Based Infrared Metrology for Advanced Technology Nodes and 300 mm Wafer Processing
NASA Astrophysics Data System (ADS)
Rosenthal, Peter A.; Duran, Carlos; Tower, Josh; Mazurenko, Alex; Mantz, Ulrich; Weidner, Peter; Kasic, Alexander
2005-09-01
The use of infrared spectroscopy for production semiconductor process monitoring has evolved recently from primarily unpatterned, i.e. blanket test wafer measurements in a limited historical application space of blanket epitaxial, BPSG, and FSG layers to new applications involving patterned product wafer measurements, and new measurement capabilities. Over the last several years, the semiconductor industry has adopted a new set of materials associated with copper/low-k interconnects, and new structures incorporating exotic materials including silicon germanium, SOI substrates and high aspect ratio trenches. The new device architectures and more chemically sophisticated materials have raised new process control and metrology challenges that are not addressed by current measurement technology. To address the challenges we have developed a new infrared metrology tool designed for emerging semiconductor production processes, in a package compatible with modern production and R&D environments. The tool incorporates recent advances in reflectance instrumentation including highly accurate signal processing, optimized reflectometry optics, and model-based calibration and analysis algorithms. To meet the production requirements of the modern automated fab, the measurement hardware has been integrated with a fully automated 300 mm platform incorporating front opening unified pod (FOUP) interfaces, automated pattern recognition and high throughput ultra clean robotics. The tool employs a suite of automated dispersion-model analysis algorithms capable of extracting a variety of layer properties from measured spectra. The new tool provides excellent measurement precision, tool matching, and a platform for deploying many new production and development applications. In this paper we will explore the use of model based infrared analysis as a tool for characterizing novel bottle capacitor structures employed in high density dynamic random access memory (DRAM) chips. We will explore the capability of the tool for characterizing multiple geometric parameters associated with the manufacturing process that are important to the yield and performance of advanced bottle DRAM devices.
2011-09-01
project research addresses our long-term goal to develop an analytical suite of the Advanced Laser Fluorescence (ALF) methods and instruments to improve...demonstrated ALF utility as an integrated tool for aquatic research and observations. The ALF integration into the major oceanographic programs is...currently in progress, including the California Current Ecosystem Long Term Ecological Research (CCE LTER, NSF) and California Cooperative Oceanic
Wagner, James M; Alper, Hal S
2016-04-01
Coupling the tools of synthetic biology with traditional molecular genetic techniques can enable the rapid prototyping and optimization of yeast strains. While the era of yeast synthetic biology began in the well-characterized model organism Saccharomyces cerevisiae, it is swiftly expanding to include non-conventional yeast production systems such as Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. These yeasts already have roles in the manufacture of vaccines, therapeutic proteins, food additives, and biorenewable chemicals, but recent synthetic biology advances have the potential to greatly expand and diversify their impact on biotechnology. In this review, we summarize the development of synthetic biological tools (including promoters and terminators) and enabling molecular genetics approaches that have been applied in these four promising alternative biomanufacturing platforms. An emphasis is placed on synthetic parts and genome editing tools. Finally, we discuss examples of synthetic tools developed in other organisms that can be adapted or optimized for these hosts in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.
Duo, Jia; Bruno, JoAnne; Kozhich, Alexander; David-Brown, Donata; Luo, Linlin; Kwok, Suk; Santockyte, Rasa; Haulenbeek, Jonathan; Liu, Rong; Hamuro, Lora; Peterson, Jon E; Piccoli, Steven; DeSilva, Binodh; Pillutla, Renuka; Zhang, Yan J
2018-04-01
Ligand-binding assay (LBA) performance depends on quality reagents. Strategic reagent screening and characterization is critical to LBA development, optimization and validation. Application of advanced technologies expedites the reagent screening and assay development process. By evaluating surface plasmon resonance technology that offers high-throughput kinetic information, this article aims to provide perspectives on applying the surface plasmon resonance technology to strategic LBA critical reagent screening and characterization supported by a number of case studies from multiple biotherapeutic programs.
Enabling functional genomics with genome engineering
Hilton, Isaac B.; Gersbach, Charles A.
2015-01-01
Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. PMID:26430154
SamePage: Development of a Team Training Tool to Promote Shared Understanding
2007-07-01
1. Each stage of learning—from novice to advanced beginner to competent to proficient to expert—can be characterized by further acquisition of...Stage 2 Stage 3 Stage 4 Stage 5 Novice Advanced Beginner Competent Proficient Expert Engages in conscious deliberate planning Sees situation...entire scenario events in an overview story form; (2) an overview flowchart that shows the major frame events and actions required from each team member
Challenges of NDE simulation tool validation, optimization, and utilization for composites
NASA Astrophysics Data System (ADS)
Leckey, Cara A. C.; Seebo, Jeffrey P.; Juarez, Peter
2016-02-01
Rapid, realistic nondestructive evaluation (NDE) simulation tools can aid in inspection optimization and prediction of inspectability for advanced aerospace materials and designs. NDE simulation tools may someday aid in the design and certification of aerospace components; potentially shortening the time from material development to implementation by industry and government. Furthermore, ultrasound modeling and simulation are expected to play a significant future role in validating the capabilities and limitations of guided wave based structural health monitoring (SHM) systems. The current state-of-the-art in ultrasonic NDE/SHM simulation is still far from the goal of rapidly simulating damage detection techniques for large scale, complex geometry composite components/vehicles containing realistic damage types. Ongoing work at NASA Langley Research Center is focused on advanced ultrasonic simulation tool development. This paper discusses challenges of simulation tool validation, optimization, and utilization for composites. Ongoing simulation tool development work is described along with examples of simulation validation and optimization challenges that are more broadly applicable to all NDE simulation tools. The paper will also discuss examples of simulation tool utilization at NASA to develop new damage characterization methods for composites, and associated challenges in experimentally validating those methods.
Doing accelerator physics using SDDS, UNIX, and EPICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borland, M.; Emery, L.; Sereno, N.
1995-12-31
The use of the SDDS (Self-Describing Data Sets) file protocol, together with the UNIX operating system and EPICS (Experimental Physics and Industrial Controls System), has proved powerful during the commissioning of the APS (Advanced Photon Source) accelerator complex. The SDDS file protocol has permitted a tool-oriented approach to developing applications, wherein generic programs axe written that function as part of multiple applications. While EPICS-specific tools were written for data collection, automated experiment execution, closed-loop control, and so forth, data processing and display axe done with the SDDS Toolkit. Experiments and data reduction axe implemented as UNIX shell scripts that coordinatemore » the execution of EPICS specific tools and SDDS tools. Because of the power and generic nature of the individual tools and of the UNIX shell environment, automated experiments can be prepared and executed rapidly in response to unanticipated needs or new ideas. Examples are given of application of this methodology to beam motion characterization, beam-position-monitor offset measurements, and klystron characterization.« less
New methodology to baseline and match AME polysilicon etcher using advanced diagnostic tools
NASA Astrophysics Data System (ADS)
Poppe, James; Shipman, John; Reinhardt, Barbara E.; Roussel, Myriam; Hedgecock, Raymond; Fonda, Arturo
1999-09-01
As process controls tighten in the semiconductor industry, the need to understand the variables that determine system performance become more important. For plasma etch systems, process success depends on the control of key parameters such as: vacuum integrity, pressure, gas flows, and RF power. It is imperative to baseline, monitor, and control these variables. This paper presents an overview of the methods and tools used by Motorola BMC fabrication facility to characterize an Applied Materials polysilicon etcher. Tool performance data obtained from our traditional measurement techniques are limited in their scope and do not provide a complete picture of the ultimate tool performance. Presently the BMC traditional characterization tools provide a snapshot of the static operation of the equipment under test (EUT); however, complete evaluation of the dynamic performance cannot be monitored without the aid of specialized diagnostic equipment. To provide us with a complete system baseline evaluation of the polysilicon etcher, three diagnostic tools were utilized: Lucas Labs Vacuum Diagnostic System, Residual Gas Analyzer, and the ENI Voltage/Impedance Probe. The diagnostic methodology used to baseline and match key parameters of qualified production equipment has had an immense impact on other equipment characterization in the facility. It has resulted in reduced cycle time for new equipment introduction as well.
Novel imaging technologies for characterization of microbial extracellular polysaccharides.
Lilledahl, Magnus B; Stokke, Bjørn T
2015-01-01
Understanding of biology is underpinned by the ability to observe structures at various length scales. This is so in a historical context and is also valid today. Evolution of novel insight often emerges from technological advancement. Recent developments in imaging technologies that is relevant for characterization of extraceullar microbiological polysaccharides are summarized. Emphasis is on scanning probe and optical based techniques since these tools offers imaging capabilities under aqueous conditions more closely resembling the physiological state than other ultramicroscopy imaging techniques. Following the demonstration of the scanning probe microscopy principle, novel operation modes to increase data capture speed toward video rate, exploitation of several cantilever frequencies, and advancement of utilization of specimen mechanical properties as contrast, also including their mode of operation in liquid, have been developed on this platform. Combined with steps in advancing light microscopy with resolution beyond the far field diffraction limit, non-linear methods, and combinations of the various imaging modalities, the potential ultramicroscopy toolbox available for characterization of exopolysaccharides (EPS) are richer than ever. Examples of application of such ultramicroscopy strategies range from imaging of isolated microbial polysaccharides, structures being observed when they are involved in polyelectrolyte complexes, aspects of their enzymatic degradation, and cell surface localization of secreted polysaccharides. These, and other examples, illustrate that the advancement in imaging technologies relevant for EPS characterization supports characterization of structural aspects.
Development of grating-based x-ray Talbot interferometry at the advanced photon source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marathe, Shashidhara; Xiao Xianghui; Wojcik, Michael J.
2012-07-31
We report on the ongoing effort to develop hard x-ray Talbot interferometry at the Advanced Photon Source (APS), Argonne National Laboratory, USA. We describe the design of the interferometer and preliminary results obtained at 25 keV using a feather and a phantom sample lithographically fabricated of gold. We mention the future developmental goals and applications of this technique as a metrology tool for x-ray optics and beam wavefront characterization.
Metabolomics for secondary metabolite research.
Breitling, Rainer; Ceniceros, Ana; Jankevics, Andris; Takano, Eriko
2013-11-11
Metabolomics, the global characterization of metabolite profiles, is becoming an increasingly powerful tool for research on secondary metabolite discovery and production. In this review we discuss examples of recent technological advances and biological applications of metabolomics in the search for chemical novelty and the engineered production of bioactive secondary metabolites.
Timmins, Peter; Desai, Divyakant; Chen, Wei; Wray, Patrick; Brown, Jonathan; Hanley, Sarah
2016-08-01
Approaches to characterizing and developing understanding around the mechanisms that control the release of drugs from hydrophilic matrix tablets are reviewed. While historical context is provided and direct physical characterization methods are described, recent advances including the role of percolation thresholds, the application on magnetic resonance and other spectroscopic imaging techniques are considered. The influence of polymer and dosage form characteristics are reviewed. The utility of mathematical modeling is described. Finally, how all the information derived from applying the developed mechanistic understanding from all of these tools can be brought together to develop a robust and reliable hydrophilic matrix extended-release tablet formulation is proposed.
On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials
NASA Technical Reports Server (NTRS)
Gates, Thomas S.
2003-01-01
A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.
Recent advances in synthetic biology of cyanobacteria.
Sengupta, Annesha; Pakrasi, Himadri B; Wangikar, Pramod P
2018-05-09
Cyanobacteria are attractive hosts that can be engineered for the photosynthetic production of fuels, fine chemicals, and proteins from CO 2 . Moreover, the responsiveness of these photoautotrophs towards different environmental signals, such as light, CO 2 , diurnal cycle, and metals make them potential hosts for the development of biosensors. However, engineering these hosts proves to be a challenging and lengthy process. Synthetic biology can make the process of biological engineering more predictable through the use of standardized biological parts that are well characterized and tools to assemble them. While significant progress has been made with model heterotrophic organisms, many of the parts and tools are not portable in cyanobacteria. Therefore, efforts are underway to develop and characterize parts derived from cyanobacteria. In this review, we discuss the reported parts and tools with the objective to develop cyanobacteria as cell factories or biosensors. We also discuss the issues related to characterization, tunability, portability, and the need to develop enabling technologies to engineer this "green" chassis.
NASA Astrophysics Data System (ADS)
Islam, Amina; Chevalier, Sylvie; Sassi, Mohamed
2018-04-01
With advances in imaging techniques and computational power, Digital Rock Physics (DRP) is becoming an increasingly popular tool to characterize reservoir samples and determine their internal structure and flow properties. In this work, we present the details for imaging, segmentation, as well as numerical simulation of single-phase flow through a standard homogenous Silurian dolomite core plug sample as well as a heterogeneous sample from a carbonate reservoir. We develop a procedure that integrates experimental results into the segmentation step to calibrate the porosity. We also look into using two different numerical tools for the simulation; namely Avizo Fire Xlab Hydro that solves the Stokes' equations via the finite volume method and Palabos that solves the same equations using the Lattice Boltzmann Method. Representative Elementary Volume (REV) and isotropy studies are conducted on the two samples and we show how DRP can be a useful tool to characterize rock properties that are time consuming and costly to obtain experimentally.
Enabling functional genomics with genome engineering.
Hilton, Isaac B; Gersbach, Charles A
2015-10-01
Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. © 2015 Hilton and Gersbach; Published by Cold Spring Harbor Laboratory Press.
Advanced LIGO low-latency searches
NASA Astrophysics Data System (ADS)
Kanner, Jonah; LIGO Scientific Collaboration, Virgo Collaboration
2016-06-01
Advanced LIGO recently made the first detection of gravitational waves from merging binary black holes. The signal was first identified by a low-latency analysis, which identifies gravitational-wave transients within a few minutes of data collection. More generally, Advanced LIGO transients are sought with a suite of automated tools, which collectively identify events, evaluate statistical significance, estimate source position, and attempt to characterize source properties. This low-latency effort is enabling a broad multi-messenger approach to the science of compact object mergers and other transients. This talk will give an overview of the low-latency methodology and recent results.
Advanced Tools for River Science: EAARL and MD_SWMS: Chapter 3
Kinzel, Paul J.
2009-01-01
Disruption of flow regimes and sediment supplies, induced by anthropogenic or climatic factors, can produce dramatic alterations in river form, vegetation patterns, and associated habitat conditions. To improve habitat in these fluvial systems, resource managers may choose from a variety of treatments including flow and/or sediment prescriptions, vegetation management, or engineered approaches. Monitoring protocols developed to assess the morphologic response of these treatments require techniques that can measure topographic changes above and below the water surface efficiently, accurately, and in a standardized, cost-effective manner. Similarly, modeling of flow, sediment transport, habitat, and channel evolution requires characterization of river morphology for model input and verification. Recent developments by the U.S. Geological Survey with regard to both remotely sensed methods (the Experimental Advanced Airborne Research LiDAR; EAARL) and computational modeling software (the Multi-Dimensional Surface-Water Modeling System; MD_SWMS) have produced advanced tools for spatially explicit monitoring and modeling in aquatic environments. In this paper, we present a pilot study conducted along the Platte River, Nebraska, that demonstrates the combined use of these river science tools.
Advanced Stoichiometric Analysis of Metabolic Networks of Mammalian Systems
Orman, Mehmet A.; Berthiaume, Francois; Androulakis, Ioannis P.; Ierapetritou, Marianthi G.
2013-01-01
Metabolic engineering tools have been widely applied to living organisms to gain a comprehensive understanding about cellular networks and to improve cellular properties. Metabolic flux analysis (MFA), flux balance analysis (FBA), and metabolic pathway analysis (MPA) are among the most popular tools in stoichiometric network analysis. Although application of these tools into well-known microbial systems is extensive in the literature, various barriers prevent them from being utilized in mammalian cells. Limited experimental data, complex regulatory mechanisms, and the requirement of more complex nutrient media are some major obstacles in mammalian cell systems. However, mammalian cells have been used to produce therapeutic proteins, to characterize disease states or related abnormal metabolic conditions, and to analyze the toxicological effects of some medicinally important drugs. Therefore, there is a growing need for extending metabolic engineering principles to mammalian cells in order to understand their underlying metabolic functions. In this review article, advanced metabolic engineering tools developed for stoichiometric analysis including MFA, FBA, and MPA are described. Applications of these tools in mammalian cells are discussed in detail, and the challenges and opportunities are highlighted. PMID:22196224
USDA-ARS?s Scientific Manuscript database
Line-scan-based hyperspectral imaging techniques have often served as a research tool to develop rapid multispectral methods based on only a few spectral bands for rapid online applications. With continuing technological advances and greater accessibility to and availability of optoelectronic imagin...
Advances and unresolved challenges in the structural characterization of isomeric lipids.
Hancock, Sarah E; Poad, Berwyck L J; Batarseh, Amani; Abbott, Sarah K; Mitchell, Todd W
2017-05-01
As the field of lipidomics grows and its application becomes wide and varied it is important that we don't forget its foundation, i.e. the identification and measurement of molecular lipids. Advances in liquid chromatography and the emergence of ion mobility as a useful tool in lipid analysis are allowing greater separation of lipid isomers than ever before. At the same time, novel ion activation techniques, such as ozone-induced dissociation, are pushing lipid structural characterization by mass spectrometry to new levels. Nevertheless, the quantitative capacity of these techniques is yet to be proven and further refinements are required to unravel the high level of lipid complexity found in biological samples. At present there is no one technique capable of providing full structural characterization of lipids from a biological sample. There are however, numerous techniques now available (as discussed in this review) that could be deployed in a targeted approach. Moving forward, the combination of advanced separation and ion activation techniques is likely to provide mass spectrometry-based lipidomics with its best opportunity to achieve complete molecular-level lipid characterization and measurement from complex mixtures. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Fabrication and Characterization of High Temperature Resin/Carbon Nanofiber Composites
NASA Technical Reports Server (NTRS)
Ghose, Sayata; Watson, Kent A.; Working, Dennis C.; Criss, Jim M.; Siochi, Emilie J.; Conell, John W.
2005-01-01
As part of ongoing efforts to develop multifunctional advanced composites, blends of PETI-330 and carbon nanofibers (CNF) were prepared and characterized. Dry mixing techniques were employed and the effect of CNF loading level on melt viscosity was determined. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, samples containing 30 and 40 wt% CNF were scaled up to approx.300 g and used to fabricate moldings 10.2 cm x 15.2 cm x 0.32 cm thick. The moldings were fabricated by injecting the mixtures at 260-280 C into a stainless steel tool followed by curing for 1 h at 371 C. The tool was designed to impart high shear during the injection process in an attempt to achieve some alignment of CNFs in the flow direction. Moldings were obtained that were subsequently characterized for thermal, mechanical and electrical properties. The degree of dispersion and alignment of CNFs were investigated using high-resolution scanning electron microscopy. The preparation and preliminary characterization of PETI-330/CNF composites will be discussed.
MemAxes: Visualization and Analytics for Characterizing Complex Memory Performance Behaviors.
Gimenez, Alfredo; Gamblin, Todd; Jusufi, Ilir; Bhatele, Abhinav; Schulz, Martin; Bremer, Peer-Timo; Hamann, Bernd
2018-07-01
Memory performance is often a major bottleneck for high-performance computing (HPC) applications. Deepening memory hierarchies, complex memory management, and non-uniform access times have made memory performance behavior difficult to characterize, and users require novel, sophisticated tools to analyze and optimize this aspect of their codes. Existing tools target only specific factors of memory performance, such as hardware layout, allocations, or access instructions. However, today's tools do not suffice to characterize the complex relationships between these factors. Further, they require advanced expertise to be used effectively. We present MemAxes, a tool based on a novel approach for analytic-driven visualization of memory performance data. MemAxes uniquely allows users to analyze the different aspects related to memory performance by providing multiple visual contexts for a centralized dataset. We define mappings of sampled memory access data to new and existing visual metaphors, each of which enabling a user to perform different analysis tasks. We present methods to guide user interaction by scoring subsets of the data based on known performance problems. This scoring is used to provide visual cues and automatically extract clusters of interest. We designed MemAxes in collaboration with experts in HPC and demonstrate its effectiveness in case studies.
Mars Atmospheric Characterization Using Advanced 2-Micron Orbiting Lidar
NASA Technical Reports Server (NTRS)
Singh, U.; Engelund, W.; Refaat, T.; Kavaya, M.; Yu, J.; Petros, M.
2015-01-01
Mars atmospheric characterization is critical for exploring the planet. Future Mars missions require landing massive payloads to the surface with high accuracy. The accuracy of entry, descent and landing (EDL) of a payload is a major technical challenge for future Mars missions. Mars EDL depends on atmospheric conditions such as density, wind and dust as well as surface topography. A Mars orbiting 2-micron lidar system is presented in this paper. This advanced lidar is capable of measuring atmospheric pressure and temperature profiles using the most abundant atmospheric carbon dioxide (CO2) on Mars. In addition Martian winds and surface altimetry can be mapped, independent of background radiation or geographical location. This orbiting lidar is a valuable tool for developing EDL models for future Mars missions.
Toward Engineering Synthetic Microbial Metabolism
McArthur, George H.; Fong, Stephen S.
2010-01-01
The generation of well-characterized parts and the formulation of biological design principles in synthetic biology are laying the foundation for more complex and advanced microbial metabolic engineering. Improvements in de novo DNA synthesis and codon-optimization alone are already contributing to the manufacturing of pathway enzymes with improved or novel function. Further development of analytical and computer-aided design tools should accelerate the forward engineering of precisely regulated synthetic pathways by providing a standard framework for the predictable design of biological systems from well-characterized parts. In this review we discuss the current state of synthetic biology within a four-stage framework (design, modeling, synthesis, analysis) and highlight areas requiring further advancement to facilitate true engineering of synthetic microbial metabolism. PMID:20037734
NASA Technical Reports Server (NTRS)
Rauscher, Bernard J.; Bolcar, Matthew R.; Clampin, Mark; Domagal-Goldman, Shawn D.; McElwain, Michael W.; Moseley, S. H.; Stahle, Carl; Stark, Christopher C.; Thronson, Harley A.
2015-01-01
Are we alone? Answering this ageless question will be a major focus for astrophysics in coming decades. Our tools will include unprecedentedly large UV-Optical-IR space telescopes working with advanced coronagraphs and starshades. Yet, these facilities will not live up to their full potential without better detectors than we have today. To inform detector development, this paper provides an overview of visible and near-IR (VISIR; lambda = 0.4 - 1.8 micrometers) detector needs for the Advanced Technology Large Aperture Space Telescope (ATLAST), specifically for spectroscopic characterization of atmospheric biosignature gasses. We also provide a brief status update on some promising detector technologies for meeting these needs in the context of a passively cooled ATLAST.
Ultrasonic Characterization of Aerospace Composites
NASA Technical Reports Server (NTRS)
Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel
2015-01-01
Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.
Education and Children with Down Syndrome: Neuroscience, Development, and Intervention
ERIC Educational Resources Information Center
Fidler, Deborah J.; Nadel, Lynn
2007-01-01
Of the recent advances in education-related research in Down syndrome, the characterization of the Down syndrome behavioral phenotype has become a potentially critical tool for shaping education and intervention in this population. This article briefly reviews the literature on brain-behavior connections in Down syndrome and identifies aspects of…
Mishra, Gyan P.; Singh, Bijendra; Seth, Tania; Singh, Achuit K.; Halder, Jaydeep; Krishnan, Nagendran; Tiwari, Shailesh K.; Singh, Prabhakar M.
2017-01-01
Despite the importance of okra, as one of the important vegetable crop, very little attention has been paid to its genetic improvement using advanced biotechnological tools. The exploitation of marker assisted breeding in okra is often limited due to the availability of a few molecular markers, the absence of molecular genetic-map(s), and other molecular tools. Chromosome linkage-groups were not yet constructed for this crop and reports on marker development are very scanty and mostly hovering around cultivar characterization. Besides, very little progress has been observed for transgenic development. However, high throughput biotechnological tools like chromosome engineering, RNA interference (RNAi), marker-assisted recurrent selection (MARS), genome-wide selection (GWS), targeted gene replacement, next generation sequencing (NGS), and nanobiotechnology can provide a rapid way for okra improvement. Further, the etiology of many deadly viral diseases like the yellow vein mosaic virus (YVMV) and okra enation leaf curl virus (OELCV) in okra is broadly indistinct and has been shown to be caused by various begomovirus species. These diseases cause systemic infections and have a very effective mode of transmission; thus, preventing their spread has been very complicated. Biotechnological interventions have the potential to enhance okra production even under different viral-stress conditions. In this background, this review deals with the biotechnological advancements in okra per se along with the begomoviruses infecting okra, and special emphasis has been laid on the exploitation of advanced genomic tools for the development of resistant varieties. PMID:28367155
Advanced MRI in Multiple Sclerosis: Current Status and Future Challenges
Fox, Robert J.; Beall, Erik; Bhattacharyya, Pallab; Chen, Jacqueline; Sakaie, Ken
2011-01-01
Synopsis Magnetic resonance imaging (MRI) has rapidly become a leading research tool in the study of multiple sclerosis (MS). Conventional imaging is useful in diagnosis and management of the inflammatory stages of MS, but has limitations in describing the degree of tissue injury as well as the cause of progressive disability seen in the later stages of disease. Advanced MRI techniques hold promise to fill this void. Magnetization transfer imaging is a widely available technique that can characterize demyelination and may be useful in measuring putative remyelinating therapies. Diffusion tensor imaging describes the three-dimensional diffusion of water and holds promise in characterizing neurodegeneration and putative neuroprotective therapies. Spectroscopy measures the imbalance of cellular metabolites and could help unravel the pathogenesis of neurodegeneration in MS. Functional (f) MRI can be used to understand the functional consequences of MS injury, including the impact on cortical function and compensatory mechanisms. These imaging tools hold great promise to increase our understanding of MS pathogenesis and provide greater insight into the efficacy of new MS therapies. PMID:21439446
State of the Art Assessment of Simulation in Advanced Materials Development
NASA Technical Reports Server (NTRS)
Wise, Kristopher E.
2008-01-01
Advances in both the underlying theory and in the practical implementation of molecular modeling techniques have increased their value in the advanced materials development process. The objective is to accelerate the maturation of emerging materials by tightly integrating modeling with the other critical processes: synthesis, processing, and characterization. The aims of this report are to summarize the state of the art of existing modeling tools and to highlight a number of areas in which additional development is required. In an effort to maintain focus and limit length, this survey is restricted to classical simulation techniques including molecular dynamics and Monte Carlo simulations.
Tempest: Tools for Addressing the Needs of Next-Generation Climate Models
NASA Astrophysics Data System (ADS)
Ullrich, P. A.; Guerra, J. E.; Pinheiro, M. C.; Fong, J.
2015-12-01
Tempest is a comprehensive simulation-to-science infrastructure that tackles the needs of next-generation, high-resolution, data intensive climate modeling activities. This project incorporates three key components: TempestDynamics, a global modeling framework for experimental numerical methods and high-performance computing; TempestRemap, a toolset for arbitrary-order conservative and consistent remapping between unstructured grids; and TempestExtremes, a suite of detection and characterization tools for identifying weather extremes in large climate datasets. In this presentation, the latest advances with the implementation of this framework will be discussed, and a number of projects now utilizing these tools will be featured.
High Temperature Resin/Carbon Nanotube Composite Fabrication
NASA Technical Reports Server (NTRS)
Ghose, Sayata; Watson, Kent A.; Sun, Keun J.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.
2006-01-01
For the purpose of incorporating multifunctionality into advanced composites, blends of phenylethynyl terminated imides-330 (PETI-330) and multi-walled carbon nanotubes (MWCNTs) were prepared, characterized and fabricated into moldings. PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight percent by dry mixing the components in a ball mill. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, PETI-330/MWCNT samples were scaled up to approximately 300 g and used to fabricate moldings by injecting the mixtures at 260-280 deg C into a stainless steel tool followed by curing for 1 h at 371 deg C. The tool was designed to impart a degree of shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction. Obtained moldings were subsequently characterized for thermal, mechanical, and electrical properties. The degree of dispersion and alignment of MWCNTs were investigated using high-resolution scanning electron microscopy. The preparation and preliminary characterization of PETI-330/MWCNT composites will be discussed.
NASA Astrophysics Data System (ADS)
Shu, D.; Liu, W.; Kearney, S.; Anton, J.; Tischler, J. Z.
2015-09-01
The 3-D X-ray diffraction microscope is a new nondestructive tool for the three-dimensional characterization of mesoscopic materials structure. A flexural-pivot-based precision linear stage has been designed to perform a wire scan as a differential aperture for the 3-D diffraction microscope at the Advanced Photon Source, Argonne National Laboratory. The mechanical design and finite element analyses of the flexural stage, as well as its initial mechanical test results with laser interferometer are described in this paper.
Microchip-Based Single-Cell Functional Proteomics for Biomedical Applications
Lu, Yao; Yang, Liu; Wei, Wei; Shi, Qihui
2017-01-01
Cellular heterogeneity has been widely recognized but only recently have single cell tools become available that allow characterizing heterogeneity at the genomic and proteomic levels. We review the technological advances in microchip-based toolkits for single-cell functional proteomics. Each of these tools has distinct advantages and limitations, and a few have advanced toward being applied to address biological or clinical problems that fail to be addressed by traditional population-based methods. High-throughput single-cell proteomic assays generate high-dimensional data sets that contain new information and thus require developing new analytical framework to extract new biology. In this review article, we highlight a few biological and clinical applications in which the microchip-based single-cell proteomic tools provide unique advantages. The examples include resolving functional heterogeneity and dynamics of immune cells, dissecting cell-cell interaction by creating well-contolled on-chip microenvironment, capturing high-resolution snapshots of immune system functions in patients for better immunotherapy and elucidating phosphoprotein signaling networks in cancer cells for guiding effective molecularly targeted therapies. PMID:28280819
Attitudes towards Science Learning among 10th-Grade Students: A Qualitative Look
ERIC Educational Resources Information Center
Raved, Lena; Assaraf, Orit Ben Zvi
2011-01-01
The twenty-first century is characterized by multiple, frequent and remarkable scientific advancements, which have a major effect on the decisions that govern everyday life. It is therefore vital to give proper comprehensive scientific education to the population and provide it with the right tools for decision-making. This in turn requires that…
2015 Army Science Planning and Strategy Meeting Series: Outcomes and Conclusions
2017-12-21
modeling and nanoscale characterization tools to enable efficient design of hybridized manufacturing ; realtime, multiscale computational capability...to enable predictive analytics for expeditionary on-demand manufacturing • Discovery of design principles to enable programming advanced genetic...goals, significant research is needed to mature the fundamental materials science, processing and manufacturing sciences, design methodologies, data
ERIC Educational Resources Information Center
Brunauer, Linda S.; Davis, Kathryn K.
2008-01-01
A simple multiday laboratory exercise suitable for use in a high school or community college chemistry course or a biotechnology advanced placement biology course is described. In this experiment students gain experience in the use of column chromatography as a tool for the separation and characterization of biomolecules, thus expanding their…
Tool path strategy and cutting process monitoring in intelligent machining
NASA Astrophysics Data System (ADS)
Chen, Ming; Wang, Chengdong; An, Qinglong; Ming, Weiwei
2018-06-01
Intelligent machining is a current focus in advanced manufacturing technology, and is characterized by high accuracy and efficiency. A central technology of intelligent machining—the cutting process online monitoring and optimization—is urgently needed for mass production. In this research, the cutting process online monitoring and optimization in jet engine impeller machining, cranio-maxillofacial surgery, and hydraulic servo valve deburring are introduced as examples of intelligent machining. Results show that intelligent tool path optimization and cutting process online monitoring are efficient techniques for improving the efficiency, quality, and reliability of machining.
NASA Electronic Parts and Packaging Program
NASA Technical Reports Server (NTRS)
Kayali, Sammy
2000-01-01
NEPP program objectives are to: (1) Access the reliability of newly available electronic parts and packaging technologies for usage on NASA projects through validations, assessments, and characterizations, and the development of test methods/tools; (2)Expedite infusion paths for advanced (emerging) electronic parts and packaging technologies by evaluations of readiness for manufacturability and project usage consideration; (3) Provide NASA projects with technology selection, application, and validation guidelines for electronic parts and packaging hardware and processes; nd (4) Retain and disseminate electronic parts and packaging quality assurance, reliability validations, tools, and availability information to the NASA community.
Animal Toxins Providing Insights into TRPV1 Activation Mechanism
Geron, Matan; Hazan, Adina
2017-01-01
Beyond providing evolutionary advantages, venoms offer unique research tools, as they were developed to target functionally important proteins and pathways. As a key pain receptor in the nociceptive pathway, transient receptor potential vanilloid 1 (TRPV1) of the TRP superfamily has been shown to be a target for several toxins, as a way of producing pain to deter predators. Importantly, TRPV1 is involved in thermoregulation, inflammation, and acute nociception. As such, toxins provide tools to understand TRPV1 activation and modulation, a critical step in advancing pain research and the development of novel analgesics. Indeed, the phytotoxin capsaicin, which is the spicy chemical in chili peppers, was invaluable in the original cloning and characterization of TRPV1. The unique properties of each subsequently characterized toxin have continued to advance our understanding of functional, structural, and biophysical characteristics of TRPV1. By building on previous reviews, this work aims to provide a comprehensive summary of the advancements made in TRPV1 research in recent years by employing animal toxins, in particular DkTx, RhTx, BmP01, Echis coloratus toxins, APHCs and HCRG21. We examine each toxin’s functional aspects, behavioral effects, and structural features, all of which have contributed to our current knowledge of TRPV1. We additionally discuss the key features of TRPV1’s outer pore domain, which proves to be the target of the currently discussed toxins. PMID:29035314
Thermal Characterization of Carbon Nanotubes by Photothermal Techniques
NASA Astrophysics Data System (ADS)
Leahu, G.; Li Voti, R.; Larciprete, M. C.; Sibilia, C.; Bertolotti, M.; Nefedov, I.; Anoshkin, I. V.
2015-06-01
Carbon nanotubes (CNTs) are multifunctional materials commonly used in a large number of applications in electronics, sensors, nanocomposites, thermal management, actuators, energy storage and conversion, and drug delivery. Despite recent important advances in the development of CNT purity assessment tools and atomic resolution imaging of individual nanotubes by scanning tunnelling microscopy and high-resolution transmission electron microscopy, the macroscale assessment of the overall surface qualities of commercial CNT materials remains a great challenge. The lack of quantitative measurement technology to characterize and compare the surface qualities of bulk manufactured and engineered CNT materials has negative impacts on the reliable and consistent nanomanufacturing of CNT products. In this paper it is shown how photoacoustic spectroscopy and photothermal radiometry represent useful non-destructive tools to study the optothermal properties of carbon nanotube thin films.
Chapter 16: Lignin Visualization: Advanced Microscopy Techniques for Lignin Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Yining; Donohoe, Bryon S
Visualization of lignin in plant cell walls, with both spatial and chemical resolution, is emerging as an important tool to understand lignin's role in the plant cell wall's nanoscale architecture and to understand and design processes intended to modify the lignin. As such, this chapter reviews recent advances in advanced imaging methods with respect to lignin in plant cell walls. This review focuses on the importance of lignin detection and localization for studies in both plant biology and biotechnology. Challenges going forward to identify and delineate lignin from other plant cell wall components and to quantitatively analyze lignin in wholemore » cell walls from native plant tissue and treated biomass are also discussed.« less
Preparation and Characterization of PETI-330/Multiwalled Carbon Nanotube
NASA Technical Reports Server (NTRS)
Ghose, Sayata; Watson, Kent A.; Working, Dennis C.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.
2005-01-01
As part of an ongoing effort to incorporate multifunctionality into advanced composites, blends of PETI-330 and multi-walled carbon nanotubes (MWCNTs) were prepared, characterized and fabricated into moldings. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight percent by dry mixing the components in a ball mill. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, PETI-330/MWCNT samples were scaled up to 300 g and used to fabricate moldings 10.2 cm x 15.2 cm x 0.32 cm thick. The moldings were made by injecting the mixtures at 260-280 C into an Invar tool followed by curing for 1 h at 371 C. The tool was designed to impart shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction. Good quality moldings were obtained that were subsequently characterized for thermal, mechanical and electrical properties. The degree of dispersion and alignment of the MWCNTs were investigated using high-resolution scanning electron microscopy. The preparation and preliminary characterization of PETI-330/MWCNT composites will be discussed. Keywords: phenylethynyl terminated imides, high temperature polymers, nanocomposites, moldings
Wen, Jia-Long; Sun, Shao-Long; Xue, Bai-Liang; Sun, Run-Cang
2013-01-01
The demand for efficient utilization of biomass induces a detailed analysis of the fundamental chemical structures of biomass, especially the complex structures of lignin polymers, which have long been recognized for their negative impact on biorefinery. Traditionally, it has been attempted to reveal the complicated and heterogeneous structure of lignin by a series of chemical analyses, such as thioacidolysis (TA), nitrobenzene oxidation (NBO), and derivatization followed by reductive cleavage (DFRC). Recent advances in nuclear magnetic resonance (NMR) technology undoubtedly have made solution-state NMR become the most widely used technique in structural characterization of lignin due to its versatility in illustrating structural features and structural transformations of lignin polymers. As one of the most promising diagnostic tools, NMR provides unambiguous evidence for specific structures as well as quantitative structural information. The recent advances in two-dimensional solution-state NMR techniques for structural analysis of lignin in isolated and whole cell wall states (in situ), as well as their applications are reviewed. PMID:28809313
Well log characterization of natural gas hydrates
Collett, Timothy S.; Lee, Myung W.
2011-01-01
In the last 25 years we have seen significant advancements in the use of downhole well logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From an early start of using wireline electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells drilled in Arctic permafrost environments to today where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. The most established and well known use of downhole log data in gas hydrate research is the use of electrical resistivity and acoustic velocity data (both compressional- and shear-wave data) to make estimates of gas hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. New downhole logging tools designed to make directionally oriented acoustic and propagation resistivity log measurements have provided the data needed to analyze the acoustic and electrical anisotropic properties of both highly inter-bedded and fracture dominated gas hydrate reservoirs. Advancements in nuclear-magnetic-resonance (NMR) logging and wireline formation testing have also allowed for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids (i.e., free-water along with clay and capillary bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms controlling the formation and occurrence of gas hydrate in nature along with data on gas hydrate reservoir properties (i.e., permeabilities) needed to accurately predict gas production rates for various gas hydrate production schemes.
Williams, Bradley S; D'Amico, Ellen; Kastens, Jude H; Thorp, James H; Flotemersch, Joseph E; Thoms, Martin C
2013-09-01
River systems consist of hydrogeomorphic patches (HPs) that emerge at multiple spatiotemporal scales. Functional process zones (FPZs) are HPs that exist at the river valley scale and are important strata for framing whole-watershed research questions and management plans. Hierarchical classification procedures aid in HP identification by grouping sections of river based on their hydrogeomorphic character; however, collecting data required for such procedures with field-based methods is often impractical. We developed a set of GIS-based tools that facilitate rapid, low cost riverine landscape characterization and FPZ classification. Our tools, termed RESonate, consist of a custom toolbox designed for ESRI ArcGIS®. RESonate automatically extracts 13 hydrogeomorphic variables from readily available geospatial datasets and datasets derived from modeling procedures. An advanced 2D flood model, FLDPLN, designed for MATLAB® is used to determine valley morphology by systematically flooding river networks. When used in conjunction with other modeling procedures, RESonate and FLDPLN can assess the character of large river networks quickly and at very low costs. Here we describe tool and model functions in addition to their benefits, limitations, and applications.
Thermography Inspection for Early Detection of Composite Damage in Structures During Fatigue Loading
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Burke, Eric R.; Parker, F. Raymond; Seebo, Jeffrey P.; Wright, Christopher W.; Bly, James B.
2012-01-01
Advanced composite structures are commonly tested under controlled loading. Understanding the initiation and progression of composite damage under load is critical for validating design concepts and structural analysis tools. Thermal nondestructive evaluation (NDE) is used to detect and characterize damage in composite structures during fatigue loading. A difference image processing algorithm is demonstrated to enhance damage detection and characterization by removing thermal variations not associated with defects. In addition, a one-dimensional multilayered thermal model is used to characterize damage. Lastly, the thermography results are compared to other inspections such as non-immersion ultrasonic inspections and computed tomography X-ray.
NASA Astrophysics Data System (ADS)
Rana, Rajender Singh; Singh, Prashant; Kandari, Vikash; Singh, Rakesh; Dobhal, Rajendra; Gupta, Sanjay
2017-03-01
During the past few decades, pharmaceutical industries have registered a quantum jump contributing to high economic growth, but simultaneously it has also given rise to severe environmental pollution. Untreated or allegedly treated pharmaceutical industrial wastewater (PIWW) creates a need for time to time assessment and characterization of discharged wastewater as per the standards provided by the regulatory authorities. To control environmental pollution, pharmaceutical industries use different treatment plans to treat and reuse wastewater. The characterization of PIWW using advanced and coupled techniques has progressed to a much advanced level, but in view of new developments in drug manufacture for emerging diseases and the complexities associated with them, better sophisticated instrumentation and methods of treatment are warranted. The bioremediation process to treat PIWW has undergone more intense investigation in recent decade. This results in the complete mineralization of pharmaceutical industries' wastewater and no waste product is obtained. Moreover, high efficiency and low operation cost prove it to be an effective tool for the treatment of PIWW. The present review focuses on the characterization as well as bioremediation aspects of PIWW.
05/04 VIG Seminar @ 3:00 pm - 4:00 pm Bldg 50/2328 | Center for Cancer Research
Please join us for the next VIG seminar on Thursday, May 4th from 3:00-4:00 in Building 50, Room 2328. Presenter: Gustavo Palacios, Ph.D. Director, Genomic Center, USAMRIID Title: How Genomic Tools could improve our Biopreparedness?: Pathogen Discovery, Near Real-Time Advanced characterization and Immunomics
Engineered proteins with PUF scaffold to manipulate RNA metabolism
Wang, Yang; Wang, Zefeng; Tanaka Hall, Traci M.
2013-01-01
Pumilio/fem-3 mRNA binding factor (FBF) proteins are characterized by a sequence-specific RNA-binding domain. This unique single-stranded RNA recognition module, whose sequence specificity can be reprogrammed, has been fused with functional modules to engineer protein factors with various functions. Here we summarize the advancement in developing RNA regulatory tools and opportunities for the future. PMID:23731364
Advanced capability of air quality simulation models towards accurate performance at finer scales will be needed for such models to serve as tools for performing exposure and risk assessments in urban areas. It is recognized that the impact of urban features such as street and t...
Advanced Computational Techniques for Power Tube Design.
1986-07-01
fixturing applications, in addition to the existing computer-aided engineering capabilities. o Helix TWT Manufacturing has Implemented a tooling and fixturing...illustrates the ajor features of this computer network. ) The backbone of our system is a Sytek Broadband Network (LAN) which Interconnects terminals and...automatic network analyzer (FANA) which electrically characterizes the slow-wave helices of traveling-wave tubes ( TWTs ) -- both for engineering design
Bai, Xian-Ming
2014-10-23
I serve as a Guest Editor for the Nuclear Materials Committee of the TMS Structural Materials Division, and coordinated the topic ‘‘Radiation Effects in Oxide Ceramics and Novel LWR Fuels" for JOM in the December 2014 issue. I selected five articles related this topic. These articles talk about some recent progress of using advanced experimental and modeling tools to study radiation effects in oxide ceramics at atomistic scale and mesoscale. In this guest editor commentary article, I summarize the novel aspects of these papers and also provide some suggestions for future research directions.
The Effects of Cryogenic Treatment on Cutting Tools
NASA Astrophysics Data System (ADS)
Kumar, Satish; Khedkar, Nitin K.; Jagtap, Bhushan; Singh, T. P.
2017-08-01
Enhancing the cutting tool life is important and economic factor to reduce the tooling as well as manufacturing cost. The tool life is improved considerably by 92 % after cryogenic treatment. The cryogenic treatment is a one-time permanent, sub-zero heat treatment that entirely changes cross-section of cutting tool. The cryogenic treatment is carried out with deep freezing of cutting tool materials to enhance physical and mechanical properties. The cryogenic treatment improves mechanical such as hardness, toughness and tribological properties such as wear resistance, coefficient of friction, surface finish, dimensional stability and stress relief. The deep cryogenic treatment is the most beneficial treatment applied on cutting tools. The cryogenic treatment is the most advanced heat treatment and popular to improve performance of the cutting tool. The optimization of cryogenic treatment variables is necessary to improve tool life. This study reviews the effects of cryogenic treatment on microstructure, tribological properties of tool steels and machining applications of cutting tool by investigating the surface and performing the surface characterization test like SEM. The economy of cutting tool can be achieved by deep cryogenic treatment.
Mission Systems Open Architecture Science and Technology (MOAST) program
NASA Astrophysics Data System (ADS)
Littlejohn, Kenneth; Rajabian-Schwart, Vahid; Kovach, Nicholas; Satterthwaite, Charles P.
2017-04-01
The Mission Systems Open Architecture Science and Technology (MOAST) program is an AFRL effort that is developing and demonstrating Open System Architecture (OSA) component prototypes, along with methods and tools, to strategically evolve current OSA standards and technical approaches, promote affordable capability evolution, reduce integration risk, and address emerging challenges [1]. Within the context of open architectures, the program is conducting advanced research and concept development in the following areas: (1) Evolution of standards; (2) Cyber-Resiliency; (3) Emerging Concepts and Technologies; (4) Risk Reduction Studies and Experimentation; and (5) Advanced Technology Demonstrations. Current research includes the development of methods, tools, and techniques to characterize the performance of OMS data interconnection methods for representative mission system applications. Of particular interest are the OMS Critical Abstraction Layer (CAL), the Avionics Service Bus (ASB), and the Bulk Data Transfer interconnects, as well as to develop and demonstrate cybersecurity countermeasures techniques to detect and mitigate cyberattacks against open architecture based mission systems and ensure continued mission operations. Focus is on cybersecurity techniques that augment traditional cybersecurity controls and those currently defined within the Open Mission System and UCI standards. AFRL is also developing code generation tools and simulation tools to support evaluation and experimentation of OSA-compliant implementations.
2015-09-01
glioblastoma . We have successfully established several patient-derived cell lines from glioblastoma tumors and further established a number of...and single-cell technologies. Although the focus of this research is glioblastoma , the proposed tools are generally applicable to all cancer-based...studies. 15. SUBJECT TERMS Human cohorts, Glioblastoma , Genomic, Proteomic, Single-cell technologies, Hypothesis-driven, integrative systems approach
Preparation and Characterization of PETI-330/Multiwalled Carbon Nanotube Composites
NASA Technical Reports Server (NTRS)
Ghose, Sayata; Watson, Kent A.; Working, Dennis C.; Delozier, Donavon M.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.
2005-01-01
As part of an ongoing effort to incorporate multi-functionality into advanced composites, blends of PETI-330 and multi-walled carbon nanotubes (MWCNTs) were prepared, characterized and fabricated into moldings. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight percent by dry mixing the components in a ball mill. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, PETI-330/MWCNT samples were scaled up to approx. 300 g and used to fabricate moldings 10.2 cm x 15.2 cm x 0.32 cm thick. The moldings were fabricated by injecting the mixtures at 260-280 C into a stainless steel tool followed by curing for 1 h at 371 C. The tool was designed to impart high shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction. Good quality moldings were obtained that were subsequently characterized for thermal, mechanical and electrical properties. The degree of dispersion and alignment of the MWCNTs were investigated using high-resolution scanning electron microscopy and Raman spectroscopy. The preparation and preliminary characterization of PETI-330/MWCNT composites will be discussed. Keywords: phenylethynyl terminated imides, high temperature polymers, nanocomposites,
Multivariable Hermite polynomials and phase-space dynamics
NASA Technical Reports Server (NTRS)
Dattoli, G.; Torre, Amalia; Lorenzutta, S.; Maino, G.; Chiccoli, C.
1994-01-01
The phase-space approach to classical and quantum systems demands for advanced analytical tools. Such an approach characterizes the evolution of a physical system through a set of variables, reducing to the canonically conjugate variables in the classical limit. It often happens that phase-space distributions can be written in terms of quadratic forms involving the above quoted variables. A significant analytical tool to treat these problems may come from the generalized many-variables Hermite polynomials, defined on quadratic forms in R(exp n). They form an orthonormal system in many dimensions and seem the natural tool to treat the harmonic oscillator dynamics in phase-space. In this contribution we discuss the properties of these polynomials and present some applications to physical problems.
Henry, Heather F; Suk, William A
2017-03-01
Innovative devices and tools for exposure assessment and remediation play an integral role in preventing exposure to hazardous substances. New solutions for detecting and remediating organic, inorganic, and mixtures of contaminants can improve public health as a means of primary prevention. Using a public health prevention model, detection and remediation technologies contribute to primary prevention as tools to identify areas of high risk (e.g. contamination hotspots), to recognize hazards (bioassay tests), and to prevent exposure through contaminant cleanups. Primary prevention success is ultimately governed by the widespread acceptance of the prevention tool. And, in like fashion, detection and remediation technologies must convey technical and sustainability advantages to be adopted for use. Hence, sustainability - economic, environmental, and societal - drives innovation in detection and remediation technology. The National Institute of Health (NIH) National Institute of Environmental Health Sciences (NIEHS) Superfund Research Program (SRP) is mandated to advance innovative detection, remediation, and toxicity screening technology development through grants to universities and small businesses. SRP recognizes the importance of fast, accurate, robust, and advanced detection technologies that allow for portable real-time, on-site characterization, monitoring, and assessment of contaminant concentration and/or toxicity. Advances in non-targeted screening, biological-based assays, passive sampling devices (PSDs), sophisticated modeling approaches, and precision-based analytical tools are making it easier to quickly identify hazardous "hotspots" and, therefore, prevent exposures. Innovation in sustainable remediation uses a variety of approaches: in situ remediation; harnessing the natural catalytic properties of biological processes (such as bioremediation and phytotechnologies); and application of novel materials science (such as nanotechnology, advanced membranes, new carbon materials, and materials reuse). Collectively, the investment in new technologies shows promise to reduce the amount and toxicity of hazardous substances in the environment. This manuscript highlights SRP funded innovative devices and tools for exposure assessment and remediation of organic, inorganic, and mixtures of contaminants with a particular focus on sustainable technologies.
Monitoring non-thermal plasma processes for nanoparticle synthesis
NASA Astrophysics Data System (ADS)
Mangolini, Lorenzo
2017-09-01
Process characterization tools have played a crucial role in the investigation of dusty plasmas. The presence of dust in certain non-thermal plasma processes was first detected by laser light scattering measurements. Techniques like laser induced particle explosive evaporation and ion mass spectrometry have provided the experimental evidence necessary for the development of the theory of particle nucleation in silane-containing non-thermal plasmas. This review provides first a summary of these early efforts, and then discusses recent investigations using in situ characterization techniques to understand the interaction between nanoparticles and plasmas. The advancement of such monitoring techniques is necessary to fully develop the potential of non-thermal plasmas as unique materials synthesis and processing platforms. At the same time, the strong coupling between materials and plasma properties suggest that it is also necessary to advance techniques for the measurement of plasma properties while in presence of dust. Recent progress in this area will be discussed.
Characterizing health plan price estimator tools: findings from a national survey.
Higgins, Aparna; Brainard, Nicole; Veselovskiy, German
2016-02-01
Policy makers have growing interest in price transparency and in the kinds of tools available to consumers. Health plans have implemented price estimator tools that make provider pricing information available to members; however, systematic data on prevalence and characteristics of such tools are limited. The purpose of this study was to describe the characteristics of price estimator tools offered by health plans to their members and to identify potential trends, challenges, and opportunities for advancing the utility of these tools. National Web-based survey. Between 2014 and 2015, we conducted a national Web-based survey of health plans with commercial enrollment (100 plans, 43% response rate). Descriptive analyses were conducted using survey data. Health plan members have access to a variety of price estimator tool capabilities for commonly used procedures. These tools take into account member characteristics, including member zip code and benefit design. Despite outreach to members, however, challenges remain with respect to member uptake of such tools. Our study found that health plans share price and provider performance data with their members.
Kriegel, Fabian L; Köhler, Ralf; Bayat-Sarmadi, Jannike; Bayerl, Simon; Hauser, Anja E; Niesner, Raluca; Luch, Andreas; Cseresnyes, Zoltan
2018-03-01
Cells in their natural environment often exhibit complex kinetic behavior and radical adjustments of their shapes. This enables them to accommodate to short- and long-term changes in their surroundings under physiological and pathological conditions. Intravital multi-photon microscopy is a powerful tool to record this complex behavior. Traditionally, cell behavior is characterized by tracking the cells' movements, which yields numerous parameters describing the spatiotemporal characteristics of cells. Cells can be classified according to their tracking behavior using all or a subset of these kinetic parameters. This categorization can be supported by the a priori knowledge of experts. While such an approach provides an excellent starting point for analyzing complex intravital imaging data, faster methods are required for automated and unbiased characterization. In addition to their kinetic behavior, the 3D shape of these cells also provide essential clues about the cells' status and functionality. New approaches that include the study of cell shapes as well may also allow the discovery of correlations amongst the track- and shape-describing parameters. In the current study, we examine the applicability of a set of Fourier components produced by Discrete Fourier Transform (DFT) as a tool for more efficient and less biased classification of complex cell shapes. By carrying out a number of 3D-to-2D projections of surface-rendered cells, the applied method reduces the more complex 3D shape characterization to a series of 2D DFTs. The resulting shape factors are used to train a Self-Organizing Map (SOM), which provides an unbiased estimate for the best clustering of the data, thereby characterizing groups of cells according to their shape. We propose and demonstrate that such shape characterization is a powerful addition to, or a replacement for kinetic analysis. This would make it especially useful in situations where live kinetic imaging is less practical or not possible at all. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
Laser as a Tool to Study Radiation Effects in CMOS
NASA Astrophysics Data System (ADS)
Ajdari, Bahar
Energetic particles from cosmic ray or terrestrial sources can strike sensitive areas of CMOS devices and cause soft errors. Understanding the effects of such interactions is crucial as the device technology advances, and chip reliability has become more important than ever. Particle accelerator testing has been the standard method to characterize the sensitivity of chips to single event upsets (SEUs). However, because of their costs and availability limitations, other techniques have been explored. Pulsed laser has been a successful tool for characterization of SEU behavior, but to this day, laser has not been recognized as a comparable method to beam testing. In this thesis, I propose a methodology of correlating laser soft error rate (SER) to particle beam gathered data. Additionally, results are presented showing a temperature dependence of SER and the "neighbor effect" phenomenon where due to the close proximity of devices a "weakening effect" in the ON state can be observed.
Skinner, Owen S; Schachner, Luis F; Kelleher, Neil L
2016-12-08
Recent advances in top-down mass spectrometry using native electrospray now enable the analysis of intact protein complexes with relatively small sample amounts in an untargeted mode. Here, we describe how to characterize both homo- and heteropolymeric complexes with high molecular specificity using input data produced by tandem mass spectrometry of whole protein assemblies. The tool described is a "search engine for multi-proteoform complexes," (SEMPC) and is available for free online. The output is a list of candidate multi-proteoform complexes and scoring metrics, which are used to define a distinct set of one or more unique protein subunits, their overall stoichiometry in the intact complex, and their pre- and post-translational modifications. Thus, we present an approach for the identification and characterization of intact protein complexes from native mass spectrometry data. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Deshmukh, Rupesh K; Sonah, Humira; Bélanger, Richard R
2016-01-01
Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the movement of water and many other small molecules. Compared to animals, plants contain a much higher number of AQPs in their genome. Homology-based identification of AQPs in sequenced species is feasible because of the high level of conservation of protein sequences across plant species. Genome-wide characterization of AQPs has highlighted several important aspects such as distribution, genetic organization, evolution and conserved features governing solute specificity. From a functional point of view, the understanding of AQP transport system has expanded rapidly with the help of transcriptomics and proteomics data. The efficient analysis of enormous amounts of data generated through omic scale studies has been facilitated through computational advancements. Prediction of protein tertiary structures, pore architecture, cavities, phosphorylation sites, heterodimerization, and co-expression networks has become more sophisticated and accurate with increasing computational tools and pipelines. However, the effectiveness of computational approaches is based on the understanding of physiological and biochemical properties, transport kinetics, solute specificity, molecular interactions, sequence variations, phylogeny and evolution of aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited to study the many facets that influence solute transport by AQPs. In the present review, we discuss genome-wide identification of AQPs in plants in relation with recent advancements in analytical tools, and their availability and technological challenges as they apply to AQPs. An exhaustive review of omics resources available for AQP research is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of computational tools and analytical pipelines is offered as a resource for AQP research.
