Sample records for advanced cleaning processes

  1. Advanced coal conversion process demonstration. Technical progress report for the period July 1, 1995--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, andmore » volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.« less

  2. Advanced coal cleaning meets acid rain emission limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boron, D.J.; Matoney, J.P.; Albrecht, M.C.

    1987-03-01

    The following processes were selected for study: fine-coal, heavy-medium cyclone separation/flotation, advanced flotation, Dow true heavy liquid separation, Advanced Energy Dynamics (AED) electrostatic separation, and National Research Council of Canada oil agglomeration. Advanced coal cleaning technology was done for the state of New York to investigate methods to use high sulfur coal in view of anticipated lower SO/sub 2/ emission limits.

  3. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liby, Alan L; Rogers, Hiram

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work onmore » advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.« less

  4. Qualification of local advanced cryogenic cleaning technology for 14nm photomask fabrication

    NASA Astrophysics Data System (ADS)

    Taumer, Ralf; Krome, Thorsten; Bowers, Chuck; Varghese, Ivin; Hopkins, Tyler; White, Roy; Brunner, Martin; Yi, Daniel

    2014-10-01

    The march toward tighter design rules, and thus smaller defects, implies stronger surface adhesion between defects and the photomask surface compared to past generations, thereby resulting in increased difficulty in photomask cleaning. Current state-of-the-art wet clean technologies utilize functional water and various energies in an attempt to produce similar yield to the acid cleans of previous generations, but without some of the negative side effects. Still, wet cleans have continued to be plagued with issues such as persistent particles and contaminations, SRAF and feature damages, leaving contaminants behind that accelerate photo-induced defect growth, and others. This paper details work done through a design of experiments (DOE) utilized to qualify an improved cryogenic cleaning technology for production in the Advanced Mask Technology Center (AMTC) advanced production lines for 20 and 14 nm processing. All work was conducted at the AMTC facility in Dresden, Germany utilizing technology developed by Eco-Snow Systems and RAVE LLC for their cryogenic local cleaning VC1200F platform. This system uses a newly designed nozzle, improved gaseous CO2 delivery, extensive filtration to remove hydrocarbons and minimize particle adders, and other process improvements to overcome the limitations of the previous generation local cleaning tool. AMTC has successfully qualified this cryogenic cleaning technology and is currently using it regularly to enhance production yields even at the most challenging technology nodes.

  5. Advanced Sensors for TBI

    DTIC Science & Technology

    2015-07-01

    CMOS clean • Commercialization of the sensor is aided by this process as use of CMOS -clean commercial foundries will not be restricted Bench...AD_________________ Award Number: W81XWH-10-2-0040 TITLE: Advanced Sensors for TBI PRINCIPAL INVESTIGATOR: Bruce Lyeth, Ph.D. CONTRACTING...ABOVE ADDRESS. 1. REPORT DATE July 2015 2. REPORT TYPE Annual 3. DATES COVERED 1Jul2014 - 30Jun2015 4. TITLE AND SUBTITLE Advanced Sensors for TBI 5a

  6. ASRM process development in aqueous cleaning

    NASA Technical Reports Server (NTRS)

    Swisher, Bill

    1992-01-01

    Viewgraphs are included on process development in aqueous cleaning which is taking place at the Aerojet Advanced Solid Rocket Motor (ASRM) Division under a NASA Marshall Space and Flight Center contract for design, development, test, and evaluation of the ASRM including new production facilities. The ASRM will utilize aqueous cleaning in several manufacturing process steps to clean case segments, nozzle metal components, and igniter closures. ASRM manufacturing process development is underway, including agent selection, agent characterization, subscale process optimization, bonding verification, and scale-up validation. Process parameters are currently being tested for optimization utilizing a Taguci Matrix, including agent concentration, cleaning solution temperature, agitation and immersion time, rinse water amount and temperature, and use/non-use of drying air. Based on results of process development testing to date, several observations are offered: aqueous cleaning appears effective for steels and SermeTel-coated metals in ASRM processing; aqueous cleaning agents may stain and/or attack bare aluminum metals to various extents; aqueous cleaning appears unsuitable for thermal sprayed aluminum-coated steel; aqueous cleaning appears to adequately remove a wide range of contaminants from flat metal surfaces, but supplementary assistance may be needed to remove clumps of tenacious contaminants embedded in holes, etc.; and hot rinse water appears to be beneficial to aid in drying of bare steel and retarding oxidation rate.

  7. New electrostatic coal cleaning method cuts sulfur content by 40%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-12-01

    An emission control system that electrically charges pollutants and coal particles promises to reduce sulfur 40% at half the cost. The dry coal cleaning processes offer superior performance and better economics than conventional flotation cleaning. Advanced Energy Dynamics, Inc. (AED) is developing both fine and ultra fine processes which increase combustion efficiency and boiler reliability and reduced operating costs. The article gives details from the performance tests and comparisons and summarizes the economic analyses. 4 tables.

  8. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  9. 5th Conference on Aerospace Materials, Processes, and Environmental Technology

    NASA Technical Reports Server (NTRS)

    Cook, M. B. (Editor); Stanley, D. Cross (Editor)

    2003-01-01

    Records are presented from the 5th Conference on Aerospace Materials, Processes, and Environmental Technology. Topics included pollution prevention, inspection methods, advanced materials, aerospace materials and technical standards,materials testing and evaluation, advanced manufacturing,development in metallic processes, synthesis of nanomaterials, composite cryotank processing, environmentally friendly cleaning, and poster sessions.

  10. Montana Advanced Biofuels Great Falls Approval

    EPA Pesticide Factsheets

    This November 20, 2015 letter from EPA approves the petition from Montana Advanced Biofuels, LLC, Great Falls facility, regarding ethanol produced through a dry mill process, qualifying under the Clean Air Act for advanced biofuel (D-code 5) and renewable

  11. Advance Manufacturing Office FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    The Advanced Manufacturing Office (AMO) brings together manufacturers, research institutions, suppliers, and universities to investigate manufacturing processes, information, and materials technologies critical to advance domestic manufacturing of clean energy products, and to support energy productivity across the entire manufacturing sector.

  12. Pilot Plant Program for the AED Advanced Coal Cleaning System. Phase II. Interim final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-08-01

    Advanced Energy Dynamics, Inc. (AED), has developed a proprietary coal cleaning process which employs a combination of ionization and electrostatic separation to remove both sulfur and ash from dry pulverized coal. The Ohio Department of Energy sponsored the first part of a program to evaluate, develop, and demonstrate the process in a continuous-flow pilot plant. Various coals used by Ohio electric utilities were characterized and classified, and sulfur reduction, ash reduction and Btu recovery were measured. Sulfur removal in various coals ranged from 33 to 68% (on a Btu basis). Ash removal ranged from 17 to 59% (on a Btumore » basis). Ash removal of particles greater than 53 microns ranged from 46 to 88%. Btu recovery ranged from 90 to 97%. These results, especially the large percentage removal of ash particles greater than 53 microns, suggest that the AED system can contribute materially to improved boiler performance and availability. The study indicated the following potential areas for commercial utilization of the AED process: installation between the pulverizer and boiler of conventional coal-fired power utilities; reclamation of fine coal refuse; dry coal cleaning to supplement, and, if necessary, to take the place of conventional coal cleaning; upgrading coal used in: (1) coal-oil mixtures, (2) gasification and liquefaction processes designed to handle pulverized coal; and (3) blast furnaces for making steel, as a fuel supplement to the coke. Partial cleaning of coking coal blends during preheating may also prove economically attractive. Numerous other industrial processes which use pulverized coal such as the production of activated carbon and direct reduction of iron ore may also benefit from the use of AED coal cleaning.« less

  13. Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol

    Science.gov Websites

    advanced vehicles, fuel blends, fuel economy, hybrid vehicles, and idle reduction. Clean Cities provides advanced biofuel, which includes fuels derived from approved renewable biomass, excluding corn starch-based ethanol. Other advanced biofuels may include sugarcane-based fuels, renewable diesel co-processed with

  14. Removal of ash, sulfur, and trace elements of environmental concern from eight selected Illinois coals

    USGS Publications Warehouse

    Demir, I.

    1998-01-01

    Release analysis (RA) and float-sink (F-S) data were generated to assess the beneficiation potential of washed coals from selected Illinois coal preparation plants through the use of advanced physical cleaning at -60 mesh size. Generally, the F-S process removed greater amounts of ash, sulfur, and trace elements of environmental concern from the coals than the RA process, indicating that the cleanability of Illinois coals by advanced methods can be estimated best by F-S testing. At an 80%-combustibles recovery, the ash yield in the clean F-S products decreased by 47-75%, relative to the parent coals. Average decreases for the elements As(67%), Cd(78%), Hg(73%), Mn(71%), and P(66%) exceeded the average decrease for ash yield (55%). Average decreases for other elements were: Co(31%), Cr(27%), F(39%), Ni(25%), Pb(50%), S(28%), Sb(20%), Se(39), Th(32%), and U(8%). Only Be was enriched (up to 120%) in the clean products relative to the parent coals. These results suggested that the concentration of elements with relatively high atmospheric mobilities (As, Cd, F, Hg, Pb, and Se) during coal combustion can be reduced substantially in Illinois coals through the use of advanced physical cleaning. Advanced physical cleaning can be effective also for the removal of inorganic S. Environmental risks from the emission of other elements with enrichment or relatively low cleanabilities could be small because these elements generally have very low concentrations in Illinois coals or are largely retained in solid residues during coal combustion. ?? 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.

  15. New cleaning technologies advance coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onursal, B.

    1984-05-01

    Alternative options are discussed for reducing sulfur dioxide emissions from coal burning utility and industrial sources. Test results indicate that it may be most advantageous to use the AED Process after coal preparation or on coals that do not need much ash removal. However, the developer claims that research efforts after 1981 have led to process improvements for producing clean coals containing 1.5% to 3% ash. This paper describes the test facility where a full-scale test of the AED Process is underway.

  16. Advanced lithographic filtration and contamination control for 14nm node and beyond semiconductor processes

    NASA Astrophysics Data System (ADS)

    Varanasi, Rao; Mesawich, Michael; Connor, Patrick; Johnson, Lawrence

    2017-03-01

    Two versions of a specific 2nm rated filter containing filtration medium and all other components produced from high density polyethylene (HDPE), one subjected to standard cleaning, the other to specialized ultra-cleaning, were evaluated in terms of their cleanliness characteristics, and also defectivity of wafers processed with photoresist filtered through each. With respect to inherent cleanliness, the ultraclean version exhibited a 70% reduction in total metal extractables and 90% reduction in organics extractables compared to the standard clean version. In terms of particulate cleanliness, the ultraclean version achieved stability of effluent particles 30nm and larger in about half the time required by the standard clean version, also exhibiting effluent levels at stability almost 90% lower. In evaluating defectivity of blanket wafers processed with photoresist filtered through either version, initial defect density while using the ultraclean version was about half that observed when the standard clean version was in service, with defectivity also falling more rapidly during subsequent usage of the ultraclean version compared to the standard clean version. Similar behavior was observed for patterned wafers, where the enhanced defect reduction was primarily of bridging defects. The filter evaluation and actual process-oriented results demonstrate the extreme value in using filtration designed possessing the optimal intrinsic characteristics, but with further improvements possible through enhanced cleaning processes

  17. A Course in Coal Science and Technology.

    ERIC Educational Resources Information Center

    Wheelock, T. D.

    1978-01-01

    This course introduces graduate students and advanced undergraduates to coal science and technology. Topics include: (1) the nature and occurrence of coal, (2) its chemical and physical characteristics, (3) methods of cleaning and preparing coal, and (4) processes for converting coal into clean solid, liquid, and gaseous fuels, as well as coke.…

  18. Environmental biocatalysis: from remediation with enzymes to novel green processes.

    PubMed

    Alcalde, Miguel; Ferrer, Manuel; Plou, Francisco J; Ballesteros, Antonio

    2006-06-01

    Modern biocatalysis is developing new and precise tools to improve a wide range of production processes, which reduce energy and raw material consumption and generate less waste and toxic side-products. Biocatalysis is also achieving new advances in environmental fields, from enzymatic bioremediation to the synthesis of renewable and clean energies and biochemical cleaning of 'dirty' fossil fuels. Despite the obvious benefits of biocatalysis, the major hurdles hindering the exploitation of the repertoire of enzymatic processes are, in many cases, the high production costs and the low yields obtained. This article will discuss these issues, pinpointing specific new advances in recombinant DNA techniques amenable to future biocatalyst development, in addition to drawing the attention of the biotechnology community to the active pursuit and development of environmental biocatalysis, from remediation with enzymes to novel green processes.

  19. Coal Research

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Coal slurries are "clean" pulverized coal mixed with oil or water. Significant fuel savings can be realized when using coal slurries. Advanced Fuels Technology (AFT) utilized a COSMIC program, (Calculation of Complex Chemical Equilibrium Compositions), which provides specific capabilities for determining combustion products. The company has developed a cleaning process that removes much of the mineral sulphur and ash from the coals.

  20. Optimization of PECVD Chamber Cleans Through Fundamental Studies of Electronegative Fluorinated Gas Discharges.

    NASA Astrophysics Data System (ADS)

    Langan, John

    1996-10-01

    The predominance of multi-level metalization schemes in advanced integrated circuit manufacturing has greatly increased the importance of plasma enhanced chemical vapor deposition (PECVD) and in turn in-situ plasma chamber cleaning. In order to maintain the highest throughput for these processes the clean step must be as short as possible. In addition, there is an increasing desire to minimize the fluorinated gas usage during the clean, while maximizing its efficiency, not only to achieve lower costs, but also because many of the gases used in this process are global warming compounds. We have studied the fundamental properties of discharges of NF_3, CF_4, and C_2F6 under conditions relevant to chamber cleaning in the GEC rf reference cell. Using electrical impedance analysis and optical emission spectroscopy we have determined that the electronegative nature of these discharges defines the optimal processing conditions by controlling the power coupling efficiency and mechanisms of power dissipation in the discharge. Examples will be presented where strategies identified by these studies have been used to optimize actual manufacturing chamber clean processes. (This work was performed in collaboration with Mark Sobolewski, National Institute of Standards and Technology, and Brian Felker, Air Products and Chemicals, Inc.)

  1. Bench-scale performance testing and economic analyses of electrostatic dry coal cleaning. Final report, October 1980-July 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich, S.R.

    1987-02-01

    The report gives results of preliminary performance evaluations and economic analyses of the Advanced Energy Dynamics (AED) electrostatic dry coal-cleaning process. Grab samples of coal-feed-product coals were obtained from 25 operating physical coal-cleaning (PCC) plants. These samples were analyzed for ash, sulfur, and energy content and splits of the original samples of feed run-of-mine coal were provided for bench-scale testing in an electrostatic separation apparatus. The process showed superior sulfur-removal performance at equivalent cost and energy-recovery levels. The ash-removal capability of the process was not evaluated completely: overall, ash-removal results indicated that the process did not perform as well asmore » the PCC plants.« less

  2. Solvent replacement for green processing.

    PubMed Central

    Sherman, J; Chin, B; Huibers, P D; Garcia-Valls, R; Hatton, T A

    1998-01-01

    The implementation of the Montreal Protocol, the Clean Air Act, and the Pollution Prevention Act of 1990 has resulted in increased awareness of organic solvent use in chemical processing. The advances made in the search to find "green" replacements for traditional solvents are reviewed, with reference to solvent alternatives for cleaning, coatings, and chemical reaction and separation processes. The development of solvent databases and computational methods that aid in the selection and/or design of feasible or optimal environmentally benign solvent alternatives for specific applications is also discussed. Images Figure 2 Figure 3 PMID:9539018

  3. American power conference: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-01

    The first volume of this conference contains papers on the following topics: (1) Controls, monitoring, and expert systems (Harnessing microprocessor revolution for a more competitive power industry; Plant control--Upgrades; Neural network applications); (2) Diversification and globalization (Electric utility diversification/globalization--Panel; Private power in developing countries); (3) Environment and clean air (Clean Air compliance costs; Site selection for power stations and related facilities; Electric utility trace substance emissions; Solid waste disposal and commercial use; Precipitators/fabric filters; and Effect of flow modifications on fisheries and water quality); (4) Generation--Fuel options equipment (Alternate fuels; Advances in fuel cells for electric power applications; Secondary containmentmore » and seismic requirements for petrochemical facilities; Clean coal technology demonstration; Advanced energy systems; Hydropower); (5) Nuclear operations options (Radioactive waste management and disposal; Off normal conditions; Advanced light water reactors--15 years after TMI; Structural dynamic analyses for nuclear power plants); (6) Retrofit, betterment, repowering maintenance (Project management; Improving competitiveness through process re-engineering; Central stations; Water and wastewater treatment); (7) System planning, operation demand maintenance (Transmission system access; Stability; Systems planning); (8) Transmission and distribution (Transformers; Relaying for system protection; Managing EMF effects); and (9) Education (Power engineering). 155 papers have been processed separately for inclusion on the data base.« less

  4. Implementation of advanced LCNG fueling infrastructure in Texas along the I-35/NAFTA Clean Corridor Project. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Stan; Hightower, Jared; Knight, Koby

    This report documents the process of planning, siting, and permitting recent LCNG station projects; identifying existing constraints in these processes, and recommendations for improvements; LCNG operating history.

  5. 76 FR 34872 - Approval and Promulgation of Implementation Plans; State of California; Regional Haze and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... that they have either received TAS or completed the application process for TAS under the Clean Water.... Similarly, we also do not need to address the Tribes' comment regarding TAS under the Clean Water Act as...-polluting fuels or use advanced control technology to reduce emissions of NO X (CAA section 182(e)(3)). \\14...

  6. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 3: Gasification, process fuels, and balance of plant

    NASA Technical Reports Server (NTRS)

    Boothe, W. A.; Corman, J. C.; Johnson, G. G.; Cassel, T. A. V.

    1976-01-01

    Results are presented of an investigation of gasification and clean fuels from coal. Factors discussed include: coal and coal transportation costs; clean liquid and gas fuel process efficiencies and costs; and cost, performance, and environmental intrusion elements of the integrated low-Btu coal gasification system. Cost estimates for the balance-of-plant requirements associated with advanced energy conversion systems utilizing coal or coal-derived fuels are included.

  7. Advanced Manufacturing Office Clean Water Processing Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The DOE Office of Energy Efficiency and Renewable Energy (EERE)’s Advanced Manufacturing Office partners with industry, small business, universities, and other stakeholders to identify and invest in emerging technologies with the potential to create high-quality domestic manufacturing jobs and enhance the global competitiveness of the United States.

  8. A 100-Year Review: A century of dairy processing advancements-Pasteurization, cleaning and sanitation, and sanitary equipment design.

    PubMed

    Rankin, S A; Bradley, R L; Miller, G; Mildenhall, K B

    2017-12-01

    Over the past century, advancements within the mainstream dairy foods processing industry have acted in complement with other dairy-affiliated industries to produce a human food that has few rivals with regard to safety, nutrition, and sustainability. These advancements, such as milk pasteurization, may appear commonplace in the context of a modern dairy processing plant, but some consideration of how these advancements came into being serve as a basis for considering what advancements will come to bear on the next century of processing advancements. In the year 1917, depending on where one resided, most milk was presented to the consumer through privately owned dairy animals, small local or regional dairy farms, or small urban commercial dairies with minimal, or at best nascent, processing capabilities. In 1917, much of the retail milk in the United States was packaged and sold in returnable quart-sized clear glass bottles fitted with caps of various design and composition. Some reports suggest that the cost of that quart of milk was approximately 9 cents-an estimated $2.00 in 2017 US dollars. Comparing that 1917 quart of milk to a quart of milk in 2017 suggests several differences in microbiological, compositional, and nutritional value as well as flavor characteristics. Although a more comprehensive timeline of significant processing advancements is noted in the AppendixTable A1 to this paper, we have selected 3 advancements to highlight; namely, the development of milk pasteurization, cleaning and sanitizing technologies, and sanitary specifications for processing equipment. Finally, we provide some insights into the future of milk processing and suggest areas where technological advancements may need continued or strengthened attention and development as a means of securing milk as a food of high safety and value for the next century to come. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Society of the plastic industry process emission initiatives

    NASA Technical Reports Server (NTRS)

    Mcdermott, Joseph

    1994-01-01

    At first view, plastics process emissions research may not seem to have much bearing on outgassing considerations relative to advanced composite materials; however, several parallel issues and cross currents are of mutual interest. The following topics are discussed: relevance of plastics industry research to aerospace composites; impact of clean air act amendment requirements; scope of the Society of the Plastics Industry, Inc. activities in thermoplastic process emissions and reinforced plastics/composites process emissions; and utility of SPI research for advanced polymer composites audiences.

  10. Advanced physical fine coal cleaning: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-12-01

    The contract objective was to demonstrate Advanced Energy Dynamics, Inc., (AED) Ultrafine Coal (UFC) electrostatic physical fine coal cleaning process as capable of: producing clean coal products of no greater than 2% ash; significantly reducing the pyritic sulfur content below that achievable with state-of-the-art coal cleaning; recovering over 80% of the available energy content in the run-of-mine coal; producing product and refuse with surface moisture below 30%. Originally the demonstration was to be of a Charger/Disc System at the Electric Power Research Institute (EPRI) Coal Quality Development Center (CQDC) at Homer City, Pennsylvania. As a result of the combination ofmore » Charger/Disc System scale-up problems and parallel development of an improved Vertical-Belt Separator, DOE issued a contract modification to perform additional laboratory testing and optimization of the UFC Vertical-Belt Separator System at AED. These comparative test results, safety analyses and an economic analysis are discussed in this report. 29 refs., 25 figs., 41 tabs.« less

  11. Alternative Fuels Data Center

    Science.gov Websites

    Clean Cities The mission of Clean Cities is to advance the energy, economic, and environmental petroleum in the transportation sector. Clean Cities carries out this mission through a network of nearly advanced vehicles, fuel blends, fuel economy, hybrid vehicles, and idle reduction. Clean Cities provides

  12. Advanced mask cleaning for 0.20-μm technology: an integrated user-supplier approach

    NASA Astrophysics Data System (ADS)

    Poschenrieder, Rudolf; Hay, Bernd; Beier, Matthias; Hourd, Andrew C.; Stuemer, Harald; Gairing, Thomas M.

    1998-12-01

    A newly developed photomask final cleaning system, STEAG HamaTech's Advanced Single Substrate Cleaner, ASC 500, was assessed and optimized at the Siemens mask shop in Munich, Germany, under production conditions within the Esprit European Semiconductor Equipment Assessment programme (SEA). The project was carried out together with the active participation of Compugraphics Intl. Ltd. (UK), DuPont Photomasks, Inc. (Germany; Photronics-MZD, Germany). The results of the assessment are presented, focusing on the cleaning performance at the 0.25 micrometer defect level on photomasks, equipment reliability and Cost of Ownership data. A reticle free of soft defects on glass and on chrome down to the 0.25 micrometer level requires an excellent cleaning process and the use of high-end inspection tools like the KLA STARlight. In order to get a full understanding of the nature of the detected features additional investigations on the blank quality have been carried out. These investigations include the questions whether a detection is a hard or a soft defect and whether small defects on chrome are able to move on the reticle surface. Final cleaning recipes have been optimized in respect to cleaning efficiency while maintaining high throughput and low Cost of Ownership. A benchmark comparison against other final cleaning tools at the partner's maskshops showed the leading data of the ASC 500. It was found that a cleaning program which includes several substrate flips and a combination of the available cleaning methods acid- dispense, water pressure jet clean, brush and megasonic clean was best suitable to achieve these goals. In particular the use of the brush unit was shown to improve the yield while not adding damage to the plate.

  13. 77 FR 53199 - California State Motor Vehicle Pollution Control Standards; Advanced Clean Car Program; Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... Standards; Advanced Clean Car Program; Request for Waiver of Preemption; Opportunity for Public Hearing and... developed an Advanced Clean Car program (ACC) which combines the control of smog and soot causing pollutants... cars, light-duty trucks and medium-duty passenger vehicles (and limited requirements related to heavy...

  14. Precision Cleaning and Verification Processes Used at Marshall Space Flight Center for Critical Hardware Applications

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.; Cox, Jack A.; McGee, Kathleen A.

    1999-01-01

    This presentation discuss the Marshall Space Flight Center Operations and Responsibilities. These are propulsion, microgravity experiments, international space station, space transportation systems, and advance vehicle research.

  15. Next steps in the development of ecological soil clean-up values for metals.

    PubMed

    Wentsel, Randall; Fairbrother, Anne

    2014-07-01

    This special series in Integrated Environmental Assessment Management presents the results from 6 workgroups that were formed at the workshop on Ecological Soil Levels-Next Steps in the Development of Metal Clean-Up Values (17-21 September 2012, Sundance, Utah). This introductory article presents an overview of the issues assessors face when conducting risk assessments for metals in soils, key US Environmental Protection Agency (USEPA) documents on metals risk assessment, and discusses the importance of leveraging from recent major terrestrial research projects, primarily to address Registration, Evaluation, Authorization and Restriction of Chemical Substances (REACH) requirements in Europe, that have significantly advanced our understanding of the behavior and toxicity of metals in soils. These projects developed large data sets that are useful for the risk assessment of metals in soil environments. The workshop attendees met to work toward developing a process for establishing ecological soil clean-up values (Eco-SCVs). The goal of the workshop was to progress from ecological soil screening values (Eco-SSLs) to final clean-up values by providing regulators with the methods and processes to incorporate bioavailability, normalize toxicity thresholds, address food-web issues, and incorporate background concentrations. The REACH data sets were used by workshop participants as case studies in the development of the ecological standards for soils. The workshop attendees discussed scientific advancements in bioavailability, soil biota and wildlife case studies, soil processes, and food-chain modeling. In addition, one of the workgroups discussed the processes needed to frame the topics to gain regulatory acceptance as a directive or guidance by Canada, the USEPA, or the United States. © 2013 SETAC.

  16. Precision Cleaning - Path to Premier

    NASA Technical Reports Server (NTRS)

    Mackler, Scott E.

    2008-01-01

    ITT Space Systems Division s new Precision Cleaning facility provides critical cleaning and packaging of aerospace flight hardware and optical payloads to meet customer performance requirements. The Precision Cleaning Path to Premier Project was a 2007 capital project and is a key element in the approved Premier Resource Management - Integrated Supply Chain Footprint Optimization Project. Formerly precision cleaning was located offsite in a leased building. A new facility equipped with modern precision cleaning equipment including advanced process analytical technology and improved capabilities was designed and built after outsourcing solutions were investigated and found lacking in ability to meet quality specifications and schedule needs. SSD cleans parts that can range in size from a single threaded fastener all the way up to large composite structures. Materials that can be processed include optics, composites, metals and various high performance coatings. We are required to provide verification to our customers that we have met their particulate and molecular cleanliness requirements and we have that analytical capability in this new facility. The new facility footprint is approximately half the size of the former leased operation and provides double the amount of throughput. Process improvements and new cleaning equipment are projected to increase 1st pass yield from 78% to 98% avoiding $300K+/yr in rework costs. Cost avoidance of $350K/yr will result from elimination of rent, IT services, transportation, and decreased utility costs. Savings due to reduced staff expected to net $4-500K/yr.

  17. Syringe filtration methods for examining dissolved and colloidal trace element distributions in remote field locations

    NASA Technical Reports Server (NTRS)

    Shiller, Alan M.

    2003-01-01

    It is well-established that sampling and sample processing can easily introduce contamination into dissolved trace element samples if precautions are not taken. However, work in remote locations sometimes precludes bringing bulky clean lab equipment into the field and likewise may make timely transport of samples to the lab for processing impossible. Straightforward syringe filtration methods are described here for collecting small quantities (15 mL) of 0.45- and 0.02-microm filtered river water in an uncontaminated manner. These filtration methods take advantage of recent advances in analytical capabilities that require only small amounts of waterfor analysis of a suite of dissolved trace elements. Filter clogging and solute rejection artifacts appear to be minimal, although some adsorption of metals and organics does affect the first approximately 10 mL of water passing through the filters. Overall the methods are clean, easy to use, and provide reproducible representations of the dissolved and colloidal fractions of trace elements in river waters. Furthermore, sample processing materials can be prepared well in advance in a clean lab and transported cleanly and compactly to the field. Application of these methods is illustrated with data from remote locations in the Rocky Mountains and along the Yukon River. Evidence from field flow fractionation suggests that the 0.02-microm filters may provide a practical cutoff to distinguish metals associated with small inorganic and organic complexes from those associated with silicate and oxide colloids.

  18. Cleaning up Silicon

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A development program that started in 1975 between Union Carbide and JPL, led to Advanced Silicon Materials LLC's, formerly ASiMI, commercial process for producing silane in viable quantities. The process was expanded to include the production of high-purity polysilicon for electronic devices. The technology came out of JPL's Low Cost Silicon Array Project.

  19. Current Trends in Ubiquitous Biosensing

    DTIC Science & Technology

    2013-08-01

    fundamental advances have been made in the synergistic combination of research in the fields of microfluidics and optics, coined “optofluidics” [24-26...microfabrication and clean-room techniques for the development of microfluidic devices [27]. Advances in the rapid fabrication of nano- and microfluidic ...Transduction Microfluidic Processing Sample Introduction Optofluidics Enabled Bio-Sensing A B C Figure 4: (A) Schematic diagram of optofluidic tomography

  20. Final Report of the Advanced Coal Technology Work Group

    EPA Pesticide Factsheets

    The Advanced Coal Technology workgroup reported to the Clean Air Act Advisory Committee. This page includes the final report of the Advanced Coal Technology Work Group to the Clean Air Act Advisory Committee.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, S. P.N.; Peterson, G. R.

    Coal beneficiation is a generic term used for processes that prepare run-of-mine coal for specific end uses. It is also referred to as coal preparation or coal cleaning and is a means of reducing the sulfur and the ash contents of coal. Information is presented regarding current and potential coal beneficiation processes. Several of the processes reviewed, though not yet commercial, are at various stages of experimental development. Process descriptions are provided for these processes commensurate with the extent of information and time available to perform the evaluation of these processes. Conceptual process designs, preliminary cost estimates, and economic evaluationsmore » are provided for the more advanced (from a process development hierarchy viewpoint) processes based on production levels of 1500 and 15,000 tons/day (maf) of cleaned product coal. Economic evaluations of the coal preparation plants are conducted for several project financing schemes and at 12 and 15% annual after-tax rates of return on equity capital. A 9% annual interest rate is used on the debt fraction of the plant capital. Cleaned product coal prices are determined using the discounted cash flow procedure. The study is intended to provide information on publicly known coal beneficiation processes and to indicate the relative costs of various coal beneficiation processes. Because of severe timeconstraints, several potential coal beneficiation processes are not evaluated in great detail. It is recommended that an additional study be conducted to complement this study and to more fully appreciate the potentially significant role of coal beneficiation in the clean burning of coal.« less

  2. Alternative Fuels Data Center: Maps and Data

    Science.gov Websites

    3 results Generated_thumb20170118-11720-lxiuaf Clean Cities Alternative Fuel and Advanced Vehicle Inventory Generated_thumb20170118-11720-lxiuaf Advanced fuel and advanced vehicle inventory reported by Last update July 2017 View Image Graph Clean Cities Alternative Fuel and Advanced Vehicle Inventory

  3. Extending CO2 cryogenic aerosol cleaning for advanced optical and EUV mask cleaning

    NASA Astrophysics Data System (ADS)

    Varghese, Ivin; Bowers, Charles W.; Balooch, Mehdi

    2011-11-01

    Cryogenic CO2 aerosol cleaning being a dry, chemically-inert and residue-free process is used in the production of optical lithography masks. It is an attractive cleaning option for the mask industry to achieve the requirement for removal of all printable soft defects and repair debris down to the 50nm printability specification. In the technique, CO2 clusters are formed by sudden expansion of liquid from high to almost atmospheric pressure through an optimally designed nozzle orifice. They are then directed on to the soft defects or debris for momentum transfer and subsequent damage free removal from the mask substrate. Unlike aggressive acid based wet cleaning, there is no degradation of the mask after processing with CO2, i.e., no critical dimension (CD) change, no transmission/phase losses, or chemical residue that leads to haze formation. Therefore no restriction on number of cleaning cycles is required to be imposed, unlike other cleaning methods. CO2 aerosol cleaning has been implemented for several years as full mask final clean in production environments at several state of the art mask shops. Over the last two years our group reported successful removal of all soft defects without damage to the fragile SRAF features, zero adders (from the cleaning and handling mechanisms) down to a 50nm printability specification. In addition, CO2 aerosol cleaning is being utilized to remove debris from Post-RAVE repair of hard defects in order to achieve the goal of no printable defects. It is expected that CO2 aerosol cleaning can be extended to extreme ultraviolet (EUV) masks. In this paper, we report advances being made in nozzle design qualification for optimum snow properties (size, velocity and flux) using Phase Doppler Anemometry (PDA) technique. In addition the two new areas of focus for CO2 aerosol cleaning i.e. pellicle glue residue removal on optical masks, and ruthenium (Ru) film on EUV masks are presented. Usually, the residue left over after the pellicle has been removed from returned masks (after long term usage/exposure in the wafer fab), requires a very aggressive SPM wet clean, that drastically reduces the available budget for mask properties (CD, phase/transmission). We show that CO2aerosol cleaning can be utilized to remove the bulk of the glue residue effectively, while preserving the mask properties. This application required a differently designed nozzle to impart the required removal force for the sticky glue residue. A new nozzle was developed and qualified that resulted in PRE in the range of 92-98%. Results also include data on a patterned mask that was exposed in a lithography stepper in a wafer production environment. On EUV mask, our group has experimentally demonstrated that 50 CO2 cleaning cycles of Ru film on the EUV Front-side resulted in no appreciable reflectivity change, implying that no degradation of the Ru film occurs.

  4. Benchmark Study of Global Clean Energy Manufacturing | Advanced

    Science.gov Websites

    Manufacturing Research | NREL Benchmark Study of Global Clean Energy Manufacturing Benchmark Study of Global Clean Energy Manufacturing Through a first-of-its-kind benchmark study, the Clean Energy Technology End Product.' The study examined four clean energy technologies: wind turbine components

  5. The Use of HFC (CFC Free) Processes at the NASA Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Ross, Richard H.

    1997-01-01

    The search for ozone depleting alternative chemicals was heightened when, in 1990, the more than 65 countries that had signed the Montreal Protocol agreed to phase out completely by the year 2000. In 1992, then-president Bush advanced this date for the United States to January l, 1996. In 1991, it was realized that the planned phase out and eventual elimination of ozone depleting chemicals imposed by the Montreal Protocol and the resulting Clean Air Act (CAA) amendments would impact the cleaning and testing of aerospace hardware at the NASA Stennis Space Center. Because of this regulation, the Test & Engineering Sciences Laboratory has been working on solvent conversion studies to replace CFC-113. Aerospace hardware and test equipment used in rocket propulsion systems require extreme cleanliness levels to function and maintain their integrity. Because the cleanliness of aerospace hardware will be affected by the elimination of CFC-113; alternate cleaning technologies, including the use of fluoridated solvents have been studied as potential replacements. Several aqueous processes have been identified for cleaning moderately sized components. However, no known aqueous alternative exists for cleaning and validating T&ME and complex geometry based hardware. This paper discusses the choices and the methodologies that were used to screen potential alternatives to CFC-113.

  6. An alternative process to treat boiler feed water for reuse.

    PubMed

    Guirgis, Adel; Ghosh, Jyoti P; Achari, Gopal; Langford, Cooper H; Banerjee, Daliya

    2012-09-01

    A bench-scale process to treat boiler feed water for reuse in steam generation was developed. Industrial water samples from a steam-assisted gravity drainage plant in northern Alberta, Canada, were obtained and samples characterized. The technology, which consists of coagulation-settling to remove oil/grease and particulates followed by an advanced oxidative treatment, led to clean water samples with negligible organic carbon. Coagulation followed by settling removed most particulates and some insoluble organics. The advanced oxidative treatment removed any remaining color in the samples, decreased the organic content to near-zero, and provided water ready for reuse.

  7. Hydrography for the non-Hydrographer: A Paradigm shift in Data Processing

    NASA Astrophysics Data System (ADS)

    Malzone, C.; Bruce, S.

    2017-12-01

    Advancements in technology have led to overall systematic improvements including; hardware design, software architecture, data transmission/ telepresence. Historically, utilization of this technology has required a high knowledge level obtained with many years of experience, training and/or education. High training costs are incurred to achieve and maintain an acceptable level proficiency within an organization. Recently, engineers have developed off-the-shelf software technology called Qimera that has simplified the processing of hydrographic data. The core technology is centered around the isolation of tasks within the work- flow to capitalize on the technological advances in computing technology to automate the mundane error prone tasks to bring more value to the stages in which the human brain brings value. Key design features include: guided workflow, transcription automation, processing state management, real-time QA, dynamic workflow for validation, collaborative cleaning and production line processing. Since, Qimera is designed to guide the user, it allows expedition leaders to focus on science while providing an educational opportunity for students to quickly learn the hydrographic processing workflow including ancillary data analysis, trouble-shooting, calibration and cleaning. This paper provides case studies on how Qimera is currently implemented in scientific expeditions, benefits of implementation and how it is directing the future of on-board research for the non-hydrographer.

  8. Assessment of the Navy’s North West Region Advance Food Menu Gallery Workload and Food Cost Impact Trade-Offs

    DTIC Science & Technology

    2009-06-01

    Self serve Same All All Assorted Indiv Fresh Fruits Bananas , apples, oranges, etc. Self serve Same All B/Br Omelets/Eggs to Order Scratch- from fresh...Prepared by night crew (M-F), and day crew for Saturday and Sunday All B/Br E02401 Assorted Cereal Adv Individual bowls with peel lids M-F L-SO N01207...Fresh Fruit Vegetable Prep [FSAs]  Wash, slice, dice, cut, peel or other process FFV, etc.  Clean/sanitize FFV Prep room equipment.  Clean FFV

  9. Photocatalytic Nanofiltration Membranes with Self-Cleaning Property for Wastewater Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Yan; Zhang, Chao; He, Ai

    Membrane fouling is one of the most severe problems restricting membrane separation technology for wastewater treatment. This work reports a photocatalytic nanofiltration membrane (NFM) with self-cleaning property fabricated using a facile biomimetic mineralization process. In this strategy, a polydopamine (PDA)/polyethyleneimine (PEI) intermediate layer is fabricated on an ultrafiltration membrane via a co-deposition method followed by mineralization of a photocatalytic layer consisting of beta-FeOOH nanorods. The PDA-PEI layer acts both as a nanofiltration selective layer and an intermediate layer for anchoring the beta-FeOOH nanorods via strong coordination complexes between Fe3+ and catechol groups. In visible light, the beta-(F)eOOH layer exhibits efficientmore » photocatalytic activity for degrading dyes through the photo-Fenton reaction in the presence of hydrogen peroxide, endowing the NFM concurrently with effective nanofiltration performance and self-cleaning capability. Moreover, the mineralized NFMs exhibit satisfactory stability under simultaneous filtration and photocatalysis processing, showing great potential in advanced wastewater treatment.« less

  10. Clean Cities Now Vol. 16.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-05-01

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.

  11. Clean Energy Solutions Center Services (Arabic Translation) (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-06-01

    This is the Arabic translation of the Clean Energy Solutions Center Services fact sheet. The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  12. Clean-in-Place and Reliability Testing of a Commercial 12.5-cm Annular Centrifugal Contactor at the INL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. R. Mann; T. G. Garn; D. H. Meikrantz

    2007-09-01

    The renewed interest in advancing nuclear energy has spawned the research of advanced technologies for recycling nuclear fuel. A significant portion of the advanced fuel cycle includes the recovery of selected actinides by solvent extraction methods utilizing centrifugal contactors. Although the use of centrifugal contactors for solvent extraction is widely known, their operation is not without challenges. Solutions generated from spent fuel dissolution contain unknown quantities of undissolved solids. A majority of these solids will be removed via various methods of filtration. However, smaller particles are expected to carry through to downstream solvent extraction processes and equipment. In addition, solids/precipitatesmore » brought about by mechanical or chemical upsets are another potential area of concern. During processing, particulate captured in the rotor assembly by high centrifugal forces eventually forms a cake-like structure on the inner wall introducing balance problems and negatively affecting phase separations. One of the features recently developed for larger engineering scale Annular Centrifugal Contactors (ACCs) is the Clean-In-Place (CIP) capability. Engineered spray nozzles were installed into the hollow central rotor shaft in all four quadrants of the rotor assembly. This arrangement allows for a very convenient and effective method of solids removal from within the rotor assembly.« less

  13. Clean-in-Place and Reliability Testing of a Commercial 12.5 cm Annular Centrifugal Contactor at the INL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. R. Mann; T. G. Garn; D. H. Meikrantz

    2007-09-01

    The renewed interest in advancing nuclear energy has spawned the research of advanced technologies for recycling nuclear fuel. A significant portion of the advanced fuel cycle includes the recovery of selected actinides by solvent extraction methods utilizing centrifugal contactors. Although the use of centrifugal contactors for solvent extraction is widely known, their operation is not without challenges. Solutions generated from spent fuel dissolution contain unknown quantities of undissolved solids. A majority of these solids will be removed via various methods of filtration. However, smaller particles are expected to carry through to downstream solvent extraction processes and equipment. In addition, solids/precipitatesmore » brought about by mechanical or chemical upsets are another potential area of concern. During processing, particulate captured in the rotor assembly by high centrifugal forces eventually forms a cake-like structure on the inner wall introducing balance problems and negatively affecting phase separations. One of the features recently developed for larger engineering scale Annular Centrifugal Contactors (ACCs) is the Clean-In-Place (CIP) capability. Engineered spray nozzles were installed into the hollow central rotor shaft in all four quadrants of the rotor assembly. This arrangement allows for a very convenient and effective method of solids removal from within the rotor assembly.« less

  14. Clean Cities Now Vol. 17, No. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-05-24

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.

  15. Improving Reliability and Durability of Efficient and Clean Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Prabhakar

    2010-08-01

    Overall objective of the research program was to develop an in-depth understanding of the degradation processes in advanced electrochemical energy conversion systems. It was also the objective of the research program to transfer the technology to participating industries for implementation in manufacturing of cost effective and reliable integrated systems.

  16. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatmentmore » with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.« less

  17. A new approach in dry technology for non-degrading optical and EUV mask cleaning

    NASA Astrophysics Data System (ADS)

    Varghese, Ivin; Smith, Ben; Balooch, Mehdi; Bowers, Chuck

    2012-11-01

    The Eco-Snow Systems group of RAVE N.P., Inc. has developed a new cleaning technique to target several of the advanced and next generation mask clean challenges. This new technique, especially when combined with Eco-Snow Systems cryogenic CO2 cleaning technology, provides several advantages over existing methods because it: 1) is solely based on dry technique without requiring additional complementary aggressive wet chemistries that degrade the mask, 2) operates at atmospheric pressure and therefore avoids expensive and complicated equipment associated with vacuum systems, 3) generates ultra-clean reactants eliminating possible byproduct adders, 4) can be applied locally for site specific cleaning without exposing the rest of the mask or can be used to clean the entire mask, 5) removes organic as well as inorganic particulates and film contaminations, and 6) complements current techniques utilized for cleaning of advanced masks such as reduced chemistry wet cleans. In this paper, we shall present examples demonstrating the capability of this new technique for removal of pellicle glue residues and for critical removal of carbon contamination on EUV masks.

  18. New process for alleviation of membrane fouling of modified hybrid MBR system for advanced domestic wastewater treatment.

    PubMed

    Shuo, Liu; Baozhen, Wang; Hongjun, Han; Yanping, Liu

    2008-01-01

    A pilot-scale hybrid membrane bioreactor using a submerged flat panel membrane was designed and applied for advanced treatment of domestic wastewater. The new process adapted to the hybrid membrane bioreactor exhibits substantial decrease in membrane fouling and much easier cleaning. In this study, the new process configurations including the addition of anoxic/anaerobic zones, the package of synthetic fibrous fabric carrier for biofilm attached growth, activated sludge recycling and modified dosage of polished diatomite with high activity and multi-functions were investigated to select the optimal operational parameters for the hybrid membrane bioreactor system. The carrier package in the aerobic zone contributed 3.65 g/L (maximum) of fixed biomass to the system, thus reducing the suspended biomass, and has decreased the membrane cleaning cycle remarkably. The operation performance at the sludge recycle rate 0, 100%, 200% and 300% showed that, the trans-membrane pressure of flat panel membrane declined sharply with the increase of sludge recycling rate within a certain range, and 200% was decided to be optimal for in the membrane bioreactor system. EPS concentration in each sludge recycling rate was 135 mg/L, 92 mg/L, 68 mg/L and 55 mg/L respectively. The addition of anoxic and anaerobic zones degraded some large molecular organic compounds, which facilitated the biodegradation and removal of organic substances in aerobic zone. The modified dosage of polished diatomite has played a major important role for both preventing of membrane from fouling and its much easier cleaning when it formed. Copyright (c) IWA Publishing 2008.

  19. Clean Cities Now: Vol. 17, No. 1, Spring 2013 (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutor, J.; Tucker, E.; Thomas, J.

    2013-05-01

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.

  20. Clean Cities Now: Vol. 16, No. 1, May 2012 (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-05-01

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.

  1. Perspectives and advances of biological H2 production in microorganisms.

    PubMed

    Rupprecht, Jens; Hankamer, Ben; Mussgnug, Jan H; Ananyev, Gennady; Dismukes, Charles; Kruse, Olaf

    2006-09-01

    The rapid development of clean fuels for the future is a critically important global challenge for two main reasons. First, new fuels are needed to supplement and ultimately replace depleting oil reserves. Second, fuels capable of zero CO2 emissions are needed to slow the impact of global warming. This review summarizes the development of solar powered bio-H2 production processes based on the conversion of photosynthetic products by fermentative bacteria, as well as using photoheterotrophic and photoautrophic organisms. The use of advanced bioreactor systems and their potential and limitations in terms of process design, efficiency, and cost are also briefly reviewed.

  2. Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Cinke, Martin; Li, Jing; Chen, Bin; Wignarajah, Kanapathipillai; Pisharody, Suresh A.; Fisher, John W.; Delzeit, Lance; Meyyappan, Meyya; Partridge, Harry; Clark, Kimberlee

    2003-01-01

    The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Highly purified metal-impregnated carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake gaseous species based both on the nanotube s controlled pore size, high surface area, and ordered chemical structure that allows functionalization and on the nanotube s effectiveness as a catalyst support material for toxic contaminants removal. We present results on the purification of single walled carbon nanotubes (SWCNT) and efforts at metal impregnation of the SWCNT's.

  3. Clean Cities Now, Vol. 18, No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-01-19

    This is version 18.2 of Clean Cities Now, the official biannual newsletter of the Clean Cities program. Clean Cities is an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.

  4. Clean Energy Manufacturing Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  5. [Advances in microbial production of alkaline polygalacturonate lyase and its application in clean production of textile industry].

    PubMed

    Liu, Long; Wang, Zhihao; Zhang, Dongxu; Li, Jianghua; Du, Guocheng; Chen, Jian

    2009-12-01

    We reviewed the microbial production of alkaline polygalacturonate lyase (PGL) and its application in the clean production of textile industry. Currently PGL is mainly produced by microbial fermentation and Bacillus sp. is an ideal wild strain for PGL production. Microbial PGL production was affected by many factors including the concentration and feeding mode of substrate, cell concentration, agitation speed, aeration rate, pH and temperature. Constructing the recombinant strain provided an effective alternative for PGL production, and the concentration of PGL produced by the recombinant Pichia pastoris reached 1305 U/mL in 10 m3 fermentor. The recombinant Pichia pastoris had the potential to reach the industrial production of PGL. PGL can be applied in bio-scouring process in the pre-treatment of cotton. Compared with the traditional alkaline cooking process, the application of PGL can protect fiber, improve the bio-scouring efficiency, decrease energy consumption and alleviate the environmental pollution. The future research focus will be the molecular directed evolution of PGL to make PGL more suitable for the application of PGL in bio-scouring process to realize the clean production of textile industry.

  6. Clean Energy Solutions Center Services (Vietnamese Translation) (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-11-01

    This is the Vietnamese language translation of the Clean Energy Solutions Center (Solutions Center) fact sheet. The Solutions Center helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  7. Clean Energy Solutions Center Services (Chinese Translation) (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-04-01

    This is the Chinese language translation of the Clean Energy Solutions Center (Solutions Center) fact sheet. The Solutions Center helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  8. Wave-front propagation of rinsing flows on rotating semiconductor wafers

    NASA Astrophysics Data System (ADS)

    Frostad, John M.; Ylitalo, Andy; Walls, Daniel J.; Mui, David S. L.; Fuller, Gerald G.

    2016-11-01

    The semiconductor manufacturing industry is migrating to a cleaning technology that involves dispersing cleaning solutions onto a rotating wafer, similar to spin-coating. Advantages include a more continuous overall fabrication process, lower particle level, no cross contamination from the back side of a wafer, and less usage of harsh chemicals for a lower environmental impact. Rapid rotation of the wafer during rinsing can be more effective, but centrifugal forces can pull spiral-like ribbons of liquid radially outward from the advancing wave-front where particles can build up, causing higher instances of device failure at these locations. A better understanding of the rinsing flow is essential for reducing yield losses while taking advantage of the benefits of rotation. In the present work, high-speed video and image processing are used to study the dynamics of the advancing wave-front from an impinging jet on a rotating substrate. The flow-rate and rotation-speed are varied for substrates coated with a thin layer of a second liquid that has a different surface tension than the jet liquid. The difference in surface tension of the two fluids gives rise to Marangoni stresses at the interface that have a significant impact on the rinsing process, despite the extremely short time-scales involved.

  9. Clean Cities Now Vol. 20, No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-01-13

    Clean Cities Now is the official semi-annual newsletter of Clean Cities, an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.

  10. Clean Cities Now Vol. 19, No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-12-18

    Clean Cities Now is the official bi-annual newsletter of Clean Cities, an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.

  11. Manufacturing concepts and development trends in the industrial production of microelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Schuenemann, Matthias; Grimme, Ralf; Kaufmann, Thomas; Schwaab, Gerhard; Baeder, Uwe; Schaefer, Wolfgang; Dorner, Johann

    1998-01-01

    During the past few years, remarkable affords have been made for the realization of microscale sensors, actuators and microelectromechanical system. Due to advances in solid state and micromachining technologies, significant advances in designing, fabricating and testing of microminiaturized devices have been achieved at laboratory level. However, the technical and economical realization of microelectromechanical systems is considerably impeded by the lack of satisfying device technology for their industrial production. A production concept for the industrial production of hybrid microelectromechanical systems was developed and investigated. The concept is based on the resources and requirements of medium-sized enterprises and is characterized by its flexibility. Microsystem fabrication is separated into microfabrication steps performed in-house and technological steps performed by external technology providers. The modularity of the concept allows for a gradual increase in the degree of automation and the in-house production depth, depending on market capacity and financial resources. To demonstrate the feasibility of this approach, the design and realization of a microfabrication process center, which includes tasks like transport and handling, processing, cleaning, testing and storing are discussed. Special attention is given to the supply and feeding of microparts, to the necessary magazines, trays and transport systems, to the implementation of homogeneous mechanical, environmental and information interfaces, to the employment of advanced control, scheduling, and lot tracking concepts, and to the application of highly modular and cost-efficient clean production concepts.

  12. Role of RIS/APC for manufacturing RFG/LSD. [Refinery Information Systems/Advanced Process Control, ReFormulated Gasoline/Low Sulfur Diesels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latour, P.R.

    Revolutionary changes in quality specifications (number, complexity, uncertainty, economic sensitivity) for reformulated gasolines (RFG) and low-sulfur diesels (LSD) are being addressed by powerful, new, computer-integrated manufacturing technology for Refinery Information Systems and Advanced Process Control (RIS/APC). This paper shows how the five active RIS/APC functions: performance measurement, optimization, scheduling, control and integration are used to manufacture new, clean fuels competitively. With current industry spending for this field averaging 2 to 3 cents/bbl crude, many refineries can capture 50 to 100 cents/bbl if the technology is properly employed and sustained throughout refining operations, organizations, and businesses.

  13. Veterans Advancing Clean Energy and Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopser, Joseph; Marr, Andrea; Perez-Halperin, Elizabeth

    2013-11-11

    The Champions of Change series highlights ordinary Americans who are doing extraordinary things in their communities to out-innovate, out-educate and out-build the rest of the world. On November 5, 2013, the White House honored 12 veterans and leaders who are using the skills they learned in the armed services to advance the clean energy economy.

  14. Veterans Advancing Clean Energy and Climate

    ScienceCinema

    Kopser, Joseph; Marr, Andrea; Perez-Halperin, Elizabeth; Eckstein, Robin; Moniz, Ernest

    2018-01-16

    The Champions of Change series highlights ordinary Americans who are doing extraordinary things in their communities to out-innovate, out-educate and out-build the rest of the world. On November 5, 2013, the White House honored 12 veterans and leaders who are using the skills they learned in the armed services to advance the clean energy economy.

  15. Mechanisms for dose retention in conformal arsenic doping using a radial line slot antenna microwave plasma source

    NASA Astrophysics Data System (ADS)

    Ueda, Hirokazu; Ventzek, Peter L. G.; Oka, Masahiro; Kobayashi, Yuuki; Sugimoto, Yasuhiro

    2015-06-01

    Topographic structures such as Fin FETs and silicon nanowires for advanced gate fabrication require ultra-shallow high dose infusion of dopants into the silicon subsurface. Plasma doping meets this requirement by supplying a flux of inert ions and dopant radicals to the surface. However, the helium ion bombardment needed to infuse dopants into the fin surface can cause poor dose retention. This is due to the interaction between substrate damage and post doping process wet cleaning solutions required in the front end of line large-scale integration fabrication. We present findings from surface microscopy experiments that reveal the mechanism for dose retention in arsenic doped silicon fin samples using a microwave RLSA™ plasma source. Dilute aqueous hydrofluoric acid (DHF) cleans by themselves are incompatible with plasma doping processes because the films deposited over the dosed silicon and ion bombardment damaged silicon are readily removed. Oxidizing wet cleaning chemistries help retain the dose as silica rich over-layers are not significantly degraded. Furthermore, the dosed retention after a DHF clean following an oxidizing wet clean is unchanged. Still, the initial ion bombardment energy and flux are important. Large ion fluxes at energies below the sputter threshold and above the silicon damage threshold, before the silicon surface is covered by an amorphous mixed phase layer, allow for enhanced uptake of dopant into the silicon. The resulting dopant concentration is beyond the saturation limit of crystalline silicon.

  16. Servicios del Centro de Soluciones Para la Energia Limpia (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-05-01

    This is the Spanish translation of the Clean Energy Solutions Center Services fact sheet. The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  17. Clean Cities Now, Vol. 20, No. 1, Summer 2016 - Tackling Transportation: Clean Cities and NPS Team Up to Steer National Parks Toward a Sustainable Future.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clean Cities Now is the official semi-annual newsletter of Clean Cities, an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.

  18. Advanced in-duct sorbent injection for SO{sub 2} control. Topical report No. 2, Subtask 2.2: Design optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenhoover, W.A.; Stouffer, M.R.; Withum, J.A.

    1994-12-01

    The objective of this research project is to develop second-generation duct injection technology as a cost-effective SO{sub 2} control option for the 1990 Clean Air Act Amendments. Research is focused on the Advanced Coolside process, which has shown the potential for achieving the performance targets of 90% SO{sub 2} removal and 60% sorbent utilization. In Subtask 2.2, Design Optimization, process improvement was sought by optimizing sorbent recycle and by optimizing process equipment for reduced cost. The pilot plant recycle testing showed that 90% SO{sub 2} removal could be achieved at sorbent utilizations up to 75%. This testing also showed thatmore » the Advanced Coolside process has the potential to achieve very high removal efficiency (90 to greater than 99%). Two alternative contactor designs were developed, tested and optimized through pilot plant testing; the improved designs will reduce process costs significantly, while maintaining operability and performance essential to the process. Also, sorbent recycle handling equipment was optimized to reduce cost.« less

  19. Fostering Innovation in the Manufacturing Sector through R&D Consortia

    NASA Astrophysics Data System (ADS)

    McKittrick, M.

    2017-12-01

    In the U.S. Department of Energy, the Advanced Manufacturing Office (AMO) has the mission to catalyze research, development and adoption of energy-related advanced manufacturing technologies and practices to drive U.S. economic competitiveness and energy productivity. Within strategic areas of manufacturing, AMO brings together manufacturers, suppliers, institutes of higher education, national laboratories, and state and local governments in public-private R&D consortia to accelerate technology innovation. One such R&D Consortia is the Critical Materials Institute (CMI), established in 2013 and led by Ames Laboratory. CMI is a sustained, multidisciplinary effort to develop solutions across the materials lifecycle of materials essential to clean energy technologies and manufacturing, as well as reduce the impact of supply chain disruptions associated with these valuable resources. By bringing together scientists and engineers from diverse disciplines, CMI is addressing challenges in critical materials, including mineral processing, manufacture, substitution, efficient use, and end-of-life recycling; integrating scientific research, engineering innovation, manufacturing and process improvements; and developing a holistic solution to the materials challenges facing the nation. It includes expertise from four national laboratories, seven universities, and ten industry partners to minimize materials criticality as an impediment to the commercialization of clean energy technologies.

  20. Atmosphere self-cleaning under humidity conditions and influence of the snowflakes and artificial light interaction for water dissociation simulated by the means of COMSOL

    NASA Astrophysics Data System (ADS)

    Cocean, A.; Cocean, I.; Cazacu, M. M.; Bulai, G.; Iacomi, F.; Gurlui, S.

    2018-06-01

    The self-cleaning of the atmosphere under humidity conditions is observed due to the change in emission intensity when chemical traces are investigated with DARLIOES - the advanced LIDAR based on space- and time-resolved RAMAN and breakdown spectroscopy in conditions of consistent humidity of atmosphere. The determination was performed during the night, in the wintertime under conditions of high humidity and snowfall, in urban area of Iasi. The change in chemical composition of the atmosphere detected was assumed to different chemical reactions involving presence of the water. Water dissociation that was registered during spectral measurements is explained by a simulation of the interaction between artificial light and snowflakes - virtually designed in a spherical geometry - in a wet air environment, using COMSOL Multiphysics software. The aim of the study is to explain the decrease or elimination of some of the toxic trace chemical compounds in the process of self-cleaning in other conditions than the sun light interaction for further finding application for air cleaning under artificial conditions.

  1. Performance of single-use and multiuse diamond rotary cutting instruments with turbine and electric handpieces.

    PubMed

    Rotella, Mario; Ercoli, Carlo; Funkenbusch, Paul D; Russell, Scott; Feng, Changyong

    2014-01-01

    As single-use rotary cutting instruments and electric handpieces become more available, the performance of these instruments with electric as compared to turbine handpieces requires evaluation. In addition, if rotary cutting instruments marketed as single-use instruments are used for multiple patients, the effects on their performance of cleaning, sterilization, and repeated use are of interest to the clinician. The purpose of the study was to evaluate how the cleaning, autoclaving, and repeated use of single-use and multiuse rotary cutting instruments, with either a turbine or electric handpiece, affected their performance. The effects on cutting performance of 2 handpieces (turbine and electric), 2 cleaning and sterilization conditions (cleaned and autoclaved versus noncleaned and nonautoclaved), and 6 different diamond rotary cutting instruments (4 single-use and 2 multiuse) during simulated tooth preparations were evaluated by using a 24-treatment condition full-factorial experimental design. A computer-controlled dedicated testing apparatus was used to simulate the cutting procedures, and machinable glass ceramic blocks were used as the cutting substrate for tangential cuts. In addition, for each treatment condition, 8 consecutive cuts, for a total of 192 cuts, were measured to assess the durability of the rotary cutting instruments. A linear mixed model was used to study the effect of instrument type, handpiece, cleaning, and sterilization, as well as the status and number of cuts on the outcome variables. The Tukey honestly significant difference test was used for the post hoc pairwise comparisons (α=.05). Performance, as measured by the rate of advancement, decreased with the repeated use of rotary cutting instruments (P<.001), while cleaning and sterilization procedures improved the average performance of the 8 cuts (P=.002). The electric handpiece showed a greater load than the turbine (P<.001) and a lower rate/load metric, but no differences in the rate of advancement. Significant differences were also detected among the different rotary cutting instruments tested with the Two Striper, which showed the highest cumulative performance of all groups. The repeated use of both single-use and multiuse rotary cutting instruments decreased cutting performance. The use of a cleaning and sterilization procedure between cuts improved the average cutting performance. During a tangential cutting process, although the ease of advancement (rate/load) was greater for the turbine, the electric handpiece did not produce a statistically different cutting rate. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  2. An international partnership approach to clean energy technology innovation: Carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoliang

    Is a global research partnership effective in developing, deploying, and diffusing clean energy technologies? Drawing on and extending innovation system studies, this doctoral dissertation elaborates an analytical model for a global technology learning system; examines the rationales, mechanisms, and effectiveness of the United States-- China Clean Energy Research Center Advanced Coal Technology Consortium (CERC-ACTC); and analyzes government's role in developing and implementing carbon capture and storage technologies in the United States (U.S.) and China. Studies have shown that successful technology innovation leads to economic prosperity and national competence, and prove that technology innovation does not happen in isolation but rather within interactive systems among stakeholders. However, the innovation process itself remains unclear, particularly with regard to interactive learning among and between major institutional actors, including technology developers, regulators, and financial organizations. This study seeks to advance scholarship on the interactive learning from the angle of global interactive learning. This dissertation research project seeks, as well, to inform policy-makers of how to strengthen international collaboration in clean energy technology development. The U.S.--China CERC-ACTC announced by Presidents Obama and Hu in 2009, provided a unique opportunity to close this scholarly gap. ACTC aimed to "advance the coal technology needed to safely, effectively, and efficiently utilize coal resources including the ability to capture, store, and utilize the emissions from coal use in both nations " through the joint research and development by U.S. and Chinese scientists and engineers. This dissertation project included one-year field research in the two countries, with in-depth interviews of key stakeholders, a survey of Consortium participants, analysis of available data, and site visits to collaborative research projects from 2013-2014. This research project collected new data and developed models of collaborative, international technology innovation that can be used in the analysis of policy options for clean energy technology development. The findings show that this bilateral initiative is facilitating the technology learning to some degree, becoming a major component of the U.S.-China climate change collaboration; however, policy makers and collaborative practitioners must overcome political, administrative, cultural, and other challenges in their own national contexts before achieving more concrete outcomes.

  3. Treatment of winery wastewater by physicochemical, biological and advanced processes: a review.

    PubMed

    Ioannou, L A; Li Puma, G; Fatta-Kassinos, D

    2015-04-09

    Winery wastewater is a major waste stream resulting from numerous cleaning operations that occur during the production stages of wine. The resulting effluent contains various organic and inorganic contaminants and its environmental impact is notable, mainly due to its high organic/inorganic load, the large volumes produced and its seasonal variability. Several processes for the treatment of winery wastewater are currently available, but the development of alternative treatment methods is necessary in order to (i) maximize the efficiency and flexibility of the treatment process to meet the discharge requirements for winery effluents, and (ii) decrease both the environmental footprint, as well as the investment/operational costs of the process. This review, presents the state-of-the-art of the processes currently applied and/or tested for the treatment of winery wastewater, which were divided into five categories: i.e., physicochemical, biological, membrane filtration and separation, advanced oxidation processes, and combined biological and advanced oxidation processes. The advantages and disadvantages, as well as the main parameters/factors affecting the efficiency of winery wastewater treatment are discussed. Both bench- and pilot/industrial-scale processes have been considered for this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Vacuum mechatronics

    NASA Technical Reports Server (NTRS)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  5. Plant Habitat Facility Clean

    NASA Image and Video Library

    2018-03-12

    iss055e001931 (Mar. 12, 2018) --- Dwarf wheat plants during routine cleaning in the Advanced Plant Habitat Facility, a facility to conduct plant bioscience research on the International Space Stations (ISS).

  6. 40 CFR 98.98 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... this definition. (1) In situ plasma process sub-type consists of the cleaning of thin-film production... within a broad process type. For example, the chamber cleaning process type includes in-situ plasma chamber cleaning, remote plasma chamber cleaning, and in-situ thermal chamber cleaning sub-types. Process...

  7. 40 CFR 98.98 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... this definition. (1) In situ plasma process sub-type consists of the cleaning of thin-film production... within a broad process type. For example, the chamber cleaning process type includes in-situ plasma chamber cleaning, remote plasma chamber cleaning, and in-situ thermal chamber cleaning sub-types. Process...

  8. 40 CFR 98.98 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... definition. (1) In situ plasma process sub-type consists of the cleaning of thin-film production chambers... within a broad process type. For example, the chamber cleaning process type includes in-situ plasma chamber cleaning, remote plasma chamber cleaning, and in-situ thermal chamber cleaning sub-types. Process...

  9. Hot spots and dark current in advanced plasma wakefield accelerators

    DOE PAGES

    Manahan, G. G.; Deng, A.; Karger, O.; ...

    2016-01-29

    Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. Likewise, these electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. The strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed.

  10. Expanding the Clean Energy Economy for Chemical Companies | Working with Us

    Science.gov Websites

    | NREL Expanding the Clean Energy Economy for Chemical Companies Expanding the Clean Energy Economy for Chemical Companies Partner with NREL to accelerate the research, development, and commercialization of ethanol. Learn more. Our Chemical Company Partners Work with us on your next advanced energy

  11. Clean Cities Now, Vol. 20, No. 2, Winter 2017 - Capitalizing on Core Strengths & New Technologies for Today's Mobility Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-01-01

    Clean Cities Now is the official semi-annual newsletter of Clean Cities, an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.

  12. Assistance Focus: Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Clean Energy Solutions Center, an initiative of the Clean Energy Ministerial, helps countries throughout the world create policies and programs that advance the deployment of clean energy technologies. Through the Solutions Center's no-cost Ask an Expert service, a team of international experts has delivered assistance to countries in all regions of the world, including Africa.

  13. Dry etching technologies for the advanced binary film

    NASA Astrophysics Data System (ADS)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Yoshimori, Tomoaki; Azumano, Hidehito; Muto, Makoto; Nonaka, Mikio

    2011-11-01

    ABF (Advanced Binary Film) developed by Hoya as a photomask for 32 (nm) and larger specifications provides excellent resistance to both mask cleaning and 193 (nm) excimer laser and thereby helps extend the lifetime of the mask itself compared to conventional photomasks and consequently reduces the semiconductor manufacturing cost [1,2,3]. Because ABF uses Ta-based films, which are different from Cr film or MoSi films commonly used for photomask, a new process is required for its etching technology. A patterning technology for ABF was established to perform the dry etching process for Ta-based films by using the knowledge gained from absorption layer etching for EUV mask that required the same Ta-film etching process [4]. Using the mask etching system ARES, which is manufactured by Shibaura Mechatronics, and its optimized etching process, a favorable CD (Critical Dimension) uniformity, a CD linearity and other etching characteristics were obtained in ABF patterning. Those results are reported here.

  14. Advanced repair solution of clear defects on HTPSM by using nanomachining tool

    NASA Astrophysics Data System (ADS)

    Lee, Hyemi; Kim, Munsik; Jung, Hoyong; Kim, Sangpyo; Yim, Donggyu

    2015-10-01

    As the mask specifications become tighter for low k1 lithography, more aggressive repair accuracy is required below sub 20nm tech. node. To meet tight defect specifications, many maskshops select effective repair tools according to defect types. Normally, pattern defects are repaired by the e-beam repair tool and soft defects such as particles are repaired by the nanomachining tool. It is difficult for an e-beam repair tool to remove particle defects because it uses chemical reaction between gas and electron, and a nanomachining tool, which uses physical reaction between a nano-tip and defects, cannot be applied for repairing clear defects. Generally, film deposition process is widely used for repairing clear defects. However, the deposited film has weak cleaning durability, so it is easily removed by accumulated cleaning process. Although the deposited film is strongly attached on MoSiN(or Qz) film, the adhesive strength between deposited Cr film and MoSiN(or Qz) film becomes weaker and weaker by the accumulated energy when masks are exposed in a scanner tool due to the different coefficient of thermal expansion of each materials. Therefore, whenever a re-pellicle process is needed to a mask, all deposited repair points have to be confirmed whether those deposition film are damaged or not. And if a deposition point is damaged, repair process is needed again. This process causes longer and more complex process. In this paper, the basic theory and the principle are introduced to recover clear defects by using nanomachining tool, and the evaluated results are reviewed at dense line (L/S) patterns and contact hole (C/H) patterns. Also, the results using a nanomachining were compared with those using an e-beam repair tool, including the cleaning durability evaluated by the accumulated cleaning process. Besides, we discuss the phase shift issue and the solution about the image placement error caused by phase error.

  15. Development of clean coal and clean soil technologies using advanced agglomeration technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignasiak, B.; Pawlak, W.; Szymocha, K.

    1990-04-01

    The specific objectives of the bituminous coal program were to explore and evaluate the application of advanced agglomeration technology for: (1)desulphurization of bituminous coals to sulphur content acceptable within the current EPA SO{sub 2} emission guidelines; (2) deashing of bituminous coals to ash content of less than 10 percent; and (3)increasing the calorific value of bituminous coals to above 13,000 Btu/lb. (VC)

  16. Visualization of flow during cleaning process on a liquid nanofibrous filter

    NASA Astrophysics Data System (ADS)

    Bílek, P.

    2017-10-01

    This paper deals with visualization of flow during cleaning process on a nanofibrous filter. Cleaning of a filter is very important part of the filtration process which extends lifetime of the filter and improve filtration properties. Cleaning is carried out on flat-sheet filters, where particles are deposited on the filter surface and form a filtration cake. The cleaning process dislodges the deposited filtration cake, which is loose from the membrane surface to the retentate flow. The blocked pores in the filter are opened again and hydrodynamic properties are restored. The presented optical method enables to see flow behaviour in a thin laser sheet on the inlet side of a tested filter during the cleaning process. The local concentration of solid particles is possible to estimate and achieve new information about the cleaning process. In the article is described the cleaning process on nanofibrous membranes for waste water treatment. The hydrodynamic data were compared to the images of the cleaning process.

  17. 76 FR 46892 - Agency Information Collection Activity Under OMB Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... development and deployment of clean fuel and advanced propulsion technologies for transit buses. To meet... propulsion technologies for transit buses by providing funds for clean fuel vehicles and facilities. To meet...

  18. Servicos Do Centro De Solucoes De Energia Limpa (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-06-01

    This is the Portuguese translation of the Clean Energy Solutions Center Services fact sheet. The Solutions Center helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  19. Assistance Focus: Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Clean Energy Solutions Center, an initiative of the Clean Energy Ministerial, helps countries throughout the world create policies and programs that advance the deployment of clean energy technologies. Through the Solutions Center's no-cost 'Ask an Expert' service, a team of international experts has delivered assistance to countries in all regions of the world. High-impact examples from Africa are featured here.

  20. The USAID-NREL Partnership: Delivering Clean, Reliable, and Affordable Power in the Developing World

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Andrea C; Leisch, Jennifer E

    The U.S. Agency for International Development (USAID) and the National Renewable Energy Laboratory (NREL) are partnering to support clean, reliable, and affordable power in the developing world. The USAID-NREL Partnership helps countries with policy, planning, and deployment support for advanced energy technologies. Through this collaboration, USAID is accessing advanced energy expertise and analysis pioneered by the U.S. National Laboratory system. The Partnership addresses critical aspects of advanced energy systems including renewable energy deployment, grid modernization, distributed energy resources and storage, power sector resilience, and the data and analytical tools needed to support them.