Deshmukh, Rupesh K.; Sonah, Humira; Bélanger, Richard R.
2016-01-01
Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the movement of water and many other small molecules. Compared to animals, plants contain a much higher number of AQPs in their genome. Homology-based identification of AQPs in sequenced species is feasible because of the high level of conservation of protein sequences across plant species. Genome-wide characterization of AQPs has highlighted several important aspects such as distribution, genetic organization, evolution and conserved features governing solute specificity. From a functional point of view, the understanding of AQP transport system has expanded rapidly with the help of transcriptomics and proteomics data. The efficient analysis of enormous amounts of data generated through omic scale studies has been facilitated through computational advancements. Prediction of protein tertiary structures, pore architecture, cavities, phosphorylation sites, heterodimerization, and co-expression networks has become more sophisticated and accurate with increasing computational tools and pipelines. However, the effectiveness of computational approaches is based on the understanding of physiological and biochemical properties, transport kinetics, solute specificity, molecular interactions, sequence variations, phylogeny and evolution of aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited to study the many facets that influence solute transport by AQPs. In the present review, we discuss genome-wide identification of AQPs in plants in relation with recent advancements in analytical tools, and their availability and technological challenges as they apply to AQPs. An exhaustive review of omics resources available for AQP research is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of computational tools and analytical pipelines is offered as a resource for AQP research. PMID:28066459
Prospective Molecular Characterization of Burn Wound Colonization: Novel Tools and Analysis
2012-10-01
sequence analysis to identify the genetic characteristics that enable Staphylococcus aureus to progress from simple skin and soft tissue infections ...to sepsis and endocarditis . We are confident that this work will lead to significant advancements in wound care and healing and human microbiome...of diabetic foot ulcers become infected at some point, with 25% of the infected foot ulcers resulting in lower limb amputation, making wound
Lindsey, Cary R.; Neupane, Ghanashym; Spycher, Nicolas; ...
2018-01-03
Although many Known Geothermal Resource Areas in Oregon and Idaho were identified during the 1970s and 1980s, few were subsequently developed commercially. Because of advances in power plant design and energy conversion efficiency since the 1980s, some previously identified KGRAs may now be economically viable prospects. Unfortunately, available characterization data vary widely in accuracy, precision, and granularity, making assessments problematic. In this paper, we suggest a procedure for comparing test areas against proven resources using Principal Component Analysis and cluster identification. The result is a low-cost tool for evaluating potential exploration targets using uncertain or incomplete data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsey, Cary R.; Neupane, Ghanashym; Spycher, Nicolas
Although many Known Geothermal Resource Areas in Oregon and Idaho were identified during the 1970s and 1980s, few were subsequently developed commercially. Because of advances in power plant design and energy conversion efficiency since the 1980s, some previously identified KGRAs may now be economically viable prospects. Unfortunately, available characterization data vary widely in accuracy, precision, and granularity, making assessments problematic. In this paper, we suggest a procedure for comparing test areas against proven resources using Principal Component Analysis and cluster identification. The result is a low-cost tool for evaluating potential exploration targets using uncertain or incomplete data.
Deciphering the glycosaminoglycan code with the help of microarrays.
de Paz, Jose L; Seeberger, Peter H
2008-07-01
Carbohydrate microarrays have become a powerful tool to elucidate the biological role of complex sugars. Microarrays are particularly useful for the study of glycosaminoglycans (GAGs), a key class of carbohydrates. The high-throughput chip format enables rapid screening of large numbers of potential GAG sequences produced via a complex biosynthesis while consuming very little sample. Here, we briefly highlight the most recent advances involving GAG microarrays built with synthetic or naturally derived oligosaccharides. These chips are powerful tools for characterizing GAG-protein interactions and determining structure-activity relationships for specific sequences. Thereby, they contribute to decoding the information contained in specific GAG sequences.
Advanced Spectral Analysis Program (ASAP) for High-Pressure X-ray Diffraction
NASA Astrophysics Data System (ADS)
Montgomery, Jeffrey
A program for analyzing large powder diffraction data sets has been developed. This tool enables the user to fit any type of crystal structure by indexing peaks in multiple files simultaneously by manually selecting them from a 2D plot of peak positions. The program has tools for automatic peak fitting and pressure determination using various equations of state. The interface is useful for correlating information from various types of spectral data, and so tools have been added for analyzing common fluorescence markers such as ruby, strontium tetraborate, and diamond. The program operation is demonstrated by the analysis of high-pressure powder x-ray diffraction data taken on a sample of vanadium metal at the Advanced Photon Source 16-BMD beamline. Samples were compressed in three runs to a pressure of 70 GPa in an attempt to measure the phase transition from bcc to orthorhombic in hydrostatic and non-hydrostatic conditions. Using ASAP to analyze this data provides a fast and accurate tool for observation of such a subtle transition, which is characterized primarily by a narrow splitting of the bcc 110 and 112 peaks. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
High-Resolution Characterization of UMo Alloy Microstructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Kovarik, Libor; Joshi, Vineet V.
2016-11-30
This report highlights the capabilities and procedure for high-resolution characterization of UMo fuels in PNNL. Uranium-molybdenum (UMo) fuel processing steps, from casting to forming final fuel, directly affect the microstructure of the fuel, which in turn dictates the in-reactor performance of the fuel under irradiation. In order to understand the influence of processing on UMo microstructure, microstructure characterization techniques are necessary. Higher-resolution characterization techniques like transmission electron microscopy (TEM) and atom probe tomography (APT) are needed to interrogate the details of the microstructure. The findings from TEM and APT are also directly beneficial for developing predictive multiscale modeling tools thatmore » can predict the microstructure as a function of process parameters. This report provides background on focused-ion-beam–based TEM and APT sample preparation, TEM and APT analysis procedures, and the unique information achievable through such advanced characterization capabilities for UMo fuels, from a fuel fabrication capability viewpoint.« less
Passive Bottom Loss Estimation Using Compact Arrays and Autonomous Underwater Vehicles
2015-09-30
advances in the technology of autonomous underwater vehicles ( AUV ), make it now possible to envision an efficient, cost effective survey tool for seabed...characterization composed of a short array mounted on an AUV . While AUV mounting would require arrays of length presumably below 2m, the passive...frequency range indicated above, the poor angular resolution of the short arrays required in AUV deployment causes an underestimation of the loss
Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5
NASA Technical Reports Server (NTRS)
Anderson, P. J.; Nussbaum, P.; Gustafson, G.
1984-01-01
The objective of the research project described is to define and demonstrate methods to advance the state of the art of pressure sensors for the space shuttle main engine (SSME). Silicon piezoresistive technology was utilized in completing tasks: generation and testing of three transducer design concepts for solid state applications; silicon resistor characterization at cryogenic temperatures; experimental chip mounting characterization; frequency response optimization and prototype design and fabrication. Excellent silicon sensor performance was demonstrated at liquid nitrogen temperature. A silicon resistor ion implant dose was customized for SSME temperature requirements. A basic acoustic modeling software program was developed as a design tool to evaluate frequency response characteristics.
Caboche, Ségolène; Even, Gaël; Loywick, Alexandre; Audebert, Christophe; Hot, David
2017-12-19
The increase in available sequence data has advanced the field of microbiology; however, making sense of these data without bioinformatics skills is still problematic. We describe MICRA, an automatic pipeline, available as a web interface, for microbial identification and characterization through reads analysis. MICRA uses iterative mapping against reference genomes to identify genes and variations. Additional modules allow prediction of antibiotic susceptibility and resistance and comparing the results of several samples. MICRA is fast, producing few false-positive annotations and variant calls compared to current methods, making it a tool of great interest for fully exploiting sequencing data.
Unraveling atomic-level self-organization at the plasma-material interface
NASA Astrophysics Data System (ADS)
Allain, J. P.; Shetty, A.
2017-07-01
The intrinsic dynamic interactions at the plasma-material interface and critical role of irradiation-driven mechanisms at the atomic scale during exposure to energetic particles require a priori the use of in situ surface characterization techniques. Characterization of ‘active’ surfaces during modification at atomic-scale levels is becoming more important as advances in processing modalities are limited by an understanding of the behavior of these surfaces under realistic environmental conditions. Self-organization from exposure to non-equilibrium and thermalized plasmas enable dramatic control of surface morphology, topography, composition, chemistry and structure yielding the ability to tune material properties with an unprecedented level of control. Deciphering self-organization mechanisms of nanoscale morphology (e.g. nanodots, ripples) and composition on a variety of materials including: compound semiconductors, semiconductors, ceramics, polymers and polycrystalline metals via low-energy ion-beam assisted plasma irradiation are critical to manipulate functionality in nanostructured systems. By operating at ultra-low energies near the damage threshold, irradiation-driven defect engineering can be optimized and surface-driven mechanisms controlled. Tunability of optical, electronic, magnetic and bioactive properties is realized by reaching metastable phases controlled by atomic-scale irradiation-driven mechanisms elucidated by novel in situ diagnosis coupled to atomistic-level computational tools. Emphasis will be made on tailored surface modification from plasma-enhanced environments on particle-surface interactions and their subsequent modification of hard and soft matter interfaces. In this review, we examine current trends towards in situ and in operando surface and sub-surface characterization to unravel atomic-scale mechanisms at the plasma-material interface. This work will emphasize on recent advances in the field of plasma and ion-induced nanopatterning and nanostructuring as well as ultra-thin film deposition. Future outlook will examine the critical role of complementary surface-sensitive techniques and trends towards advances in both in situ and in operando tooling.
ER-plasma membrane junctions: Why and how do we study them?
Chang, Chi-Lun; Chen, Yu-Ju; Liou, Jen
2017-09-01
Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are membrane microdomains important for communication between the ER and the PM. ER-PM junctions were first reported in muscle cells in 1957, but mostly ignored in non-excitable cells due to their scarcity and lack of functional significance. In 2005, the discovery of stromal interaction molecule 1 (STIM1) mediating a universal Ca 2+ feedback mechanism at ER-PM junctions in mammalian cells led to a resurgence of research interests toward ER-PM junctions. In the past decade, several major advancements have been made in this emerging topic in cell biology, including the generation of tools for labeling ER-PM junctions and the unraveling of mechanisms underlying regulation and functions of ER-PM junctions. This review summarizes early studies, recently developed tools, and current advances in the characterization and understanding of ER-PM junctions. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assoufid, Lahsen; Shi, Xianbo; Marathe, Shashidhara
We developed a portable X-ray grating interferometer setup as a standard tool for testing optics at the Advanced Photon Source (APS) beamline 1-BM. The interferometer can be operated in phase-stepping, Moiré, or single-grating harmonic imaging mode with 1-D or 2-D gratings. All of the interferometer motions are motorized; hence, it is much easier and quicker to switch between the different modes of operation. A novel aspect of this new instrument is its designed portability. While the setup is designed to be primarily used as a standard tool for testing optics at 1-BM, it could be potentially deployed at other APSmore » beamlines for beam coherence and wavefront characterization or imaging. The design of the interferometer system is described in detail and coherence measurements obtained at the APS 34-ID-E beamline are presented. The coherence was probed in two directions using a 2-D checkerboard, a linear, and a circular grating at X-ray energies of 8 keV, 11 keV, and 18 keV.« less
Challenges of NDE Simulation Tool Challenges of NDE Simulation Tool
NASA Technical Reports Server (NTRS)
Leckey, Cara A. C.; Juarez, Peter D.; Seebo, Jeffrey P.; Frank, Ashley L.
2015-01-01
Realistic nondestructive evaluation (NDE) simulation tools enable inspection optimization and predictions of inspectability for new aerospace materials and designs. NDE simulation tools may someday aid in the design and certification of advanced aerospace components; potentially shortening the time from material development to implementation by industry and government. Furthermore, modeling and simulation are expected to play a significant future role in validating the capabilities and limitations of guided wave based structural health monitoring (SHM) systems. The current state-of-the-art in ultrasonic NDE/SHM simulation cannot rapidly simulate damage detection techniques for large scale, complex geometry composite components/vehicles with realistic damage types. This paper discusses some of the challenges of model development and validation for composites, such as the level of realism and scale of simulation needed for NASA' applications. Ongoing model development work is described along with examples of model validation studies. The paper will also discuss examples of the use of simulation tools at NASA to develop new damage characterization methods, and associated challenges of validating those methods.
Recent advances in the development and application of nanoelectrodes.
Fan, Yunshan; Han, Chu; Zhang, Bo
2016-10-07
Nanoelectrodes have key advantages compared to electrodes of conventional size and are the tool of choice for numerous applications in both fundamental electrochemistry research and bioelectrochemical analysis. This Minireview summarizes recent advances in the development, characterization, and use of nanoelectrodes in nanoscale electroanalytical chemistry. Methods of nanoelectrode preparation include laser-pulled glass-sealed metal nanoelectrodes, mass-produced nanoelectrodes, carbon nanotube based and carbon-filled nanopipettes, and tunneling nanoelectrodes. Several new topics of their recent application are covered, which include the use of nanoelectrodes for electrochemical imaging at ultrahigh spatial resolution, imaging with nanoelectrodes and nanopipettes, electrochemical analysis of single cells, single enzymes, and single nanoparticles, and the use of nanoelectrodes to understand single nanobubbles.
Advanced imaging in acute and chronic deep vein thrombosis
Karande, Gita Yashwantrao; Sanchez, Yadiel; Baliyan, Vinit; Mishra, Vishala; Ganguli, Suvranu; Prabhakar, Anand M.
2016-01-01
Deep venous thrombosis (DVT) affecting the extremities is a common clinical problem. Prompt imaging aids in rapid diagnosis and adequate treatment. While ultrasound (US) remains the workhorse of detection of extremity venous thrombosis, CT and MRI are commonly used as the problem-solving tools either to visualize the thrombosis in central veins like superior or inferior vena cava (IVC) or to test for the presence of complications like pulmonary embolism (PE). The cross-sectional modalities also offer improved visualization of venous collaterals. The purpose of this article is to review the established modalities used for characterization and diagnosis of DVT, and further explore promising innovations and recent advances in this field. PMID:28123971
Genetics and molecular biology in laboratory medicine, 1963-2013.
Whitfield, John B
2013-01-01
The past 50 years have seen many changes in laboratory medicine, either as causes or consequences of increases in productivity and expansion of the range of information which can be provided. The drivers and facilitators of change in relation to clinical applications of molecular biology included the need for diagnostic tools for genetic diseases and technical advances such as PCR and sequencing. However, molecular biology techniques have proved to have far wider applications, from detection of infectious agents to molecular characterization of tumors. Journals such as Clinical Chemistry and Laboratory Medicine play an important role in communication of these advances to the laboratory medicine community and in publishing evaluations of their practical value.
Lakatos, Bálint; Kovács, Attila; Tokodi, Márton; Doronina, Alexandra; Merkely, Béla
2016-07-01
Accurate assessment of right ventricular geometry and function is of high clinical importance. However, several limitations have to be taken into consideration if using conventional echocardiographic parameters. Advanced echocardiographic techniques, such as speckle-tracking analysis or 3D echocardiography are reliable and simple tools providing a cost-effective and non-invasive alternative of current modalities used to characterize the right ventricle. There is a growing interest in the diagnostic and prognostic value of these methods regarding pathological (right ventricular infarction, pulmonary hypertension, arrhythmogenic right ventricular dysplasia, follow-up of heart transplantation) and even physiological (athlete's heart) alterations of the right ventricle. Orv. Hetil., 2016, 157(29), 1139-1146.
Crismani, Wayne; Girard, Chloé; Mercier, Raphael
2013-01-01
Meiosis is at the heart of Mendelian heredity. Recently, much progress has been made in the understanding of this process, in various organisms. In the last fifteen years, the functional characterization of numerous genes involved in meiosis has dramatically deepened our knowledge of key events, including recombination, cell cycle and chromosome distribution. Through a constantly advancing tool set and knowledge base, a number of advances have been made that will allow manipulation of meiosis from a plant breeding perspective. This review focuses on the aspects of meiosis that can be tinkered with to create and propagate new varieties. We would like to dedicate this review to the memory of Simon W. Chan (1974-2012) http://www.plb.ucdavis.edu/labs/srchan/ PMID:23136169
NDE and SHM Simulation for CFRP Composites
NASA Technical Reports Server (NTRS)
Leckey, Cara A. C.; Parker, F. Raymond
2014-01-01
Ultrasound-based nondestructive evaluation (NDE) is a common technique for damage detection in composite materials. There is a need for advanced NDE that goes beyond damage detection to damage quantification and characterization in order to enable data driven prognostics. The damage types that exist in carbon fiber-reinforced polymer (CFRP) composites include microcracking and delaminations, and can be initiated and grown via impact forces (due to ground vehicles, tool drops, bird strikes, etc), fatigue, and extreme environmental changes. X-ray microfocus computed tomography data, among other methods, have shown that these damage types often result in voids/discontinuities of a complex volumetric shape. The specific damage geometry and location within ply layers affect damage growth. Realistic threedimensional NDE and structural health monitoring (SHM) simulations can aid in the development and optimization of damage quantification and characterization techniques. This paper is an overview of ongoing work towards realistic NDE and SHM simulation tools for composites, and also discusses NASA's need for such simulation tools in aeronautics and spaceflight. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with realistic 3-dimensional damage in CFRP composites. The custom code uses elastodynamic finite integration technique and is parallelized to run efficiently on computing cluster or multicore machines.
Stewart, Charles; Vickery, Christopher R; Burkart, Michael D; Noel, Joseph P
2013-06-01
Type III plant polyketide synthases (PKSs) biosynthesize a dazzling array of polyphenolic products that serve important roles in both plant and human health. Recent advances in structural characterization of these enzymes and new tools from the field of chemical biology have facilitated exquisite probing of plant PKS iterative catalysis. These tools have also been used to exploit type III PKSs as biocatalysts to generate new chemicals. Going forward, chemical, structural and biochemical analyses will provide an atomic resolution understanding of plant PKSs and will serve as a springboard for bioengineering and scalable production of valuable molecules in vitro, by fermentation and in planta. Copyright © 2013 Elsevier Ltd. All rights reserved.
Visualizing protein partnerships in living cells and organisms.
Lowder, Melissa A; Appelbaum, Jacob S; Hobert, Elissa M; Schepartz, Alanna
2011-12-01
In recent years, scientists have expanded their focus from cataloging genes to characterizing the multiple states of their translated products. One anticipated result is a dynamic map of the protein association networks and activities that occur within the cellular environment. While in vitro-derived network maps can illustrate which of a multitude of possible protein-protein associations could exist, they supply a falsely static picture lacking the subtleties of subcellular location (where) or cellular state (when). Generating protein association network maps that are informed by both subcellular location and cell state requires novel approaches that accurately characterize the state of protein associations in living cells and provide precise spatiotemporal resolution. In this review, we highlight recent advances in visualizing protein associations and networks under increasingly native conditions. These advances include second generation protein complementation assays (PCAs), chemical and photo-crosslinking techniques, and proximity-induced ligation approaches. The advances described focus on background reduction, signal optimization, rapid and reversible reporter assembly, decreased cytotoxicity, and minimal functional perturbation. Key breakthroughs have addressed many challenges and should expand the repertoire of tools useful for generating maps of protein interactions resolved in both time and space. Copyright © 2011 Elsevier Ltd. All rights reserved.
MASH Suite Pro: A Comprehensive Software Tool for Top-Down Proteomics*
Cai, Wenxuan; Guner, Huseyin; Gregorich, Zachery R.; Chen, Albert J.; Ayaz-Guner, Serife; Peng, Ying; Valeja, Santosh G.; Liu, Xiaowen; Ge, Ying
2016-01-01
Top-down mass spectrometry (MS)-based proteomics is arguably a disruptive technology for the comprehensive analysis of all proteoforms arising from genetic variation, alternative splicing, and posttranslational modifications (PTMs). However, the complexity of top-down high-resolution mass spectra presents a significant challenge for data analysis. In contrast to the well-developed software packages available for data analysis in bottom-up proteomics, the data analysis tools in top-down proteomics remain underdeveloped. Moreover, despite recent efforts to develop algorithms and tools for the deconvolution of top-down high-resolution mass spectra and the identification of proteins from complex mixtures, a multifunctional software platform, which allows for the identification, quantitation, and characterization of proteoforms with visual validation, is still lacking. Herein, we have developed MASH Suite Pro, a comprehensive software tool for top-down proteomics with multifaceted functionality. MASH Suite Pro is capable of processing high-resolution MS and tandem MS (MS/MS) data using two deconvolution algorithms to optimize protein identification results. In addition, MASH Suite Pro allows for the characterization of PTMs and sequence variations, as well as the relative quantitation of multiple proteoforms in different experimental conditions. The program also provides visualization components for validation and correction of the computational outputs. Furthermore, MASH Suite Pro facilitates data reporting and presentation via direct output of the graphics. Thus, MASH Suite Pro significantly simplifies and speeds up the interpretation of high-resolution top-down proteomics data by integrating tools for protein identification, quantitation, characterization, and visual validation into a customizable and user-friendly interface. We envision that MASH Suite Pro will play an integral role in advancing the burgeoning field of top-down proteomics. PMID:26598644
Advanced Prosthetic Gait Training Tool
2014-10-01
AWARD NUMBER: W81XWH-10-1-0870 TITLE: Advanced Prosthetic Gait Training Tool...October 2014 2. REPORT TYPE Annual Report 3. DATES COVERED 20 Sep 2013 to 19 Sep 2014 4. TITLE AND SUBTITLE Advanced Prosthetic Gait Training...produce a computer-based Advanced Prosthetic Gait Training Tool to aid in the training of clinicians at military treatment facilities providing care
Ion mobility-mass spectrometry as a tool to investigate protein-ligand interactions.
Göth, Melanie; Pagel, Kevin
2017-07-01
Ion mobility-mass spectrometry (IM-MS) is a powerful tool for the simultaneous analysis of mass, charge, size, and shape of ionic species. It allows the characterization of even low-abundant species in complex samples and is therefore particularly suitable for the analysis of proteins and their assemblies. In the last few years even complex and intractable species have been investigated successfully with IM-MS and the number of publications in this field is steadily growing. This trend article highlights recent advances in which IM-MS was used to study protein-ligand complexes and in particular focuses on the catch and release (CaR) strategy and collision-induced unfolding (CIU). Graphical Abstract Native mass spectrometry and ion mobility-mass spectrometry are versatile tools to follow the stoichiometry, energetics, and structural impact of protein-ligand binding.
The power and promise of applying genomics to honey bee health.
Grozinger, Christina M; Robinson, Gene E
2015-08-01
New genomic tools and resources are now being used to both understand honey bee health and develop tools to better manage it. Here, we describe the use of genomic approaches to identify and characterize bee parasites and pathogens, examine interactions among these parasites and pathogens, between them and their bee hosts, and to identify genetic markers for improved breeding of more resilient bee stocks. We also discuss several new genomic techniques that can be used to more efficiently study, monitor and improve bee health. In the case of using RNAi-based technologies to mitigate diseases in bee populations, we highlight advantages, disadvantages and strategies to reduce risk. The increased use of genomic analytical tools and manipulative technologies has already led to significant advances, and holds great promise for improvements in the health of honey bees and other critical pollinator species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Hua
Combustion represents a key chemical process in energy consumption in modern societies and a clear and comprehensive understanding of the elemental reactions in combustion is of great importance to a number of challenging areas such as engine efficiency and environmental protection. In this award, we proposed to develop new theoretical tools to understand elemental chemical processes in combustion environments. With the support of this DOE grant, we have made significant advances in developing new and more efficient and accurate algorithms to characterize reaction dynamics.
Recent Advances in Neural Electrode-Tissue Interfaces.
Woeppel, Kevin; Yang, Qianru; Cui, Xinyan Tracy
2017-12-01
Neurotechnology is facing an exponential growth in the recent decades. Neural electrode-tissue interface research has been well recognized as an instrumental component of neurotechnology development. While satisfactory long-term performance was demonstrated in some applications, such as cochlear implants and deep brain stimulators, more advanced neural electrode devices requiring higher resolution for single unit recording or microstimulation still face significant challenges in reliability and longevity. In this article, we review the most recent findings that contribute to our current understanding of the sources of poor reliability and longevity in neural recording or stimulation, including the material failure, biological tissue response and the interplay between the two. The newly developed characterization tools are introduced from electrophysiology models, molecular and biochemical analysis, material characterization to live imaging. The effective strategies that have been applied to improve the interface are also highlighted. Finally, we discuss the challenges and opportunities in improving the interface and achieving seamless integration between the implanted electrodes and neural tissue both anatomically and functionally.
Non-Markovian quantum processes: Complete framework and efficient characterization
NASA Astrophysics Data System (ADS)
Pollock, Felix A.; Rodríguez-Rosario, César; Frauenheim, Thomas; Paternostro, Mauro; Modi, Kavan
2018-01-01
Currently, there is no systematic way to describe a quantum process with memory solely in terms of experimentally accessible quantities. However, recent technological advances mean we have control over systems at scales where memory effects are non-negligible. The lack of such an operational description has hindered advances in understanding physical, chemical, and biological processes, where often unjustified theoretical assumptions are made to render a dynamical description tractable. This has led to theories plagued with unphysical results and no consensus on what a quantum Markov (memoryless) process is. Here, we develop a universal framework to characterize arbitrary non-Markovian quantum processes. We show how a multitime non-Markovian process can be reconstructed experimentally, and that it has a natural representation as a many-body quantum state, where temporal correlations are mapped to spatial ones. Moreover, this state is expected to have an efficient matrix-product-operator form in many cases. Our framework constitutes a systematic tool for the effective description of memory-bearing open-system evolutions.
Sree Raman, Karthigesh; Nucifora, Gaetano; Selvanayagam, Joseph B
2018-05-01
Cardiovascular magnetic resonance imaging (CMR) permits accurate phenotyping of many cardiac diseases. CMR's inherent advantages are its non-invasive nature, lack of ionizing radiation and high accuracy and reproducibility. Furthermore, it is able to assess many aspects of cardiac anatomy, structure and function. Specifically, it can characterize myocardial tissue, myocardial function, myocardial mass, myocardial blood flow/perfusion, irreversible and reversible injury, all with a high degree of accuracy and reproducibility. Hence, CMR is a powerful tool in clinical and pre-clinical research. In recent years there have been novel advances in CMR myocardial tissue characterization. Oxygenation-sensitive CMR (OS-CMR) is a novel non-invasive, contrast independent technique that permits direct quantification of myocardial tissue oxygenation, both at rest and during stress. In this review, we will address the principles of the OS-CMR technique, its recent advances and summarize the studies in the effects of oxygenation on cardiac diseases. © 2018 John Wiley & Sons Australia, Ltd.
Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering.
Marrese, Marica; Guarino, Vincenzo; Ambrosio, Luigi
2017-02-13
Functional polymers currently represent a basic component of a large range of biological and biomedical applications including molecular release, tissue engineering, bio-sensing and medical imaging. Advancements in these fields are driven by the use of a wide set of biodegradable polymers with controlled physical and bio-interactive properties. In this context, microscopy techniques such as Atomic Force Microscopy (AFM) are emerging as fundamental tools to deeply investigate morphology and structural properties at micro and sub-micrometric scale, in order to evaluate the in time relationship between physicochemical properties of biomaterials and biological response. In particular, AFM is not only a mere tool for screening surface topography, but may offer a significant contribution to understand surface and interface properties, thus concurring to the optimization of biomaterials performance, processes, physical and chemical properties at the micro and nanoscale. This is possible by capitalizing the recent discoveries in nanotechnologies applied to soft matter such as atomic force spectroscopy to measure surface forces through force curves. By tip-sample local interactions, several information can be collected such as elasticity, viscoelasticity, surface charge densities and wettability. This paper overviews recent developments in AFM technology and imaging techniques by remarking differences in operational modes, the implementation of advanced tools and their current application in biomaterials science, in terms of characterization of polymeric devices in different forms (i.e., fibres, films or particles).
Collett, Timothy S.; Lee, Myung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.
2012-01-01
One of the objectives of the Gulf of MexicoGasHydrateJointIndustryProjectLegII (GOM JIP LegII) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gashydrates under various geologic conditions and to understand the geologic controls on the occurrence of gashydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gashydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gashydrate in nature: From using electrical resistivity and acoustic logs to identify gashydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gashydrate reservoirs and the distribution and concentration of gashydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gashydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gashydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP LegII effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.
NASA Astrophysics Data System (ADS)
DeArmond, Fredrick Michael
As optical microscopy techniques continue to improve, most notably the development of super-resolution optical microscopy which garnered the Nobel Prize in Chemistry in 2014, renewed emphasis has been placed on the development and use of fluorescence microscopy techniques. Of particular note is a renewed interest in multiphoton excitation due to a number of inherent properties of the technique including simplified optical filtering, increased sample penetration, and inherently confocal operation. With this renewed interest in multiphoton fluorescence microscopy, comes an increased demand for robust non-linear fluorescent markers, and characterization of the associated tool set. These factors have led to an experimental setup to allow a systematized approach for identifying and characterizing properties of fluorescent probes in the hopes that the tool set will provide researchers with additional information to guide their efforts in developing novel fluorophores suitable for use in advanced optical microscopy techniques as well as identifying trends for their synthesis. Hardware was setup around a software control system previously developed. Three experimental tool sets were set up, characterized, and applied over the course of this work. These tools include scanning multiphoton fluorescence microscope with single molecule sensitivity, an interferometric autocorrelator for precise determination of the bandwidth and pulse width of the ultrafast Titanium Sapphire excitation source, and a simplified fluorescence microscope for the measurement of two-photon absorption cross sections. Resulting values for two-photon absorption cross sections and two-photon absorption action cross sections for two standardized fluorophores, four commercially available fluorophores, and ten novel fluorophores are presented as well as absorption and emission spectra.
NASA Technical Reports Server (NTRS)
Fusaro, Robert L. (Editor); Achenbach, J. D. (Editor)
1993-01-01
The present volume on tribological materials and NDE discusses liquid lubricants for advanced aircraft engines, a liquid lubricant for space applications, solid lubricants for aeronautics, and thin solid-lubricant films in space. Attention is given to the science and technology of NDE, tools for an NDE engineering base, experimental techniques in ultrasonics for NDE and material characterization, and laser ultrasonics. Topics addressed include thermal methods of NDE and quality control, digital radiography in the aerospace industry, materials characterization by ultrasonic methods, and NDE of ceramics and ceramic composites. Also discussed are smart materials and structures, intelligent processing of materials, implementation of NDE technology on flight structures, and solid-state weld evaluation.
Fiber Bragg Gratings for High-Temperature Thermal Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stinson-Bagby, Kelly L.; Fielder, Robert S.
2004-07-01
Fiber Bragg grating (FBG) sensors were used as a characterization tool to study the SAFE-100 thermal simulator at the Nasa Marshal Space Flight Center. The motivation for this work was to support Nasa space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. Distributed high temperature measurements, up to 1150 deg. C, were made with FBG temperature sensors. Additionally, FBG strain measurements were taken at elevated temperatures to provide a strain profile of the core during operation. This paper will discuss the contribution of these measurements to meet the goals of Nasa Marshallmore » Space Flight Center's Propulsion Research Center. (authors)« less
Material characterization and defect inspection in ultrasound images
NASA Astrophysics Data System (ADS)
Zmola, Carl; Segal, Andrew C.; Lovewell, Brian; Mahdavieh, Jacob; Ross, Joseph; Nash, Charles
1992-08-01
The use of ultrasonic imaging to analyze defects and characterize materials is critical in the development of non-destructive testing and non-destructive evaluation (NDT/NDE) tools for manufacturing. To develop better quality control and reliability in the manufacturing environment advanced image processing techniques are useful. For example, through the use of texture filtering on ultrasound images, we have been able to filter characteristic textures from highly textured C-scan images of materials. The materials have highly regular characteristic textures which are of the same resolution and dynamic range as other important features within the image. By applying texture filters and adaptively modifying their filter response, we have examined a family of filters for removing these textures.
Indentation-Enabled In Situ Mechanical Characterization of Micro/Nanopillars in Electron Microscopes
NASA Astrophysics Data System (ADS)
Guo, Qiang; Fu, Xidan; Guo, Xiaolei; Liu, Zhiying; Shi, Yan; Zhang, Di
2018-04-01
Indentation-enabled micro/nanomechanical characterization of small-scale specimens provides powerful new tools for probing materials properties that were once unattainable by conventional experimental methods. Recent advancement in instrumentation further allows mechanical testing to be carried out in situ in electron microscopes, with high spatial and temporal resolution. This review discusses the recent development of nanoindentation-enabled in situ mechanical testing in electron microscopes, with an emphasis on the study of micro/nanopillars. Focus is given to novel applications beyond simple compressive and tensile testing that have been developed in the past few years, and limitations and possible future research directions in this field are proposed and discussed.
Tailorable advanced blanket insulation using aluminoborosilicate and alumina batting
NASA Technical Reports Server (NTRS)
Calamito, Dominic P.
1989-01-01
Two types of Tailorable Advanced Blanket Insulation (TABI) flat panels for Advanced Space Transportation Systems were produced. Both types consisted of integrally woven, 3-D fluted core having parallel faces and connecting ribs of Nicalon yarns. The triangular cross section flutes of one type was filled with mandrels of processed Ultrafiber (aluminoborosilicate) stitchbonded Nextel 440 fibrous felt, and the second type wall filled with Saffil alumina fibrous felt insulation. Weaving problems were minimal. Insertion of the fragile insulation mandrels into the fabric flutes was improved by using a special insertion tool. An attempt was made to weave fluted core fabrics from Nextel 440 yarns but was unsuccessful because of the yarn's fragility. A small sample was eventually produced by an unorthodox weaving process and then filled with Saffil insulation. The procedures for setting up and weaving the fabrics and preparing and inserting insulation mandrels are discussed. Characterizations of the panels produced are also presented.
Recent Advances in Molecular, Multimodal and Theranostic Ultrasound Imaging
Kiessling, Fabian; Fokong, Stanley; Bzyl, Jessica; Lederle, Wiltrud; Palmowski, Moritz; Lammers, Twan
2014-01-01
Ultrasound (US) imaging is an exquisite tool for the non-invasive and real-time diagnosis of many different diseases. In this context, US contrast agents can improve lesion delineation, characterization and therapy response evaluation. US contrast agents are usually micrometer-sized gas bubbles, stabilized with soft or hard shells. By conjugating antibodies to the microbubble (MB) surface, and by incorporating diagnostic agents, drugs or nucleic acids into or onto the MB shell, molecular, multimodal and theranostic MB can be generated. We here summarize recent advances in molecular, multimodal and theranostic US imaging, and introduce concepts how such advanced MB can be generated, applied and imaged. Examples are given for their use to image and treat oncological, cardiovascular and neurological diseases. Furthermore, we discuss for which therapeutic entities incorporation into (or conjugation to) MB is meaningful, and how US-mediated MB destruction can increase their extravasation, penetration, internalization and efficacy. PMID:24316070
Advanced Gouy phase high harmonics interferometer
NASA Astrophysics Data System (ADS)
Mustary, M. H.; Laban, D. E.; Wood, J. B. O.; Palmer, A. J.; Holdsworth, J.; Litvinyuk, I. V.; Sang, R. T.
2018-05-01
We describe an extreme ultraviolet (XUV) interferometric technique that can resolve ∼100 zeptoseconds (10‑21 s) delay between high harmonic emissions from two successive sources separated spatially along the laser propagation in a single Gaussian beam focus. Several improvements on our earlier work have been implemented in the advanced interferometer. In this paper, we report on the design, characterization and optimization of the advanced Gouy phase interferometer. Temporal coherence for both atomic argon and molecular hydrogen gases has been observed for several harmonic orders. It has been shown that phase shift of XUV pulses mainly originates from the emission time delay due to the Gouy phase in the laser focus and the observed interference is independent of the generating medium. This interferometer can be a useful tool for measuring the relative phase shift between any two gas species and for studying ultrafast dynamics of their electronic and nuclear motion.
Advances in atmospheric light scattering theory and remote-sensing techniques
NASA Astrophysics Data System (ADS)
Videen, Gorden; Sun, Wenbo; Gong, Wei
2017-02-01
This issue focuses especially on characterizing particles in the Earth-atmosphere system. The significant role of aerosol particles in this system was recognized in the mid-1970s [1]. Since that time, our appreciation for the role they play has only increased. It has been and continues to be one of the greatest unknown factors in the Earth-atmosphere system as evidenced by the most recent Intergovernmental Panel on Climate Change (IPCC) assessments [2]. With increased computational capabilities, in terms of both advanced algorithms and in brute-force computational power, more researchers have the tools available to address different aspects of the role of aerosols in the atmosphere. In this issue, we focus on recent advances in this topical area, especially the role of light scattering and remote sensing. This issue follows on the heels of four previous topical issues on this subject matter that have graced the pages of this journal [3-6].
Automated extraction and analysis of rock discontinuity characteristics from 3D point clouds
NASA Astrophysics Data System (ADS)
Bianchetti, Matteo; Villa, Alberto; Agliardi, Federico; Crosta, Giovanni B.
2016-04-01
A reliable characterization of fractured rock masses requires an exhaustive geometrical description of discontinuities, including orientation, spacing, and size. These are required to describe discontinuum rock mass structure, perform Discrete Fracture Network and DEM modelling, or provide input for rock mass classification or equivalent continuum estimate of rock mass properties. Although several advanced methodologies have been developed in the last decades, a complete characterization of discontinuity geometry in practice is still challenging, due to scale-dependent variability of fracture patterns and difficult accessibility to large outcrops. Recent advances in remote survey techniques, such as terrestrial laser scanning and digital photogrammetry, allow a fast and accurate acquisition of dense 3D point clouds, which promoted the development of several semi-automatic approaches to extract discontinuity features. Nevertheless, these often need user supervision on algorithm parameters which can be difficult to assess. To overcome this problem, we developed an original Matlab tool, allowing fast, fully automatic extraction and analysis of discontinuity features with no requirements on point cloud accuracy, density and homogeneity. The tool consists of a set of algorithms which: (i) process raw 3D point clouds, (ii) automatically characterize discontinuity sets, (iii) identify individual discontinuity surfaces, and (iv) analyse their spacing and persistence. The tool operates in either a supervised or unsupervised mode, starting from an automatic preliminary exploration data analysis. The identification and geometrical characterization of discontinuity features is divided in steps. First, coplanar surfaces are identified in the whole point cloud using K-Nearest Neighbor and Principal Component Analysis algorithms optimized on point cloud accuracy and specified typical facet size. Then, discontinuity set orientation is calculated using Kernel Density Estimation and principal vector similarity criteria. Poles to points are assigned to individual discontinuity objects using easy custom vector clustering and Jaccard distance approaches, and each object is segmented into planar clusters using an improved version of the DBSCAN algorithm. Modal set orientations are then recomputed by cluster-based orientation statistics to avoid the effects of biases related to cluster size and density heterogeneity of the point cloud. Finally, spacing values are measured between individual discontinuity clusters along scanlines parallel to modal pole vectors, whereas individual feature size (persistence) is measured using 3D convex hull bounding boxes. Spacing and size are provided both as raw population data and as summary statistics. The tool is optimized for parallel computing on 64bit systems, and a Graphic User Interface (GUI) has been developed to manage data processing, provide several outputs, including reclassified point clouds, tables, plots, derived fracture intensity parameters, and export to modelling software tools. We present test applications performed both on synthetic 3D data (simple 3D solids) and real case studies, validating the results with existing geomechanical datasets.
Technology tools to support reading in the digital age.
Biancarosa, Gina; Griffiths, Gina G
2012-01-01
Advances in digital technologies are dramatically altering the texts and tools available to teachers and students. These technological advances have created excitement among many for their potential to be used as instructional tools for literacy education. Yet with the promise of these advances come issues that can exacerbate the literacy challenges identified in the other articles in this issue. In this article Gina Biancarosa and Gina Griffiths characterize how literacy demands have changed in the digital age and how challenges identified in other articles in the issue intersect with these new demands. Rather than seeing technology as something to be fit into an already crowded education agenda, Biancarosa and Griffiths argue that technology can be conceptualized as affording tools that teachers can deploy in their quest to create young readers who possess the higher levels of literacy skills and background knowledge demanded by today's information-based society. Biancarosa and Griffiths draw on research to highlight some of the ways technology has been used to build the skills and knowledge needed both by children who are learning to read and by those who have progressed to reading to learn. In their review of the research, Biancarosa and Griffiths focus on the hardware and software used to display and interface with digital text, or what they term e-reading technology. Drawing on studies of e-reading technology and computer technology more broadly, they also reflect on the very real, practical challenges to optimal use of e-reading technology. The authors conclude by presenting four recommendations to help schools and school systems meet some of the challenges that come with investing in e-reading technology: use only technologies that support Universal Design for Learning; choose evidence-based tools; provide technology users with systemic supports; and capitalize on the data capacities and volume of information that technology provides.
Technology Tools to Support Reading in the Digital Age
ERIC Educational Resources Information Center
Biancarosa, Gina; Griffiths, Gina G.
2012-01-01
Advances in digital technologies are dramatically altering the texts and tools available to teachers and students. These technological advances have created excitement among many for their potential to be used as instructional tools for literacy education. Yet with the promise of these advances come issues that can exacerbate the literacy…
Exploring actinide materials through synchrotron radiation techniques.
Shi, Wei-Qun; Yuan, Li-Yong; Wang, Cong-Zhi; Wang, Lin; Mei, Lei; Xiao, Cheng-Liang; Zhang, Li; Li, Zi-Jie; Zhao, Yu-Liang; Chai, Zhi-Fang
2014-12-10
Synchrotron radiation (SR) based techniques have been utilized with increasing frequency in the past decade to explore the brilliant and challenging sciences of actinide-based materials. This trend is partially driven by the basic needs for multi-scale actinide speciation and bonding information and also the realistic needs for nuclear energy research. In this review, recent research progresses on actinide related materials by means of various SR techniques were selectively highlighted and summarized, with the emphasis on X-ray absorption spectroscopy, X-ray diffraction and scattering spectroscopy, which are powerful tools to characterize actinide materials. In addition, advanced SR techniques for exploring future advanced nuclear fuel cycles dealing with actinides are illustrated as well. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultrasound Burst Phase Thermography (UBP) for Applications in the Automotive Industry
NASA Astrophysics Data System (ADS)
Zweschper, T.; Riegert, G.; Dillenz, A.; Busse, G.
2003-03-01
The use of elastic waves in combination with thermal waves allows to separate structural information about investigated components from defect specific thermal signatures. Ultrasound Burst Phase thermography (UBP) is an defect-selective and fast imaging tool for damage detection. This contribution presents results obtained on various kinds of problems related to modern automobile production (crack detection in grey cast iron and aluminum, characterization of adhesive-bonded joints etc.). Advances resulting from frequency modulated ultrasound excitation will be presented.
Recent Advances in Cardiovascular Magnetic Resonance Techniques and Applications
Salerno, Michael; Sharif, Behzad; Arheden, Håkan; Kumar, Andreas; Axel, Leon; Li, Debiao; Neubauer, Stefan
2018-01-01
Cardiovascular magnetic resonance imaging has become the gold standard for evaluating myocardial function, volumes, and scarring. Additionally, cardiovascular magnetic resonance imaging is unique in its comprehensive tissue characterization, including assessment of myocardial edema, myocardial siderosis, myocardial perfusion, and diffuse myocardial fibrosis. Cardiovascular magnetic resonance imaging has become an indispensable tool in the evaluation of congenital heart disease, heart failure, cardiac masses, pericardial disease, and coronary artery disease. This review will highlight some recent novel cardiovascular magnetic resonance imaging techniques, concepts, and applications. PMID:28611116
The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit.
Murugan, Karthik; Babu, Kesavan; Sundaresan, Ramya; Rajan, Rakhi; Sashital, Dipali G
2017-10-05
CRISPR-Cas systems defend prokaryotes against bacteriophages and mobile genetic elements and serve as the basis for revolutionary tools for genetic engineering. Class 2 CRISPR-Cas systems use single Cas endonucleases paired with guide RNAs to cleave complementary nucleic acid targets, enabling programmable sequence-specific targeting with minimal machinery. Recent discoveries of previously unidentified CRISPR-Cas systems have uncovered a deep reservoir of potential biotechnological tools beyond the well-characterized Type II Cas9 systems. Here we review the current mechanistic understanding of newly discovered single-protein Cas endonucleases. Comparison of these Cas effectors reveals substantial mechanistic diversity, underscoring the phylogenetic divergence of related CRISPR-Cas systems. This diversity has enabled further expansion of CRISPR-Cas biotechnological toolkits, with wide-ranging applications from genome editing to diagnostic tools based on various Cas endonuclease activities. These advances highlight the exciting prospects for future tools based on the continually expanding set of CRISPR-Cas systems. Copyright © 2017 Elsevier Inc. All rights reserved.
Optical Spectroscopy of New Materials
NASA Technical Reports Server (NTRS)
White, Susan M.; Arnold, James O. (Technical Monitor)
1993-01-01
Composites are currently used for a rapidly expanding number of applications including aircraft structures, rocket nozzles, thermal protection of spacecraft, high performance ablative surfaces, sports equipment including skis, tennis rackets and bicycles, lightweight automobile components, cutting tools, and optical-grade mirrors. Composites are formed from two or more insoluble materials to produce a material with superior properties to either component. Composites range from dispersion-hardened alloys to advanced fiber-reinforced composites. UV/VIS and FTIR spectroscopy currently is used to evaluate the bonding between the matrix and the fibers, monitor the curing process of a polymer, measure surface contamination, characterize the interphase material, monitor anion transport in polymer phases, characterize the void formation (voids must be minimized because, like cracks in a bulk material, they lead to failure), characterize the surface of the fiber component, and measure the overall optical properties for energy balances.
Parker, Robert S.; Clermont, Gilles
2010-01-01
The complexity of the systemic inflammatory response and the lack of a treatment breakthrough in the treatment of pathogenic infection demand that advanced tools be brought to bear in the treatment of severe sepsis and trauma. Systems medicine, the translational science counterpart to basic science's systems biology, is the interface at which these tools may be constructed. Rapid initial strides in improving sepsis treatment are possible through the use of phenomenological modelling and optimization tools for process understanding and device design. Higher impact, and more generalizable, treatment designs are based on mechanistic understanding developed through the use of physiologically based models, characterization of population variability, and the use of control-theoretic systems engineering concepts. In this review we introduce acute inflammation and sepsis as an example of just one area that is currently underserved by the systems medicine community, and, therefore, an area in which contributions of all types can be made. PMID:20147315
The power and promise of applying genomics to honey bee health
Robinson, Gene E.
2015-01-01
New genomic tools and resources are now being used to both understand honey bee health and develop tools to better manage it. Here, we describe the use of genomic approaches to identify and characterize bee parasites and pathogens, examine interactions among these parasites and pathogens, between them and their bee hosts, and to identify genetic markers for improved breeding of more resilient bee stocks. We also discuss several new genomic techniques that can be used to more efficiently study, monitor and improve bee health. In the case of using RNAi-based technologies to mitigate diseases in bee populations, we highlight advantages, disadvantages and strategies to reduce risk. The increased use of genomic analytical tools and manipulative technologies has already led to significant advances, and holds great promise for improvements in the health of honey bees and other critical pollinator species. PMID:26273565
Parker, Robert S; Clermont, Gilles
2010-07-06
The complexity of the systemic inflammatory response and the lack of a treatment breakthrough in the treatment of pathogenic infection demand that advanced tools be brought to bear in the treatment of severe sepsis and trauma. Systems medicine, the translational science counterpart to basic science's systems biology, is the interface at which these tools may be constructed. Rapid initial strides in improving sepsis treatment are possible through the use of phenomenological modelling and optimization tools for process understanding and device design. Higher impact, and more generalizable, treatment designs are based on mechanistic understanding developed through the use of physiologically based models, characterization of population variability, and the use of control-theoretic systems engineering concepts. In this review we introduce acute inflammation and sepsis as an example of just one area that is currently underserved by the systems medicine community, and, therefore, an area in which contributions of all types can be made.
Advanced Power System Analysis Capabilities
NASA Technical Reports Server (NTRS)
1997-01-01
As a continuing effort to assist in the design and characterization of space power systems, the NASA Lewis Research Center's Power and Propulsion Office developed a powerful computerized analysis tool called System Power Analysis for Capability Evaluation (SPACE). This year, SPACE was used extensively in analyzing detailed operational timelines for the International Space Station (ISS) program. SPACE was developed to analyze the performance of space-based photovoltaic power systems such as that being developed for the ISS. It is a highly integrated tool that combines numerous factors in a single analysis, providing a comprehensive assessment of the power system's capability. Factors particularly critical to the ISS include the orientation of the solar arrays toward the Sun and the shadowing of the arrays by other portions of the station.
A new method to study ferroelectrics using the remanent Henkel plots
NASA Astrophysics Data System (ADS)
Vopson, Melvin M.
2018-05-01
Analysis of experimental curves constructed from dc demagnetization and isothermal remanent magnetization known as Henkel and delta M plots, have served for over 53 years as an important tool for characterization of interactions in ferromagnets. In this article we address the question whether the same experimental technique could be applied to the study of ferroelectric systems. The successful measurement of the equivalent dc depolarisation and isothermal remanent polarization curves and the construction of the Henkel and delta P plots for ferroelectrics is reported here. Full measurement protocol is provided together with experimental examples for two ferroelectric ceramic samples. This new measurement technique is an invaluable experimental tool that could be used to further advance our understanding of ferroelectric materials and their applications.
New Technologies for Studying Biofilms
FRANKLIN, MICHAEL J.; CHANG, CONNIE; AKIYAMA, TATSUYA; BOTHNER, BRIAN
2016-01-01
Bacteria have traditionally been studied as single-cell organisms. In laboratory settings, aerobic bacteria are usually cultured in aerated flasks, where the cells are considered essentially homogenous. However, in many natural environments, bacteria and other microorganisms grow in mixed communities, often associated with surfaces. Biofilms are comprised of surface-associated microorganisms, their extracellular matrix material, and environmental chemicals that have adsorbed to the bacteria or their matrix material. While this definition of a biofilm is fairly simple, biofilms are complex and dynamic. Our understanding of the activities of individual biofilm cells and whole biofilm systems has developed rapidly, due in part to advances in molecular, analytical, and imaging tools and the miniaturization of tools designed to characterize biofilms at the enzyme level, cellular level, and systems level. PMID:26350329
Performance Evaluation of the NASA/KSC Transmission System
NASA Technical Reports Server (NTRS)
Christensen, Kenneth J.
2000-01-01
NASA-KSC currently uses three bridged 100-Mbps FDDI segments as its backbone for data traffic. The FDDI Transmission System (FTXS) connects the KSC industrial area, KSC launch complex 39 area, and the Cape Canaveral Air Force Station. The report presents a performance modeling study of the FTXS and the proposed ATM Transmission System (ATXS). The focus of the study is on performance of MPEG video transmission on these networks. Commercial modeling tools - the CACI Predictor and Comnet tools - were used. In addition, custom software tools were developed to characterize conversation pairs in Sniffer trace (capture) files to use as input to these tools. A baseline study of both non-launch and launch day data traffic on the FTXS is presented. MPEG-1 and MPEG-2 video traffic was characterized and the shaping of it evaluated. It is shown that the characteristics of a video stream has a direct effect on its performance in a network. It is also shown that shaping of video streams is necessary to prevent overflow losses and resulting poor video quality. The developed models can be used to predict when the existing FTXS will 'run out of room' and for optimizing the parameters of ATM links used for transmission of MPEG video. Future work with these models can provide useful input and validation to set-top box projects within the Advanced Networks Development group in NASA-KSC Development Engineering.
Development of the Thalamocortical Interactions: Past, Present and Future.
López-Bendito, Guillermina
2018-06-20
For the past two decades, we have advanced in our understanding of the mechanisms implicated in the formation of brain circuits. The connection between the cortex and thalamus has deserved much attention, as thalamocortical connectivity is crucial for sensory processing and motor learning. Classical dye tracing studies in wild-type and knockout mice initially helped to characterize the developmental progression of this connectivity and revealed key transcription factors involved. With the recent advances in technical tools to specifically label subsets of projecting neurons, knock-down genes individually and/or modify their activity, the field has gained further understanding on the rules operating in thalamocortical circuit formation and plasticity. In this review, I will summarize the most relevant discoveries that have been made in this field, from development to early plasticity processes covering three major aspects: axon guidance, thalamic influence on sensory cortical specification, and the role of spontaneous thalamic activity. I will emphasize how the implementation of new tools has helped the field to progress and what I consider to be open questions and the perspective for the future. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Urban, Trinity; Ziegler, Erik; Lewis, Rob; Hafey, Chris; Sadow, Cheryl; Van den Abbeele, Annick D; Harris, Gordon J
2017-11-01
Oncology clinical trials have become increasingly dependent upon image-based surrogate endpoints for determining patient eligibility and treatment efficacy. As therapeutics have evolved and multiplied in number, the tumor metrics criteria used to characterize therapeutic response have become progressively more varied and complex. The growing intricacies of image-based response evaluation, together with rising expectations for rapid and consistent results reporting, make it difficult for site radiologists to adequately address local and multicenter imaging demands. These challenges demonstrate the need for advanced cancer imaging informatics tools that can help ensure protocol-compliant image evaluation while simultaneously promoting reviewer efficiency. LesionTracker is a quantitative imaging package optimized for oncology clinical trial workflows. The goal of the project is to create an open source zero-footprint viewer for image analysis that is designed to be extensible as well as capable of being integrated into third-party systems for advanced imaging tools and clinical trials informatics platforms. Cancer Res; 77(21); e119-22. ©2017 AACR . ©2017 American Association for Cancer Research.
Ephritikhine, Geneviève; Ferro, Myriam; Rolland, Norbert
2004-12-01
Plant membrane proteins are involved in many different functions according to their location in the cell. For instance, the chloroplast has two membrane systems, thylakoids and envelope, with specialized membrane proteins for photosynthesis and metabolite and ion transporters, respectively. Although recent advances in sample preparation and analytical techniques have been achieved for the study of membrane proteins, the characterization of these proteins, especially the hydrophobic ones, is still challenging. The present review highlights recent advances in methodologies for identification of plant membrane proteins from purified subcellular structures. The interest of combining several complementary extraction procedures to take into account specific features of membrane proteins is discussed in the light of recent proteomics data, notably for chloroplast envelope, mitochondrial membranes and plasma membrane from Arabidopsis. These examples also illustrate how, on one hand, proteomics can feed bioinformatics for a better definition of prediction tools and, on the other hand, although prediction tools are not 100% reliable, they can give valuable information for biological investigations. In particular, membrane proteomics brings new insights over plant membrane systems, on both the membrane compartment where proteins are working and their putative cellular function.
R&D Plan for RISMC Industry Application #1: ECCS/LOCA Cladding Acceptance Criteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szilard, Ronaldo Henriques; Zhang, Hongbin; Epiney, Aaron Simon
The Nuclear Regulatory Commission (NRC) is finalizing a rulemaking change that would revise the requirements in 10 CFR 50.46. In the proposed new rulemaking, designated as 10 CFR 50.46c, the NRC proposes a fuel performance-based equivalent cladding reacted (ECR) criterion as a function of cladding hydrogen content before the accident (pre-transient) in order to include the effects of higher burnup on cladding performance as well as to address other technical issues. A loss of operational margin may result due to the more restrictive cladding embrittlement criteria. Initial and future compliance with the rule may significantly increase vendor workload and licenseemore » costs as a spectrum of fuel rod initial burnup states may need to be analyzed to demonstrate compliance. The Idaho National Laboratory (INL) has initiated a project, as part of the DOE Light Water Reactor Sustainability Program (LWRS), to develop analytical capabilities to support the industry in the transition to the new rule. This project is called the Industry Application 1 (IA1) within the Risk-Informed Safety Margin Characterization (RISMC) Pathway of LWRS. The general idea behind the initiative is the development of an Integrated Evaluation Model (IEM). The motivation is to develop a multiphysics framework to analyze how uncertainties are propagated across the stream of physical disciplines and data involved, as well as how risks are evaluated in a LOCA safety analysis as regulated under 10 CFR 50.46c. This IEM is called LOTUS which stands for LOCA Toolkit for US, and it represents the LWRS Program’s response to the proposed new rule making. The focus of this report is to complete an R&D plan to describe the demonstration of the LOCA/ECCS RISMC Industry Application # 1 using the advanced RISMC Toolkit and methodologies. This report includes the description and development plan for a RISMC LOCA tool that fully couples advanced MOOSE tools already in development in order to characterize and optimize plant safety and operational margins. Advanced MOOSE tools that are needed to complete this integrated evaluation model are: RAVEN, RELAP-7, BISON, and MAMMOTH.« less
A Comparison of Satellite Conjunction Analysis Screening Tools
2011-09-01
visualization tool. Version 13.1.4 for Linux was tested. The SOAP conjunction analysis function does not have the capacity to perform the large...was examined by SOAP to confirm the conjunction. STK Advanced CAT STK Advanced CAT (Conjunction Analysis Tools) is an add-on module for the STK ...run with each tool. When attempting to perform the seven day all vs all analysis with STK Advanced CAT, the program consistently crashed during report
Speciated Elemental and Isotopic Characterization of Atmospheric Aerosols - Recent Advances
NASA Astrophysics Data System (ADS)
Shafer, M.; Majestic, B.; Schauer, J.