  1. Nanotechnology and clean energy: sustainable utilization and supply of critical materials

    NASA Astrophysics Data System (ADS)

    Fromer, Neil A.; Diallo, Mamadou S.

    2013-11-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies.

  2. Assistance Focus: Latin America and the Caribbean Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Clean Energy Solutions Center, an initiative of the Clean Energy Ministerial, helps countries throughout the world create policies and programs that advance the deployment of clean energy technologies. Through the Solutions Center's no-cost Ask an Expert service, a team of international experts has delivered assistance to countries in all regions of the world, including Latin America and the Caribbean.

  3. Assistance Focus: Asia/Pacific Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Clean Energy Solutions Center, an initiative of the Clean Energy Ministerial, helps countries throughout the world create policies and programs that advance the deployment of clean energy technologies. Through the Solutions Center's no-cost 'Ask an Expert' service, a team of international experts has delivered assistance to countries in all regions of the world. High-impact examples from the Asia/Pacific region are featured here.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Clean Cities Now is the official semi-annual newsletter of Clean Cities, an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.

  5. Aqueous cleaning and verification processes for precision cleaning of small parts

    NASA Technical Reports Server (NTRS)

    Allen, Gale J.; Fishell, Kenneth A.

    1995-01-01

    The NASA Kennedy Space Center (KSC) Materials Science Laboratory (MSL) has developed a totally aqueous process for precision cleaning and verification of small components. In 1990 the Precision Cleaning Facility at KSC used approximately 228,000 kg (500,000 lbs) of chlorofluorocarbon (CFC) 113 in the cleaning operations. It is estimated that current CFC 113 usage has been reduced by 75 percent and it is projected that a 90 percent reduction will be achieved by the end of calendar year 1994. The cleaning process developed utilizes aqueous degreasers, aqueous surfactants, and ultrasonics in the cleaning operation and an aqueous surfactant, ultrasonics, and Total Organic Carbon Analyzer (TOCA) in the nonvolatile residue (NVR) and particulate analysis for verification of cleanliness. The cleaning and verification process is presented in its entirety, with comparison to the CFC 113 cleaning and verification process, including economic and labor costs/savings.

  6. High-power ultrasonic processing: Recent developments and prospective advances

    NASA Astrophysics Data System (ADS)

    Gallego-Juarez, Juan A.

    2010-01-01

    Although the application of ultrasonic energy to produce or to enhance a wide variety of processes have been explored since about the middle of the 20th century, only a reduced number of ultrasonic processes have been established at industrial level. However, during the last ten years the interest in ultrasonic processing has revived particularly in industrial sectors where the ultrasonic technology may represent a clean and efficient tool to improve classical existing processes or an innovation alternative for the development of new processes. Such seems to be the case of relevant sectors such as food industry, environment, pharmaceuticals and chemicals manufacture, machinery, mining, etc where power ultrasound is becoming an emerging technology for process development. The possible major problem in the application of high-intensity ultrasound on industrial processing is the design and development of efficient power ultrasonic systems (generators and reactors) capable of large scale successful operation specifically adapted to each individual process. In the area of ultrasonic processing in fluid media and more specifically in gases, the development of the steppedplate transducers and other power ge with extensive radiating surface has strongly contributed to the implementation at semi-industrial and industrial stage of several commercial applications, in sectors such as food and beverage industry (defoaming, drying, extraction, etc), environment (air cleaning, sludge filtration, etc...), machinery and process for manufacturing (textile washing, paint manufacture, etc). The development of different cavitational reactors for liquid treatment in continuous flow is helping to introduce into industry the wide potential of the area of sonochemistry. Processes such as water and effluent treatment, crystallization, soil remediation, etc have been already implemented at semi-industrial and/or industrial stage. Other single advances in sectors like mining or energy have also to be mentioned. The objective of this paper is to review some recent developments in ultrasonic processing to show the present situation and the prospective progresses of high-power ultrasonics as an innovative technology in many industrial sectors.

  7. Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong W. Lee

    The project entitled, ''Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification'', was successfully completed by the Principal Investigator, Dr. S. Lee and his research team in the Center for Advanced Energy Systems and Environmental Control Technologies at Morgan State University. The major results and outcomes were presented in semi-annual progress reports and annual project review meetings/presentations. Specifically, the literature survey including the gasifier temperature measurement, the ultrasonic application in cleaning application, and spray coating process and the gasifier simulator (cold model) testing has been successfully conducted during the first year. The results show that four factorsmore » (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. Then the gasifier simulator (hot model) design and the fabrication as well as the systematic tests on hot model were completed to test the significant factors on temperature measurement in the second year. The advanced Industrial analytic methods such as statistics-based experimental design, analysis of variance (ANOVA) and regression methods were applied in the hot model tests. The results show that operational parameters (i.e. air flow rate, water flow rate, fine dust particle amount, ammonia addition) presented significant impact on the temperature measurement inside the gasifier simulator. The experimental design and ANOVA are very efficient way to design and analyze the experiments. The results show that the air flow rate and fine dust particle amount are statistically significant to the temperature measurement. The regression model provided the functional relation between the temperature and these factors with substantial accuracy. In the last year of the project period, the ultrasonic and subsonic cleaning methods and coating materials were tested/applied on the thermocouple cleaning according to the proposed approach. Different frequency, application time and power of the ultrasonic/subsonic output were tested. The results show that the ultrasonic approach is one of the best methods to clean the thermocouple tips during the routine operation of the gasifier. In addition, the real time data acquisition system was also designed and applied in the experiments. This advanced instrumentation provided the efficient and accurate data acquisition for this project. In summary, the accomplishment of the project provided useful information of the ultrasonic cleaning method applied in thermocouple tip cleaning. The temperature measurement could be much improved both in accuracy and duration provided that the proposed approach is widely used in the gasification facilities.« less

  8. Seeing the Light (LBNL Science at the Theater)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunger, Axel; Segalman, Rachel; Westphal, Andrew

    2011-09-12

    Berkeley Lab's Science at the Theater event "Seeing the Light" took place on Sept 12, 2011, at Berkeley Repertory's Roda Theatre. Learn how the Advanced Light Source is improving medicine, paving the way for clean energy, changing the future of computers, and much more. Featured speakers are Berkeley Lab's Roger Falcone, Rachel Segalman, Andrew Westphal, and Stanford University's Axel Brunger. Rachel Segalman: The future of clean energy technology relies on a better understanding of materials at the nanoscale. Berkeley Lab's Rachel Segalman uses the ALS to conduct this research, which could lead to improved photovoltaics and fuel cells. Axel Brunger:more » Improved treatment for human diseases hinges on understanding molecular-scale processes. Stanford University's Axel Brunger will discuss a new melanoma drug that was developed by a local company, Plexxikon, using the ALS for X-ray data collection. Andrew Westphal: What's comet dust made of? Andrew Westphal of UC Berkeley's Space Sciences Laboratory uses the ALS to study comet dust and interplanetary space dust collected by a NASA spacecraft. Moderated by Roger Falcone, Division Director of the Advanced Light Source« less

  9. Advanced fuel gas desulfurization (AFGD) demonstration project. Technical progress report No. 19, July 1, 1994--September 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-01

    The {open_quotes}Advanced Flue Gas Desulfurization (AFGD) Demonstration Project{close_quotes} is a $150.5 million cooperative effort between the U.S. Department of Energy and Pure Air, a general partnership of Air Products and Chemicals, Inc. and Mitsubishi Heavy Industries America, Inc. The AFGD process is one of several alternatives to conventional flue gas desulfurization (FGD) being demonstrated under the Department of Energy`s Clean Coal Technology Demonstration Program. The AFGD demonstration project is located at the Northern Indiana Public Service Company`s Bailly Generating Station, about 12 miles northeast of Gary, Indiana.

  10. The C3E Women in Clean Energy Symposium

    ScienceCinema

    Saylors-Laster, Kim; Kirsch, Emily; Brown, Sandra; Jordan, Rhonda; Mukherjee, Anuradha; Martin, Cheryl; Madden, Alice; Araujo, Kathy

    2018-02-13

    The Clean Energy Education & Empowerment initiative (C3E), provides a forum for thought leaders across the clean energy sector to devise innovative solutions to the nation's most pressing energy challenges. This year, the symposium was held at MIT's Media Lab in Cambridge, MA, on September 19-20, 2013. What sets the annual conference apart is its focus on building a strong community of professionals dedicated to advancing more women leaders in clean energy fields. By working to leverage the skills, talents and perspectives of women, the symposium helps to better position the U.S. to lead the global clean energy revolution.

  11. Advanced in-duct sorbent injection for SO{sub 2} control. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stouffer, M.R.; Withium, J.A.; Rosenhoover, W.A.

    1994-12-01

    The objective of this research project was to develop a second generation duct sorbent injection technology as a cost-effective compliance option for the 1990 Clean Air Act Amendments. Research and development work was focused on the Advanced Coolside process, which showed the potential for exceeding the original performance targets of 90% SO{sub 2} removal and 60% sorbent utilization. Process development was conducted in a 1000 acfm pilot plant. The pilot plant testing showed that the Advanced Coolside process can achieve 90% SO{sub 2} removal at sorbent utilizations up to 75%. The testing also showed that the process has the potentialmore » to achieve very high removal efficiency (90 to >99%). By conducting conceptual process design and economic evaluations periodically during the project, development work was focused on process design improvements which substantially lowered process capital and operating costs, A final process economic study projects capital costs less than one half of those for limestone forced oxidation wet FGD. Projected total SO{sub 2} control cost is about 25% lower than wet FGD for a 260 MWe plant burning a 2.5% sulfur coal. A waste management study showed the acceptability of landfill disposal; it also identified a potential avenue for by-product utilization which should be further investigated. Based on the pilot plant performance and on the above economic projections, future work to scale up the Advanced Coolside process is recommended.« less

  12. Magnify: A Final Technical Report of the American Energy and Manufacturing Competitiveness Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Charles

    The energy landscape has undergone profound transformation, with dramatic shifts having an impact on U.S. productivity, global investment, manufacturing operations, and job creation. The sense of urgency for a tighter linkage between clean technologies, energy and advanced manufacturing has only grown. Prior to 2009, the tone of the nation’s energy conversation was centered on how to deal with long-standing energy security challenges and scarcity. Today, the tone is focused on seizing emerging energy growth opportunities to transform America’s industrial base and job creation outlook—centering on energy abundance and strength. In this context, the Council on Competitiveness and the Department ofmore » Energy’s Office of Energy Efficiency & Renewable Energy (EERE) teamed in the American Energy & Manufacturing Competitiveness (AEMC) Partnership to tackle two major goals via a multi-year partnership. The AEMC Partnership identified means to: • Increase U.S. competitiveness in the production of clean energy products • Increase U.S. manufacturing competitiveness across the board by increasing energy productivity The AEMC Partnership has engaged hundreds of leaders from industry, academia, labor and government in a series of 9 regional, progressive dialogues; original research; and 4 national summits. The AEMC dialogues and summits spanned the United States—taking place in our nation’s greatest manufacturing, research, technology and innovation hotspots. The goals of the AEMC Partnership have been straightforward: • State and define key barriers, challenges, and problems in U.S. competitiveness in manufacturing of clean energy products, energy efficiency products, and advanced manufacturing products. • Dive deeply into these problems and generate policies, solutions, concepts and models where the U.S. public and private sectors can work together to solve these problems. • Catalyze policy solutions—including models for public-private partnership (PPP) pilots—to increase competitive manufacturing of clean energy and energy efficiency products in the USA. • Elevate and increase awareness of the importance and benefits of competitive clean energy manufacturing. • Understand how energy game-changers, like breakthrough technologies, impact U.S. clean energy and energy efficient manufacturing. The Council on Competitiveness worked with its stakeholder network to generate potential PPP concepts and proposals to advance the goals of the AEMC Partnership. Magnify outlines 2 PPP concepts—honed by dialogues, conversations, interviews and research—that could be carried out by EERE and/or the Council to increase the competitive production of clean energy products, energy efficient products, and advanced manufacturing in the USA. Magnify’s 2 PPP concepts aim to bridge very specific gaps in the nation’s innovation ecosystem: • Clean Energy Materials Accelerator: This PPP concept focuses on reducing the risks associated with deploying newly developed materials in commercial products and processes by creating a platform to identify and address common challenges; increasing access to existing materials qualification and characterization tools; and creating standards for advanced materials with leaders in industry, academic, government, and other organizations. Why accelerate materials production? As the AEMC Partnership Dialogue and supporting research from the public and private sectors have documented, countries that lead in making next-generation materials will gain significant competitive advantage by unleashing a new wave of manufacturing innovation. • Manufacturing and Energy Technology Accelerator: This PPP concept is a new, physical and virtual collaborative resource platform designed to connect the nation’s world-class innovation institutions—SMEs, large multinational companies, universities, national laboratories, etc.—to facilitate the transition of cutting-edge clean energy technologies into products, processes, or services that are manufactured in the United States. Why should public and private sector leaders in innovation partner to co-create a scale-up platform? The United States is already a mecca for the world’s greatest minds in science and technology—drawn to our shores by world-class universities and opportunities to work with global leaders in innovation. Unfortunately, when it comes time to bring their ideas to market, technologists and entrepreneurs often choose, or are forced, to locate manufacturing overseas. The United States must regain its position in the world as a national scale-up platform for next-generation technologies. A thorough explanation of these PPP concepts and the rationale behind these recommendations is provided in Part 3 of Magnify. Magnify is an important step on the critical journey to define barriers, challenges and problems in the manufacturing of clean energy products and energy efficient products—and further honing concepts for scalable, public-private partnerships—to increase the competitive manufacturing of clean energy and energy efficient products, and the energy productivity throughout the U.S. manufactur¬ing sector. The rest of the world is waking up to the opportunities associated with a strategic focus on manufacturing and energy competitiveness. Global competition is on the rise, and the stakes are high for the United States to act now, to act decisively, and to leverage inherent strengths to ensure a more prosperous, competitive future for decades to come.« less

  13. Cleaning and Sterilization of Used Cardiac Implantable Electronic Devices With Process Validation: The Next Hurdle in Device Recycling.

    PubMed

    Crawford, Thomas C; Allmendinger, Craig; Snell, Jay; Weatherwax, Kevin; Lavan, Balasundaram; Baman, Timir S; Sovitch, Pat; Alyesh, Daniel; Carrigan, Thomas; Klugman, Noah; Kune, Denis; Hughey, Andrew; Lautenbach, Daniel; Sovitch, Nathan; Tandon, Karman; Samson, George; Newman, Charles; Davis, Sheldon; Brown, Archie; Wasserman, Brad; Goldman, Ed; Arlinghaus, Sandra L; Oral, Hakan; Eagle, Kim A

    2017-06-01

    This study sought to develop a validated, reproducible sterilization protocol, which could be used in the reprocessing of cardiac implantable electronic devices (CIEDs). Access to cardiac CIED therapy in high-income and in low- and middle-income countries varies greatly. CIED reuse may reduce this disparity. A cleaning and sterilization protocol was developed that includes washing CIEDs in an enzymatic detergent, screw cap and set screw replacement, brushing, inspection, and sterilization in ethylene oxide. Validation testing was performed to assure compliance with accepted standards. With cleaning, the total mean bioburden for each of 3 batches of 10 randomly chosen devices was reduced from 754 to 10.1 colony-forming units. After sterilization with ethylene oxide, with 3 half-cycle and 3 full-cycle processes, none of the 90 biological indicator testers exhibited growth after 7 days. Through cleaning and sterilization, protein and hemoglobin concentrations were reduced from 99.2 to 1.42 μg/cm 2 and from 21.4 to 1.03 μg/cm 2 , respectively. Mean total organic carbon residual was 1.44 parts per million (range 0.36 to 2.9 parts per million). Endotoxin concentration was not detectable at the threshold of <0.03 endotoxin units/ml or <3.0 endotoxin units/device. Cytotoxicity and intracutaneous reactivity tests met the standards set by the Association for Advancement of Medical Instrumentation and the International Organization for Standardization. CIEDs can be cleaned and sterilized according to a standardized protocol achieving a 12-log reduction of inoculated product, resulting in sterility assurance level of 10 -6 . Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. Advanced Research Deposition System (ARDS) for processing CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Barricklow, Keegan Corey

    CdTe solar cells have been commercialized at the Gigawatt/year level. The development of volume manufacturing processes for next generation CdTe photovoltaics (PV) with higher efficiencies requires research systems with flexibility, scalability, repeatability and automation. The Advanced Research Deposition Systems (ARDS) developed by the Materials Engineering Laboratory (MEL) provides such a platform for the investigation of materials and manufacturing processes necessary to produce the next generation of CdTe PV. Limited by previous research systems, the ARDS was developed to provide process and hardware flexibility, accommodating advanced processing techniques, and capable of producing device quality films. The ARDS is a unique, in-line process tool with nine processing stations. The system was designed, built and assembled at the Materials Engineering Laboratory. Final assembly, startup, characterization and process development are the focus of this research. Many technical challenges encountered during the startup of the ARDS were addressed in this research. In this study, several hardware modifications needed for the reliable operation of the ARDS were designed, constructed and successfully incorporated into the ARDS. The effect of process condition on film properties for each process step was quantified. Process development to achieve 12% efficient baseline solar cell required investigation of discrete processing steps, troubleshooting process variation, and developing performance correlations. Subsequent to this research, many advances have been demonstrated with the ARDS. The ARDS consistently produces devices of 12% +/-.5% by the process of record (POR). The champion cell produced to date utilizing the ARDS has an efficiency of 16.2% on low cost commercial sodalime glass and utilizes advanced films. The ARDS has enabled investigation of advanced concepts for processing CdTe devices including, Plasma Cleaning, Plasma Enhanced Closed Space Sublimation (PECSS), Electron Reflector (ER) using Cd1-xMgxTe (CMT) structure and alternative device structures. The ARDS has been instrumental in the collaborative research with many institutions.

  15. Unraveling heavy oil desulfurization chemistry: targeting clean fuels.

    PubMed

    Choudhary, Tushar V; Parrott, Stephen; Johnson, Byron

    2008-03-15

    The sulfur removal chemistry of heavy oils has been unraveled by systematically investigating several heavy oils with an extremely wide range of properties. The heavy oil feed and product properties have been characterized by advanced analytical methods, and these properties have been related to the sulfur conversion data observed in pilot hydrotreating units. These studies coupled with kinetic treatment of the data have revealed that the desulfurization chemistry of heavy oils is essentially controlled by the strongly inhibiting three and larger ring aromatic hydrocarbon content and surprisingly not by the content of the "hard-to-remove" sulfur compounds. Such enhanced understanding of the heavy oil sulfur removal is expected to open new avenues for catalyst/process optimization for heavy oil desulfurization and thereby assist the efficent production of clean transporation fuels.

  16. Gas-phase optical fiber photocatalytic reactors for indoor air application: a preliminary study on performance indicators

    NASA Astrophysics Data System (ADS)

    Palmiste, Ü.; Voll, H.

    2017-10-01

    The development of advanced air cleaning technologies aims to reduce building energy consumption by reduction of outdoor air flow rates while keeping the indoor air quality at an acceptable level by air cleaning. Photocatalytic oxidation is an emerging technology for gas-phase air cleaning that can be applied in a standalone unit or a subsystem of a building mechanical ventilation system. Quantitative information on photocatalytic reactor performance is required to evaluate the technical and economic viability of the advanced air cleaning by PCO technology as an energy conservation measure in a building air conditioning system. Photocatalytic reactors applying optical fibers as light guide or photocatalyst coating support have been reported as an approach to address the current light utilization problems and thus, improve the overall efficiency. The aim of the paper is to present a preliminary evaluation on continuous flow optical fiber photocatalytic reactors based on performance indicators commonly applied for air cleaners. Based on experimental data, monolith-type optical fiber reactor performance surpasses annular-type optical fiber reactors in single-pass removal efficiency, clean air delivery rate and operating cost efficiency.

  17. Application of advanced oxidation processes for cleaning of industrial water generated in wet dedusting of shaft furnace gases.

    PubMed

    Czaplicka, Marianna; Kurowski, Ryszard; Jaworek, Katarzyna; Bratek, Łukasz

    2013-01-01

    The paper presents results of studies into advanced oxidation processes in 03 and 03/UV systems. An advanced oxidation process (AOP) was conducted to reduce the load of impurities in circulating waters from wet de-dusting of shaft furnace gases. Besides inorganic impurities, i.e. mainly arsenic compounds (16 g As L(-1) on average), lead, zinc, chlorides and sulphates, the waters also contain some organic material. The organic material is composed of a complex mixture that contains, amongst others, aliphatic compounds, phenol and its derivatives, pyridine bases, including pyridine, and its derivatives. The test results show degradation of organic and inorganic compounds during ozonation and photo-oxidation processes. Analysis of the solutions from the processes demonstrated that the complex organic material in the industrial water was oxidized in ozonation and in photo-oxidation, which resulted in formation of aldehydes and carboxylic acids. Kinetic degradation of selected pollutants is presented. Obtained results indicated that the O3/UV process is more effective in degradation of organic matter than ozonation. Depending on the process type, precipitation of the solid phase was observed. The efficiency of solid-phase formation was higher in photo-oxidation with ozone. It was found that the precipitated solid phase is composed mainly of arsenic, iron and oxygen.

  18. Clean Cities Tools: Tools to Help You Save Money, Use Less Petroleum, and Reduce Emissions (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-01-01

    Clean Cities Alternative Fuels and Advanced Vehicles Data Center (AFDC) features a wide range of Web-based tools to help vehicle fleets and individual consumers reduce their petroleum use. This brochure lists and describes Clean Cities online tools related to vehicles, alternative fueling stations, electric vehicle charging stations, fuel conservation, emissions reduction, fuel economy, and more.

  19. Assistance Focus: Latin America/Caribbean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Clean Energy Solutions Center, an initiative of the Clean Energy Ministerial, helps countries throughout the world create policies and programs that advance the deployment of clean energy technologies. Through the Solutions Center's no-cost 'Ask an Expert' service, a team of international experts has delivered assistance to countries in all regions of the world. High-impact examples from the Latin American/Caribbean region are featured here.

  20. Co-Simulation for Advanced Process Design and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen E. Zitney

    2009-01-01

    Meeting the increasing demand for clean, affordable, and secure energy is arguably the most important challenge facing the world today. Fossil fuels can play a central role in a portfolio of carbon-neutral energy options provided CO{sub 2} emissions can be dramatically reduced by capturing CO{sub 2} and storing it safely and effectively. Fossil energy industry faces the challenge of meeting aggressive design goals for next-generation power plants with CCS. Process designs will involve large, highly-integrated, and multipurpose systems with advanced equipment items with complex geometries and multiphysics. APECS is enabling software to facilitate effective integration, solution, and analysis of high-fidelitymore » process/equipment (CFD) co-simulations. APECS helps to optimize fluid flow and related phenomena that impact overall power plant performance. APECS offers many advanced capabilities including ROMs, design optimization, parallel execution, stochastic analysis, and virtual plant co-simulations. NETL and its collaborative R&D partners are using APECS to reduce the time, cost, and technical risk of developing high-efficiency, zero-emission power plants with CCS.« less

  1. 7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...

  2. 7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...

  3. 7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...

  4. 7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...

  5. 7 CFR 201.33 - Seed in bulk or large quantities; seed for cleaning or processing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... quantities; seed for cleaning or processing. (a) In the case of seed in bulk, the information required under... seeds. (b) Seed consigned to a seed cleaning or processing establishment, for cleaning or processing for... pertaining to such seed show that it is “Seed for processing,” or, if the seed is in containers and in...

  6. Clean Cities Now Vol. 19, No. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-07-24

    Now is the official bi-annual newsletter of Clean Cities, an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.

  7. LANL Experience Rolling Zr-Clad LEU-10Mo Foils for AFIP-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammon, Duncan L.; Clarke, Kester D.; Alexander, David J.

    2015-05-29

    The cleaning, canning, rolling and final trimming of Low Enriched Uranium-10 wt. pct. Molybdenum (LEU-10Mo) foils for ATR (Advanced Test Reactor) fuel plates to be used in the AFIP-7 (ATR Full Size Plate In Center Flux Trap Position) experiments are summarized. Six Zr-clad foils were produced from two LEU-10Mo castings supplied to Los Alamos National Laboratory (LANL) by Y-12 National Security Complex. Details of cleaning and canning procedures are provided. Hot- and cold-rolling results are presented, including rolling schedules, images of foils in-process, metallography and local compositions of regions of interest, and details of final foil dimensions and process yield.more » This report was compiled from the slides for the presentation of the same name given by Duncan Hammon on May 12, 2011 at the AFIP-7 Lessons Learned meeting in Salt Lake City, UT, with Los Alamos National Laboratory document number LA-UR 11-02898.« less

  8. Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pisharody, Suresh A.; Fisher, John W.; Wignarajah, K.

    2002-01-01

    The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake of gaseous species based on their controlled pore size, high surface area, ordered chemical structure that allows functionalization and their effectiveness also as catalyst support materials for toxic gas conversion. We present results and findings from a preliminary study on the effectiveness of metal impregnated single walled nanotubes as catalyst/catalyst support materials for toxic gas contaminate control. The study included the purification of single walled nanotubes, the catalyst impregnation of the purified nanotubes, the experimental characterization of the surface properties of purified single walled nanotubes and the characterization of physisorption and chemisorption of uptake molecules.

  9. Graphene as a Buffer Layer for Silicon Carbide-on-Insulator Structures

    PubMed Central

    Astuti, Budi; Tanikawa, Masahiro; Rahman, Shaharin Fadzli Abd; Yasui, Kanji; Hashim, Abdul Manaf

    2012-01-01

    We report an innovative technique for growing the silicon carbide-on-insulator (SiCOI) structure by utilizing polycrystalline single layer graphene (SLG) as a buffer layer. The epitaxial growth was carried out using a hot-mesh chemical vapor deposition (HM-CVD) technique. Cubic SiC (3C-SiC) thin film in (111) domain was realized at relatively low substrate temperature of 750 °C. 3C-SiC energy bandgap of 2.2 eV was confirmed. The Si-O absorption band observed in the grown film can be caused by the out-diffusion of the oxygen atom from SiO2 substrate or oxygen doping during the cleaning process. Further experimental works by optimizing the cleaning process, growth parameters of the present growth method, or by using other growth methods, as well, are expected to realize a high quality SiCOI structure, thereby opening up the way for a breakthrough in the development of advanced ULSIs with multifunctionalities.

  10. Cleaning Process Development for Metallic Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  11. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Cleaning of imported seed and processing of certain... SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain Canadian... compliance agreement for the cleaning of imported seed or processing of otherwise prohibited screenings from...

  12. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Cleaning of imported seed and processing of certain... SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain Canadian... compliance agreement for the cleaning of imported seed or processing of otherwise prohibited screenings from...

  13. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Cleaning of imported seed and processing of certain... SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain Canadian... compliance agreement for the cleaning of imported seed or processing of otherwise prohibited screenings from...

  14. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Cleaning of imported seed and processing of certain... SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain Canadian... compliance agreement for the cleaning of imported seed or processing of otherwise prohibited screenings from...

  15. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Cleaning of imported seed and processing of certain... SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain Canadian... compliance agreement for the cleaning of imported seed or processing of otherwise prohibited screenings from...

  16. Optimization of the cleaning process on a pilot filtration setup for waste water treatment accompanied by flow visualization

    NASA Astrophysics Data System (ADS)

    Bílek, Petr; Hrůza, Jakub

    2018-06-01

    This paper deals with an optimization of the cleaning process on a liquid flat-sheet filter accompanied by visualization of the inlet side of a filter. The cleaning process has a crucial impact on the hydrodynamic properties of flat-sheet filters. Cleaning methods avoid depositing of particles on the filter surface and forming a filtration cake. Visualization significantly helps to optimize the cleaning methods, because it brings new overall view on the filtration process in time. The optical method, described in the article, enables to see flow behaviour in a thin laser sheet on the inlet side of a tested filter during the cleaning process. Visualization is a strong tool for investigation of the processes on filters in details and it is also possible to determine concentration of particles after an image analysis. The impact of air flow rate, inverse pressure drop and duration on the cleaning mechanism is investigated in the article. Images of the cleaning process are compared to the hydrodynamic data. The tests are carried out on a pilot filtration setup for waste water treatment.

  17. Effective EUVL mask cleaning technology solutions for mask manufacturing and in-fab mask maintenance

    NASA Astrophysics Data System (ADS)

    Dietze, Uwe; Dress, Peter; Waehler, Tobias; Singh, Sherjang; Jonckheere, Rik; Baudemprez, Bart

    2011-03-01

    Extreme Ultraviolet Lithography (EUVL) is considered the leading lithography technology choice for semiconductor devices at 16nm HP node and beyond. However, before EUV Lithography can enter into High Volume Manufacturing (HVM) of advanced semiconductor devices, the ability to guarantee mask integrity at point-of-exposure must be established. Highly efficient, damage free mask cleaning plays a critical role during the mask manufacturing cycle and throughout the life of the mask, where the absence of a pellicle to protect the EUV mask increases the risk of contamination during storage, handling and use. In this paper, we will present effective EUVL mask cleaning technology solutions for mask manufacturing and in-fab mask maintenance, which employs an intelligent, holistic approach to maximize Mean Time Between Cleans (MBTC) and extend the useful life span of the reticle. The data presented will demonstrate the protection of the capping and absorber layers, preservation of pattern integrity as well as optical and mechanical properties to avoid unpredictable CD-linewidth and overlay shifts. Experiments were performed on EUV blanks and pattern masks using various process conditions. Conditions showing high particle removal efficiency (PRE) and minimum surface layer impact were then selected for durability studies. Surface layer impact was evaluated over multiple cleaning cycles by means of UV reflectivity metrology XPS analysis and wafer prints. Experimental results were compared to computational models. Mask life time predictions where made using the same computational models. The paper will provide a generic overview of the cleaning sequence which yielded best results, but will also provide recommendations for an efficient in-fab mask maintenance scheme, addressing handling, storage, cleaning and inspection.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saylors-Laster, Kim; Kirsch, Emily; Brown, Sandra

    The Clean Energy Education & Empowerment initiative (C3E), provides a forum for thought leaders across the clean energy sector to devise innovative solutions to the nation's most pressing energy challenges. This year, the symposium was held at MIT's Media Lab in Cambridge, MA, on September 19-20, 2013. What sets the annual conference apart is its focus on building a strong community of professionals dedicated to advancing more women leaders in clean energy fields. By working to leverage the skills, talents and perspectives of women, the symposium helps to better position the U.S. to lead the global clean energy revolution.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, D.F.

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologiesmore » mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.« less

  20. Regenerating using aqueous cleaners with ozone and electrolysis

    NASA Technical Reports Server (NTRS)

    Mcginness, Michael P.

    1994-01-01

    A new process converts organic oil and grease contaminates in used water based cleaners into synthetic surfactants. This permits the continued use of a cleaning solution long after it would have been dumped using previously known methods. Since the organic soils are converted from contaminates to cleaning compounds the need for frequent bath dumps is totally eliminated. When cleaning solutions used in aqueous cleaning systems are exhausted and ready for disposal, they will always contain the contaminates removed from the cleaned parts and drag-in from prior cleaning steps. Even when the cleaner is biodegradable these contaminants will frequently cause the waste cleaning solution to be a hazardous waste. Chlorinated solvents are rapidly being replaced by aqueous cleaners to avoid the new ozone-depletion product-labeling-law. Many industry standard halocarbon based solvents are being completely phased out of production, and their prices have nearly tripled. Waste disposal costs and cradle-to-grave liability are also major concerns for industry today. This new process reduces the amount of water and chemicals needed to maintain the cleaning process. The cost of waste disposal is eliminated because the water and cleaning compounds are reused. Energy savings result by eliminating the need for energy currently used to produce and deliver fresh water and chemicals as well as the energy used to treat and destroy the waste from the existing cleaning processes. This process also allows the cleaning bath to be maintained at the peak performance of a new bath resulting in decreased cycle times and decreased energy consumption needed to clean the parts. This results in a more efficient and cost effective cleaning process.

  1. A modified extraction and clean-up procedure for the detection and determination of parathion-methyl and chlorpyrifos residues in tea.

    PubMed

    Shanker, A; Sood, C; Kumar, V; Ravindranath, S D

    2001-05-01

    Recent advances in methodology and instrumentation have made possible the detection and determination of pesticides at microgram kg-1 (ppb) levels. The sensitivity of a method of analysis depends greatly on the efficient extraction of the pesticide and the subsequent clean-up of the extract. The extract from green tea leaves is a mixture of aroma components, polyphenols and caffeine. The preparation of made tea from green tea leaves adds to this complexity by concentrating these coextractives. Conventional clean-up techniques provide poor recoveries for parathion-methyl and chlorpyrifos from both green tea leaves and made tea. This arises from interference by caffeine during gas chromatography, as it has a similar retention time to the two pesticides and peaks overlap. A modification to the protocol based on a solvent partitioning process using dichloromethane and subsequent washing of the extracts with warm water removed the caffeine, and pigments were removed by column chromatography. Recoveries ranging from 80 to 90% were then obtained for both pesticides.

  2. Energy 101: Clean Energy Manufacturing

    ScienceCinema

    None

    2018-01-16

    Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Watch this video to learn more about this exciting movement and to see some of these innovations in action.

  3. Assistance Focus: Asia/Pacific Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Clean Energy Solutions Center, an initiative of the Clean Energy Ministerial, helps countries throughout the world create policies and programs that advance the deployment of clean energy technologies. Through the Solutions Center's no-cost 'Ask an Expert' service, a team of international experts has delivered assistance to countries in all regions of the world, including nearly 30 countries in the Asia/Pacific region. This document highlights a few examples of the Solutions Center's work in the region.

  4. Impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Ella; Bellum, John; Kletecka, Damon

    We have examined how different cleaning processes affect the laser-induced damage threshold of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. There is a nearly twofold increase in laser-induced damage threshold between the antireflection coatings that were cleaned and those that were not cleaned. Aging of the coatings after 4 months resulted in even higher laser-induced damage thresholds. Also, the laser-induced damage threshold results revealed that every antireflection coating had a high defectmore » density, despite the cleaning process used, which indicates that improvements to either the cleaning or deposition processes should provide even higher laser-induced damage thresholds.« less

  5. Impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories

    DOE PAGES

    Field, Ella; Bellum, John; Kletecka, Damon

    2014-11-06

    We have examined how different cleaning processes affect the laser-induced damage threshold of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. There is a nearly twofold increase in laser-induced damage threshold between the antireflection coatings that were cleaned and those that were not cleaned. Aging of the coatings after 4 months resulted in even higher laser-induced damage thresholds. Also, the laser-induced damage threshold results revealed that every antireflection coating had a high defectmore » density, despite the cleaning process used, which indicates that improvements to either the cleaning or deposition processes should provide even higher laser-induced damage thresholds.« less

  6. Improving Overall Equipment Effectiveness Using CPM and MOST: A Case Study of an Indonesian Pharmaceutical Company

    NASA Astrophysics Data System (ADS)

    Omega, Dousmaris; Andika, Aditya

    2017-12-01

    This paper discusses the results of a research conducted on the production process of an Indonesian pharmaceutical company. The company is experiencing low performance in the Overall Equipment Effectiveness (OEE) metric. The OEE of the company machines are below world class standard. The machine that has the lowest OEE is the filler machine. Through observation and analysis, it is found that the cleaning process of the filler machine consumes significant amount of time. The long duration of the cleaning process happens because there is no structured division of jobs between cleaning operators, differences in operators’ ability, and operators’ inability in utilizing available cleaning equipment. The company needs to improve the cleaning process. Therefore, Critical Path Method (CPM) analysis is conducted to find out what activities are critical in order to shorten and simplify the cleaning process in the division of tasks. Afterwards, The Maynard Operation and Sequence Technique (MOST) method is used to reduce ineffective movement and specify the cleaning process standard time. From CPM and MOST, it is obtained the shortest time of the cleaning process is 1 hour 28 minutes and the standard time is 1 hour 38.826 minutes.

  7. 75 FR 12807 - Agency Information Collection Activity Under OMB Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ... and advanced propulsion technologies. The Federal Register notice with a 60-day comment period... program supports the development and deployment of clean fuel and advanced propulsion technologies for...

  8. Partnership to Advance Alternative Fuel Vehicles; Ciudades Limpias: Alianza Para Promover El Uso De Vehiculos De Combustibles Alternativos (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaRocque, T.

    2001-10-01

    This fact sheet provides a question and answer overview of the Clean Cities program including what it is, how it works, the program's accomplishments, and a map of Clean Cities throughout the United States.

  9. EPA Sees No Economic Blocks to Clean Water

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1974

    1974-01-01

    Discusses the Environmental Protection Agency report on the economic impacts of clean water on industries and municipal sewage treatment works. Concludes that the long-term growth of the industry may be slightly impaired, but market trends, technological advances, and productivity will far overshadow these impacts. (CC)

  10. Advanced Curation Protocols for Mars Returned Sample Handling

    NASA Astrophysics Data System (ADS)

    Bell, M.; Mickelson, E.; Lindstrom, D.; Allton, J.

    Introduction: Johnson Space Center has over 30 years experience handling precious samples which include Lunar rocks and Antarctic meteorites. However, we recognize that future curation of samples from such missions as Genesis, Stardust, and Mars S mple Return, will require a high degree of biosafety combined witha extremely low levels of inorganic, organic, and biological contamination. To satisfy these requirements, research in the JSC Advanced Curation Lab is currently focused toward two major areas: preliminary examination techniques and cleaning and verification techniques . Preliminary Examination Techniques : In order to minimize the number of paths for contamination we are exploring the synergy between human &robotic sample handling in a controlled environment to help determine the limits of clean curation. Within the Advanced Curation Laboratory is a prototype, next-generation glovebox, which contains a robotic micromanipulator. The remotely operated manipulator has six degrees-of- freedom and can be programmed to perform repetitive sample handling tasks. Protocols are being tested and developed to perform curation tasks such as rock splitting, weighing, imaging, and storing. Techniques for sample transfer enabling more detailed remote examination without compromising the integrity of sample science are also being developed . The glovebox is equipped with a rapid transfer port through which samples can be passed without exposure. The transfer is accomplished by using a unique seal and engagement system which allows passage between containers while maintaining a first seal to the outside environment and a second seal to prevent the outside of the container cover and port door from becoming contaminated by the material being transferred. Cleaning and Verification Techniques: As part of the contamination control effort, innovative cleaning techniques are being identified and evaluated in conjunction with sensitive cleanliness verification methods. Towards this end, cleaning techniques such as ultrasonication in ultra -pure water (UPW), oxygen (O2) plasma, and carbon dioxide (CO2) "snow" are being used to clean a variety of different contaminants on a variety of different surfaces. Additionally, once cleaned, techniques to directly verify the s rface cleanliness are being developed. Theseu include X ray photoelectron spectroscopy (XPS) quantification, and screening with- contact angle measure ments , which can be correlated with XPS standards. Methods developed in the Advanced Curation Laboratory will determine the extent to which inorganic and biological contamination can be controlled and minimized.

  11. Use of Synthetic Single-Stranded Oligonucleotides as Artificial Test Soiling for Validation of Surgical Instrument Cleaning Processes

    PubMed Central

    Wilhelm, Nadja; Perle, Nadja; Simmoteit, Robert; Schlensak, Christian; Wendel, Hans P.; Avci-Adali, Meltem

    2014-01-01

    Surgical instruments are often strongly contaminated with patients' blood and tissues, possibly containing pathogens. The reuse of contaminated instruments without adequate cleaning and sterilization can cause postoperative inflammation and the transmission of infectious diseases from one patient to another. Thus, based on the stringent sterility requirements, the development of highly efficient, validated cleaning processes is necessary. Here, we use for the first time synthetic single-stranded DNA (ssDNA_ODN), which does not appear in nature, as a test soiling to evaluate the cleaning efficiency of routine washing processes. Stainless steel test objects were coated with a certain amount of ssDNA_ODN. After cleaning, the amount of residual ssDNA_ODN on the test objects was determined using quantitative real-time PCR. The established method is highly specific and sensitive, with a detection limit of 20 fg, and enables the determination of the cleaning efficiency of medical cleaning processes under different conditions to obtain optimal settings for the effective cleaning and sterilization of instruments. The use of this highly sensitive method for the validation of cleaning processes can prevent, to a significant extent, the insufficient cleaning of surgical instruments and thus the transmission of pathogens to patients. PMID:24672793

  12. GOES-R ABI Optics Test

    NASA Image and Video Library

    2016-08-31

    With the lights out, team members perform an optics test on the Advanced Baseline Imager, the primary optical instrument, on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. Carbon dioxide is sprayed on the imager to clean it and test its sensitivity. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  13. GOES-R ABI Optics Test

    NASA Image and Video Library

    2016-08-31

    Team members prepare for an optics test on the Advanced Baseline Imager, the primary optical instrument, on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. Carbon dioxide will be sprayed on the imager to clean it and test its sensitivity. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  14. Cleaning process for EUV optical substrates

    DOEpatents

    Weber, Frank J.; Spiller, Eberhard A.

    1999-01-01

    A cleaning process for surfaces with very demanding cleanliness requirements, such as extreme-ultraviolet (EUV) optical substrates. Proper cleaning of optical substrates prior to applying reflective coatings thereon is very critical in the fabrication of the reflective optics used in EUV lithographic systems, for example. The cleaning process involves ultrasonic cleaning in acetone, methanol, and a pH neutral soap, such as FL-70, followed by rinsing in de-ionized water and drying with dry filtered nitrogen in conjunction with a spin-rinse.

  15. Glow discharge cleaning of vacuum switch tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, T.; Toya, H.

    1991-10-01

    This paper reports that glow discharge cleaning has ben advancing as a means of degassing vacuum chambers constructed for a large accelerator or for nuclear fusion research. To clean the whole surface of parts inside a vacuum switch tube (VST), a new technique is tried which generates glow discharge between the inner electrodes and copper grid surrounding it. Photographic observation reveals that the glow discharge spreads out and cleans the whole surface inside the VST. A breakdown test between the inner electrodes shows the effect of the cleaning with this technique. Higher breakdown voltage between the inner electrodes is attainedmore » by performing this glow discharge cleaning in argon rather than hydrogen gas. The difference of the cleaning effect seems to be attributed to that of the energy transfer from ion species to the absorbed molecules and microprotrusions on the surfaces.« less

  16. Cookbooks in U.S. history: How do they reflect food safety from 1896 to 2014?

    PubMed

    Almanza, Barbara A; Byrd, Karen S; Behnke, Carl; Ma, Jing; Ge, Li

    2017-09-01

    Historical cookbooks as a source of recipes and food preparation information would be expected to document advancements in food safety related to kitchen equipment, cleaning, foodborne illness knowledge, and consumer education materials. In turn, this food safety information might be expected to contribute to consumers' food safety behaviors. Using both quantitative and qualitative research methodology, this study assessed how food safety information in cookbooks changed and how quickly advancements were incorporated. Faster assimilation into cookbooks was associated with kitchen equipment, educational resources (hotlines and websites), and foodborne illness outbreaks. The rate of incorporation of education materials was moderate. Cleaning advances were the slowest to be incorporated. Modern cookbooks published after the 1980's rapidly evolved with advances in food safety knowledge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. 40 CFR 423.11 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air conditioning wastes are not included. (c) The term chemical metal cleaning waste means any wastewater resulting from the cleaning of any metal process equipment with chemical compounds, including, but... from cleaning [with or without chemical cleaning compounds] any metal process equipment including, but...

  18. Development of CFC-Free Cleaning Processes at the NASA White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul

    1995-01-01

    The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-113- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. The presentation will include the findings of investigations of aqueous cleaning and verification processes that are based on a draft of a proposed NASA Kennedy Space Center (KSC) cleaning procedure. Verification testing with known contaminants, such as hydraulic fluid and commonly used oils, established correlations between nonvolatile residue and CFC-113. Recoveries ranged from 35 to 60 percent of theoretical. WSTF is also investigating enhancements to aqueous sampling for organics and particulates. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon-225 (HCFC-225), tert-butylmethylether, and n-Hexane was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC-113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autoignition and liquid oxygen mechanical impact testing.

  19. Precision Cleaning and Verification Processes Used at Marshall Space Flight Center for Critical Hardware Applications

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.; Cox, Jack A.; McGee, Kathleen A.

    1998-01-01

    Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration performs many research and development programs that require hardware and assemblies to be cleaned to levels that are compatible with fuels and oxidizers (liquid oxygen, solid propellants, etc.). Also, MSFC is responsible for developing large telescope satellites which require a variety of optical systems to be cleaned. A precision cleaning shop is operated within MSFC by the Fabrication Services Division of the Materials & Processes Laboratory. Verification of cleanliness is performed for all precision cleaned articles in the Environmental and Analytical Chemistry Branch. Since the Montreal Protocol was instituted, MSFC had to find substitutes for many materials that have been in use for many years, including cleaning agents and organic solvents. As MSFC is a research center, there is a great variety of hardware that is processed in the Precision Cleaning Shop. This entails the use of many different chemicals and solvents, depending on the nature and configuration of the hardware and softgoods being cleaned. A review of the manufacturing cleaning and verification processes, cleaning materials and solvents used at MSFC and changes that resulted from the Montreal Protocol will be presented.

  20. Precision Cleaning and Verification Processes Used at Marshall Space Flight Center for Critical Hardware Applications

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.

    1999-01-01

    Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) performs many research and development programs that require hardware and assemblies to be cleaned to levels that are compatible with fuels and oxidizers (liquid oxygen, solid propellants, etc.). Also, the Center is responsible for developing large telescope satellites which requires a variety of optical systems to be cleaned. A precision cleaning shop is operated with-in MSFC by the Fabrication Services Division of the Materials & Processes Division. Verification of cleanliness is performed for all precision cleaned articles in the Analytical Chemistry Branch. Since the Montreal Protocol was instituted, MSFC had to find substitutes for many materials that has been in use for many years, including cleaning agents and organic solvents. As MSFC is a research Center, there is a great variety of hardware that is processed in the Precision Cleaning Shop. This entails the use of many different chemicals and solvents, depending on the nature and configuration of the hardware and softgoods being cleaned. A review of the manufacturing cleaning and verification processes, cleaning materials and solvents used at MSFC and changes that resulted from the Montreal Protocol will be presented.

  1. Preliminary Results of Cleaning Process for Lubricant Contamination

    NASA Astrophysics Data System (ADS)

    Eisenmann, D.; Brasche, L.; Lopez, R.

    2006-03-01

    Fluorescent penetrant inspection (FPI) is widely used for aviation and other components for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. Prior to FPI, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. There are a variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. To assess the effectiveness of typical cleaning processes on removal of these contaminants, a study was initiated at an airline overhaul facility. Initial results of the cleaning study for lubricant contamination in nickel, titanium and aluminum alloys will be presented.

  2. Evaluation Of Sludge Heel Dissolution Efficiency With Oxalic Acid Cleaning At Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudduth, Christie; Vitali, Jason; Keefer, Mark

    The chemical cleaning process baseline strategy at the Savannah River Site was revised to improve efficiency during future execution of the process based on lessons learned during previous bulk oxalic acid cleaning activities and to account for operational constraints imposed by safety basis requirements. These improvements were also intended to transcend the difficulties that arise from waste removal in higher rheological yield stress sludge tanks. Tank 12 implemented this improved strategy and the bulk oxalic acid cleaning efforts concluded in July 2013. The Tank 12 radiological removal results were similar to previous bulk oxalic acid cleaning campaigns despite the factmore » that Tank 12 contained higher rheological yield stress sludge that would make removal more difficult than the sludge treated in previous cleaning campaigns. No appreciable oxalate precipitation occurred during the cleaning process in Tank 12 compared to previous campaigns, which aided in the net volume reduction of 75-80%. Overall, the controls established for Tank 12 provide a template for an improved cleaning process.« less

  3. Curating NASA's Past, Present, and Future Astromaterial Sample Collections

    NASA Technical Reports Server (NTRS)

    Zeigler, R. A.; Allton, J. H.; Evans, C. A.; Fries, M. D.; McCubbin, F. M.; Nakamura-Messenger, K.; Righter, K.; Zolensky, M.; Stansbery, E. K.

    2016-01-01

    The Astromaterials Acquisition and Curation Office at NASA Johnson Space Center (hereafter JSC curation) is responsible for curating all of NASA's extraterrestrial samples. JSC presently curates 9 different astromaterials collections in seven different clean-room suites: (1) Apollo Samples (ISO (International Standards Organization) class 6 + 7); (2) Antarctic Meteorites (ISO 6 + 7); (3) Cosmic Dust Particles (ISO 5); (4) Microparticle Impact Collection (ISO 7; formerly called Space-Exposed Hardware); (5) Genesis Solar Wind Atoms (ISO 4); (6) Stardust Comet Particles (ISO 5); (7) Stardust Interstellar Particles (ISO 5); (8) Hayabusa Asteroid Particles (ISO 5); (9) OSIRIS-REx Spacecraft Coupons and Witness Plates (ISO 7). Additional cleanrooms are currently being planned to house samples from two new collections, Hayabusa 2 (2021) and OSIRIS-REx (2023). In addition to the labs that house the samples, we maintain a wide variety of infra-structure facilities required to support the clean rooms: HEPA-filtered air-handling systems, ultrapure dry gaseous nitrogen systems, an ultrapure water system, and cleaning facilities to provide clean tools and equipment for the labs. We also have sample preparation facilities for making thin sections, microtome sections, and even focused ion-beam sections. We routinely monitor the cleanliness of our clean rooms and infrastructure systems, including measurements of inorganic or organic contamination, weekly airborne particle counts, compositional and isotopic monitoring of liquid N2 deliveries, and daily UPW system monitoring. In addition to the physical maintenance of the samples, we track within our databases the current and ever changing characteristics (weight, location, etc.) of more than 250,000 individually numbered samples across our various collections, as well as more than 100,000 images, and countless "analog" records that record the sample processing records of each individual sample. JSC Curation is co-located with JSC's Astromaterials Research Office, which houses a world-class suite of analytical instrumentation and scientists. We leverage these labs and personnel to better curate the samples. Part of the cu-ration process is planning for the future, and we refer to these planning efforts as "advanced curation". Advanced Curation is tasked with developing procedures, technology, and data sets necessary for curating new types of collections as envi-sioned by NASA exploration goals. We are (and have been) planning for future cu-ration, including cold curation, extended curation of ices and volatiles, curation of samples with special chemical considerations such as perchlorate-rich samples, and curation of organically- and biologically-sensitive samples.

  4. Cleaning Processes across NASA Centers

    NASA Technical Reports Server (NTRS)

    Hammond, John M.

    2010-01-01

    All significant surfaces of the hardware must be pre-cleaned to remove dirt, grit, scale, corrosion, grease, oil and other foreign matter prior to any final precision cleaning process. Metallic parts shall be surface treated (cleaned, passivated, pickled and/or coated) as necessary to prevent latent corrosion and contamination.

  5. Coal cleaning: An underutilized solution?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godfrey, R.L.

    1995-12-31

    Custom Coals Corporation is based in Pittsburgh, Pennsylvania. It is involved in the construction and operation of advanced coal cleaning facilities. The company has initially chosen to focus on Pennsylvania`s vast reserves of coal, because these coal provide a superior feedstock for the Technology. In a $76 million project co-sponsored by the U.S. Department of Energy, Custom Coals is constructing its first coal cleaning facility. The DOE chose to participate with the company in the project pursuant to a competition it sponsored under Round IV of Its Clean Cod Technology program. Thirty-one companies submitted 33 projects seeking approximately $2.3 billionmore » of funding against the $600 million available. The company`s project was one of nine proposals accepted and was the only pre-combustion cleaning technology awarded. The project includes both the construction of a 500 ton per hour coal cleaning facility utilizing the company`s proprietary technologies and a series of power plant test bums on a variety of U.S. coals during a 12-month demonstration program. Three U.S. coal seams - Sewickley, Lower Freeport and Illinois No. 5 - will supply the initial feedstock for the demonstration project. These seams represent a broad range of raw cod qualifies. The processed coals will then be distributed to a number of generating stations for combustion. The 300 megawatt Martins Creek Plant of Pennsylvania Power & Light Co., near Allentown, Pennsylvania, will burn Carefree Coal, the 60 megawatt Whitewater Valley Power Station of Richmond Power and Light (in Indiana) and the Ashtabula, Ohio unit of Centerior Energy will burn Self-Scrubbing Coal. Following these demonstrations, the plant will begin full-scale commercial operation, providing two million tons of Pennsylvania compliance coals to electric power utilities.« less

  6. 3 CFR 8576 - Proclamation 8576 of October 1, 2010. National Energy Awareness Month, 2010

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... We must choose wisely and invest in clean energy technologies to position our country for a... capacity for clean energy technologies; advancing vehicle and fuel technologies; spurring the development... economy, and a healthier environment for our children. IN WITNESS WHEREOF, I have hereunto set my hand...

  7. Tungsten wire/FeCrAlY matrix turbine blade fabrication study

    NASA Technical Reports Server (NTRS)

    Melnyk, P.; Fleck, J. N.

    1979-01-01

    The objective was to establish a viable FRS monotape technology base to fabricate a complex, advanced turbine blade. All elements of monotape fabrication were addressed. A new process for incorporation of the matrix, including bi-alloy matrices, was developed. Bonding, cleaning, cutting, sizing, and forming parameters were established. These monotapes were then used to fabricate a 48 ply solid JT9D-7F 1st stage turbine blade. Core technology was then developed and first a 12 ply and then a 7 ply shell hollow airfoil was fabricated. As the fabrication technology advanced, additional airfoils incorporated further elements of sophistication, by introducing in sequence bonded root blocks, cross-plying, bi-metallic matrix, tip cap, trailing edge slots, and impingement inserts.

  8. Hydrogen production from algal biomass - Advances, challenges and prospects.

    PubMed

    Show, Kuan-Yeow; Yan, Yuegen; Ling, Ming; Ye, Guoxiang; Li, Ting; Lee, Duu-Jong

    2018-06-01

    Extensive effort is being made to explore renewable energy in replacing fossil fuels. Biohydrogen is a promising future fuel because of its clean and high energy content. A challenging issue in establishing hydrogen economy is sustainability. Biohydrogen has the potential for renewable biofuel, and could replace current hydrogen production through fossil fuel thermo-chemical processes. A promising source of biohydrogen is conversion from algal biomass, which is abundant, clean and renewable. Unlike other well-developed biofuels such as bioethanol and biodiesel, production of hydrogen from algal biomass is still in the early stage of development. There are a variety of technologies for algal hydrogen production, and some laboratory- and pilot-scale systems have demonstrated a good potential for full-scale implementation. This work presents an elucidation on development in biohydrogen encompassing biological pathways, bioreactor designs and operation and techno-economic evaluation. Challenges and prospects of biohydrogen production are also outlined. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Evaluation of HCFC AK 225 Alternatives for Precision Cleaning and Verification

    NASA Technical Reports Server (NTRS)

    Melton, D. M.

    1998-01-01

    Maintaining qualified cleaning and verification processes are essential in an production environment. Environmental regulations have and are continuing to impact cleaning and verification processing in component and large structures, both at the Michoud Assembly Facility and component suppliers. The goal of the effort was to assure that the cleaning and verification proceeds unimpeded and that qualified, environmentally compliant material and process replacements are implemented and perform to specifications. The approach consisted of (1) selection of a Supersonic Gas-Liquid Cleaning System; (2) selection and evaluation of three cleaning and verification solvents as candidate alternatives to HCFC 225 (Vertrel 423 (HCFC), Vertrel MCA (HFC/1,2-Dichloroethylene), and HFE 7100DE (HFE/1,2 Dichloroethylene)); and evaluation of an analytical instrumental post cleaning verification technique. This document is presented in viewgraph format.

  10. Advanced Concepts: Aneutronic Fusion Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2012-01-01

    Aneutronic Fusion for In-Space thrust, power. Clean energy & potential nuclear gains. Fusion plant concepts, potential to use advanced fuels. Methods to harness ionic momentum for high Isp thrust plus direct power conversion into electricity will be presented.

  11. High-density plasma deposition manufacturing productivity improvement

    NASA Astrophysics Data System (ADS)

    Olmer, Leonard J.; Hudson, Chris P.

    1999-09-01

    High Density Plasma (HDP) deposition provides a means to deposit high quality dielectrics meeting submicron gap fill requirements. But, compared to traditional PECVD processing, HDP is relatively expensive due to the higher capital cost of the equipment. In order to keep processing costs low, it became necessary to maximize the wafer throughput of HDP processing without degrading the film properties. The approach taken was to optimize the post deposition microwave in-situ clean efficiency. A regression model, based on actual data, indicated that number of wafers processed before a chamber clean was the dominant factor. Furthermore, a design change in the ceramic hardware, surrounding the electrostatic chuck, provided thermal isolation resulting in an enhanced clean rate of the chamber process kit. An infra-red detector located in the chamber exhaust line provided a means to endpoint the clean and in-film particle data confirmed the infra-red results. The combination of increased chamber clean frequency, optimized clean time and improved process.

  12. Advances in low-defect multilayers for EUVL mask blanks

    NASA Astrophysics Data System (ADS)

    Folta, James A.; Davidson, J. Courtney; Larson, Cindy C.; Walton, Christopher C.; Kearney, Patrick A.

    2002-07-01

    Low-defect multilayer coatings are required to fabricate mask blanks for Extreme Ultraviolet Lithography (EUVL). The mask blanks consist of high reflectance EUV multilayers on low thermal expansion substrates. A defect density of 0.0025 printable defects/cm2 for both the mask substrate and the multilayer is required to provide a mask blank yield of 60 percent. Current low defect multilayer coating technology allows repeated coating-added defect levels of 0.05/cm2 for defects greater than 90 nm polystyrene latex sphere (PSL) equivalent size for lots of 20 substrates. Extended clean operation of the coating system at levels below 0.08/cm2 for 3 months of operation has also been achieved. Two substrates with zero added defects in the quality area have been fabricated, providing an existence proof that ultra low defect coatings are possible. Increasing the ion source-to-target distance from 410 to 560 mm to reduce undesired coating of the ion source caused the defect density to increase to 0.2/cm2. Deposition and etching diagnostic witness substrates and deposition pinhole cameras showed a much higher level of ion beam spillover (ions missing the sputter target) than expected. Future work will quantify beam spillover, and test designs to reduce spillover, if it is confirmed to be the cause of the increased defect level. The LDD system will also be upgraded to allow clean coating of standard format mask substrates. The upgrade will confirm that the low defect process developed on Si wafers is compatible with the standard mask format 152 mm square substrates, and will provide a clean supply of EUVL mask blanks needed to support development of EUVL mask patterning processes and clean mask handling technologies.

  13. Clean-up and disposal process of polluted sediments from urban rivers.

    PubMed

    He, P J; Shao, L M; Gu, G W; Bian, C L; Xu, C

    2001-10-01

    In this paper, the discussion is concentrated on the properties of the polluted sediments and the combination of clean-up and disposal process for the upper layer heavily polluted sediments with good flowability. Based on the systematic analyses of various clean-up processes, a suitable engineering process has been evaluated and recommended. The process has been applied to the river reclamation in Yangpu District of Shanghai City, China. An improved centrifuge is used for dewatering the dredged sludge, which plays an important role in the combination of clean-up and disposal process. The assessment of the engineering process shows its environmental and technical economy feasibility, which is much better than that of traditional dredging-disposal processes.

  14. Laser Ablation Cleaning of Self-Reacting Friction Stir Weld Seam Surfaces: A Preliminary Evaluation

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Russell, C. K.; Brooke, S. A.; Parry, Q.; Lowrey, N. M.

    2014-01-01

    Anodized aluminum panels were cleaned by three lasers at three separate sites with a view to determining whether more economical laser cleaning might supplant current manual cleaning methods for preparation of surfaces to be welded by the self-reacting friction stir process. Uncleaned panels yielded welds exhibiting residual oxide defect (ROD) and failing at very low stresses along the trace of the weld seam. Manually cleaned panels yielded welds without ROD; these welds failed at nominal stress levels along an angled fracture surface not following the weld seam trace. Laser cleaned panels yielded welds failing at intermediate stress levels. The inadequacy of the laser cleaning processes leaves questions: Was the anodized aluminum test too stringent to represent actual cleaning requirements? Were the wrong laser cleaning techniques/parameters used for the study? Is the laser cleaning mechanism inadequate for effective preweld surface cleaning?

  15. Development of a cleaning process for uranium chips machined with a glycol-water-borax coolant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P.A.

    1984-12-01

    A chip-cleaning process has been developed to remove the new glycol-water-borax coolant from oralloy chips. The process involves storing the freshly cut chips in Freon-TDF until they are cleaned, washing with water, and displacing the water with Freon-TDF. The wash water can be reused many times and still yield clean chips and then be added to the coolant to make up for evaporative losses. The Freon-TDF will be cycled by evaporation. The cleaning facility is currently being designed and should be operational by April 1985.

  16. EPA Science Matters Newsletter: Advancing Ways to Clean Up Drinking Water Systems (Published November 2013)

    EPA Pesticide Factsheets

    To advance the science and engineering of decontaminating pipe systems and safely disposing of high-volumes of contaminated water, Agency homeland security researchers are developing a Water Security Test Bed (WSTB).

  17. Public Notice: Advanced Coatings Company Inc., CWA-01-2015-0034

    EPA Pesticide Factsheets

    Notice of Proposed Assessment of Class II Clean Water Act Section 309(g)(2)(B) and 311(b)(6)(B)(ii) Administrative Penalties and Opportunity to Comment for Advanced Coatings Company Inc., CWA-01-2015-0034

  18. 40 CFR 423.11 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chemical metal cleaning waste means any wastewater resulting from the cleaning of any metal process equipment with chemical compounds, including, but not limited to, boiler tube cleaning. (d) The term metal cleaning waste means any wastewater resulting from cleaning [with or without chemical cleaning compounds...

  19. 40 CFR 423.11 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chemical metal cleaning waste means any wastewater resulting from the cleaning of any metal process equipment with chemical compounds, including, but not limited to, boiler tube cleaning. (d) The term metal cleaning waste means any wastewater resulting from cleaning [with or without chemical cleaning compounds...

  20. [Cleaning and disinfection in nursing homes. Data on quality of structure, process and outcome in nursing homes in Frankfurt am Main, Germany, 2011].

    PubMed

    Heudorf, U; Gasteyer, S; Samoiski, Y; Voigt, K

    2012-08-01

    Due to the Infectious Disease Prevention Act, public health services in Germany are obliged to check the infection prevention in hospitals and other medical facilities as well as in nursing homes. In Frankfurt/Main, Germany, standardized control visits have been performed for many years. In 2011 focus was laid on cleaning and disinfection of surfaces. All 41 nursing homes were checked according to a standardized checklist covering quality of structure (i.e. staffing, hygiene concept), quality of process (observation of the cleaning processes in the homes) and quality of output, which was monitored by checking the cleaning of fluorescent marks which had been applied some days before and should have been removed via cleaning in the following days before the final check. In more than two thirds of the homes, cleaning personnel were salaried, in one third external personnel were hired. Of the homes 85% provided service clothing and all of them offered protective clothing. All homes had established hygiene and cleaning concepts, however, in 15% of the homes concepts for the handling of Norovirus and in 30% concepts for the handling of Clostridium difficile were missing. Regarding process quality only half of the processes observed, i.e. cleaning of hand contact surfaces, such as handrails, washing areas and bins, were correct. Only 44% of the cleaning controls were correct with enormous differences between the homes (0-100%). The correlation between quality of process and quality of output was significant. There was good quality of structure in the homes but regarding quality of process and outcome there was great need for improvement. This was especially due to faults in communication and coordination between cleaning personnel and nursing personnel. Quality outcome was neither associated with the number of the places for residents nor with staffing. Thus, not only quality of structure but also quality of process and outcome should be checked by the public health services.

  1. Comparative study of resist stabilization techniques for metal etch processing

    NASA Astrophysics Data System (ADS)

    Becker, Gerry; Ross, Matthew F.; Wong, Selmer S.; Minter, Jason P.; Marlowe, Trey; Livesay, William R.

    1999-06-01

    This study investigates resist stabilization techniques as they are applied to a metal etch application. The techniques that are compared are conventional deep-UV/thermal stabilization, or UV bake, and electron beam stabilization. The electron beam tool use din this study, an ElectronCure system from AlliedSignal Inc., ELectron Vision Group, utilizes a flood electron source and a non-thermal process. These stabilization techniques are compared with respect to a metal etch process. In this study, two types of resist are considered for stabilization and etch: a g/i-line resist, Shipley SPR-3012, and an advanced i-line, Shipley SPR 955- Cm. For each of these resist the effects of stabilization on resist features are evaluated by post-stabilization SEM analysis. Etch selectivity in all cases is evaluated by using a timed metal etch, and measuring resists remaining relative to total metal thickness etched. Etch selectivity is presented as a function of stabilization condition. Analyses of the effects of the type of stabilization on this method of selectivity measurement are also presented. SEM analysis was also performed on the features after a compete etch process, and is detailed as a function of stabilization condition. Post-etch cleaning is also an important factor impacted by pre-etch resist stabilization. Results of post- etch cleaning are presented for both stabilization methods. SEM inspection is also detailed for the metal features after resist removal processing.

  2. Cleaning of parts for new manufacturing and parts rebuilding

    NASA Astrophysics Data System (ADS)

    Doherty, Jeff

    1994-06-01

    Parts cleaning is the largest single expense, and the most time consuming activity, in rebuilding and new manufacturing. On average, 25% to 40% of the total labor and overhead burden is spent on cleaning. EPA and OSHA pressures add to the burden by making some methods and chemicals obsolete. Some of the processes and chemicals in current use will be curtailed and or outlawed in the future. How can a shops and industries make long term decisions or capital investments in cleaning and process improvements when the government keeps changing its rules? At the MART Corporation in Saint Louis, Missouri, we manufacture a line of cabinet-style batch cleaning machines known as Power Washers. Twenty years ago MART invented and patented the Power Washer process, a cleaning method that recycles wash solution and blasts contaminates as they are washed off the more heavily contaminated parts. Since the initial invention MART has continued to R&D the washing process and develop ancillary systems that comply with EPA and OSHA regulations. For applications involving new industrial parts or items requiring specification cleaned surfaces. MART provides filtration and solution conditioning systems, part drying operations, and triple rinsing. Units are available in stainless steel or higher alloys. We are not alone in the washer manufacturing business. You have many choices of cleaning solutions (no pun intended) which will perform in your operations and yield good results. As a manufacturer, we are interested in your success with our equipment. We have all heard the horror stories of companies having selected inappropriate cleaning systems and or processes which then brought the company to its knees, production wise. Assembly, appearance, warranty, and performance shortcomings of finished products can often be directly related to the cleaning process and its shortcomings.

  3. 40 CFR 463.20 - Applicability; description of the cleaning water subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Processes in the cleaning water subcategory are processes where water comes in contact with the plastic product for the purpose of cleaning the surface of the product and where water comes in contact with...

  4. 40 CFR 463.20 - Applicability; description of the cleaning water subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Processes in the cleaning water subcategory are processes where water comes in contact with the plastic product for the purpose of cleaning the surface of the product and where water comes in contact with...

  5. 40 CFR 463.20 - Applicability; description of the cleaning water subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Processes in the cleaning water subcategory are processes where water comes in contact with the plastic product for the purpose of cleaning the surface of the product and where water comes in contact with...

  6. Research and development program in fiber optic sensors and distributed sensing for high temperature harsh environment energy applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Romanosky, Robert R.

    2017-05-01

    he National Energy Technology Laboratory (NETL) under the Department of Energy (DOE) Fossil Energy (FE) Program is leading the effort to not only develop near zero emission power generation systems, but to increaser the efficiency and availability of current power systems. The overarching goal of the program is to provide clean affordable power using domestic resources. Highly efficient, low emission power systems can have extreme conditions of high temperatures up to 1600 oC, high pressures up to 600 psi, high particulate loadings, and corrosive atmospheres that require monitoring. Sensing in these harsh environments can provide key information that directly impacts process control and system reliability. The lack of suitable measurement technology serves as a driver for the innovations in harsh environment sensor development. Advancements in sensing using optical fibers are key efforts within NETL's sensor development program as these approaches offer the potential to survive and provide critical information about these processes. An overview of the sensor development supported by the National Energy Technology Laboratory (NETL) will be given, including research in the areas of sensor materials, designs, and measurement types. New approaches to intelligent sensing, sensor placement and process control using networked sensors will be discussed as will novel approaches to fiber device design concurrent with materials development research and development in modified and coated silica and sapphire fiber based sensors. The use of these sensors for both single point and distributed measurements of temperature, pressure, strain, and a select suite of gases will be addressed. Additional areas of research includes novel control architecture and communication frameworks, device integration for distributed sensing, and imaging and other novel approaches to monitoring and controlling advanced processes. The close coupling of the sensor program with process modeling and control will be discussed for the overarching goal of clean power production.

  7. Ultralow contact angle hysteresis and no-aging effects in superhydrophobic tangled nanofiber structures generated by controlling the pore size of a 99.5% aluminum foil

    NASA Astrophysics Data System (ADS)

    Lee, Sangmin; Hwang, Woonbong

    2009-03-01

    Superhydrophobic surfaces designed to improve hydrophobicity have high advancing contact angles corresponding to the Cassie state, but these surfaces also exhibit high contact angle hysteresis. We report here a simple and inexpensive method for fabricating superhydrophobic tangled nanofiber structures with ultralow contact angle hysteresis and no-aging degradation, based on a widening process. The resulting nanostructures are suitable for diverse applications including microfluidic devices for biological studies and industrial self-cleaning products for automobiles, ships and houses.

  8. Quiet Clean Short-haul Experimental Engine (QCSEE). Double-annular clean combustor technology development report

    NASA Technical Reports Server (NTRS)

    Bahr, D. W.; Burrus, D. L.; Sabla, P. E.

    1979-01-01

    A sector combustor technology development program was conducted to define an advanced double annular dome combustor sized for use in the quiet clean short haul experimental engine (QCSEE). A design which meets the emission goals, and combustor performance goals of the QCSEE engine program was developed. Key design features were identified which resulted in substantial reduction in carbon monoxide and unburned hydrocarbon emission levels at ground idle operating conditions, in addition to very low nitric oxide emission levels at high power operating conditions. Their significant results are reported.

  9. Ultra-high heat flux cooling characteristics of cryogenic micro-solid nitrogen particles and its application to semiconductor wafer cleaning technology

    NASA Astrophysics Data System (ADS)

    Ishimoto, Jun; Oh, U.; Guanghan, Zhao; Koike, Tomoki; Ochiai, Naoya

    2014-01-01

    The ultra-high heat flux cooling characteristics and impingement behavior of cryogenic micro-solid nitrogen (SN2) particles in relation to a heated wafer substrate were investigated for application to next generation semiconductor wafer cleaning technology. The fundamental characteristics of cooling heat transfer and photoresist removal-cleaning performance using micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. This study contributes not only advanced cryogenic cooling technology for high thermal emission devices, but also to the field of nano device engineering including the semiconductor wafer cleaning technology.