2007-12-01
Detailed elemental, isotopic, and chemical speciation analysis of aerosol particulate matter (PM) can provide valuable information on PM sources, atmospheric processing, and climate forcing. Certain PM sources may best be resolved using trace metal signatures, and elemental and isotopic fingerprints can supplement and enhance molecular maker analysis of PM for source apportionment modeling. In the search for toxicologically relevant components of PM, health studies are increasingly demanding more comprehensive characterization schemes. It is also clear that total metal analysis is at best a poor surrogate for the bioavailable component, and analytical techniques that address the labile component or specific chemical species are needed. Recent sampling and analytical developments advanced by the project team have facilitated comprehensive characterization of even very small masses of atmospheric PM. Historically; this level of detail was rarely achieved due to limitations in analytical sensitivity and a lack of awareness concerning the potential for contamination. These advances have enabled the coupling of advanced chemical characterization to vital field sampling approaches that typically supply only very limited PM mass; e.g. (1) particle size-resolved sampling; (2) personal sampler collections; and (3) fine temporal scale sampling. The analytical tools that our research group is applying include: (1) sector field (high-resolution-HR) ICP-MS, (2) liquid waveguide long-path spectrophotometry (LWG-LPS), and (3) synchrotron x-ray absorption spectroscopy (sXAS). When coupled with an efficient and validated solubilization method, the HR-ICP-MS can provide quantitative elemental information on over 50 elements in microgram quantities of PM. The high mass resolution and enhanced signal-to-noise of HR-ICP-MS significantly advance data quality and quantity over that possible with traditional quadrupole ICP-MS. The LWG-LPS system enables an assessment of the soluble/labile components of PM, while simultaneously providing critical oxidation state speciation data. Importantly, the LWG- LPS can be deployed in a semi-real-time configuration to probe fine temporal scale variations in atmospheric processing or sources of PM. The sXAS is providing complementary oxidation state speciation of bulk PM. Using examples from our research; we will illustrate the capabilities and applications of these new methods.
In vitro Differentiation of Functional Human Skeletal Myotubes in a Defined System
Guo, Xiufang; Greene, Keshel; Akanda, Nesar; Smith, Alec; Stancescu, Maria; Lambert, Stephen; Vandenburgh, Herman; Hickman, James
2013-01-01
In vitro human skeletal muscle systems are valuable tools for the study of human muscular development, disease and treatment. However, published in vitro human muscle systems have so far only demonstrated limited differentiation capacities. Advanced differentiation features such as cross-striations and contractility have only been observed in co-cultures with motoneurons. Furthermore, it is commonly regarded that cultured human myotubes do not spontaneously contract, and any contraction has been considered to originate from innervation. This study developed a serum-free culture system in which human skeletal myotubes demonstrated advanced differentiation. Characterization by immunocytochemistry, electrophysiology and analysis of contractile function revealed these major features: A) well defined sarcomeric development, as demonstrated by the presence of cross-striations. B) finely developed excitation-contraction coupling apparatus characterized by the close apposition of dihydropyridine receptors on T-tubules and Ryanodine receptors on sarcoplasmic reticulum membranes. C) spontaneous and electrically controlled contractility. This report not only demonstrates an improved level of differentiation of cultured human skeletal myotubes, but also provides the first published evidence that such myotubes are capable of spontaneous contraction. Use of this functional in vitro human skeletal muscle system would advance studies concerning human skeletal muscle development and physiology, as well as muscle-related disease and therapy. PMID:24516722
In vitro Differentiation of Functional Human Skeletal Myotubes in a Defined System.
Guo, Xiufang; Greene, Keshel; Akanda, Nesar; Smith, Alec; Stancescu, Maria; Lambert, Stephen; Vandenburgh, Herman; Hickman, James
2014-01-01
In vitro human skeletal muscle systems are valuable tools for the study of human muscular development, disease and treatment. However, published in vitro human muscle systems have so far only demonstrated limited differentiation capacities. Advanced differentiation features such as cross-striations and contractility have only been observed in co-cultures with motoneurons. Furthermore, it is commonly regarded that cultured human myotubes do not spontaneously contract, and any contraction has been considered to originate from innervation. This study developed a serum-free culture system in which human skeletal myotubes demonstrated advanced differentiation. Characterization by immunocytochemistry, electrophysiology and analysis of contractile function revealed these major features: A) well defined sarcomeric development, as demonstrated by the presence of cross-striations. B) finely developed excitation-contraction coupling apparatus characterized by the close apposition of dihydropyridine receptors on T-tubules and Ryanodine receptors on sarcoplasmic reticulum membranes. C) spontaneous and electrically controlled contractility. This report not only demonstrates an improved level of differentiation of cultured human skeletal myotubes, but also provides the first published evidence that such myotubes are capable of spontaneous contraction. Use of this functional in vitro human skeletal muscle system would advance studies concerning human skeletal muscle development and physiology, as well as muscle-related disease and therapy.
NASA Technical Reports Server (NTRS)
Koga, Dennis (Technical Monitor); Penix, John; Markosian, Lawrence Z.; OMalley, Owen; Brew, William A.
2003-01-01
Attempts to achieve widespread use of software verification tools have been notably unsuccessful. Even 'straightforward', classic, and potentially effective verification tools such as lint-like tools face limits on their acceptance. These limits are imposed by the expertise required applying the tools and interpreting the results, the high false positive rate of many verification tools, and the need to integrate the tools into development environments. The barriers are even greater for more complex advanced technologies such as model checking. Web-hosted services for advanced verification technologies may mitigate these problems by centralizing tool expertise. The possible benefits of this approach include eliminating the need for software developer expertise in tool application and results filtering, and improving integration with other development tools.
Requirements Development for the NASA Advanced Engineering Environment (AEE)
NASA Technical Reports Server (NTRS)
Rogers, Eric; Hale, Joseph P.; Zook, Keith; Gowda, Sanjay; Salas, Andrea O.
2003-01-01
The requirements development process for the Advanced Engineering Environment (AEE) is presented. This environment has been developed to allow NASA to perform independent analysis and design of space transportation architectures and technologies. Given the highly collaborative and distributed nature of AEE, a variety of organizations are involved in the development, operations and management of the system. Furthermore, there are additional organizations involved representing external customers and stakeholders. Thorough coordination and effective communication is essential to translate desired expectations of the system into requirements. Functional, verifiable requirements for this (and indeed any) system are necessary to fulfill several roles. Requirements serve as a contractual tool, configuration management tool, and as an engineering tool, sometimes simultaneously. The role of requirements as an engineering tool is particularly important because a stable set of requirements for a system provides a common framework of system scope and characterization among team members. Furthermore, the requirements provide the basis for checking completion of system elements and form the basis for system verification. Requirements are at the core of systems engineering. The AEE Project has undertaken a thorough process to translate the desires and expectations of external customers and stakeholders into functional system-level requirements that are captured with sufficient rigor to allow development planning, resource allocation and system-level design, development, implementation and verification. These requirements are maintained in an integrated, relational database that provides traceability to governing Program requirements and also to verification methods and subsystem-level requirements.
NASA Research Center Contributions to Space Shuttle Return to Flight (SSRTF)
NASA Technical Reports Server (NTRS)
Cockrell, Charles E., Jr.; Barnes, Robert S.; Belvin, Harry L.; Allmen, John; Otero, Angel
2005-01-01
Contributions provided by the NASA Research Centers to key Space Shuttle return-to-flight milestones, with an emphasis on debris and Thermal Protection System (TPS) damage characterization, are described herein. Several CAIB recommendations and Space Shuttle Program directives deal with the mitigation of external tank foam insulation as a debris source, including material characterization as well as potential design changes, and an understanding of Orbiter TPS material characteristics, damage scenarios, and repair options. Ames, Glenn, and Langley Research Centers have performed analytic studies, conducted experimental testing, and developed new technologies, analysis tools, and hardware to contribute to each of these recommendations. For the External Tank (ET), these include studies of spray-on foam insulation (SOFI), investigations of potential design changes, and applications of advanced non-destructive evaluation (NDE) technologies to understand ET TPS shedding during liftoff and ascent. The end-to-end debris assessment included transport analysis to determine the probabilities of impact for various debris sources. For the Orbiter, methods were developed, and validated through experimental testing, to determine thresholds for potential damage of Orbiter TPS components. Analysis tools were developed and validated for on-orbit TPS damage assessments, especially in the area of aerothermal environments. Advanced NDE technologies were also applied to the Orbiter TPS components, including sensor technologies to detect wing leading edge impacts during liftoff and ascent. Work is continuing to develop certified TPS repair options and to develop improved methodologies for reinforced carbon-carbon (RCC) damage progression to assist in on-orbit repair decision philosophy.
Ilovich, Ohad; Qutaish, Mohammed; Hesterman, Jacob; Orcutt, Kelly; Hoppin, Jack; Polyak, Ildiko; Seaman, Marc; Abu-Yousif, Adnan; Cvet, Donna; Bradley, Daniel
2018-05-04
In vitro properties of antibody drug conjugates (ADCs) such as binding, internalization, and cytotoxicity are often well characterized prior to in vivo studies. Interpretation of in vivo studies could significantly be enhanced by molecular imaging tools. We present here a dual-isotope cryo-imaging quantitative autoradiography (CIQA) methodology combined with advanced 3D imaging and analysis allowing for the simultaneous study of both antibody and payload distribution in tissues of interest. in a pre-clinical setting. Methods: TAK-264, an investigational anti-guanylyl cyclase C (GCC) targeting ADC was synthesized utilizing tritiated Monomethyl auristatin E (MMAE). The tritiated ADC was then conjugated to DTPA, labeled with indium-111 and evaluated in vivo in GCC-positive and GCC-negative tumor-bearing animals. Results: Cryo-imaging Quantitative Autoradiography (CIQA) reveals the time course of drug release from ADC and its distribution into various tumor regions seemingly impenetrablethat are less accessible to the antibody. For GCC-positive tumors, a representative section obtained 96 hours post tracer injection showed only 0.8% of the voxels have co-localized signal versus over 15% of the voxels for a GCC-negative tumor section., suggesting successful and specific cleaving of the toxin in the antigen positive lesions. Conclusion: The combination of a veteran established autoradiography technology with advanced image analysis methodologies affords an experimental tool that can support detailed characterization of ADC tumor penetration and pharmacokinetics. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
NMR Methods, Applications and Trends for Groundwater Evaluation and Management
NASA Astrophysics Data System (ADS)
Walsh, D. O.; Grunewald, E. D.
2011-12-01
Nuclear magnetic resonance (NMR) measurements have a tremendous potential for improving groundwater characterization, as they provide direct detection and measurement of groundwater and unique information about pore-scale properties. NMR measurements, commonly used in chemistry and medicine, are utilized in geophysical investigations through non-invasive surface NMR (SNMR) or downhole NMR logging measurements. Our recent and ongoing research has focused on improving the performance and interpretation of NMR field measurements for groundwater characterization. Engineering advancements have addressed several key technical challenges associated with SNMR measurements. Susceptibility of SNMR measurements to environmental noise has been dramatically reduced through the development of multi-channel acquisition hardware and noise-cancellation software. Multi-channel instrumentation (up to 12 channels) has also enabled more efficient 2D and 3D imaging. Previous limitations in measuring NMR signals from water in silt, clay and magnetic geology have been addressed by shortening the instrument dead-time from 40 ms to 4 ms, and increasing the power output. Improved pulse sequences have been developed to more accurately estimate NMR relaxation times and their distributions, which are sensitive to pore size distributions. Cumulatively, these advancements have vastly expanded the range of environments in which SNMR measurements can be obtained, enabling detection of groundwater in smaller pores, in magnetic geology, in the unsaturated zone, and nearby to infrastructure (presented here in case studies). NMR logging can provide high-resolution estimates of bound and mobile water content and pore size distributions. While NMR logging has been utilized in oil and gas applications for decades, its use in groundwater investigations has been limited by the large size and high cost of oilfield NMR logging tools and services. Recently, engineering efforts funded by the US Department of Energy have produced an NMR logging tool that is much smaller and less costly than comparable oilfield NMR logging tools. This system is specifically designed for near surface groundwater investigations, incorporates small diameter probes (as small as 1.67 inches diameter) and man-portable surface stations, and provides NMR data and information content on par with oilfield NMR logging tools. A direct-push variant of this logging tool has also been developed. Key challenges associated with small diameter tools include inherently lower SNR and logging speeds, the desire to extend the sensitive zone as far as possible into unconsolidated formations, and simultaneously maintaining high power and signal fidelity. Our ongoing research in groundwater NMR aims to integrating surface and borehole measurements for regional-scale permeability mapping, and to develop in-place NMR sensors for long term monitoring of contaminant and remediation processes. In addition to groundwater resource characterization, promising new applications of NMR include assessing water content in ice and permafrost, management of groundwater in mining operations, and evaluation and management of groundwater in civil engineering applications.
Developments in label-free microfluidic methods for single-cell analysis and sorting.
Carey, Thomas R; Cotner, Kristen L; Li, Brian; Sohn, Lydia L
2018-04-24
Advancements in microfluidic technologies have led to the development of many new tools for both the characterization and sorting of single cells without the need for exogenous labels. Label-free microfluidics reduce the preparation time, reagents needed, and cost of conventional methods based on fluorescent or magnetic labels. Furthermore, these devices enable analysis of cell properties such as mechanical phenotype and dielectric parameters that cannot be characterized with traditional labels. Some of the most promising technologies for current and future development toward label-free, single-cell analysis and sorting include electronic sensors such as Coulter counters and electrical impedance cytometry; deformation analysis using optical traps and deformation cytometry; hydrodynamic sorting such as deterministic lateral displacement, inertial focusing, and microvortex trapping; and acoustic sorting using traveling or standing surface acoustic waves. These label-free microfluidic methods have been used to screen, sort, and analyze cells for a wide range of biomedical and clinical applications, including cell cycle monitoring, rapid complete blood counts, cancer diagnosis, metastatic progression monitoring, HIV and parasite detection, circulating tumor cell isolation, and point-of-care diagnostics. Because of the versatility of label-free methods for characterization and sorting, the low-cost nature of microfluidics, and the rapid prototyping capabilities of modern microfabrication, we expect this class of technology to continue to be an area of high research interest going forward. New developments in this field will contribute to the ongoing paradigm shift in cell analysis and sorting technologies toward label-free microfluidic devices, enabling new capabilities in biomedical research tools as well as clinical diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices. © 2018 Wiley Periodicals, Inc.
Bobst, Cedric E.; Kaltashov, Igor A.
2012-01-01
Mass spectrometry has already become an indispensable tool in the analytical armamentarium of the biopharmaceutical industry, although its current uses are limited to characterization of covalent structure of recombinant protein drugs. However, the scope of applications of mass spectrometry-based methods is beginning to expand to include characterization of the higher order structure and dynamics of biopharmaceutical products, a development which is catalyzed by the recent progress in mass spectrometry-based methods to study higher order protein structure. The two particularly promising methods that are likely to have the most significant and lasting impact in many areas of biopharmaceutical analysis, direct ESI MS and hydrogen/deuterium exchange, are focus of this article. PMID:21542797
Characterizing the Nano and Micro Structure of Concrete toImprove its Durability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monteiro, P.J.M.; Kirchheim, A.P.; Chae, S.
2009-01-13
New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images of ice inside cement paste and cracking caused by the alkali?silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools aremore » shown on this paper.« less
Characterizing the nano and micro structure of concrete to improve its durability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monteiro, P.J.M.; Kirchheim, A.P.; Chae, S.
2008-10-22
New and advanced methodologies have been developed to characterize the nano and microstructure of cement paste and concrete exposed to aggressive environments. High resolution full-field soft X-ray imaging in the water window is providing new insight on the nano scale of the cement hydration process, which leads to a nano-optimization of cement-based systems. Hard X-ray microtomography images on ice inside cement paste and cracking caused by the alkali-silica reaction (ASR) enables three-dimensional structural identification. The potential of neutron diffraction to determine reactive aggregates by measuring their residual strains and preferred orientation is studied. Results of experiments using these tools willmore » be shown on this paper.« less
Challenges to diagnosis of HIV-associated wasting.
Kotler, Donald
2004-12-01
There is a wide variability in the clinical presentation of the protein energy malnutrition often characterized as wasting in patients infected with HIV. Moreover, the clinical presentation has evolved over time. Initially, protein energy malnutrition was characterized by profound weight loss and depletion of body cell mass (BCM). Recently, unrelated concurrent metabolic abnormalities, such as lipodystrophy, may complicate the diagnosis of HIV wasting. Although measures of BCM are relatively accurate for the diagnosis of HIV wasting, the optimal tools for assessing BCM are not necessarily available to the clinician. From the practical standpoint, HIV wasting may be a self-evident diagnosis in advanced stages, but effective interpretation of the early signs of HIV wasting requires familiarity with other complications included in the differential diagnosis.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
The Machine Tool Advanced Skills Technology (MAST) consortium was formed to address the shortage of skilled workers for the machine tools and metals-related industries. Featuring six of the nation's leading advanced technology centers, the MAST consortium developed, tested, and disseminated industry-specific skill standards and model curricula for…
The path to next generation biofuels: successes and challenges in the era of synthetic biology
2010-01-01
Volatility of oil prices along with major concerns about climate change, oil supply security and depleting reserves have sparked renewed interest in the production of fuels from renewable resources. Recent advances in synthetic biology provide new tools for metabolic engineers to direct their strategies and construct optimal biocatalysts for the sustainable production of biofuels. Metabolic engineering and synthetic biology efforts entailing the engineering of native and de novo pathways for conversion of biomass constituents to short-chain alcohols and advanced biofuels are herewith reviewed. In the foreseeable future, formal integration of functional genomics and systems biology with synthetic biology and metabolic engineering will undoubtedly support the discovery, characterization, and engineering of new metabolic routes and more efficient microbial systems for the production of biofuels. PMID:20089184
Advancing metabolic engineering through systems biology of industrial microorganisms.
Dai, Zongjie; Nielsen, Jens
2015-12-01
Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further. Copyright © 2015 Elsevier Ltd. All rights reserved.
Simulating Autonomous Telecommunication Networks for Space Exploration
NASA Technical Reports Server (NTRS)
Segui, John S.; Jennings, Esther H.
2008-01-01
Currently, most interplanetary telecommunication systems require human intervention for command and control. However, considering the range from near Earth to deep space missions, combined with the increase in the number of nodes and advancements in processing capabilities, the benefits from communication autonomy will be immense. Likewise, greater mission science autonomy brings the need for unscheduled, unpredictable communication and network routing. While the terrestrial Internet protocols are highly developed their suitability for space exploration has been questioned. JPL has developed the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to help characterize network designs and protocols. The results will allow future mission planners to better understand the trade offs of communication protocols. This paper discusses various issues with interplanetary network and simulation results of interplanetary networking protocols.
Dingreville, Rémi; Karnesky, Richard A.; Puel, Guillaume; ...
2015-11-16
With the increasing interplay between experimental and computational approaches at multiple length scales, new research directions are emerging in materials science and computational mechanics. Such cooperative interactions find many applications in the development, characterization and design of complex material systems. This manuscript provides a broad and comprehensive overview of recent trends in which predictive modeling capabilities are developed in conjunction with experiments and advanced characterization to gain a greater insight into structure–property relationships and study various physical phenomena and mechanisms. The focus of this review is on the intersections of multiscale materials experiments and modeling relevant to the materials mechanicsmore » community. After a general discussion on the perspective from various communities, the article focuses on the latest experimental and theoretical opportunities. Emphasis is given to the role of experiments in multiscale models, including insights into how computations can be used as discovery tools for materials engineering, rather than to “simply” support experimental work. This is illustrated by examples from several application areas on structural materials. In conclusion this manuscript ends with a discussion on some problems and open scientific questions that are being explored in order to advance this relatively new field of research.« less
Recent Advances in Algal Genetic Tool Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Dahlin, Lukas; T. Guarnieri, Michael
The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less
Recent Advances in Algal Genetic Tool Development
R. Dahlin, Lukas; T. Guarnieri, Michael
2016-06-24
The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spurgeon, Steven R.; Chambers, Scott A.
Scanning transmission electron microscopy (STEM) has become one of the fundamental tools to characterize oxide interfaces and superlattices. Atomic-scale structure, chemistry, and composition mapping can now be conducted on a wide variety of materials systems thanks to the development of aberration-correctors and advanced detectors. STEM imaging and diffraction, coupled with electron energy loss (EELS) and energy-dispersive X-ray (EDS) spectroscopies, offer unparalleled, high-resolution analysis of structure-property relationships. In this chapter we highlight investigations into key phenomena, including interfacial conductivity in oxide superlattices, charge screening effects in magnetoelectric heterostructures, the design of high-quality iron oxide interfaces, and the complex physics governing atomic-scalemore » chemical mapping. These studies illustrate how unique insights from STEM characterization can be integrated with other techniques and first-principles calculations to develop better models for the behavior of functional oxides.« less
Utility of the advanced chronic kidney disease patient management tools: case studies.
Patwardhan, Meenal B; Matchar, David B; Samsa, Gregory P; Haley, William E
2008-01-01
Appropriate management of advanced chronic kidney disease (CKD) delays or limits its progression. The Advanced CKD Patient Management Toolkit was developed using a process-improvement technique to assist patient management and address CKD-specific management issues. We pilot tested the toolkit in 2 community nephrology practices, assessed the utility of individual tools, and evaluated the impact on conformance to an advanced CKD guideline through patient chart abstraction. Tool use was distinct in the 2 sites and depended on the site champion's involvement, the extent of process reconfiguration demanded by a tool, and its perceived value. Baseline conformance varied across guideline recommendations (averaged 54%). Posttrial conformance increased in all clinical areas (averaged 59%). Valuable features of the toolkit in real-world settings were its ability to: facilitate tool selection, direct implementation efforts in response to a baseline performance audit, and allow selection of tool versions and customizing them. Our results suggest that systematically created, multifaceted, and customizable tools can promote guideline conformance.
Scheduling Observations of Celestial Objects for Earth Observing Sensor Calibration
NASA Technical Reports Server (NTRS)
Wilson, Truman; Xiong, Xiaoxiong
2016-01-01
Radiometric calibration of Earth-observing satellite sensors is critical for tracking on-orbit gain changes through- out the satellite's mission. The Moon, being a stable, well-characterized radiometric target, has been used effectively for tracking the relative gain changes of the reflective solar bands for the Moderate Resolution Imaging Spectroradiometer (MODIS) on board EOS AM-1 (Terra) and PM-1 (Aqua). The Moon is viewed through the MODIS space-view port, and the relative phase of the Moon is restricted to within 0.5 degrees of a chosen target phase to increase the accuracy of the calibration. These geometric restrictions require spacecraft maneuvers in order to bring space-view port into proper alignment with the position of the Moon when the phase requirement is met. In this paper, we describe a versatile tool for scheduling such maneuvers based on the required geometry and lunar phase restrictions for a general spacecraft bound instrument. The results of the scheduling tool have been verified using lunar images from Aqua and Terra MODIS after a scheduled roll maneuver was performed. This tool has also been tested for the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Advanced Technology Microwave Sounder on-board the Suomi-NPP spacecraft. As an extension of this work, we have also developed a tool for scheduling views of bright stars. These stars provide another well-characterized radiometric source that can be used for sensor calibration. This tool has been implemented to determine the times in which a chosen star can be viewed by the high gain stages of the day/night band for the VIIRS instrument.
Achieving optimum diffraction based overlay performance
NASA Astrophysics Data System (ADS)
Leray, Philippe; Laidler, David; Cheng, Shaunee; Coogans, Martyn; Fuchs, Andreas; Ponomarenko, Mariya; van der Schaar, Maurits; Vanoppen, Peter
2010-03-01
Diffraction Based Overlay (DBO) metrology has been shown to have significantly reduced Total Measurement Uncertainty (TMU) compared to Image Based Overlay (IBO), primarily due to having no measurable Tool Induced Shift (TIS). However, the advantages of having no measurable TIS can be outweighed by increased susceptibility to WIS (Wafer Induced Shift) caused by target damage, process non-uniformities and variations. The path to optimum DBO performance lies in having well characterized metrology targets, which are insensitive to process non-uniformities and variations, in combination with optimized recipes which take advantage of advanced DBO designs. In this work we examine the impact of different degrees of process non-uniformity and target damage on DBO measurement gratings and study their impact on overlay measurement accuracy and precision. Multiple wavelength and dual polarization scatterometry are used to characterize the DBO design performance over the range of process variation. In conclusion, we describe the robustness of DBO metrology to target damage and show how to exploit the measurement capability of a multiple wavelength, dual polarization scatterometry tool to ensure the required measurement accuracy for current and future technology nodes.
Increasing rigor in NMR-based metabolomics through validated and open source tools
Eghbalnia, Hamid R; Romero, Pedro R; Westler, William M; Baskaran, Kumaran; Ulrich, Eldon L; Markley, John L
2016-01-01
The metabolome, the collection of small molecules associated with an organism, is a growing subject of inquiry, with the data utilized for data-intensive systems biology, disease diagnostics, biomarker discovery, and the broader characterization of small molecules in mixtures. Owing to their close proximity to the functional endpoints that govern an organism’s phenotype, metabolites are highly informative about functional states. The field of metabolomics identifies and quantifies endogenous and exogenous metabolites in biological samples. Information acquired from nuclear magnetic spectroscopy (NMR), mass spectrometry (MS), and the published literature, as processed by statistical approaches, are driving increasingly wider applications of metabolomics. This review focuses on the role of databases and software tools in advancing the rigor, robustness, reproducibility, and validation of metabolomics studies. PMID:27643760
How Not To Drown in Data: A Guide for Biomaterial Engineers.
Vasilevich, Aliaksei S; Carlier, Aurélie; de Boer, Jan; Singh, Shantanu
2017-08-01
High-throughput assays that produce hundreds of measurements per sample are powerful tools for quantifying cell-material interactions. With advances in automation and miniaturization in material fabrication, hundreds of biomaterial samples can be rapidly produced, which can then be characterized using these assays. However, the resulting deluge of data can be overwhelming. To the rescue are computational methods that are well suited to these problems. Machine learning techniques provide a vast array of tools to make predictions about cell-material interactions and to find patterns in cellular responses. Computational simulations allow researchers to pose and test hypotheses and perform experiments in silico. This review describes approaches from these two domains that can be brought to bear on the problem of analyzing biomaterial screening data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Increasing rigor in NMR-based metabolomics through validated and open source tools.
Eghbalnia, Hamid R; Romero, Pedro R; Westler, William M; Baskaran, Kumaran; Ulrich, Eldon L; Markley, John L
2017-02-01
The metabolome, the collection of small molecules associated with an organism, is a growing subject of inquiry, with the data utilized for data-intensive systems biology, disease diagnostics, biomarker discovery, and the broader characterization of small molecules in mixtures. Owing to their close proximity to the functional endpoints that govern an organism's phenotype, metabolites are highly informative about functional states. The field of metabolomics identifies and quantifies endogenous and exogenous metabolites in biological samples. Information acquired from nuclear magnetic spectroscopy (NMR), mass spectrometry (MS), and the published literature, as processed by statistical approaches, are driving increasingly wider applications of metabolomics. This review focuses on the role of databases and software tools in advancing the rigor, robustness, reproducibility, and validation of metabolomics studies. Copyright © 2016. Published by Elsevier Ltd.
Chemical Probes of Histone Lysine Methyltransferases
2015-01-01
Growing evidence suggests that histone methyltransferases (HMTs, also known as protein methyltransferases (PMTs)) play an important role in diverse biological processes and human diseases by regulating gene expression and the chromatin state. Therefore, HMTs have been increasingly recognized by the biomedical community as a class of potential therapeutic targets. High quality chemical probes of HMTs, as tools for deciphering their physiological functions and roles in human diseases and testing therapeutic hypotheses, are critical for advancing this promising field. In this review, we focus on the discovery, characterization, and biological applications of chemical probes for HMTs. PMID:25423077
Ionizing radiation environment for the TOMS mission
NASA Technical Reports Server (NTRS)
Lauriente, M.; Maloy, J. O.; Vampola, A. L.
1992-01-01
The Total Ozone Mapping Spectrometer (TOMS) will fly on several different spacecraft, each having an orbit which is approximately polar and 800-980 km in altitude. A description is given of the computer-based tools used for characterizing the spacecraft interactions with the ionizing radiation environment in orbit and the susceptibility requirements for ionizing radiation compatibility. The peak flux from the model was used to derive the expected radiation-induced noise in the South Atlantic Anomaly for the new TOMS instruments intended to fly on Advanced Earth Observatory System and Earth Probe.
Hierarchical microstructures in CZT
NASA Astrophysics Data System (ADS)
Sundaram, S. K.; Henager, C. H.; Edwards, D. J.; Schemer-Kohrn, A. L.; Bliss, M.; Riley, B. R.; Toloczko, M. B.; Lynn, K. G.
2011-10-01
Advanced characterization tools, such as electron backscatter diffraction and transmitted IR microscopy, are being applied to study critical microstructural features and orientation relations in as-grown CZT crystals to aid in understanding the relation between structure and properties in radiation detectors. Even carefully prepared single crystals of CZT contain regions of slight misorientation, Te-particles, and dislocation networks that must be understood for more accurate models of detector response. This paper describes initial research at PNNL into the hierarchy of microstructures observed in CZT grown via the vertical gradient freeze or vertical Bridgman method at PNNL and WSU.
Mono-energetic ions emission by nanosecond laser solid target irradiation
NASA Astrophysics Data System (ADS)
Muoio, A.; Tudisco, S.; Altana, C.; Lanzalone, G.; Mascali, D.; Cirrone, G. A. P.; Schillaci, F.; Trifirò, A.
2016-09-01
An experimental campaign aiming to investigate the acceleration mechanisms through laser-matter interaction in nanosecond domain has been carried out at the LENS (Laser Energy for Nuclear Science) laboratory of INFN-LNS, Catania. Pure Al targets were irradiated by 6 ns laser pulses at different pumping energies, up to 2 J. Advanced diagnostics tools were used to characterize the plasma plume and ion production. We show the preliminary results of this experimental campaign, and especially the ones showing the production of multicharged ions having very narrow energy spreads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szilard, Ronaldo Henriques
A Risk Informed Safety Margin Characterization (RISMC) toolkit and methodology are proposed for investigating nuclear power plant core, fuels design and safety analysis, including postulated Loss-of-Coolant Accident (LOCA) analysis. This toolkit, under an integrated evaluation model framework, is name LOCA toolkit for the US (LOTUS). This demonstration includes coupled analysis of core design, fuel design, thermal hydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results.
Meckes, David G
2014-01-01
The identification and characterization of herpes simplex virus protein interaction complexes are fundamental to understanding the molecular mechanisms governing the replication and pathogenesis of the virus. Recent advances in affinity-based methods, mass spectrometry configurations, and bioinformatics tools have greatly increased the quantity and quality of protein-protein interaction datasets. In this chapter, detailed and reliable methods that can easily be implemented are presented for the identification of protein-protein interactions using cryogenic cell lysis, affinity purification, trypsin digestion, and mass spectrometry.
Advances in food crystallization.
Hartel, Richard W
2013-01-01
Crystals often play an important role in food product quality and shelf life. Controlling crystallization to obtain the desired crystal content, size distribution, shape, and polymorph is key to manufacturing products with desired functionality and shelf life. Technical developments in the field have improved the tools with which we study and characterize crystals in foods. These developments also help our understanding of the physico-chemical phenomena that govern crystallization and improve our ability to control it during processing and storage. In this review, some of the more important recent developments in measuring and controlling crystallization are discussed.
Optical Fabrication and Measurement AXAF and CIRS
NASA Technical Reports Server (NTRS)
Engelhaupt, Darell
1997-01-01
This paper presents a final report on Optical Fabrication and Measurement AXAF (Advanced X-Ray Astrophysics Facility) and CIRS (Composite Infrared Spectrometer) from July 12, 1994 to August 16, 1996.. This paper includes specific tasks to be performed. The tasks are as follows: 1) Preparation and Characterization of Zerodur Glass Samples; 2) Develop and Fabricate AXAF and CIRS Metrology Tooling; 3) Update AXAF Technical Data Base; and 4) Perform Fabrication Related Metrology Tasks for CIRS. This paper also includes final activities from the July, 1996 report to August 1996.
Preserved dopaminergic homeostasis and dopamine-related behaviour in hemizygous TH-Cre mice.
Runegaard, Annika H; Jensen, Kathrine L; Fitzpatrick, Ciarán M; Dencker, Ditte; Weikop, Pia; Gether, Ulrik; Rickhag, Mattias
2017-01-01
Cre-driver mouse lines have been extensively used as genetic tools to target and manipulate genetically defined neuronal populations by expression of Cre recombinase under selected gene promoters. This approach has greatly advanced neuroscience but interpretations are hampered by the fact that most Cre-driver lines have not been thoroughly characterized. Thus, a phenotypic characterization is of major importance to reveal potential aberrant phenotypes prior to implementation and usage to selectively inactivate or induce transgene expression. Here, we present a biochemical and behavioural assessment of the dopaminergic system in hemizygous tyrosine hydroxylase (TH)-Cre mice in comparison to wild-type (WT) controls. Our data show that TH-Cre mice display preserved dopaminergic homeostasis with unaltered levels of TH and dopamine as well as unaffected dopamine turnover in striatum. TH-Cre mice also show preserved dopamine transporter expression and function supporting sustained dopaminergic transmission. In addition, TH-Cre mice demonstrate normal responses in basic behavioural paradigms related to dopaminergic signalling including locomotor activity, reward preference and anxiolytic behaviour. Our results suggest that TH-Cre mice represent a valid tool to study the dopamine system, though careful characterization must always be performed to prevent false interpretations following Cre-dependent transgene expression and manipulation of selected neuronal pathways. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Scully, John R
2015-01-01
Recent advances in characterization tools, computational capabilities, and theories have created opportunities for advancement in understanding of solid-fluid interfaces at the nanoscale in corroding metallic systems. The Faraday Discussion on Corrosion Chemistry in 2015 highlighted some of the current needs, gaps and opportunities in corrosion science. Themes were organized into several hierarchical categories that provide an organizational framework for corrosion. Opportunities to develop fundamental physical and chemical data which will enable further progress in thermodynamic and kinetic modelling of corrosion were discussed. These will enable new and better understanding of unit processes that govern corrosion at the nanoscale. Additional topics discussed included scales, films and oxides, fluid-surface and molecular-surface interactions, selected topics in corrosion science and engineering as well as corrosion control. Corrosion science and engineering topics included complex alloy dissolution, local corrosion, and modelling of specific corrosion processes that are made up of collections of temporally and spatially varying unit processes such as oxidation, ion transport, and competitive adsorption. Corrosion control and mitigation topics covered some new insights on coatings and inhibitors. Further advances in operando or in situ experimental characterization strategies at the nanoscale combined with computational modelling will enhance progress in the field, especially if coupling across length and time scales can be achieved incorporating the various phenomena encountered in corrosion. Readers are encouraged to not only to use this ad hoc organizational scheme to guide their immersion into the current opportunities in corrosion chemistry, but also to find value in the information presented in their own ways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramovici, E.; Northwood, D.O.; Shehata, M.T.
1999-01-01
The contents include Analysis of In-Service Failures (tutorials, transportation industry, corrosion and materials degradation, electronic and advanced materials); 1998 Sorby Award Lecture by Kay Geels, Struers A/S (Metallographic Preparation from Sorby to the Present); Advances in Microstructural Characterization (characterization techniques using high resolution and focused ion beam, characterization of microstructural clustering and correlation with performance); Advanced Applications (advanced alloys and intermetallic compounds, plasma spray coatings and other surface coatings, corrosion, and materials degradation).
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
Complex computation in the retina
NASA Astrophysics Data System (ADS)
Deshmukh, Nikhil Rajiv
Elucidating the general principles of computation in neural circuits is a difficult problem requiring both a tractable model circuit as well as sophisticated measurement tools. This thesis advances our understanding of complex computation in the salamander retina and its underlying circuitry and furthers the development of advanced tools to enable detailed study of neural circuits. The retina provides an ideal model system for neural circuits in general because it is capable of producing complex representations of the visual scene, and both its inputs and outputs are accessible to the experimenter. Chapter 2 describes the biophysical mechanisms that give rise to the omitted stimulus response in retinal ganglion cells described in Schwartz et al., (2007) and Schwartz and Berry, (2008). The extra response to omitted flashes is generated at the input to bipolar cells, and is separable from the characteristic latency shift of the OSR apparent in ganglion cells, which must occur downstream in the circuit. Chapter 3 characterizes the nonlinearities at the first synapse of the ON pathway in response to high contrast flashes and develops a phenomenological model that captures the effect of synaptic activation and intracellular signaling dynamics on flash responses. This work is the first attempt to model the dynamics of the poorly characterized mGluR6 transduction cascade unique to ON bipolar cells, and explains the second lobe of the biphasic flash response. Complementary to the study of neural circuits, recent advances in wafer-scale photolithography have made possible new devices to measure the electrical and mechanical properties of neurons. Chapter 4 reports a novel piezoelectric sensor that facilitates the simultaneous measurement of electrical and mechanical signals in neural tissue. This technology could reveal the relationship between the electrical activity of neurons and their local mechanical environment, which is critical to the study of mechanoreceptors, neural development, and traumatic brain injury. Chapter 5 describes advances in the development, fabrication, and testing of a prototype silicon micropipette for patch clamp physiology. Nanoscale photolithography addresses some of the limitations of traditional glass patch electrodes, such as the rapid dialysis of the cell with internal solution, and provides a platform for integration of microfluidics and electronics into the device, which can enable novel experimental methodology.
Comparing the Advanced REACH Tool's (ART) Estimates With Switzerland's Occupational Exposure Data.
Savic, Nenad; Gasic, Bojan; Schinkel, Jody; Vernez, David
2017-10-01
The Advanced REACH Tool (ART) is the most sophisticated tool used for evaluating exposure levels under the European Union's Registration, Evaluation, Authorisation and restriction of CHemicals (REACH) regulations. ART provides estimates at different percentiles of exposure and within different confidence intervals (CIs). However, its performance has only been tested on a limited number of exposure data. The present study compares ART's estimates with exposure measurements collected over many years in Switzerland. Measurements from 584 cases of exposure to vapours, mists, powders, and abrasive dusts (wood/stone and metal) were extracted from a Swiss database. The corresponding exposures at the 50th and 90th percentiles were calculated in ART. To characterize the model's performance, the 90% CI of the estimates was considered. ART's performance at the 50th percentile was only found to be insufficiently conservative with regard to exposure to wood/stone dusts, whereas the 90th percentile showed sufficient conservatism for all the types of exposure processed. However, a trend was observed with the residuals, where ART overestimated lower exposures and underestimated higher ones. The median was more precise, however, and the majority (≥60%) of real-world measurements were within a factor of 10 from ART's estimates. We provide recommendations based on the results and suggest further, more comprehensive, investigations. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Investigating surety methodologies for cognitive systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caudell, Thomas P.; Peercy, David Eugene; Mills, Kristy
2006-11-01
Advances in cognitive science provide a foundation for new tools that promise to advance human capabilities with significant positive impacts. As with any new technology breakthrough, associated technical and non-technical risks are involved. Sandia has mitigated both technical and non-technical risks by applying advanced surety methodologies in such areas as nuclear weapons, nuclear reactor safety, nuclear materials transport, and energy systems. In order to apply surety to the development of cognitive systems, we must understand the concepts and principles that characterize the certainty of a system's operation as well as the risk areas of cognitive sciences. This SAND report documentsmore » a preliminary spectrum of risks involved with cognitive sciences, and identifies some surety methodologies that can be applied to potentially mitigate such risks. Some potential areas for further study are recommended. In particular, a recommendation is made to develop a cognitive systems epistemology framework for more detailed study of these risk areas and applications of surety methods and techniques.« less
Metabolic Engineering for the Production of Natural Products
Pickens, Lauren B.; Tang, Yi; Chooi, Yit-Heng
2014-01-01
Natural products and natural product derived compounds play an important role in modern healthcare as frontline treatments for many diseases and as inspiration for chemically synthesized therapeutics. With advances in sequencing and recombinant DNA technology, many of the biosynthetic pathways responsible for the production of these chemically complex and pharmaceutically valuable compounds have been elucidated. With an ever expanding toolkit of biosynthetic components, metabolic engineering is an increasingly powerful method to improve natural product titers and generate novel compounds. Heterologous production platforms have enabled access to pathways from difficult to culture strains; systems biology and metabolic modeling tools have resulted in increasing predictive and analytic capabilities; advances in expression systems and regulation have enabled the fine-tuning of pathways for increased efficiency, and characterization of individual pathway components has facilitated the construction of hybrid pathways for the production of new compounds. These advances in the many aspects of metabolic engineering have not only yielded fascinating scientific discoveries but also make it an increasingly viable approach for the optimization of natural product biosynthesis. PMID:22432617
High Volume Fraction Carbon Nanotube Composites for Aerospace Applications
NASA Technical Reports Server (NTRS)
Siochi, Emilie J.; Kim, Jae-Woo; Sauti, Godfrey; Cano, Roberto J.; Wincheski, Russell A.; Ratcliffe, James G.; Czabaj, Michael; Jensen, Benjamin D.; Wise, Kristopher E.
2015-01-01
Reported nanoscale mechanical properties of carbon nanotubes (CNTs) suggest that their use may enable the fabrication of significantly lighter structures for use in space applications. To be useful in the fabrication of large structures, however, their attractive nanoscale properties must be retained as they are scaled up to bulk materials and converted into practically useful forms. Advances in CNT production have significantly increased the quantities available for use in manufacturing processes, but challenges remain with the retention of nanoscale properties in larger assemblies of CNTs. This work summarizes recent progress in producing carbon nanotube composites with tensile properties approaching those of carbon fiber reinforced polymer composites. These advances were achieved in nanocomposites with CNT content of 70% by weight. The processing methods explored to yield these CNT composite properties will be discussed, as will the characterization and test methods that were developed to provide insight into the factors that contribute to the enhanced tensile properties. Technology maturation was guided by parallel advancements in computational modeling tools that aided in the interpretation of experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favaro, Marco; Liu, Zhi; Crumlin, Ethan J.
Ambient-pressure X-ray photoelectron spectroscopy (APXPS) has contributed greatly to a wide range of research fields, including environmental science, catalysis, and electrochemistry, to name a few. The use of this technique at synchrotron facilities primarily focused on probing the solid/gas interface; however, it quickly advanced to the probing of liquid/vapor interfaces and solid/liquid interfaces through an X-ray-transparent window. Most recently, combining APXPS with “Tender” X-rays (~2.5 keV to 8 keV) on beamline 9.3.1 at the Advanced Light Source in Lawrence Berkeley National Laboratory (which can generate photoelectrons with much longer inelastic mean free paths) has enabled us to probe the solid/liquidmore » interface without needing a window. This innovation allows us to probe interfacial chemistries of electrochemically controlled solid/liquid interfaces undergoing charge transfer reactions. Lastly, these advancements have transitioned APXPS from a traditional surface science tool to an essential interface science technique.« less
Favaro, Marco; Liu, Zhi; Crumlin, Ethan J.
2017-03-31
Ambient-pressure X-ray photoelectron spectroscopy (APXPS) has contributed greatly to a wide range of research fields, including environmental science, catalysis, and electrochemistry, to name a few. The use of this technique at synchrotron facilities primarily focused on probing the solid/gas interface; however, it quickly advanced to the probing of liquid/vapor interfaces and solid/liquid interfaces through an X-ray-transparent window. Most recently, combining APXPS with “Tender” X-rays (~2.5 keV to 8 keV) on beamline 9.3.1 at the Advanced Light Source in Lawrence Berkeley National Laboratory (which can generate photoelectrons with much longer inelastic mean free paths) has enabled us to probe the solid/liquidmore » interface without needing a window. This innovation allows us to probe interfacial chemistries of electrochemically controlled solid/liquid interfaces undergoing charge transfer reactions. Lastly, these advancements have transitioned APXPS from a traditional surface science tool to an essential interface science technique.« less
NASA Technical Reports Server (NTRS)
Roth, Don J.; Farmer, Donald A.
1998-01-01
Abrasive cut-off wheels are at times unintentionally manufactured with nonuniformity that is difficult to identify and sufficiently characterize without time-consuming, destructive examination. One particular nonuniformity is a density variation condition occurring around the wheel circumference or along the radius, or both. This density variation, depending on its severity, can cause wheel warpage and wheel vibration resulting in unacceptable performance and perhaps premature failure of the wheel. Conventional nondestructive evaluation methods such as ultrasonic c-scan imaging and film radiography are inaccurate in their attempts at characterizing the density variation because a superimposing thickness variation exists as well in the wheel. In this article, the single transducer thickness-independent ultrasonic imaging method, developed specifically to allow more accurate characterization of aerospace components, is shown to precisely characterize the extent of the density variation in a cut-off wheel having a superimposing thickness variation. The method thereby has potential as an effective quality control tool in the abrasives industry for the wheel manufacturer.
Characterizing Aerosols over Southeast Asia using the AERONET Data Synergy Tool
NASA Technical Reports Server (NTRS)
Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Slutsker, Ilya; Slutsker, Ilya; Welton, Ellsworth, J.; Chin, Mian; Kucsera, Thomas; Schmaltz, Jeffery E.; Diehl, Thomas;
2007-01-01
Biomass burning, urban pollution and dust aerosols have significant impacts on the radiative forcing of the atmosphere over Asia. In order to better quanti@ these aerosol characteristics, the Aerosol Robotic Network (AERONET) has established over 200 sites worldwide with an emphasis in recent years on the Asian continent - specifically Southeast Asia. A total of approximately 15 AERONET sun photometer instruments have been deployed to China, India, Pakistan, Thailand, and Vietnam. Sun photometer spectral aerosol optical depth measurements as well as microphysical and optical aerosol retrievals over Southeast Asia will be analyzed and discussed with supporting ground-based instrument, satellite, and model data sets, which are freely available via the AERONET Data Synergy tool at the AERONET web site (http://aeronet.gsfc.nasa.gov). This web-based data tool provides access to groundbased (AERONET and MPLNET), satellite (MODIS, SeaWiFS, TOMS, and OMI) and model (GOCART and back trajectory analyses) databases via one web portal. Future development of the AERONET Data Synergy Tool will include the expansion of current data sets as well as the implementation of other Earth Science data sets pertinent to advancing aerosol research.
Modeling and Simulation Tools for Heavy Lift Airships
NASA Technical Reports Server (NTRS)
Hochstetler, Ron; Chachad, Girish; Hardy, Gordon; Blanken, Matthew; Melton, John
2016-01-01
For conventional fixed wing and rotary wing aircraft a variety of modeling and simulation tools have been developed to provide designers the means to thoroughly investigate proposed designs and operational concepts. However, lighter-than-air (LTA) airships, hybrid air vehicles, and aerostats have some important aspects that are different from heavier-than-air (HTA) vehicles. In order to account for these differences, modifications are required to the standard design tools to fully characterize the LTA vehicle design and performance parameters.. To address these LTA design and operational factors, LTA development organizations have created unique proprietary modeling tools, often at their own expense. An expansion of this limited LTA tool set could be accomplished by leveraging existing modeling and simulation capabilities available in the National laboratories and public research centers. Development of an expanded set of publicly available LTA modeling and simulation tools for LTA developers would mitigate the reliance on proprietary LTA design tools in use today. A set of well researched, open source, high fidelity LTA design modeling and simulation tools would advance LTA vehicle development and also provide the analytical basis for accurate LTA operational cost assessments. This paper will present the modeling and analysis tool capabilities required for LTA vehicle design, analysis of operations, and full life-cycle support. A survey of the tools currently available will be assessed to identify the gaps between their capabilities and the LTA industry's needs. Options for development of new modeling and analysis capabilities to supplement contemporary tools will also be presented.
Clinical microbiology informatics.
Rhoads, Daniel D; Sintchenko, Vitali; Rauch, Carol A; Pantanowitz, Liron
2014-10-01
The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Clinical Microbiology Informatics
Sintchenko, Vitali; Rauch, Carol A.; Pantanowitz, Liron
2014-01-01
SUMMARY The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future. PMID:25278581
A survey of tools and resources for the next generation analyst
NASA Astrophysics Data System (ADS)
Hall, David L.; Graham, Jake; Catherman, Emily
2015-05-01
We have previously argued that a combination of trends in information technology (IT) and changing habits of people using IT provide opportunities for the emergence of a new generation of analysts that can perform effective intelligence, surveillance and reconnaissance (ISR) on a "do it yourself" (DIY) or "armchair" approach (see D.L. Hall and J. Llinas (2014)). Key technology advances include: i) new sensing capabilities including the use of micro-scale sensors and ad hoc deployment platforms such as commercial drones, ii) advanced computing capabilities in mobile devices that allow advanced signal and image processing and modeling, iii) intelligent interconnections due to advances in "web N" capabilities, and iv) global interconnectivity and increasing bandwidth. In addition, the changing habits of the digital natives reflect new ways of collecting and reporting information, sharing information, and collaborating in dynamic teams. This paper provides a survey and assessment of tools and resources to support this emerging analysis approach. The tools range from large-scale commercial tools such as IBM i2 Analyst Notebook, Palantir, and GeoSuite to emerging open source tools such as GeoViz and DECIDE from university research centers. The tools include geospatial visualization tools, social network analysis tools and decision aids. A summary of tools is provided along with links to web sites for tool access.
NASA Astrophysics Data System (ADS)
Gemme, Frederic
The aim of the present research project is to increase the amount of fundamental knowledge regarding the process by getting a better understanding of the physical phenomena involved in friction stir welding (FSW). Such knowledge is required to improve the process in the context of industrial applications. In order to do so, the first part of the project is dedicated to a theoretical study of the process, while the microstructure and the mechanical properties of welded joints obtained in different welding conditions are measured and analyzed in the second part. The combination of the tool rotating and translating movements induces plastic deformation and heat generation of the welded material. The material thermomechanical history is responsible for metallurgical phenomena occurring during FSW such as recrystallization and precipitate dissolution and coarsening. Process modelling is used to reproduce this thermomechanical history in order to predict the influence of welding on the material microstructure. It is helpful to study heat generation and heat conduction mechanisms and to understand how joint properties are related to them. In the current work, a finite element numerical model based on solid mechanics has been developed to compute the thermomechanical history of the welded material. The computation results were compared to reference experimental data in order to validate the model and to calibrate unknown physical parameters. The model was used to study the effect of the friction coefficient on the thermomechanical history. Results showed that contact conditions at the workpiece/tool interface have a strong effect on relative amounts of heat generated by friction and by plastic deformation. The comparison with the experimental torque applied by the tool for different rotational speeds has shown that the friction coefficient decreases when the rotational speed increases. Consequently, heat generation is far more important near the material/tool interface and the material deformation is shallower, increasing the lack of penetration probability. The variation of thermomechanical conditions with regards to the rotational speed is responsible for the variation of the nugget shape, as recrystallization conditions are not reached in the same volume of material. The second part of the research project was dedicated to a characterization of the welded joints microstructure and mechanical properties. Sound joints were obtained by using a manufacturing procedure involving process parameters optimization and quality control of the joint integrity. Five different combinations of rotational and advancing speeds were studied. Microstructure observations have shown that the rotational speed has an effect on recrystallization conditions because of the variation of the contact conditions at the material/tool interface. On the other hand, the advancing speed has a strong effect on the precipitation state in the heat affected zone (HAZ). The heat input increases when the advancing speed decreases. The material softening in the HAZ is then more pronounced. Mechanical testing of the welded joints showed that the fatigue resistance increases when the rotational speed increases and the advancing speed decreases. The fatigue resistance of FSW joints mainly depends on the ratio of the advancing speed on the rotational speed, called the welding pitch k. When the welding pitch is high (k ≥ 0,66 mm/rev), the fatigue resistance depends on crack initiation at the root of circular grooves left by the tool on the weld surface. The size of these grooves is directly related to the welding pitch. When the welding pitch is low (k ≤ 0,2 mm/rev), the heat input is high and the fatigue resistance is limited by the HAZ softening. The fatigue resistance is optimized when k stands in the 0,25-0,30 mm/rev range. Outside that range, the presence of small lateral lips is critical. The results of the characterization part of the project showed that the effects of the applied vertical force on the formation of lateral lips should be submitted to further investigations. The elimination of the lateral lip, which could be achieved with a more precise adjustment of the vertical force, could lead to an improved fatigue resistance. The elimination of lateral lips, but also the circular grooves left by the tool, may be obtained by developing an appropriate surfacing technique and could lead to an improved fatigue resistance without reducing the advancing speed. (Abstract shortened by UMI.)
Diffusion-weighted Breast MRI: Clinical Applications and Emerging Techniques
Partridge, Savannah C.; Nissan, Noam; Rahbar, Habib; Kitsch, Averi E.; Sigmund, Eric E.
2016-01-01
Diffusion weighted MRI (DWI) holds potential to improve the detection and biological characterization of breast cancer. DWI is increasingly being incorporated into breast MRI protocols to address some of the shortcomings of routine clinical breast MRI. Potential benefits include improved differentiation of benign and malignant breast lesions, assessment and prediction of therapeutic efficacy, and non-contrast detection of breast cancer. The breast presents a unique imaging environment with significant physiologic and inter-subject variations, as well as specific challenges to achieving reliable high quality diffusion weighted MR images. Technical innovations are helping to overcome many of the image quality issues that have limited widespread use of DWI for breast imaging. Advanced modeling approaches to further characterize tissue perfusion, complexity, and glandular organization may expand knowledge and yield improved diagnostic tools. PMID:27690173
Park, Jun-Sang; Zhang, Xuan; Kenesei, Peter; ...
2017-08-31
A suite of non-destructive, three-dimensional X-ray microscopy techniques have recently been developed and used to characterize the microstructures of polycrystalline materials. These techniques utilize high-energy synchrotron radiation and include near-field and far-field diffraction microscopy (NF- and FF-HEDM, respectively) and absorption tomography. Several compatible sample environments have also been developed, enabling a wide range of 3D studies of material evolution. In this article, the FF-HEDM technique is described in detail, including its implementation at the 1-ID beamline of the Advanced Photon Source. Examples of how the information obtained from FF-HEDM can be used to deepen our understanding of structure-property-processing relationships inmore » selected materials are presented.« less
Breaking the silence: new strategies for discovering novel natural products.
Ren, Hengqian; Wang, Bin; Zhao, Huimin
2017-12-01
Natural products have been a prolific source of antibacterial and anticancer drugs for decades. One of the major challenges in natural product discovery is that the vast majority of natural product biosynthetic gene clusters (BGCs) have not been characterized, partially due to the fact that they are either transcriptionally silent or expressed at very low levels under standard laboratory conditions. Here we describe the strategies developed in recent years (mostly between 2014-2016) for activating silent BGCs. These strategies can be broadly divided into two categories: approaches in native hosts and approaches in heterologous hosts. In addition, we briefly discuss recent advances in developing new computational tools for identification and characterization of BGCs and high-throughput methods for detection of natural products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fracture Mechanics for Composites: State of the Art and Challenges
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Krueger, Ronald
2006-01-01
Interlaminar fracture mechanics has proven useful for characterizing the onset of delaminations in composites and has been used with limited success primarily to investigate onset in fracture toughness specimens and laboratory size coupon type specimens. Future acceptance of the methodology by industry and certification authorities however, requires the successful demonstration of the methodology on the structural level. In this paper, the state-of-the-art in fracture toughness characterization, and interlaminar fracture mechanics analysis tools are described. To demonstrate the application on the structural level, a panel was selected which is reinforced with stringers. Full implementation of interlaminar fracture mechanics in design however remains a challenge and requires a continuing development effort of codes to calculate energy release rates and advancements in delamination onset and growth criteria under mixed mode conditions.