  10. Manufacturability improvements in EUV resist processing toward NXE:3300 processing

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yuhei; Matsunaga, Koichi; Shimoaoki, Takeshi; Kawakami, Shinichiro; Nafus, Kathleen; Foubert, Philippe; Goethals, Anne-Marie; Shimura, Satoru

    2014-03-01

    As the design rule of semiconductor process gets finer, extreme ultraviolet lithography (EUVL) technology is aggressively studied as a process for 22nm half pitch and beyond. At present, the studies for EUV focus on manufacturability. It requires fine resolution, uniform, smooth patterns and low defectivity, not only after lithography but also after the etch process. In the first half of 2013, a CLEAN TRACKTM LITHIUS ProTMZ-EUV was installed at imec for POR development in preparation of the ASML NXE:3300. This next generation coating/developing system is equipped with state of the art defect reduction technology. This tool with advanced functions can achieve low defect levels. This paper reports on the progress towards manufacturing defectivity levels and latest optimizations towards the NXE:3300 POR for both lines/spaces and contact holes at imec.

  11. Cleaning conveyor belts in the chicken-cutting area of a poultry processing plant with 45°c water.

    PubMed

    Soares, V M; Pereira, J G; Zanette, C M; Nero, L A; Pinto, J P A N; Barcellos, V C; Bersot, L S

    2014-03-01

    Conveyor belts are widely used in food handling areas, especially in poultry processing plants. Because they are in direct contact with food and it is a requirement of the Brazilian health authority, conveyor belts are required to be continuously cleaned with hot water under pressure. The use of water in this procedure has been questioned based on the hypothesis that water may further disseminate microorganisms but not effectively reduce the organic material on the surface. Moreover, reducing the use of water in processing may contribute to a reduction in costs and emission of effluents. However, no consistent evidence in support of removing water during conveyor belt cleaning has been reported. Therefore, the objective of the present study was to compare the bacterial counts on conveyor belts that were or were not continuously cleaned with hot water under pressure. Superficial samples from conveyor belts (cleaned or not cleaned) were collected at three different times during operation (T1, after the preoperational cleaning [5 a.m.]; T2, after the first work shift [4 p.m.]; and T3, after the second work shift [1:30 a.m.]) in a poultry meat processing facility, and the samples were subjected to mesophilic and enterobacterial counts. For Enterobacteriaceae, no significant differences were observed between the conveyor belts, independent of the time of sampling or the cleaning process. No significant differences were observed between the counts of mesophilic bacteria at the distinct times of sampling on the conveyor belt that had not been subjected to continuous cleaning with water at 45°C. When comparing similar periods of sampling, no significant differences were observed between the mesophilic counts obtained from the conveyor belts that were or were not subjected to continuous cleaning with water at 45°C. Continuous cleaning with water did not significantly reduce microorganism counts, suggesting the possibility of discarding this procedure in chicken processing.

  12. Development of environmentally conscious cleaning process for leadless chip carrier assemblies. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, B.E.

    1995-04-01

    A cross-functional team of process, product, quality, material, and design lab engineers was assembled to develop an environmentally friendly cleaning process for leadless chip carrier assemblies (LCCAs). Using flush and filter testing, Auger surface analysis, GC-Mass spectrophotometry, production yield results, and electrical testing results over an extended testing period, the team developed an aqueous cleaning process for LCCAs. The aqueous process replaced the Freon vapor degreasing/ultrasonic rinse process.

  13. Energy Access Solutions Advance Gender Mainstreaming in West African States

    Science.gov Websites

    | Integrated Energy Solutions | NREL Energy Access Solutions Advance Gender Mainstreaming in West African States Energy Access Solutions Advance Gender Mainstreaming in West African States Under a expertise to an innovative policy that not only supports women in energy, but also helps bring clean energy

  14. 40 CFR 420.111 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Alkaline Cleaning Subcategory § 420.111 Specialized definitions. (a) The term batch means those alkaline cleaning operations which process... continuous means those alkaline cleaning operations which process steel products other than in discrete...

  15. 40 CFR 420.111 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Alkaline Cleaning Subcategory § 420.111 Specialized definitions. (a) The term batch means those alkaline cleaning operations which process... continuous means those alkaline cleaning operations which process steel products other than in discrete...

  16. 40 CFR 420.111 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Alkaline Cleaning Subcategory § 420.111 Specialized definitions. (a) The term batch means those alkaline cleaning operations which process... continuous means those alkaline cleaning operations which process steel products other than in discrete...

  17. Chemicals to help coal come clean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thayer, A.M.

    Scrubbing methods to capture carbon from power plants are advancing to the demonstration phase. The article gives an update of projects around the world, and the goals and cost of CCS projects. BASF, together with RWE Power and Linde, are working to ensure state of the art integration of the carbon-capture process into a power plant to minimize the penalty in electrical output. A pilot project will test new solvents in an 'advanced amine' system at RWE's power station in Niederaussem, Germany. A pilot unit will soon capture CO{sub 2} from a coal-fired plant of Dow's in South Charleston, WV,more » USA and Dow has also agreed to build an amines demonstration facility in Belchatow, Poland. Other projects in the USA and Canada are reported. 1 fig.« less

  18. NREL to Collaborate with Small Clean Energy Businesses as Part of DOE Pilot

    Science.gov Websites

    help the first group of small clean energy businesses advance their products under the Small Business Vouchers (SBV) pilot launched last July by DOE. NREL is one of nine national laboratories participating in . Midwest Energy Group (MEG) of Illinois will use NREL's fuel cell test facilities to assess the long-term

  19. 78 FR 24715 - Notice of Request for Extension of Approval of an Information Collection; Importation of Seed and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    .... 361.8 provides the regulations for the cleaning of imported seed and processing of certain Canadian... with Canada that allows U.S. companies that import seed for cleaning or processing to enter into... Canadian seed and screenings, seed cleaning/processing facility personnel, and Canadian Food Inspection...

  20. Effectiveness of infection prevention measures featuring advanced source control and environmental cleaning to limit transmission of extremely-drug resistant Acinetobacter baumannii in a Thai intensive care unit: An analysis before and after extensive flooding.

    PubMed

    Apisarnthanarak, Anucha; Pinitchai, Uayporn; Warachan, Boonyasit; Warren, David K; Khawcharoenporn, Thana; Hayden, Mary K

    2014-02-01

    Advanced source control (once-daily bathing and 4-times daily oral care with chlorhexidine aqueous solution) and thorough environmental cleaning were implemented in response to an increased incidence of colonization and infection with extremely drug-resistant (XDR) Acinetobacter baumannii in a Thai medical intensive care unit (MICU). During the 12-month baseline period (P1), contact isolation, active surveillance for XDR A baumannii, cohorting of XDR A baumannii patients, twice-daily environmental cleaning with detergent-disinfectant, and antibiotic stewardship were implemented. In the 5.5-month intervention period (P2), additional measures were introduced. Sodium hypochlorite was substituted for detergent-disinfectant, and advanced source control was implemented. All interventions except cleaning with sodium hypochlorite were continued during the 12.5-month follow-up period (P3). Extensive flooding necessitating closure of the hospital for 2 months occurred between P2 and P3. A total of 1,365 patients were studied. Compared with P1 (11.1 cases/1,000 patient-days), the rate of XDR A baumannii clinical isolates declined in P2 (1.74 cases/1,000 patient-days; P < .001) and further in P3 (0.69 cases/1,000 patient-days; P < .001). Compared with P1 (12.15 cases/1,000 patient-days), the rate of XDR A baumannii surveillance isolates also declined in P2 (2.11 cases/1,000 patient-days; P < .001) and P3 (0.98 cases/1,000 patient-days; P < .001). Incidence of nosocomial infections remained stable. Six patients developed chlorhexidine-induced rash (1.4/1,000 patient-days); 31 patients developed mucositis (17.1/1,000 patient-days). These results support advanced source control and thorough environmental cleaning to limit colonization and infection with XDR A baumannii in MICUs in resource-limited settings. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  1. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    PubMed

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-07

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.

  2. 40 CFR 423.11 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... not included. (c) The term chemical metal cleaning waste means any wastewater resulting from the cleaning of any metal process equipment with chemical compounds, including, but not limited to, boiler tube... chemical cleaning compounds] any metal process equipment including, but not limited to, boiler tube...

  3. 40 CFR 423.11 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... not included. (c) The term chemical metal cleaning waste means any wastewater resulting from the cleaning of any metal process equipment with chemical compounds, including, but not limited to, boiler tube... chemical cleaning compounds] any metal process equipment including, but not limited to, boiler tube...

  4. Occupational deaths and injuries by the types of street cleaning process.

    PubMed

    Jeong, Byung Yong

    2017-03-01

    This study aims to obtain an overall picture of occupational injuries by the types of street cleaning process. Three hundred and fifty-four injured persons were analyzed in terms of the company size and details of the injured persons and accidents. Results show that 'roadway cleaning' was the most common type of cleaning process for injuries, followed by 'sidewalk cleaning,' 'going/returning to work by bike' and 'lifting/carrying.' The findings also show that most accidents which occur when 'going/returning to work by bike' are in the form of traffic accidents, while in other processes they happen most often in the form of slips. Most of the accidents related to 'lifting/carrying' affected workers in their 50s or younger while other processes had a large portion of injured persons in their 50s or older. The findings of this study can be used as baseline data for preventative policies.

  5. Ultrasonic cleaning: Fundamental theory and application

    NASA Technical Reports Server (NTRS)

    Fuchs, F. John

    1995-01-01

    This presentation describes: the theory of ultrasonics, cavitation and implosion; the importance and application of ultrasonics in precision cleaning; explanations of ultrasonic cleaning equipment options and their application; process parameters for ultrasonic cleaning; and proper operation of ultrasonic cleaning equipment to achieve maximum results.

  6. Public-Private roundtables at the fourth Clean Energy Ministerial, 17-18 April 2013, New Delhi, India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, Tracey

    2013-06-30

    The Clean Energy Ministerial (CEM) is a high-level global forum to share best practices and promote policies and programs that advance clean energy technologies and accelerate the transition to a global clean energy economy. The CEM works to increase energy efficiency, expand clean energy supply, and enhance clean energy access worldwide. To achieve these goals, the CEM pursues a three-part strategy that includes high-level policy dialogue, technical cooperation, and engagement with the private sector and other stakeholders. Each year, energy ministers and other high-level delegates from the 23 participating CEM governments come together to discuss clean energy, review clean energymore » progress, and identify tangible next steps to accelerate the clean energy transition. The U.S. Department of Energy, which played a crucial role in launching the CEM, hosted the first annual meeting of energy ministers in Washington, DC, in June 2010. The United Arab Emirates hosted the second Clean Energy Ministerial in 2011, and the United Kingdom hosted the third Clean Energy Ministerial in 2012. In April 2013, India hosted the fourth Clean Energy Ministerial (CEM4) in New Delhi. Key insights from CEM4 are summarized in the report. It captures the ideas and recommendations of the government and private sector leaders who participated in the discussions on six discussion topics: reducing soft costs of solar PV; energy management systems; renewables policy and finance; clean vehicle adoption; mini-grid development; and power systems in emerging economies.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric; Talmadge, M.; Dutta, Abhijit

    The U.S. Department of Energy (DOE) promotes research for enabling cost-competitive liquid fuels production from lignocellulosic biomass feedstocks. The research is geared to advance the state of technology (SOT) of biomass feedstock supply and logistics, conversion, and overall system sustainability. As part of their involvement in this program, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) investigate the economics of conversion pathways through the development of conceptual biorefinery process models. This report describes in detail one potential conversion process for the production of high octane gasoline blendstock via indirect liquefaction (IDL). The steps involve themore » conversion of biomass to syngas via indirect gasification followed by gas cleanup and catalytic syngas conversion to a methanol intermediate; methanol is then further catalytically converted to high octane hydrocarbons. The conversion process model leverages technologies previously advanced by research funded by the Bioenergy Technologies Office (BETO) and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via tar and hydrocarbons reforming was one of the key technology advancements as part of that research. The process described in this report evaluates a new technology area with downstream utilization of clean biomass-syngas for the production of high octane hydrocarbon products through a methanol intermediate, i.e., dehydration of methanol to dimethyl ether (DME) which subsequently undergoes homologation to high octane hydrocarbon products.« less

  8. How ARPA-e is "Winning the Future"

    ScienceCinema

    Obama, Barack; Chu, Steven; Majumdar, Arun

    2018-02-14

    The Advanced Research Projects Agency - Energy (ARPA-E) is answering the President's call to "Win the Future". By directly funding some of the most groundbreaking discoveries in science and technology, we're encouraging the development of the most advanced clean tech innovations out there today.

  9. How ARPA-e is "Winning the Future"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obama, Barack; Chu, Steven; Majumdar, Arun

    2011-02-27

    The Advanced Research Projects Agency - Energy (ARPA-E) is answering the President's call to "Win the Future". By directly funding some of the most groundbreaking discoveries in science and technology, we're encouraging the development of the most advanced clean tech innovations out there today.

  10. The successful of finite element to invent particle cleaning system by air jet in hard disk drive

    NASA Astrophysics Data System (ADS)

    Jai-Ngam, Nualpun; Tangchaichit, Kaitfa

    2018-02-01

    Hard Disk Drive manufacturing has faced very challenging with the increasing demand of high capacity drives for Cloud-based storage. Particle adhesion has also become increasingly important in HDD to gain more reliability of storage capacity. The ability to clean on surfaces is more complicated in removing such particles without damaging the surface. This research is aim to improve the particle cleaning in HSA by using finite element to develop the air flow model then invent the prototype of air cleaning system to remove particle from surface. Surface cleaning by air pressure can be applied as alternative for the removal of solid particulate contaminants that is adhering on a solid surface. These technical and economic challenges have driven the process development from traditional way that chemical solvent cleaning. The focus of this study is to develop alternative way from scrub, ultrasonic, mega sonic on surface cleaning principles to serve as a foundation for the development of new processes to meet current state-of-the-art process requirements and minimize the waste from chemical cleaning for environment safety.

  11. ArF halftone PSM cleaning process optimization for next-generation lithography

    NASA Astrophysics Data System (ADS)

    Son, Yong-Seok; Jeong, Seong-Ho; Kim, Jeong-Bae; Kim, Hong-Seok

    2000-07-01

    ArF lithography which is expected for the next generation optical lithography is adapted for 0.13 micrometers design-rule and beyond. ArF half-tone phase shift mask (HT PSM) will be applied as 1st generation of ArF lithography. Also ArF PSM cleaning demands by means of tighter controls related to phase angle, transmittance and contamination on the masks. Phase angle on ArF HT PSM should be controlled within at least +/- 3 degree and transmittance controlled within at least +/- 3 percent after cleaning process and pelliclization. In the cleaning process of HT PSM, requires not only the remove the particle on mask, but also control to half-tone material for metamorphosis. Contamination defects on the Qz of half tone type PSM is not easy to remove on the photomask surface. New technology and methods of cleaning will be developed in near future, but we try to get out for limit contamination on the mask, without variation of phase angle and transmittance after cleaning process.

  12. Clean Cities: Building Partnerships to Cut Petroleum Use in Transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-01-07

    This brochure provides an overview of the U.S. Department of Energy's (DOE's) Clean Cities program, which advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use in transportation. At the national level, the program develops and promotes publications, tools, and other unique resources. At the local level, nearly 100 coalitions leverage these resources to create networks of stakeholders.

  13. Clean Cities: Building Partnerships to Cut Petroleum Use in Transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-01-01

    This brochure provides an overview of the U.S. Department of Energy's (DOE's) Clean Cities program, which advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use in transportation. At the national level, the program develops and promotes publications, tools, and other unique resources. At the local level, nearly 100 coalitions leverage these resources to create networks of stakeholders.

  14. Effectiveness of HVAC duct cleaning procedures in improving indoor air quality.

    PubMed

    Ahmad, I; Tansel, B; Mitrani, J D

    2001-12-01

    Indoor air quality has become one of the most serious environmental concerns as an average person spends about 22 hr indoors on a daily basis. The study reported in this article, was conducted to determine the effectiveness of three commercial HVAC (Heating Ventilation Air Conditioning) duct cleaning processes in reducing the level of airborne particulate matter and viable bioaerosols. The three HVAC sanitation processes were: (1) Contact method (use of conventional vacuum cleaning of interior duct surfaces); (2) Air sweep method (use of compressed air to dislodging dirt and debris); (3) Rotary brush method (insertion of a rotary brush into the ductwork to agitate and dislodge the debris). Effectiveness of these sanitation processes was evaluated in terms of airborne particulate and viable bioaerosol concentrations in residential homes. Eight identical homes were selected in the same neighborhood. Two homes were cleaned using each procedure and two were used as controls. It was found that both particle count readings and bioaerosol concentrations were higher when cleaning was being performed than before or after cleaning, which suggests that dirt, debris and other pollutants may become airborne as a result of disturbances caused by the cleaning processes. Particle count readings at 0.3 micron size were found to have increased due to cigarette smoking. Particle counts at 1.0 micron size were reduced due to HVAC duct cleaning. Post-level bioaerosol concentrations, taken two days after cleaning, were found to be lower than the pre-level concentrations suggesting that the cleaning procedures were effective to some extent. Homes cleaned with the Air Sweep procedure showed the highest degree of reduction in bioaerosol concentration among the three procedures investigated.

  15. Clean air program : use of hydrogen to power the advanced technology transit bus (ATTB) : an assessment

    DOT National Transportation Integrated Search

    1997-11-01

    The Advanced Technology Transit Bus (ATTB), developed under primary funding from : the U.S. DOT/Federal Transit Administration (FTA), currently uses a power plant : based on a natural gas burning IC engine-generator set. FTA is interested in : demons...

  16. Fluorescent Penetrant INSPECTION—CLEANING Study Update

    NASA Astrophysics Data System (ADS)

    Eisenmann, D.; Brasche, L.

    2009-03-01

    Fluorescent penetrant inspection (FPI) is widely used in the aviation industry and other industries for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. There is variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. Before the FPI process begins, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. From the first three phases of this project it has been found that a hot water rinse can aid in the detection process when using this nondestructive method.

  17. Replacement Technologies for Precision Cleaning of Aerospace Hardware for Propellant Service

    NASA Technical Reports Server (NTRS)

    Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul

    1997-01-01

    The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-l13- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. Replacement technologies are being investigated for aerospace hardware and for gauges and instrumentation. This paper includes the findings of investigations of aqueous cleaning and verification of aerospace hardware using known contaminants, such as hydraulic fluid and commonly used oils. The results correlate nonvolatile residue with CFC 113. The studies also include enhancements to aqueous sampling for organic and particulate contamination. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon 225 (HCFC 225), HCFC 141b, HFE 7100(R), and Vertrel MCA(R) was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC 113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autogenous ignition and liquid oxygen mechanical impact testing.

  18. Development of a Replacement for Trichloroethylene in the Two-Stage Cleaning Process

    DTIC Science & Technology

    1992-12-01

    Auger-Determined Carbon/Iron Ratios of Set 4 ..................... 15 3 Abstract Isopropyl alcohol, d- limonene , and a synthetic mineral spirits were...found to be as clean as those alcohol, d- limonene , and a synthetic cleaned by the standard two-stage mineral spirits,- were chosen to be process...selected, therefore, was to soil test specimens with Another candidate was d- limonene . It has representative soils, clean them by the been extensively

  19. Fogging technique used to coat magnesium with plastic

    NASA Technical Reports Server (NTRS)

    Mroz, T. S.

    1967-01-01

    Cleaning process and a fogging technique facilitate the application of a plastic coating to magnesium plates. The cleaning process removes general organic and inorganic surface impurities, oils and greases, and oxides and carbonates from the magnesium surfaces. The fogging technique produces a thin-filmlike coating in a clean room atmosphere.

  20. ENHANCED CHEMICAL CLEANING: A NEW PROCESS FOR CHEMICALLY CLEANING SAVANNAH RIVER WASTE TANKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketusky, E; Neil Davis, N; Renee Spires, R

    2008-01-17

    The Savannah River Site (SRS) has 49 high level waste (HLW) tanks that must be emptied, cleaned, and closed as required by the Federal Facilities Agreement. The current method of chemical cleaning uses several hundred thousand gallons per tank of 8 weight percent (wt%) oxalic acid to partially dissolve and suspend residual waste and corrosion products such that the waste can be pumped out of the tank. This adds a significant quantity of sodium oxalate to the tanks and, if multiple tanks are cleaned, renders the waste incompatible with the downstream processing. Tank space is also insufficient to store thismore » stream given the large number of tanks to be cleaned. Therefore, a search for a new cleaning process was initiated utilizing the TRIZ literature search approach, and Chemical Oxidation Reduction Decontamination--Ultraviolet (CORD-UV), a mature technology currently used for decontamination and cleaning of commercial nuclear reactor primary cooling water loops, was identified. CORD-UV utilizes oxalic acid for sludge dissolution, but then decomposes the oxalic acid to carbon dioxide and water by UV treatment outside the system being treated. This allows reprecipitation and subsequent deposition of the sludge into a selected container without adding significant volume to that container, and without adding any new chemicals that would impact downstream treatment processes. Bench top and demonstration loop measurements on SRS tank sludge stimulant demonstrated the feasibility of applying CORD-UV for enhanced chemical cleaning of SRS HLW tanks.« less

  1. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  2. Surface cleaning for negative electron affinity GaN photocathode

    NASA Astrophysics Data System (ADS)

    Qiao, Jianliang; Yin, Yingpeng; Gao, Youtang; Niu, Jun; Qian, Yunsheng; Chang, Benkang

    2012-10-01

    In the preparation process for negative electron affinity (NEA) GaN photocathode, the surface cleanness is very important to activation, it influences the sensitivity and stability of NEA GaN photocathode. The traditional corrosion methods based on oxidizing and dissolving can't remove oxygen (O) and carbon (C) on GaN surface effectively. How to get an ideal atom clean surface is still an important question at present. The cleaning techniques for GaN photocathode was studied by using NEA photocathode activation system and XPS surface analysis system. The experiment sample is p-type GaN doped with Mg, doped concentration is 1.37×1017 cm-3, the transfer rate is 3.08 cm2/V-S, and the thickness of activation layer is 0.51 μm, the substrate is 300 μm thick sapphire. The sample was dealed with chemical cleaning depuration at first. And to get the atom clean surface, the vacuum heat cleaning process was needed. The methods of chemical cleaning and the vacuum heating cleaning were given in detail. According to the X-ray photoelectron spectroscopy of GaN surface after chemical cleaning and the vacuum degree curve of the activation chamber during the heat cleaning, the cleaning effect and the cleaning mechanism were discussed. After the effective chemical cleaning and the heating of 700 Centigrade degree about 20 minutes in ultrahigh vacuum system, the oxides and carbon contaminants on cathode surface can be removed effectively, and the ideal atom clean surface can be obtained. The purpose of heating depuration process is that not only to get the atom clean GaN surface, but also to guarantee the contents of Ga, N on GaN surface stabilize and to keep the system ultra-high vacuum degree. Because of the volatilization of oxide and carbon impurity on the cathode surface, the vacuum degree curve drops with the rising of temperature on the whole.

  3. Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System

    NASA Technical Reports Server (NTRS)

    Parrish, Lewis M.

    2009-01-01

    NASA Kennedy Space Center (KSC) recently entered into a nonexclusive license agreement with Applied Cryogenic Solutions (ACS), Inc. (Galveston, TX) to commercialize its Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System technology. This technology, developed by KSC, is a critical component of processes being developed and commercialized by ACS to replace current mechanical and chemical cleaning and descaling methods used by numerous industries. Pilot trials on heat exchanger tubing components have shown that the ACS technology provides for: Superior cleaning in a much shorter period of time. Lower energy and labor requirements for cleaning and de-scaling uper.ninih. Significant reductions in waste volumes by not using water, acidic or basic solutions, organic solvents, or nonvolatile solid abrasives as components in the cleaning process. Improved energy efficiency in post-cleaning heat exchanger operations. The ACS process consists of a spray head containing supersonic converging/diverging nozzles, a source of liquid gas; a novel, proprietary pumping system that permits pumping liquid nitrogen, liquid air, or supercritical carbon dioxide to pressures in the range of 20,000 to 60,000 psi; and various hoses, fittings, valves, and gauges. The size and number of nozzles can be varied so the system can be built in configurations ranging from small hand-held spray heads to large multinozzle cleaners. The system also can be used to verify if a part has been adequately cleaned.

  4. Fouling of a spiral-wound reverse osmosis membrane processing swine wastewater: effect of cleaning procedure on fouling resistance.

    PubMed

    Camilleri-Rumbau, M S; Masse, L; Dubreuil, J; Mondor, M; Christensen, K V; Norddahl, B

    2016-01-01

    Swine manure is a valuable source of nitrogen, phosphorus and potassium. After solid-liquid separation, the resulting swine wastewater can be concentrated by reverse osmosis (RO) to produce a nitrogen-potassium rich fertilizer. However, swine wastewater has a high fouling potential and an efficient cleaning strategy is required. In this study, a semi-commercial farm scale RO spiral-wound membrane unit was fouled while processing larger volumes of swine wastewater during realistic cyclic operations over a 9-week period. Membrane cleaning was performed daily. Three different cleaning solutions, containing SDS, SDS+EDTA and NaOH were compared. About 99% of the fouling resistance could be removed by rinsing the membrane with water. Flux recoveries (FRs) above 98% were achieved for all the three cleaning solutions after cleaning. No significant differences in FR were found between the cleaning solutions. The NaOH solution thus is a good economical option for cleaning RO spiral-wound membranes fouled with swine wastewater. Soaking the membrane for 3 days in permeate water at the end of each week further improved the FR. Furthermore, a fouling resistance model for predicting the fouling rate, permeate flux decay and cleaning cycle periods based on processing time and swine wastewater conductivity was developed.

  5. Assessment of the potential suitability of selected commercially available enzymes for cleaning-in-place (CIP) in the dairy industry.

    PubMed

    Boyce, Angela; Piterina, Anna V; Walsh, Gary

    2010-10-01

    The potential suitability of 10 commercial protease and lipase products for cleaning-in-place (CIP) application in the dairy industry was investigated on a laboratory scale. Assessment was based primarily on the ability of the enzymes to remove an experimentally generated milk fouling deposit from stainless steel (SS) panels. Three protease products were identified as being most suitable for this application on the basis of their cleaning performance at 40 °C, which was comparable to that of the commonly used cleaning agent, 1% NaOH at 60 °C. This was judged by quantification of residual organic matter and protein on the SS surface after cleaning and analysis by laser scanning confocal microscopy (LSCM). Enzyme activity was removed/inactivated under conditions simulating those normally undertaken after cleaning (rinsing with water, acid circulation, sanitation). Preliminary process-scale studies strongly suggest that enzyme-based CIP achieves satisfactory cleaning at an industrial scale. Cost analysis indicates that replacing caustic-based cleaning procedures with biodegradable enzymes operating at lower temperatures would be economically viable. Additional potential benefits include decreased energy and water consumption, improved safety, reduced waste generation, greater compatibility with wastewater treatment processes and a reduction in the environmental impact of the cleaning process.

  6. Contamination control and assay results for the Majorana Demonstrator ultra clean components

    NASA Astrophysics Data System (ADS)

    Christofferson, C. D.; Abgrall, N.; Alvis, S. I.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Barton, C. J.; Bertrand, F. E.; Bode, T.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, T. S.; Chan, Y.-D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Gilliss, T.; Giovanetti, G. K.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R.; Hehn, L.; Henning, R.; Hoppe, E. W.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Myslik, J.; O'Shaughnessy, C.; Othman, G.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Rielage, K.; Robertson, R. G. H.; Rouf, N. W.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.

    2018-01-01

    The Majorana Demonstrator is a neutrinoless double beta decay experiment utilizing enriched Ge-76 detectors in 2 separate modules inside of a common solid shield at the Sanford Underground Research Facility. The Demonstrator has utilized world leading assay sensitivities to develop clean materials and processes for producing ultra-pure copper and plastic components. This experiment is now operating, and initial data provide new insights into the success of cleaning and processing. Post production copper assays after the completion of Module 1 showed an increase in U and Th contamination in finished parts compared to starting bulk material. A revised cleaning method and additional round of surface contamination studies prior to Module 2 construction have provided evidence that more rigorous process control can reduce surface contamination. This article describes the assay results and discuss further studies to take advantage of assay capabilities for the purpose of maintaining ultra clean fabrication and process design.

  7. Clean Cities 2016 Vehicle Buyer's Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-02-01

    Drivers and fleets are increasingly turning to the hundreds of light-duty, alternative fuel, and advanced technology vehicle models that reduce petroleum use, save on fuel costs, and cut emissions. This guide provides a comprehensive list of the 2016 light-duty models that use alternative fuels or advanced fuel-saving technologies.

  8. ENVIRONMENTAL RESEARCH BRIEF: DEVELOPMENT OF GAS CLEANING TECHNOLOGY: DEMONSTRATION OF ADVANCED ELECTROSTATIC PRECIPITATOR TECHNOLOGY (INDIA ESP TRAINING)

    EPA Science Inventory

    The Brief discusses a demonstration of advanced electrostatic precipitator (ESP) diagnostics and technologies in India. Six Indian ESP specialists were selected by Southern Research Institute and their consultants, with the concurrence of EPA's project officer, to attend a course...

  9. [Cleaning and disinfection of surfaces in hospitals: Data on structure, process and result in the Frankfurt/Main Metropolitan Area].

    PubMed

    Hausemann, A; Hofmann, H; Otto, U; Heudorf, Ursel

    2015-06-01

    In addition to hand hygiene and reprocessing of medical products, cleaning and disinfection of surfaces is also an important issue in the prevention of germ transmission and by implication infections. Therefore, in 2014, the quality of the structure, process and result of surface preparation of all hospitals in Frankfurt am Main, Germany, was monitored. All 17 hospitals transferred information on the quality of structure. Process quality was obtained through direct observation during cleaning and disinfection of rooms and their plumbing units. Result quality was gained using the fluorescent method, i.e. marking surfaces with a fluorescent liquid and testing if this mark has been sufficiently removed by cleaning. Structure quality: in all hospitals the employees were trained regularly. In 12 of them, the foremen had the required qualifications, in 6 hospitals unclarity as to the intersection of the cleaning and care services remained. In 14 hospitals only visible contamination was cleaned on the weekends, whereas complete cleaning was reported to take place in 12 hospitals on Saturdays and in 2 hospitals on Sundays. The contractually stipulated cleaning (observations specified in brackets) averaged 178 m(2)/h (148 m(2)/h) per patient room and 69 m(2)/h (33 m(2)/h) for bathrooms. Process quality: during process monitoring, various hand contact surfaces were prepared insufficiently. Result quality: 63 % of fluorescent markings were appropriately removed. The need for improvement is given especially in the area of the qualification of the foremen and a in a clear definition of the intersection between cleaning and care services, as well as in the regulations for weekends and public holidays.

  10. Washing away your sins in the brain: physical cleaning and priming of cleaning recruit different brain networks after moral threat

    PubMed Central

    Tang, Honghong; Lu, Xiaping; Su, Rui; Liang, Zilu; Mai, Xiaoqin

    2017-01-01

    Abstract The association between moral purity and physical cleanliness has been widely discussed recently. Studies found that moral threat initiates the need of physical cleanliness, but actual physical cleaning and priming of cleaning have inconsistent effects on subsequent attitudes and behaviors. Here, we used resting-state functional magnetic resonance imaging to explore the underlying neural mechanism of actual physical cleaning and priming of cleaning. After recalling moral transgression with strong feelings of guilt and shame, participants either actually cleaned their faces with a wipe or were primed with cleanliness through viewing its pictures. Results showed that actual physical cleaning reduced the spontaneous brain activities in the right insula and MPFC, regions that involved in embodied moral emotion processing, while priming of cleaning decreased activities in the right superior frontal gyrus and middle frontal gyrus, regions that participated in executive control processing. Additionally, actual physical cleaning also changed functional connectivity between insula/MPFC and emotion related regions, whereas priming of cleaning modified connectivity within both moral and sensorimotor areas. These findings revealed that actual physical cleaning and priming of cleaning led to changes in different brain regions and networks, providing neural evidence for the inconsistent effects of cleanliness on subsequent attitudes and behaviors. PMID:28338887

  11. Washing away your sins in the brain: physical cleaning and priming of cleaning recruit different brain networks after moral threat.

    PubMed

    Tang, Honghong; Lu, Xiaping; Su, Rui; Liang, Zilu; Mai, Xiaoqin; Liu, Chao

    2017-07-01

    The association between moral purity and physical cleanliness has been widely discussed recently. Studies found that moral threat initiates the need of physical cleanliness, but actual physical cleaning and priming of cleaning have inconsistent effects on subsequent attitudes and behaviors. Here, we used resting-state functional magnetic resonance imaging to explore the underlying neural mechanism of actual physical cleaning and priming of cleaning. After recalling moral transgression with strong feelings of guilt and shame, participants either actually cleaned their faces with a wipe or were primed with cleanliness through viewing its pictures. Results showed that actual physical cleaning reduced the spontaneous brain activities in the right insula and MPFC, regions that involved in embodied moral emotion processing, while priming of cleaning decreased activities in the right superior frontal gyrus and middle frontal gyrus, regions that participated in executive control processing. Additionally, actual physical cleaning also changed functional connectivity between insula/MPFC and emotion related regions, whereas priming of cleaning modified connectivity within both moral and sensorimotor areas. These findings revealed that actual physical cleaning and priming of cleaning led to changes in different brain regions and networks, providing neural evidence for the inconsistent effects of cleanliness on subsequent attitudes and behaviors. © The Author (2017). Published by Oxford University Press.

  12. Characterization of welded HP 9-4-30 steel for the advanced solid rocket motor

    NASA Technical Reports Server (NTRS)

    Watt, George William

    1990-01-01

    Solid rocket motor case materials must be high-strength, high-toughness, weldable alloys. The Advanced Solid Rocket Motor (ASRM) cases currently being developed will be made from a 9Ni-4Co quench and temper steel called HP 9-4-30. These ultra high-strength steels must be carefully processed to give a very clean material and a fine grained microstructure, which insures excellent ductility and toughness. The HP 9-4-30 steels are vacuum arc remelted and carbon deoxidized to give the cleanliness required. The ASRM case material will be formed into rings and then welded together to form the case segments. Welding is the desired joining technique because it results in a lower weight than other joining techniques. The mechanical and corrosion properties of the weld region material were fully studied.

  13. Oxygen Penalty for Waste Oxidation in an Advanced Life Support System: A Systems Approach

    NASA Technical Reports Server (NTRS)

    Pisharody, Suresh; Wignarajah, K.; Fisher, John

    2002-01-01

    Oxidation is one of a number of technologies that are being considered for waste management and resource recovery from waste materials generated on board space missions. Oxidation processes are a very effective and efficient means of clean and complete conversion of waste materials to sterile products. However, because oxidation uses oxygen there is an "oxygen penalty" associated either with resupply of oxygen or with recycling oxygen from some other source. This paper is a systems approach to the issue of oxygen penalty in life support systems and presents findings on the oxygen penalty associated with an integrated oxidation-Sabatier-Oxygen Generation System (OGS) for waste management in an Advanced Life Support System. The findings reveal that such an integrated system can be operated to form a variety of useful products without a significant oxygen penalty.

  14. 77 FR 14830 - Notice of Lodging of Consent Decree Under the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Clean Air Act Notice is hereby... Clean Air Act, 42 U.S.C. 7413(b). Defendant processes aluminum scrap and dross to produce various secondary aluminum products, a process that results in emissions of regulated air pollutants, including...

  15. Alternative Fuel News: Official Publication of the Clean Cities Network and the Alternative Fuels Data Center, Vol. 5, No. 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2001-11-01

    A quarterly magazine with articles on alternative fuel school buses, the market growth of biodiesel fuel, National AFV Day 2002, model year 2002 alternative fuel passenger cars and light trucks, the Michelin Challenge Bibendum road rally, and advanced technology vehicles at Robins Air Force Base, the Top Ten Clean Cities coalitions for 2000, and AFVs on college campuses.

  16. Comparison of NF membrane fouling and cleaning by two pretreatment strategies for the advanced treatment of antibiotic production wastewater.

    PubMed

    Wang, Jianxing; Li, Kun; Yu, Dawei; Zhang, Junya; Wei, Yuansong; Chen, Meixue; Shan, Baoqing

    2016-01-01

    The nanofiltration (NF) membrane fouling characteristics and cleaning strategies were investigated and compared for treating membrane bioreactor (MBR) effluent and MBR-granular activated carbon (GAC) effluent of an antibiotic production wastewater by DK membrane. Results showed that the fouling of treating MBR effluent was more severe than that of treating MBR-GAC effluent. After filtering for 216 h, the difference of membrane flux decline was obvious between MBR effluent and MBR-GAC effluent, with 14.9% and 10.3% flux decline, respectively. Further study showed that organic fouling is the main NF membrane fouling in the advanced treatment of antibiotic production wastewater for both of the two different effluents. Soluble microbial by-product like and tyrosine-like substances were the dominant components in the foulants, whereas humic-like substances existing in the effluents had little contribution to the NF membrane fouling. A satisfactory efficiency of NF chemical cleaning could be obtained using combination of acid (HCl, pH 2.0-2.5) and alkali (NaOH + 0.3 wt% NaDS, pH 10.0-10.5). The favorable cleaning strategy is acid-alkali for treating the MBR-GAC effluent, while it is alkali-acid for treating the MBR effluent.

  17. Automated carbon dioxide cleaning system

    NASA Technical Reports Server (NTRS)

    Hoppe, David T.

    1991-01-01

    Solidified CO2 pellets are an effective blast media for the cleaning of a variety of materials. CO2 is obtained from the waste gas streams generated from other manufacturing processes and therefore does not contribute to the greenhouse effect, depletion of the ozone layer, or the environmental burden of hazardous waste disposal. The system is capable of removing as much as 90 percent of the contamination from a surface in one pass or to a high cleanliness level after multiple passes. Although the system is packaged and designed for manual hand held cleaning processes, the nozzle can easily be attached to the end effector of a robot for automated cleaning of predefined and known geometries. Specific tailoring of cleaning parameters are required to optimize the process for each individual geometry. Using optimum cleaning parameters the CO2 systems were shown to be capable of cleaning to molecular levels below 0.7 mg/sq ft. The systems were effective for removing a variety of contaminants such as lubricating oils, cutting oils, grease, alcohol residue, biological films, and silicone. The system was effective on steel, aluminum, and carbon phenolic substrates.

  18. [Study on assistant cleaning of ultrasound for the ultrafiltration membrane].

    PubMed

    Zhang, Guojun; Liu, Zhongzhou

    2003-11-01

    The effects of ultrasounds with different frequency on membrane performance were investigated in this paper. The experimental results show that there were nearly no effects of 20 W ultrasound on membrane retention coefficient, but it decreased seriously when the ultrasound power was above 30 W. On the basis of these results, low frequency ultrasound (20 W) was introduced to assist the chemical cleaning in the ultrafiltration process of wastewater from bank note printing works. The cleaning time could be shortened from 20-30 min to 5 min by the ultra-liberation and ultra-blend effects of ultrasound, therefore, the cleaning efficiency was highly improved. However, the fouling substances could not be cleaned entirely in the simple physical cleaning process by SEM analysis.

  19. The unexpected confluence of plasma physics and climate science: On the lives and legacies of Norman Rostoker and Sherry Rowland

    NASA Astrophysics Data System (ADS)

    Mackey, Katherine R. M.

    2016-03-01

    The Norman Rostoker Memorial Symposium brought together approximately 150 attendees to share their recent work and to reflect on the contributions of Norman Rostoker to the field of plasma physics and the advancement of fusion as a source of renewable clean energy. The field has changed considerably in a few short decades, with theoretical advances and technological innovations evolving in lock step. Over those same decades, our understanding of human induced climate change has also evolved; measurable changes in Earth's physical, chemical, and biological processes have already been observed, and these will likely intensify in the coming decades. Never before has the need for clean energy been more pronounced, or the need for transformative solutions more pressing. As scientists work with legislators, journalists, and the public to take actions to address the threat of climate change, there is much to be learned from the legacies of innovators like Norman Rostoker, who have tackled complex problems with scientific insight and determination even when the odds were stacked against them. I write this from the perspective on an Earth system scientist who studies photosynthesis and the biogeochemistry of the oceans, and my statements about plasma physics and Norman Rostoker are based on information I gathered from the colloquium and from many enjoyable conversations with his friends and colleagues.

  20. The unexpected confluence of plasma physics and climate science: On the lives and legacies of Norman Rostoker and Sherry Rowland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, Katherine R. M.

    The Norman Rostoker Memorial Symposium brought together approximately 150 attendees to share their recent work and to reflect on the contributions of Norman Rostoker to the field of plasma physics and the advancement of fusion as a source of renewable clean energy. The field has changed considerably in a few short decades, with theoretical advances and technological innovations evolving in lock step. Over those same decades, our understanding of human induced climate change has also evolved; measurable changes in Earth’s physical, chemical, and biological processes have already been observed, and these will likely intensify in the coming decades. Never beforemore » has the need for clean energy been more pronounced, or the need for transformative solutions more pressing. As scientists work with legislators, journalists, and the public to take actions to address the threat of climate change, there is much to be learned from the legacies of innovators like Norman Rostoker, who have tackled complex problems with scientific insight and determination even when the odds were stacked against them. I write this from the perspective on an Earth system scientist who studies photosynthesis and the biogeochemistry of the oceans, and my statements about plasma physics and Norman Rostoker are based on information I gathered from the colloquium and from many enjoyable conversations with his friends and colleagues.« less

  1. Fluidized-Bed Cleaning of Silicon Particles

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Hsu, George C.

    1987-01-01

    Fluidized-bed chemical cleaning process developed to remove metallic impurities from small silicon particles. Particles (250 micrometer in size) utilized as seed material in silane pyrolysis process for production of 1-mm-size silicon. Product silicon (1 mm in size) used as raw material for fabrication of solar cells and other semiconductor devices. Principal cleaning step is wash in mixture of hydrochloric and nitric acids, leaching out metals and carrying them away as soluble chlorides. Particles fluidized by cleaning solution to assure good mixing and uniform wetting.

  2. Materials Science Clean Room Facility at Tulane University (Final Technical Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altiero, Nicholas

    2010-09-30

    The project involves conversion of a 3,000 sq. ft. area into a clean room facility for materials science research. It will be accomplished in phases. Phase I will involve preparation of the existing space, acquisition and installation of clean room equipped with a pulsed laser deposition (PLD) processing system, and conversion of ancillary space to facilitate the interface with the clean room. From a capital perspective, Phases II and III will involve the acquisition of additional processing, fabrication, and characterization equipment and capabilities.

  3. An improved method for polarimetric image restoration in interferometry

    NASA Astrophysics Data System (ADS)

    Pratley, Luke; Johnston-Hollitt, Melanie

    2016-11-01

    Interferometric radio astronomy data require the effects of limited coverage in the Fourier plane to be accounted for via a deconvolution process. For the last 40 years this process, known as `cleaning', has been performed almost exclusively on all Stokes parameters individually as if they were independent scalar images. However, here we demonstrate for the case of the linear polarization P, this approach fails to properly account for the complex vector nature resulting in a process which is dependent on the axes under which the deconvolution is performed. We present here an improved method, `Generalized Complex CLEAN', which properly accounts for the complex vector nature of polarized emission and is invariant under rotations of the deconvolution axes. We use two Australia Telescope Compact Array data sets to test standard and complex CLEAN versions of the Högbom and SDI (Steer-Dwedney-Ito) CLEAN algorithms. We show that in general the complex CLEAN version of each algorithm produces more accurate clean components with fewer spurious detections and lower computation cost due to reduced iterations than the current methods. In particular, we find that the complex SDI CLEAN produces the best results for diffuse polarized sources as compared with standard CLEAN algorithms and other complex CLEAN algorithms. Given the move to wide-field, high-resolution polarimetric imaging with future telescopes such as the Square Kilometre Array, we suggest that Generalized Complex CLEAN should be adopted as the deconvolution method for all future polarimetric surveys and in particular that the complex version of an SDI CLEAN should be used.

  4. Accelerating Clean Energy Commercialization. A Strategic Partnership Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Richard; Pless, Jacquelyn; Arent, Douglas J.

    Technology development in the clean energy and broader clean tech space has proven to be challenging. Long-standing methods for advancing clean energy technologies from science to commercialization are best known for relatively slow, linear progression through research and development, demonstration, and deployment (RDD&D); and characterized by well-known valleys of death for financing. Investment returns expected by traditional venture capital investors have been difficult to achieve, particularly for hardware-centric innovations, and companies that are subject to project finance risks. Commercialization support from incubators and accelerators has helped address these challenges by offering more support services to start-ups; however, more effort ismore » needed to fulfill the desired clean energy future. The emergence of new strategic investors and partners in recent years has opened up innovative opportunities for clean tech entrepreneurs, and novel commercialization models are emerging that involve new alliances among clean energy companies, RDD&D, support systems, and strategic customers. For instance, Wells Fargo and Company (WFC) and the National Renewable Energy Laboratory (NREL) have launched a new technology incubator that supports faster commercialization through a focus on technology development. The incubator combines strategic financing, technology and technical assistance, strategic customer site validation, and ongoing financial support.« less

  5. Radioactive Waste Conditioning, Immobilisation, And Encapsulation Processes And Technologies: Overview And Advances (Chapter 7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.; Lee, William E.; Ojovan, Michael I.

    The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of lowmore » level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate wastes are also discussed. The various processing technologies are cross-referenced to the various types of wasteforms since often a particular type of wasteform can be made by a variety of different processing technologies.« less

  6. EUV process establishment through litho and etch for N7 node

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yuhei; Kawakami, Shinichiro; Kubota, Minoru; Matsunaga, Koichi; Nafus, Kathleen; Foubert, Philippe; Mao, Ming

    2016-03-01

    Extreme ultraviolet lithography (EUVL) technology is steadily reaching high volume manufacturing for 16nm half pitch node and beyond. However, some challenges, for example scanner availability and resist performance (resolution, CD uniformity (CDU), LWR, etch behavior and so on) are remaining. Advance EUV patterning on the ASML NXE:3300/ CLEAN TRACK LITHIUS Pro Z- EUV litho cluster is launched at imec, allowing for finer pitch patterns for L/S and CH. Tokyo Electron Ltd. and imec are continuously collabo rating to develop manufacturing quality POR processes for NXE:3300. TEL's technologies to enhance CDU, defectivity and LWR/LER can improve patterning performance. The patterning is characterized and optimized in both litho and etch for a more complete understanding of the final patterning performance. This paper reports on post-litho CDU improvement by litho process optimization and also post-etch LWR reduction by litho and etch process optimization.

  7. Clean Cities: Building Partnerships to Reduce Petroleum Use in Transportation (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Clean Cities program, which builds partnerships to reduce petroleum use in transportation in communities across the country. The U.S. Department of Energy's Clean Cities initiative advances the nation's economic, environmental, and energy security by supporting local actions to reduce petroleum consumption in transportation. Clean Cities accomplishes this work through the activities of nearly 100 local coalitions. These coalitions provide resources and technical assistance in the deployment of alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies, as they emerge. Clean Cities overarching goal ismore » to reduce U.S. petroleum use by 2.5 billion gallons per year by 2020. To achieve this goal, Clean Cities employs three strategies: (1) Replace petroleum with alternative and renewable fuels, including natural gas, propane, electricity, ethanol, biodiesel, and hydrogen; (2) Reduce petroleum consumption through smarter driving practices and fuel economy improvements; and (3) Eliminate petroleum use through idle reduction and other fuel-saving technologies and practices.« less

  8. Electrokinetic decontamination of concrete. Final report, August 3, 1993--September 15, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-31

    The ELECTROSORB{reg_sign} {open_quotes}C{close_quotes} process is an electrokinetic process for decontaminating concrete. ELECTROSORB{reg_sign} {open_quotes}C{close_quotes} uses a carpet-like extraction pad which is placed on the contaminated concrete surface. An electrolyte solution is circulated from a supporting module. This module keeps the electrolyte solution clean. The work is advancing through the engineering development stage with steady progress toward a full scale demonstration unit which will be ready for incorporation in the DOE Large Scale Demonstration Program by Summer 1997. A demonstration was carried out at the Mound Facility in Miamisburg, Ohio, in June 1996. Third party verification by EG&G verified the effectiveness ofmore » the process. Results of this work and the development work that proceeded are described herein.« less

  9. Towards sustainable and safe apparel cleaning methods: A review.

    PubMed

    Troynikov, Olga; Watson, Christopher; Jadhav, Amit; Nawaz, Nazia; Kettlewell, Roy

    2016-11-01

    Perchloroethylene (PERC) is a compound commonly used as a solvent in dry cleaning, despite its severe health and environmental impacts. In recent times chemicals such as hydrocarbons, GreenEarth(®), acetal and liquid carbon dioxide have emerged as less damaging substitutes for PERC, and an even more sustainable water-based wet cleaning process has been developed. We employed a systematic review approach to provide a comprehensive overview of the existing research evidence in the area of sustainable and safe apparel cleaning methods and care. Our review describes traditional professional dry cleaning methods, as well as those that utilise solvents other than PERC, and their ecological attributes. In addition, the new professional wet cleaning process is discussed. Finally, we address the health hazards of the various solvents used in dry cleaning and state-of-the-art solvent residue trace analysis techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Alternative, Green Processes for the Precision Cleaning of Aerospace Hardware

    NASA Technical Reports Server (NTRS)

    Maloney, Phillip R.; Grandelli, Heather Eilenfield; Devor, Robert; Hintze, Paul E.; Loftin, Kathleen B.; Tomlin, Douglas J.

    2014-01-01

    Precision cleaning is necessary to ensure the proper functioning of aerospace hardware, particularly those systems that come in contact with liquid oxygen or hypergolic fuels. Components that have not been cleaned to the appropriate levels may experience problems ranging from impaired performance to catastrophic failure. Traditionally, this has been achieved using various halogenated solvents. However, as information on the toxicological and/or environmental impacts of each came to light, they were subsequently regulated out of use. The solvent currently used in Kennedy Space Center (KSC) precision cleaning operations is Vertrel MCA. Environmental sampling at KSC indicates that continued use of this or similar solvents may lead to high remediation costs that must be borne by the Program for years to come. In response to this problem, the Green Solvents Project seeks to develop state-of-the-art, green technologies designed to meet KSCs precision cleaning needs.Initially, 23 solvents were identified as potential replacements for the current Vertrel MCA-based process. Highly halogenated solvents were deliberately omitted since historical precedents indicate that as the long-term consequences of these solvents become known, they will eventually be regulated out of practical use, often with significant financial burdens for the user. Three solvent-less cleaning processes (plasma, supercritical carbon dioxide, and carbon dioxide snow) were also chosen since they produce essentially no waste stream. Next, experimental and analytical procedures were developed to compare the relative effectiveness of these solvents and technologies to the current KSC standard of Vertrel MCA. Individually numbered Swagelok fittings were used to represent the hardware in the cleaning process. First, the fittings were cleaned using Vertrel MCA in order to determine their true cleaned mass. Next, the fittings were dipped into stock solutions of five commonly encountered contaminants and were weighed again showing typical contaminant deposition levels of approximately 0.00300g per part. They were then cleaned by the solvent or process being tested and then weighed a third time which allowed for the calculation of the cleaning efficiency of the test solvent or process.Based on preliminary experiments, five solvents (ethanol, isopropanol, acetone, ethyl acetate, and tert-butyl acetate) were down selected for further testing. When coupled with ultrasonic agitation, these solvents removed hydrocarbon contaminants as well as Vertrel MCA and showed improved removal of perfluorinated greases. Supercritical carbon dioxide did an excellent job dissolving each of the five contaminants but did a poor job of removing Teflon particles found in the perfluorinated greases. Plasma cleaning efficiency was found to be dependent on which supply gas was used, exposure time, and gas pressure. Under optimized conditions it was found that breathing air, energized to the plasma phase, was able to remove nearly 100% of the contamination.These findings indicate that alternative cleaning methods are indeed able to achieve precision levels of cleanliness. Currently, our team is working with a commercial cleaning company to get independent verification of our results. We are also evaluating the technical and financial aspects of scaling these processes to a size capable of supporting the future cleaning needs of KSC.

  11. Surface cleaning and pure nitridation of GaSb by in-situ plasma processing

    NASA Astrophysics Data System (ADS)

    Gotow, Takahiro; Fujikawa, Sachie; Fujishiro, Hiroki I.; Ogura, Mutsuo; Chang, Wen Hsin; Yasuda, Tetsuji; Maeda, Tatsuro

    2017-10-01

    A clean and flat GaSb surface without native oxides has been attained by H2 plasma cleaning and subsequent in-situ N2 plasma nitridation process at 300 oC. The mechanisms of thermal desorption behavior of native oxides on GaSb have been studied by thermal desorption spectroscopy (TDS) analysis. The suitable heat treatment process window for preparing a clean GaSb surface is given. Auger electron spectroscopy (AES) analysis indicates that native oxides were completely removed on the GaSb surface after H2 plasma exposure and the pure nitridation of the clean GaSb surface was obtained at a relatively low temperature of 300 °C. This pure nitridation of GaSb have a possibility to be used as a passivation layer for high quality GaSb MOS devices.

  12. The Third Nuclear Age: How I Learned to Start Worrying about the Clean Bomb

    DTIC Science & Technology

    2013-02-14

    Fourth generation fusion nuclear weapons (FGNW) represent a significant improvement in nuclear weapons technology and suggest the potential for...future challenges that the United States and its Air Force may face twenty-five years from now. This paper does not answer whether the fusion technology...is possible and assumes it as an inevitable technological advancement. Instead, this study predicts a world in which low yield, clean fusion

  13. Recovery Act. Advanced Building Insulation by the CO 2 Foaming Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Arthur

    In this project, ISTN proposed to develop a new "3rd" generation of insulation technology. The focus was a cost-effective foaming process that could be used to manufacture XPS and other extruded polymer foams using environmentally clean blowing agents, and ultimately achieve higher R-values than existing products while maintaining the same level of cost-efficiency. In the U.S., state-of-the-art products are primarily manufactured by two companies: Dow and Owens Corning. These products (i.e., STYROFOAM and FOAMULAR) have a starting thermal resistance of R-5.0/inch, which declines over the life of the product as the HFC blowing agents essential to high R-value exchange withmore » air in the environment. In the existing technologies, the substitution of CO2 for HFCs as the primary foaming agent results in a much lower starting R-value, as evidenced in CO2-foamed varieties of XPS in Europe with R-4.2/inch insulation value. The major overarching achievement from this project was ISTN's development of a new process that uses CO2 as a clean blowing agent to achieve up to R-5.2/inch at the manufacturing scale, with a production cost on a per unit basis that is less than the cost of Dow and Owens Corning XPS products.« less

  14. Contamination control methods for gases used in the microlithography process

    NASA Astrophysics Data System (ADS)

    Rabellino, Larry; Applegarth, Chuck; Vergani, Giorgio

    2002-07-01

    Sensitivity to contamination continues to increase as the technology shrinks from 365 nm I-line lamp illumination to 13.4 nm Extreme Ultraviolet laser activated plasma. Gas borne impurities can be readily distributed within the system, remaining both suspended in the gas and attached to critical surfaces. Effects from a variety of contamination, some well characterized and others not, remain a continuing obstacle for stepper manufacturers and users. Impurities like oxygen, moisture and hydrocarbons in parts per billion levels can absorb light, reducing the light intensity and subsequently reducing the consistence of the process. Moisture, sulfur compounds, ammonia, acid compounds and organic compounds such as hydrocarbons can deposit on lens or mirror surfaces affecting image quality. Regular lens replacement or removal for cleaning is a costly option and in-situ cleaning processes must be carefully managed to avoid recontamination of the system. The contamination can come from outside the controlled environment (local gas supply, piping system, & leaks), or from the materials moving into the controlled environment; or contamination may be generated inside the controlled environment as a result of the process itself. The release of amines can occur as a result of the degassing of the photo-resists. For the manufacturer and user of stepper equipment, the challenge is not in predictable contamination, but the variable or unpredictable contamination in the process. One type of unpredictable contamination may be variation in the environmental conditions when producing the nitrogen gas and Clean Dry Air (CDA). Variation in the CDA, nitrogen and xenon may range from parts per billion to parts per million. The risk due to uncontrolled or unmonitored variation in gas quality can be directly related to product defects. Global location can significantly affect the gas quality, due to the ambient air quality (for nitrogen and CDA), production methods, gas handling equipment maintenance, transportation and storage processes. Fortunately, technology has been developed which can remove the killer impurities from these processes. This paper will review processes, and purification media that can be used in the photolithography processes, and detail the advances in purification technologies for removal of hydrocarbons, oxygen (where applicable), moisture, carbon dioxide, carbon monoxide, hydrogen, nitrogen (where applicable), sulfur compounds, ammonia and acid compounds from process gases such as nitrogen, CDA, argon, krypton and xenon.

  15. Chemical cleaning/disinfection and ageing of organic UF membranes: a review.

    PubMed

    Regula, C; Carretier, E; Wyart, Y; Gésan-Guiziou, G; Vincent, A; Boudot, D; Moulin, P

    2014-06-01

    Membrane separation processes have become a basic unit operation for process design and product development. These processes are used in a variety of separation and concentration steps, but in all cases, the membranes must be cleaned regularly to remove both organic and inorganic material deposited on the surface and/or into the membrane bulk. Cleaning/disinfection is a vital step in maintaining the permeability and selectivity of the membrane in order to get the plant to its original capacity, to minimize risks of bacteriological contamination, and to make acceptable products. For this purpose, a large number of chemical cleaning/disinfection agents are commercially available. In general, these cleaning/disinfection agents have to improve the membrane flux to a certain extent. However, they can also cause irreversible damages in membrane properties and performances over the long term. Until now, there is considerably less literature dedicated to membrane ageing than to cleaning/disinfection. The knowledge in cleaning/disinfection efficiency has recently been improved. But in order to develop optimized cleaning/disinfection protocols there still remains a challenge to better understand membrane ageing. In order to compensate for the lack of correlated cleaning/disinfection and ageing data from the literature, this paper investigates cleaning/disinfection efficiencies and ageing damages of organic ultrafiltration membranes. The final aim is to provide less detrimental cleaning/disinfection procedures and to propose some guidelines which should have been taken into consideration in term of membrane ageing studies. To carry out this study, this article will detail the background of cleaning/disinfection and aging membrane topics in a first introductive part. In a second part, key factors and endpoints of cleaning/disinfection and aging membranes will be discussed deeply: the membrane role and the cleaning parameters roles, such as water quality, storing conditions, cleaning/disinfection/aging agents/conditions/protocols. The third and last part will be developed the parameters, methods and ways of characterization at our disposal and commonly used to develop and implement membrane cleaning and/or ageing studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The Research and Implementation of MUSER CLEAN Algorithm Based on OpenCL

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Chen, K.; Deng, H.; Wang, F.; Mei, Y.; Wei, S. L.; Dai, W.; Yang, Q. P.; Liu, Y. B.; Wu, J. P.

    2017-03-01

    It's urgent to carry out high-performance data processing with a single machine in the development of astronomical software. However, due to the different configuration of the machine, traditional programming techniques such as multi-threading, and CUDA (Compute Unified Device Architecture)+GPU (Graphic Processing Unit) have obvious limitations in portability and seamlessness between different operation systems. The OpenCL (Open Computing Language) used in the development of MUSER (MingantU SpEctral Radioheliograph) data processing system is introduced. And the Högbom CLEAN algorithm is re-implemented into parallel CLEAN algorithm by the Python language and PyOpenCL extended package. The experimental results show that the CLEAN algorithm based on OpenCL has approximately equally operating efficiency compared with the former CLEAN algorithm based on CUDA. More important, the data processing in merely CPU (Central Processing Unit) environment of this system can also achieve high performance, which has solved the problem of environmental dependence of CUDA+GPU. Overall, the research improves the adaptability of the system with emphasis on performance of MUSER image clean computing. In the meanwhile, the realization of OpenCL in MUSER proves its availability in scientific data processing. In view of the high-performance computing features of OpenCL in heterogeneous environment, it will probably become the preferred technology in the future high-performance astronomical software development.

  17. Evaluation of pressurized water cleaning systems for hardware refurbishment

    NASA Technical Reports Server (NTRS)

    Dillard, Terry W.; Deweese, Charles D.; Hoppe, David T.; Vickers, John H.; Swenson, Gary J.; Hutchens, Dale E.

    1995-01-01

    Historically, refurbishment processes for RSRM motor cases and components have employed environmentally harmful materials. Specifically, vapor degreasing processes consume and emit large amounts of ozone depleting compounds. This program evaluates the use of pressurized water cleaning systems as a replacement for the vapor degreasing process. Tests have been conducted to determine if high pressure water washing, without any form of additive cleaner, is a viable candidate for replacing vapor degreasing processes. This paper discusses the findings thus far of Engineering Test Plan - 1168 (ETP-1168), 'Evaluation of Pressurized Water Cleaning Systems for Hardware Refurbishment.'

  18. Quality Partners

    ERIC Educational Resources Information Center

    Clark, Bob

    2006-01-01

    Green cleaning is gaining momentum. It is a method of cleaning and maintaining facilities that is friendly to the environment and healthful for students and staff. The process uses environmentally friendly and nontoxic cleaning products and practices that must be third-party-certified. Using green cleaning practices and products can result in…

  19. SAGE SOLVENT ALTERNATIVES GUIDE: SYSTEM IMPROVEMENTS FOR SELECTING INDUSTRIAL SURFACE CLEANING ALTERNATIVES

    EPA Science Inventory

    The paper describes computer software, called SAGE, that can provide not only cleaning recommendations but also general information on various surface cleaning options. In short, it is an advisory system which can provide users with vital information on the cleaning process optio...

  20. Dynamic Membrane Technology for Printing Wastewater Reuse

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Lu, Xujie; Chen, Jihua

    As environmental regulations become rigid and the cost of freshwater increases, wastewater is considered as a major resource in China. The paper presented a study on the implementation of the advanced treatment process using dynamic membrane (DM) in reusing of printing wastewater. The DM was well formed by circulating 1.5g/L of PAC in 20 minutes, the trans-membrane pressure of 200 kPa and the cross-flow velocity of 0.75m/s. The printing effluents were treated in effluent treatment plants comprising a physicochemical option followed by biological process. The treated effluent contained chemical oxygen demand (COD), color and turbidity in the range of 45-60 mg/L, 0.030-0.045 (absorbance at 420 nm) and 3-5 NTU. The results showed that the COD, color and turbidity removal efficiencies of the DM permeate were 84%, 85% and 80%, respectively. The wastewater treated by DM was reused as process water and the final concentrated retentate could be discharged directly into sewage treatment works with no additional treatments. Cleaning and regeneration of DM were very convenient if necessary. The proper process was that the polluted DM was cleaned with tap water at high cross-flow velocity. When irreversible pollutants accumulate, it would be rinsed with chemicals tested and the membrane flux would be restored up to 95%. The result showed that DM was considered as a promising method for purification aimed at reuse of printing wastewater, resulting in direct environmental and economic benefits.

  1. CD and defect improvement challenges for immersion processes

    NASA Astrophysics Data System (ADS)

    Ehara, Keisuke; Ema, Tatsuhiko; Yamasaki, Toshinari; Nakagawa, Seiji; Ishitani, Seiji; Morita, Akihiko; Kim, Jeonghun; Kanaoka, Masashi; Yasuda, Shuichi; Asai, Masaya

    2009-03-01

    The intention of this study is to develop an immersion lithography process using advanced track solutions to achieve world class critical dimension (CD) and defectivity performance in a state of the art manufacturing facility. This study looks at three important topics for immersion lithography: defectivity, CD control, and wafer backside contamination. The topic of defectivity is addressed through optimization of coat, develop, and rinse processes as well as implementation of soak steps and bevel cleaning as part of a comprehensive defect solution. Develop and rinse processing techniques are especially important in the effort to achieve a zero defect solution. Improved CD control is achieved using a biased hot plate (BHP) equipped with an electrostatic chuck. This electrostatic chuck BHP (eBHP) is not only able to operate at a very uniform temperature, but it also allows the user to bias the post exposure bake (PEB) temperature profile to compensate for systematic within-wafer (WiW) CD non-uniformities. Optimized CD results, pre and post etch, are presented for production wafers. Wafer backside particles can cause focus spots on an individual wafer or migrate to the exposure tool's wafer stage and cause problems for a multitude of wafers. A basic evaluation of the cleaning efficiency of a backside scrubber unit located on the track was performed as a precursor to a future study examining the impact of wafer backside condition on scanner focus errors as well as defectivity in an immersion scanner.

  2. Development of Statistical Process Control Methodology for an Environmentally Compliant Surface Cleaning Process in a Bonding Laboratory

    NASA Technical Reports Server (NTRS)

    Hutchens, Dale E.; Doan, Patrick A.; Boothe, Richard E.

    1997-01-01

    Bonding labs at both MSFC and the northern Utah production plant prepare bond test specimens which simulate or witness the production of NASA's Reusable Solid Rocket Motor (RSRM). The current process for preparing the bonding surfaces employs 1,1,1-trichloroethane vapor degreasing, which simulates the current RSRM process. Government regulations (e.g., the 1990 Amendments to the Clean Air Act) have mandated a production phase-out of a number of ozone depleting compounds (ODC) including 1,1,1-trichloroethane. In order to comply with these regulations, the RSRM Program is qualifying a spray-in-air (SIA) precision cleaning process using Brulin 1990, an aqueous blend of surfactants. Accordingly, surface preparation prior to bonding process simulation test specimens must reflect the new production cleaning process. The Bonding Lab Statistical Process Control (SPC) program monitors the progress of the lab and its capabilities, as well as certifies the bonding technicians, by periodically preparing D6AC steel tensile adhesion panels with EA-91 3NA epoxy adhesive using a standardized process. SPC methods are then used to ensure the process is statistically in control, thus producing reliable data for bonding studies, and identify any problems which might develop. Since the specimen cleaning process is being changed, new SPC limits must be established. This report summarizes side-by-side testing of D6AC steel tensile adhesion witness panels and tapered double cantilevered beams (TDCBs) using both the current baseline vapor degreasing process and a lab-scale spray-in-air process. A Proceco 26 inches Typhoon dishwasher cleaned both tensile adhesion witness panels and TDCBs in a process which simulates the new production process. The tests were performed six times during 1995, subsequent statistical analysis of the data established new upper control limits (UCL) and lower control limits (LCL). The data also demonstrated that the new process was equivalent to the vapor degreasing process.

  3. Ion-Deposited Polished Coatings

    NASA Technical Reports Server (NTRS)

    Banks, B. A.

    1986-01-01

    Polished, dense, adherent coatings relatively free of imperfections. New process consists of using broad-beam ion source in evacuated chamber to ion-clean rotating surface that allows grazing incidence of ion beam. This sputter cleans off absorbed gases, organic contaminants, and oxides of mirror surface. In addition to cleaning, surface protrusions sputter-etched away. Process particularly adaptable to polishing of various substrates for optical or esthetic purposes.

  4. Non-aqueous cleaning solvent substitution

    NASA Technical Reports Server (NTRS)

    Meier, Gerald J.

    1994-01-01

    A variety of environmental, safety, and health concerns exist over use of chlorinated and fluorinated cleaning solvents. Sandia National Laboratories, Lawrence Livermore National Laboratories, and the Kansas City Division of AlliedSignal have combined efforts to focus on finding alternative cleaning solvents and processes which are effective, environmentally safe, and compliant with local, state, and federal regulations. An alternative solvent has been identified, qualified, and implemented into production of complex electronic assemblies, where aqueous and semi-aqueous cleaning processes are not allowed. Extensive compatibility studies were performed with components, piece-parts, and materials. Electrical testing and accelerated aging were used to screen for detrimental, long-term effects. A terpene, d-limonene, was selected as the solvent of choice, and it was found to be compatible with the components and materials tested. A brief history of the overall project will be presented, along with representative cleaning efficiency results, compatibility results, and residual solvent data. The electronics industry is constantly searching for proven methods and environmentally-safe materials to use in manufacturing processes. The information in this presentation will provide another option to consider on future projects for applications requiring high levels of quality, reliability, and cleanliness from non-aqueous cleaning processes.

  5. The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M.

    1991-12-31

    The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protectionmore » Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.« less

  6. The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M.

    1991-01-01

    The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protectionmore » Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.« less

  7. Microstructural features of friction stir welded dissimilar Aluminium alloys AA2219-AA7475

    NASA Astrophysics Data System (ADS)

    Zaman Khan, Noor; Ubaid, Mohammed; Siddiquee, Arshad Noor; Khan, Zahid A.; Al-Ahmari, Abdulrahman; Chen, Xizhang; Haider Abidi, Mustufa

    2018-05-01

    High strength, good corrosion resistance, light weight make aluminium alloys a material of choice in many industrial sectors like aerospace, marine etc. Problems associated with welding of these alloys by fusion welding processes restricted their use in various industries. Friction stir welding (FSW), a clean solid-state joining process, easily overcomes various difficulties encountered during conventional fusion welding processes. In the present work, the effect of rotational speed (710 rpm, 900 rpm and 1120 rpm) on micro-hardness distribution and microstructure of FSWed dissimilar aluminium alloy joints were analyzed. Plates of AA7475-T761 and AA2219-O having thickness of 2.5 mm were welded by fixing AA7475 on retreating side (RS) and AA2219 on advancing side (AS). Welded joints were characterized by Vickers micro-hardness testing, scanning electron microscopy (SEM) and optical microscopy (OM). Results revealed that rotational speed significantly affects the micro-hardness due to increase in grain size, coarsening and dissolution of strengthening precipitates and re-precipitation. Higher micro-hardness values were observed in stir zone due to grain refinement and re-precipitation. Minimum micro-hardness value was observed at the TMAZ/HAZ of advancing side due to thermal softening.

  8. Energy storage deployment and innovation for the clean energy transition

    NASA Astrophysics Data System (ADS)

    Kittner, Noah; Lill, Felix; Kammen, Daniel M.

    2017-09-01

    The clean energy transition requires a co-evolution of innovation, investment, and deployment strategies for emerging energy storage technologies. A deeply decarbonized energy system research platform needs materials science advances in battery technology to overcome the intermittency challenges of wind and solar electricity. Simultaneously, policies designed to build market growth and innovation in battery storage may complement cost reductions across a suite of clean energy technologies. Further integration of R&D and deployment of new storage technologies paves a clear route toward cost-effective low-carbon electricity. Here we analyse deployment and innovation using a two-factor model that integrates the value of investment in materials innovation and technology deployment over time from an empirical dataset covering battery storage technology. Complementary advances in battery storage are of utmost importance to decarbonization alongside improvements in renewable electricity sources. We find and chart a viable path to dispatchable US$1 W-1 solar with US$100 kWh-1 battery storage that enables combinations of solar, wind, and storage to compete directly with fossil-based electricity options.

  9. Development of megasonic cleaning for silicon wafers

    NASA Technical Reports Server (NTRS)

    Mayer, A.

    1980-01-01

    A cleaning and drying system for processing at least 2500 three in. diameter wafers per hour was developed with a reduction in process cost. The system consists of an ammonia hydrogen peroxide bath in which both surfaces of 3/32 in. spaced, ion implanted wafers are cleaned in quartz carriers moved on a belt past two pairs of megasonic transducers. The wafers are dried in the novel room temperature, high velocity air dryer in the same carriers used for annealing. A new laser scanner was used effectively to monitor the cleaning ability on a sampling basis.

  10. Latest technologies on ultrasonic cleaning

    NASA Astrophysics Data System (ADS)

    Hofstetter, Hans U.