NASA Technical Reports Server (NTRS)
Grillenbeck, Anton M.; Dillinger, Stephan A.; Elliott, Kenny B.
1998-01-01
Theoretical and experimental studies have been performed to investigate the potential and limitations of the modal characterization of a typical spacecraft bus structure by means of active structure elements. The aim of these studies has been test and advance tools for performing an accurate on-orbit modal identification which may be characterized by the availability of a generally very limited test instrumentation, autonomous excitation capabilities by active structure elements and a zero-g environment. The NASA LARC CSI Evolutionary Testbed provided an excellent object for the experimental part of this study program. The main subjects of investigation were: (1) the selection of optimum excitation and measurement to unambiguously identify modes of interest; (2) the applicability of different types of excitation means with focus on active structure elements; and (3) the assessment of the modal identification potential of different types of excitation functions and modal analysis tools. Conventional as well as dedicated modal analysis tools were applied to determine modal parameters and mode shapes. The results will be presented and discussed based on orthogonality checks as well as on suitable indicators for the quality of the acquired modes with respect to modal purity. In particular, the suitability for modal analysis of the acquired frequency response functions as obtained by excitation with active structure elements will be demonstrated with the help of reciprocity checks. Finally, the results will be summarized in a procedure to perform an on-orbit modal identification, including an indication of limitation to be observed.
U.S. Geological Survey: A synopsis of Three-dimensional Modeling
Jacobsen, Linda J.; Glynn, Pierre D.; Phelps, Geoff A.; Orndorff, Randall C.; Bawden, Gerald W.; Grauch, V.J.S.
2011-01-01
The U.S. Geological Survey (USGS) is a multidisciplinary agency that provides assessments of natural resources (geological, hydrological, biological), the disturbances that affect those resources, and the disturbances that affect the built environment, natural landscapes, and human society. Until now, USGS map products have been generated and distributed primarily as 2-D maps, occasionally providing cross sections or overlays, but rarely allowing the ability to characterize and understand 3-D systems, how they change over time (4-D), and how they interact. And yet, technological advances in monitoring natural resources and the environment, the ever-increasing diversity of information needed for holistic assessments, and the intrinsic 3-D/4-D nature of the information obtained increases our need to generate, verify, analyze, interpret, confirm, store, and distribute its scientific information and products using 3-D/4-D visualization, analysis, modeling tools, and information frameworks. Today, USGS scientists use 3-D/4-D tools to (1) visualize and interpret geological information, (2) verify the data, and (3) verify their interpretations and models. 3-D/4-D visualization can be a powerful quality control tool in the analysis of large, multidimensional data sets. USGS scientists use 3-D/4-D technology for 3-D surface (i.e., 2.5-D) visualization as well as for 3-D volumetric analyses. Examples of geological mapping in 3-D include characterization of the subsurface for resource assessments, such as aquifer characterization in the central United States, and for input into process models, such as seismic hazards in the western United States.
Stand-Alone Measurements and Characterization | Photovoltaic Research |
Science and Technology Facility cluster tools offer powerful capabilities for measuring and characterizing Characterization tool suite are supplemented by the Integrated Measurements and Characterization cluster tool the Integrated M&C cluster tool using a mobile transport pod, which can keep samples under vacuum
Collett, Timothy S.; Lee, Wyung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.
2012-01-01
One of the objectives of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gas hydrates under various geologic conditions and to understand the geologic controls on the occurrence of gas hydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gas hydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From using electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gas hydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP Leg II effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.
Using Genetic Mouse Models to Gain Insight into Glaucoma: Past Results and Future Possibilities
Fernandes, Kimberly A.; Harder, Jeffrey M.; Williams, Pete A.; Rausch, Rebecca L.; Kiernan, Amy E.; Nair, K. Saidas; Anderson, Michael G.; John, Simon W.; Howell, Gareth R.; Libby, Richard T.
2015-01-01
While all forms of glaucoma are characterized by a specific pattern of retinal ganglion cell death, they are clinically divided into several distinct subclasses, including normal tension glaucoma, primary open angle glaucoma, congenital glaucoma, and secondary glaucoma. For each type of glaucoma there are likely numerous molecular pathways that control susceptibility to the disease. Given this complexity, a single animal model will never precisely model all aspects of all the different types of human glaucoma. Therefore, multiple animal models have been utilized to study glaucoma but more are needed. Because of the powerful genetic tools available to use in the laboratory mouse, it has proven to be a highly useful mammalian system for studying the pathophysiology of human disease. The similarity between human and mouse eyes coupled with the ability to use a combination of advanced cell biological and genetic tools in mice have led to a large increase in the number of studies using mice to model specific glaucoma phenotypes. Over the last decade, numerous new mouse models and genetic tools have emerged, providing important insight into the cell biology and genetics of glaucoma. In this review, we describe available mouse genetic models that can be used to study glaucoma-relevant disease/pathobiology. Furthermore, we discuss how these models have been used to gain insights into ocular hypertension (a major risk factor for glaucoma) and glaucomatous retinal ganglion cell death. Finally, the potential for developing new mouse models and using advanced genetic tools and resources for studying glaucoma are discussed. PMID:26116903
Software applications for flux balance analysis.
Lakshmanan, Meiyappan; Koh, Geoffrey; Chung, Bevan K S; Lee, Dong-Yup
2014-01-01
Flux balance analysis (FBA) is a widely used computational method for characterizing and engineering intrinsic cellular metabolism. The increasing number of its successful applications and growing popularity are possibly attributable to the availability of specific software tools for FBA. Each tool has its unique features and limitations with respect to operational environment, user-interface and supported analysis algorithms. Presented herein is an in-depth evaluation of currently available FBA applications, focusing mainly on usability, functionality, graphical representation and inter-operability. Overall, most of the applications are able to perform basic features of model creation and FBA simulation. COBRA toolbox, OptFlux and FASIMU are versatile to support advanced in silico algorithms to identify environmental and genetic targets for strain design. SurreyFBA, WEbcoli, Acorn, FAME, GEMSiRV and MetaFluxNet are the distinct tools which provide the user friendly interfaces in model handling. In terms of software architecture, FBA-SimVis and OptFlux have the flexible environments as they enable the plug-in/add-on feature to aid prospective functional extensions. Notably, an increasing trend towards the implementation of more tailored e-services such as central model repository and assistance to collaborative efforts was observed among the web-based applications with the help of advanced web-technologies. Furthermore, most recent applications such as the Model SEED, FAME, MetaFlux and MicrobesFlux have even included several routines to facilitate the reconstruction of genome-scale metabolic models. Finally, a brief discussion on the future directions of FBA applications was made for the benefit of potential tool developers.
TSVdb: a web-tool for TCGA splicing variants analysis.
Sun, Wenjie; Duan, Ting; Ye, Panmeng; Chen, Kelie; Zhang, Guanling; Lai, Maode; Zhang, Honghe
2018-05-29
Collaborative projects such as The Cancer Genome Atlas (TCGA) have generated various -omics and clinical data on cancer. Many computational tools have been developed to facilitate the study of the molecular characterization of tumors using data from the TCGA. Alternative splicing of a gene produces splicing variants, and accumulating evidence has revealed its essential role in cancer-related processes, implying the urgent need to discover tumor-specific isoforms and uncover their potential functions in tumorigenesis. We developed TSVdb, a web-based tool, to explore alternative splicing based on TCGA samples with 30 clinical variables from 33 tumors. TSVdb has an integrated and well-proportioned interface for visualization of the clinical data, gene expression, usage of exons/junctions and splicing patterns. Researchers can interpret the isoform expression variations between or across clinical subgroups and estimate the relationships between isoforms and patient prognosis. TSVdb is available at http://www.tsvdb.com , and the source code is available at https://github.com/wenjie1991/TSVdb . TSVdb will inspire oncologists and accelerate isoform-level advances in cancer research.
Water facilities in retrospect and prospect: An illuminating tool for vehicle design
NASA Technical Reports Server (NTRS)
Erickson, G. E.; Peak, D. J.; Delfrate, J.; Skow, A. M.; Malcolm, G. N.
1986-01-01
Water facilities play a fundamental role in the design of air, ground, and marine vehicles by providing a qualitative, and sometimes quantitative, description of complex flow phenomena. Water tunnels, channels, and tow tanks used as flow-diagnostic tools have experienced a renaissance in recent years in response to the increased complexity of designs suitable for advanced technology vehicles. These vehicles are frequently characterized by large regions of steady and unsteady three-dimensional flow separation and ensuing vortical flows. The visualization and interpretation of the complicated fluid motions about isolated vehicle components and complete configurations in a time and cost effective manner in hydrodynamic test facilities is a key element in the development of flow control concepts, and, hence, improved vehicle designs. A historical perspective of the role of water facilities in the vehicle design process is presented. The application of water facilities to specific aerodynamic and hydrodynamic flow problems is discussed, and the strengths and limitations of these important experimental tools are emphasized.
Becker, Gavin J; Garigali, Giuseppe; Fogazzi, Giovanni B
2016-06-01
Urine microscopy is an important tool for the diagnosis and management of several conditions affecting the kidneys and urinary tract. In this review, we describe the automated instruments, based either on flow cytometry or digitized microscopy, that are currently in use in large clinical laboratories. These tools allow the examination of large numbers of samples in short periods. We also discuss manual urinary microscopy commonly performed by nephrologists, which we encourage. After discussing the advantages of phase contrast microscopy over bright field microscopy, we describe the advancements of urine microscopy in various clinical conditions. These include persistent isolated microscopic hematuria (which can be classified as glomerular or nonglomerular on the basis of urinary erythrocyte morphology), drug- and toxin-related cystalluria (which can be a clue for the diagnosis of acute kidney injury associated with intrarenal crystal precipitation), and some inherited conditions (eg, adenine phosphoribosyltransferase deficiency, which is associated with 2,8-dihydroxyadenine crystalluria, and Fabry disease, which is characterized by unique urinary lamellated fatty particles). Finally, we describe the utility of identifying "decoy cells" and atypical malignant cells, which can be easily done with phase contrast microscopy in unfixed samples. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Baluev, Roman V.
2013-08-01
We present PlanetPack, a new software tool that we developed to facilitate and standardize the advanced analysis of radial velocity (RV) data for the goal of exoplanets detection, characterization, and basic dynamical N-body simulations. PlanetPack is a command-line interpreter, that can run either in an interactive mode or in a batch mode of automatic script interpretation. Its major abilities include: (i) advanced RV curve fitting with the proper maximum-likelihood treatment of unknown RV jitter; (ii) user-friendly multi-Keplerian as well as Newtonian N-body RV fits; (iii) use of more efficient maximum-likelihood periodograms that involve the full multi-planet fitting (sometimes called as “residual” or “recursive” periodograms); (iv) easily calculatable parametric 2D likelihood function level contours, reflecting the asymptotic confidence regions; (v) fitting under some useful functional constraints is user-friendly; (vi) basic tasks of short- and long-term planetary dynamical simulation using a fast Everhart-type integrator based on Gauss-Legendre spacings; (vii) fitting the data with red noise (auto-correlated errors); (viii) various analytical and numerical methods for the tasks of determining the statistical significance. It is planned that further functionality may be added to PlanetPack in the future. During the development of this software, a lot of effort was made to improve the calculational speed, especially for CPU-demanding tasks. PlanetPack was written in pure C++ (standard of 1998/2003), and is expected to be compilable and useable on a wide range of platforms.
Itthipuripat, Sirawaj; Serences, John T
2016-06-01
Neuroscience is inherently interdisciplinary, rapidly expanding beyond its roots in biological sciences to many areas of the social and physical sciences. This expansion has led to more sophisticated ways of thinking about the links between brains and behavior and has inspired the development of increasingly advanced tools to characterize the activity of large populations of neurons. However, along with these advances comes a heightened risk of fostering confusion unless efforts are made to better integrate findings across different model systems and to develop a better understanding about how different measurement techniques provide mutually constraining information. Here we use selective visuospatial attention as a case study to highlight the importance of these issues, and we suggest that exploiting multiple measures can better constrain models that relate neural activity to animal behavior. © The Author(s) 2015.
Apes produce tools for future use.
Bräuer, Juliane; Call, Josep
2015-03-01
There is now growing evidence that some animal species are able to plan for the future. For example great apes save and exchange tools for future use. Here we raise the question whether chimpanzees, orangutans, and bonobos would produce tools for future use. Subjects only had access to a baited apparatus for a limited duration and therefore should use the time preceding this access to create the appropriate tools in order to get the rewards. The apes were tested in three conditions depending on the need for pre-prepared tools. Either eight tools, one tool or no tools were needed to retrieve the reward. The apes prepared tools in advance for future use and they produced them mainly in conditions when they were really needed. The fact that apes were able to solve this new task indicates that their planning skills are flexible. However, for the condition in which eight tools were needed, apes produced less than two tools per trial in advance. However, they used their chance to produce additional tools in the tool use phase-thus often obtaining most of the reward from the apparatus. Increased pressure to prepare more tools in advance did not have an effect on their performance. © 2014 Wiley Periodicals, Inc.
RNA-Seq Analysis to Measure the Expression of SINE Retroelements.
Román, Ángel Carlos; Morales-Hernández, Antonio; Fernández-Salguero, Pedro M
2016-01-01
The intrinsic features of retroelements, like their repetitive nature and disseminated presence in their host genomes, demand the use of advanced methodologies for their bioinformatic and functional study. The short length of SINE (short interspersed elements) retrotransposons makes such analyses even more complex. Next-generation sequencing (NGS) technologies are currently one of the most widely used tools to characterize the whole repertoire of gene expression in a specific tissue. In this chapter, we will review the molecular and computational methods needed to perform NGS analyses on SINE elements. We will also describe new methods of potential interest for researchers studying repetitive elements. We intend to outline the general ideas behind the computational analyses of NGS data obtained from SINE elements, and to stimulate other scientists to expand our current knowledge on SINE biology using RNA-seq and other NGS tools.
Kim, Kang; Wagner, William R
2016-03-01
With the rapid expansion of biomaterial development and coupled efforts to translate such advances toward the clinic, non-invasive and non-destructive imaging tools to evaluate implants in situ in a timely manner are critically needed. The required multi-level information is comprehensive, including structural, mechanical, and biological changes such as scaffold degradation, mechanical strength, cell infiltration, extracellular matrix formation and vascularization to name a few. With its inherent advantages of non-invasiveness and non-destructiveness, ultrasound imaging can be an ideal tool for both preclinical and clinical uses. In this review, currently available ultrasound imaging technologies that have been applied in vitro and in vivo for tissue engineering and regenerative medicine are discussed and some new emerging ultrasound technologies and multi-modality approaches utilizing ultrasound are introduced.
Kim, Kang; Wagner, William R.
2015-01-01
With the rapid expansion of biomaterial development and coupled efforts to translate such advances toward the clinic, non-invasive and non-destructive imaging tools to evaluate implants in situ in a timely manner are critically needed. The required multilevel information is comprehensive, including structural, mechanical, and biological changes such as scaffold degradation, mechanical strength, cell infiltration, extracellular matrix formation and vascularization to name a few. With its inherent advantages of non-invasiveness and non-destructiveness, ultrasound imaging can be an ideal tool for both preclinical and clinical uses. In this review, currently available ultrasound imaging technologies that have been applied in vitro and in vivo for tissue engineering and regenerative medicine are discussed and some new emerging ultrasound technologies and multi-modality approaches utilizing ultrasound are introduced. PMID:26518412
Van Scoy, Lauren J; Green, Michael J; Dimmock, Anne Ef; Bascom, Rebecca; Boehmer, John P; Hensel, Jessica K; Hozella, Joshua B; Lehman, Erik B; Schubart, Jane R; Farace, Elana; Stewart, Renee R; Levi, Benjamin H
2016-09-01
Many patients with chronic illnesses report a desire for increased involvement in medical decision-making. This pilot study aimed to explore how patients with exacerbation-prone disease trajectories such as advanced heart failure or chronic obstructive pulmonary disease experience advance care planning using an online decision aid and to compare whether patients with different types of exacerbation-prone illnesses had varied experiences using the tool. Pre-intervention questionnaires measured advance care planning knowledge. Post-intervention questionnaires measured: (1) advance care planning knowledge; (2) satisfaction with tool; (3) decisional conflict; and (4) accuracy of the resultant advance directive. Comparisons were made between patients with heart failure and chronic obstructive pulmonary disease. Over 90% of the patients with heart failure (n = 24) or chronic obstructive pulmonary disease (n = 25) reported being "satisfied" or "highly satisfied" with the tool across all satisfaction domains; over 90% of participants rated the resultant advance directive as "very accurate." Participants reported low decisional conflict. Advance care planning knowledge scores rose by 18% (p < 0.001) post-intervention. There were no significant differences between participants with heart failure and chronic obstructive pulmonary disease. Patients with advanced heart failure and chronic obstructive pulmonary disease were highly satisfied after using an online advance care planning decision aid and had increased knowledge of advance care planning. This tool can be a useful resource for time-constrained clinicians whose patients wish to engage in advance care planning. © The Author(s) 2016.
Hu, Enyuan; Wang, Xuelong; Yu, Xiqian; Yang, Xiao-Qing
2018-02-20
The rechargeable lithium-ion battery (LIB) is the most promising energy storage system to power electric vehicles with high energy density and long cycling life. However, in order to meet customers' demands for fast charging, the power performances of current LIBs need to be improved. From the cathode aspect, layer-structured cathode materials are widely used in today's market and will continue to play important roles in the near future. The high rate capability of layered cathode materials during charging and discharging is critical to the power performance of the whole cell and the thermal stability is closely related to the safety issues. Therefore, the in-depth understanding of structural changes of layered cathode materials during high rate charging/discharging and the thermal stability during heating are essential in developing new materials and improving current materials. Since structural changes take place from the atomic level to the whole electrode level, combination of characterization techniques covering multilength scales is quite important. In many cases, this means using comprehensive tools involving diffraction, spectroscopy, and imaging to differentiate the surface from the bulk and to obtain structural/chemical information with different levels of spatial resolution. For example, hard X-ray spectroscopy can yield the bulk information and soft X-ray spectroscopy can give the surface information; X-ray based imaging techniques can obtain spatial resolution of tens of nanometers, and electron-based microcopy can go to angstroms. In addition to challenges associated with different spatial resolution, the dynamic nature of structural changes during high rate cycling and heating requires characterization tools to have the capability of collecting high quality data in a time-resolved fashion. Thanks to the advancement in synchrotron based techniques and high-resolution electron microscopy, high temporal and spatial resolutions can now be achieved. In this Account, we focus on the recent works studying kinetic and thermal properties of layer-structured cathode materials, especially the structural changes during high rate cycling and the thermal stability during heating. Advanced characterization techniques relating to the rate capability and thermal stability will be introduced. The different structure evolution behavior of cathode materials cycled at high rate will be compared with that cycled at low rate. Different response of individual transition metals and the inhomogeneity in chemical distribution will be discussed. For the thermal stability, the relationship between structural changes and oxygen release will be emphatically pointed out. In all these studies being reviewed, advanced characterization techniques are critically applied to reveal complexities at multiscale in layer-structured cathode materials.
Spectacle and SpecViz: New Spectral Analysis and Visualization Tools
NASA Astrophysics Data System (ADS)
Earl, Nicholas; Peeples, Molly; JDADF Developers
2018-01-01
A new era of spectroscopic exploration of our universe is being ushered in with advances in instrumentation and next-generation space telescopes. The advent of new spectroscopic instruments has highlighted a pressing need for tools scientists can use to analyze and explore these new data. We have developed Spectacle, a software package for analyzing both synthetic spectra from hydrodynamic simulations as well as real COS data with an aim of characterizing the behavior of the circumgalactic medium. It allows easy reduction of spectral data and analytic line generation capabilities. Currently, the package is focused on automatic determination of absorption regions and line identification with custom line list support, simultaneous line fitting using Voigt profiles via least-squares or MCMC methods, and multi-component modeling of blended features. Non-parametric measurements, such as equivalent widths, delta v90, and full-width half-max are available. Spectacle also provides the ability to compose compound models used to generate synthetic spectra allowing the user to define various LSF kernels, uncertainties, and to specify sampling.We also present updates to the visualization tool SpecViz, developed in conjunction with the JWST data analysis tools development team, to aid in the exploration of spectral data. SpecViz is an open source, Python-based spectral 1-D interactive visualization and analysis application built around high-performance interactive plotting. It supports handling general and instrument-specific data and includes advanced tool-sets for filtering and detrending one-dimensional data, along with the ability to isolate absorption regions using slicing and manipulate spectral features via spectral arithmetic. Multi-component modeling is also possible using a flexible model fitting tool-set that supports custom models to be used with various fitting routines. It also features robust user extensions such as custom data loaders and support for user-created plugins that add new functionality.This work was supported in part by HST AR #13919, HST GO #14268, and HST AR #14560.
Development and characterization of antibody reagents for detecting nanoparticles
NASA Astrophysics Data System (ADS)
Ravichandran, Supriya; Sullivan, Mark A.; Callahan, Linda M.; Bentley, Karen L.; Delouise, Lisa A.
2015-11-01
The increasing use of nanoparticles (NPs) in technological applications and in commercial products has escalated environmental health and safety concerns. The detection of NPs in the environment and in biological systems is challenged by limitations associated with commonly used analytical techniques. In this paper we report on the development and characterization of NP binding antibodies, termed NProbes. Phage display methodology was used to discover antibodies that bind NPs dispersed in solution. We present a proof-of-concept for the generation of NProbes and their use for detecting quantum dots and titanium dioxide NPs in vitro and in an ex vivo human skin model. Continued development and refinement of NProbes to detect NPs that vary in composition, shape, size, and surface coating will comprise a powerful tool kit that can be used to advance nanotechnology research particularly in the nanotoxicology and nanotherapeutics fields.The increasing use of nanoparticles (NPs) in technological applications and in commercial products has escalated environmental health and safety concerns. The detection of NPs in the environment and in biological systems is challenged by limitations associated with commonly used analytical techniques. In this paper we report on the development and characterization of NP binding antibodies, termed NProbes. Phage display methodology was used to discover antibodies that bind NPs dispersed in solution. We present a proof-of-concept for the generation of NProbes and their use for detecting quantum dots and titanium dioxide NPs in vitro and in an ex vivo human skin model. Continued development and refinement of NProbes to detect NPs that vary in composition, shape, size, and surface coating will comprise a powerful tool kit that can be used to advance nanotechnology research particularly in the nanotoxicology and nanotherapeutics fields. Electronic supplementary information (ESI) available: Figures and detailed methods of various techniques used. See DOI: 10.1039/c5nr04882f
A New Scheme to Characterize and Identify Protein Ubiquitination Sites.
Nguyen, Van-Nui; Huang, Kai-Yao; Huang, Chien-Hsun; Lai, K Robert; Lee, Tzong-Yi
2017-01-01
Protein ubiquitination, involving the conjugation of ubiquitin on lysine residue, serves as an important modulator of many cellular functions in eukaryotes. Recent advancements in proteomic technology have stimulated increasing interest in identifying ubiquitination sites. However, most computational tools for predicting ubiquitination sites are focused on small-scale data. With an increasing number of experimentally verified ubiquitination sites, we were motivated to design a predictive model for identifying lysine ubiquitination sites for large-scale proteome dataset. This work assessed not only single features, such as amino acid composition (AAC), amino acid pair composition (AAPC) and evolutionary information, but also the effectiveness of incorporating two or more features into a hybrid approach to model construction. The support vector machine (SVM) was applied to generate the prediction models for ubiquitination site identification. Evaluation by five-fold cross-validation showed that the SVM models learned from the combination of hybrid features delivered a better prediction performance. Additionally, a motif discovery tool, MDDLogo, was adopted to characterize the potential substrate motifs of ubiquitination sites. The SVM models integrating the MDDLogo-identified substrate motifs could yield an average accuracy of 68.70 percent. Furthermore, the independent testing result showed that the MDDLogo-clustered SVM models could provide a promising accuracy (78.50 percent) and perform better than other prediction tools. Two cases have demonstrated the effective prediction of ubiquitination sites with corresponding substrate motifs.
Priming of plant resistance by natural compounds. Hexanoic acid as a model
Aranega-Bou, Paz; de la O Leyva, Maria; Finiti, Ivan; García-Agustín, Pilar; González-Bosch, Carmen
2014-01-01
Some alternative control strategies of currently emerging plant diseases are based on the use of resistance inducers. This review highlights the recent advances made in the characterization of natural compounds that induce resistance by a priming mechanism. These include vitamins, chitosans, oligogalacturonides, volatile organic compounds, azelaic and pipecolic acid, among others. Overall, other than providing novel disease control strategies that meet environmental regulations, natural priming agents are valuable tools to help unravel the complex mechanisms underlying the induced resistance (IR) phenomenon. The data presented in this review reflect the novel contributions made from studying these natural plant inducers, with special emphasis placed on hexanoic acid (Hx), proposed herein as a model tool for this research field. Hx is a potent natural priming agent of proven efficiency in a wide range of host plants and pathogens. It can early activate broad-spectrum defenses by inducing callose deposition and the salicylic acid (SA) and jasmonic acid (JA) pathways. Later it can prime pathogen-specific responses according to the pathogen’s lifestyle. Interestingly, Hx primes redox-related genes to produce an anti-oxidant protective effect, which might be critical for limiting the infection of necrotrophs. Our Hx-IR findings also strongly suggest that it is an attractive tool for the molecular characterization of the plant alarmed state, with the added advantage of it being a natural compound. PMID:25324848
Recent advances in systems metabolic engineering tools and strategies.
Chae, Tong Un; Choi, So Young; Kim, Je Woong; Ko, Yoo-Sung; Lee, Sang Yup
2017-10-01
Metabolic engineering has been playing increasingly important roles in developing microbial cell factories for the production of various chemicals and materials to achieve sustainable chemical industry. Nowadays, many tools and strategies are available for performing systems metabolic engineering that allows systems-level metabolic engineering in more sophisticated and diverse ways by adopting rapidly advancing methodologies and tools of systems biology, synthetic biology and evolutionary engineering. As an outcome, development of more efficient microbial cell factories has become possible. Here, we review recent advances in systems metabolic engineering tools and strategies together with accompanying application examples. In addition, we describe how these tools and strategies work together in simultaneous and synergistic ways to develop novel microbial cell factories. Copyright © 2017 Elsevier Ltd. All rights reserved.
State of the art of sonic boom modeling
NASA Astrophysics Data System (ADS)
Plotkin, Kenneth J.
2002-01-01
Based on fundamental theory developed through the 1950s and 1960s, sonic boom modeling has evolved into practical tools. Over the past decade, there have been requirements for design tools for an advanced supersonic transport, and for tools for environmental assessment of various military and aerospace activities. This has resulted in a number of advances in the understanding of the physics of sonic booms, including shock wave rise times, propagation through turbulence, and blending sonic boom theory with modern computational fluid dynamics (CFD) aerodynamic design methods. This article reviews the early fundamental theory, recent advances in theory, and the application of these advances to practical models.
State of the art of sonic boom modeling.
Plotkin, Kenneth J
2002-01-01
Based on fundamental theory developed through the 1950s and 1960s, sonic boom modeling has evolved into practical tools. Over the past decade, there have been requirements for design tools for an advanced supersonic transport, and for tools for environmental assessment of various military and aerospace activities. This has resulted in a number of advances in the understanding of the physics of sonic booms, including shock wave rise times, propagation through turbulence, and blending sonic boom theory with modern computational fluid dynamics (CFD) aerodynamic design methods. This article reviews the early fundamental theory, recent advances in theory, and the application of these advances to practical models.
Kurosawa, Hiroshi; Ikeyama, Takanari; Achuff, Patricia; Perkel, Madeline; Watson, Christine; Monachino, Annemarie; Remy, Daphne; Deutsch, Ellen; Buchanan, Newton; Anderson, Jodee; Berg, Robert A; Nadkarni, Vinay M; Nishisaki, Akira
2014-03-01
Recent evidence shows poor retention of Pediatric Advanced Life Support provider skills. Frequent refresher training and in situ simulation are promising interventions. We developed a "Pediatric Advanced Life Support-reconstructed" recertification course by deconstructing the training into six 30-minute in situ simulation scenario sessions delivered over 6 months. We hypothesized that in situ Pediatric Advanced Life Support-reconstructed implementation is feasible and as effective as standard Pediatric Advanced Life Support recertification. A prospective randomized, single-blinded trial. Single-center, large, tertiary PICU in a university-affiliated children's hospital. Nurses and respiratory therapists in PICU. Simulation-based modular Pediatric Advanced Life Support recertification training. Simulation-based pre- and postassessment sessions were conducted to evaluate participants' performance. Video-recorded sessions were rated by trained raters blinded to allocation. The primary outcome was skill performance measured by a validated Clinical Performance Tool, and secondary outcome was behavioral performance measured by a Behavioral Assessment Tool. A mixed-effect model was used to account for baseline differences. Forty participants were prospectively randomized to Pediatric Advanced Life Support reconstructed versus standard Pediatric Advanced Life Support with no significant difference in demographics. Clinical Performance Tool score was similar at baseline in both groups and improved after Pediatric Advanced Life Support reconstructed (pre, 16.3 ± 4.1 vs post, 22.4 ± 3.9; p < 0.001), but not after standard Pediatric Advanced Life Support (pre, 14.3 ± 4.7 vs post, 14.9 ± 4.4; p =0.59). Improvement of Clinical Performance Tool was significantly higher in Pediatric Advanced Life Support reconstructed compared with standard Pediatric Advanced Life Support (p = 0.006). Behavioral Assessment Tool improved in both groups: Pediatric Advanced Life Support reconstructed (pre, 33.3 ± 4.5 vs post, 35.9 ± 5.0; p = 0.008) and standard Pediatric Advanced Life Support (pre, 30.5 ± 4.7 vs post, 33.6 ± 4.9; p = 0.02), with no significant difference of improvement between both groups (p = 0.49). For PICU-based nurses and respiratory therapists, simulation-based "Pediatric Advanced Life Support-reconstructed" in situ training is feasible and more effective than standard Pediatric Advanced Life Support recertification training for skill performance. Both Pediatric Advanced Life Support recertification training courses improved behavioral performance.
Analysis instruments for the performance of Advanced Practice Nursing.
Sevilla-Guerra, Sonia; Zabalegui, Adelaida
2017-11-29
Advanced Practice Nursing has been a reality in the international context for several decades and recently new nursing profiles have been developed in Spain as well that follow this model. The consolidation of these advanced practice roles has also led to of the creation of tools that attempt to define and evaluate their functions. This study aims to identify and explore the existing instruments that enable the domains of Advanced Practice Nursing to be defined. A review of existing international questionnaires and instruments was undertaken, including an analysis of the design process, the domains/dimensions defined, the main results and an exploration of clinimetric properties. Seven studies were analysed but not all proved to be valid, stable or reliable tools. One included tool was able to differentiate between the functions of the general nurse and the advanced practice nurse by the level of activities undertaken within the five domains described. These tools are necessary to evaluate the scope of advanced practice in new nursing roles that correspond to other international models of competencies and practice domains. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Stevens, Jeff W
2013-01-01
Since its first description over four decades ago, the Swarm chondrosarcoma (Swarm rat chondrosarcoma, SRC) remains a valuable tool for studies of chondroblastic-like extracellular matrix (ECM) biology and as an animal model of human chondrosarcoma of histological grades I-III. Moreover, articular joints and skeletal anomalies such as arthritis as well as cartilage regeneration, skeletal development, tissue engineering, hard tissue tumorigenesis and space flight physiology are advanced through studies in hyaline cartilage-like models. With more than 500 articles published since the first report on the characteristics of mucopolysaccharides (glycosaminoglycans) of the tumor in 1971, several transplantable tumor and cell lines have been developed by multiple laboratories worldwide. This review describes the characterization of SRC tumors and cell lines, including the use of SRC lines as a resource for isolation and characterization of several ECM elements that have become vital for the advancement of our understanding of cartilage biology. Also presented is the importance of pertubation of ECM components and the influence of the tumor microenvironment on disease progression. Therapeutic failure and currently pursued avenues of intervention utilizing the SRC lines in treatment of chondrosarcoma are also discussed.
A high throughput array microscope for the mechanical characterization of biomaterials
NASA Astrophysics Data System (ADS)
Cribb, Jeremy; Osborne, Lukas D.; Hsiao, Joe Ping-Lin; Vicci, Leandra; Meshram, Alok; O'Brien, E. Tim; Spero, Richard Chasen; Taylor, Russell; Superfine, Richard
2015-02-01
In the last decade, the emergence of high throughput screening has enabled the development of novel drug therapies and elucidated many complex cellular processes. Concurrently, the mechanobiology community has developed tools and methods to show that the dysregulation of biophysical properties and the biochemical mechanisms controlling those properties contribute significantly to many human diseases. Despite these advances, a complete understanding of the connection between biomechanics and disease will require advances in instrumentation that enable parallelized, high throughput assays capable of probing complex signaling pathways, studying biology in physiologically relevant conditions, and capturing specimen and mechanical heterogeneity. Traditional biophysical instruments are unable to meet this need. To address the challenge of large-scale, parallelized biophysical measurements, we have developed an automated array high-throughput microscope system that utilizes passive microbead diffusion to characterize mechanical properties of biomaterials. The instrument is capable of acquiring data on twelve-channels simultaneously, where each channel in the system can independently drive two-channel fluorescence imaging at up to 50 frames per second. We employ this system to measure the concentration-dependent apparent viscosity of hyaluronan, an essential polymer found in connective tissue and whose expression has been implicated in cancer progression.
Technology advancement for integrative stem cell analyses.
Jeong, Yoon; Choi, Jonghoon; Lee, Kwan Hyi
2014-12-01
Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose--by introducing a concept of vertical and horizontal approach--that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment.
Technology Advancement for Integrative Stem Cell Analyses
Jeong, Yoon
2014-01-01
Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose—by introducing a concept of vertical and horizontal approach—that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment. PMID:24874188
Phase transformations in steels: Processing, microstructure, and performance
Gibbs, Paul J.
2014-04-03
In this study, contemporary steel research is revealing new processing avenues to tailor microstructure and properties that, until recently, were only imaginable. Much of the technological versatility facilitating this development is provided by the understanding and utilization of the complex phase transformation sequences available in ferrous alloys. Today we have the opportunity to explore the diverse phenomena displayed by steels with specialized analytical and experimental tools. Advances in multi-scale characterization techniques provide a fresh perspective into microstructural relationships at the macro- and micro-scale, enabling a fundamental understanding of the role of phase transformations during processing and subsequent deformation.
The 2002 NASA Faculty Fellowship Program Research Reports
NASA Technical Reports Server (NTRS)
Bland, J. (Compiler)
2003-01-01
Contents include the following: System Identification of X-33. Neural Network Advanced Ceramic Technology for Space Applications at NASA MSFC. Developing a MATLAB-Based Tool for Visualization and Transformation. Subsurface Stress Fields in Single Crystal (Anisotropic). Contacts Our Space Future: A Challenge to the Conceptual Artist Concept Art for Presentation and Education. Identification and Characterization of Extremophile Microorganisms. Significant to Astrobiology. Mathematical Investigation of Gamma Ray and Neutron. Absorption Grid Patterns for Homeland Defense-Related Fourier Imaging Systems. The Potential of Microwave Radiation for Processing Martian Soil. Fuzzy Logic Trajectory Design and Guidance for Terminal Area.
Caldwell, Daniel J; Mastrocco, Frank; Margiotta-Casaluci, Luigi; Brooks, Bryan W
2014-11-01
Numerous active pharmaceutical ingredients (APIs), approved prior to enactment of detailed environmental risk assessment (ERA) guidance in the EU in 2006, have been detected in surface waters as a result of advancements in analytical technologies. Without adequate knowledge of the potential hazards these APIs may pose, assessing their environmental risk is challenging. As it would be impractical to commence hazard characterization and ERA en masse, several approaches to prioritizing substances for further attention have been published. Here, through the combination of three presentations given at a recent conference, "Pharmaceuticals in the Environment, Is there a problem?" (Nîmes, France, June 2013) we review several of these approaches, identify salient components, and present available techniques and tools that could facilitate a pragmatic, scientifically sound approach to prioritizing APIs for advanced study or ERA and, where warranted, fill critical data gaps through targeted, intelligent testing. We further present a modest proposal to facilitate future prioritization efforts and advanced research studies that incorporates mammalian pharmacology data (e.g., adverse outcomes pathways and the fish plasma model) and modeled exposure data based on pharmaceutical use. Copyright © 2014 Elsevier Ltd. All rights reserved.
2009-06-01
AUTOMATED GEOSPATIAL TOOLS : AGILITY IN COMPLEX PLANNING Primary Topic: Track 5 – Experimentation and Analysis Walter A. Powell [STUDENT] - GMU...TITLE AND SUBTITLE Results of an Experimental Exploration of Advanced Automated Geospatial Tools : Agility in Complex Planning 5a. CONTRACT NUMBER...Std Z39-18 Abstract Typically, the development of tools and systems for the military is requirement driven; systems are developed to meet
Shenton, ME; Hamoda, HM; Schneiderman, JS; Bouix, S; Pasternak, O; Rathi, Y; M-A, Vu; Purohit, MP; Helmer, K; Koerte, I; Lin, AP; C-F, Westin; Kikinis, R; Kubicki, M; Stern, RA; Zafonte, R
2013-01-01
Mild traumatic brain injury (mTBI), also referred to as concussion, remains a controversial diagnosis because the brain often appears quite normal on conventional computed tomography (CT) and magnetic resonance imaging (MRI) scans. Such conventional tools, however, do not adequately depict brain injury in mTBI because they are not sensitive to detecting diffuse axonal injuries (DAI), also described as traumatic axonal injuries (TAI), the major brain injuries in mTBI. Furthermore, for the 15 to 30% of those diagnosed with mTBI on the basis of cognitive and clinical symptoms, i.e., the “miserable minority,” the cognitive and physical symptoms do not resolve following the first three months post-injury. Instead, they persist, and in some cases lead to long-term disability. The explanation given for these chronic symptoms, i.e., postconcussive syndrome, particularly in cases where there is no discernible radiological evidence for brain injury, has led some to posit a psychogenic origin. Such attributions are made all the easier since both post-traumatic stress disorder (PTSD) and depression are frequently co-morbid with mTBI. The challenge is thus to use neuroimaging tools that are sensitive to DAI/TAI, such as diffusion tensor imaging (DTI), in order to detect brain injuries in mTBI. Of note here, recent advances in neuroimaging techniques, such as DTI, make it possible to characterize better extant brain abnormalities in mTBI. These advances may lead to the development of biomarkers of injury, as well as to staging of reorganization and reversal of white matter changes following injury, and to the ability to track and to characterize changes in brain injury over time. Such tools will likely be used in future research to evaluate treatment efficacy, given their enhanced sensitivity to alterations in the brain. In this article we review the incidence of mTBI and the importance of characterizing this patient population using objective radiological measures. Evidence is presented for detecting brain abnormalities in mTBI based on studies that use advanced neuroimaging techniques. Taken together, these findings suggest that more sensitive neuroimaging tools improve the detection of brain abnormalities (i.e., diagnosis) in mTBI. These tools will likely also provide important information relevant to outcome (prognosis), as well as play an important role in longitudinal studies that are needed to understand the dynamic nature of brain injury in mTBI. Additionally, summary tables of MRI and DTI findings are included. We believe that the enhanced sensitivity of newer and more advanced neuroimaging techniques for identifying areas of brain damage in mTBI will be important for documenting the biological basis of postconcussive symptoms, which are likely associated with subtle brain alterations, alterations that have heretofore gone undetected due to the lack of sensitivity of earlier neuroimaging techniques. Nonetheless, it is noteworthy to point out that detecting brain abnormalities in mTBI does not mean that other disorders of a more psychogenic origin are not co-morbid with mTBI and equally important to treat. They arguably are. The controversy of psychogenic versus physiogenic, however, is not productive because the psychogenic view does not carefully consider the limitations of conventional neuroimaging techniques in detecting subtle brain injuries in mTBI, and the physiogenic view does not carefully consider the fact that PTSD and depression, and other co-morbid conditions, may be present in those suffering from mTBI. Finally, we end with a discussion of future directions in research that will lead to the improved care of patients diagnosed with mTBI. PMID:22438191
Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth
In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using themore » k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.« less
Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth
In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using themore » k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.« less
Major, L; Janusz, M; Lackner, J M; Kot, M; Major, B
2016-06-01
Studies of advanced protective chromium-based coatings on the carbon fibre composite (CFC) were performed. Multidisciplinary examinations were carried out comprising: microstructure transmission electron microscopy (TEM, HREM) studies, micromechanical analysis and wear resistance. Coatings were prepared using a magnetron sputtering technique with application of high-purity chromium and carbon (graphite) targets deposited on the CFC substrate. Selection of the CFC for surface modification in respect to irregularities on the surface making the CFC surface more smooth was performed. Deposited coatings consisted of two parts. The inner part was responsible for the residual stress compensation and cracking initiation as well as resistance at elevated temperatures occurring namely during surgical tools sterilization process. The outer part was responsible for wear resistance properties and biocompatibility. Experimental studies revealed that irregularities on the substrate surface had a negative influence on the crystallites growth direction. Chromium implanted into the a-C:H structure reacted with carbon forming the cubic nanocrystal chromium carbides of the Cr23 C6 type. The cracking was initiated at the coating/substrate interface and the energy of brittle cracking was reduced because of the plastic deformation at each Cr interlayer interface. The wear mechanism and cracking process was described in micro- and nanoscale by means of transmission electron microscope studies. Examined materials of coated CFC type would find applications in advanced surgical tools. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth
2016-05-02
In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using themore » k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.« less
Friction-Stir Welding of Aluminum For the Space Program
NASA Technical Reports Server (NTRS)
Jones, Clyde S.; Smelser, Jerry W. (Technical Monitor)
2002-01-01
The Marshall Space Flight Center is developing and characterizing the friction stir welding process for the Space Shuttle and other space programs. This revolutionary process, invented and patented by The Weld Institute in England, offers tremendous advantages for joining aluminum for high performance applications. It is particularly suited for advanced aluminum-lithium alloys, such as 2195, the primary structural alloy used in the External Tank. The friction stir welding process joins metals with minimal heat input, resulting in high-strength joints with high ductility. It is a simple process to demonstrate using a common milling machine for sample parts, but relatively expensive to implement on large-scale hardware, due to the high cost of tooling needed to handle the high forging pressures characteristic of the process. Recent developments at the Marshall Space Flight Center have demonstrated friction stir welding on linear joints up to 5 meters (15 ft.), with material thickness ranging between 2.5 mm and 16.5 mm (0.100" to 0.650"). High efficiency weld joints have been produced in aluminum from the 2000, 5000, and 6000 series alloy systems. A "retractable pin tool" system was patented by MSFC that allows use of friction stir welding for joints with changing material thickness, and with less rigid tooling than previously considered. This presentation will describe the details of alloys welded to-date and technical advances under development at MSFC. These developments could have substantial benefit to industrial applications for welding aluminum.
Doucet, Nicolas
2011-04-01
Despite impressive progress in protein engineering and design, our ability to create new and efficient enzyme activities remains a laborious and time-consuming endeavor. In the past few years, intricate combinations of rational mutagenesis, directed evolution and computational methods have paved the way to exciting engineering examples and are now offering a new perspective on the structural requirements of enzyme activity. However, these structure-function analyses are usually guided by the time-averaged static models offered by enzyme crystal structures, which often fail to describe the functionally relevant 'invisible states' adopted by proteins in space and time. To alleviate such limitations, NMR relaxation dispersion experiments coupled to mutagenesis studies have recently been applied to the study of enzyme catalysis, effectively complementing 'structure-function' analyses with 'flexibility-function' investigations. In addition to offering quantitative, site-specific information to help characterize residue motion, these NMR methods are now being applied to enzyme engineering purposes, providing a powerful tool to help characterize the effects of controlling long-range networks of flexible residues affecting enzyme function. Recent advancements in this emerging field are presented here, with particular attention to mutagenesis reports highlighting the relevance of NMR relaxation dispersion tools in enzyme engineering.
Alkobtawi, Mansour; Ray, Heather; Barriga, Elias H; Moreno, Mauricio; Kerney, Ryan; Monsoro-Burq, Anne-Helene; Saint-Jeannet, Jean-Pierre; Mayor, Roberto
2018-03-06
The neural crest is a multipotent population of cells that originates a variety of cell types. Many animal models are used to study neural crest induction, migration and differentiation, with amphibians and birds being the most widely used systems. A major technological advance to study neural crest development in mouse, chick and zebrafish has been the generation of transgenic animals in which neural crest specific enhancers/promoters drive the expression of either fluorescent proteins for use as lineage tracers, or modified genes for use in functional studies. Unfortunately, no such transgenic animals currently exist for the amphibians Xenopus laevis and tropicalis, key model systems for studying neural crest development. Here we describe the generation and characterization of two transgenic Xenopus laevis lines, Pax3-GFP and Sox10-GFP, in which GFP is expressed in the pre-migratory and migratory neural crest, respectively. We show that Pax3-GFP could be a powerful tool to study neural crest induction, whereas Sox10-GFP could be used in the study of neural crest migration in living embryos. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Explicit B-spline regularization in diffeomorphic image registration
Tustison, Nicholas J.; Avants, Brian B.
2013-01-01
Diffeomorphic mappings are central to image registration due largely to their topological properties and success in providing biologically plausible solutions to deformation and morphological estimation problems. Popular diffeomorphic image registration algorithms include those characterized by time-varying and constant velocity fields, and symmetrical considerations. Prior information in the form of regularization is used to enforce transform plausibility taking the form of physics-based constraints or through some approximation thereof, e.g., Gaussian smoothing of the vector fields [a la Thirion's Demons (Thirion, 1998)]. In the context of the original Demons' framework, the so-called directly manipulated free-form deformation (DMFFD) (Tustison et al., 2009) can be viewed as a smoothing alternative in which explicit regularization is achieved through fast B-spline approximation. This characterization can be used to provide B-spline “flavored” diffeomorphic image registration solutions with several advantages. Implementation is open source and available through the Insight Toolkit and our Advanced Normalization Tools (ANTs) repository. A thorough comparative evaluation with the well-known SyN algorithm (Avants et al., 2008), implemented within the same framework, and its B-spline analog is performed using open labeled brain data and open source evaluation tools. PMID:24409140
Jointly characterizing epigenetic dynamics across multiple human cell types
An, Lin; Yue, Feng; Hardison, Ross C
2016-01-01
Advanced sequencing technologies have generated a plethora of data for many chromatin marks in multiple tissues and cell types, yet there is lack of a generalized tool for optimal utility of those data. A major challenge is to quantitatively model the epigenetic dynamics across both the genome and many cell types for understanding their impacts on differential gene regulation and disease. We introduce IDEAS, an integrative and discriminative epigenome annotation system, for jointly characterizing epigenetic landscapes in many cell types and detecting differential regulatory regions. A key distinction between our method and existing state-of-the-art algorithms is that IDEAS integrates epigenomes of many cell types simultaneously in a way that preserves the position-dependent and cell type-specific information at fine scales, thereby greatly improving segmentation accuracy and producing comparable annotations across cell types. PMID:27095202
Quantitative Ultrasound for Nondestructive Characterization of Engineered Tissues and Biomaterials
Dalecki, Diane; Mercado, Karla P.; Hocking, Denise C.
2015-01-01
Non-invasive, non-destructive technologies for imaging and quantitatively monitoring the development of artificial tissues are critical for the advancement of tissue engineering. Current standard techniques for evaluating engineered tissues, including histology, biochemical assays and mechanical testing, are destructive approaches. Ultrasound is emerging as a valuable tool for imaging and quantitatively monitoring the properties of engineered tissues and biomaterials longitudinally during fabrication and post-implantation. Ultrasound techniques are rapid, non-invasive, non-destructive and can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, high-frequency quantitative ultrasound techniques can enable volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation. This review provides an overview of ultrasound imaging, quantitative ultrasound techniques, and elastography, with representative examples of applications of these ultrasound-based techniques to the field of tissue engineering. PMID:26581347
Delineating advanced practice nursing in New Zealand: a national survey.
Carryer, J; Wilkinson, J; Towers, A; Gardner, G
2018-03-01
A variety of advanced practice nursing roles and titles have proliferated in response to the changing demands of a population characterized by increasing age and chronic illness. Whilst similarly identified as advanced practice roles, they do not share a common practice profile, educational requirements or legislative direction. The lack of clarity limits comparative research that can inform policy and health service planning. To identify advanced practice roles within nursing titles employed in New Zealand and practice differences between advanced practice and other roles. Replicating recent Australian research, 3255 registered nurses/nurse practitioners in New Zealand completed the amended Advanced Practice Delineation survey tool. The mean domain scores of the predominant advanced practice position were compared with those of other positions. Differences between groups were explored using one-way ANOVA and post hoc between group comparisons. Four nursing position bands were identified: nurse practitioner, clinical nurse specialist, domain-specific and registered nurse. Significant differences between the bands were found on many domain scores. The nurse practitioner and clinical nurse specialist bands had the most similar practice profiles, nurse practitioners being more involved in direct care and professional leadership. Similar to the position of clinical nurse consultant in Australia, those practicing as clinical nurse specialists were deemed to reflect the threshold for advanced practice nursing. The results identified different practice patterns for the identified bands and distinguish the advanced practice nursing roles. By replicating the Australian study of Gardener et al. (2016), this NZ paper extends the international data available to support more evidence-based nursing workforce planning and policy development. © 2017 International Council of Nurses.
Ultrasonic NDE Simulation for Composite Manufacturing Defects
NASA Technical Reports Server (NTRS)
Leckey, Cara A. C.; Juarez, Peter D.
2016-01-01
The increased use of composites in aerospace components is expected to continue into the future. The large scale use of composites in aerospace necessitates the development of composite-appropriate nondestructive evaluation (NDE) methods to quantitatively characterize defects in as-manufactured parts and damage incurred during or post manufacturing. Ultrasonic techniques are one of the most common approaches for defect/damage detection in composite materials. One key technical challenge area included in NASA's Advanced Composite's Project is to develop optimized rapid inspection methods for composite materials. Common manufacturing defects in carbon fiber reinforced polymer (CFRP) composites include fiber waviness (in-plane and out-of-plane), porosity, and disbonds; among others. This paper is an overview of ongoing work to develop ultrasonic wavefield based methods for characterizing manufacturing waviness defects. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with in-plane fiber waviness (also known as marcelling). Wavefield data processing methods are applied to the simulation data to explore possible routes for quantitative defect characterization.
CY2013 Annual Report for DOE-ITU INERI 2010-006-E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, J. Rory; Rondinella, Vincenzo V.
2014-12-01
New concepts for nuclear energy development are considered in both the USA and Europe within the framework of the Generation-IV International Forum (GIF) as well as in various US-DOE programs (e.g. the Fuel Cycle Research and Development - FCRD) and as part of the European Sustainable Nuclear Energy Technology Platform (SNE-TP). Since most new fuel cycle concepts envisage the adoption of a closed nuclear fuel cycle employing fast reactors, the fuel behavior characteristics of the various proposed advanced fuel forms must be effectively investigated using state of the art experimental techniques before implementation. More rapid progress can be achieved ifmore » effective synergy with advanced (multi-scale) modeling efforts can be achieved. The fuel systems to be considered include minor actinide (MA) transmutation fuel types such as advanced MOX, advanced metal alloy, inert matrix fuel (IMF), and other ceramic fuels like nitrides, carbides, etc., for fast neutronic spectrum conditions. Most of the advanced fuel compounds have already been the object of past examination programs, which included irradiations in research reactors. The knowledge derived from previous experience constitutes a significant, albeit incomplete body of data. New or upgraded experimental tools are available today that can extend the scientific and technological knowledge towards achieving the objectives associated with the new generation of nuclear reactors and fuels. The objectives of this project will be three-fold: (1) to extend the available knowledge on properties and irradiation behavior of high burnup and minor actinide bearing advanced fuel systems; (2) to establish a synergy with multi-scale and code development efforts in which experimental data and expertise on the irradiation behavior of nuclear fuels is properly conveyed for the upgrade/development of advanced modeling tools; (3) to promote the effective use of international resources to the characterization of irradiated fuel through exchange of expertise and information among leading experimental facilities. The priorities in this project will be set according to the down selection procedure of U.S. and European development programs.« less
OSTI.GOV | OSTI, US Dept of Energy Office of Scientific and Technical
Information Skip to main content â° Submit Research Results Search Tools Public Access Policy Data Services & Dev Tools About FAQs News Sign In Create Account Sign In Create Account Department Information Search terms: Advanced search options Advanced Search OptionsAdvanced Search queries use a
NASA Technical Reports Server (NTRS)
1985-01-01
The second task in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This volume identifies the preferred options in the technology category and characterizes these options with respect to performance attributes, constraints, cost, and risk. The technology category includes advanced materials, processes, and techniques that can be used to enhance the implementation of SSDS design structures. The specific areas discussed are mass storage, including space and round on-line storage and off-line storage; man/machine interface; data processing hardware, including flight computers and advanced/fault tolerant computer architectures; and software, including data compression algorithms, on-board high level languages, and software tools. Also discussed are artificial intelligence applications and hard-wire communications.
Characterization of UMT2013 Performance on Advanced Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howell, Louis
2014-12-31
This paper presents part of a larger effort to make detailed assessments of several proxy applications on various advanced architectures, with the eventual goal of extending these assessments to codes of programmatic interest running more realistic simulations. The focus here is on UMT2013, a proxy implementation of deterministic transport for unstructured meshes. I present weak and strong MPI scaling results and studies of OpenMP efficiency on the Sequoia BG/Q system at LLNL, with comparison against similar tests on an Intel Sandy Bridge TLCC2 system. The hardware counters on BG/Q provide detailed information on many aspects of on-node performance, while informationmore » from the mpiP tool gives insight into the reasons for the differing scaling behavior on these two different architectures. Preliminary tests that exploit NVRAM as extended memory on an Ivy Bridge machine designed for “Big Data” applications are also included.« less
Progress in the Analysis of Complex Atmospheric Particles.
Laskin, Alexander; Gilles, Mary K; Knopf, Daniel A; Wang, Bingbing; China, Swarup
2016-06-12
This article presents an overview of recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surface interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multimodal chemical characterization of particles with both molecular and lateral specificity. When combined, these approaches provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore the environmental effects of air-surface interactions.
Predicting consumer behavior: using novel mind-reading approaches.
Calvert, Gemma A; Brammer, Michael J
2012-01-01
Advances in machine learning as applied to functional magnetic resonance imaging (fMRI) data offer the possibility of pretesting and classifying marketing communications using unbiased pattern recognition algorithms. By using these algorithms to analyze brain responses to brands, products, or existing marketing communications that either failed or succeeded in the marketplace and identifying the patterns of brain activity that characterize success or failure, future planned campaigns or new products can now be pretested to determine how well the resulting brain responses match the desired (successful) pattern of brain activity without the need for verbal feedback. This major advance in signal processing is poised to revolutionize the application of these brain-imaging techniques in the marketing sector by offering greater accuracy of prediction in terms of consumer acceptance of new brands, products, and campaigns at a speed that makes them accessible as routine pretesting tools that will clearly demonstrate return on investment.