    2007-05-01

    UCM-AG manufactures Ultrasonic Cleaning Machines for highest quality requirements. The company has the know-how for cleaning and supplies cleaning systems together with the cleaning process. With a UCM of Switzerland Cleaning System, the customer gets the system itself, the cleaning process with a guarantee for the specified result but also all auxiliary equipment needed for perfect results. Therefore UCM also supplies fixtures, linkage to existing automated fabrication facilities water treatment plants etc. Thus the UCM customer gets a turnkey installation - ready to operate and including know-how. UCM of Switzerland will describe the latest technology in ultrasonic precision cleaning on the example of a recent and sophisticated installation. The installation consists of three interlinked cleaning systems which operate completely automated. The 1st system is designed for pre-cleaning to remove waxes, pitch and protection lacquers with environmentally friendly solvents which are non hazardous to the health of the operators. The 2nd system cleans the parts prior to inspection and operates with neutral or slightly alkaline detergents. The 3rd system is designed for final cleaning prior to vacuum coating and perfect results are required. It combines cleaning tanks and DI-Water rinse with lift out and vacuum dryer. The installation combines the latest technologies in ultrasonic cleaning for precision optical components. The system employs multi frequency immersed ultrasonic transducers and special rinsing technologies The complete installation will be explained in detail; the concept in its whole, the lay out, the particular setup of each cleaning system etc. will be shown and explained together with construction particulars of the complete installation.

  11. 40 CFR 463.20 - Applicability; description of the cleaning water subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning... the cleaning water subcategory are processes where water comes in contact with the plastic product for... equipment, such as molds and mandrels, that contact the plastic material for the purpose of cleaning the...

  12. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In clean room C of Astrotech's Payload Processing Facility, a worker wearing a "bunny suit," or clean-room attire, begins removing the protective cover surrounding the Dawn spacecraft. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  13. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In clean room C of Astrotech's Payload Processing Facility, a worker wearing a "bunny suit," or clean-room attire, looks over the Dawn spacecraft after removing the protective cover, at bottom right. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  14. NASA Principal Center for Review of Clean Air Act Regulations

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, Marceia; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    The Clean Air Act (CAA) regulations have greatly impacted materials and processes utilized in the manufacture of aerospace hardware. Code JE/ NASA's Environmental Management Division at NASA Headquarters recognized the need for a formal, Agency-wide review process of CAA regulations. Marshall Space Flight Center (MSFC) was selected as the 'Principal Center for Review of Clean Air Act Regulations'. This presentation describes the centralized support provided by MSFC for the management and leadership of NASA's CAA regulation review process.

  15. 49 CFR 624.11 - Reporting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....C. 5308 who purchase or lease hybrid electric, battery electric and fuel cell vehicles shall report... propulsion technology systems, and (5) Maintenance costs associated with the clean fuels or advanced...

  16. 49 CFR 624.11 - Reporting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....C. 5308 who purchase or lease hybrid electric, battery electric and fuel cell vehicles shall report... propulsion technology systems, and (5) Maintenance costs associated with the clean fuels or advanced...

  17. 49 CFR 624.11 - Reporting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....C. 5308 who purchase or lease hybrid electric, battery electric and fuel cell vehicles shall report... propulsion technology systems, and (5) Maintenance costs associated with the clean fuels or advanced...

  18. 49 CFR 624.11 - Reporting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....C. 5308 who purchase or lease hybrid electric, battery electric and fuel cell vehicles shall report... propulsion technology systems, and (5) Maintenance costs associated with the clean fuels or advanced...

  19. 49 CFR 624.11 - Reporting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....C. 5308 who purchase or lease hybrid electric, battery electric and fuel cell vehicles shall report... propulsion technology systems, and (5) Maintenance costs associated with the clean fuels or advanced...

  20. Power Systems Development Facility Gasification Test Campaing TC18

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southern Company Services

    2005-08-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifiermore » train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.« less

  1. Optimization and analysis of NF3 in situ chamber cleaning plasmas

    NASA Astrophysics Data System (ADS)

    Ji, Bing; Yang, James H.; Badowski, Peter R.; Karwacki, Eugene J.

    2004-04-01

    We report on the optimization and analysis of a dilute NF3 in situ plasma-enhanced chemical vapor deposition chamber cleaning plasma for an Applied Materials P-5000 DxL chamber. Using design of experiments methodology, we identified and optimized operating conditions within the following process space: 10-15 mol % NF3 diluted with helium, 200-400 sccm NF3 flow rate, 2.5-3.5 Torr chamber pressure, and 950 W rf power. Optical emission spectroscopy and Fourier transform infrared spectroscopy were used to endpoint the cleaning processes and to quantify plasma effluent emissions, respectively. The results demonstrate that dilute NF3-based in situ chamber cleaning can be a viable alternative to perfluorocarbon-based in situ cleans with added benefits. The relationship between chamber clean time and fluorine atom density in the plasma is also investigated.

  2. KENNEDY SPACE CENTER, FLA. - A KSC employee secures a foot and leg cover of his "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee secures a foot and leg cover of his "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  3. KENNEDY SPACE CENTER, FLA. - A KSC employee dons the head and face cover of a "bunny suit," part of standard clean room apparel, before entering a clean room. This apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee dons the head and face cover of a "bunny suit," part of standard clean room apparel, before entering a clean room. This apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  4. KENNEDY SPACE CENTER, FLA. - A KSC employee dons the coverall of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee dons the coverall of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  5. KENNEDY SPACE CENTER, FLA. - A KSC employee dons the foot and leg covers of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee dons the foot and leg covers of a "bunny suit," part of standard clean room apparel, before entering a clean room. The apparel is designed to cover the hair, clothing and shoes of employees to prevent particulate matter from contaminating the space flight hardware being stored or processed in the clean room and is one aspect of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  6. Staying sticky: contact self-cleaning of gecko-inspired adhesives.

    PubMed

    Mengüç, Yigit; Röhrig, Michael; Abusomwan, Uyiosa; Hölscher, Hendrik; Sitti, Metin

    2014-05-06

    The exceptionally adhesive foot of the gecko remains clean in dirty environments by shedding contaminants with each step. Synthetic gecko-inspired adhesives have achieved similar attachment strengths to the gecko on smooth surfaces, but the process of contact self-cleaning has yet to be effectively demonstrated. Here, we present the first gecko-inspired adhesive that has matched both the attachment strength and the contact self-cleaning performance of the gecko's foot on a smooth surface. Contact self-cleaning experiments were performed with three different sizes of mushroom-shaped elastomer microfibres and five different sizes of spherical silica contaminants. Using a load-drag-unload dry contact cleaning process similar to the loads acting on the gecko foot during locomotion, our fully contaminated synthetic gecko adhesives could recover lost adhesion at a rate comparable to that of the gecko. We observed that the relative size of contaminants to the characteristic size of the microfibres in the synthetic adhesive strongly determined how and to what degree the adhesive recovered from contamination. Our approximate model and experimental results show that the dominant mechanism of contact self-cleaning is particle rolling during the drag process. Embedding of particles between adjacent fibres was observed for particles with diameter smaller than the fibre tips, and further studied as a temporary cleaning mechanism. By incorporating contact self-cleaning capabilities, real-world applications of synthetic gecko adhesives, such as reusable tapes, clothing closures and medical adhesives, would become feasible.

  7. Staying sticky: contact self-cleaning of gecko-inspired adhesives

    PubMed Central

    Mengüç, Yiğit; Röhrig, Michael; Abusomwan, Uyiosa; Hölscher, Hendrik; Sitti, Metin

    2014-01-01

    The exceptionally adhesive foot of the gecko remains clean in dirty environments by shedding contaminants with each step. Synthetic gecko-inspired adhesives have achieved similar attachment strengths to the gecko on smooth surfaces, but the process of contact self-cleaning has yet to be effectively demonstrated. Here, we present the first gecko-inspired adhesive that has matched both the attachment strength and the contact self-cleaning performance of the gecko's foot on a smooth surface. Contact self-cleaning experiments were performed with three different sizes of mushroom-shaped elastomer microfibres and five different sizes of spherical silica contaminants. Using a load–drag–unload dry contact cleaning process similar to the loads acting on the gecko foot during locomotion, our fully contaminated synthetic gecko adhesives could recover lost adhesion at a rate comparable to that of the gecko. We observed that the relative size of contaminants to the characteristic size of the microfibres in the synthetic adhesive strongly determined how and to what degree the adhesive recovered from contamination. Our approximate model and experimental results show that the dominant mechanism of contact self-cleaning is particle rolling during the drag process. Embedding of particles between adjacent fibres was observed for particles with diameter smaller than the fibre tips, and further studied as a temporary cleaning mechanism. By incorporating contact self-cleaning capabilities, real-world applications of synthetic gecko adhesives, such as reusable tapes, clothing closures and medical adhesives, would become feasible. PMID:24554579

  8. Wind Power Technologies FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2016-03-01

    The Wind Program accelerates U.S. deployment of clean, affordable, and reliable domestic wind power through research, development, and demonstration activities. These advanced technology investments directly contribute to the goals for the United States to generate 80% of the nation’s electricity from clean, carbon-free energy sources by 2035; reduce carbon emissions 26%-28% below 2005 levels by 2025; and reduce carbon emissions 80% by 2050 by reducing costs and increasing performance of wind energy systems.

  9. Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In

    Science.gov Websites

    Electric BusesA> North Carolina Airport Advances With Plug-In Electric Buses to someone by E-mail passengers with plug-in hybrid electric buses. For information about this project, contact Centralina Clean . Provided by Maryland Public Television Related Videos Photo of a car Electric Vehicles Charge up at State

  10. Bacterial biofilms and quorum sensing: fidelity in bioremediation technology.

    PubMed

    Mangwani, Neelam; Kumari, Supriya; Das, Surajit

    Increased contamination of the environment with toxic pollutants has paved the way for efficient strategies which can be implemented for environmental restoration. The major problem with conventional methods used for cleaning of pollutants is inefficiency and high economic costs. Bioremediation is a growing technology having advanced potential of cleaning pollutants. Biofilm formed by various micro-organisms potentially provide a suitable microenvironment for efficient bioremediation processes. High cell density and stress resistance properties of the biofilm environment provide opportunities for efficient metabolism of number of hydrophobic and toxic compounds. Bacterial biofilm formation is often regulated by quorum sensing (QS) which is a population density-based cell-cell communication process via signaling molecules. Numerous signaling molecules such as acyl homoserine lactones, peptides, autoinducer-2, diffusion signaling factors, and α-hydroxyketones have been studied in bacteria. Genetic alteration of QS machinery can be useful to modulate vital characters valuable for environmental applications such as biofilm formation, biosurfactant production, exopolysaccharide synthesis, horizontal gene transfer, catabolic gene expression, motility, and chemotaxis. These qualities are imperative for bacteria during degradation or detoxification of any pollutant. QS signals can be used for the fabrication of engineered biofilms with enhanced degradation kinetics. This review discusses the connection between QS and biofilm formation by bacteria in relation to bioremediation technology.

  11. Enhanced Chemical Cleaning: A New Process for Chemically Cleaning Savannah River Waste Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketusky, Edward; Spires, Renee; Davis, Neil

    2009-02-11

    At the Savannah River Site (SRS) there are 49 High Level Waste (HLW) tanks that eventually must be emptied, cleaned, and closed. The current method of chemically cleaning SRS HLW tanks, commonly referred to as Bulk Oxalic Acid Cleaning (BOAC), requires about a half million liters (130,000 gallons) of 8 weight percent (wt%) oxalic acid to clean a single tank. During the cleaning, the oxalic acid acts as the solvent to digest sludge solids and insoluble salt solids, such that they can be suspended and pumped out of the tank. Because of the volume and concentration of acid used, amore » significant quantity of oxalate is added to the HLW process. This added oxalate significantly impacts downstream processing. In addition to the oxalate, the volume of liquid added competes for the limited available tank space. A search, therefore, was initiated for a new cleaning process. Using TRIZ (Teoriya Resheniya Izobretatelskikh Zadatch or roughly translated as the Theory of Inventive Problem Solving), Chemical Oxidation Reduction Decontamination with Ultraviolet Light (CORD-UV{reg_sign}), a mature technology used in the commercial nuclear power industry was identified as an alternate technology. Similar to BOAC, CORD-UV{reg_sign} also uses oxalic acid as the solvent to dissolve the metal (hydr)oxide solids. CORD-UV{reg_sign} is different, however, since it uses photo-oxidation (via peroxide/UV or ozone/UV to form hydroxyl radicals) to decompose the spent oxalate into carbon dioxide and water. Since the oxalate is decomposed and off-gassed, CORD-UV{reg_sign} would not have the negative downstream oxalate process impacts of BOAC. With the oxalate destruction occurring physically outside the HLW tank, re-precipitation and transfer of the solids, as well as regeneration of the cleaning solution can be performed without adding additional solids, or a significant volume of liquid to the process. With a draft of the pre-conceptual Enhanced Chemical Cleaning (ECC) flowsheet, taking full advantage of the many CORD-UV{reg_sign} benefits, performance demonstration testing was initiated using available SRS sludge simulant. The demonstration testing confirmed that ECC is a viable technology, as it can dissolve greater than 90% of the sludge simulant and destroy greater than 90% of the oxalates. Additional simulant and real waste testing are planned.« less

  12. 15 CFR 30.70 - Violation of the Clean Diamond Trade Act.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Violation of the Clean Diamond Trade... Clean Diamond Trade Act. Public Law 108-19, the Clean Diamond Trade Act (the Act), section 8(c... diamonds, including those with respect to the validation of the Kimberley Process Certificate by the...

  13. 15 CFR 30.70 - Violation of the Clean Diamond Trade Act.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Violation of the Clean Diamond Trade... Clean Diamond Trade Act. Public Law 108-19, the Clean Diamond Trade Act (the Act), section 8(c... diamonds, including those with respect to the validation of the Kimberley Process Certificate by the...

  14. 15 CFR 30.70 - Violation of the Clean Diamond Trade Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Violation of the Clean Diamond Trade... Clean Diamond Trade Act. Public Law 108-19, the Clean Diamond Trade Act (the Act), section 8(c... diamonds, including those with respect to the validation of the Kimberley Process Certificate by the...

  15. 15 CFR 30.70 - Violation of the Clean Diamond Trade Act.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Violation of the Clean Diamond Trade... Clean Diamond Trade Act. Public Law 108-19, the Clean Diamond Trade Act (the Act), section 8(c... diamonds, including those with respect to the validation of the Kimberley Process Certificate by the...

  16. Machine Cleans And Degreases Without Toxic Solvents

    NASA Technical Reports Server (NTRS)

    Gurguis, Kamal S.; Higginson, Gregory A.

    1993-01-01

    Appliance uses hot water and biodegradable chemicals to degrease and clean hardware. Spray chamber essentially industrial-scale dishwasher. Front door tilts open, and hardware to be cleaned placed on basket-like tray. During cleaning process, basket-like tray rotates as high-pressure "V" jets deliver steam, hot water, detergent solution, and rust inhibitor as required.

  17. Effect of SPM-based cleaning POR on EUV mask performance

    NASA Astrophysics Data System (ADS)

    Choi, Jaehyuck; Lee, Han-shin; Yoon, Jinsang; Shimomura, Takeya; Friz, Alex; Montgomery, Cecilia; Ma, Andy; Goodwin, Frank; Kang, Daehyuk; Chung, Paul; Shin, Inkyun; Cho, H.

    2011-11-01

    EUV masks include many different layers of various materials rarely used in optical masks, and each layer of material has a particular role in enhancing the performance of EUV lithography. Therefore, it is crucial to understand how the mask quality and patterning performance can change during mask fabrication, EUV exposure, maintenance cleaning, shipping, or storage. The fact that a pellicle is not used to protect the mask surface in EUV lithography suggests that EUV masks may have to undergo more cleaning cycles during their lifetime. More frequent cleaning, combined with the adoption of new materials for EUV masks, necessitates that mask manufacturers closely examine the performance change of EUV masks during cleaning process. We have investigated EUV mask quality and patterning performance during 30 cycles of Samsung's EUV mask SPM-based cleaning and 20 cycles of SEMATECH ADT exposure. We have observed that the quality and patterning performance of EUV masks does not significantly change during these processes except mask pattern CD change. To resolve this issue, we have developed an acid-free cleaning POR and substantially improved EUV mask film loss compared to the SPM-based cleaning POR.

  18. Liquid-phase deposition of thin Si films by ballistic electro-reduction

    NASA Astrophysics Data System (ADS)

    Ohta, T.; Gelloz, B.; Kojima, A.; Koshida, N.

    2013-01-01

    It is shown that the nanocryatalline silicon ballistic electron emitter operates in a SiCl4 solution without using any counter electrodes and that thin amorphous Si films are efficiently deposited on the emitting surface with no contaminations and by-products. Despite the large electrochemical window of the SiCl4 solution, electrons injected with sufficiently high energies preferentially reduce Si4+ ions at the interface. Using an emitter with patterned line emission windows, a Si-wires array can be formed in parallel. This low-temperature liquid-phase deposition technique provides an alternative clean process for power-effective fabrication of advanced thin Si film structures and devices.

  19. Bioremediation of Industrial Waste Through Enzyme Producing Marine Microorganisms.

    PubMed

    Sivaperumal, P; Kamala, K; Rajaram, R

    Bioremediation process using microorganisms is a kind of nature-friendly and cost-effective clean green technology. Recently, biodegradation of industrial wastes using enzymes from marine microorganisms has been reported worldwide. The prospectus research activity in remediation area would contribute toward the development of advanced bioprocess technology. To minimize industrial wastes, marine enzymes could constitute a novel alternative in terms of waste treatment. Nowadays, the evidence on the mechanisms of bioremediation-related enzymes from marine microorganisms has been extensively studied. This review also will provide information about enzymes from various marine microorganisms and their complexity in the biodegradation of comprehensive range of industrial wastes. © 2017 Elsevier Inc. All rights reserved.

  20. Political factors affecting the enactment of state-level clean indoor air laws.

    PubMed

    Tung, Gregory Jackson; Vernick, Jon S; Stuart, Elizabeth A; Webster, Daniel W

    2014-06-01

    We examined the effects of key political institutional factors on the advancement of state-level clean indoor air laws. We performed an observational study of state-level clean indoor air law enactment among all 50 US states from 1993 to 2010 by using extended Cox hazard models to assess risk of enacting a relevant law. During the 18-year period from 1993 to 2010, 28 states passed a law covering workplaces, 33 states passed a law covering restaurants, 29 states passed a law covering bars, and 16 states passed a law covering gaming facilities. States with term limits had a 2.15 times greater hazard (95% confidence interval [CI] = 1.27, 3.65; P = .005) of enacting clean indoor air laws. The presence of state-level preemption of local clean indoor air laws was associated with a 3.26 times greater hazard (95% CI = 1.11, 9.53; P = .031) of state-level policy enactment. In the presence of preemption, increased legislative professionalism was strongly associated (hazard ratio = 3.28; 95% CI = 1.10, 9.75; P = .033) with clean indoor air law enactment. Political institutional factors do influence state-level clean indoor air law enactment and may be relevant to other public health policy areas.

  1. Impact of Clean Energy R&D on the U.S. Power Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donohoo-Vallett, Paul; Mai, Trieu; Mowers, Matthew

    The U.S. government, along with other governments, private corporations and organizations, invests significantly in research, development, demonstration and deployment (RDD&D) activities in clean energy technologies, in part to achieve the goal of a clean, secure, and reliable energy system. While specific outcomes and breakthroughs resulting from RDD&D investment are unpredictable, it can be instructive to explore the potential impacts of clean energy RDD&D activities in the power sector and to place those impacts in the context of current and anticipated market trends. This analysis builds on and leverages analysis by the U.S. Department of Energy (DOE) titled “Energy CO 2more » Emissions Impacts of Clean Energy Technology Innovation and Policy” (DOE 2017). Similar to DOE (2017), we explore how additional improvements in cost and performance of clean energy technologies could impact the future U.S. energy system; however, unlike the economy-wide modeling used in DOE (2017) our analysis is focused solely on the electricity sector and applies a different and more highly spatially-resolved electric sector model. More specifically, we apply a scenario analysis approach to explore how assumed further advancements in clean electricity technologies would impact power sector generation mix, electricity system costs, and power sector carbon dioxide (CO 2) emissions.« less

  2. Laser cleaning of steel for paint removal

    NASA Astrophysics Data System (ADS)

    Chen, G. X.; Kwee, T. J.; Tan, K. P.; Choo, Y. S.; Hong, M. H.

    2010-11-01

    Paint removal is an important part of steel processing for marine and offshore engineering. For centuries, a blasting techniques have been widely used for this surface preparation purpose. But conventional blasting always has intrinsic problems, such as noise, explosion risk, contaminant particles, vibration, and dust. In addition, processing wastes often cause environmental problems. In recent years, laser cleaning has attracted much research effort for its significant advantages, such as precise treatment, and high selectivity and flexibility in comparison with conventional cleaning techniques. In the present study, we use this environmentally friendly technique to overcome the problems of conventional blasting. Processed samples are examined with optical microscopes and other surface characterization tools. Experimental results show that laser cleaning can be a good alternative candidate to conventional blasting.

  3. Implementation of environmentally compliant cleaning and insulation bonding for MNASA

    NASA Technical Reports Server (NTRS)

    Hutchens, Dale E.; Keen, Jill M.; Smith, Gary M.; Dillard, Terry W.; Deweese, C. Darrell; Lawson, Seth W.

    1995-01-01

    Historically, many subscale and full-scale rocket motors have employed environmentally and physiologically harmful chemicals during the manufacturing process. This program examines the synergy and interdependency between environmentally acceptable materials for solid rocket motor insulation applications, bonding, corrosion inhibiting, painting, priming, and cleaning, and then implements new materials and processes in subscale motors. Tests have been conducted to eliminate or minimize hazardous chemicals used in the manufacture of modified-NASA materials test motor (MNASA) components and identify alternate materials and/or processes following NASA Operational Environmental Team (NOET) priorities. This presentation describes implementation of high pressure water refurbishment cleaning, aqueous precision cleaning using both Brulin 815 GD and Jettacin, and insulation case bonding using ozone depleting chemical (ODC) compliant primers and adhesives.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric C. D.; Talmadge, Michael; Dutta, Abhijit

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s (BETO’s) efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from lignocellulosic biomass feedstocks. The research funded by BETO is designed to advance the state of technology of biomass feedstock supply and logistics, conversion, and overall system sustainability. It is expected that these research improvements will be made within the 2022 timeframe. As part of their involvement in this research and development effort, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory investigate the economics ofmore » conversion pathways through the development of conceptual biorefinery process models and techno-economic analysis models. This report describes in detail one potential conversion process for the production of high-octane gasoline blendstock via indirect liquefaction of biomass. The processing steps of this pathway include the conversion of biomass to synthesis gas or syngas via indirect gasification, gas cleanup, catalytic conversion of syngas to methanol intermediate, methanol dehydration to dimethyl ether (DME), and catalytic conversion of DME to high-octane, gasoline-range hydrocarbon blendstock product. The conversion process configuration leverages technologies previously advanced by research funded by BETO and demonstrated in 2012 with the production of mixed alcohols from biomass. Biomass-derived syngas cleanup via reforming of tars and other hydrocarbons is one of the key technology advancements realized as part of this prior research and 2012 demonstrations. The process described in this report evaluates a new technology area for the downstream utilization of clean biomass-derived syngas for the production of high-octane hydrocarbon products through methanol and DME intermediates. In this process, methanol undergoes dehydration to DME, which is subsequently converted via homologation reactions to high-octane, gasoline-range hydrocarbon products.« less

  5. 28 CFR 551.160 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MISCELLANEOUS Smoking/No Smoking Areas § 551.160 Purpose and scope. To advance towards becoming a clean air... areas and circumstances where smoking is permitted within its institutions and offices. ...

  6. 28 CFR 551.160 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MISCELLANEOUS Smoking/No Smoking Areas § 551.160 Purpose and scope. To advance towards becoming a clean air... areas and circumstances where smoking is permitted within its institutions and offices. ...

  7. 28 CFR 551.160 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MISCELLANEOUS Smoking/No Smoking Areas § 551.160 Purpose and scope. To advance towards becoming a clean air... areas and circumstances where smoking is permitted within its institutions and offices. ...

  8. 28 CFR 551.160 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MISCELLANEOUS Smoking/No Smoking Areas § 551.160 Purpose and scope. To advance towards becoming a clean air... areas and circumstances where smoking is permitted within its institutions and offices. ...

  9. 28 CFR 551.160 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MISCELLANEOUS Smoking/No Smoking Areas § 551.160 Purpose and scope. To advance towards becoming a clean air... areas and circumstances where smoking is permitted within its institutions and offices. ...

  10. Simple, green, and clean removal of a poly(methyl methacrylate) film on chemical vapor deposited graphene

    NASA Astrophysics Data System (ADS)

    Park, J.-H.; Jung, W.; Cho, D.; Seo, J.-T.; Moon, Y.; Woo, S. H.; Lee, C.; Park, C.-Y.; Ahn, J. R.

    2013-10-01

    The clean removal of a poly(methyl methacrylate) (PMMA) film on graphene has been an essential part of the process of transferring chemical vapor deposited graphene to a specific substrate, influencing the quality of the transferred graphene. Here we demonstrate that the clean removal of PMMA can be achieved by a single heat-treatment process without the chemical treatment that was adopted in other methods of PMMA removal. The cleanness of the transferred graphene was confirmed by four-point probe measurements, synchrotron radiation x-ray photoemission spectroscopy, optical images, and Raman spectroscopy.

  11. CPICOR{trademark}: Clean power from integrated coal-ore reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wintrell, R.; Miller, R.N.; Harbison, E.J.

    1997-12-31

    The US steel industry, in order to maintain its basic iron production, is thus moving to lower coke requirements and to the cokeless or direct production of iron. The US Department of Energy (DOE), in its Clean Coal Technology programs, has encouraged the move to new coal-based technology. The steel industry, in its search for alternative direct iron processes, has been limited to a single process, COREX{reg_sign}. The COREX{reg_sign} process, though offering commercial and environmental acceptance, produces a copious volume of offgas which must be effectively utilized to ensure an economical process. This volume, which normally exceeds the internal needsmore » of a single steel company, offers a highly acceptable fuel for power generation. The utility companies seeking to offset future natural gas cost increases are interested in this clean fuel. The COREX{reg_sign} smelting process, when integrated with a combined cycle power generation facility (CCPG) and a cryogenic air separation unit (ASU), is an outstanding example of a new generation of environmentally compatible and highly energy efficient Clean Coal Technologies. This combination of highly integrated electric power and hot metal coproduction, has been designated CPICOR{trademark}, Clean Power from Integrated Coal/Ore Reduction.« less

  12. Rudimentary Cleaning Compared to Level 300A

    NASA Technical Reports Server (NTRS)

    Arpin, Christina Y. Pina; Stoltzfus, Joel

    2012-01-01

    A study was done to characterize the cleanliness level achievable when using a rudimentary cleaning process, and results were compared to JPR 5322.1G Level 300A. While it is not ideal to clean in a shop environment, some situations (e.g., field combat operations) require oxygen system hardware to be maintained and cleaned to prevent a fire hazard, even though it cannot be sent back to a precision cleaning facility. This study measured the effectiveness of basic shop cleaning. Initially, three items representing parts of an oxygen system were contaminated: a metal plate, valve body, and metal oxygen bottle. The contaminants chosen were those most likely to be introduced to the system during normal use: oil, lubricant, metal shavings/powder, sand, fingerprints, tape, lip balm, and hand lotion. The cleaning process used hot water, soap, various brushes, gaseous nitrogen, water nozzle, plastic trays, scouring pads, and a controlled shop environment. Test subjects were classified into three groups: technical professionals having an appreciation for oxygen hazards; professional precision cleaners; and a group with no previous professional knowledge of oxygen or precision cleaning. Three test subjects were in each group, and each was provided with standard cleaning equipment, a cleaning procedure, and one of each of the three test items to clean. The results indicated that the achievable cleanliness level was independent of the technical knowledge or proficiency of the personnel cleaning the items. Results also showed that achieving a Level 300 particle count was more difficult than achieving a Level A nonvolatile residue amount.

  13. EXPLORING ENGINEERING CONTROL THROUGH PROCESS MANIPULATION OF RADIOACTIVE LIQUID WASTE TANK CHEMICAL CLEANING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, A.

    2014-04-27

    One method of remediating legacy liquid radioactive waste produced during the cold war, is aggressive in-tank chemical cleaning. Chemical cleaning has successfully reduced the curie content of residual waste heels in large underground storage tanks; however this process generates significant chemical hazards. Mercury is often the bounding hazard due to its extensive use in the separations process that produced the waste. This paper explores how variations in controllable process factors, tank level and temperature, may be manipulated to reduce the hazard potential related to mercury vapor generation. When compared using a multivariate regression analysis, findings indicated that there was amore » significant relationship between both tank level (p value of 1.65x10{sup -23}) and temperature (p value of 6.39x10{sup -6}) to the mercury vapor concentration in the tank ventilation system. Tank temperature showed the most promise as a controllable parameter for future tank cleaning endeavors. Despite statistically significant relationships, there may not be confidence in the ability to control accident scenarios to below mercury’s IDLH or PAC-III levels for future cleaning initiatives.« less

  14. 40 CFR 463.21 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND STANDARDS (CONTINUED) PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning Water... “average process water usage flow rate” for a plant with more than one plastics molding and forming process... a cleaning process and comes in contact with the plastic product over a period of one year. ...

  15. 40 CFR 463.21 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND STANDARDS (CONTINUED) PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning Water... “average process water usage flow rate” for a plant with more than one plastics molding and forming process... a cleaning process and comes in contact with the plastic product over a period of one year. ...

  16. 40 CFR 463.20 - Applicability; description of the cleaning water subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the cleaning water subcategory are processes where water comes in contact with the plastic product for the purpose of cleaning the surface of the product and where water comes in contact with shaping...

  17. Study of discharge cleaning process in JIPP T-2 Torus by residual gas analyzer

    NASA Astrophysics Data System (ADS)

    Noda, N.; Hirokura, S.; Taniguchi, Y.; Tanahashi, S.

    1982-12-01

    During discharge cleaning, decay time of water vapor pressure changes when the pressure reaches a certain level. A long decay time observed in the later phase can be interpreted as a result of a slow deoxidization rate of chromium oxide, which may dominate the cleaning process in this phase. Optimization of plasma density for the cleaning is discussed comparing the experimental results on density dependence of water vapor pressure with a result based on a zero dimensional calculation for particle balance. One of the essential points for effective cleaning is the raising of the electron density of the plasma high enough that the dissociation loss rate of H2O is as large as the sticking loss rate. A density as high as 10 to the 11th power/cu cm is required for a clean surface condition where sticking probability is presumed to be around 0.5.

  18. Chemical cleaning re-invented: clean, lean and green.

    PubMed

    Hanson, Margaret; Vangeel, Michel

    2014-01-01

    A project undertaken in the Central Cleaning Department of Janssen, a Johnson and Johnson pharmaceutical company, demonstrates how ergonomics, environmental and industrial hygiene risks and quality concerns can be tackled simultaneously. The way equipment was cleaned was re-designed by an in-house cross-functional team to ensure a 'clean, lean and green' process. Initiatives included a new layout of the area, and new work processes and equipment to facilitate cleaning and handling items. This resulted in significant improvements: all ergonomics high risk tasks were reduced to moderate or low risk; hearing protection was no longer required; respirator requirement reduced by 67%; solvent use reduced by 73%; productivity improved, with 55% fewer operator hours required; and quality improved 40-fold. The return on investment was estimated at 3.125 years based on an investment of over €1.5 million (2008 prices). This win-win intervention allowed ergonomics, environmental, industrial hygiene, productivity and quality concerns all to be addressed.

  19. Modeling of the reburning process using sewage sludge-derived syngas.

    PubMed

    Werle, Sebastian

    2012-04-01

    Gasification of sewage sludge can provide clean and effective reburning fuel for combustion applications. The motivation of this work was to define the reburning potential of the sewage sludge gasification gas (syngas). A numerical simulation of the co-combustion process of syngas in a hard coal-fired boiler was done. All calculations were performed using the Chemkin programme and a plug-flow reactor model was used. The calculations were modelled using the GRI-Mech 2.11 mechanism. The highest conversions for nitric oxide (NO) were obtained at temperatures of approximately 1000-1200K. The combustion of hard coal with sewage sludge-derived syngas reduces NO emissions. The highest reduction efficiency (>90%) was achieved when the molar flow ratio of the syngas was 15%. Calculations show that the analysed syngas can provide better results than advanced reburning (connected with ammonia injection), which is more complicated process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Spinoff 2011

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Topics include: Bioreactors Drive Advances in Tissue Engineering; Tooling Techniques Enhance Medical Imaging; Ventilator Technologies Sustain Critically Injured Patients; Protein Innovations Advance Drug Treatments, Skin Care; Mass Analyzers Facilitate Research on Addiction; Frameworks Coordinate Scientific Data Management; Cameras Improve Navigation for Pilots, Drivers; Integrated Design Tools Reduce Risk, Cost; Advisory Systems Save Time, Fuel for Airlines; Modeling Programs Increase Aircraft Design Safety; Fly-by-Wire Systems Enable Safer, More Efficient Flight; Modified Fittings Enhance Industrial Safety; Simulation Tools Model Icing for Aircraft Design; Information Systems Coordinate Emergency Management; Imaging Systems Provide Maps for U.S. Soldiers; High-Pressure Systems Suppress Fires in Seconds; Alloy-Enhanced Fans Maintain Fresh Air in Tunnels; Control Algorithms Charge Batteries Faster; Software Programs Derive Measurements from Photographs; Retrofits Convert Gas Vehicles into Hybrids; NASA Missions Inspire Online Video Games; Monitors Track Vital Signs for Fitness and Safety; Thermal Components Boost Performance of HVAC Systems; World Wind Tools Reveal Environmental Change; Analyzers Measure Greenhouse Gasses, Airborne Pollutants; Remediation Technologies Eliminate Contaminants; Receivers Gather Data for Climate, Weather Prediction; Coating Processes Boost Performance of Solar Cells; Analyzers Provide Water Security in Space and on Earth; Catalyst Substrates Remove Contaminants, Produce Fuel; Rocket Engine Innovations Advance Clean Energy; Technologies Render Views of Earth for Virtual Navigation; Content Platforms Meet Data Storage, Retrieval Needs; Tools Ensure Reliability of Critical Software; Electronic Handbooks Simplify Process Management; Software Innovations Speed Scientific Computing; Controller Chips Preserve Microprocessor Function; Nanotube Production Devices Expand Research Capabilities; Custom Machines Advance Composite Manufacturing; Polyimide Foams Offer Superior Insulation; Beam Steering Devices Reduce Payload Weight; Models Support Energy-Saving Microwave Technologies; Materials Advance Chemical Propulsion Technology; and High-Temperature Coatings Offer Energy Savings.

  1. Cleaning and other control and validation strategies to prevent allergen cross-contact in food-processing operations.

    PubMed

    Jackson, Lauren S; Al-Taher, Fadwa M; Moorman, Mark; DeVries, Jonathan W; Tippett, Roger; Swanson, Katherine M J; Fu, Tong-Jen; Salter, Robert; Dunaif, George; Estes, Susan; Albillos, Silvia; Gendel, Steven M

    2008-02-01

    Food allergies affect an estimated 10 to 12 million people in the United States. Some of these individuals can develop life-threatening allergic reactions when exposed to allergenic proteins. At present, the only successful method to manage food allergies is to avoid foods containing allergens. Consumers with food allergies rely on food labels to disclose the presence of allergenic ingredients. However, undeclared allergens can be inadvertently introduced into a food via cross-contact during manufacturing. Although allergen removal through cleaning of shared equipment or processing lines has been identified as one of the critical points for effective allergen control, there is little published information on the effectiveness of cleaning procedures for removing allergenic materials from processing equipment. There also is no consensus on how to validate or verify the efficacy of cleaning procedures. The objectives of this review were (i) to study the incidence and cause of allergen cross-contact, (ii) to assess the science upon which the cleaning of food contact surfaces is based, (iii) to identify best practices for cleaning allergenic foods from food contact surfaces in wet and dry manufacturing environments, and (iv) to present best practices for validating and verifying the efficacy of allergen cleaning protocols.