Biomarkers of Aging: From Function to Molecular Biology
Wagner, Karl-Heinz; Cameron-Smith, David; Wessner, Barbara; Franzke, Bernhard
2016-01-01
Aging is a major risk factor for most chronic diseases and functional impairments. Within a homogeneous age sample there is a considerable variation in the extent of disease and functional impairment risk, revealing a need for valid biomarkers to aid in characterizing the complex aging processes. The identification of biomarkers is further complicated by the diversity of biological living situations, lifestyle activities and medical treatments. Thus, there has been no identification of a single biomarker or gold standard tool that can monitor successful or healthy aging. Within this short review the current knowledge of putative biomarkers is presented, focusing on their application to the major physiological mechanisms affected by the aging process including physical capability, nutritional status, body composition, endocrine and immune function. This review emphasizes molecular and DNA-based biomarkers, as well as recent advances in other biomarkers such as microRNAs, bilirubin or advanced glycation end products. PMID:27271660
Gu, Yang; Xu, Xianhao; Wu, Yaokang; Niu, Tengfei; Liu, Yanfeng; Li, Jianghua; Du, Guocheng; Liu, Long
2018-05-15
Bacillus subtilis is the most characterized gram-positive bacterium that has significant attributes, such as growing well on cheap carbon sources, possessing clear inherited backgrounds, having mature genetic manipulation methods, and exhibiting robustness in large-scale fermentations. Till date, B. subtilis has been identified as attractive hosts for the production of recombinant proteins and chemicals. By applying various systems and synthetic biology tools, the productivity features of B. subtilis can be thoroughly analyzed and further optimized via metabolic engineering. In the present review, we discussed why B. subtilis is the primary organisms used for metabolic engineering and industrial applications. Additionally, we summarized the recent advances in systems and synthetic biology, engineering strategies for improving cellular performances, and metabolic engineering applications of B. subtilis. In particular, we proposed emerging opportunities and essential strategies to enable the successful development of B. subtilis as microbial cell factories. Copyright © 2018. Published by Elsevier Inc.
Quantitative multimodality imaging in cancer research and therapy.
Yankeelov, Thomas E; Abramson, Richard G; Quarles, C Chad
2014-11-01
Advances in hardware and software have enabled the realization of clinically feasible, quantitative multimodality imaging of tissue pathophysiology. Earlier efforts relating to multimodality imaging of cancer have focused on the integration of anatomical and functional characteristics, such as PET-CT and single-photon emission CT (SPECT-CT), whereas more-recent advances and applications have involved the integration of multiple quantitative, functional measurements (for example, multiple PET tracers, varied MRI contrast mechanisms, and PET-MRI), thereby providing a more-comprehensive characterization of the tumour phenotype. The enormous amount of complementary quantitative data generated by such studies is beginning to offer unique insights into opportunities to optimize care for individual patients. Although important technical optimization and improved biological interpretation of multimodality imaging findings are needed, this approach can already be applied informatively in clinical trials of cancer therapeutics using existing tools. These concepts are discussed herein.
In Vivo Cancer Biomarkers of Esophageal Neoplasia
Lu, Shaoying; Wang, Thomas D
2011-01-01
Summary The emergence of in vivo cancer biomarkers is promising tool for early detection, risk stratification, and therapeutic intervention in the esophagus, where adenocarcinoma is increasing at a rate that is faster than any other in industrialized nations. Exciting advances in target identification, probe development, and optical instrumentation are creating tremendous new opportunities for advancing techniques of molecular imaging. Progress in these areas is being made with small animal models of esophageal cancer using surgical approaches to induce reflux of acid and bile, and these findings are beginning to be evaluated in the clinic. Further identification of relevant targets, characterization of specific probes, and development of endoscopic imaging technologies are needed to further this direction in the field of molecular medicine. In the future, new methods that use in vivo cancer biomarkers for the early detection of neoplastic changes in the setting of Barrett's esophagus will become available. PMID:19126962
Application of Genomic In Situ Hybridization in Horticultural Science
Ramzan, Fahad; Lim, Ki-Byung
2017-01-01
Molecular cytogenetic techniques, such as in situ hybridization methods, are admirable tools to analyze the genomic structure and function, chromosome constituents, recombination patterns, alien gene introgression, genome evolution, aneuploidy, and polyploidy and also genome constitution visualization and chromosome discrimination from different genomes in allopolyploids of various horticultural crops. Using GISH advancement as multicolor detection is a significant approach to analyze the small and numerous chromosomes in fruit species, for example, Diospyros hybrids. This analytical technique has proved to be the most exact and effective way for hybrid status confirmation and helps remarkably to distinguish donor parental genomes in hybrids such as Clivia, Rhododendron, and Lycoris ornamental hybrids. The genome characterization facilitates in hybrid selection having potential desirable characteristics during the early hybridization breeding, as this technique expedites to detect introgressed sequence chromosomes. This review study epitomizes applications and advancements of genomic in situ hybridization (GISH) techniques in horticultural plants. PMID:28459054
Advances in mechanisms, diagnosis, and treatment of pernicious anemia.
Rojas Hernandez, Cristhiam M; Oo, Thein Hlaing
2015-03-01
Pernicious anemia (PA) is an entity initially described in 1849 as a condition that consisted of pallor, weakness, and progressive health decline. Since then several advances led to the conclusion that PA is an autoimmune disease characterized by the deficient absorption of dietary cobalamin. It is currently recognized as the most common cause of cobalamin deficiency worldwide. We hereby review the current understanding of the disease and its neurological, hematological, and biochemical manifestations with emphasis on the diagnostic approach, treatment, and monitoring strategies. We propose an algorithm for the diagnostic approach considering the current performance and limitations of the available diagnostic tools for evaluation of cobalamin status and the presence of autoimmune chronic atrophic gastritis (CAG). Patients with PA require lifelong treatment with cobalamin replacement therapy. The current widely available treatment can be provided through enteral or parenteral cobalamin supplements, with comparable efficacy and tolerability.
2014-06-01
Integration of Advanced Sediment Transport Tools into HEC-RAS by Paul M. Boyd and Stanford A. Gibson PURPOSE: This Coastal and Hydraulics Engineering...Technical Note (CHETN) summarizes the development and initial testing of new sediment transport and modeling tools developed by the U.S. Army Corps...sediment transport within the USACE HEC River Analysis System (HEC-RAS) software package and to determine its applicability to Regional Sediment
Advanced Flow Control as a Management Tool in the National Airspace System
NASA Technical Reports Server (NTRS)
Wugalter, S.
1974-01-01
Advanced Flow Control is closely related to Air Traffic Control. Air Traffic Control is the business of the Federal Aviation Administration. To formulate an understanding of advanced flow control and its use as a management tool in the National Airspace System, it becomes necessary to speak somewhat of air traffic control, the role of FAA, and their relationship to advanced flow control. Also, this should dispell forever, any notion that advanced flow control is the inspirational master valve scheme to be used on the Alaskan Oil Pipeline.
Zarinabad, Niloufar; Meeus, Emma M; Manias, Karen; Foster, Katharine
2018-01-01
Background Advances in magnetic resonance imaging and the introduction of clinical decision support systems has underlined the need for an analysis tool to extract and analyze relevant information from magnetic resonance imaging data to aid decision making, prevent errors, and enhance health care. Objective The aim of this study was to design and develop a modular medical image region of interest analysis tool and repository (MIROR) for automatic processing, classification, evaluation, and representation of advanced magnetic resonance imaging data. Methods The clinical decision support system was developed and evaluated for diffusion-weighted imaging of body tumors in children (cohort of 48 children, with 37 malignant and 11 benign tumors). Mevislab software and Python have been used for the development of MIROR. Regions of interests were drawn around benign and malignant body tumors on different diffusion parametric maps, and extracted information was used to discriminate the malignant tumors from benign tumors. Results Using MIROR, the various histogram parameters derived for each tumor case when compared with the information in the repository provided additional information for tumor characterization and facilitated the discrimination between benign and malignant tumors. Clinical decision support system cross-validation showed high sensitivity and specificity in discriminating between these tumor groups using histogram parameters. Conclusions MIROR, as a diagnostic tool and repository, allowed the interpretation and analysis of magnetic resonance imaging images to be more accessible and comprehensive for clinicians. It aims to increase clinicians’ skillset by introducing newer techniques and up-to-date findings to their repertoire and make information from previous cases available to aid decision making. The modular-based format of the tool allows integration of analyses that are not readily available clinically and streamlines the future developments. PMID:29720361
Tool Support for Parametric Analysis of Large Software Simulation Systems
NASA Technical Reports Server (NTRS)
Schumann, Johann; Gundy-Burlet, Karen; Pasareanu, Corina; Menzies, Tim; Barrett, Tony
2008-01-01
The analysis of large and complex parameterized software systems, e.g., systems simulation in aerospace, is very complicated and time-consuming due to the large parameter space, and the complex, highly coupled nonlinear nature of the different system components. Thus, such systems are generally validated only in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. We have addressed the factors deterring such an analysis with a tool to support envelope assessment: we utilize a combination of advanced Monte Carlo generation with n-factor combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. Additional test-cases, automatically generated from models (e.g., UML, Simulink, Stateflow) improve the coverage. The distributed test runs of the software system produce vast amounts of data, making manual analysis impossible. Our tool automatically analyzes the generated data through a combination of unsupervised Bayesian clustering techniques (AutoBayes) and supervised learning of critical parameter ranges using the treatment learner TAR3. The tool has been developed around the Trick simulation environment, which is widely used within NASA. We will present this tool with a GN&C (Guidance, Navigation and Control) simulation of a small satellite system.
The re-tooled mind: how culture re-engineers cognition
2010-01-01
One of the main goals of cognitive science is to discover the underlying principles that characterize human cognition, but this enterprise is complicated by culturally-driven variability. While much fruitful work has focused on how culture influences the contents of cognition, here I argue that culture can in addition exercise a profound effect on the how of cognition—the mechanisms by which cognitive tasks get done. I argue that much of the fundamental processes of daily cognitive activity involve the operation of cognitive tools that are not genetically determined but instead are invented and culturally transmitted. Further, these cognitive inventions become ‘firmware’, consituting a re-engineering of the individual’s cognitive architecture. That is, ontogenetic experience from one’s cultural context serves to re-tool the developing mind into a variety of disparate cognitive phenotypes. Drawing on several mutually isolated literatures, I advance four claims to the effect that cognitive tools (i) are ubitquitous in everyday cognition, (ii) result in reorganization of the neural system, (iii) are founded in embodied representations and (iv) were made possible by the evolution of an unprecedented degree of voluntary control over the body. I conclude by discussing the implications for the agenda of cognitive science. PMID:20068033
Advanced Modeling and Uncertainty Quantification for Flight Dynamics; Interim Results and Challenges
NASA Technical Reports Server (NTRS)
Hyde, David C.; Shweyk, Kamal M.; Brown, Frank; Shah, Gautam
2014-01-01
As part of the NASA Vehicle Systems Safety Technologies (VSST), Assuring Safe and Effective Aircraft Control Under Hazardous Conditions (Technical Challenge #3), an effort is underway within Boeing Research and Technology (BR&T) to address Advanced Modeling and Uncertainty Quantification for Flight Dynamics (VSST1-7). The scope of the effort is to develop and evaluate advanced multidisciplinary flight dynamics modeling techniques, including integrated uncertainties, to facilitate higher fidelity response characterization of current and future aircraft configurations approaching and during loss-of-control conditions. This approach is to incorporate multiple flight dynamics modeling methods for aerodynamics, structures, and propulsion, including experimental, computational, and analytical. Also to be included are techniques for data integration and uncertainty characterization and quantification. This research shall introduce new and updated multidisciplinary modeling and simulation technologies designed to improve the ability to characterize airplane response in off-nominal flight conditions. The research shall also introduce new techniques for uncertainty modeling that will provide a unified database model comprised of multiple sources, as well as an uncertainty bounds database for each data source such that a full vehicle uncertainty analysis is possible even when approaching or beyond Loss of Control boundaries. Methodologies developed as part of this research shall be instrumental in predicting and mitigating loss of control precursors and events directly linked to causal and contributing factors, such as stall, failures, damage, or icing. The tasks will include utilizing the BR&T Water Tunnel to collect static and dynamic data to be compared to the GTM extended WT database, characterizing flight dynamics in off-nominal conditions, developing tools for structural load estimation under dynamic conditions, devising methods for integrating various modeling elements into a real-time simulation capability, generating techniques for uncertainty modeling that draw data from multiple modeling sources, and providing a unified database model that includes nominal plus increments for each flight condition. This paper presents status of testing in the BR&T water tunnel and analysis of the resulting data and efforts to characterize these data using alternative modeling methods. Program challenges and issues are also presented.
Microstructural Evolution and Fracture Behavior of Friction-Stir-Welded Al-Cu Laminated Composites
NASA Astrophysics Data System (ADS)
Beygi, R.; Kazeminezhad, Mohsen; Kokabi, A. H.
2014-01-01
In this study, we attempt to characterize the microstructural evolution during friction stir butt welding of Al-Cu-laminated composites and its effect on the fracture behavior of the joint. Emphasis is on the material flow and particle distribution in the stir zone. For this purpose, optical microscopy and scanning electron microscopy (SEM) images, energy-dispersive spectroscopy EDS and XRD analyses, hardness measurements, and tensile tests are carried out on the joints. It is shown that intermetallic compounds exist in lamellas of banding structure formed in the advancing side of the welds. In samples welded from the Cu side, the banding structure in the advancing side and the hook formation in the retreating side determine the fracture behavior of the joint. In samples welded from the Al side, a defect is formed in the advancing side of the weld, which is attributed to insufficient material flow. It is concluded that the contact surface of the laminate (Al or Cu) with the shoulder of the FSW tool influences the material flow and microstructure of welds.
Quantitative optical metrology with CMOS cameras
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Kolenovic, Ervin; Ferguson, Curtis F.
2004-08-01
Recent advances in laser technology, optical sensing, and computer processing of data, have lead to the development of advanced quantitative optical metrology techniques for high accuracy measurements of absolute shapes and deformations of objects. These techniques provide noninvasive, remote, and full field of view information about the objects of interest. The information obtained relates to changes in shape and/or size of the objects, characterizes anomalies, and provides tools to enhance fabrication processes. Factors that influence selection and applicability of an optical technique include the required sensitivity, accuracy, and precision that are necessary for a particular application. In this paper, sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography (OEH) based on CMOS cameras, are discussed. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gauges, demonstrating the applicability of CMOS cameras in quantitative optical metrology techniques. It is shown that the advanced nature of CMOS technology can be applied to challenging engineering applications, including the study of rapidly evolving phenomena occurring in MEMS and micromechatronics.
NASA Astrophysics Data System (ADS)
Reece, Amy E.
The microfabrication of microfluidic control systems and advances in molecular amplification tools has enabled the miniaturization of single cell analytical platforms for the efficient, highly selective enumeration and molecular characterization of rare and diseased cells from clinical samples. In many cases, the high-throughput nature of microfluidic inertial focusing has enabled the popularization of this new class of Lab-on-a-Chip devices that exhibit numerous advantages over conventional methods as prognostic and diagnostic tools. Inertial focusing is the passive, sheathless alignment of particles and cells to precise spatiotemporal equilibrium positions that arise from a force balance between opposing inertial lift forces and hydrodynamic repulsions. The applicability of inertial focusing to a spectrum of filtration, separation and encapsulation challenges places heavy emphasis upon the accurate description of the hydrodynamic forces responsible for predictable inertial focusing behavior. These inertial focusing fundamentals, limitations and their applications are studied extensively throughout this work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsworth, Derek; Im, Kyungjae; Guglielmi, Yves
2016-11-14
We explore the utility of combining active downhole experimentation with borehole and surface geodesy to determine both the characteristics and evolving state of EGS reservoirs during stimulation through production. The study is divided into two parts. We demonstrate the feasibility of determining in situ reservoir characteristics of reservoir size, strain and fracture permeability and their dependence on feedbacks of stress and temperature using surface and borehole geodetic measurements (Part I). We then define the opportunity to apply the unique hydraulic pulse protocol (HPP) borehole tool to evaluate reservoir state. This can be accomplished by monitoring and co-inverting measured reservoir characteristicsmore » (from the HPP tool) with surface geodetic measurements of deformation, tilt and strain with continuous measurements of borehole-wall strain (via optical fiber and fiber Bragg gratings) and measured flow rates (Part II).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrell, William C.; Birkel, Garrett W.; Forrer, Mark
Although recent advances in synthetic biology allow us to produce biological designs more efficiently than ever, our ability to predict the end result of these designs is still nascent. Predictive models require large amounts of high-quality data to be parametrized and tested, which are not generally available. Here, we present the Experiment Data Depot (EDD), an online tool designed as a repository of experimental data and metadata. EDD provides a convenient way to upload a variety of data types, visualize these data, and export them in a standardized fashion for use with predictive algorithms. In this paper, we describe EDDmore » and showcase its utility for three different use cases: storage of characterized synthetic biology parts, leveraging proteomics data to improve biofuel yield, and the use of extracellular metabolite concentrations to predict intracellular metabolic fluxes.« less
Morrell, William C.; Birkel, Garrett W.; Forrer, Mark; ...
2017-08-21
Although recent advances in synthetic biology allow us to produce biological designs more efficiently than ever, our ability to predict the end result of these designs is still nascent. Predictive models require large amounts of high-quality data to be parametrized and tested, which are not generally available. Here, we present the Experiment Data Depot (EDD), an online tool designed as a repository of experimental data and metadata. EDD provides a convenient way to upload a variety of data types, visualize these data, and export them in a standardized fashion for use with predictive algorithms. In this paper, we describe EDDmore » and showcase its utility for three different use cases: storage of characterized synthetic biology parts, leveraging proteomics data to improve biofuel yield, and the use of extracellular metabolite concentrations to predict intracellular metabolic fluxes.« less
Morrell, William C; Birkel, Garrett W; Forrer, Mark; Lopez, Teresa; Backman, Tyler W H; Dussault, Michael; Petzold, Christopher J; Baidoo, Edward E K; Costello, Zak; Ando, David; Alonso-Gutierrez, Jorge; George, Kevin W; Mukhopadhyay, Aindrila; Vaino, Ian; Keasling, Jay D; Adams, Paul D; Hillson, Nathan J; Garcia Martin, Hector
2017-12-15
Although recent advances in synthetic biology allow us to produce biological designs more efficiently than ever, our ability to predict the end result of these designs is still nascent. Predictive models require large amounts of high-quality data to be parametrized and tested, which are not generally available. Here, we present the Experiment Data Depot (EDD), an online tool designed as a repository of experimental data and metadata. EDD provides a convenient way to upload a variety of data types, visualize these data, and export them in a standardized fashion for use with predictive algorithms. In this paper, we describe EDD and showcase its utility for three different use cases: storage of characterized synthetic biology parts, leveraging proteomics data to improve biofuel yield, and the use of extracellular metabolite concentrations to predict intracellular metabolic fluxes.
Principles of Metamorphic Petrology
NASA Astrophysics Data System (ADS)
Williams, Michael L.
2009-05-01
The field of metamorphic petrology has seen spectacular advances in the past decade, including new X-ray mapping techniques for characterizing metamorphic rocks and minerals, new internally consistent thermobarometers, new software for constructing and viewing phase diagrams, new methods to date metamorphic processes, and perhaps most significant, revised petrologic databases and the ability to calculate accurate phase diagrams and pseudosections. These tools and techniques provide new power and resolution for constraining pressure-temperature (P-T) histories and tectonic events. Two books have been fundamental for empowering petrologists and structural geologists during the past decade. Frank Spear's Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths, published in 1993, builds on his seminal papers to provide a quantitative framework for P-T path analysis. Spear's book lays the foundation for modern quantitative metamorphic analysis. Cees Passchier and Rudolph Trouw's Microtectonics, published in 2005, with its superb photos and figures, provides the tools and the theory for interpreting deformation textures and inferring deformation processes.
Principles of Genetic Circuit Design
Brophy, Jennifer A.N.; Voigt, Christopher A.
2014-01-01
Cells are able to navigate environments, communicate, and build complex patterns by initiating gene expression in response to specific signals. Engineers need to harness this capability to program cells to perform tasks or build chemicals and materials that match the complexity seen in nature. This review describes new tools that aid the construction of genetic circuits. We show how circuit dynamics can be influenced by the choice of regulators and changed with expression “tuning knobs.” We collate the failure modes encountered when assembling circuits, quantify their impact on performance, and review mitigation efforts. Finally, we discuss the constraints that arise from operating within a living cell. Collectively, better tools, well-characterized parts, and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials. PMID:24781324
Computer-aided tracking and characterization of homicides and sexual assaults (CATCH)
NASA Astrophysics Data System (ADS)
Kangas, Lars J.; Terrones, Kristine M.; Keppel, Robert D.; La Moria, Robert D.
1999-03-01
When a serial offender strikes, it usually means that the investigation is unprecedented for that police agency. The volume of incoming leads and pieces of information in the case(s) can be overwhelming as evidenced by the thousands of leads gathered in the Ted Bundy Murders, Atlanta Child Murders, and the Green River Murders. Serial cases can be long term investigations in which the suspect remains unknown and continues to perpetrate crimes. With state and local murder investigative systems beginning to crop up, it will become important to manage that information in a timely and efficient way by developing computer programs to assist in that task. One vital function will be to compare violent crime cases from different jurisdictions so investigators can approach the investigation knowing that similar cases exist. CATCH (Computer Aided Tracking and Characterization of Homicides) is being developed to assist crime investigations by assessing likely characteristics of unknown offenders, by relating a specific crime case to other cases, and by providing a tool for clustering similar cases that may be attributed to the same offenders. CATCH is a collection of tools that assist the crime analyst in the investigation process by providing advanced data mining and visualization capabilities.These tools include clustering maps, query tools, geographic maps, timelines, etc. Each tool is designed to give the crime analyst a different view of the case data. The clustering tools in CATCH are based on artificial neural networks (ANNs). The ANNs learn to cluster similar cases from approximately 5000 murders and 3000 sexual assaults residing in a database. The clustering algorithm is applied to parameters describing modus operandi (MO), signature characteristics of the offenders, and other parameters describing the victim and offender. The proximity of cases within a two-dimensional representation of the clusters allows the analyst to identify similar or serial murders and sexual assaults.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
Pre- and Post-Processing Tools to Create and Characterize Particle-Based Composite Model Structures
2017-11-01
ARL-TR-8213 ● NOV 2017 US Army Research Laboratory Pre- and Post -Processing Tools to Create and Characterize Particle-Based...ARL-TR-8213 ● NOV 2017 US Army Research Laboratory Pre- and Post -Processing Tools to Create and Characterize Particle-Based Composite...AND SUBTITLE Pre- and Post -Processing Tools to Create and Characterize Particle-Based Composite Model Structures 5a. CONTRACT NUMBER 5b. GRANT
Biokinetics of Nanomaterials: the Role of Biopersistence.
Laux, Peter; Riebeling, Christian; Booth, Andy M; Brain, Joseph D; Brunner, Josephine; Cerrillo, Cristina; Creutzenberg, Otto; Estrela-Lopis, Irina; Gebel, Thomas; Johanson, Gunnar; Jungnickel, Harald; Kock, Heiko; Tentschert, Jutta; Tlili, Ahmed; Schäffer, Andreas; Sips, Adriënne J A M; Yokel, Robert A; Luch, Andreas
2017-04-01
Nanotechnology risk management strategies and environmental regulations continue to rely on hazard and exposure assessment protocols developed for bulk materials, including larger size particles, while commercial application of nanomaterials (NMs) increases. In order to support and corroborate risk assessment of NMs for workers, consumers, and the environment it is crucial to establish the impact of biopersistence of NMs at realistic doses. In the future, such data will allow a more refined future categorization of NMs. Despite many experiments on NM characterization and numerous in vitro and in vivo studies, several questions remain unanswered including the influence of biopersistence on the toxicity of NMs. It is unclear which criteria to apply to characterize a NM as biopersistent. Detection and quantification of NMs, especially determination of their state, i.e., dissolution, aggregation, and agglomeration within biological matrices and other environments are still challenging tasks; moreover mechanisms of nanoparticle (NP) translocation and persistence remain critical gaps. This review summarizes the current understanding of NM biokinetics focusing on determinants of biopersistence. Thorough particle characterization in different exposure scenarios and biological matrices requires use of suitable analytical methods and is a prerequisite to understand biopersistence and for the development of appropriate dosimetry. Analytical tools that potentially can facilitate elucidation of key NM characteristics, such as ion beam microscopy (IBM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), are discussed in relation to their potential to advance the understanding of biopersistent NM kinetics. We conclude that a major requirement for future nanosafety research is the development and application of analytical tools to characterize NPs in different exposure scenarios and biological matrices.
Use of advanced analysis tools to support freeway corridor freight planning.
DOT National Transportation Integrated Search
2010-07-22
Advanced corridor freight management and pricing strategies are increasingly being chosen to : address freight mobility challenges. As a result, evaluation tools are needed to assess the benefits : of these strategies as compared to other alternative...
SmartWay Truck Tool-Advanced Class: Getting the Most out of Your SmartWay Participation
This EPA presentation provides information on the Advanced SmartWay Truck Tool; it's background, development, participation, data collection, usage, fleet categories, emission metrics, ranking system, performance data, reports, and schedule for 2017.
Geochemistry and the understanding of ground-water systems
Glynn, Pierre D.; Plummer, Niel
2005-01-01
Geochemistry has contributed significantly to the understanding of ground-water systems over the last 50 years. Historic advances include development of the hydrochemical facies concept, application of equilibrium theory, investigation of redox processes, and radiocarbon dating. Other hydrochemical concepts, tools, and techniques have helped elucidate mechanisms of flow and transport in ground-water systems, and have helped unlock an archive of paleoenvironmental information. Hydrochemical and isotopic information can be used to interpret the origin and mode of ground-water recharge, refine estimates of time scales of recharge and ground-water flow, decipher reactive processes, provide paleohydrological information, and calibrate ground-water flow models. Progress needs to be made in obtaining representative samples. Improvements are needed in the interpretation of the information obtained, and in the construction and interpretation of numerical models utilizing hydrochemical data. The best approach will ensure an optimized iterative process between field data collection and analysis, interpretation, and the application of forward, inverse, and statistical modeling tools. Advances are anticipated from microbiological investigations, the characterization of natural organics, isotopic fingerprinting, applications of dissolved gas measurements, and the fields of reaction kinetics and coupled processes. A thermodynamic perspective is offered that could facilitate the comparison and understanding of the multiple physical, chemical, and biological processes affecting ground-water systems.
Initial Assessment of X-Ray Computer Tomography image analysis for material defect microstructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, Joshua James; Windes, William Enoch
2016-06-01
The original development work leading to this report was focused on the non destructive three-dimensional (3-D) characterization of nuclear graphite as a means to better understand the nature of the inherent pore structure. The pore structure of graphite and its evolution under various environmental factors such as irradiation, mechanical stress, and oxidation plays an important role in their observed properties and characteristics. If we are to transition from an empirical understanding of graphite behavior to a truly predictive mechanistic understanding the pore structure must be well characterized and understood. As the pore structure within nuclear graphite is highly interconnected andmore » truly 3-D in nature, 3-D characterization techniques are critical. While 3-D characterization has been an excellent tool for graphite pore characterization, it is applicable to a broad number of materials systems over many length scales. Given the wide range of applications and the highly quantitative nature of the tool, it is quite surprising to discover how few materials researchers understand and how valuable of a tool 3-D image processing and analysis can be. Ultimately, this report is intended to encourage broader use of 3 D image processing and analysis in materials science and engineering applications, more specifically nuclear-related materials applications, by providing interested readers with enough familiarity to explore its vast potential in identifying microstructure changes. To encourage this broader use, the report is divided into two main sections. Section 2 provides an overview of some of the key principals and concepts needed to extract a wide variety of quantitative metrics from a 3-D representation of a material microstructure. The discussion includes a brief overview of segmentation methods, connective components, morphological operations, distance transforms, and skeletonization. Section 3 focuses on the application of concepts from Section 2 to relevant materials at Idaho National Laboratory. In this section, image analysis examples featuring nuclear graphite will be discussed in detail. Additionally, example analyses from Transient Reactor Test Facility low-enriched uranium conversion, Advanced Gas Reactor like compacts, and tristructural isotopic particles are shown to give a broader perspective of the applicability to relevant materials of interest.« less
Advances in the diagnosis of premenstrual syndrome and premenstrual dysphoric disorder.
Futterman, Lori A
2010-01-01
Premenstrual disorders negatively impact the quality of life and functional ability of millions of women. The two generally recognized premenstrual disorders are premenstrual syndrome (PMS) and premenstrual dysphoric disorder (PMDD). These disorders are characterized by a wide variety of nonspecific mood, somatic and behavioral symptoms that occur only during the late luteal phase of a woman's cycle and disappear soon after the onset of menstruation. This paper reviews the diagnostic criteria for PMS and PMDD, describes some of the more common symptom diaries and other tools used to diagnose premenstrual disorders, and discusses the challenges inherent in diagnosing PMS and PMDD. A survey of peer-reviewed articles and relevant texts provided diagnostic criteria, descriptions of diagnostic tools and information about diagnostic challenges. The many nonspecific symptoms associated with premenstrual disorders complicate the diagnostic process. The use of proven symptom diaries and other diagnostic tools should aid in the differential diagnosis of premenstrual disorders. Patients need to report bothersome premenstrual symptoms, and clinicians should become more proficient in the diagnostic process in order to prevent underdiagnosis of these disorders.
HapZipper: sharing HapMap populations just got easier.
Chanda, Pritam; Elhaik, Eran; Bader, Joel S
2012-11-01
The rapidly growing amount of genomic sequence data being generated and made publicly available necessitate the development of new data storage and archiving methods. The vast amount of data being shared and manipulated also create new challenges for network resources. Thus, developing advanced data compression techniques is becoming an integral part of data production and analysis. The HapMap project is one of the largest public resources of human single-nucleotide polymorphisms (SNPs), characterizing over 3 million SNPs genotyped in over 1000 individuals. The standard format and biological properties of HapMap data suggest that a dedicated genetic compression method can outperform generic compression tools. We propose a compression methodology for genetic data by introducing HapZipper, a lossless compression tool tailored to compress HapMap data beyond benchmarks defined by generic tools such as gzip, bzip2 and lzma. We demonstrate the usefulness of HapZipper by compressing HapMap 3 populations to <5% of their original sizes. HapZipper is freely downloadable from https://bitbucket.org/pchanda/hapzipper/downloads/HapZipper.tar.bz2.
NASA Astrophysics Data System (ADS)
Fuertes, David; Toledano, Carlos; González, Ramiro; Berjón, Alberto; Torres, Benjamín; Cachorro, Victoria E.; de Frutos, Ángel M.
2018-02-01
Given the importance of the atmospheric aerosol, the number of instruments and measurement networks which focus on its characterization are growing. Many challenges are derived from standardization of protocols, monitoring of the instrument status to evaluate the network data quality and manipulation and distribution of large volume of data (raw and processed). CÆLIS is a software system which aims at simplifying the management of a network, providing tools by monitoring the instruments, processing the data in real time and offering the scientific community a new tool to work with the data. Since 2008 CÆLIS has been successfully applied to the photometer calibration facility managed by the University of Valladolid, Spain, in the framework of Aerosol Robotic Network (AERONET). Thanks to the use of advanced tools, this facility has been able to analyze a growing number of stations and data in real time, which greatly benefits the network management and data quality control. The present work describes the system architecture of CÆLIS and some examples of applications and data processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Justin Leigh; Smith, Curtis Lee; Burns, Douglas Edward
This report describes the development plan for a new multi-partner External Hazards Experimental Group (EHEG) coordinated by Idaho National Laboratory (INL) within the Risk-Informed Safety Margin Characterization (RISMC) technical pathway of the Light Water Reactor Sustainability Program. Currently, there is limited data available for development and validation of the tools and methods being developed in the RISMC Toolkit. The EHEG is being developed to obtain high-quality, small- and large-scale experimental data validation of RISMC tools and methods in a timely and cost-effective way. The group of universities and national laboratories that will eventually form the EHEG (which is ultimately expectedmore » to include both the initial participants and other universities and national laboratories that have been identified) have the expertise and experimental capabilities needed to both obtain and compile existing data archives and perform additional seismic and flooding experiments. The data developed by EHEG will be stored in databases for use within RISMC. These databases will be used to validate the advanced external hazard tools and methods.« less
Biomolecular Evidence of Silk from 8,500 Years Ago
Gong, Yuxuan; Li, Li; Gong, Decai; Yin, Hao; Zhang, Juzhong
2016-01-01
Pottery, bone implements, and stone tools are routinely found at Neolithic sites. However, the integrity of textiles or silk is susceptible to degradation, and it is therefore very difficult for such materials to be preserved for 8,000 years. Although previous studies have provided important evidence of the emergence of weaving skills and tools, such as figuline spinning wheels and osseous lamellas with traces of filament winding, there is a lack of direct evidence proving the existence of silk. In this paper, we explored evidence of prehistoric silk fibroin through the analysis of soil samples collected from three tombs at the Neolithic site of Jiahu. Mass spectrometry was employed and integrated with proteomics to characterize the key peptides of silk fibroin. The direct biomolecular evidence reported here showed the existence of prehistoric silk fibroin, which was found in 8,500-year-old tombs. Rough weaving tools and bone needles were also excavated, indicating the possibility that the Jiahu residents may possess the basic weaving and sewing skills in making textile. This finding may advance the study of the history of silk, and the civilization of the Neolithic Age. PMID:27941996
Status of Technology Development to enable Large Stable UVOIR Space Telescopes
NASA Astrophysics Data System (ADS)
Stahl, H. Philip; MSFC AMTD Team
2017-01-01
NASA MSFC has two funded Strategic Astrophysics Technology projects to develop technology for potential future large missions: AMTD and PTC. The Advanced Mirror Technology Development (AMTD) project is developing technology to make mechanically stable mirrors for a 4-meter or larger UVOIR space telescope. AMTD is demonstrating this technology by making a 1.5 meter diameter x 200 mm thick ULE(C) mirror that is 1/3rd scale of a full size 4-m mirror. AMTD is characterizing the mechanical and thermal performance of this mirror and of a 1.2-meter Zerodur(R) mirror to validate integrate modeling tools. Additionally, AMTD has developed integrated modeling tools which are being used to evaluate primary mirror systems for a potential Habitable Exoplanet Mission and analyzed the interaction between optical telescope wavefront stability and coronagraph contrast leakage. Predictive Thermal Control (PTC) project is developing technology to enable high stability thermal wavefront performance by using integrated modeling tools to predict and actively control the thermal environment of a 4-m or larger UVOIR space telescope.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This volume developed by the Machine Tool Advanced Skill Technology (MAST) program contains key administrative documents and provides additional sources for machine tool and precision manufacturing information and important points of contact in the industry. The document contains the following sections: a foreword; grant award letter; timeline for…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational speciality areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
Decision-making tools in prostate cancer: from risk grouping to nomograms.
Fontanella, Paolo; Benecchi, Luigi; Grasso, Angelica; Patel, Vipul; Albala, David; Abbou, Claude; Porpiglia, Francesco; Sandri, Marco; Rocco, Bernardo; Bianchi, Giampaolo
2017-12-01
Prostate cancer (PCa) is the most common solid neoplasm and the second leading cause of cancer death in men. After the Partin tables were developed, a number of predictive and prognostic tools became available for risk stratification. These tools have allowed the urologist to better characterize this disease and lead to more confident treatment decisions for patients. The purpose of this study is to critically review the decision-making tools currently available to the urologist, from the moment when PCa is first diagnosed until patients experience metastatic progression and death. A systematic and critical analysis through Medline, EMBASE, Scopus and Web of Science databases was carried out in February 2016 as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The search was conducted using the following key words: "prostate cancer," "prediction tools," "nomograms." Seventy-two studies were identified in the literature search. We summarized the results into six sections: Tools for prediction of life expectancy (before treatment), Tools for prediction of pathological stage (before treatment), Tools for prediction of survival and cancer-specific mortality (before/after treatment), Tools for prediction of biochemical recurrence (before/after treatment), Tools for prediction of metastatic progression (after treatment) and in the last section biomarkers and genomics. The management of PCa patients requires a tailored approach to deliver a truly personalized treatment. The currently available tools are of great help in helping the urologist in the decision-making process. These tests perform very well in high-grade and low-grade disease, while for intermediate-grade disease further research is needed. Newly discovered markers, genomic tests, and advances in imaging acquisition through mpMRI will help in instilling confidence that the appropriate treatments are being offered to patients with prostate cancer.
PyRhO: A Multiscale Optogenetics Simulation Platform
Evans, Benjamin D.; Jarvis, Sarah; Schultz, Simon R.; Nikolic, Konstantin
2016-01-01
Optogenetics has become a key tool for understanding the function of neural circuits and controlling their behavior. An array of directly light driven opsins have been genetically isolated from several families of organisms, with a wide range of temporal and spectral properties. In order to characterize, understand and apply these opsins, we present an integrated suite of open-source, multi-scale computational tools called PyRhO. The purpose of developing PyRhO is three-fold: (i) to characterize new (and existing) opsins by automatically fitting a minimal set of experimental data to three-, four-, or six-state kinetic models, (ii) to simulate these models at the channel, neuron and network levels, and (iii) provide functional insights through model selection and virtual experiments in silico. The module is written in Python with an additional IPython/Jupyter notebook based GUI, allowing models to be fit, simulations to be run and results to be shared through simply interacting with a webpage. The seamless integration of model fitting algorithms with simulation environments (including NEURON and Brian2) for these virtual opsins will enable neuroscientists to gain a comprehensive understanding of their behavior and rapidly identify the most suitable variant for application in a particular biological system. This process may thereby guide not only experimental design and opsin choice but also alterations of the opsin genetic code in a neuro-engineering feed-back loop. In this way, we expect PyRhO will help to significantly advance optogenetics as a tool for transforming biological sciences. PMID:27148037
PyRhO: A Multiscale Optogenetics Simulation Platform.
Evans, Benjamin D; Jarvis, Sarah; Schultz, Simon R; Nikolic, Konstantin
2016-01-01
Optogenetics has become a key tool for understanding the function of neural circuits and controlling their behavior. An array of directly light driven opsins have been genetically isolated from several families of organisms, with a wide range of temporal and spectral properties. In order to characterize, understand and apply these opsins, we present an integrated suite of open-source, multi-scale computational tools called PyRhO. The purpose of developing PyRhO is three-fold: (i) to characterize new (and existing) opsins by automatically fitting a minimal set of experimental data to three-, four-, or six-state kinetic models, (ii) to simulate these models at the channel, neuron and network levels, and (iii) provide functional insights through model selection and virtual experiments in silico. The module is written in Python with an additional IPython/Jupyter notebook based GUI, allowing models to be fit, simulations to be run and results to be shared through simply interacting with a webpage. The seamless integration of model fitting algorithms with simulation environments (including NEURON and Brian2) for these virtual opsins will enable neuroscientists to gain a comprehensive understanding of their behavior and rapidly identify the most suitable variant for application in a particular biological system. This process may thereby guide not only experimental design and opsin choice but also alterations of the opsin genetic code in a neuro-engineering feed-back loop. In this way, we expect PyRhO will help to significantly advance optogenetics as a tool for transforming biological sciences.
Systems-Level Synthetic Biology for Advanced Biofuel Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruffing, Anne; Jensen, Travis J.; Strickland, Lucas Marshall
2015-03-01
Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcusmore » sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.« less
Mask characterization for CDU budget breakdown in advanced EUV lithography
NASA Astrophysics Data System (ADS)
Nikolsky, Peter; Strolenberg, Chris; Nielsen, Rasmus; Nooitgedacht, Tjitte; Davydova, Natalia; Yang, Greg; Lee, Shawn; Park, Chang-Min; Kim, Insung; Yeo, Jeong-Ho
2012-11-01
As the ITRS Critical Dimension Uniformity (CDU) specification shrinks, semiconductor companies need to maintain a high yield of good wafers per day and a high performance (and hence market value) of finished products. This cannot be achieved without continuous analysis and improvement of on-product CDU as one of the main drivers for process control and optimization with better understanding of main contributors from the litho cluster: mask, process, metrology and scanner. In this paper we will demonstrate a study of mask CDU characterization and its impact on CDU Budget Breakdown (CDU BB) performed for an advanced EUV lithography with 1D and 2D feature cases. We will show that this CDU contributor is one of the main differentiators between well-known ArFi and new EUV CDU budgeting principles. We found that reticle contribution to intrafield CDU should be characterized in a specific way: mask absorber thickness fingerprints play a role comparable with reticle CDU in the total reticle part of the CDU budget. Wafer CD fingerprints, introduced by this contributor, may or may not compensate variations of mask CD's and hence influence on total mask impact on intrafield CDU at the wafer level. This will be shown on 1D and 2D feature examples in this paper. Also mask stack reflectivity variations should be taken into account: these fingerprints have visible impact on intrafield CDs at the wafer level and should be considered as another contributor to the reticle part of EUV CDU budget. We observed also MEEF-through-field fingerprints in the studied EUV cases. Variations of MEEF may also play a role for the total intrafield CDU and may be taken into account for EUV Lithography. We characterized MEEF-through-field for the reviewed features, the results to be discussed in our paper, but further analysis of this phenomenon is required. This comprehensive approach to characterization of the mask part of EUV CDU characterization delivers an accurate and integral CDU Budget Breakdown per product/process and Litho tool. The better understanding of the entire CDU budget for advanced EUVL nodes achieved by Samsung and ASML helps to extend the limits of Moore's Law and to deliver successful implementation of smaller, faster and smarter chips in semiconductor industry.
Computer Simulations of Intrinsically Disordered Proteins
NASA Astrophysics Data System (ADS)
Chong, Song-Ho; Chatterjee, Prathit; Ham, Sihyun
2017-05-01
The investigation of intrinsically disordered proteins (IDPs) is a new frontier in structural and molecular biology that requires a new paradigm to connect structural disorder to function. Molecular dynamics simulations and statistical thermodynamics potentially offer ideal tools for atomic-level characterizations and thermodynamic descriptions of this fascinating class of proteins that will complement experimental studies. However, IDPs display sensitivity to inaccuracies in the underlying molecular mechanics force fields. Thus, achieving an accurate structural characterization of IDPs via simulations is a challenge. It is also daunting to perform a configuration-space integration over heterogeneous structural ensembles sampled by IDPs to extract, in particular, protein configurational entropy. In this review, we summarize recent efforts devoted to the development of force fields and the critical evaluations of their performance when applied to IDPs. We also survey recent advances in computational methods for protein configurational entropy that aim to provide a thermodynamic link between structural disorder and protein activity.
Frontiers of in situ electron microscopy
Zheng, Haimei; Zhu, Yimei; Meng, Shirley Ying
2015-01-01
In situ transmission electron microscopy (TEM) has become an increasingly important tool for materials characterization. It provides key information on the structural dynamics of a material during transformations and the correlation between structure and properties of materials. With the recent advances in instrumentation, including aberration corrected optics, sample environment control, the sample stage, and fast and sensitive data acquisition, in situ TEM characterization has become more and more powerful. In this article, a brief review of the current status and future opportunities of in situ TEM is included. It also provides an introduction to the six articles covered by inmore » this issue of MRS Bulletin explore the frontiers of in situ electron microscopy, including liquid and gas environmental TEM, dynamic four-dimensional TEM, nanomechanics, ferroelectric domain switching studied by in situ TEM, and state-of-the-art atomic imaging of light elements (i.e., carbon atoms) and individual defects.« less
New technologies accelerate the exploration of non-coding RNAs in horticultural plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Degao; Mewalal, Ritesh; Hu, Rongbin
Non-coding RNAs (ncRNAs), that is, RNAs not translated into proteins, are crucial regulators of a variety of biological processes in plants. While protein-encoding genes have been relatively well-annotated in sequenced genomes, accounting for a small portion of the genome space in plants, the universe of plant ncRNAs is rapidly expanding. Recent advances in experimental and computational technologies have generated a great momentum for discovery and functional characterization of ncRNAs. Here we summarize the classification and known biological functions of plant ncRNAs, review the application of next-generation sequencing (NGS) technology and ribosome profiling technology to ncRNA discovery in horticultural plants andmore » discuss the application of new technologies, especially the new genome-editing tool clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems, to functional characterization of plant ncRNAs.« less
Genome Editing for the Study of Cardiovascular Diseases.
Chadwick, Alexandra C; Musunuru, Kiran
2017-03-01
The opportunities afforded through the recent advent of genome-editing technologies have allowed investigators to more easily study a number of diseases. The advantages and limitations of the most prominent genome-editing technologies are described in this review, along with potential applications specifically focused on cardiovascular diseases. The recent genome-editing tools using programmable nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), have rapidly been adapted to manipulate genes in a variety of cellular and animal models. A number of recent cardiovascular disease-related publications report cases in which specific mutations are introduced into disease models for functional characterization and for testing of therapeutic strategies. Recent advances in genome-editing technologies offer new approaches to understand and treat diseases. Here, we discuss genome editing strategies to easily characterize naturally occurring mutations and offer strategies with potential clinical relevance.
Tools for phospho- and glycoproteomics of plasma membranes.
Wiśniewski, Jacek R
2011-07-01
Analysis of plasma membrane proteins and their posttranslational modifications is considered as important for identification of disease markers and targets for drug treatment. Due to their insolubility in water, studying of plasma membrane proteins using mass spectrometry has been difficult for a long time. Recent technological developments in sample preparation together with important improvements in mass spectrometric analysis have facilitated analysis of these proteins and their posttranslational modifications. Now, large scale proteomic analyses allow identification of thousands of membrane proteins from minute amounts of sample. Optimized protocols for affinity enrichment of phosphorylated and glycosylated peptides have set new dimensions in the depth of characterization of these posttranslational modifications of plasma membrane proteins. Here, I summarize recent advances in proteomic technology for the characterization of the cell surface proteins and their modifications. In the focus are approaches allowing large scale mapping rather than analytical methods suitable for studying individual proteins or non-complex mixtures.
Thinking about Bacillus subtilis as a multicellular organism.
Aguilar, Claudio; Vlamakis, Hera; Losick, Richard; Kolter, Roberto
2007-12-01
Initial attempts to use colony morphogenesis as a tool to investigate bacterial multicellularity were limited by the fact that laboratory strains often have lost many of their developmental properties. Recent advances in elucidating the molecular mechanisms underlying colony morphogenesis have been made possible through the use of undomesticated strains. In particular, Bacillus subtilis has proven to be a remarkable model system to study colony morphogenesis because of its well-characterized developmental features. Genetic screens that analyze mutants defective in colony morphology have led to the discovery of an intricate regulatory network that controls the production of an extracellular matrix. This matrix is essential for the development of complex colony architecture characterized by aerial projections that serve as preferential sites for sporulation. While much progress has been made, the challenge for future studies will be to determine the underlying mechanisms that regulate development such that differentiation occurs in a spatially and temporally organized manner.
New technologies accelerate the exploration of non-coding RNAs in horticultural plants
Liu, Degao; Mewalal, Ritesh; Hu, Rongbin; Tuskan, Gerald A; Yang, Xiaohan
2017-01-01
Non-coding RNAs (ncRNAs), that is, RNAs not translated into proteins, are crucial regulators of a variety of biological processes in plants. While protein-encoding genes have been relatively well-annotated in sequenced genomes, accounting for a small portion of the genome space in plants, the universe of plant ncRNAs is rapidly expanding. Recent advances in experimental and computational technologies have generated a great momentum for discovery and functional characterization of ncRNAs. Here we summarize the classification and known biological functions of plant ncRNAs, review the application of next-generation sequencing (NGS) technology and ribosome profiling technology to ncRNA discovery in horticultural plants and discuss the application of new technologies, especially the new genome-editing tool clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems, to functional characterization of plant ncRNAs. PMID:28698797
(Bayesian) Inference for X-ray Timing
NASA Astrophysics Data System (ADS)
Huppenkothen, Daniela
2016-07-01
Fourier techniques have been incredibly successful in describing variability of X-ray binaries (XRBs) and Active Galactic Nuclei (AGN). The detection and characterization of both broadband noise components and quasi-periodic oscillations as well as their behavior in the context of spectral changes during XRB outbursts has become an important tool for studying the physical processes of accretion and ejection in these systems. In this talk, I will review state-of-the-art techniques for characterizing variability in compact objects and show how these methods help us understand the causes of the observed variability and how we may use it to probe fundamental physics. Despite numerous successes, however, it has also become clear that many scientific questions cannot be answered with traditional timing methods alone. I will therefore also present recent advances, some in the time domain like CARMA, to modeling variability with generative models and discuss where these methods might lead us in the future.
Molecules to modeling: Toxoplasma gondii oocysts at the human–animal–environment interface
VanWormer, Elizabeth; Fritz, Heather; Shapiro, Karen; Mazet, Jonna A.K.; Conrad, Patricia A.
2013-01-01
Environmental transmission of extremely resistant Toxoplasma gondii oocysts has resulted in infection of diverse species around the world, leading to severe disease and deaths in human and animal populations. This review explores T. gondii oocyst shedding, survival, and transmission, emphasizing the importance of linking laboratory and landscape from molecular characterization of oocysts to watershed-level models of oocyst loading and transport in terrestrial and aquatic systems. Building on discipline-specific studies, a One Health approach incorporating tools and perspectives from diverse fields and stakeholders has contributed to an advanced understanding of T. gondii and is addressing transmission at the rapidly changing human–animal–environment interface. PMID:23218130
The Wide-Field Imaging Interferometry Testbed (WIIT): Recent Progress and Results
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.; Frey, Bradley J.; Leisawitz, David T.; Lyon, Richard G.; Maher, Stephen F.; Martino, Anthony J.
2008-01-01
Continued research with the Wide-Field Imaging Interferometry Testbed (WIIT) has achieved several important milestones. We have moved WIIT into the Advanced Interferometry and Metrology (AIM) Laboratory at Goddard, and have characterized the testbed in this well-controlled environment. The system is now completely automated and we are in the process of acquiring large data sets for analysis. In this paper, we discuss these new developments and outline our future research directions. The WIIT testbed, combined with new data analysis techniques and algorithms, provides a demonstration of the technique of wide-field interferometric imaging, a powerful tool for future space-borne interferometers.
Reusable Metallic Thermal Protection Systems Development
NASA Technical Reports Server (NTRS)
Blosser, Max L.; Martin, Carl J.; Daryabeigi, Kamran; Poteet, Carl C.
1998-01-01
Metallic thermal protection systems (TPS) are being developed to help meet the ambitious goals of future reusable launch vehicles. Recent metallic TPS development efforts at NASA Langley Research Center are described. Foil-gage metallic honeycomb coupons, representative of the outer surface of metallic TPS were subjected to low speed impact, hypervelocity impact, rain erosion, and subsequent arcjet exposure. TPS panels were subjected to thermal vacuum, acoustic, and hot gas flow testing. Results of the coupon and panel tests are presented. Experimental and analytical tools are being developed to characterize and improve internal insulations. Masses of metallic TPS and advanced ceramic tile and blanket TPS concepts are compared for a wide range of parameters.
Campos, João Henrique; Soares, Rodrigo Pedro; Ribeiro, Kleber; Andrade, André Cronemberger; Batista, Wagner Luiz; Torrecilhas, Ana Claudia
2015-01-01
Almost all cells and organisms release membrane structures containing proteins, lipids, and nucleic acids called extracellular vesicles (EVs), which have a wide range of functions concerning intercellular communication and signaling events. Recently, the characterization and understanding of their biological role have become a main research area due to their potential role in vaccination, as biomarkers antigens, early diagnostic tools, and therapeutic applications. Here, we will overview the recent advances and studies of Evs shed by tumor cells, bacteria, parasites, and fungi, focusing on their inflammatory role and their potential use in vaccination and diagnostic of cancer and infectious diseases.
Campos, João Henrique; Soares, Rodrigo Pedro; Ribeiro, Kleber; Cronemberger Andrade, André; Batista, Wagner Luiz; Torrecilhas, Ana Claudia
2015-01-01
Almost all cells and organisms release membrane structures containing proteins, lipids, and nucleic acids called extracellular vesicles (EVs), which have a wide range of functions concerning intercellular communication and signaling events. Recently, the characterization and understanding of their biological role have become a main research area due to their potential role in vaccination, as biomarkers antigens, early diagnostic tools, and therapeutic applications. Here, we will overview the recent advances and studies of Evs shed by tumor cells, bacteria, parasites, and fungi, focusing on their inflammatory role and their potential use in vaccination and diagnostic of cancer and infectious diseases. PMID:26380326
An integrated modeling and design tool for advanced optical spacecraft
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
1992-01-01
Consideration is given to the design and status of the Integrated Modeling of Optical Systems (IMOS) tool and to critical design issues. A multidisciplinary spacecraft design and analysis tool with support for structural dynamics, controls, thermal analysis, and optics, IMOS provides rapid and accurate end-to-end performance analysis, simulations, and optimization of advanced space-based optical systems. The requirements for IMOS-supported numerical arrays, user defined data structures, and a hierarchical data base are outlined, and initial experience with the tool is summarized. A simulation of a flexible telescope illustrates the integrated nature of the tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jill S. Buckley; Norman R. Morrow; Chris Palmer
2003-02-01
The questions of reservoir wettability have been approached in this project from three directions. First, we have studied the properties of crude oils that contribute to wetting alteration in a reservoir. A database of more than 150 different crude oil samples has been established to facilitate examination of the relationships between crude oil chemical and physical properties and their influence on reservoir wetting. In the course of this work an improved SARA analysis technique was developed and major advances were made in understanding asphaltene stability including development of a thermodynamic Asphaltene Solubility Model (ASM) and empirical methods for predicting themore » onset of instability. The CO-Wet database is a resource that will be used to guide wettability research in the future. The second approach is to study crude oil/brine/rock interactions on smooth surfaces. Contact angle measurements were made under controlled conditions on mica surfaces that had been exposed to many of the oils in the CO-Wet database. With this wealth of data, statistical tests can now be used to examine the relationships between crude oil properties and the tendencies of those oils to alter wetting. Traditionally, contact angles have been used as the primary wetting assessment tool on smooth surfaces. A new technique has been developed using an atomic forces microscope that adds a new dimension to the ability to characterize oil-treated surfaces. Ultimately we aim to understand wetting in porous media, the focus of the third approach taken in this project. Using oils from the CO-Wet database, experimental advances have been made in scaling the rate of imbibition, a sensitive measure of core wetting. Application of the scaling group to mixed-wet systems has been demonstrated for a range of core conditions. Investigations of imbibition in gas/liquid systems provided the motivation for theoretical advances as well. As a result of this project we have many new tools for studying wetting at microscopic and macroscopic scales and a library of well-characterized fluids for use in studies of crude oil/brine/rock interactions.« less
Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Mike; Cipiti, Ben; Demuth, Scott Francis
2017-01-30
The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less
Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durkee, Joe W.; Cipiti, Ben; Demuth, Scott Francis
The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less
Status of the Monolithic Suspensions for Advanced Virgo
NASA Astrophysics Data System (ADS)
Travasso, F.; Virgo Collaboration
2018-02-01
Successfully implemented in GEO and Virgo+, the monolithic suspensions are one of the most important upgrades in the second generation of gravitational wave interferometric detectors, including Advanced LIGO (aLIGO) and Advanced Virgo (AdV). Characterized by a very low thermal noise, monolithic suspensions are essential for improving the interferometers sensitivity at low frequencies (10-100Hz). In Advanced Virgo their installation was delayed because of a contamination problem in the vacuum system: dust produced by scroll pumps was injected in the main vacuum chambers during the venting processes, damaging the fibers and ultimately causing their repeated failure. The effort to explain and resolve this issue was useful to further confirm the suspensions’ reliability and our control on the production process. Moreover, we developed and implemented new tools and procedures to certify each part of the monolithic suspensions. In the meanwhile, in order to join aLIGO during its second Observation Run (O2), a temporary steel suspension was implemented, based on the initial Virgo design. That solution allowed us to contribute to the first three-detector observation of a gravitational wave (GW) ([1]), and to the first observation of a coalescing neutron star binary ([2]) In the near future the monolithic suspensions will be reinstalled along with additional upgrades of Virgo.
Integrated Measurements and Characterization | Photovoltaic Research | NREL
Integrated Measurements and Characterization cluster tool offers powerful capabilities with integrated tools more details on these capabilities. Basic Cluster Tool Capabilities Sample Handling Ultra-high-vacuum connections, it can be interchanged between tools, such as the Copper Indium Gallium Diselenide cluster tool
Design and Characterization of an Exoskeleton for Perturbing the Knee During Gait.
Tucker, Michael R; Shirota, Camila; Lambercy, Olivier; Sulzer, James S; Gassert, Roger
2017-10-01
An improved understanding of mechanical impedance modulation in human joints would provide insights about the neuromechanics underlying functional movements. Experimental estimation of impedance requires specialized tools with highly reproducible perturbation dynamics and reliable measurement capabilities. This paper presents the design and mechanical characterization of the ETH Knee Perturbator: an actuated exoskeleton for perturbing the knee during gait. A novel wearable perturbation device was developed based on specific experimental objectives. Bench-top tests validated the device's torque limiting capability and characterized the time delays of the on-board clutch. Further tests demonstrated the device's ability to perform system identification on passive loads with static initial conditions. Finally, the ability of the device to consistently perturb human gait was evaluated through a pilot study on three unimpaired subjects. The ETH Knee Perturbator is capable of identifying mass-spring systems within 15% accuracy, accounting for over 95% of the variance in the observed torque in 10 out of 16 cases. Five-degree extension and flexion perturbations were executed on human subjects with an onset timing precision of 2.52% of swing phase duration and a rise time of 36.5 ms. The ETH Knee Perturbator can deliver safe, precisely timed, and controlled perturbations, which is a prerequisite for the estimation of knee joint impedance during gait. Tools such as this can enhance models of neuromuscular control, which may improve rehabilitative outcomes following impairments affecting gait and advance the design and control of assistive devices.
Quantitative morphometrical characterization of human pronuclear zygotes.
Beuchat, A; Thévenaz, P; Unser, M; Ebner, T; Senn, A; Urner, F; Germond, M; Sorzano, C O S
2008-09-01
Identification of embryos with high implantation potential remains a challenge in in vitro fertilization (IVF). Subjective pronuclear (PN) zygote scoring systems have been developed for that purpose. The aim of this work was to provide a software tool that enables objective measuring of morphological characteristics of the human PN zygote. A computer program was created to analyse zygote images semi-automatically, providing precise morphological measurements. The accuracy of this approach was first validated by comparing zygotes from two different IVF centres with computer-assisted measurements or subjective scoring. Computer-assisted measurement and subjective scoring were then compared for their ability to classify zygotes with high and low implantation probability by using a linear discriminant analysis. Zygote images coming from the two IVF centres were analysed with the software, resulting in a series of precise measurements of 24 variables. Using subjective scoring, the cytoplasmic halo was the only feature which was significantly different between the two IVF centres. Computer-assisted measurements revealed significant differences between centres in PN centring, PN proximity, cytoplasmic halo and features related to nucleolar precursor bodies distribution. The zygote classification error achieved with the computer-assisted measurements (0.363) was slightly inferior to that of the subjective ones (0.393). A precise and objective characterization of the morphology of human PN zygotes can be achieved by the use of an advanced image analysis tool. This computer-assisted analysis allows for a better morphological characterization of human zygotes and can be used for classification.
Jiang, Likun; You, Weiwei; Zhang, Xiaojun; Xu, Jian; Jiang, Yanliang; Wang, Kai; Zhao, Zixia; Chen, Baohua; Zhao, Yunfeng; Mahboob, Shahid; Al-Ghanim, Khalid A; Ke, Caihuan; Xu, Peng
2016-02-01
The small abalone (Haliotis diversicolor) is one of the most important aquaculture species in East Asia. To facilitate gene cloning and characterization, genome analysis, and genetic breeding of it, we constructed a large-insert bacterial artificial chromosome (BAC) library, which is an important genetic tool for advanced genetics and genomics research. The small abalone BAC library includes 92,610 clones with an average insert size of 120 Kb, equivalent to approximately 7.6× of the small abalone genome. We set up three-dimensional pools and super pools of 18,432 BAC clones for target gene screening using PCR method. To assess the approach, we screened 12 target genes in these 18,432 BAC clones and identified 16 positive BAC clones. Eight positive BAC clones were then sequenced and assembled with the next generation sequencing platform. The assembled contigs representing these 8 BAC clones spanned 928 Kb of the small abalone genome, providing the first batch of genome sequences for genome evaluation and characterization. The average GC content of small abalone genome was estimated as 40.33%. A total of 21 protein-coding genes, including 7 target genes, were annotated into the 8 BACs, which proved the feasibility of PCR screening approach with three-dimensional pools in small abalone BAC library. One hundred fifty microsatellite loci were also identified from the sequences for marker development in the future. The BAC library and clone pools provided valuable resources and tools for genetic breeding and conservation of H. diversicolor.
Testing piezoelectric sensors in a nuclear reactor environment
NASA Astrophysics Data System (ADS)
Reinhardt, Brian T.; Suprock, Andy; Tittmann, Bernhard
2017-02-01
Several Department of Energy Office of Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development (FCRD), Advanced Reactor Concepts (ARC), Light Water Reactor Sustainability, and Next Generation Nuclear Power Plants (NGNP), are investigating new fuels, materials, and inspection paradigms for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials during irradiation. In DOE-NE's FCRD program, ultrasonic based technology was identified as a key approach that should be pursued to obtain the high-fidelity, high-accuracy data required to characterize the behavior and performance of new candidate fuels and structural materials during irradiation testing. The radiation, high temperatures, and pressure can limit the available tools and characterization methods. In this work piezoelectric transducers capable of making these measurements are developed. Specifically, three piezoelectric sensors (Bismuth Titanate, Aluminum Nitride, and Zinc Oxide) are tested in the Massachusetts Institute of Technology Research reactor to a fast neutron fluence of 8.65×1020 nf/cm2. It is demonstrated that Bismuth Titanate is capable of transduction up to 5 × 1020 nf/cm2, Zinc Oxide is capable of transduction up to at least 6.27 × 1020 nf/cm2, and Aluminum Nitride is capable of transduction up to at least 8.65 × 1020 nf/cm2.
Deluyker, Dorien; Evens, Lize; Bito, Virginie
2017-09-01
Advanced glycation end products (AGEs) are a group of proteins and lipids becoming glycated and oxidized after persistent contact with reducing sugars or short-chain aldehydes with amino group and/or high degree of oxidative stress. The accumulation of AGEs in the body is a natural process that occurs with senescence, when the turnover rate of proteins is reduced. However, increased circulating AGEs have been described to arise at early lifetime and are associated with adverse outcome and survival, in particular in settings of cardiovascular diseases. AGEs contribute to the development of cardiac dysfunction by two major mechanisms: cross-linking of proteins or binding to their cell surface receptor. Recently, growing evidence shows that high-molecular weight AGEs (HMW-AGEs) might be as important as the characterized low-molecular weight AGEs (LMW-AGEs). Here, we point out the targets of AGEs in the heart and the mechanisms that lead to heart failure with focus on the difference between LMW-AGEs and the less characterized HMW-AGEs. As such, this review is a compilation of relevant papers in the form of a useful resource tool for researchers who want to further investigate the role of HMW-AGEs on cardiac disorders and need a solid base to start on this specific topic.
Strategies for target identification of antimicrobial natural products.
Farha, Maya A; Brown, Eric D
2016-05-04
Covering: 2000 to 2015Despite a pervasive decline in natural product research at many pharmaceutical companies over the last two decades, natural products have undeniably been a prolific and unsurpassed source for new lead antibacterial compounds. Due to their inherent complexity, natural extracts face several hurdles in high-throughout discovery programs, including target identification. Target identification and validation is a crucial process for advancing hits through the discovery pipeline, but has remained a major bottleneck. In the case of natural products, extremely low yields and limited compound supply further impede the process. Here, we review the wealth of target identification strategies that have been proposed and implemented for the characterization of novel antibacterials. Traditionally, these have included genomic and biochemical-based approaches, which, in recent years, have been improved with modern-day technology and better honed for natural product discovery. Further, we discuss the more recent innovative approaches for uncovering the target of new antibacterial natural products, which have resulted from modern advances in chemical biology tools. Finally, we present unique screening platforms implemented to streamline the process of target identification. The different innovative methods to respond to the challenge of characterizing the mode of action for antibacterial natural products have cumulatively built useful frameworks that may advocate a renovated interest in natural product drug discovery programs.
EUV microexposures at the ALS using the 0.3-NA MET projectionoptics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naulleau, Patrick; Goldberg, Kenneth A.; Anderson, Erik
2005-09-01
The recent development of high numerical aperture (NA) EUV optics such as the 0.3-NA Micro Exposure Tool (MET) optic has given rise to a new class of ultra-high resolution microexposure stations. Once such printing station has been developed and implemented at Lawrence Berkeley National Laboratory's Advanced Light Source. This flexible printing station utilizes a programmable coherence illuminator providing real-time pupil-fill control for advanced EUV resist and mask development. The Berkeley exposure system programmable illuminator enables several unique capabilities. Using dipole illumination out to {sigma}=1, the Berkeley tool supports equal-line-space printing down to 12 nm, well beyond the capabilities of similarmore » tools. Using small-sigma illumination combined with the central obscuration of the MET optic enables the system to print feature sizes that are twice as small as those coded on the mask. In this configuration, the effective 10x-demagnification for equal lines and spaces reduces the mask fabrication burden for ultra-high-resolution printing. The illuminator facilitates coherence studies such as the impact of coherence on line-edge roughness (LER) and flare. Finally the illuminator enables novel print-based aberration monitoring techniques as described elsewhere in these proceedings. Here we describe the capabilities of the new MET printing station and present system characterization results. Moreover, we present the latest printing results obtained in experimental resists. Limited by the availability of high-resolution photoresists, equal line-space printing down to 25 nm has been demonstrated as well as isolated line printing down to 29 nm with an LER of approaching 3 nm.« less
Microbial ecology to manage processes in environmental biotechnology.
Rittmann, Bruce E
2006-06-01
Microbial ecology and environmental biotechnology are inherently tied to each other. The concepts and tools of microbial ecology are the basis for managing processes in environmental biotechnology; and these processes provide interesting ecosystems to advance the concepts and tools of microbial ecology. Revolutionary advancements in molecular tools to understand the structure and function of microbial communities are bolstering the power of microbial ecology. A push from advances in modern materials along with a pull from a societal need to become more sustainable is enabling environmental biotechnology to create novel processes. How do these two fields work together? Five principles illuminate the way: (i) aim for big benefits; (ii) develop and apply more powerful tools to understand microbial communities; (iii) follow the electrons; (iv) retain slow-growing biomass; and (v) integrate, integrate, integrate.
Exploitation of molecular mobilities for advanced organic optoelectronic and photonic nano-materials
NASA Astrophysics Data System (ADS)
Gray, Tomoko O.
Electro-optically active organic materials have shown great potential in advanced technologies such as ultrafast electro-optical switches for broadband communication, light-emitting diodes, and photovoltaic cells. Currently, the maturity of chemical synthesis enables a sophisticated integration of the active elements into complex macromolecules. Also, the structure-property relationships of the isolated single electrically/optically active elements are well established. Unfortunately, such correlations involving single molecule are not applicable to complex unstructured condensed systems, in which unique mesoscale properties and complex dynamics of super-/supra-molecular structures are present. Our current challenge arises, in particular, from a deficiency of appropriate characterization tools that close the gap between phenomenological measurements and theoretical models. This work addresses submolecular mobilities relevant for opto-electronic functionalities of photoluminescent polymers and non-linear optical (NLO) materials. Thereby, I will introduce novel nanoscale thermomechanical characterization tools that are based on scanning force microscopy. From nanoscale thermomechanical measurements sub-/super-molecular mobilities of novel optoelectronic materials can be inferred and to some degree controlled. For instance, we have explored interfacial constraints as a engineering tool to control molecular mobility. This will be illustrated with electroluminescent polymers, which are prone to undesired pi-pi aggregation due to the rod-like structure---intrinsic to all conjugated polymers. The nanoscale confinement is used to reduced chain mobility, and thus, hinders undesired aggregation, and consequently, yields superior spectral stability. From the nanomaterial design perspective, I will also address mobility control with targeted molecular designs. This involves two classes of novel NLO materials, side-chain dendronized polymers and self-assembling molecular glasses. The side-chain dendronized polymers are, due to the structural complexity, self-constrained systems. Our thermomechanical investigations identified that a local relaxation mode associated to the NLO side-chain is the critical design parameter in yielding high mobility to the active element. Relaxation processes of the self-assembling molecular glasses are discussed from a thermodynamic perspective involving both enthalpic and entropic contributions, considering the very special nature of interactions for the NLO molecular glasses, i.e., the formation and dissociation of phenyl/perfluorophenyl quadrupol pairs.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
Advances in bioluminescence imaging: new probes from old recipes.
Yao, Zi; Zhang, Brendan S; Prescher, Jennifer A
2018-06-04
Bioluminescent probes are powerful tools for visualizing biology in live tissues and whole animals. Recent years have seen a surge in the number of new luciferases, luciferins, and related tools available for bioluminescence imaging. Many were crafted using classic methods of optical probe design and engineering. Here we highlight recent advances in bioluminescent tool discovery and development, along with applications of the probes in cells, tissues, and organisms. Collectively, these tools are improving in vivo imaging capabilities and bolstering new research directions. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
Advanced Tools Webinar Series Presents: Regulatory Issues and Case Studies of Advanced Tools
U.S. EPA has released A Guide for Assessing Biodegradation and Source Identification of Organic Ground Water Contaminants using Compound Specific Isotope Analysis (CSIA) [EPA 600/R-08/148 | December 2008 | www.epa.gov/ada]. The Guide provides recommendations for sample collecti...
Lopez, Xavier Moles; Debeir, Olivier; Maris, Calliope; Rorive, Sandrine; Roland, Isabelle; Saerens, Marco; Salmon, Isabelle; Decaestecker, Christine
2012-09-01
Whole-slide scanners allow the digitization of an entire histological slide at very high resolution. This new acquisition technique opens a wide range of possibilities for addressing challenging image analysis problems, including the identification of tissue-based biomarkers. In this study, we use whole-slide scanner technology for imaging the proliferating activity patterns in tumor slides based on Ki67 immunohistochemistry. Faced with large images, pathologists require tools that can help them identify tumor regions that exhibit high proliferating activity, called "hot-spots" (HSs). Pathologists need tools that can quantitatively characterize these HS patterns. To respond to this clinical need, the present study investigates various clustering methods with the aim of identifying Ki67 HSs in whole tumor slide images. This task requires a method capable of identifying an unknown number of clusters, which may be highly variable in terms of shape, size, and density. We developed a hybrid clustering method, referred to as Seedlink. Compared to manual HS selections by three pathologists, we show that Seedlink provides an efficient way of detecting Ki67 HSs and improves the agreement among pathologists when identifying HSs. Copyright © 2012 International Society for Advancement of Cytometry.
Visualizing chemical functionality in plant cell walls
Zeng, Yining; Himmel, Michael E.; Ding, Shi-You
2017-11-30
Understanding plant cell wall cross-linking chemistry and polymeric architecture is key to the efficient utilization of biomass in all prospects from rational genetic modification to downstream chemical and biological conversion to produce fuels and value chemicals. In fact, the bulk properties of cell wall recalcitrance are collectively determined by its chemical features over a wide range of length scales from tissue, cellular to polymeric architectures. Microscopic visualization of cell walls from the nanometer to the micrometer scale offers an in situ approach to study their chemical functionality considering its spatial and chemical complexity, particularly the capabilities of characterizing biomass non-destructivelymore » and in real-time during conversion processes. Microscopic characterization has revealed heterogeneity in the distribution of chemical features, which would otherwise be hidden in bulk analysis. Key microscopic features include cell wall type, wall layering, and wall composition - especially cellulose and lignin distributions. Microscopic tools, such as atomic force microscopy, stimulated Raman scattering microscopy, and fluorescence microscopy, have been applied to investigations of cell wall structure and chemistry from the native wall to wall treated by thermal chemical pretreatment and enzymatic hydrolysis. While advancing our current understanding of plant cell wall recalcitrance and deconstruction, microscopic tools with improved spatial resolution will steadily enhance our fundamental understanding of cell wall function.« less
Visualizing chemical functionality in plant cell walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Yining; Himmel, Michael E.; Ding, Shi-You
Understanding plant cell wall cross-linking chemistry and polymeric architecture is key to the efficient utilization of biomass in all prospects from rational genetic modification to downstream chemical and biological conversion to produce fuels and value chemicals. In fact, the bulk properties of cell wall recalcitrance are collectively determined by its chemical features over a wide range of length scales from tissue, cellular to polymeric architectures. Microscopic visualization of cell walls from the nanometer to the micrometer scale offers an in situ approach to study their chemical functionality considering its spatial and chemical complexity, particularly the capabilities of characterizing biomass non-destructivelymore » and in real-time during conversion processes. Microscopic characterization has revealed heterogeneity in the distribution of chemical features, which would otherwise be hidden in bulk analysis. Key microscopic features include cell wall type, wall layering, and wall composition - especially cellulose and lignin distributions. Microscopic tools, such as atomic force microscopy, stimulated Raman scattering microscopy, and fluorescence microscopy, have been applied to investigations of cell wall structure and chemistry from the native wall to wall treated by thermal chemical pretreatment and enzymatic hydrolysis. While advancing our current understanding of plant cell wall recalcitrance and deconstruction, microscopic tools with improved spatial resolution will steadily enhance our fundamental understanding of cell wall function.« less
Visualizing chemical functionality in plant cell walls.
Zeng, Yining; Himmel, Michael E; Ding, Shi-You
2017-01-01
Understanding plant cell wall cross-linking chemistry and polymeric architecture is key to the efficient utilization of biomass in all prospects from rational genetic modification to downstream chemical and biological conversion to produce fuels and value chemicals. In fact, the bulk properties of cell wall recalcitrance are collectively determined by its chemical features over a wide range of length scales from tissue, cellular to polymeric architectures. Microscopic visualization of cell walls from the nanometer to the micrometer scale offers an in situ approach to study their chemical functionality considering its spatial and chemical complexity, particularly the capabilities of characterizing biomass non-destructively and in real-time during conversion processes. Microscopic characterization has revealed heterogeneity in the distribution of chemical features, which would otherwise be hidden in bulk analysis. Key microscopic features include cell wall type, wall layering, and wall composition-especially cellulose and lignin distributions. Microscopic tools, such as atomic force microscopy, stimulated Raman scattering microscopy, and fluorescence microscopy, have been applied to investigations of cell wall structure and chemistry from the native wall to wall treated by thermal chemical pretreatment and enzymatic hydrolysis. While advancing our current understanding of plant cell wall recalcitrance and deconstruction, microscopic tools with improved spatial resolution will steadily enhance our fundamental understanding of cell wall function.
Structural systems pharmacology: a new frontier in discovering novel drug targets.
Tan, Hepan; Ge, Xiaoxia; Xie, Lei
2013-08-01
The modern target-based drug discovery process, characterized by the one-drug-one-gene paradigm, has been of limited success. In contrast, phenotype-based screening produces thousands of active compounds but gives no hint as to what their molecular targets are or which ones merit further research. This presents a question: What is a suitable target for an efficient and safe drug? In this paper, we argue that target selection should take into account the proteome-wide energetic and kinetic landscape of drug-target interactions, as well as their cellular and organismal consequences. We propose a new paradigm of structural systems pharmacology to deconvolute the molecular targets of successful drugs as well as to identify druggable targets and their drug-like binders. Here we face two major challenges in structural systems pharmacology: How do we characterize and analyze the structural and energetic origins of drug-target interactions on a proteome scale? How do we correlate the dynamic molecular interactions to their in vivo activity? We will review recent advances in developing new computational tools for biophysics, bioinformatics, chemoinformatics, and systems biology related to the identification of genome-wide target profiles. We believe that the integration of these tools will realize structural systems pharmacology, enabling us to both efficiently develop effective therapeutics for complex diseases and combat drug resistance.
A survey of tools for variant analysis of next-generation genome sequencing data
Pabinger, Stephan; Dander, Andreas; Fischer, Maria; Snajder, Rene; Sperk, Michael; Efremova, Mirjana; Krabichler, Birgit; Speicher, Michael R.; Zschocke, Johannes
2014-01-01
Recent advances in genome sequencing technologies provide unprecedented opportunities to characterize individual genomic landscapes and identify mutations relevant for diagnosis and therapy. Specifically, whole-exome sequencing using next-generation sequencing (NGS) technologies is gaining popularity in the human genetics community due to the moderate costs, manageable data amounts and straightforward interpretation of analysis results. While whole-exome and, in the near future, whole-genome sequencing are becoming commodities, data analysis still poses significant challenges and led to the development of a plethora of tools supporting specific parts of the analysis workflow or providing a complete solution. Here, we surveyed 205 tools for whole-genome/whole-exome sequencing data analysis supporting five distinct analytical steps: quality assessment, alignment, variant identification, variant annotation and visualization. We report an overview of the functionality, features and specific requirements of the individual tools. We then selected 32 programs for variant identification, variant annotation and visualization, which were subjected to hands-on evaluation using four data sets: one set of exome data from two patients with a rare disease for testing identification of germline mutations, two cancer data sets for testing variant callers for somatic mutations, copy number variations and structural variations, and one semi-synthetic data set for testing identification of copy number variations. Our comprehensive survey and evaluation of NGS tools provides a valuable guideline for human geneticists working on Mendelian disorders, complex diseases and cancers. PMID:23341494
Neutron and X-Ray Diffraction Studies of Advanced Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barabash, Rozaliya; Tiley, Jaimie; Wang, Yandong
2010-01-01
The selection of articles in the special topic 'Neutron and X-Ray Studies of Advanced Materials' is based on the materials presented during the TMS 2009 annual meeting in San Francisco, CA, February 15-19, 2009. The development of ultrabrilliant third-generation synchrotron X-ray sources, together with advances in X-ray optics, has created intense X-ray microbeams, which provide the best opportunities for in-depth understanding of mechanical behavior in a broad spectrum of materials. Important applications include ultrasensitive elemental detection by X-ray fluorescence/absorption and microdiffraction to identify phase and strain with submicrometer spatial resolution. X-ray microdiffraction is a particularly exciting application compared with alternativemore » probes of crystalline structure, orientation, and strain. X-ray microdiffraction is nondestructive with good strain resolution, competitive or superior spatial resolution in thick samples, and with the ability to probe below the sample surface. Moreover, the high-energy X-ray diffraction technique provides an effective tool for characterizing the mechanical and functional behavior in various environments (temperature, stress, and magnetic field). At the same time, some neutron diffraction instruments constructed mainly for the purpose of engineering applications can be found at nearly all neutron facilities. The first generation-dedicated instruments designed for studying in-situ mechanical behavior have been commissioned and used, and industrial standards for reliable and repeatable measurements have been developed. Furthermore, higher penetration of neutron beams into most engineering materials provides direct measurements on the distribution of various stresses (i.e., types I, II, and III) beneath the surface up to several millimeters, even tens of millimeters for important industrial components. With X-ray and neutron measurements, it is possible to characterize material behavior at different length scales. It is predicted that the application of these techniques, in combination with theoretical simulations and numerical modeling, will lead to major breakthroughs in materials science in the foreseeable future, which will contribute to the development of materials technology and industrial innovation. Specifically, the use of these techniques provides bulk material properties that further augment new characterization tools including the increased use of atom probe tomography and high-resolution transmission electron microscopy systems. The combination of these techniques greatly assists the material property models that address multi-length-scale mechanisms. Different applications of diffuse scattering for understanding the fundamental materials properties are illustrated in the articles of Welberry et al., Goossens and Welberry, Campbell, Abe et al., Gilles et al., and Zhang et al. Analysis of thin films and two-dimensional structures is described in the articles of Gramlich et al., Brock et al., Vigliante et al., Kuzel et al., and Davydok et al. Recent advances in the line profile analysis are represented by the the articles of Scardi et al., Ungar et al., and Woo et al. Characterization of modern alloys is presented by the articles of Wollmershauser et al., Eidenberger et al., Garlea et al., Jia et al., Soulami et al., Wilson et al., and Wang et al. The collected articles are written by different scientific X-ray and neutron research groups. They represent a general trend in the development and application of diffraction techniques all over the world.« less
Martirosov, Amber Lanae; Michael, Angela; McCarty, Melissa; Bacon, Opal; DiLodovico, John R; Jantz, Arin; Kostoff, Diana; MacDonald, Nancy C; Mikulandric, Nancy; Neme, Klodiana; Sulejmani, Nimisha; Summers, Bryant B
2018-05-29
The use of the ASHP Ambulatory Care Self-Assessment Tool to advance pharmacy practice at 8 ambulatory care clinics of a large academic medical center is described. The ASHP Ambulatory Care Self-Assessment Tool was developed to help ambulatory care pharmacists assess how their current practices align with the ASHP Practice Advancement Initiative. The Henry Ford Hospital Ambulatory Care Advisory Group (ACAG) opted to use the "Practitioner Track" sections of the tool to assess pharmacy practices within each of 8 ambulatory care clinics individually. The responses to self-assessment items were then compiled and discussed by ACAG members. The group identified best practices and ways to implement action items to advance ambulatory care practice throughout the institution. Three recommended action items were common to most clinics: (1) identify and evaluate solutions to deliver financially viable services, (2) develop technology to improve patient care, and (3) optimize the role of pharmacy technicians and support personnel. The ACAG leadership met with pharmacy administrators to discuss how action items that were both feasible and deemed likely to have a medium-to-high impact aligned with departmental goals and used this information to develop an ambulatory care strategic plan. This process informed and enabled initiatives to advance ambulatory care pharmacy practice within the system. The ASHP Ambulatory Care Self-Assessment Tool was useful in identifying opportunities for practice advancement in a large academic medical center. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Development of Advanced Light-Duty Powertrain and Hybrid Analysis Tool (SAE 2013-01-0808)
The Advanced Light-Duty Powertrain and Hybrid Analysis tool was created by Environmental Protection Agency to evaluate the Greenhouse gas emissions and fuel efficiency from light-duty vehicles. It is a physics-based, forward-looking, full vehicle computer simulator, which is cap...
Advanced Computing Tools and Models for Accelerator Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryne, Robert; Ryne, Robert D.
2008-06-11
This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.
Serpentinomics-an emerging new field of study
Jessica Wright; Eric von Wettberg
2009-01-01
"Serpentinomics" is an emerging field of study which has the potential to greatly advance our understanding of serpentine ecology. Several newly developing âomic fields, often using high-throughput tools developed for molecular biology, will advance the field of serpentine ecology, or, "serpentinomics." Using tools from the...
Conceptual Assessment Tool for Advanced Undergraduate Electrodynamics
ERIC Educational Resources Information Center
Baily, Charles; Ryan, Qing X.; Astolfi, Cecilia; Pollock, Steven J.
2017-01-01
As part of ongoing investigations into student learning in advanced undergraduate courses, we have developed a conceptual assessment tool for upper-division electrodynamics (E&M II): the Colorado UppeR-division ElectrodyNamics Test (CURrENT). This is a free response, postinstruction diagnostic with 6 multipart questions, an optional 3-question…
Recent advances in vitro assays, in silico tools, and systems biology approaches provide opportunities for refined mechanistic understanding for chemical safety assessment that will ultimately lead to reduced reliance on animal-based methods. With the U.S. commercial chemical lan...
Oczkowski, Simon J; Chung, Han-Oh; Hanvey, Louise; Mbuagbaw, Lawrence; You, John J
2016-01-01
Patients with serious illness, and their families, state that better communication and decision-making with healthcare providers is a high priority to improve the quality of end-of-life care. Numerous communication tools to assist patients, family members, and clinicians in end-of-life decision-making have been published, but their effectiveness remains unclear. To determine, amongst adults in ambulatory care settings, the effect of structured communication tools for end-of-life decision-making on completion of advance care planning. We searched for relevant randomized controlled trials (RCTs) or non-randomized intervention studies in MEDLINE, EMBASE, CINAHL, ERIC, and the Cochrane Database of Randomized Controlled Trials from database inception until July 2014. Two reviewers independently screened articles for eligibility, extracted data, and assessed risk of bias. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) was used to evaluate the quality of evidence for each of the primary and secondary outcomes. Sixty-seven studies, including 46 RCTs, were found. The majority evaluated communication tools in older patients (age >50) with no specific medical condition, but many specifically evaluated populations with cancer, lung, heart, neurologic, or renal disease. Most studies compared the use of communication tools against usual care, but several compared the tools to less-intensive advance care planning tools. The use of structured communication tools increased: the frequency of advance care planning discussions/discussions about advance directives (RR 2.31, 95% CI 1.25-4.26, p = 0.007, low quality evidence) and the completion of advance directives (ADs) (RR 1.92, 95% CI 1.43-2.59, p<0.001, low quality evidence); concordance between AD preferences and subsequent medical orders for use or non-use of life supporting treatment (RR 1.19, 95% CI 1.01-1.39, p = 0.028, very low quality evidence, 1 observational study); and concordance between the care desired and care received by patients (RR 1.17, 95% CI 1.05-1.30, p = 0.004, low quality evidence, 2 RCTs). The use of structured communication tools may increase the frequency of discussions about and completion of advance directives, and concordance between the care desired and the care received by patients. The use of structured communication tools rather than an ad-hoc approach to end-of-life decision-making should be considered, and the selection and implementation of such tools should be tailored to address local needs and context. PROSPERO CRD42014012913.
Chung, Han-Oh; Hanvey, Louise; Mbuagbaw, Lawrence; You, John J.
2016-01-01
Background Patients with serious illness, and their families, state that better communication and decision-making with healthcare providers is a high priority to improve the quality of end-of-life care. Numerous communication tools to assist patients, family members, and clinicians in end-of-life decision-making have been published, but their effectiveness remains unclear. Objectives To determine, amongst adults in ambulatory care settings, the effect of structured communication tools for end-of-life decision-making on completion of advance care planning. Methods We searched for relevant randomized controlled trials (RCTs) or non-randomized intervention studies in MEDLINE, EMBASE, CINAHL, ERIC, and the Cochrane Database of Randomized Controlled Trials from database inception until July 2014. Two reviewers independently screened articles for eligibility, extracted data, and assessed risk of bias. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) was used to evaluate the quality of evidence for each of the primary and secondary outcomes. Results Sixty-seven studies, including 46 RCTs, were found. The majority evaluated communication tools in older patients (age >50) with no specific medical condition, but many specifically evaluated populations with cancer, lung, heart, neurologic, or renal disease. Most studies compared the use of communication tools against usual care, but several compared the tools to less-intensive advance care planning tools. The use of structured communication tools increased: the frequency of advance care planning discussions/discussions about advance directives (RR 2.31, 95% CI 1.25–4.26, p = 0.007, low quality evidence) and the completion of advance directives (ADs) (RR 1.92, 95% CI 1.43–2.59, p<0.001, low quality evidence); concordance between AD preferences and subsequent medical orders for use or non-use of life supporting treatment (RR 1.19, 95% CI 1.01–1.39, p = 0.028, very low quality evidence, 1 observational study); and concordance between the care desired and care received by patients (RR 1.17, 95% CI 1.05–1.30, p = 0.004, low quality evidence, 2 RCTs). Conclusions The use of structured communication tools may increase the frequency of discussions about and completion of advance directives, and concordance between the care desired and the care received by patients. The use of structured communication tools rather than an ad-hoc approach to end-of-life decision-making should be considered, and the selection and implementation of such tools should be tailored to address local needs and context. Registration PROSPERO CRD42014012913 PMID:27119571
NASA Technical Reports Server (NTRS)
Sampson, Paul G.; Sny, Linda C.
1992-01-01
The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).
Quantitative NDE of Composite Structures at NASA
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Leckey, Cara A. C.; Howell, Patricia A.; Johnston, Patrick H.; Burke, Eric R.; Zalameda, Joseph N.; Winfree, William P.; Seebo, Jeffery P.
2015-01-01
The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable the use and certification of composites in aircraft structures through the Advanced Composites Project (ACP). The rapid, in situ characterization of a wide range of the composite materials and structures has become a critical concern for the industry. In many applications it is necessary to monitor changes in these materials over a long time. The quantitative characterization of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking are of particular interest. The research approaches of NASA's Nondestructive Evaluation Sciences Branch include investigation of conventional, guided wave, and phase sensitive ultrasonic methods, infrared thermography and x-ray computed tomography techniques. The use of simulation tools for optimizing and developing these methods is also an active area of research. This paper will focus on current research activities related to large area NDE for rapidly characterizing aerospace composites.
Techniques for transparent lattice measurement and correction
NASA Astrophysics Data System (ADS)
Cheng, Weixing; Li, Yongjun; Ha, Kiman
2017-07-01
A novel method has been successfully demonstrated at NSLS-II to characterize the lattice parameters with gated BPM turn-by-turn (TbT) capability. This method can be used at high current operation. Conventional lattice characterization and tuning are carried out at low current in dedicated machine studies which include beam-based measurement/correction of orbit, tune, dispersion, beta-beat, phase advance, coupling etc. At the NSLS-II storage ring, we observed lattice drifting during beam accumulation in user operation. Coupling and lifetime change while insertion device (ID) gaps are moved. With the new method, dynamical lattice correction is possible to achieve reliable and productive operations. A bunch-by-bunch feedback system excites a small fraction (∼1%) of bunches and gated BPMs are aligned to see those bunch motions. The gated TbT position data are used to characterize the lattice hence correction can be applied. As there are ∼1% of total charges disturbed for a short period of time (several ms), this method is transparent to general user operation. We demonstrated the effectiveness of these tools during high current user operation.
Gilbert, Jack A; Dick, Gregory J; Jenkins, Bethany; Heidelberg, John; Allen, Eric; Mackey, Katherine R M; DeLong, Edward F
2014-06-15
The National Science Foundation's EarthCube End User Workshop was held at USC Wrigley Marine Science Center on Catalina Island, California in August 2013. The workshop was designed to explore and characterize the needs and tools available to the community that is focusing on microbial and physical oceanography research with a particular emphasis on 'omic research. The assembled researchers outlined the existing concerns regarding the vast data resources that are being generated, and how we will deal with these resources as their volume and diversity increases. Particular attention was focused on the tools for handling and analyzing the existing data, on the need for the construction and curation of diverse federated databases, as well as development of shared, interoperable, "big-data capable" analytical tools. The key outputs from this workshop include (i) critical scientific challenges and cyber infrastructure constraints, (ii) the current and future ocean 'omics science grand challenges and questions, and (iii) data management, analytical and associated and cyber-infrastructure capabilities required to meet critical current and future scientific challenges. The main thrust of the meeting and the outcome of this report is a definition of the 'omics tools, technologies and infrastructures that facilitate continued advance in ocean science biology, marine biogeochemistry, and biological oceanography.
Gilbert, Jack A; Dick, Gregory J.; Jenkins, Bethany; Heidelberg, John; Allen, Eric; Mackey, Katherine R. M.
2014-01-01
The National Science Foundation’s EarthCube End User Workshop was held at USC Wrigley Marine Science Center on Catalina Island, California in August 2013. The workshop was designed to explore and characterize the needs and tools available to the community that is focusing on microbial and physical oceanography research with a particular emphasis on ‘omic research. The assembled researchers outlined the existing concerns regarding the vast data resources that are being generated, and how we will deal with these resources as their volume and diversity increases. Particular attention was focused on the tools for handling and analyzing the existing data, on the need for the construction and curation of diverse federated databases, as well as development of shared, interoperable, “big-data capable” analytical tools. The key outputs from this workshop include (i) critical scientific challenges and cyber infrastructure constraints, (ii) the current and future ocean ‘omics science grand challenges and questions, and (iii) data management, analytical and associated and cyber-infrastructure capabilities required to meet critical current and future scientific challenges. The main thrust of the meeting and the outcome of this report is a definition of the ‘omics tools, technologies and infrastructures that facilitate continued advance in ocean science biology, marine biogeochemistry, and biological oceanography. PMID:25197495
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oehler, G.C.
As dramatic as are the recent changes in Eastern Europe and the Soviet Union political happenings, some other factors are having at least as important an impact on the intelligence community's business. For example, new and more global problems have arisen, such as the proliferation of advanced weapons, economic competitiveness, and environmental concerns. It is obvious that intelligence requirements are on the increase. For the intelligence community whose business is information gathering and processing, advanced information management tools are needed. Fortunately, recent technical advances offer these tools. Some of the more notable advances in information documentation, storage, and retrieval aremore » described.« less
Advancing the field of 3D biomaterial printing.
Jakus, Adam E; Rutz, Alexandra L; Shah, Ramille N
2016-01-11
3D biomaterial printing has emerged as a potentially revolutionary technology, promising to transform both research and medical therapeutics. Although there has been recent progress in the field, on-demand fabrication of functional and transplantable tissues and organs is still a distant reality. To advance to this point, there are two major technical challenges that must be overcome. The first is expanding upon the limited variety of available 3D printable biomaterials (biomaterial inks), which currently do not adequately represent the physical, chemical, and biological complexity and diversity of tissues and organs within the human body. Newly developed biomaterial inks and the resulting 3D printed constructs must meet numerous interdependent requirements, including those that lead to optimal printing, structural, and biological outcomes. The second challenge is developing and implementing comprehensive biomaterial ink and printed structure characterization combined with in vitro and in vivo tissue- and organ-specific evaluation. This perspective outlines considerations for addressing these technical hurdles that, once overcome, will facilitate rapid advancement of 3D biomaterial printing as an indispensable tool for both investigating complex tissue and organ morphogenesis and for developing functional devices for a variety of diagnostic and regenerative medicine applications.
Advances in sarcoma diagnostics and treatment
Dancsok, Amanda R; Asleh-Aburaya, Karama; Nielsen, Torsten O
2017-01-01
The heterogeneity of sarcomas with regard to molecular genesis, histology, clinical characteristics, and response to treatment makes management of these rare yet diverse neoplasms particularly challenging. This review encompasses recent developments in sarcoma diagnostics and treatment, including cytotoxic, targeted, epigenetic, and immune therapy agents. In the past year, groups internationally explored the impact of adding mandatory molecular testing to histological diagnosis, reporting some changes in diagnosis and/or management; however, the impact on outcomes could not be adequately assessed. Transcriptome sequencing techniques have brought forward new diagnostic tools for identifying fusions and/or characterizing unclassified entities. Next-generation sequencing and advanced molecular techniques were also applied to identify potential targets for directed and epigenetic therapy, where preclinical studies reported results for agents active within the receptor tyrosine kinase, mTOR, Notch, Wnt, Hedgehog, Hsp90, and MDM2 signaling networks. At the level of clinical practice, modest developments were seen for some sarcoma subtypes in conventional chemotherapy and in therapies targeting the pathways activated by various receptor tyrosine kinases. In the burgeoning field of immune therapy, sarcoma work is in its infancy; however, elaborate protocols for immune stimulation are being explored, and checkpoint blockade agents advance from preclinical models to clinical studies. PMID:27732970
Sarcopenia in patients with advanced liver disease.
Ponziani, Francesca Romana; Gasbarrini, Antonio
2017-04-28
Sarcopenia is the loss of muscle mass and function, affecting up to 70% of patients with advanced liver disease. Liver cirrhosis is characterized by an altered glucose metabolism, lipid oxidation, ketogenesis and protein catabolism, leading to the loss of adipose and muscle tissue. The gastrointestinal dysfunction of cirrhotic patients results in inadequate nutrients intake and is responsible for muscle weakness thus limiting physical exercise and perpetuating the reduction of muscle mass. Recently, alterations of hormonal pathways involved in muscle growth, increased intestinal permeability and changes in the gut microbiota composition have been reported in cirrhotic patients. Interestingly, a role of intestinal bacteria in maintaining muscle health has been hypothesized through the translocation of bacteria and bacterial products into the bloodstream triggering the production of muscle wasting-associated cytokines. Sarcopenia is associated with severe outcomes in patients with liver cirrhosis, mostly due to the incidence of disease complications. Furthermore, sarcopenia may represent an important prognostic factor for patients with hepatocellular carcinoma and for those undergoing liver transplantation and can be considered a useful additional tool in the global assessment of patients with advanced liver disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Advances in Molecular Serotyping and Subtyping of Escherichia coli.
Fratamico, Pina M; DebRoy, Chitrita; Liu, Yanhong; Needleman, David S; Baranzoni, Gian Marco; Feng, Peter
2016-01-01
Escherichia coli plays an important role as a member of the gut microbiota; however, pathogenic strains also exist, including various diarrheagenic E. coli pathotypes and extraintestinal pathogenic E. coli that cause illness outside of the GI-tract. E. coli have traditionally been serotyped using antisera against the ca. 186 O-antigens and 53 H-flagellar antigens. Phenotypic methods, including bacteriophage typing and O- and H- serotyping for differentiating and characterizing E. coli have been used for many years; however, these methods are generally time consuming and not always accurate. Advances in next generation sequencing technologies have made it possible to develop genetic-based subtyping and molecular serotyping methods for E. coli, which are more discriminatory compared to phenotypic typing methods. Furthermore, whole genome sequencing (WGS) of E. coli is replacing established subtyping methods such as pulsed-field gel electrophoresis, providing a major advancement in the ability to investigate food-borne disease outbreaks and for trace-back to sources. A variety of sequence analysis tools and bioinformatic pipelines are being developed to analyze the vast amount of data generated by WGS and to obtain specific information such as O- and H-group determination and the presence of virulence genes and other genetic markers.
Applications of mass spectrometry in drug metabolism: 50 years of progress.
Wen, Bo; Zhu, Mingshe
2015-02-01
Mass spectrometry plays a pivotal role in drug metabolism studies, which are an integral part of drug discovery and development nowadays. Metabolite identification has become critical to understanding the metabolic fate of drug candidates and to aid lead optimization with improved metabolic stability, toxicology and efficacy profiles. Ever since the introduction of atmospheric ionization techniques in the early 1990s, liquid chromatography coupled with mass spectrometry (LC/MS) has secured a central role as the predominant analytical platform for metabolite identification as LC and MS technologies continually advanced. In this review, we discuss the evolution of both MS technology and its applications over the past 50 years to meet the increasing demand of drug metabolism studies. These advances include ionization sources, mass analyzers, a wide range of MS acquisition strategies and data mining tools that have substantially accelerated the metabolite identification process and changed the overall drug metabolism landscape. Exemplary applications for characterization and identification of both small-molecule xenobiotics and biological macromolecules are described. In addition, this review discusses novel MS technologies and applications, including xenobiotic metabolomics that hold additional promise for advancing drug metabolism research, and offers thoughts on remaining challenges in studying the metabolism and disposition of drugs and other xenobiotics.
NASA Astrophysics Data System (ADS)
Raouafi, Noureddine; Bernasconi, P. N.; Georgoulis, M. K.
2010-05-01
We present two pattern recognition algorithms, the "Sigmoid Sniffer” and the "Advanced Automated Solar Filament Detection and Characterization Code,” that are among the Feature Finding modules of the Solar Dynamic Observatory: 1) Coronal sigmoids visible in X-rays and the EUV are the result of highly twisted magnetic fields. They can occur anywhere on the solar disk and are closely related to solar eruptive activity (e.g., flares, CMEs). Their appearance is typically synonym of imminent solar eruptions, so they can serve as a tool to forecast solar activity. Automatic X-ray sigmoid identification offers an unbiased way of detecting short-to-mid term CME precursors. The "Sigmoid Sniffer” module is capable of automatically detecting sigmoids in full-disk X-ray images and determining their chirality, as well as other characteristics. It uses multiple thresholds to identify persistent bright structures on a full-disk X-ray image of the Sun. We plan to apply the code to X-ray images from Hinode/XRT, as well as on SDO/AIA images. When implemented in a near real-time environment, the Sigmoid Sniffer could allow 3-7 day forecasts of CMEs and their potential to cause major geomagnetic storms. 2)The "Advanced Automated Solar Filament Detection and Characterization Code” aims to identify, classify, and track solar filaments in full-disk Hα images. The code can reliably identify filaments; determine their chirality and other relevant parameters like filament area, length, and average orientation with respect to the equator. It is also capable of tracking the day-by-day evolution of filaments as they traverse the visible disk. The code was tested by analyzing daily Hα images taken at the Big Bear Solar Observatory from mid-2000 to early-2005. It identified and established the chirality of thousands of filaments without human intervention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-01
These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials.more » Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less
Advances in the in Vivo Raman Spectroscopy of Malignant Skin Tumors Using Portable Instrumentation
Kourkoumelis, Nikolaos; Balatsoukas, Ioannis; Moulia, Violetta; Elka, Aspasia; Gaitanis, Georgios; Bassukas, Ioannis D.
2015-01-01
Raman spectroscopy has emerged as a promising tool for real-time clinical diagnosis of malignant skin tumors offering a number of potential advantages: it is non-intrusive, it requires no sample preparation, and it features high chemical specificity with minimal water interference. However, in vivo tissue evaluation and accurate histopathological classification remain a challenging task for the successful transition from laboratory prototypes to clinical devices. In the literature, there are numerous reports on the applications of Raman spectroscopy to biomedical research and cancer diagnostics. Nevertheless, cases where real-time, portable instrumentations have been employed for the in vivo evaluation of skin lesions are scarce, despite their advantages in use as medical devices in the clinical setting. This paper reviews the advances in real-time Raman spectroscopy for the in vivo characterization of common skin lesions. The translational momentum of Raman spectroscopy towards the clinical practice is revealed by (i) assembling the technical specifications of portable systems and (ii) analyzing the spectral characteristics of in vivo measurements. PMID:26132563
Sampson, Robert J.
2017-01-01
The environmental fragility of cities under advanced urbanization has motivated extensive efforts to promote the sustainability of urban ecosystems and physical infrastructures. Less attention has been devoted to neighborhood inequalities and fissures in the civic infrastructure that potentially challenge social sustainability and the capacity of cities to collectively address environmental challenges. This article draws on a program of research in three American cities—Boston, Chicago, and Los Angeles—to develop hypotheses and methodological strategies for assessing how the multidimensional and multilevel inequalities that characterize contemporary cities bear on sustainability. In addition to standard concerns with relative inequality in income, the article reviews evidence on compounded deprivation, racial cleavages, civic engagement, institutional cynicism, and segregated patterns of urban mobility and organizational ties that differentially connect neighborhood resources. Harnessing “ecometric” measurement tools and emerging sources of urban data with a theoretically guided framework on neighborhood inequality can enhance the pursuit of sustainable cities, both in the United States and globally. PMID:28062692
Khan, Muhammad Hafeez Ullah; Khan, Shahid U; Muhammad, Ali; Hu, Limin; Yang, Yang; Fan, Chuchuan
2018-06-01
Clustered regularly interspaced palindromic repeats associated protein Cas9 (CRISPR-Cas9), originally an adaptive immunity system of prokaryotes, is revolutionizing genome editing technologies with minimal off-targets in the present era. The CRISPR/Cas9 is now highly emergent, advanced, and highly specific tool for genome engineering. The technology is widely used to animal and plant genomes to achieve desirable results. The present review will encompass how CRISPR-Cas9 is revealing its beneficial role in characterizing plant genetic functions, genomic rearrangement, how it advances the site-specific mutagenesis, and epigenetics modification in plants to improve the yield of field crops with minimal side-effects. The possible pitfalls of using and designing CRISPR-Cas9 for plant genome editing are also discussed for its more appropriate applications in plant biology. Therefore, CRISPR/Cas9 system has multiple benefits that mostly scientists select for genome editing in several biological systems. © 2017 Wiley Periodicals, Inc.
Progress in the Analysis of Complex Atmospheric Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskin, Alexander; Gilles, Mary K.; Knopf, Daniel A.
2016-06-16
This manuscript presents an overview on recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surfaces interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multi-modal chemical characterization of particles with both molecularmore » and lateral specificity. When combined, they provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore environmental effects of air-surface interactions.« less
Machining and characterization of self-reinforced polymers
NASA Astrophysics Data System (ADS)
Deepa, A.; Padmanabhan, K.; Kuppan, P.
2017-11-01
This Paper focuses on obtaining the mechanical properties and the effect of the different machining techniques on self-reinforced composites sample and to derive the best machining method with remarkable properties. Each sample was tested by the Tensile and Flexural tests, fabricated using hot compaction test and those loads were calculated. These composites are machined using conventional methods because of lack of advanced machinery in most of the industries. The advanced non-conventional methods like Abrasive water jet machining were used. These machining techniques are used to get the better output for the composite materials with good mechanical properties compared to conventional methods. But the use of non-conventional methods causes the changes in the work piece, tool properties and more economical compared to the conventional methods. Finding out the best method ideal for the designing of these Self Reinforced Composites with and without defects and the use of Scanning Electron Microscope (SEM) analysis for the comparing the microstructure of the PP and PE samples concludes our process.
Cocco, Daniele; Idir, Mourad; Morton, Daniel; ...
2018-03-20
Experiments using high brightness X-rays are on the forefront of science due to the vast variety of knowledge they can provide. New Synchrotron Radiation (SR) and Free Electron Laser (FEL) light sources provide unique tools for advanced studies using X-rays. Top-level scientists from around the world are attracted to these beamlines to perform unprecedented experiments. High brightness, low emittance light sources allow beamline scientists the possibility to dream up cutting-edge experimental stations. X-ray optics play a key role in bringing the beam from the source to the experimental stations. This paper explores the recent developments in X-ray optics. It touchesmore » on simulations, diagnostics, metrology and adaptive optics, giving an overview of the role X-ray optics have played in the recent past. It will also touch on future developments for one of the most active field in the X-ray science.« less
Applications of Ecological Engineering Remedies for Uranium Processing Sites, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waugh, William
The U.S. Department of Energy (USDOE) is responsible for remediation of environmental contamination and long-term stewardship of sites associated with the legacy of nuclear weapons production during the Cold War in the United States. Protection of human health and the environment will be required for hundreds or even thousands of years at many legacy sites. USDOE continually evaluates and applies advances in science and technology to improve the effectiveness and sustainability of surface and groundwater remedies (USDOE 2011). This paper is a synopsis of ecological engineering applications that USDOE is evaluating to assess the effectiveness of remedies at former uraniummore » processing sites in the southwestern United States. Ecological engineering remedies are predicated on the concept that natural ecological processes at legacy sites, once understood, can be beneficially enhanced or manipulated. Advances in tools for characterizing key processes and for monitoring remedy performance are demonstrating potential. We present test cases for four ecological engineering remedies that may be candidates for international applications.« less
Images as drivers of progress in cardiac computational modelling
Lamata, Pablo; Casero, Ramón; Carapella, Valentina; Niederer, Steve A.; Bishop, Martin J.; Schneider, Jürgen E.; Kohl, Peter; Grau, Vicente
2014-01-01
Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are underpinned to a large extent by advances in imaging technologies. This article reviews how novel imaging technologies, or the innovative use and extension of established ones, integrate with computational models and drive novel insights into cardiac biophysics. In terms of structural characterization, we discuss how imaging is allowing a wide range of scales to be considered, from cellular levels to whole organs. We analyse how the evolution from structural to functional imaging is opening new avenues for computational models, and in this respect we review methods for measurement of electrical activity, mechanics and flow. Finally, we consider ways in which combined imaging and modelling research is likely to continue advancing cardiac research, and identify some of the main challenges that remain to be solved. PMID:25117497
Sampson, Robert J
2017-08-22
The environmental fragility of cities under advanced urbanization has motivated extensive efforts to promote the sustainability of urban ecosystems and physical infrastructures. Less attention has been devoted to neighborhood inequalities and fissures in the civic infrastructure that potentially challenge social sustainability and the capacity of cities to collectively address environmental challenges. This article draws on a program of research in three American cities-Boston, Chicago, and Los Angeles-to develop hypotheses and methodological strategies for assessing how the multidimensional and multilevel inequalities that characterize contemporary cities bear on sustainability. In addition to standard concerns with relative inequality in income, the article reviews evidence on compounded deprivation, racial cleavages, civic engagement, institutional cynicism, and segregated patterns of urban mobility and organizational ties that differentially connect neighborhood resources. Harnessing "ecometric" measurement tools and emerging sources of urban data with a theoretically guided framework on neighborhood inequality can enhance the pursuit of sustainable cities, both in the United States and globally.
Progress in the analysis of complex atmospheric particles
Laskin, Alexander; Gilles, Mary K.; Knopf, Daniel A.; ...
2016-06-01
This study presents an overview of recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surface interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multimodal chemical characterization of particles with both molecularmore » and lateral specificity. When combined, these approaches provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore the environmental effects of air-surface interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cocco, Daniele; Idir, Mourad; Morton, Daniel
Experiments using high brightness X-rays are on the forefront of science due to the vast variety of knowledge they can provide. New Synchrotron Radiation (SR) and Free Electron Laser (FEL) light sources provide unique tools for advanced studies using X-rays. Top-level scientists from around the world are attracted to these beamlines to perform unprecedented experiments. High brightness, low emittance light sources allow beamline scientists the possibility to dream up cutting-edge experimental stations. X-ray optics play a key role in bringing the beam from the source to the experimental stations. This paper explores the recent developments in X-ray optics. It touchesmore » on simulations, diagnostics, metrology and adaptive optics, giving an overview of the role X-ray optics have played in the recent past. It will also touch on future developments for one of the most active field in the X-ray science.« less
USDA-ARS?s Scientific Manuscript database
Formosan subterranean termites, Coptotermes formosanus, are an important world wide pest. Molecular gene expression is an important tool for understanding the physiology of organisms. The recent advancement of molecular tools for Coptotermes formosanus is leading to advancement of the understanding ...
Earthquake information products and tools from the Advanced National Seismic System (ANSS)
Wald, Lisa
2006-01-01
This Fact Sheet provides a brief description of postearthquake tools and products provided by the Advanced National Seismic System (ANSS) through the U.S. Geological Survey Earthquake Hazards Program. The focus is on products specifically aimed at providing situational awareness in the period immediately following significant earthquake events.
Using Computational and Mechanical Models to Study Animal Locomotion
Miller, Laura A.; Goldman, Daniel I.; Hedrick, Tyson L.; Tytell, Eric D.; Wang, Z. Jane; Yen, Jeannette; Alben, Silas
2012-01-01
Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms’ performance and improving the design of vehicles moving through air and water and on land. This work has also motivated the development of improved numerical methods and modeling techniques for animal locomotion that is characterized by the interactions of fluids, substrates, and structures. Despite the large body of recent work in this area, the application of mathematical and numerical methods to improve our understanding of organisms in the context of their environment and physiology has remained relatively unexplored. Nature has evolved a wide variety of fascinating mechanisms of locomotion that exploit the properties of complex materials and fluids, but only recently are the mathematical, computational, and robotic tools available to rigorously compare the relative advantages and disadvantages of different methods of locomotion in variable environments. Similarly, advances in computational physiology have only recently allowed investigators to explore how changes at the molecular, cellular, and tissue levels might lead to changes in performance at the organismal level. In this article, we highlight recent examples of how computational, mathematical, and experimental tools can be combined to ultimately answer the questions posed in one of the grand challenges in organismal biology: “Integrating living and physical systems.” PMID:22988026
NASA Astrophysics Data System (ADS)
Roy, Madhuparna
Composite textiles have found widespread use and advantages in various industries and applications. The constant demand for high quality products and services requires companies to minimize their manufacturing costs, and delivery time in order to compete in general and niche marketplaces. Advanced manufacturing methods aim to provide economical methods of mold production. Creation of molding and tooling options for advanced composites encompasses a large portion of the fabrication time, making it a costly process and restraining factor. This research discusses a preliminary investigation into the use of soluble polymer compounds and additive manufacturing to fabricate soluble molds. These molds suffer from dimensional errors due to several factors, which have also been characterized. The basic soluble mold of a composite is 3D printed to meet the desired dimensions and geometry of holistic structures or spliced components. The time taken to dissolve the mold depends on the rate of agitation of the solvent. This process is steered towards enabling the implantation of optoelectronic devices within the composite to provide sensing capability for structural health monitoring. The shape deviation of the 3D printed mold is also studied and compared to its original dimensions to optimize the dimensional quality to produce dimensionally accurate parts. Mechanical tests were performed on compact tension (CT) resin samples prepared from these 3D printed molds and revealed crack propagation towards an embedded intact optical fiber.
Wang, Bo; Eckert, Carrie; Maness, Pin -Ching; ...
2017-12-12
Cyanobacteria, genetic models for photosynthesis research for decades, have recently become attractive hosts for producing renewable fuels and chemicals, owing to their genetic tractability, relatively fast growth, and their ability to utilize sunlight, fix carbon dioxide, and in some cases, fix nitrogen. Despite significant advances, there is still an urgent demand for synthetic biology tools in order to effectively manipulate genetic circuits in cyanobacteria. In this study, we have compared a total of 17 natural and chimeric promoters, focusing on expression of the ethylene-forming enzyme (EFE) in the cyanobacterium Synechocystis sp. PCC 6803. We report the finding that the E.more » coli σ 70 promoter Ptrc is superior compared to the previously reported strong promoters, such as PcpcB and PpsbA, for the expression of EFE. In addition, we found that the EFE expression level was very sensitive to the 5'-untranslated region upstream of the open reading frame. A library of ribosome binding sites (RBSs) was rationally designed and was built and systematically characterized. We demonstrate a strategy complementary to the RBS prediction software to facilitate the rational design of an RBS library to optimize the gene expression in cyanobacteria. Our results show that the EFE expression level is dramatically enhanced through these synthetic biology tools and is no longer the rate-limiting step for cyanobacterial ethylene production. Furthermore, these systematically characterized promoters and the RBS design strategy can serve as useful tools to tune gene expression levels and to identify and mitigate metabolic bottlenecks in cyanobacteria.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bo; Eckert, Carrie; Maness, Pin -Ching
Cyanobacteria, genetic models for photosynthesis research for decades, have recently become attractive hosts for producing renewable fuels and chemicals, owing to their genetic tractability, relatively fast growth, and their ability to utilize sunlight, fix carbon dioxide, and in some cases, fix nitrogen. Despite significant advances, there is still an urgent demand for synthetic biology tools in order to effectively manipulate genetic circuits in cyanobacteria. In this study, we have compared a total of 17 natural and chimeric promoters, focusing on expression of the ethylene-forming enzyme (EFE) in the cyanobacterium Synechocystis sp. PCC 6803. We report the finding that the E.more » coli σ 70 promoter Ptrc is superior compared to the previously reported strong promoters, such as PcpcB and PpsbA, for the expression of EFE. In addition, we found that the EFE expression level was very sensitive to the 5'-untranslated region upstream of the open reading frame. A library of ribosome binding sites (RBSs) was rationally designed and was built and systematically characterized. We demonstrate a strategy complementary to the RBS prediction software to facilitate the rational design of an RBS library to optimize the gene expression in cyanobacteria. Our results show that the EFE expression level is dramatically enhanced through these synthetic biology tools and is no longer the rate-limiting step for cyanobacterial ethylene production. Furthermore, these systematically characterized promoters and the RBS design strategy can serve as useful tools to tune gene expression levels and to identify and mitigate metabolic bottlenecks in cyanobacteria.« less
Left ventricular fluid mechanics: the long way from theoretical models to clinical applications.
Pedrizzetti, Gianni; Domenichini, Federico
2015-01-01
The flow inside the left ventricle is characterized by the formation of vortices that smoothly accompany blood from the mitral inlet to the aortic outlet. Computational fluid dynamics permitted to shed some light on the fundamental processes involved with vortex motion. More recently, patient-specific numerical simulations are becoming an increasingly feasible tool that can be integrated with the developing imaging technologies. The existing computational methods are reviewed in the perspective of their potential role as a novel aid for advanced clinical analysis. The current results obtained by simulation methods either alone or in combination with medical imaging are summarized. Open problems are highlighted and perspective clinical applications are discussed.
Diagnosis and management of heart failure in the fetus
DAVEY, B.; SZWAST, A.; RYCHIK, J.
2015-01-01
Heart failure can be defined as the inability of the heart to sufficiently support the circulation. In the fetus, heart failure can be caused by a myriad of factors that include fetal shunting abnormalities, genetic cardiomyopathies, extracardiac malformations, arrhythmias and structural congenital heart disease. With advances in ultrasound has come the ability to characterize many complex conditions, previously poorly understood. Fetal echocardiography provides the tools necessary to evaluate and understand the various physiologies that contribute to heart failure in the fetus. In this review, we will explore the different mechanisms of heart failure in this unique patient population and highlight the role of fetal echocardiography in the current management of these conditions PMID:22992530
Adaptive texture filtering for defect inspection in ultrasound images
NASA Astrophysics Data System (ADS)
Zmola, Carl; Segal, Andrew C.; Lovewell, Brian; Nash, Charles
1993-05-01
The use of ultrasonic imaging to analyze defects and characterize materials is critical in the development of non-destructive testing and non-destructive evaluation (NDT/NDE) tools for manufacturing. To develop better quality control and reliability in the manufacturing environment advanced image processing techniques are useful. For example, through the use of texture filtering on ultrasound images, we have been able to filter characteristic textures from highly-textured C-scan images of materials. The materials have highly regular characteristic textures which are of the same resolution and dynamic range as other important features within the image. By applying texture filters and adaptively modifying their filter response, we have examined a family of filters for removing these textures.
Thermoluminescence glow curve analysis and CGCD method for erbium doped CaZrO{sub 3} phosphor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwari, Ratnesh, E-mail: 31rati@gmail.com; Chopra, Seema
2016-05-06
The manuscript report the synthesis, thermoluminescence study at fixed concentration of Er{sup 3+} (1 mol%) doped CaZrO{sub 3} phosphor. The phosphors were prepared by modified solid state reaction method. The powder sample was characterized by thermoluminescence (TL) glow curve analysis. In TL glow curve the optimized concentration in 1mol% for UV irradiated sample. The kinetic parameters were calculated by computerized glow curve deconvolution (CGCD) techniaue. Trapping parameters gives the information of dosimetry loss in prepared phosphor and its usability in environmental monitoring and for personal monitoring. CGCD is the advance tool for analysis of complicated TL glow curves.
Emerging patterns of somatic mutations in cancer
Watson, Ian R.; Takahashi, Koichi; Futreal, P. Andrew; Chin, Lynda
2014-01-01
The advance in technological tools for massively parallel, high-throughput sequencing of DNA has enabled the comprehensive characterization of somatic mutations in large number of tumor samples. Here, we review recent cancer genomic studies that have assembled emerging views of the landscapes of somatic mutations through deep sequencing analyses of the coding exomes and whole genomes in various cancer types. We discuss the comparative genomics of different cancers, including mutation rates, spectrums, and roles of environmental insults that influence these processes. We highlight the developing statistical approaches used to identify significantly mutated genes, and discuss the emerging biological and clinical insights from such analyses as well as the challenges ahead translating these genomic data into clinical impacts. PMID:24022702
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buongiorno, J; Cahill, DG; Hidrovo, CH
2014-07-23
In this opinion piece, we discuss recent advances in experimental methods for characterizing phase change heat transfer. We begin with a survey of techniques for high-resolution measurements of temperature and heat flux at the solid surface and in the working fluid. Next, we focus on diagnostic tools for boiling heat transfer and describe techniques for visualizing the temperature and velocity fields, as well as measurements at the single bubble level. Finally, we discuss techniques to probe the kinetics of vapor formation within a few molecular layers of the interface. We conclude with our outlook for future progress in experimental methodsmore » for phase change heat transfer.« less
Defining and quantifying the social phenotype in autism.
Klin, Ami; Jones, Warren; Schultz, Robert; Volkmar, Fred; Cohen, Donald
2002-06-01
Genetic and neurofunctional research in autism has highlighted the need for improved characterization of the core social disorder defining the broad spectrum of syndrome manifestations. This article reviews the advantages and limitations of current methods for the refinement and quantification of this highly heterogeneous social phenotype. The study of social visual pursuit by use of eye-tracking technology is offered as a paradigm for novel tools incorporating these requirements and as a research effort that builds on the emerging synergy of different branches of social neuroscience. Advances in the area will require increased consideration of processes underlying experimental results and a closer approximation of experimental methods to the naturalistic demands inherent in real-life social situations.
Integrating advanced visualization technology into the planetary Geoscience workflow
NASA Astrophysics Data System (ADS)
Huffman, John; Forsberg, Andrew; Loomis, Andrew; Head, James; Dickson, James; Fassett, Caleb
2011-09-01
Recent advances in computer visualization have allowed us to develop new tools for analyzing the data gathered during planetary missions, which is important, since these data sets have grown exponentially in recent years to tens of terabytes in size. As part of the Advanced Visualization in Solar System Exploration and Research (ADVISER) project, we utilize several advanced visualization techniques created specifically with planetary image data in mind. The Geoviewer application allows real-time active stereo display of images, which in aggregate have billions of pixels. The ADVISER desktop application platform allows fast three-dimensional visualization of planetary images overlain on digital terrain models. Both applications include tools for easy data ingest and real-time analysis in a programmatic manner. Incorporation of these tools into our everyday scientific workflow has proved important for scientific analysis, discussion, and publication, and enabled effective and exciting educational activities for students from high school through graduate school.
High performance spiral wound microbial fuel cell with hydraulic characterization.
Haeger, Alexander; Forrestal, Casey; Xu, Pei; Ren, Zhiyong Jason
2014-12-01
The understanding and development of functioning systems are crucial steps for microbial fuel cell (MFC) technology advancement. In this study, a compact spiral wound MFC (swMFC) was developed and hydraulic residence time distribution (RTD) tests were conducted to investigate the flow characteristics in the systems. Results show that two-chamber swMFCs have high surface area to volume ratios of 350-700m(2)/m(3), and by using oxygen cathode without metal-catalysts, the maximum power densities were 42W/m(3) based on total volume and 170W/m(3) based on effective volume. The hydraulic step-input tracer study identified 20-67% of anodic flow dead space, which presents new opportunities for system improvement. Electrochemical tools revealed very low ohmic resistance but high charge transfer and diffusion resistance due to catalyst-free oxygen reduction. The spiral wound configuration combined with RTD tool offers a holistic approach for MFC development and optimization. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rocha, Natália Pessoa; de Miranda, Aline Silva; Teixeira, Antônio Lúcio
2015-01-01
Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide, being characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Among several putative factors that may contribute to PD pathogenesis, inflammatory mechanisms may play a pivotal role. The involvement of microglial activation as well as of brain and peripheral immune mediators in PD pathophysiology has been reported by clinical and experimental studies. These inflammatory biomarkers evaluated by imaging techniques and/or by biological sample analysis have become valuable tools for PD diagnosis and prognosis. Regardless of the significant increase in the number of people suffering from PD, there are still no established disease-modifying or neuroprotective therapies for it. There is growing evidence of protective effect of anti-inflammatory drugs on PD development. Herein, we reviewed the current literature regarding the central nervous system and peripheral immune biomarkers in PD and advances in diagnostic and prognostic tools as well as the neuroprotective effects of anti-inflammatory therapies.
Malignant central airway obstruction
Mudambi, Lakshmi; Miller, Russell
2017-01-01
This review comprehensively describes recent advances in the management of malignant central airway obstruction (CAO). Malignant CAO can be a dramatic and devastating manifestation of primary lung cancer or metastatic disease. A variety of diagnostic modalities are available to provide valuable information to plan a therapeutic intervention. Clinical heterogeneity in the presentation of malignant CAO provides opportunities to adapt and utilize endoscopic technology and tools in many ways. Mechanical debulking, thermal tools, cryotherapy and airway stents are methods and instruments used to rapidly restore airway patency. Delayed bronchoscopic methods, such as photodynamic therapy (PDT) and brachytherapy can also be utilized in specific non-emergent situations to establish airway patency. Although data regarding the success and complications of therapeutic interventions are retrospective and characterized by clinical and outcome measure variability, the symptoms of malignant CAO can often be successfully palliated. Assessment of risks and benefits of interventions in each individual patient during the decision-making process forms the critical foundation of the management of malignant CAO. PMID:29214067
Breast ultrasonography: state of the art.
Hooley, Regina J; Scoutt, Leslie M; Philpotts, Liane E
2013-09-01
Ultrasonography (US) is an indispensable tool in breast imaging and is complementary to both mammography and magnetic resonance (MR) imaging of the breast. Advances in US technology allow confident characterization of not only benign cysts but also benign and malignant solid masses. Knowledge and understanding of current and emerging US technology, along with the application of meticulous scanning technique, is imperative for image optimization and diagnosis. The ability to synthesize breast US findings with multiple imaging modalities and clinical information is also necessary to ensure the best patient care. US is routinely used to guide breast biopsies and is also emerging as a supplemental screening tool in women with dense breasts and a negative mammogram. This review provides a summary of current state-of-the-art US technology, including elastography, and applications of US in clinical practice as an adjuvant technique to mammography, MR imaging, and the clinical breast examination. The use of breast US for screening, preoperative staging for breast cancer, and breast intervention will also be discussed.
Modeling and Advanced Control for Sustainable Process ...
This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-inspired, multi-agent-based method. The sustainability and performance assessment of process operating points is carried out using the U.S. E.P.A.’s GREENSCOPE assessment tool that provides scores for the selected economic, material management, environmental and energy indicators. The indicator results supply information on whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous bioethanol fermentation process whose dynamics are characterized by steady-state multiplicity and oscillatory behavior. This book chapter contribution demonstrates the application of novel process control strategies for sustainability by increasing material management, energy efficiency, and pollution prevention, as needed for SHC Sustainable Uses of Wastes and Materials Management.
Dasari, Ramachandra Rao; Barman, Ishan; Gundawar, Manoj Kumar
2014-01-01
We demonstrate the application of non-gated laser induced breakdown spectroscopy (LIBS) for characterization and classification of organic materials with similar chemical composition. While use of such a system introduces substantive continuum background in the spectral dataset, we show that appropriate treatment of the continuum and characteristic emission results in accurate discrimination of pharmaceutical formulations of similar stoichiometry. Specifically, our results suggest that near-perfect classification can be obtained by employing suitable multivariate analysis on the acquired spectra, without prior removal of the continuum background. Indeed, we conjecture that pre-processing in the form of background removal may introduce spurious features in the signal. Our findings in this report significantly advance the prior results in time-integrated LIBS application and suggest the possibility of a portable, non-gated LIBS system as a process analytical tool, given its simple instrumentation needs, real-time capability and lack of sample preparation requirements. PMID:25084522
Using synchrotron light to accelerate EUV resist and mask materials learning
NASA Astrophysics Data System (ADS)
Naulleau, Patrick; Anderson, Christopher N.; Baclea-an, Lorie-Mae; Denham, Paul; George, Simi; Goldberg, Kenneth A.; Jones, Gideon; McClinton, Brittany; Miyakawa, Ryan; Mochi, Iacopo; Montgomery, Warren; Rekawa, Seno; Wallow, Tom
2011-03-01
As commercialization of extreme ultraviolet lithography (EUVL) progresses, direct industry activities are being focused on near term concerns. The question of long term extendibility of EUVL, however, remains crucial given the magnitude of the investments yet required to make EUVL a reality. Extendibility questions are best addressed using advanced research tools such as the SEMATECH Berkeley microfield exposure tool (MET) and actinic inspection tool (AIT). Utilizing Lawrence Berkeley National Laboratory's Advanced Light Source facility as the light source, these tools benefit from the unique properties of synchrotron light enabling research at nodes generations ahead of what is possible with commercial tools. The MET for example uses extremely bright undulator radiation to enable a lossless fully programmable coherence illuminator. Using such a system, resolution enhancing illuminations achieving k1 factors of 0.25 can readily be attained. Given the MET numerical aperture of 0.3, this translates to an ultimate resolution capability of 12 nm. Using such methods, the SEMATECH Berkeley MET has demonstrated resolution in resist to 16-nm half pitch and below in an imageable spin-on hard mask. At a half pitch of 16 nm, this material achieves a line-edge roughness of 2 nm with a correlation length of 6 nm. These new results demonstrate that the observed stall in ultimate resolution progress in chemically amplified resists is a materials issue rather than a tool limitation. With a resolution limit of 20-22 nm, the CAR champion from 2008 remains as the highest performing CAR tested to date. To enable continued advanced learning in EUV resists, SEMATECH has initiated a plan to implement a 0.5 NA microfield tool at the Advanced Light Source synchrotron facility. This tool will be capable of printing down to 8-nm half pitch.
Rotary Percussive Auto-Gopher for Deep Drilling and Sampling
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart
2009-01-01
The term "rotary percussive auto-gopher" denotes a proposed addition to a family of apparatuses, based on ultrasonic/ sonic drill corers (USDCs), that have been described in numerous previous NASA Tech Briefs articles. These apparatuses have been designed, variously, for boring into, and/or acquiring samples of, rock or other hard, brittle materials of geological interest. In the case of the rotary percussive autogopher, the emphasis would be on developing an apparatus capable of penetrating to, and acquiring samples at, depths that could otherwise be reached only by use of much longer, heavier, conventional drilling-and-sampling apparatuses. To recapitulate from the prior articles about USDCs: A USDC can be characterized as a lightweight, low-power jackhammer in which a piezoelectrically driven actuator generates ultrasonic vibrations and is coupled to a tool bit through a free mass. The bouncing of the free mass between the actuator horn and the drill bit converts the actuator ultrasonic vibrations into sonic hammering of the drill bit. The combination of ultrasonic and sonic vibrations gives rise to a hammering action (and a resulting chiseling action at the tip of the tool bit) that is more effective for drilling than is the microhammering action of ultrasonic vibrations alone. The hammering and chiseling actions are so effective that the size of the axial force needed to make the tool bit advance into soil, rock, or another material of interest is much smaller than in ordinary rotary drilling, ordinary hammering, or ordinary steady pushing. The predecessor of the rotary percussive auto-gopher is an apparatus, now denoted an ultrasonic/sonic gopher and previously denoted an ultrasonic gopher, described in "Ultrasonic/ Sonic Mechanism for Drilling and Coring" (NPO-30291), NASA Tech Briefs Vol. 27, No. 9 (September 2003), page 65. The ultrasonic/sonic gopher is intended for use mainly in acquiring cores. The name of the apparatus reflects the fact that, like a gopher, it periodically stops advancing at the end of the hole to bring excavated material (in this case, a core sample) to the surface, then re-enters the hole to resume the advance of the end of the hole. By use of a cable suspended from a reel on the surface, the gopher is lifted from the hole to remove a core sample, then lowered into the hole to resume the advance and acquire the next core sample.
Zarinabad, Niloufar; Meeus, Emma M; Manias, Karen; Foster, Katharine; Peet, Andrew
2018-05-02
Advances in magnetic resonance imaging and the introduction of clinical decision support systems has underlined the need for an analysis tool to extract and analyze relevant information from magnetic resonance imaging data to aid decision making, prevent errors, and enhance health care. The aim of this study was to design and develop a modular medical image region of interest analysis tool and repository (MIROR) for automatic processing, classification, evaluation, and representation of advanced magnetic resonance imaging data. The clinical decision support system was developed and evaluated for diffusion-weighted imaging of body tumors in children (cohort of 48 children, with 37 malignant and 11 benign tumors). Mevislab software and Python have been used for the development of MIROR. Regions of interests were drawn around benign and malignant body tumors on different diffusion parametric maps, and extracted information was used to discriminate the malignant tumors from benign tumors. Using MIROR, the various histogram parameters derived for each tumor case when compared with the information in the repository provided additional information for tumor characterization and facilitated the discrimination between benign and malignant tumors. Clinical decision support system cross-validation showed high sensitivity and specificity in discriminating between these tumor groups using histogram parameters. MIROR, as a diagnostic tool and repository, allowed the interpretation and analysis of magnetic resonance imaging images to be more accessible and comprehensive for clinicians. It aims to increase clinicians' skillset by introducing newer techniques and up-to-date findings to their repertoire and make information from previous cases available to aid decision making. The modular-based format of the tool allows integration of analyses that are not readily available clinically and streamlines the future developments. ©Niloufar Zarinabad, Emma M Meeus, Karen Manias, Katharine Foster, Andrew Peet. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 02.05.2018.
Wafer hot spot identification through advanced photomask characterization techniques
NASA Astrophysics Data System (ADS)
Choi, Yohan; Green, Michael; McMurran, Jeff; Ham, Young; Lin, Howard; Lan, Andy; Yang, Richer; Lung, Mike
2016-10-01
As device manufacturers progress through advanced technology nodes, limitations in standard 1-dimensional (1D) mask Critical Dimension (CD) metrics are becoming apparent. Historically, 1D metrics such as Mean to Target (MTT) and CD Uniformity (CDU) have been adequate for end users to evaluate and predict the mask impact on the wafer process. However, the wafer lithographer's process margin is shrinking at advanced nodes to a point that the classical mask CD metrics are no longer adequate to gauge the mask contribution to wafer process error. For example, wafer CDU error at advanced nodes is impacted by mask factors such as 3-dimensional (3D) effects and mask pattern fidelity on subresolution assist features (SRAFs) used in Optical Proximity Correction (OPC) models of ever-increasing complexity. These items are not quantifiable with the 1D metrology techniques of today. Likewise, the mask maker needs advanced characterization methods in order to optimize the mask process to meet the wafer lithographer's needs. These advanced characterization metrics are what is needed to harmonize mask and wafer processes for enhanced wafer hot spot analysis. In this paper, we study advanced mask pattern characterization techniques and their correlation with modeled wafer performance.
Warmenhoven, Franca; van Rijswijk, Eric; Engels, Yvonne; Kan, Cornelis; Prins, Judith; van Weel, Chris; Vissers, Kris
2012-02-01
Depression is highly prevalent in advanced cancer patients, but the diagnosis of depressive disorder in patients with advanced cancer is difficult. Screening instruments could facilitate diagnosing depressive disorder in patients with advanced cancer. The aim of this study was to determine the validity of the Beck Depression Inventory (BDI-II) and a single screening question as screening tools for depressive disorder in advanced cancer patients. Patients with advanced metastatic disease, visiting the outpatient palliative care department, were asked to fill out a self-questionnaire containing the Beck Depression Inventory (BDI-II) and a single screening question "Are you feeling depressed?" The mood section of the PRIME-MD was used as a gold standard. Sixty-one patients with advanced metastatic disease were eligible to be included in the study. Complete data were obtained from 46 patients. The area under the curve of the receiver operating characteristics analysis of the BDI-II was 0.82. The optimal cut-off point of the BDI-II was 16 with a sensitivity of 90% and a specificity of 69%. The single screening question showed a sensitivity of 50% and a specificity of 94%. The BDI-II seems an adequate screening tool for a depressive disorder in advanced cancer patients. The sensitivity of a single screening question is poor.
Improvement of electrical resistivity tomography for leachate injection monitoring.
Clément, R; Descloitres, M; Günther, T; Oxarango, L; Morra, C; Laurent, J-P; Gourc, J-P
2010-03-01
Leachate recirculation is a key process in the scope of operating municipal waste landfills as bioreactors, which aims to increase the moisture content to optimize the biodegradation in landfills. Given that liquid flows exhibit a complex behaviour in very heterogeneous porous media, in situ monitoring methods are required. Surface time-lapse electrical resistivity tomography (ERT) is usually proposed. Using numerical modelling with typical 2D and 3D injection plume patterns and 2D and 3D inversion codes, we show that wrong changes of resistivity can be calculated at depth if standard parameters are used for time-lapse ERT inversion. Major artefacts typically exhibit significant increases of resistivity (more than +30%) which can be misinterpreted as gas migration within the waste. In order to eliminate these artefacts, we tested an advanced time-lapse ERT procedure that includes (i) two advanced inversion tools and (ii) two alternative array geometries. The first advanced tool uses invariant regions in the model. The second advanced tool uses an inversion with a "minimum length" constraint. The alternative arrays focus on (i) a pole-dipole array (2D case), and (ii) a star array (3D case). The results show that these two advanced inversion tools and the two alternative arrays remove almost completely the artefacts within +/-5% both for 2D and 3D situations. As a field application, time-lapse ERT is applied using the star array during a 3D leachate injection in a non-hazardous municipal waste landfill. To evaluate the robustness of the two advanced tools, a synthetic model including both true decrease and increase of resistivity is built. The advanced time-lapse ERT procedure eliminates unwanted artefacts, while keeping a satisfactory image of true resistivity variations. This study demonstrates that significant and robust improvements can be obtained for time-lapse ERT monitoring of leachate recirculation in waste landfills. Copyright 2009 Elsevier Ltd. All rights reserved.
Improvement of electrical resistivity tomography for leachate injection monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clement, R., E-mail: remi.clement@hmg.inpg.f; Descloitres, M.; Guenther, T., E-mail: Thomas.Guenther@liag-hannover.d
2010-03-15
Leachate recirculation is a key process in the scope of operating municipal waste landfills as bioreactors, which aims to increase the moisture content to optimize the biodegradation in landfills. Given that liquid flows exhibit a complex behaviour in very heterogeneous porous media, in situ monitoring methods are required. Surface time-lapse electrical resistivity tomography (ERT) is usually proposed. Using numerical modelling with typical 2D and 3D injection plume patterns and 2D and 3D inversion codes, we show that wrong changes of resistivity can be calculated at depth if standard parameters are used for time-lapse ERT inversion. Major artefacts typically exhibit significantmore » increases of resistivity (more than +30%) which can be misinterpreted as gas migration within the waste. In order to eliminate these artefacts, we tested an advanced time-lapse ERT procedure that includes (i) two advanced inversion tools and (ii) two alternative array geometries. The first advanced tool uses invariant regions in the model. The second advanced tool uses an inversion with a 'minimum length' constraint. The alternative arrays focus on (i) a pole-dipole array (2D case), and (ii) a star array (3D case). The results show that these two advanced inversion tools and the two alternative arrays remove almost completely the artefacts within +/-5% both for 2D and 3D situations. As a field application, time-lapse ERT is applied using the star array during a 3D leachate injection in a non-hazardous municipal waste landfill. To evaluate the robustness of the two advanced tools, a synthetic model including both true decrease and increase of resistivity is built. The advanced time-lapse ERT procedure eliminates unwanted artefacts, while keeping a satisfactory image of true resistivity variations. This study demonstrates that significant and robust improvements can be obtained for time-lapse ERT monitoring of leachate recirculation in waste landfills.« less
Christley, Scott; Scarborough, Walter; Salinas, Eddie; Rounds, William H; Toby, Inimary T; Fonner, John M; Levin, Mikhail K; Kim, Min; Mock, Stephen A; Jordan, Christopher; Ostmeyer, Jared; Buntzman, Adam; Rubelt, Florian; Davila, Marco L; Monson, Nancy L; Scheuermann, Richard H; Cowell, Lindsay G
2018-01-01
Recent technological advances in immune repertoire sequencing have created tremendous potential for advancing our understanding of adaptive immune response dynamics in various states of health and disease. Immune repertoire sequencing produces large, highly complex data sets, however, which require specialized methods and software tools for their effective analysis and interpretation. VDJServer is a cloud-based analysis portal for immune repertoire sequence data that provide access to a suite of tools for a complete analysis workflow, including modules for preprocessing and quality control of sequence reads, V(D)J gene segment assignment, repertoire characterization, and repertoire comparison. VDJServer also provides sophisticated visualizations for exploratory analysis. It is accessible through a standard web browser via a graphical user interface designed for use by immunologists, clinicians, and bioinformatics researchers. VDJServer provides a data commons for public sharing of repertoire sequencing data, as well as private sharing of data between users. We describe the main functionality and architecture of VDJServer and demonstrate its capabilities with use cases from cancer immunology and autoimmunity. VDJServer provides a complete analysis suite for human and mouse T-cell and B-cell receptor repertoire sequencing data. The combination of its user-friendly interface and high-performance computing allows large immune repertoire sequencing projects to be analyzed with no programming or software installation required. VDJServer is a web-accessible cloud platform that provides access through a graphical user interface to a data management infrastructure, a collection of analysis tools covering all steps in an analysis, and an infrastructure for sharing data along with workflows, results, and computational provenance. VDJServer is a free, publicly available, and open-source licensed resource.
NASA Astrophysics Data System (ADS)
Ducoté, Julien; Dettoni, Florent; Bouyssou, Régis; Le-Gratiet, Bertrand; Carau, Damien; Dezauzier, Christophe
2015-03-01
Patterning process control of advanced nodes has required major changes over the last few years. Process control needs of critical patterning levels since 28nm technology node is extremely aggressive showing that metrology accuracy/sensitivity must be finely tuned. The introduction of pitch splitting (Litho-Etch-Litho-Etch) at 14FDSOInm node requires the development of specific metrologies to adopt advanced process control (for CD, overlay and focus corrections). The pitch splitting process leads to final line CD uniformities that are a combination of the CD uniformities of the two exposures, while the space CD uniformities are depending on both CD and OVL variability. In this paper, investigations of CD and OVL process control of 64nm minimum pitch at Metal1 level of 14FDSOI technology, within the double patterning process flow (Litho, hard mask etch, line etch) are presented. Various measurements with SEMCD tools (Hitachi), and overlay tools (KT for Image Based Overlay - IBO, and ASML for Diffraction Based Overlay - DBO) are compared. Metrology targets are embedded within a block instanced several times within the field to perform intra-field process variations characterizations. Specific SEMCD targets were designed for independent measurement of both line CD (A and B) and space CD (A to B and B to A) for each exposure within a single measurement during the DP flow. Based on those measurements correlation between overlay determined with SEMCD and with standard overlay tools can be evaluated. Such correlation at different steps through the DP flow is investigated regarding the metrology type. Process correction models are evaluated with respect to the measurement type and the intra-field sampling.
Contact Us | OSTI, US Dept of Energy Office of Scientific and Technical
Information skip to main content Sign In Create Account OSTI.GOV title logo U.S. Department of Energy Office of Scientific and Technical Information Search terms: Advanced search options Advanced Tools Public Access Policy Data Services & Dev Tools About FAQs News Sign In Create Account Contact
ERIC Educational Resources Information Center
Cann, Cynthia W.; Brumagim, Alan L.
2008-01-01
The authors present the case of one business college's use of project management techniques as tools for accomplishing Association to Advance Collegiate Schools of Business (AACSB) International maintenance of accreditation. Using these techniques provides an efficient and effective method of organizing maintenance efforts. In addition, using…
Synthetic biology advances for pharmaceutical production
Breitling, Rainer; Takano, Eriko
2015-01-01
Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems. PMID:25744872
SMARTe Site Characterization Tool. In: SMARTe20ll, EPA/600/C-10/007
The purpose of the Site Characterization Tool is to: (1) develop a sample design for collecting site characterization data and (2) perform data analysis on uploaded data. The sample design part helps to determine how many samples should be collected to characterize a site with ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1984-08-01
The initial objective of this work was to develop a methodology for analyzing the impact of technological advances as a tool to help establish priorities for R and D options in the field of biocatalysis. As an example of a biocatalyzed process, butanol/acetone fermentation (ABE process) was selected as the specific topic of study. A base case model characterizing the technology and economics associated with the ABE process was developed in the previous first phase of study. The project objectives were broadened in this second phase of work to provide parametric estimates of the economic and energy impacts of amore » variety of research advances in the hydrolysis, fermentation and purification sections of the process. The research advances analyzed in this study were based on a comprehensive literature review. The six process options analyzed were: continuous ABE fermentaton; vacuum ABE fermentation; Baelene solvent extraction; HRI's Lignol process; improved prehydrolysis/dual enzyme hydrolysis; and improved microorganism tolerance to butanol toxicity. Of the six options analyzed, only improved microorganism tolerance to butanol toxicity had a significant positive effect on energy efficiency and economics. This particular process option reduced the base case production cost (including 10% DCF return) by 20% and energy consumption by 16%. Figures and tables.« less
NASA Technical Reports Server (NTRS)
ONeil, D. A.; Mankins, J. C.; Christensen, C. B.; Gresham, E. C.
2005-01-01
The Advanced Technology Lifecycle Analysis System (ATLAS), a spreadsheet analysis tool suite, applies parametric equations for sizing and lifecycle cost estimation. Performance, operation, and programmatic data used by the equations come from a Technology Tool Box (TTB) database. In this second TTB Technical Interchange Meeting (TIM), technologists, system model developers, and architecture analysts discussed methods for modeling technology decisions in spreadsheet models, identified specific technology parameters, and defined detailed development requirements. This Conference Publication captures the consensus of the discussions and provides narrative explanations of the tool suite, the database, and applications of ATLAS within NASA s changing environment.
Molecules to maps: tools for visualization and interaction in support of computational biology.
Kraemer, E T; Ferrin, T E
1998-01-01
The volume of data produced by genome projects, X-ray crystallography, NMR spectroscopy, and electron and confocal microscopy present the bioinformatics community with new challenges for analyzing, understanding, and exchanging this data. At the 1998 Pacific Symposium on Biocomputing, a track entitled 'Molecules to Maps: Tools for Visualization and Interaction in Computational Biology' provided tool developers and users with the opportunity to discuss advances in tools and techniques to assist scientists in evaluating, absorbing, navigating, and correlating this sea of information, through visualization and user interaction. In this paper we present these advances and discuss some of the challenges that remain to be solved.
Leake, Mark C
2016-01-01
Our understanding of the processes involved in infection has grown enormously in the past decade due in part to emerging methods of biophysics. This new insight has been enabled through advances in interdisciplinary experimental technologies and theoretical methods at the cutting-edge interface of the life and physical sciences. For example, this has involved several state-of-the-art biophysical tools used in conjunction with molecular and cell biology approaches, which enable investigation of infection in living cells. There are also new, emerging interfacial science tools which enable significant improvements to the resolution of quantitative measurements both in space and time. These include single-molecule biophysics methods and super-resolution microscopy approaches. These new technological tools in particular have underpinned much new understanding of dynamic processes of infection at a molecular length scale. Also, there are many valuable advances made recently in theoretical approaches of biophysics which enable advances in predictive modelling to generate new understanding of infection. Here, I discuss these advances, and take stock on our knowledge of the biophysics of infection and discuss where future advances may lead.
Liu, Gaisheng; Bohling, Geoffrey C.; Butler, James J.
2008-01-01
The direct‐push permeameter (DPP) is a tool for the in situ characterization of hydraulic conductivity (K) in shallow, unconsolidated formations. This device, which consists of a short screened section with a pair of pressure transducers near the screen, is advanced into the subsurface with direct‐push technology. K is determined through a series of injection tests conducted between advancements. Recent field work by Butler et al. (2007) has shown that the DPP holds great potential for describing vertical variations in K at an unprecedented level of detail, accuracy and speed. In this paper, the fundamental efficacy of the DPP is evaluated through a series of numerical simulations. These simulations demonstrate that the DPP can provide accurate K information under conditions commonly faced in the field. A single DPP test provides an effective K for the domain immediately surrounding the interval between the injection screen and the most distant pressure transducer. Features that are thinner than that interval can be quantified by reducing the vertical distance between successive tests and analyzing the data from all tests simultaneously. A particular advantage of the DPP is that, unlike most other single borehole techniques, a low‐K skin or a clogged screen has a minimal impact on the K estimate. In addition, the requirement that only steady‐shape conditions be attained allows for a dramatic reduction in the time required for each injection test.
Modeling of advanced technology vehicles
DOT National Transportation Integrated Search
2003-09-01
The characterization of some types of "advanced technology vehicles" may help to understand policies that are strongly either explicitly or implicitly technology-dependent. Recent models attempt to characterize such technologies in terms of fuel econ...
NASA Technical Reports Server (NTRS)
2012-01-01
Topics include: Bioreactors Drive Advances in Tissue Engineering; Tooling Techniques Enhance Medical Imaging; Ventilator Technologies Sustain Critically Injured Patients; Protein Innovations Advance Drug Treatments, Skin Care; Mass Analyzers Facilitate Research on Addiction; Frameworks Coordinate Scientific Data Management; Cameras Improve Navigation for Pilots, Drivers; Integrated Design Tools Reduce Risk, Cost; Advisory Systems Save Time, Fuel for Airlines; Modeling Programs Increase Aircraft Design Safety; Fly-by-Wire Systems Enable Safer, More Efficient Flight; Modified Fittings Enhance Industrial Safety; Simulation Tools Model Icing for Aircraft Design; Information Systems Coordinate Emergency Management; Imaging Systems Provide Maps for U.S. Soldiers; High-Pressure Systems Suppress Fires in Seconds; Alloy-Enhanced Fans Maintain Fresh Air in Tunnels; Control Algorithms Charge Batteries Faster; Software Programs Derive Measurements from Photographs; Retrofits Convert Gas Vehicles into Hybrids; NASA Missions Inspire Online Video Games; Monitors Track Vital Signs for Fitness and Safety; Thermal Components Boost Performance of HVAC Systems; World Wind Tools Reveal Environmental Change; Analyzers Measure Greenhouse Gasses, Airborne Pollutants; Remediation Technologies Eliminate Contaminants; Receivers Gather Data for Climate, Weather Prediction; Coating Processes Boost Performance of Solar Cells; Analyzers Provide Water Security in Space and on Earth; Catalyst Substrates Remove Contaminants, Produce Fuel; Rocket Engine Innovations Advance Clean Energy; Technologies Render Views of Earth for Virtual Navigation; Content Platforms Meet Data Storage, Retrieval Needs; Tools Ensure Reliability of Critical Software; Electronic Handbooks Simplify Process Management; Software Innovations Speed Scientific Computing; Controller Chips Preserve Microprocessor Function; Nanotube Production Devices Expand Research Capabilities; Custom Machines Advance Composite Manufacturing; Polyimide Foams Offer Superior Insulation; Beam Steering Devices Reduce Payload Weight; Models Support Energy-Saving Microwave Technologies; Materials Advance Chemical Propulsion Technology; and High-Temperature Coatings Offer Energy Savings.
ERIC Educational Resources Information Center
Coles, S. J.; Mapp, L. K.
2016-01-01
An undergraduate practical exercise has been designed to provide hands-on, instrument-based experience of advanced characterization techniques. A research experience approach is taken, centered around the concept of solid-state polymorphism, which requires a detailed knowledge of molecular and crystal structure to be gained by advanced analytical…
Free-energy landscape of protein oligomerization from atomistic simulations
Barducci, Alessandro; Bonomi, Massimiliano; Prakash, Meher K.; Parrinello, Michele
2013-01-01
In the realm of protein–protein interactions, the assembly process of homooligomers plays a fundamental role because the majority of proteins fall into this category. A comprehensive understanding of this multistep process requires the characterization of the driving molecular interactions and the transient intermediate species. The latter are often short-lived and thus remain elusive to most experimental investigations. Molecular simulations provide a unique tool to shed light onto these complex processes complementing experimental data. Here we combine advanced sampling techniques, such as metadynamics and parallel tempering, to characterize the oligomerization landscape of fibritin foldon domain. This system is an evolutionarily optimized trimerization motif that represents an ideal model for experimental and computational mechanistic studies. Our results are fully consistent with previous experimental nuclear magnetic resonance and kinetic data, but they provide a unique insight into fibritin foldon assembly. In particular, our simulations unveil the role of nonspecific interactions and suggest that an interplay between thermodynamic bias toward native structure and residual conformational disorder may provide a kinetic advantage. PMID:24248370
Demetzos, Costas
2015-06-01
Biophysics and thermodynamics are considered as the scientific milestones for investigating the properties of materials. The relationship between the changes of temperature with the biophysical variables of biomaterials is important in the process of the development of drug delivery systems. Biophysics is a challenge sector of physics and should be used complementary with the biochemistry in order to discover new and promising technological platforms (i.e., drug delivery systems) and to disclose the 'silence functionality' of bio-inspired biological and artificial membranes. Thermal analysis and biophysical approaches in pharmaceuticals present reliable and versatile tools for their characterization and for the successful development of pharmaceutical products. The metastable phases of self-assembled nanostructures such as liposomes should be taken into consideration because they represent the thermal events can affect the functionality of advanced drug delivery nano systems. In conclusion, biophysics and thermodynamics are characterized as the building blocks for design and development of bio-inspired drug delivery systems.
Lee, Chang Young; Fan, Yi; Rubakhin, Stanislav S.; Yoon, Sook; Sweedler, Jonathan V.
2016-01-01
The integration of microfluidic devices—which efficiently handle small liquid volumes—with separations/mass spectrometry (MS) is an effective approach for profiling the neurochemistry occurring in selected neurons. Interfacing the microfluidic cell culture to the mass spectrometer is challenging because of geometric and scaling issues. Here we demonstrate the hyphenation of a neuron-in-capillary platform to a solid phase extraction device and off-line MS. A primary neuronal culture of Aplysia californica neurons was established directly inside a cylindrical polyimide capillary. The approach also uses a particle-embedded monolith to condition neuropeptide releasates collected from several Aplysia neurons cultured in the capillary, with the subsequent characterization of released peptides via MS. This system presents a number of advances compared to more traditional microfluidic devices fabricated with polydimethylsiloxane. These include low cost, easy access to cell culture, rigidity, ease of transport, and minimal fluid handling. The cylindrical geometry of the platform allows convenient interface with a wide range of analytical tools that utilize capillary columns. PMID:27245782
Direct observation of conductive filament formation in Alq3 based organic resistive memories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busby, Y., E-mail: yan.busby@unamur.be; Pireaux, J.-J.; Nau, S.
2015-08-21
This work explores resistive switching mechanisms in non-volatile organic memory devices based on tris(8-hydroxyquinolie)aluminum (Alq{sub 3}). Advanced characterization tools are applied to investigate metal diffusion in ITO/Alq{sub 3}/Ag memory device stacks leading to conductive filament formation. The morphology of Alq{sub 3}/Ag layers as a function of the metal evaporation conditions is studied by X-ray reflectivity, while depth profile analysis with X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry is applied to characterize operational memory elements displaying reliable bistable current-voltage characteristics. 3D images of the distribution of silver inside the organic layer clearly point towards the existence of conductive filamentsmore » and allow for the identification of the initial filament formation and inactivation mechanisms during switching of the device. Initial filament formation is suggested to be driven by field assisted diffusion of silver from abundant structures formed during the top electrode evaporation, whereas thermochemical effects lead to local filament inactivation.« less
Flame extinction limit and particulates formation in fuel blends
NASA Astrophysics Data System (ADS)
Subramanya, Mahesh
Many fuels used in material processing and power generation applications are generally a blend of various hydrocarbons. Although the combustion and aerosol formation dynamics of individual fuels is well understood, the flame dynamics of fuel blends are yet to be characterized. This research uses a twin flame counterflow burner to measure flame velocity, flame extinction, particulate formation and particulate morphology of hydrogen fuel blend flames at different H2 concentration, oscillation frequencies and stretch conditions. Phase resolved spectroscopic measurements (emission spectra) of OH, H, O and CH radical/atom concentrations is used to characterize the heat release processes of the flame. In addition flame generated particulates are collected using thermophoretic sample technique and are qualitative analyzed using Raman Spectroscopy and SEM. Such measurements are essential for the development of advanced computational tools capable of predicting fuel blend flame characteristics at realistic combustor conditions. The data generated through the measurements of this research are representative, and yet accurate, with unique well defined boundary conditions which can be reproduced in numerical computations for kinetic code validations.
Corvari, Vincent; Narhi, Linda O; Spitznagel, Thomas M; Afonina, Nataliya; Cao, Shawn; Cash, Patricia; Cecchini, Irene; DeFelippis, Michael R; Garidel, Patrick; Herre, Andrea; Koulov, Atanas V; Lubiniecki, Tony; Mahler, Hanns-Christian; Mangiagalli, Paolo; Nesta, Douglas; Perez-Ramirez, Bernardo; Polozova, Alla; Rossi, Mara; Schmidt, Roland; Simler, Robert; Singh, Satish; Weiskopf, Andrew; Wuchner, Klaus
2015-11-01
Measurement and characterization of subvisible particles (including proteinaceous and non-proteinaceous particulate matter) is an important aspect of the pharmaceutical development process for biotherapeutics. Health authorities have increased expectations for subvisible particle data beyond criteria specified in the pharmacopeia and covering a wider size range. In addition, subvisible particle data is being requested for samples exposed to various stress conditions and to support process/product changes. Consequently, subvisible particle analysis has expanded beyond routine testing of finished dosage forms using traditional compendial methods. Over the past decade, advances have been made in the detection and understanding of subvisible particle formation. This article presents industry case studies to illustrate the implementation of strategies for subvisible particle analysis as a characterization tool to assess the nature of the particulate matter and applications in drug product development, stability studies and post-marketing changes. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
Free-energy landscape of protein oligomerization from atomistic simulations.
Barducci, Alessandro; Bonomi, Massimiliano; Prakash, Meher K; Parrinello, Michele
2013-12-03
In the realm of protein-protein interactions, the assembly process of homooligomers plays a fundamental role because the majority of proteins fall into this category. A comprehensive understanding of this multistep process requires the characterization of the driving molecular interactions and the transient intermediate species. The latter are often short-lived and thus remain elusive to most experimental investigations. Molecular simulations provide a unique tool to shed light onto these complex processes complementing experimental data. Here we combine advanced sampling techniques, such as metadynamics and parallel tempering, to characterize the oligomerization landscape of fibritin foldon domain. This system is an evolutionarily optimized trimerization motif that represents an ideal model for experimental and computational mechanistic studies. Our results are fully consistent with previous experimental nuclear magnetic resonance and kinetic data, but they provide a unique insight into fibritin foldon assembly. In particular, our simulations unveil the role of nonspecific interactions and suggest that an interplay between thermodynamic bias toward native structure and residual conformational disorder may provide a kinetic advantage.
Genome Editing for the Study of Cardiovascular Diseases
Chadwick, Alexandra C.
2018-01-01
Purpose of Review The opportunities afforded through the recent advent of genome-editing technologies have allowed investigators to more easily study a number of diseases. The advantages and limitations of the most prominent genome-editing technologies are described in this review, along with potential applications specifically focused on cardiovascular diseases. Recent Findings The recent genome-editing tools using programmable nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), have rapidly been adapted to manipulate genes in a variety of cellular and animal models. A number of recent cardiovascular disease-related publications report cases in which specific mutations are introduced into disease models for functional characterization and for testing of therapeutic strategies. Summary Recent advances in genome-editing technologies offer new approaches to understand and treat diseases. Here, we discuss genome editing strategies to easily characterize naturally occurring mutations and offer strategies with potential clinical relevance. PMID:28220462
Use of Computed Tomography for Characterizing Materials Grown Terrestrially and in Microgravity
NASA Technical Reports Server (NTRS)
Gillies, Donald C.; Engel, H. P.
2001-01-01
The purpose behind this work is to provide NASA Principal Investigators (PIs) rapid information, nondestructively, about their samples. This information will be in the form of density values throughout the samples, especially within slices 1 mm high. With correct interpretation and good calibration, these values will enable the PI to obtain macro chemical compositional analysis for his/her samples. Alternatively, the technique will provide information about the porosity level and its distribution within the sample. Experience gained with a NASA Microgravity Research Division-sponsored Advanced Technology Development (ATD) project on this topic has brought the technique to a level of maturity at which it has become a viable characterization tool for many of the Materials Science Pls, but with equipment that could never be supported within their own facilities. The existing computed tomography (CT) facility at NASA's Kennedy Space Center (KSC) is ideally situated to furnish information rapidly and conveniently to PIs, particularly immediately before and after flight missions.
Use of Computed Tomography for Characterizing Materials Grown Terrestrially and in Microgravity
NASA Technical Reports Server (NTRS)
Gillies, Donald C.; Engel, H. P.
2000-01-01
The purpose behind this work is to provide NASA Principal Investigators (PI) rapid information, non-destructively, about their samples. This information will be in the form of density values throughout the samples, especially within slices 1 mm high. With correct interpretation and good calibration, these values will enable the PI to obtain macro chemical compositional analysis for his/her samples. Alternatively, the technique will provide information about the porosity level and its distribution within the sample. Experience gained with a NASA MRD-sponsored Advanced Technology Development (ATD) project on this topic has brought the technique to a level of maturity at which it has become a viable characterization tool for many of the Materials Science PIs, but with equipment that could never be supported within their own facilities. The existing computed tomography (CT) facility at NASA's Kennedy Space Center (KSC) is ideally situated to furnish information rapidly and conveniently to PIs, particularly immediately before and after flight missions.
Real-time subsecond voltammetric analysis of Pb in aqueous environmental samples.
Yang, Yuanyuan; Pathirathna, Pavithra; Siriwardhane, Thushani; McElmurry, Shawn P; Hashemi, Parastoo
2013-08-06
Lead (Pb) pollution is an important environmental and public health concern. Rapid Pb transport during stormwater runoff significantly impairs surface water quality. The ability to characterize and model Pb transport during these events is critical to mitigating its impact on the environment. However, Pb analysis is limited by the lack of analytical methods that can afford rapid, sensitive measurements in situ. While electrochemical methods have previously shown promise for rapid Pb analysis, they are currently limited in two ways. First, because of Pb's limited solubility, test solutions that are representative of environmental systems are not typically employed in laboratory characterizations. Second, concerns about traditional Hg electrode toxicity, stability, and low temporal resolution have dampened opportunities for in situ analyses with traditional electrochemical methods. In this paper, we describe two novel methodological advances that bypass these limitations. Using geochemical models, we first create an environmentally relevant test solution that can be used for electrochemical method development and characterization. Second, we develop a fast-scan cyclic voltammetry (FSCV) method for Pb detection on Hg-free carbon fiber microelectrodes. We assess the method's sensitivity and stability, taking into account Pb speciation, and utilize it to characterize rapid Pb fluctuations in real environmental samples. We thus present a novel real-time electrochemical tool for Pb analysis in both model and authentic environmental solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crabtree, George; Glotzer, Sharon; McCurdy, Bill
This report is based on a SC Workshop on Computational Materials Science and Chemistry for Innovation on July 26-27, 2010, to assess the potential of state-of-the-art computer simulations to accelerate understanding and discovery in materials science and chemistry, with a focus on potential impacts in energy technologies and innovation. The urgent demand for new energy technologies has greatly exceeded the capabilities of today's materials and chemical processes. To convert sunlight to fuel, efficiently store energy, or enable a new generation of energy production and utilization technologies requires the development of new materials and processes of unprecedented functionality and performance. Newmore » materials and processes are critical pacing elements for progress in advanced energy systems and virtually all industrial technologies. Over the past two decades, the United States has developed and deployed the world's most powerful collection of tools for the synthesis, processing, characterization, and simulation and modeling of materials and chemical systems at the nanoscale, dimensions of a few atoms to a few hundred atoms across. These tools, which include world-leading x-ray and neutron sources, nanoscale science facilities, and high-performance computers, provide an unprecedented view of the atomic-scale structure and dynamics of materials and the molecular-scale basis of chemical processes. For the first time in history, we are able to synthesize, characterize, and model materials and chemical behavior at the length scale where this behavior is controlled. This ability is transformational for the discovery process and, as a result, confers a significant competitive advantage. Perhaps the most spectacular increase in capability has been demonstrated in high performance computing. Over the past decade, computational power has increased by a factor of a million due to advances in hardware and software. This rate of improvement, which shows no sign of abating, has enabled the development of computer simulations and models of unprecedented fidelity. We are at the threshold of a new era where the integrated synthesis, characterization, and modeling of complex materials and chemical processes will transform our ability to understand and design new materials and chemistries with predictive power. In turn, this predictive capability will transform technological innovation by accelerating the development and deployment of new materials and processes in products and manufacturing. Harnessing the potential of computational science and engineering for the discovery and development of materials and chemical processes is essential to maintaining leadership in these foundational fields that underpin energy technologies and industrial competitiveness. Capitalizing on the opportunities presented by simulation-based engineering and science in materials and chemistry will require an integration of experimental capabilities with theoretical and computational modeling; the development of a robust and sustainable infrastructure to support the development and deployment of advanced computational models; and the assembly of a community of scientists and engineers to implement this integration and infrastructure. This community must extend to industry, where incorporating predictive materials science and chemistry into design tools can accelerate the product development cycle and drive economic competitiveness. The confluence of new theories, new materials synthesis capabilities, and new computer platforms has created an unprecedented opportunity to implement a "materials-by-design" paradigm with wide-ranging benefits in technological innovation and scientific discovery. The Workshop on Computational Materials Science and Chemistry for Innovation was convened in Bethesda, Maryland, on July 26-27, 2010. Sponsored by the Department of Energy (DOE) Offices of Advanced Scientific Computing Research and Basic Energy Sciences, the workshop brought together 160 experts in materials science, chemistry, and computational science representing more than 65 universities, laboratories, and industries, and four agencies. The workshop examined seven foundational challenge areas in materials science and chemistry: materials for extreme conditions, self-assembly, light harvesting, chemical reactions, designer fluids, thin films and interfaces, and electronic structure. Each of these challenge areas is critical to the development of advanced energy systems, and each can be accelerated by the integrated application of predictive capability with theory and experiment. The workshop concluded that emerging capabilities in predictive modeling and simulation have the potential to revolutionize the development of new materials and chemical processes. Coupled with world-leading materials characterization and nanoscale science facilities, this predictive capability provides the foundation for an innovation ecosystem that can accelerate the discovery, development, and deployment of new technologies, including advanced energy systems. Delivering on the promise of this innovation ecosystem requires the following: Integration of synthesis, processing, characterization, theory, and simulation and modeling. Many of the newly established Energy Frontier Research Centers and Energy Hubs are exploiting this integration. Achieving/strengthening predictive capability in foundational challenge areas. Predictive capability in the seven foundational challenge areas described in this report is critical to the development of advanced energy technologies. Developing validated computational approaches that span vast differences in time and length scales. This fundamental computational challenge crosscuts all of the foundational challenge areas. Similarly challenging is coupling of analytical data from multiple instruments and techniques that are required to link these length and time scales. Experimental validation and quantification of uncertainty in simulation and modeling. Uncertainty quantification becomes increasingly challenging as simulations become more complex. Robust and sustainable computational infrastructure, including software and applications. For modeling and simulation, software equals infrastructure. To validate the computational tools, software is critical infrastructure that effectively translates huge arrays of experimental data into useful scientific understanding. An integrated approach for managing this infrastructure is essential. Efficient transfer and incorporation of simulation-based engineering and science in industry. Strategies for bridging the gap between research and industrial applications and for widespread industry adoption of integrated computational materials engineering are needed.« less
Synergistic Role of Newer Techniques for Forensic and Postmortem CT Examinations.
Blum, Alain; Kolopp, Martin; Teixeira, Pedro Gondim; Stroud, Tyler; Noirtin, Philippe; Coudane, Henry; Martrille, Laurent
2018-04-30
The aim of this article is to provide an overview of newer techniques and postprocessing tools that improve the potential impact of CT in forensic situations. CT has become a standard tool in medicolegal practice. Postmortem CT is an essential aid to the pathologist during autopsies. Advances in technology and software are constantly leading to advances in its performance.
Machine Tool Advanced Skills Technology Program (MAST). Overview and Methodology.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
The Machine Tool Advanced Skills Technology Program (MAST) is a geographical partnership of six of the nation's best two-year colleges located in the six states that have about one-third of the density of metals-related industries in the United States. The purpose of the MAST grant is to develop and implement a national training model to overcome…
Head and neck cancer: proteomic advances and biomarker achievements.
Rezende, Taia Maria Berto; de Souza Freire, Mirna; Franco, Octávio Luiz
2010-11-01
Tumors of the head and neck comprise an important neoplasia group, the incidence of which is increasing in many parts of the world. Recent advances in diagnostic and therapeutic techniques for these lesions have yielded novel molecular targets, uncovered signal pathway dominance, and advanced early cancer detection. Proteomics is a powerful tool for investigating the distribution of proteins and small molecules within biological systems through the analysis of different types of samples. The proteomic profiles of different types of cancer have been studied, and this has provided remarkable advances in cancer understanding. This review covers recent advances for head and neck cancer; it encompasses the risk factors, pathogenesis, proteomic tools that can help in understanding cancer, and new proteomic findings in this type of cancer. Copyright © 2010 American Cancer Society.
New insights and current tools for genetically engineered (GE) sheep and goats.
Menchaca, A; Anegon, I; Whitelaw, C B A; Baldassarre, H; Crispo, M
2016-07-01
Genetically engineered sheep and goats represent useful models applied to proof of concepts, large-scale production of novel products or processes, and improvement of animal traits, which is of interest in biomedicine, biopharma, and livestock. This disruptive biotechnology arose in the 80s by injecting DNA fragments into the pronucleus of zygote-staged embryos. Pronuclear microinjection set the transgenic concept into people's mind but was characterized by inefficient and often frustrating results mostly because of uncontrolled and/or random integration and unpredictable transgene expression. Somatic cell nuclear transfer launched the second wave in the late 90s, solving several weaknesses of the previous technique by making feasible the transfer of a genetically modified and fully characterized cell into an enucleated oocyte, capable of cell reprogramming to generate genetically engineered animals. Important advances were also achieved during the 2000s with the arrival of new techniques like the lentivirus system, transposons, RNA interference, site-specific recombinases, and sperm-mediated transgenesis. We are now living the irruption of the third technological wave in which genome edition is possible by using endonucleases, particularly the CRISPR/Cas system. Sheep and goats were recently produced by CRISPR/Cas9, and for sure, cattle will be reported soon. We will see new genetically engineered farm animals produced by homologous recombination, multiple gene editing in one-step generation and conditional modifications, among other advancements. In the following decade, genome edition will continue expanding our technical possibilities, which will contribute to the advancement of science, the development of clinical or commercial applications, and the improvement of people's life quality around the world. Copyright © 2016 Elsevier Inc. All rights reserved.
Nice, Liana M.; Steffenson, Brian J.; Brown-Guedira, Gina L.; Akhunov, Eduard D.; Liu, Chaochih; Kono, Thomas J. Y.; Morrell, Peter L.; Blake, Thomas K.; Horsley, Richard D.; Smith, Kevin P.; Muehlbauer, Gary J.
2016-01-01
The ability to access alleles from unadapted germplasm collections is a long-standing problem for geneticists and breeders. Here we developed, characterized, and demonstrated the utility of a wild barley advanced backcross-nested association mapping (AB-NAM) population. We developed this population by backcrossing 25 wild barley accessions to the six-rowed malting barley cultivar Rasmusson. The 25 wild barley parents were selected from the 318 accession Wild Barley Diversity Collection (WBDC) to maximize allelic diversity. The resulting 796 BC2F4:6 lines were genotyped with 384 SNP markers, and an additional 4022 SNPs and 263,531 sequence variants were imputed onto the population using 9K iSelect SNP genotypes and exome capture sequence of the parents, respectively. On average, 96% of each wild parent was introgressed into the Rasmusson background, and the population exhibited low population structure. While linkage disequilibrium (LD) decay (r2 = 0.2) was lowest in the WBDC (0.36 cM), the AB-NAM (9.2 cM) exhibited more rapid LD decay than comparable advanced backcross (28.6 cM) and recombinant inbred line (32.3 cM) populations. Three qualitative traits: glossy spike, glossy sheath, and black hull color were mapped with high resolution to loci corresponding to known barley mutants for these traits. Additionally, a total of 10 QTL were identified for grain protein content. The combination of low LD, negligible population structure, and high diversity in an adapted background make the AB-NAM an important tool for high-resolution gene mapping and discovery of novel allelic variation using wild barley germplasm. PMID:27182953
Auletta, Sveva; Bonfiglio, Rita; Wunder, Andreas; Varani, Michela; Galli, Filippo; Borri, Filippo; Scimeca, Manuel; Niessen, Heiko G; Schönberger, Tanja; Bonanno, Elena
2018-03-01
Inflammatory bowel diseases are lifelong disorders affecting the gastrointestinal tract characterized by intermittent disease flares and periods of remission with a progressive and destructive nature. Unfortunately, the exact etiology is still not completely known, therefore a causal therapy to cure the disease is not yet available. Current treatment options mainly encompass the use of non-specific anti-inflammatory agents and immunosuppressive drugs that cause significant side effects that often have a negative impact on patients' quality of life. As the majority of patients need a long-term follow-up it would be ideal to rely on a non-invasive technique with good compliance. Currently, the gold standard diagnostic tools for managing IBD are represented by invasive procedures such as colonoscopy and histopathology. Nevertheless, recent advances in imaging technology continue to improve the ability of imaging techniques to non-invasively monitor disease activity and treatment response in preclinical models of IBD. Novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. Furthermore, molecular imaging advances allow us to increase our knowledge on the critical biological pathways involved in disease progression by characterizing in vivo processes at a cellular and molecular level and enabling significant improvements in the understanding of the etiology of IBD. This review presents a critical and updated overview on the imaging advances in animal models of IBD. Our aim is to highlight the potential beneficial impact and the range of applications that imaging techniques could offer for the improvement of the clinical monitoring and management of IBD patients: diagnosis, staging, determination of therapeutic targets, monitoring therapy and evaluation of the prognosis, personalized therapeutic approaches.
NASA Astrophysics Data System (ADS)
Park, Yeonjoon
The advanced semiconductor material InGaAsN was grown with nitrogen plasma assisted Molecular Beam Epitaxy (MBE). The InGaAsN layers were characterized with High Resolution X-ray Diffraction (HRXDF), Atomic Fore Microscope (AFM), X-ray Photoemission Spectroscopy (XPS) and Photo-Luminescence (PL). The reduction of the band gap energy was observed with the incorporation of nitrogen and the lattice matched condition to the GaAs substrate was achieved with the additional incorporation of indium. A detailed investigation was made for the growth mode changes from planar layer-by-layer growth to 3D faceted growth with a higher concentration of nitrogen. A new X-ray diffraction analysis was developed and applied to the MBE growth on GaAs(111)B, which is one of the facet planes of InGaAsN. As an effort to enhance the processing tools for advanced semiconductor materials, gas assisted Focused Ion Beam (FIB) vertical milling was performed on GaN. The FIB processed area shows an atomically flat surface, which is good enough for the fabrication of Double Bragg Reflector (DBR) mirrors for the Blue GaN Vertical Cavity Surface Emitting Laser (VCSEL) Diodes. An in-situ electron beam system was developed to combine the enhanced lithographic processing capability with the atomic layer growth capability by MBE. The electron beam system has a compensation capability against substrate vibration and thermal drift. In-situ electron beam lithography was performed with the low pressure assisting gas. The advanced processing and characterization methods developed in this thesis will assist the development of superior semiconductor materials for the future.
2016-01-05
regularly used the Raman imaging system to characterize the doping chemistry of colloidal indium nitride nanoparticles . This material shows an interesting...regularly used the Raman imaging system to characterize the doping chemistry of colloidal indium nitride nanoparticles . This material shows an...analysis of thin film coatings, bulk materials, powders and nanoparticles . The instrument is extensively used to characterize advanced electrochemical and
Canino-Rodríguez, José M; García-Herrero, Jesús; Besada-Portas, Juan; Ravelo-García, Antonio G; Travieso-González, Carlos; Alonso-Hernández, Jesús B
2015-03-04
The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS) that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI) for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers' indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications.
Approaches in Characterizing Genetic Structure and Mapping in a Rice Multiparental Population.
Raghavan, Chitra; Mauleon, Ramil; Lacorte, Vanica; Jubay, Monalisa; Zaw, Hein; Bonifacio, Justine; Singh, Rakesh Kumar; Huang, B Emma; Leung, Hei
2017-06-07
Multi-parent Advanced Generation Intercross (MAGIC) populations are fast becoming mainstream tools for research and breeding, along with the technology and tools for analysis. This paper demonstrates the analysis of a rice MAGIC population from data filtering to imputation and processing of genetic data to characterizing genomic structure, and finally quantitative trait loci (QTL) mapping. In this study, 1316 S6:8 indica MAGIC (MI) lines and the eight founders were sequenced using Genotyping by Sequencing (GBS). As the GBS approach often includes missing data, the first step was to impute the missing SNPs. The observable number of recombinations in the population was then explored. Based on this case study, a general outline of procedures for a MAGIC analysis workflow is provided, as well as for QTL mapping of agronomic traits and biotic and abiotic stress, using the results from both association and interval mapping approaches. QTL for agronomic traits (yield, flowering time, and plant height), physical (grain length and grain width) and cooking properties (amylose content) of the rice grain, abiotic stress (submergence tolerance), and biotic stress (brown spot disease) were mapped. Through presenting this extensive analysis in the MI population in rice, we highlight important considerations when choosing analytical approaches. The methods and results reported in this paper will provide a guide to future genetic analysis methods applied to multi-parent populations. Copyright © 2017 Raghavan et al.
Canino-Rodríguez, José M.; García-Herrero, Jesús; Besada-Portas, Juan; Ravelo-García, Antonio G.; Travieso-González, Carlos; Alonso-Hernández, Jesús B.
2015-01-01
The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS) that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI) for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers’ indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications. PMID:25746092
X-ray techniques for innovation in industry
Lawniczak-Jablonska, Krystyna; Cutler, Jeffrey
2014-01-01
The smart specialization declared in the European program Horizon 2020, and the increasing cooperation between research and development found in companies and researchers at universities and research institutions have created a new paradigm where many calls for proposals require participation and funding from public and private entities. This has created a unique opportunity for large-scale facilities, such as synchrotron research laboratories, to participate in and support applied research programs. Scientific staff at synchrotron facilities have developed many advanced tools that make optimal use of the characteristics of the light generated by the storage ring. These tools have been exceptionally valuable for materials characterization including X-ray absorption spectroscopy, diffraction, tomography and scattering, and have been key in solving many research and development issues. Progress in optics and detectors, as well as a large effort put into the improvement of data analysis codes, have resulted in the development of reliable and reproducible procedures for materials characterization. Research with photons has contributed to the development of a wide variety of products such as plastics, cosmetics, chemicals, building materials, packaging materials and pharma. In this review, a few examples are highlighted of successful cooperation leading to solutions of a variety of industrial technological problems which have been exploited by industry including lessons learned from the Science Link project, supported by the European Commission, as a new approach to increase the number of commercial users at large-scale research infrastructures. PMID:25485139
Development and characterization of silk fibroin coated quantum dots
NASA Astrophysics Data System (ADS)
Nathwani, B. B.; Needham, C.; Mathur, A. B.; Meissner, K. E.
2008-02-01
Recent progress in the field of semiconductor nanocrystals or Quantum Dots (QDs) has seen them find wider acceptance as a tool in biomedical research labs. As produced, high quality QDs, synthesized by high temperature organometallic synthesis, are coated with a hydrophobic ligand. Therefore, they must be further processed to be soluble in water and to be made biocompatible. To accomplish this, the QDs are generally coated with a synthetic polymer (eg. block copolymers) or the hydrophobic surface ligands exchanged with hydrophilic material (eg. thiols). Advances in this area have enabled the QDs to experience a smooth transition from being simple inorganic fluorophores to being smart sensors, which can identify specific cell marker proteins and help in diagnosis of diseases such as cancer. In order to improve the biocompatibility and utility of the QDs, we report the development of a procedure to coat QDs with silk fibroin, a fibrous crystalline protein extracted from Bombyx Mori silkworm. Following the coating process, we characterize the size, quantum yield and two-photon absorption cross section of the silk coated QDs. Additionally, the results of biocompatibility studies carried out to compare the properties of these QD-silks with conventional QDs are presented. These natural polymer coatings on QDs could enhance the intracellular delivery and enable the use of these nanocrystals as an imaging tool for studying subcellular machinery at the molecular level.
An implementation evaluation of a qualitative culture assessment tool.
Tappin, D C; Bentley, T A; Ashby, L E
2015-03-01
Safety culture has been identified as a critical element of healthy and safe workplaces and as such warrants the attention of ergonomists involved in occupational health and safety (OHS). This study sought to evaluate a tool for assessing organisational safety culture as it impacts a common OHS problem: musculoskeletal disorders (MSD). The level of advancement across nine cultural aspects was assessed in two implementation site organisations. These organisations, in residential healthcare and timber processing, enabled evaluation of the tool in contrasting settings, with reported MSD rates also high in both sectors. Interviews were conducted with 39 managers and workers across the two organisations. Interview responses and company documentation were compared by two researchers to the descriptor items for each MSD culture aspect. An assignment of the level of advancement, using a five stage framework, was made for each aspect. The tool was readily adapted to each implementation site context and provided sufficient evidence to assess their levels of advancement. Assessments for most MSD culture aspects were in the mid to upper levels of advancement, although the levels differed within each organisation, indicating that different aspects of MSD culture, as with safety culture, develop at a different pace within organisations. Areas for MSD culture improvement were identified for each organisation. Reflections are made on the use and merits of the tool by ergonomists for addressing MSD risk. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
VARS-TOOL: A Comprehensive, Efficient, and Robust Sensitivity Analysis Toolbox
NASA Astrophysics Data System (ADS)
Razavi, S.; Sheikholeslami, R.; Haghnegahdar, A.; Esfahbod, B.
2016-12-01
VARS-TOOL is an advanced sensitivity and uncertainty analysis toolbox, applicable to the full range of computer simulation models, including Earth and Environmental Systems Models (EESMs). The toolbox was developed originally around VARS (Variogram Analysis of Response Surfaces), which is a general framework for Global Sensitivity Analysis (GSA) that utilizes the variogram/covariogram concept to characterize the full spectrum of sensitivity-related information, thereby providing a comprehensive set of "global" sensitivity metrics with minimal computational cost. VARS-TOOL is unique in that, with a single sample set (set of simulation model runs), it generates simultaneously three philosophically different families of global sensitivity metrics, including (1) variogram-based metrics called IVARS (Integrated Variogram Across a Range of Scales - VARS approach), (2) variance-based total-order effects (Sobol approach), and (3) derivative-based elementary effects (Morris approach). VARS-TOOL is also enabled with two novel features; the first one being a sequential sampling algorithm, called Progressive Latin Hypercube Sampling (PLHS), which allows progressively increasing the sample size for GSA while maintaining the required sample distributional properties. The second feature is a "grouping strategy" that adaptively groups the model parameters based on their sensitivity or functioning to maximize the reliability of GSA results. These features in conjunction with bootstrapping enable the user to monitor the stability, robustness, and convergence of GSA with the increase in sample size for any given case study. VARS-TOOL has been shown to achieve robust and stable results within 1-2 orders of magnitude smaller sample sizes (fewer model runs) than alternative tools. VARS-TOOL, available in MATLAB and Python, is under continuous development and new capabilities and features are forthcoming.
Nepolean, Thirunavukkarsau; Kaul, Jyoti; Mukri, Ganapati; Mittal, Shikha
2018-01-01
Breeding science has immensely contributed to the global food security. Several varieties and hybrids in different food crops including maize have been released through conventional breeding. The ever growing population, decreasing agricultural land, lowering water table, changing climate, and other variables pose tremendous challenge to the researchers to improve the production and productivity of food crops. Drought is one of the major problems to sustain and improve the productivity of food crops including maize in tropical and subtropical production systems. With advent of novel genomics and breeding tools, the way of doing breeding has been tremendously changed in the last two decades. Drought tolerance is a combination of several component traits with a quantitative mode of inheritance. Rapid DNA and RNA sequencing tools and high-throughput SNP genotyping techniques, trait mapping, functional characterization, genomic selection, rapid generation advancement, and other tools are now available to understand the genetics of drought tolerance and to accelerate the breeding cycle. Informatics play complementary role by managing the big-data generated from the large-scale genomics and breeding experiments. Genome editing is the latest technique to alter specific genes to improve the trait expression. Integration of novel genomics, next-generation breeding, and informatics tools will accelerate the stress breeding process and increase the genetic gain under different production systems. PMID:29696027
Friction Stir Welding (FSW) of Aged CuCrZr Alloy Plates
NASA Astrophysics Data System (ADS)
Jha, Kaushal; Kumar, Santosh; Nachiket, K.; Bhanumurthy, K.; Dey, G. K.
2018-01-01
Friction Stir Welding (FSW) of Cu-0.80Cr-0.10Zr (in wt pct) alloy under aged condition was performed to study the effects of process parameters on microstructure and properties of the joint. FSW was performed over a wide range of process parameters, like tool-rotation speed (from 800 to 1200 rpm) and tool-travel speed (from 40 to 100 mm/min), and the resulting thermal cycles were recorded on both sides (advancing and retreating) of the joint. The joints were characterized for their microstructure and tensile properties. The welding process resulted in a sound and defect-free weld joint, over the entire range of the process parameters used in this study. Microstructure of the stir zone showed fine and equiaxed grains, the scale of which varied with FSW process parameters. Grain size in the stir zone showed direct correlation with tool rotation and inverse correlation with tool-travel speed. Tensile strength of the weld joints was ranging from 225 to 260 MPa, which is substantially lower than that of the parent metal under aged condition ( 400 MPa), but superior to that of the parent material under annealed condition ( 220 MPa). Lower strength of the FSW joint than that of the parent material under aged condition can be attributed to dissolution of the precipitates in the stir zone and TMAZ. These results are presented and discussed in this paper.
Interferometric correction system for a numerically controlled machine
Burleson, Robert R.
1978-01-01
An interferometric correction system for a numerically controlled machine is provided to improve the positioning accuracy of a machine tool, for example, for a high-precision numerically controlled machine. A laser interferometer feedback system is used to monitor the positioning of the machine tool which is being moved by command pulses to a positioning system to position the tool. The correction system compares the commanded position as indicated by a command pulse train applied to the positioning system with the actual position of the tool as monitored by the laser interferometer. If the tool position lags the commanded position by a preselected error, additional pulses are added to the pulse train applied to the positioning system to advance the tool closer to the commanded position, thereby reducing the lag error. If the actual tool position is leading in comparison to the commanded position, pulses are deleted from the pulse train where the advance error exceeds the preselected error magnitude to correct the position error of the tool relative to the commanded position.
Advancements in Aptamer Discovery Technologies.
Gotrik, Michael R; Feagin, Trevor A; Csordas, Andrew T; Nakamoto, Margaret A; Soh, H Tom
2016-09-20
Affinity reagents that specifically bind to their target molecules are invaluable tools in nearly every field of modern biomedicine. Nucleic acid-based aptamers offer many advantages in this domain, because they are chemically synthesized, stable, and economical. Despite these compelling features, aptamers are currently not widely used in comparison to antibodies. This is primarily because conventional aptamer-discovery techniques such as SELEX are time-consuming and labor-intensive and often fail to produce aptamers with comparable binding performance to antibodies. This Account describes a body of work from our laboratory in developing advanced methods for consistently producing high-performance aptamers with higher efficiency, fewer resources, and, most importantly, a greater probability of success. We describe our efforts in systematically transforming each major step of the aptamer discovery process: selection, analysis, and characterization. To improve selection, we have developed microfluidic devices (M-SELEX) that enable discovery of high-affinity aptamers after a minimal number of selection rounds by precisely controlling the target concentration and washing stringency. In terms of improving aptamer pool analysis, our group was the first to use high-throughput sequencing (HTS) for the discovery of new aptamers. We showed that tracking the enrichment trajectory of individual aptamer sequences enables the identification of high-performing aptamers without requiring full convergence of the selected aptamer pool. HTS is now widely used for aptamer discovery, and open-source software has become available to facilitate analysis. To improve binding characterization, we used HTS data to design custom aptamer arrays to measure the affinity and specificity of up to ∼10(4) DNA aptamers in parallel as a means to rapidly discover high-quality aptamers. Most recently, our efforts have culminated in the invention of the "particle display" (PD) screening system, which transforms solution-phase aptamers into "aptamer particles" that can be individually screened at high-throughput via fluorescence-activated cell sorting. Using PD, we have shown the feasibility of rapidly generating aptamers with exceptional affinities, even for proteins that have previously proven intractable to aptamer discovery. We are confident that these advanced aptamer-discovery methods will accelerate the discovery of aptamer reagents with excellent affinities and specificities, perhaps even exceeding those of the best monoclonal antibodies. Since aptamers are reproducible, renewable, stable, and can be distributed as sequence information, we anticipate that these affinity reagents will become even more valuable tools for both research and clinical applications.
Advanced NDE techniques for quantitative characterization of aircraft
NASA Technical Reports Server (NTRS)
Heyman, Joseph S.; Winfree, William P.
1990-01-01
Recent advances in nondestructive evaluation (NDE) at NASA Langley Research Center and their applications that have resulted in quantitative assessment of material properties based on thermal and ultrasonic measurements are reviewed. Specific applications include ultrasonic determination of bolt tension, ultrasonic and thermal characterization of bonded layered structures, characterization of composite materials, and disbonds in aircraft skins.
Advanced genetic tools for plant biotechnology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, WS; Yuan, JS; Stewart, CN
2013-10-09
Basic research has provided a much better understanding of the genetic networks and regulatory hierarchies in plants. To meet the challenges of agriculture, we must be able to rapidly translate this knowledge into generating improved plants. Therefore, in this Review, we discuss advanced tools that are currently available for use in plant biotechnology to produce new products in plants and to generate plants with new functions. These tools include synthetic promoters, 'tunable' transcription factors, genome-editing tools and site-specific recombinases. We also review some tools with the potential to enable crop improvement, such as methods for the assembly and synthesis ofmore » large DNA molecules, plant transformation with linked multigenes and plant artificial chromosomes. These genetic technologies should be integrated to realize their potential for applications to pressing agricultural and environmental problems.« less
Advanced genetic tools for plant biotechnology.
Liu, Wusheng; Yuan, Joshua S; Stewart, C Neal
2013-11-01
Basic research has provided a much better understanding of the genetic networks and regulatory hierarchies in plants. To meet the challenges of agriculture, we must be able to rapidly translate this knowledge into generating improved plants. Therefore, in this Review, we discuss advanced tools that are currently available for use in plant biotechnology to produce new products in plants and to generate plants with new functions. These tools include synthetic promoters, 'tunable' transcription factors, genome-editing tools and site-specific recombinases. We also review some tools with the potential to enable crop improvement, such as methods for the assembly and synthesis of large DNA molecules, plant transformation with linked multigenes and plant artificial chromosomes. These genetic technologies should be integrated to realize their potential for applications to pressing agricultural and environmental problems.
NASA Technical Reports Server (NTRS)
Kaplan, Michael L.; Lin, Yuh-Lang
2004-01-01
During the grant period, several tasks were performed in support of the NASA Turbulence Prediction and Warning Systems (TPAWS) program. The primary focus of the research was on characterizing the preturbulence environment by developing predictive tools and simulating atmospheric conditions that preceded severe turbulence. The goal of the research being to provide both dynamical understanding of conditions that preceded turbulence as well as providing predictive tools in support of operational NASA B-757 turbulence research flights. The advancements in characterizing the preturbulence environment will be applied by NASA to sensor development for predicting turbulence onboard commercial aircraft. Numerical simulations with atmospheric models as well as multi-scale observational analyses provided insights into the environment organizing turbulence in a total of forty-eight specific case studies of severe accident producing turbulence on commercial aircraft. These accidents exclusively affected commercial aircraft. A paradigm was developed which diagnosed specific atmospheric circulation systems from the synoptic scale down to the meso-y scale that preceded turbulence in both clear air and in proximity to convection. The emphasis was primarily on convective turbulence as that is what the TPAWS program is most focused on in terms of developing improved sensors for turbulence warning and avoidance. However, the dynamical paradigm also has applicability to clear air and mountain turbulence. This dynamical sequence of events was then employed to formulate and test new hazard prediction indices that were first tested in research simulation studies and then ultimately were further tested in support of the NASA B-757 turbulence research flights. The new hazard characterization algorithms were utilized in a Real Time Turbulence Model (RTTM) that was operationally employed to support the NASA B-757 turbulence research flights. Improvements in the RTTM were implemented in an effort to increase the accuracy of the operational characterization of the preturbulence environment. Additionally, the initial research necessary to create a statistical evaluation scheme for the characterization indices utilized in the RTTM was undertaken. Results of all components of this research were then published in NASA contractor reports and scientific journal papers.
Standardizing Exoplanet Analysis with the Exoplanet Characterization Tool Kit (ExoCTK)
NASA Astrophysics Data System (ADS)
Fowler, Julia; Stevenson, Kevin B.; Lewis, Nikole K.; Fraine, Jonathan D.; Pueyo, Laurent; Bruno, Giovanni; Filippazzo, Joe; Hill, Matthew; Batalha, Natasha; Wakeford, Hannah; Bushra, Rafia
2018-06-01
Exoplanet characterization depends critically on analysis tools, models, and spectral libraries that are constantly under development and have no single source nor sense of unified style or methods. The complexity of spectroscopic analysis and initial time commitment required to become competitive is prohibitive to new researchers entering the field, as well as a remaining obstacle for established groups hoping to contribute in a comparable manner to their peers. As a solution, we are developing an open-source, modular data analysis package in Python and a publicly facing web interface including tools that address atmospheric characterization, transit observation planning with JWST, JWST corongraphy simulations, limb darkening, forward modeling, and data reduction, as well as libraries of stellar, planet, and opacity models. The foundation of these software tools and libraries exist within pockets of the exoplanet community, but our project will gather these seedling tools and grow a robust, uniform, and well-maintained exoplanet characterization toolkit.
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott
2016-01-01
The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable both the use and sustainment of composites in commercial aircraft structures. One key to the sustainment of these large composite structures is the rapid, in-situ characterization of a wide range of potential defects that may occur during the vehicle's life. Additionally, in many applications it is necessary to monitor changes in these materials over their lifetime. Quantitative characterization through Nondestructive Evaluation (NDE) of defects such as reduced bond strength, microcracking, and delamination damage due to impact, are of particular interest. This paper will present an overview of NASA's applications of NDE technologies being developed for the characterization and sustainment of advanced aerospace composites. The approaches presented include investigation of conventional, guided wave, and phase sensitive ultrasonic methods and infrared thermography techniques for NDE. Finally, the use of simulation tools for optimizing and validating these techniques will also be discussed.
High throughput integrated thermal characterization with non-contact optical calorimetry
NASA Astrophysics Data System (ADS)
Hou, Sichao; Huo, Ruiqing; Su, Ming
2017-10-01
Commonly used thermal analysis tools such as calorimeter and thermal conductivity meter are separated instruments and limited by low throughput, where only one sample is examined each time. This work reports an infrared based optical calorimetry with its theoretical foundation, which is able to provide an integrated solution to characterize thermal properties of materials with high throughput. By taking time domain temperature information of spatially distributed samples, this method allows a single device (infrared camera) to determine the thermal properties of both phase change systems (melting temperature and latent heat of fusion) and non-phase change systems (thermal conductivity and heat capacity). This method further allows these thermal properties of multiple samples to be determined rapidly, remotely, and simultaneously. In this proof-of-concept experiment, the thermal properties of a panel of 16 samples including melting temperatures, latent heats of fusion, heat capacities, and thermal conductivities have been determined in 2 min with high accuracy. Given the high thermal, spatial, and temporal resolutions of the advanced infrared camera, this method has the potential to revolutionize the thermal characterization of materials by providing an integrated solution with high throughput, high sensitivity, and short analysis time.
Molecular biology of hereditary diabetes insipidus.
Fujiwara, T Mary; Bichet, Daniel G
2005-10-01
The identification, characterization, and mutational analysis of three different genes-the arginine vasopressin gene (AVP), the arginine vasopressin receptor 2 gene (AVPR2), and the vasopressin-sensitive water channel gene (aquaporin 2 [AQP2])-provide the basis for understanding of three different hereditary forms of "pure" diabetes insipidus: Neurohypophyseal diabetes insipidus, X-linked nephrogenic diabetes insipidus (NDI), and non-X-linked NDI, respectively. It is clinically useful to distinguish two types of hereditary NDI: A "pure" type characterized by loss of water only and a complex type characterized by loss of water and ions. Patients who have congenital NDI and bear mutations in the AVPR2 or AQP2 genes have a "pure" NDI phenotype with loss of water but normal conservation of sodium, potassium, chloride, and calcium. Patients who bear inactivating mutations in genes (SLC12A1, KCNJ1, CLCNKB, CLCNKA and CLCNKB in combination, or BSND) that encode the membrane proteins of the thick ascending limb of the loop of Henle have a complex polyuro-polydipsic syndrome with loss of water, sodium, chloride, calcium, magnesium, and potassium. These advances provide diagnostic and clinical tools for physicians who care for these patients.
Advancement of Tools Supporting Improvement of Work Safety in Selected Industrial Company
NASA Astrophysics Data System (ADS)
Gembalska-Kwiecień, Anna
2018-03-01
In the presented article, the advancement of tools to improve the safety of work in the researched industrial company was taken into consideration. Attention was paid to the skillful analysis of the working environment, which includes the available technologies, work organization and human capital. These factors determine the development of the best prevention activities to minimize the number of accidents.
Goodpasture's autoimmune disease - A collagen IV disorder.
Pedchenko, Vadim; Richard Kitching, A; Hudson, Billy G
2018-05-12
Goodpasture's (GP) disease is an autoimmune disorder characterized by the deposition of pathogenic autoantibodies in basement membranes of kidney and lung eliciting rapidly progressive glomerulonephritis and pulmonary hemorrhage. The principal autoantigen is the α345 network of collagen IV, which expression is restricted to target tissues. Recent discoveries include a key role of chloride and bromide for network assembly, a novel posttranslational modification of the antigen, a sulfilimine bond that crosslinks the antigen, and the mechanistic role of HLA in genetic susceptibility and resistance to GP disease. These advances provide further insights into molecular mechanisms of initiation and progression of GP disease and serve as a basis for developing of novel diagnostic tools and therapies for treatment of Goodpasture's disease. Copyright © 2017. Published by Elsevier B.V.
Chondroitin sulfate/dermatan sulfate sulfatases from mammals and bacteria.
Wang, Shumin; Sugahara, Kazuyuki; Li, Fuchuan
2016-12-01
Sulfatases that specifically catalyze the hydrolysis of the sulfate groups on chondroitin sulfate (CS)/dermatan sulfate (DS) poly- and oligosaccharides belong to the formylglycine-dependent family of sulfatases and have been widely found in various mammalian and bacterial organisms. However, only a few types of CS/DS sulfatase have been identified so far. Recently, several novel CS/DS sulfatases have been cloned and characterized. Advanced studies have provided significant insight into the biological function and mechanism of action of CS/DS sulfatases. Moreover, further studies will provide powerful tools for structural and functional studies of CS/DS as well as related applications. This article reviews the recent progress in CS/DS sulfatase research and is expected to initiate further research in this field.
Metabolic Network Modeling of Microbial Communities
Biggs, Matthew B.; Medlock, Gregory L.; Kolling, Glynis L.
2015-01-01
Genome-scale metabolic network reconstructions and constraint-based analysis are powerful methods that have the potential to make functional predictions about microbial communities. Current use of genome-scale metabolic networks to characterize the metabolic functions of microbial communities includes species compartmentalization, separating species-level and community-level objectives, dynamic analysis, the “enzyme-soup” approach, multi-scale modeling, and others. There are many challenges inherent to the field, including a need for tools that accurately assign high-level omics signals to individual community members, new automated reconstruction methods that rival manual curation, and novel algorithms for integrating omics data and engineering communities. As technologies and modeling frameworks improve, we expect that there will be proportional advances in the fields of ecology, health science, and microbial community engineering. PMID:26109480
Nadadhur, Aishwarya G; Emperador Melero, Javier; Meijer, Marieke; Schut, Desiree; Jacobs, Gerbren; Li, Ka Wan; Hjorth, J J Johannes; Meredith, Rhiannon M; Toonen, Ruud F; Van Kesteren, Ronald E; Smit, August B; Verhage, Matthijs; Heine, Vivi M
2017-01-01
Generation of neuronal cultures from induced pluripotent stem cells (hiPSCs) serve the studies of human brain disorders. However we lack neuronal networks with balanced excitatory-inhibitory activities, which are suitable for single cell analysis. We generated low-density networks of hPSC-derived GABAergic and glutamatergic cortical neurons. We used two different co-culture models with astrocytes. We show that these cultures have balanced excitatory-inhibitory synaptic identities using confocal microscopy, electrophysiological recordings, calcium imaging and mRNA analysis. These simple and robust protocols offer the opportunity for single-cell to multi-level analysis of patient hiPSC-derived cortical excitatory-inhibitory networks; thereby creating advanced tools to study disease mechanisms underlying neurodevelopmental disorders.
NASA Technical Reports Server (NTRS)
Hart, Sandra G.
1988-01-01
The state-of-the-art helicopter and its pilot are examined using the tools of human-factors analysis. The significant role of human error in helicopter accidents is discussed; the history of human-factors research on helicopters is briefly traced; the typical flight tasks are described; and the noise, vibration, and temperature conditions typical of modern military helicopters are characterized. Also considered are helicopter controls, cockpit instruments and displays, and the impact of cockpit design on pilot workload. Particular attention is given to possible advanced-technology improvements, such as control stabilization and augmentation, FBW and fly-by-light systems, multifunction displays, night-vision goggles, pilot night-vision systems, night-vision displays with superimposed symbols, target acquisition and designation systems, and aural displays. Diagrams, drawings, and photographs are provided.
Tebani, Abdellah; Afonso, Carlos; Bekri, Soumeya
2018-05-01
This work reports the second part of a review intending to give the state of the art of major metabolic phenotyping strategies. It particularly deals with inherent advantages and limits regarding data analysis issues and biological information retrieval tools along with translational challenges. This Part starts with introducing the main data preprocessing strategies of the different metabolomics data. Then, it describes the main data analysis techniques including univariate and multivariate aspects. It also addresses the challenges related to metabolite annotation and characterization. Finally, functional analysis including pathway and network strategies are discussed. The last section of this review is devoted to practical considerations and current challenges and pathways to bring metabolomics into clinical environments.
Geometric error analysis for shuttle imaging spectrometer experiment
NASA Technical Reports Server (NTRS)
Wang, S. J.; Ih, C. H.
1984-01-01
The demand of more powerful tools for remote sensing and management of earth resources steadily increased over the last decade. With the recent advancement of area array detectors, high resolution multichannel imaging spectrometers can be realistically constructed. The error analysis study for the Shuttle Imaging Spectrometer Experiment system is documented for the purpose of providing information for design, tradeoff, and performance prediction. Error sources including the Shuttle attitude determination and control system, instrument pointing and misalignment, disturbances, ephemeris, Earth rotation, etc., were investigated. Geometric error mapping functions were developed, characterized, and illustrated extensively with tables and charts. Selected ground patterns and the corresponding image distortions were generated for direct visual inspection of how the various error sources affect the appearance of the ground object images.
Recent Advancements towards Full-System Microfluidics
Miled, Amine
2017-01-01
Microfluidics is quickly becoming a key technology in an expanding range of fields, such as medical sciences, biosensing, bioactuation, chemical synthesis, and more. This is helping its transformation from a promising R&D tool to commercially viable technology. Fuelling this expansion is the intensified focus on automation and enhanced functionality through integration of complex electrical control, mechanical properties, in situ sensing and flow control. Here we highlight recent contributions to the Sensors Special Issue series called “Microfluidics-Based Microsystem Integration Research” under the following categories: (i) Device fabrication to support complex functionality; (ii) New methods for flow control and mixing; (iii) Towards routine analysis and point of care applications; (iv) In situ characterization; and (v) Plug and play microfluidics. PMID:28757587
Beyond mind-reading: multi-voxel pattern analysis of fMRI data.
Norman, Kenneth A; Polyn, Sean M; Detre, Greg J; Haxby, James V
2006-09-01
A key challenge for cognitive neuroscience is determining how mental representations map onto patterns of neural activity. Recently, researchers have started to address this question by applying sophisticated pattern-classification algorithms to distributed (multi-voxel) patterns of functional MRI data, with the goal of decoding the information that is represented in the subject's brain at a particular point in time. This multi-voxel pattern analysis (MVPA) approach has led to several impressive feats of mind reading. More importantly, MVPA methods constitute a useful new tool for advancing our understanding of neural information processing. We review how researchers are using MVPA methods to characterize neural coding and information processing in domains ranging from visual perception to memory search.
Bailey-Kellogg, Chris; Gutiérrez, Andres H; Moise, Leonard; Terry, Frances; Martin, William D; De Groot, Anne S
2014-01-01
Despite high quality standards and continual process improvements in manufacturing, host cell protein (HCP) process impurities remain a substantial risk for biological products. Even at low levels, residual HCPs can induce a detrimental immune response compromising the safety and efficacy of a biologic. Consequently, advanced-stage clinical trials have been cancelled due to the identification of antibodies against HCPs. To enable earlier and rapid assessment of the risks in Chinese Hamster Ovary (CHO)-based protein production of residual CHO protein impurities (CHOPs), we have developed a web tool called CHOPPI, for CHO Protein Predicted Immunogenicity. CHOPPI integrates information regarding the possible presence of CHOPs (expression and secretion) with characterizations of their immunogenicity (T cell epitope count and density, and relative conservation with human counterparts). CHOPPI can generate a report for a specified CHO protein (e.g., identified from proteomics or immunoassays) or characterize an entire specified subset of the CHO genome (e.g., filtered based on confidence in transcription and similarity to human proteins). The ability to analyze potential CHOPs at a genomic scale provides a baseline to evaluate relative risk. We show here that CHOPPI can identify clear differences in immunogenicity risk among previously validated CHOPs, as well as identify additional “risky” CHO proteins that may be expressed during production and induce a detrimental immune response upon delivery. We conclude that CHOPPI is a powerful tool that provides a valuable computational complement to existing experimental approaches for CHOP risk assessment and can focus experimental efforts in the most important directions. Biotechnol. Bioeng. 2014;111: 2170–2182. PMID:24888712
Recent advances in managing differentiated thyroid cancer.
Lamartina, Livia; Grani, Giorgio; Durante, Cosimo; Filetti, Sebastiano
2018-01-01
The main clinical challenge in the management of thyroid cancer is to avoid over-treatment and over-diagnosis in patients with lower-risk disease while promptly identifying those patients with more advanced or high-risk disease requiring aggressive treatment. In recent years, novel clinical and molecular data have emerged, allowing the development of new staging systems, predictive and prognostic tools, and treatment approaches. There has been a notable shift toward more conservative management of low- and intermediate-risk patients, characterized by less extensive surgery, more selective use of radioisotopes (for both diagnostic and therapeutic purposes), and less intensive follow-up. Furthermore, the histologic classification; tumor, node, and metastasis (TNM) staging; and American Thyroid Association risk stratification systems have been refined, and this has increased the number of patients in the low- and intermediate-risk categories. There is now a need for new, prospective data to clarify how these changing practices will impact long-term outcomes of patients with thyroid cancer, and new follow-up strategies and biomarkers are still under investigation. On the other hand, patients with more advanced or high-risk disease have a broader portfolio of options in terms of treatments and therapeutic agents, including multitarget tyrosine kinase inhibitors, more selective BRAF or MEK inhibitors, combination therapies, and immunotherapy.
Advances in molecular serotyping and subtyping of Escherichia coli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fratamico, Pina M.; DebRoy, Chitrita; Liu, Yanhong
Escherichia coli plays an important role as a member of the gut microbiota; however, pathogenic strains also exist, including various diarrheagenic E. coli pathotypes and extraintestinal pathogenic E. coli that cause illness outside of the GI-tract. E. coli have traditionally been serotyped using antisera against the ca. 186 O-antigens and 53 H-flagellar antigens. Phenotypic methods, including bacteriophage typing and O- and H- serotyping for differentiating and characterizing E. coli have been used for many years; however, these methods are generally time consuming and not always accurate. Advances in next generation sequencing technologies have made it possible to develop genetic-based subtypingmore » and molecular serotyping methods for E. coli, which are more discriminatory compared to phenotypic typing methods. Furthermore, whole genome sequencing (WGS) of E. coli is replacing established subtyping methods such as pulsedfield gel electrophoresis, providing a major advancement in the ability to investigate food-borne disease outbreaks and for trace-back to sources. Furthermore, a variety of sequence analysis tools and bioinformatic pipelines are being developed to analyze the vast amount of data generated by WGS and to obtain specific information such as O- and H-group determination and the presence of virulence genes and other genetic markers.« less
Advances in molecular serotyping and subtyping of Escherichia coli
Fratamico, Pina M.; DebRoy, Chitrita; Liu, Yanhong; ...
2016-05-03
Escherichia coli plays an important role as a member of the gut microbiota; however, pathogenic strains also exist, including various diarrheagenic E. coli pathotypes and extraintestinal pathogenic E. coli that cause illness outside of the GI-tract. E. coli have traditionally been serotyped using antisera against the ca. 186 O-antigens and 53 H-flagellar antigens. Phenotypic methods, including bacteriophage typing and O- and H- serotyping for differentiating and characterizing E. coli have been used for many years; however, these methods are generally time consuming and not always accurate. Advances in next generation sequencing technologies have made it possible to develop genetic-based subtypingmore » and molecular serotyping methods for E. coli, which are more discriminatory compared to phenotypic typing methods. Furthermore, whole genome sequencing (WGS) of E. coli is replacing established subtyping methods such as pulsedfield gel electrophoresis, providing a major advancement in the ability to investigate food-borne disease outbreaks and for trace-back to sources. Furthermore, a variety of sequence analysis tools and bioinformatic pipelines are being developed to analyze the vast amount of data generated by WGS and to obtain specific information such as O- and H-group determination and the presence of virulence genes and other genetic markers.« less
Additively Manufactured Low Cost Upper Stage Combustion Chamber
NASA Technical Reports Server (NTRS)
Protz, Christopher; Cooper, Ken; Ellis, David; Fikes, John; Jones, Zachary; Kim, Tony; Medina, Cory; Taminger, Karen; Willingham, Derek
2016-01-01
Over the past two years NASA's Low Cost Upper Stage Propulsion (LCUSP) project has developed Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. High pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design fabrication to be costly and time consuming due to the number of individual steps and different processes required. Under LCUSP, AM technologies in Sintered Laser Melting (SLM) GRCop-84 and Electron Beam Freeform Fabrication (EBF3) Inconel 625 have been significantly advanced, allowing the team to successfully fabricate a 25k-class regenerative chamber. Estimates of the costs and schedule of future builds indicate cost reductions and significant schedule reductions will be enabled by this technology. Characterization of the microstructural and mechanical properties of the SLM-produced GRCop-84, EBF3 Inconel 625 and the interface layer between the two has been performed and indicates the properties will meet the design requirements. The LCUSP chamber is to be tested with a previously demonstrated SLM injector in order to advance the Technology Readiness Level (TRL) and demonstrate the capability of the application of these processes. NASA is advancing these technologies to reduce cost and schedule for future engine applications and commercial needs.
Vistoli, G; De Maddis, D; Cipak, A; Zarkovic, N; Carini, M; Aldini, G
2013-08-01
Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions; (2) to elucidate the molecular basis of their biological effects; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation.
Techniques for the diagnosis of Fasciola infections in animals: room for improvement.
Alvarez Rojas, Cristian A; Jex, Aaron R; Gasser, Robin B; Scheerlinck, Jean-Pierre Y
2014-01-01
The common liver fluke, Fasciola hepatica, causes fascioliasis, a significant disease in mammals, including livestock, wildlife and humans, with a major socioeconomic impact worldwide. In spite of its impact, and some advances towards the development of vaccines and new therapeutic agents, limited attention has been paid to the need for practical and reliable methods for the diagnosis of infection or disease. Accurate diagnosis is central to effective control, particularly given an emerging problem with drug resistance in F. hepatica. Traditional coprological techniques have been widely used, but are often unreliable. Although there have been some advances in establishing immunologic techniques, these tools can suffer from a lack of diagnostic specificity and/or sensitivity. Nonetheless, antigen detection tests seem to have considerable potential, but have not yet been adequately evaluated in the field. Moreover, advanced nucleic acid-based methods appear to offer the most promise for the diagnosis of current infection. This chapter (i) provides a brief account of the biology and significance of F. hepatica/fascioliasis, (ii) describes key techniques currently in use, (iii) compares their advantages/disadvantages and (iv) reviews polymerase chain reaction-based methods for specific diagnosis and/or the genetic characterization of Fasciola species. © 2014 Elsevier Ltd. All rights reserved.
Hogstrom, L. J.; Guo, S. M.; Murugadoss, K.; Bathe, M.
2016-01-01
Brain function emerges from hierarchical neuronal structure that spans orders of magnitude in length scale, from the nanometre-scale organization of synaptic proteins to the macroscopic wiring of neuronal circuits. Because the synaptic electrochemical signal transmission that drives brain function ultimately relies on the organization of neuronal circuits, understanding brain function requires an understanding of the principles that determine hierarchical neuronal structure in living or intact organisms. Recent advances in fluorescence imaging now enable quantitative characterization of neuronal structure across length scales, ranging from single-molecule localization using super-resolution imaging to whole-brain imaging using light-sheet microscopy on cleared samples. These tools, together with correlative electron microscopy and magnetic resonance imaging at the nanoscopic and macroscopic scales, respectively, now facilitate our ability to probe brain structure across its full range of length scales with cellular and molecular specificity. As these imaging datasets become increasingly accessible to researchers, novel statistical and computational frameworks will play an increasing role in efforts to relate hierarchical brain structure to its function. In this perspective, we discuss several prominent experimental advances that are ushering in a new era of quantitative fluorescence-based imaging in neuroscience along with novel computational and statistical strategies that are helping to distil our understanding of complex brain structure. PMID:26855758
Recent advances in Takayasu’s arteritis
Alibaz-Öner, Fatma; Aydın, Sibel Zehra; Direskeneli, Haner
2015-01-01
Takayasu’s arteritis (TAK) is a rare, chronic large-vessel vasculitis (LVV) that predominantly affects the aorta, its major branches, and the pulmonary arteries. Recent advances in the diagnosis, clinical course, disease assessment with biomarkers/imaging and new clinical tools, patient-reported outcomes, and new treatment options of TAK are discussed in this review. Conventional angiography, the gold standard method for initial diagnosis, appears to have been replaced with new imaging modalities such as magnetic resonance angiography (MRA) and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) in recent years. MRA and FDG-PET are also promising for the assessment of disease activity. New tools for disease assessment such as Indian Takayasu’s Arteritis Score 2010 (ITAS2010) and color Doppler ultrasound (CDUS) aim to better characterize and quantify disease activity; however, different imaging modalities in routine follow-up are not incorporated sufficiently in these approaches. Prognosis is possibly getting better, with lower mortality in recent years; however, it is difficult to assess the widely different vascular intervention rates among the clinical series. Leflunomide, tumor necrosis factor (TNF)-α antagonists, and tocilizumab are new options for patients resistant to conventional therapies. There is a clear need to develop a validated set of outcome measures for use in clinical trials of TAK. The Outcome Measures in Rheumatology (OMERACT) Vasculitis Working Group has taken on this task, finished a Delphi exercise with experts, and aims to develop a core set of outcomes for LVV in accordance with OMERACT Filter 2.0. PMID:27708916
Advances in the genetic dissection of plant cell walls: tools and resources available in Miscanthus
Slavov, Gancho; Allison, Gordon; Bosch, Maurice
2013-01-01
Tropical C4 grasses from the genus Miscanthus are believed to have great potential as biomass crops. However, Miscanthus species are essentially undomesticated, and genetic, molecular and bioinformatics tools are in very early stages of development. Furthermore, similar to other crops targeted as lignocellulosic feedstocks, the efficient utilization of biomass is hampered by our limited knowledge of the structural organization of the plant cell wall and the underlying genetic components that control this organization. The Institute of Biological, Environmental and Rural Sciences (IBERS) has assembled an extensive collection of germplasm for several species of Miscanthus. In addition, an integrated, multidisciplinary research programme at IBERS aims to inform accelerated breeding for biomass productivity and composition, while also generating fundamental knowledge. Here we review recent advances with respect to the genetic characterization of the cell wall in Miscanthus. First, we present a summary of recent and on-going biochemical studies, including prospects and limitations for the development of powerful phenotyping approaches. Second, we review current knowledge about genetic variation for cell wall characteristics of Miscanthus and illustrate how phenotypic data, combined with high-density arrays of single-nucleotide polymorphisms, are being used in genome-wide association studies to generate testable hypotheses and guide biological discovery. Finally, we provide an overview of the current knowledge about the molecular biology of cell wall biosynthesis in Miscanthus and closely related grasses, discuss the key conceptual and technological bottlenecks, and outline the short-term prospects for progress in this field. PMID:23847628
Caignard, Grégory; Eva, Megan M.; van Bruggen, Rebekah; Eveleigh, Robert; Bourque, Guillaume; Malo, Danielle; Gros, Philippe; Vidal, Silvia M.
2014-01-01
Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. The completion of the human reference genome sequence in 2004 along with technological advances have tremendously accelerated and renovated the tools to study the genetic etiology of infectious diseases in humans and its best characterized mammalian model, the mouse. Advancements in mouse genomic resources have accelerated genome-wide functional approaches, such as gene-driven and phenotype-driven mutagenesis, bringing to the fore the use of mouse models that reproduce accurately many aspects of the pathogenesis of human infectious diseases. Treatment with the mutagen N-ethyl-N-nitrosourea (ENU) has become the most popular phenotype-driven approach. Our team and others have employed mouse ENU mutagenesis to identify host genes that directly impact susceptibility to pathogens of global significance. In this review, we first describe the strategies and tools used in mouse genetics to understand immunity to infection with special emphasis on chemical mutagenesis of the mouse germ-line together with current strategies to efficiently identify functional mutations using next generation sequencing. Then, we highlight illustrative examples of genes, proteins, and cellular signatures that have been revealed by ENU screens and have been shown to be involved in susceptibility or resistance to infectious diseases caused by parasites, bacteria, and viruses. PMID:25268389
Automated clustering-based workload characterization
NASA Technical Reports Server (NTRS)
Pentakalos, Odysseas I.; Menasce, Daniel A.; Yesha, Yelena
1996-01-01
The demands placed on the mass storage systems at various federal agencies and national laboratories are continuously increasing in intensity. This forces system managers to constantly monitor the system, evaluate the demand placed on it, and tune it appropriately using either heuristics based on experience or analytic models. Performance models require an accurate workload characterization. This can be a laborious and time consuming process. It became evident from our experience that a tool is necessary to automate the workload characterization process. This paper presents the design and discusses the implementation of a tool for workload characterization of mass storage systems. The main features of the tool discussed here are: (1)Automatic support for peak-period determination. Histograms of system activity are generated and presented to the user for peak-period determination; (2) Automatic clustering analysis. The data collected from the mass storage system logs is clustered using clustering algorithms and tightness measures to limit the number of generated clusters; (3) Reporting of varied file statistics. The tool computes several statistics on file sizes such as average, standard deviation, minimum, maximum, frequency, as well as average transfer time. These statistics are given on a per cluster basis; (4) Portability. The tool can easily be used to characterize the workload in mass storage systems of different vendors. The user needs to specify through a simple log description language how the a specific log should be interpreted. The rest of this paper is organized as follows. Section two presents basic concepts in workload characterization as they apply to mass storage systems. Section three describes clustering algorithms and tightness measures. The following section presents the architecture of the tool. Section five presents some results of workload characterization using the tool.Finally, section six presents some concluding remarks.
NASA Technical Reports Server (NTRS)
2009-01-01
Topics covered include: Image-Capture Devices Extend Medicine's Reach; Medical Devices Assess, Treat Balance Disorders; NASA Bioreactors Advance Disease Treatments; Robotics Algorithms Provide Nutritional Guidelines; "Anti-Gravity" Treadmills Speed Rehabilitation; Crew Management Processes Revitalize Patient Care; Hubble Systems Optimize Hospital Schedules; Web-based Programs Assess Cognitive Fitness; Electrolyte Concentrates Treat Dehydration; Tools Lighten Designs, Maintain Structural Integrity; Insulating Foams Save Money, Increase Safety; Polyimide Resins Resist Extreme Temperatures; Sensors Locate Radio Interference; Surface Operations Systems Improve Airport Efficiency; Nontoxic Resins Advance Aerospace Manufacturing; Sensors Provide Early Warning of Biological Threats; Robot Saves Soldier's Lives Overseas (MarcBot); Apollo-Era Life Raft Saves Hundreds of Sailors; Circuits Enhance Scientific Instruments and Safety Devices; Tough Textiles Protect Payloads and Public Safety Officers; Forecasting Tools Point to Fishing Hotspots; Air Purifiers Eliminate Pathogens, Preserve Food; Fabrics Protect Sensitive Skin from UV Rays; Phase Change Fabrics Control Temperature; Tiny Devices Project Sharp, Colorful Images; Star-Mapping Tools Enable Tracking of Endangered Animals; Nanofiber Filters Eliminate Contaminants; Modeling Innovations Advance Wind Energy Industry; Thermal Insulation Strips Conserve Energy; Satellite Respondent Buoys Identify Ocean Debris; Mobile Instruments Measure Atmospheric Pollutants; Cloud Imagers Offer New Details on Earth's Health; Antennas Lower Cost of Satellite Access; Feature Detection Systems Enhance Satellite Imagery; Chlorophyll Meters Aid Plant Nutrient Management; Telemetry Boards Interpret Rocket, Airplane Engine Data; Programs Automate Complex Operations Monitoring; Software Tools Streamline Project Management; Modeling Languages Refine Vehicle Design; Radio Relays Improve Wireless Products; Advanced Sensors Boost Optical Communication, Imaging; Tensile Fabrics Enhance Architecture Around the World; Robust Light Filters Support Powerful Imaging Devices; Thermoelectric Devices Cool, Power Electronics; Innovative Tools Advance Revolutionary Weld Technique; Methods Reduce Cost, Enhance Quality of Nanotubes; Gauging Systems Monitor Cryogenic Liquids; Voltage Sensors Monitor Harmful Static; and Compact Instruments Measure Heat Potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H; Liang, X; Kalbasi, A
2014-06-01
Purpose: Advanced radiotherapy (RT) techniques such as proton pencil beam scanning (PBS) and photon-based volumetric modulated arc therapy (VMAT) have dosimetric advantages in the treatment of head and neck malignancies. However, anatomic or alignment changes during treatment may limit robustness of PBS and VMAT plans. We assess the feasibility of automated deformable registration tools for robustness evaluation in adaptive PBS and VMAT RT of oropharyngeal cancer (OPC). Methods: We treated 10 patients with bilateral OPC with advanced RT techniques and obtained verification CT scans with physician-reviewed target and OAR contours. We generated 3 advanced RT plans for each patient: protonmore » PBS plan using 2 posterior oblique fields (2F), proton PBS plan using an additional third low-anterior field (3F), and a photon VMAT plan using 2 arcs (Arc). For each of the planning techniques, we forward calculated initial (Ini) plans on the verification scans to create verification (V) plans. We extracted DVH indicators based on physician-generated contours for 2 target and 14 OAR structures to investigate the feasibility of two automated tools (contour propagation (CP) and dose deformation (DD)) as surrogates for routine clinical plan robustness evaluation. For each verification scan, we compared DVH indicators of V, CP and DD plans in a head-to-head fashion using Student's t-test. Results: We performed 39 verification scans; each patient underwent 3 to 6 verification scan. We found no differences in doses to target or OAR structures between V and CP, V and DD, and CP and DD plans across all patients (p > 0.05). Conclusions: Automated robustness evaluation tools, CP and DD, accurately predicted dose distributions of verification (V) plans using physician-generated contours. These tools may be further developed as a potential robustness screening tool in the workflow for adaptive treatment of OPC using advanced RT techniques, reducing the need for physician-generated contours.« less
Evaluation of reliability modeling tools for advanced fault tolerant systems
NASA Technical Reports Server (NTRS)
Baker, Robert; Scheper, Charlotte
1986-01-01
The Computer Aided Reliability Estimation (CARE III) and Automated Reliability Interactice Estimation System (ARIES 82) reliability tools for application to advanced fault tolerance aerospace systems were evaluated. To determine reliability modeling requirements, the evaluation focused on the Draper Laboratories' Advanced Information Processing System (AIPS) architecture as an example architecture for fault tolerance aerospace systems. Advantages and limitations were identified for each reliability evaluation tool. The CARE III program was designed primarily for analyzing ultrareliable flight control systems. The ARIES 82 program's primary use was to support university research and teaching. Both CARE III and ARIES 82 were not suited for determining the reliability of complex nodal networks of the type used to interconnect processing sites in the AIPS architecture. It was concluded that ARIES was not suitable for modeling advanced fault tolerant systems. It was further concluded that subject to some limitations (the difficulty in modeling systems with unpowered spare modules, systems where equipment maintenance must be considered, systems where failure depends on the sequence in which faults occurred, and systems where multiple faults greater than a double near coincident faults must be considered), CARE III is best suited for evaluating the reliability of advanced tolerant systems for air transport.
Therapeutic Gene Editing Safety and Specificity.
Lux, Christopher T; Scharenberg, Andrew M
2017-10-01
Therapeutic gene editing is significant for medical advancement. Safety is intricately linked to the specificity of the editing tools used to cut at precise genomic targets. Improvements can be achieved by thoughtful design of nucleases and repair templates, analysis of off-target editing, and careful utilization of viral vectors. Advancements in DNA repair mechanisms and development of new generations of tools improve targeting of specific sequences while minimizing risks. It is important to plot a safe course for future clinical trials. This article reviews safety and specificity for therapeutic gene editing to spur dialogue and advancement. Copyright © 2017 Elsevier Inc. All rights reserved.
Raytheon Advanced Miniature Cryocooler Characterization Testing
NASA Astrophysics Data System (ADS)
Conrad, T.; Yates, R.; Schaefer, B.; Bellis, L.; Pillar, M.; Barr, M.
2015-12-01
The Raytheon Advanced Miniature (RAM) cryocooler is a flight packaged, high frequency pulse tube cooler with an integrated surge volume and inertance tube. Its design has been fully optimized to make use of the Raytheon Advanced Regenerator, resulting in improved efficiency relative to previous Raytheon pulse tube coolers. In this paper, thermodynamic characterization data for the RAM cryocooler is presented along with details of its design specifications.