  2. Tug fleet and ground operations schedules and controls. Volume 3: Program cost estimates

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Cost data for the tug DDT&E and operations phases are presented. Option 6 is the recommended option selected from seven options considered and was used as the basis for ground processing estimates. Option 6 provides for processing the tug in a factory clean environment in the low bay area of VAB with subsequent cleaning to visibly clean. The basis and results of the trade study to select Option 6 processing plan is included. Cost estimating methodology, a work breakdown structure, and a dictionary of WBS definitions is also provided.

  3. Extremophilic Microfactories: Applications in Metal and Radionuclide Bioremediation.

    PubMed

    Marques, Catarina R

    2018-01-01

    Metals and radionuclides (M&Rs) are a worldwide concern claiming for resilient, efficient, and sustainable clean-up measures aligned with environmental protection goals and global change constraints. The unique defense mechanisms of extremophilic bacteria and archaea have been proving usefulness towards M&Rs bioremediation. Hence, extremophiles can be viewed as microfactories capable of providing specific and controlled services (i.e., genetic/metabolic mechanisms) and/or products (e.g., biomolecules) for that purpose. However, the natural physiological plasticity of such extremophilic microfactories can be further explored to nourish different hallmarks of M&R bioremediation, which are scantly approached in the literature and were never integrated. Therefore, this review not only briefly describes major valuable extremophilic pathways for M&R bioremediation, as it highlights the advances, challenges and gaps from the interplay of 'omics' and biological engineering to improve extremophilic microfactories performance for M&R clean-up. Microfactories' potentialities are also envisaged to close the M&R bioremediation processes and shift the classical idea of never 'getting rid' of M&Rs into making them 'the belle of the ball' through bio-recycling and bio-recovering techniques.

  4. Mesenchymal Stem Cells as Therapeutics Agents: Quality and Environmental Regulatory Aspects

    PubMed Central

    Sabata, Roger; Verges, Josep; Zugaza, José L.; Ruiz, Adolfina; Clares, Beatriz

    2016-01-01

    Mesenchymal stem cells (MSCs) are one of the main stem cells that have been used for advanced therapies and regenerative medicine. To carry out the translational clinical application of MSCs, their manufacturing and administration in human must be controlled; therefore they should be considered as medicine: stem cell-based medicinal products (SCMPs). The development of MSCs as SCMPs represents complicated therapeutics due to their extreme complex nature and rigorous regulatory oversights. The manufacturing process of MSCs needs to be addressed in clean environments in compliance with requirements of Good Manufacturing Practice (GMP). Facilities should maintain these GMP conditions according to international and national medicinal regulatory frameworks that introduce a number of specifications in order to produce MSCs as safe SCMPs. One of these important and complex requirements is the environmental monitoring. Although a number of environmental requirements are clearly defined, some others are provided as recommendations. In this review we aim to outline the current issues with regard to international guidelines which impact environmental monitoring in cleanrooms and clean areas for the manufacturing of MSCs. PMID:27999600

  5. Renewable Energy for Rural Economic Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, Cathy L.; Stafford, Edwin R.

    When Renewable Energy for Rural Economic Development (RERED) began in 2005, Utah had no commercial wind power projects in operation. Today, the state hosts two commercial wind power plants, the Spanish Fork Wind Project and the Milford Wind Corridor Project, totaling 324 megawatts (MW) of wind capacity. Another project in San Juan County is expected to break ground very soon, and two others, also in San Juan County, are in the approval process. RERED has played a direct role in advancing wind power (and other renewable energy and clean technology innovations) in Utah through its education outreach and research/publication initiatives.more » RERED has also witnessed and studied some of the persistent barriers facing wind power development in communities across Utah and the West, and its research expanded to examine the diffusion of other energy efficiency and clean technology innovations. RERED leaves a legacy of publications, government reports, and documentary films and educational videos (archived at www.cleantech.usu.edu) to provide important insights for entrepreneurs, policymakers, students, and citizens about the road ahead for transitioning society onto a cleaner, more sustainable future.« less

  6. The acquisition and transfer of knowledge of electrokinetic-hydrodynamics (EKHD) fundamentals: an introductory graduate-level course

    NASA Astrophysics Data System (ADS)

    Pascal, Jennifer; Tíjaro-Rojas, Rocío; Oyanader, Mario A.; Arce, Pedro E.

    2017-09-01

    Relevant engineering applications, such as bioseparation of proteins and DNA, soil-cleaning, motion of colloidal particles in different media, electrical field-based cancer treatments, and the cleaning of surfaces and coating flows, belongs to the family of 'Applied Field Sensitive Process Technologies' requiring an external field to move solutes in a fluid within a fibrous (or porous) domain. This field incorporates an additional variable that makes the analysis very challenging and can create for the student a number of new problems to solve. A graduate-level course, based on active-learning approaches and High Performance Learning Environments, where transfer of knowledge plays a key role, was designed by the Chemical Engineering Department at Tennessee Technological University. This course, where the fundamentals principles of EKHD were taught to science, engineering and technology students was designed by the Chemical Engineering Department at the Tennessee Technological University, Cookeville, TN. An important number of these students were able to grasp the tools required to advance their research projects that led to numerous technical presentations in professional society meetings and publications in peered-reviewed journals.

  7. Hybrid fuel formulation and technology development

    NASA Technical Reports Server (NTRS)

    Dean, D. L.

    1995-01-01

    The objective was to develop an improved hybrid fuel with higher regression rate, a regression rate expression exponent close to 0.5, lower cost, and higher density. The approach was to formulate candidate fuels based on promising concepts, perform thermomechanical analyses to select the most promising candidates, develop laboratory processes to fabricate fuel grains as needed, fabricate fuel grains and test in a small lab-scale motor, select the best candidate, and then scale up and validate performance in a 2500 lbf scale, 11-inch diameter motor. The characteristics of a high performance fuel have been verified in 11-inch motor testing. The advanced fuel exhibits a 15% increase in density over an all hydrocarbon formulation accompanied by a 50% increase in regression rate, which when multiplied by the increase in density yields a 70% increase in fuel mass flow rate; has a significantly lower oxidizer-to-fuel (O/F) ratio requirement at 1.5; has a significantly decreased axial regression rate variation making for more uniform propellant flow throughout motor operation; is very clean burning; extinguishes cleanly and quickly; and burns with a high combustion efficiency.

  8. State Energy Policy Newsletter

    EPA Pesticide Factsheets

    This page allows users to sign up for a weekly summary of state energy policy news for state agency staff involved in advancing clean energy opportunities and developing climate change mitigation policies and programs.

  9. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Science.gov Websites

    -ethanol blends, many vehicle owners don't realize their car is an FFV and that they have a choice of fuels Turbocharged GDI Vehicle and Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Fuel and Advanced Vehicle Inventory Clean Cities Alternative Fuel and Advanced Vehicle Inventory AFV

  10. Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials

    DTIC Science & Technology

    2016-04-27

    Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials PI Maria received support to construct a physical...vapor deposition (PVD) system that combines electron beam (e- beam) evaporation, magnetron sputtering, pulsed laser ablation, and ion-assisted deposition ...The instrumentation enables clean, uniform, and rapid deposition of a wide variety of metallic, semiconducting, and ceramic thin films with

  11. NETL- AVESTAR

    ScienceCinema

    None

    2018-02-13

    NETL's Advanced Virtual Energy Simulation Training and Research, or AVESTAR, Center is designed to promote operational excellence for the nation's energy systems, from smart power plants to smart grid. The AVESTAR Center brings together advanced dynamic simulation and control technologies, state-of-the-art simulation-based training facilities, and leading industry experts to focus on the optimal operation of clean energy plants in the smart grid era.

  12. Advanced heat pump for the recovery of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    1992-03-01

    Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total U.S. VOC emissions. The 'Toxic-Release Inventory' of the U.S. Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing, refrigerant production, and wood products production. The U.S. Department of Energy's (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase 1 report documents 3M's work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. The Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient, and economically priced.

  13. Integrated condition monitoring of a fleet of offshore wind turbines with focus on acceleration streaming processing

    NASA Astrophysics Data System (ADS)

    Helsen, Jan; Gioia, Nicoletta; Peeters, Cédric; Jordaens, Pieter-Jan

    2017-05-01

    Particularly offshore there is a trend to cluster wind turbines in large wind farms, and in the near future to operate such a farm as an integrated power production plant. Predictability of individual turbine behavior across the entire fleet is key in such a strategy. Failure of turbine subcomponents should be detected well in advance to allow early planning of all necessary maintenance actions; Such that they can be performed during low wind and low electricity demand periods. In order to obtain the insights to predict component failure, it is necessary to have an integrated clean dataset spanning all turbines of the fleet for a sufficiently long period of time. This paper illustrates our big-data approach to do this. In addition, advanced failure detection algorithms are necessary to detect failures in this dataset. This paper discusses a multi-level monitoring approach that consists of a combination of machine learning and advanced physics based signal-processing techniques. The advantage of combining different data sources to detect system degradation is in the higher certainty due to multivariable criteria. In order to able to perform long-term acceleration data signal processing at high frequency a streaming processing approach is necessary. This allows the data to be analysed as the sensors generate it. This paper illustrates this streaming concept on 5kHz acceleration data. A continuous spectrogram is generated from the data-stream. Real-life offshore wind turbine data is used. Using this streaming approach for calculating bearing failure features on continuous acceleration data will support failure propagation detection.

  14. Innovative technologies on fuel assemblies cleaning for sodium fast reactors: First considerations on cleaning process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, N.; Lorcet, H.; Beauchamp, F.

    2012-07-01

    Within the framework of Sodium Fast Reactor development, innovative fuel assembly cleaning operations are investigated to meet the GEN IV goals of safety and of process development. One of the challenges is to mitigate the Sodium Water Reaction currently used in these processes. The potential applications of aqueous solutions of mineral salts (including the possibility of using redox chemical reactions) to mitigate the Sodium Water Reaction are considered in a first part and a new experimental bench, dedicated to this study, is described. Anhydrous alternative options based on Na/CO{sub 2} interaction are also presented. Then, in a second part, amore » functional study conducted on the cleaning pit is proposed. Based on experimental feedback, some calculations are carried out to estimate the sodium inventory on the fuel elements, and physical methods like hot inert gas sweeping to reduce this inventory are also presented. Finally, the implementation of these innovative solutions in cleaning pits is studied in regard to the expected performances. (authors)« less

  15. Sceening, down selection, and implementation of environmentally compliant cleaning and insulation bonding for MNASA

    NASA Astrophysics Data System (ADS)

    Keen, Jill M.; Hutchens, D. E.; Smith, G. M.; Dillard, T. W.

    1994-06-01

    MNASA, a quarter-scale space shuttle solid rocket motor, has historically been processed using environmentally and physiologically harmful chemicals. This program draws from previous testing done in support of full-scale manufacturing and examines the synergy and interdependency between environmentally acceptable materials for Solid Rocket Motor insulation applications, bonding, corrosion inhibiting, painting, priming and cleaning; and then implements new materials and processes in sub-scale motors. Tests have been conducted to eliminate or minimize hazardous chemicals used in the manufacture of MNASA components and identify alternate materials and/or processes following NASA Operational Environment Team (NOET) priorities. This presentation describes implementation of high pressure water refurbishment cleaning, aqueous precision cleaning using both Brulin 815 GD and Jettacin and insulation case bonding using ODC compliant primers and adhesives.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    In this presentation, development of a plant-wide dynamic model of an advanced Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture will be discussed. The IGCC reference plant generates 640 MWe of net power using Illinois No.6 coal as the feed. The plant includes an entrained, downflow, General Electric Energy (GEE) gasifier with a radiant syngas cooler (RSC), a two-stage water gas shift (WGS) conversion process, and two advanced 'F' class combustion turbines partially integrated with an elevated-pressure air separation unit (ASU). A subcritical steam cycle is considered for heat recovery steam generation. Syngas is selectively cleaned by a SELEXOLmore » acid gas removal (AGR) process. Sulfur is recovered using a two-train Claus unit with tail gas recycle to the AGR. A multistage intercooled compressor is used for compressing CO2 to the pressure required for sequestration. Using Illinois No.6 coal, the reference plant generates 640 MWe of net power. The plant-wide steady-state and dynamic IGCC simulations have been generated using the Aspen Plus{reg_sign} and Aspen Plus Dynamics{reg_sign} process simulators, respectively. The model is generated based on the Case 2 IGCC configuration detailed in the study available in the NETL website1. The GEE gasifier is represented with a restricted equilibrium reactor model where the temperature approach to equilibrium for individual reactions can be modified based on the experimental data. In this radiant-only configuration, the syngas from the Radiant Syngas Cooler (RSC) is quenched in a scrubber. The blackwater from the scrubber bottom is further cleaned in the blackwater treatment plant. The cleaned water is returned back to the scrubber and also used for slurry preparation. The acid gas from the sour water stripper (SWS) is sent to the Claus plant. The syngas from the scrubber passes through a sour shift process. The WGS reactors are modeled as adiabatic plug flow reactors with rigorous kinetics based on the mid-life activity of the shift-catalyst. The SELEXOL unit consists of the H2S and CO2 absorbers that are designed to meet the stringent environmental limits and requirements of other associated units. The model also considers the stripper for recovering H2S that is sent as a feed to a split-flow Claus unit. The tail gas from the Claus unit is recycled to the SELEXOL unit. The cleaned syngas is sent to the GE 7FB gas turbine. This turbine is modeled as per published data in the literature. Diluent N2 is used from the elevated-pressure ASU for reducing the NOx formation. The heat recovery steam generator (HRSG) is modeled by considering generation of high-pressure, intermediate-pressure, and low-pressure steam. All of the vessels, reactors, heat exchangers, and the columns have been sized. The basic IGCC process control structure has been synthesized by standard guidelines and existing practices. The steady-state simulation is solved in sequential-modular mode in Aspen Plus{reg_sign} and consists of more than 300 unit operations, 33 design specs, and 16 calculator blocks. The equation-oriented dynamic simulation consists of more than 100,000 equations solved using a multi-step Gear's integrator in Aspen Plus Dynamics{reg_sign}. The challenges faced in solving the dynamic model and key transient results from this dynamic model will also be discussed.« less

  17. [Effect of manual cleaning and machine cleaning for dental handpiece].

    PubMed

    Zhou, Xiaoli; Huang, Hao; He, Xiaoyan; Chen, Hui; Zhou, Xiaoying

    2013-08-01

    Comparing the dental handpiece' s cleaning effect between manual cleaning and machine cleaning. Eighty same contaminated dental handpieces were randomly divided into experimental group and control group, each group contains 40 pieces. The experimental group was treated by full automatic washing machine, and the control group was cleaned manually. The cleaning method was conducted according to the operations process standard, then ATP bioluminescence was used to test the cleaning results. Average relative light units (RLU) by ATP bioluminescence detection were as follows: Experimental group was 9, control group was 41. The two groups were less than the recommended RLU value provided by the instrument manufacturer (RLU < or = 45). There was significant difference between the two groups (P < 0.05). The cleaning quality of the experimental group was better than that of control group. It is recommended that the central sterile supply department should clean dental handpieces by machine to ensure the cleaning effect and maintain the quality.

  18. SURVEY OF AIR AND GAS CLEANING OPERATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgenthaler, A.C.

    1959-09-01

    An informative summary of air and gas cleaning operations in the Chemicai Processing Department of the Hanfor Atomic Products Operation, Richland, Washington, is presented. Descriptlons of the fundamental components of cleaning systems, their applications, and cost information are included. (R.G.G.)

  19. CLEANING OF FLUE GASES FROM WASTE COMBUSTORS

    EPA Science Inventory

    The paper addresses flue gas cleaning processes currently used commercially in waste combustion facilities. It also discusses the operating concepts of dry, semi-dry, and wet processes and their effectiveness in controlling various pollutants. Air pollutants from the combustion o...

  20. ENVIRONMENTALLY FRIENDLIER ALTERNATIVES TO ORGANIC SYNTHESES

    EPA Science Inventory

    An overview of the research activity at the USEPA AWBERC Research Center in general and the Sustainable Technology Division with specific reference to clean process development will be presented. Several examples of clean and efficient chemical processes will be highlighted that ...

  1. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE) (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Erik

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  2. Environmentally Sound Processing Technology: JANNAF Safety and Environmental Protection Subcommittee and Propellant Development and Characterization Subcommittee Joint Workshop

    NASA Technical Reports Server (NTRS)

    Pickett, Lorri A. (Editor)

    1995-01-01

    Topics covered include: Risk assessment of hazardous materials, Automated systems for pollution prevention and hazardous materials elimination, Study design for the toxicity evaluation of ammonium perchlorate, Plasma sprayed bondable stainless surface coatings, Development of CFC-free cleaning processes, New fluorinated solvent alternatives to ozone depleting solvents, Cleaning with highly fluorinated liquids, Biotreatment of propyleneglycol nitrate by anoxic denitrification, Treatment of hazardous waste with white rot fungus, Hydrothermal oxidation as an environmentally benign treatment technology, Treatment of solid propellant manufacturing wastes by base hydrolysis, Design considerations for cleaning using supercritical fluid technology, and Centrifugal shear carbon dioxide cleaning.

  3. Assessment of disinfection of hospital surfaces using different monitoring methods1

    PubMed Central

    Ferreira, Adriano Menis; de Andrade, Denise; Rigotti, Marcelo Alessandro; de Almeida, Margarete Teresa Gottardo; Guerra, Odanir Garcia; dos Santos, Aires Garcia

    2015-01-01

    OBJECTIVE: to assess the efficiency of cleaning/disinfection of surfaces of an Intensive Care Unit. METHOD: descriptive-exploratory study with quantitative approach conducted over the course of four weeks. Visual inspection, bioluminescence adenosine triphosphate and microbiological indicators were used to indicate cleanliness/disinfection. Five surfaces (bed rails, bedside tables, infusion pumps, nurses' counter, and medical prescription table) were assessed before and after the use of rubbing alcohol at 70% (w/v), totaling 160 samples for each method. Non-parametric tests were used considering statistically significant differences at p<0.05. RESULTS: after the cleaning/disinfection process, 87.5, 79.4 and 87.5% of the surfaces were considered clean using the visual inspection, bioluminescence adenosine triphosphate and microbiological analyses, respectively. A statistically significant decrease was observed in the disapproval rates after the cleaning process considering the three assessment methods; the visual inspection was the least reliable. CONCLUSION: the cleaning/disinfection method was efficient in reducing microbial load and organic matter of surfaces, however, these findings require further study to clarify aspects related to the efficiency of friction, its frequency, and whether or not there is association with other inputs to achieve improved results of the cleaning/disinfection process. PMID:26312634

  4. Assessment of disinfection of hospital surfaces using different monitoring methods.

    PubMed

    Ferreira, Adriano Menis; de Andrade, Denise; Rigotti, Marcelo Alessandro; de Almeida, Margarete Teresa Gottardo; Guerra, Odanir Garcia; dos Santos Junior, Aires Garcia

    2015-01-01

    to assess the efficiency of cleaning/disinfection of surfaces of an Intensive Care Unit. descriptive-exploratory study with quantitative approach conducted over the course of four weeks. Visual inspection, bioluminescence adenosine triphosphate and microbiological indicators were used to indicate cleanliness/disinfection. Five surfaces (bed rails, bedside tables, infusion pumps, nurses' counter, and medical prescription table) were assessed before and after the use of rubbing alcohol at 70% (w/v), totaling 160 samples for each method. Non-parametric tests were used considering statistically significant differences at p<0.05. after the cleaning/disinfection process, 87.5, 79.4 and 87.5% of the surfaces were considered clean using the visual inspection, bioluminescence adenosine triphosphate and microbiological analyses, respectively. A statistically significant decrease was observed in the disapproval rates after the cleaning process considering the three assessment methods; the visual inspection was the least reliable. the cleaning/disinfection method was efficient in reducing microbial load and organic matter of surfaces, however, these findings require further study to clarify aspects related to the efficiency of friction, its frequency, and whether or not there is association with other inputs to achieve improved results of the cleaning/disinfection process.

  5. Improved heat recovery and high-temperature clean-up for coal-gas fired combustion turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barthelemy, N.M.; Lynn, S.

    1991-07-01

    This study investigates the performance of an Improved Heat Recovery Method (IHRM) applied to a coal-gas fired power-generating system using a high-temperature clean-up. This heat recovery process has been described by Higdon and Lynn (1990). The IHRM is an integrated heat-recovery network that significantly increases the thermal efficiency of a gas turbine in the generation of electric power. Its main feature is to recover both low- and high-temperature heat reclaimed from various gas streams by means of evaporating heated water into combustion air in an air saturation unit. This unit is a packed column where compressed air flows countercurrently tomore » the heated water prior to being sent to the combustor, where it is mixed with coal-gas and burned. The high water content of the air stream thus obtained reduces the amount of excess air required to control the firing temperature of the combustor, which in turn lowers the total work of compression and results in a high thermal efficiency. Three designs of the IHRM were developed to accommodate three different gasifying process. The performances of those designs were evaluated and compared using computer simulations. The efficiencies obtained with the IHRM are substantially higher those yielded by other heat-recovery technologies using the same gasifying processes. The study also revealed that the IHRM compares advantageously to most advanced power-generation technologies currently available or tested commercially. 13 refs., 34 figs., 10 tabs.« less

  6. Contamination Control and Hardware Processing Solutions at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Burns, DeWitt H.; Hampton, Tammy; Huey, LaQuieta; Mitchell, Mark; Norwood, Joey; Lowrey, Nikki

    2012-01-01

    The Contamination Control Team of Marshall Space Flight Center's Materials and Processes Laboratory supports many Programs/ Projects that design, manufacture, and test a wide range of hardware types that are sensitive to contamination and foreign object damage (FOD). Examples where contamination/FOD concerns arise include sensitive structural bondline failure, critical orifice blockage, seal leakage, and reactive fluid compatibility (liquid oxygen, hydrazine) as well as performance degradation of sensitive instruments or spacecraft surfaces such as optical elements and thermal control systems. During the design phase, determination of the sensitivity of a hardware system to different types or levels of contamination/FOD is essential. A contamination control and FOD control plan must then be developed and implemented through all phases of ground processing, and, sometimes, on-orbit use, recovery, and refurbishment. Implementation of proper controls prevents cost and schedule impacts due to hardware damage or rework and helps assure mission success. Current capabilities are being used to support recent and on-going activities for multiple Mission Directorates / Programs such as International Space Station (ISS), James Webb Space Telescope (JWST), Space Launch System (SLS) elements (tanks, engines, booster), etc. The team also advances Green Technology initiatives and addresses materials obsolescence issues for NASA and external customers, most notably in the area of solvent replacement (e.g. aqueous cleaners containing hexavalent chrome, ozone depleting chemicals (CFC s and HCFC's), suspect carcinogens). The team evaluates new surface cleanliness inspection and cleaning technologies (e.g. plasma cleaning), and maintains databases for processing support materials as well as outgassing and optical compatibility test results for spaceflight environments.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, L.

    This paper outlines the following: United Nations` framework convention on climatic change; the United States` climate change action plan; current issues to be resolved (targets/timetables, policies, advancing commitments of all parties, and compliance); and implications for clean coal technologies.

  8. [Research on cleaning rate of the C-shaped canal treated by manual or rotary endodontic file combined with ultrasonic rinsing].

    PubMed

    Wang, Jing; Gao, Yan; Wang, Qing-shan; Zhang, Yan; Rong, Li; Wang, Jiu

    2014-08-01

    To evaluate the cleaning effect of the C-shaped canal treated by manual K file and ProTaper rotary endodontic file combined with ultrasonic cleaning, and find a better cleaning program for the C-shaped root canal. Fifty mandibular second molars were randomly divided into 5 groups: K file group, K file+ultrasonic rinsing group, ProTaper group, ProTaper+ultrasonic rinsing group and the control group. After initial shaping and cleaning, the mandibular second molars were soaked in formalin and stained. Under microscopy, the cleaning rate of necrotic tissue and cutting area were observed and analyzed. The data was processed with SPSS 17.0 software package. The cleaning rates of the treated groups were significantly higher than that of the control group (P<0.05); In each treatment group, the cleaning rate of the apex was significantly lower than that of the crown and central part (P<0.05); The cutting score of ProTaper+ultrasonic cleaning group was lower than that of the other treatment groups; The cutting score of the K file+ultrasonic rinsing group was significantly lower than that of the K file group (P<0.05); The cutting score and cleaning rate were negatively correlated (r=-0.712, P=0.000 ), the linear regression was the cleaning rate =98.325-4.325 × wall cutting score (R=0.454, P<0.05). In the process of shaping and cleaning of C-shaped canal, it is recommended that the ProTaper nickel-titanium rotary endodontic file should be chosen to clean the top of the taproot pipe and combined with ultrasonic rinsing to achieve better results.

  9. Cleaning of titanium substrates after application in a bioreactor.

    PubMed

    Fingerle, Mathias; Köhler, Oliver; Rösch, Christina; Kratz, Fabian; Scheibe, Christian; Davoudi, Neda; Müller-Renno, Christine; Ziegler, Christiane; Huster, Manuel; Schlegel, Christin; Ulber, Roland; Bohley, Martin; Aurich, Jan C

    2015-03-10

    Plain and microstructured cp-titanium samples were studied as possible biofilm reactor substrates. The biofilms were grown by exposition of the titanium samples to bacteria in a flow cell. As bacteria the rod shaped gram negative Pseudomonas fluorescens and the spherical gram negative Paracoccus seriniphilus were chosen. Afterward, the samples were cleaned in subsequent steps: First, with a standard solvent based cleaning procedure with acetone, isopropanol, and ultrapure water and second by oxygen plasma sputtering. It will be demonstrated by means of x-ray photoelectron spectroscopy, fluorescence microscopy, and confocal laser scanning microscopy that oxygen plasma cleaning is a necessary and reliant tool to fully clean and restore titanium surfaces contaminated with a biofilm. The microstructured surfaces act beneficial to biofilm growth, while still being fully restorable after biofilm contamination. Scanning electron microscopy images additionally show, that the plasma process does not affect the microstructures. The presented data show the importance of the cleaning procedure. Just using solvents does not remove the biofilm and all its components reliably while a cleaning process by oxygen plasma regenerates the surfaces.

  10. Hazardous Waste: Cleanup and Prevention.

    ERIC Educational Resources Information Center

    Vandas, Steve; Cronin, Nancy L.

    1996-01-01

    Discusses hazardous waste, waste disposal, unsafe exposure, movement of hazardous waste, and the Superfund clean-up process that consists of site discovery, site assessment, clean-up method selection, site clean up, and site maintenance. Argues that proper disposal of hazardous waste is everybody's responsibility. (JRH)

  11. Parallel Algorithm for GPU Processing; for use in High Speed Machine Vision Sensing of Cotton Lint Trash.

    PubMed

    Pelletier, Mathew G

    2008-02-08

    One of the main hurdles standing in the way of optimal cleaning of cotton lint isthe lack of sensing systems that can react fast enough to provide the control system withreal-time information as to the level of trash contamination of the cotton lint. This researchexamines the use of programmable graphic processing units (GPU) as an alternative to thePC's traditional use of the central processing unit (CPU). The use of the GPU, as analternative computation platform, allowed for the machine vision system to gain asignificant improvement in processing time. By improving the processing time, thisresearch seeks to address the lack of availability of rapid trash sensing systems and thusalleviate a situation in which the current systems view the cotton lint either well before, orafter, the cotton is cleaned. This extended lag/lead time that is currently imposed on thecotton trash cleaning control systems, is what is responsible for system operators utilizing avery large dead-band safety buffer in order to ensure that the cotton lint is not undercleaned.Unfortunately, the utilization of a large dead-band buffer results in the majority ofthe cotton lint being over-cleaned which in turn causes lint fiber-damage as well assignificant losses of the valuable lint due to the excessive use of cleaning machinery. Thisresearch estimates that upwards of a 30% reduction in lint loss could be gained through theuse of a tightly coupled trash sensor to the cleaning machinery control systems. Thisresearch seeks to improve processing times through the development of a new algorithm forcotton trash sensing that allows for implementation on a highly parallel architecture.Additionally, by moving the new parallel algorithm onto an alternative computing platform,the graphic processing unit "GPU", for processing of the cotton trash images, a speed up ofover 6.5 times, over optimized code running on the PC's central processing unit "CPU", wasgained. The new parallel algorithm operating on the GPU was able to process a 1024x1024image in less than 17ms. At this improved speed, the image processing system's performance should now be sufficient to provide a system that would be capable of realtimefeed-back control that is in tight cooperation with the cleaning equipment.

  12. NATO/CCMS PILOT STUDY ON CLEAN PRODUCTS & PROCESSES

    EPA Science Inventory

    Led by the United States, represented by the U.S. Environmental Protection Agency's (EPA's) National Risk Management Research Laboratory, the Pilot Study on Clean Products and Processes was instituted to create an international forum where current trends, developments, and expert...

  13. Processes For Cleaning a Cathode Tube and Assemblies In A Hollow Cathode Assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2001-01-01

    The present invention is a process for cleaning a cathode tube and other subassemblies in a hollow cathode assembly. In the disclosed process, hand covering elastomer gloves are used for handling all cathode assembly parts. The cathode tube and other subassemblies are cleaned with a lint-free cloth damped with acetone, then wiped with alcohol, immersed in ethyl alcohol or acetone, and ultrasonic agitation is applied, heating to 60 C. for ethyl alcohol or 56 C. for acetone. The cathode tube and other subassemblies are dried by blowing with nitrogen gas.

  14. Results Of Automating A Photolithography Cell In A Clean Tunnel

    NASA Astrophysics Data System (ADS)

    June, David H.

    1987-01-01

    A prototype automated photobay was installed in an existing fab area utilizing flexible material handling techniques within a clean tunnel. The project objective was to prove design concepts of automated cassette-to-cassette handling within a clean tunnel that isolated operators from the wafers being processed. Material handling was by monorail track transport system to feed cassettes to pick and place robots. The robots loaded and unloaded cassettes of wafers to each of the various pieces of process equipment. The material handling algorithms, recipe downloading and statistical process control functions were all performed by custom software on the photobay cell controller.

  15. Green Solvents for Precision Cleaning

    NASA Technical Reports Server (NTRS)

    Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Surma, Jan; Hintze, Paul

    2013-01-01

    Aerospace machinery used in liquid oxygen (LOX) fuel systems must be precision cleaned to achieve a very low level of non-volatile residue (< 1 mg0.1 m2), especially flammable residue. Traditionally chlorofluorocarbons (CFCs) have been used in the precision cleaning of LOX systems, specifically CFC 113 (C2Cl3F3). CFCs have been known to cause the depletion of ozone and in 1987, were banned by the Montreal Protocol due to health, safety and environmental concerns. This has now led to the development of new processes in the precision cleaning of aerospace components. An ideal solvent-replacement is non-flammable, environmentally benign, non-corrosive, inexpensive, effective and evaporates completely, leaving no residue. Highlighted is a green precision cleaning process, which is contaminant removal using supercritical carbon dioxide as the environmentally benign solvent. In this process, the contaminant is dissolved in carbon dioxide, and the parts are recovered at the end of the cleaning process completely dry and ready for use. Typical contaminants of aerospace components include hydrocarbon greases, hydraulic fluids, silicone fluids and greases, fluorocarbon fluids and greases and fingerprint oil. Metallic aerospace components range from small nuts and bolts to much larger parts, such as butterfly valves 18 in diameter. A fluorinated grease, Krytox, is investigated as a model contaminant in these preliminary studies, and aluminum coupons are employed as a model aerospace component. Preliminary studies are presented in which the experimental parameters are optimized for removal of Krytox from aluminum coupons in a stirred-batch process. The experimental conditions investigated are temperature, pressure, exposure time and impeller speed. Temperatures of 308 - 423 K, pressures in the range of 8.3 - 41.4 MPa, exposure times between 5 - 60 min and impeller speeds of 0 - 1000 rpm were investigated. Preliminary results showed up to 86 cleaning efficiency with the moderate processing conditions of 323 K, 13.8 MPa, 30 min and 750 rpm.

  16. Otolith Trace Element Chemistry of Juvenile Black Rockfish

    NASA Astrophysics Data System (ADS)

    Hardin, W.; Bobko, S. J.; Jones, C. M.

    2002-12-01

    In the summer of 1997 we collected young-of -the-year (YOY) black rockfish, Sebastes melanops, from floating docks and seagrass beds in Newport and Coos Bay, Oregon. Otoliths were extracted from randomly selected fish, sectioned and polished under general laboratory conditions, and cleaned in a class 100 clean room. We used Laser Ablation - Inductively Coupled Mass Spectrometry (LA-ICPMS) to analyze elemental composition of the estuarine phase of the otoliths. While we observed differences in Mn/Ca ratios between the two estuaries, there was no statistical difference in otolith trace element chemistry ratios between estuaries using MANOVA. To determine if laboratory processing of otoliths might have impeded us from detecting differences in otolith chemistry, we conducted a second experiment. Right and left otoliths from 10 additional Coos Bay fish were randomly allocated to two processing methods. The first method was identical to our initial otolith processing, sectioning and polishing under normal laboratory conditions. In the second method, polishing was done in the clean room. For both methods otoliths went through a final cleaning in the clean room and analyzed with LA-ICPMS. While we did not detect statistical differences in element ratios between the two methods, otoliths polished outside the clean room had much higher variances. This increased variance might have lowered our ability to detect differences in otolith chemistry between estuaries. Based on our results, we recommend polishing otoliths under clean room conditions to reduce contamination.

  17. Decolorization of brilliant green dye using immersed lamp sonophotocatalytic reactor

    NASA Astrophysics Data System (ADS)

    Gole, Vitthal L.; Priya, Astha; Danao, Sanjay P.

    2017-12-01

    The textile and dye industries require an enormous amount of water for processing and produce a large volume of wastewater. Generated wastewater had potential hazards and a threat to the aquatic biota. The present work investigates the decolorization of brilliant green dye using a combination of two advanced oxidation techniques viz sonocatalysis and photocatalysis (immersed lamp) known as sonophotocatalysis (3 L capacity). The efficiency of decolorization is further improved in the presence of various additives viz. copper oxide, zinc oxide, and sodium chloride. The maximum decolorization of brilliant green (BG) (94.8% in 120 min) obtained in the presence of zinc oxide. The total organic carbon of the treated samples was measured to monitor complete mineralization of BG. The sonophotocatalytic process (in the presence of zinc oxide) shows maximum mineralization. Synergic combination of two oxidation processes increased the production of oxidizing radicals. Continuous cleaning of catalyst surface (due to sonolysis effect) improves the activity of the catalyst for photolysis operation. The present work is highly useful for the development of a sonophotocatalytic process.

  18. Surface Analysis Evaluation of Handwipe Cleaning for the Space Shuttle RSRM

    NASA Technical Reports Server (NTRS)

    Lesley, Michael W.; Anderson, Erin L.; McCool, Alex (Technical Monitor)

    2001-01-01

    In this paper we discuss the role of surface-sensitive spectroscopy (electron spectroscopy for chemical analysis, or ESCA) in the selection of solvents to replace 1,1,1-trichloroethane in handwipe cleaning of bonding surfaces on NASA's Space Shuttle Reusable Solid Rocket Motor (RSRM). Removal of common process soils from a wide variety of metallic and polymeric substrates was characterized. The cleaning efficiency was usually more dependent on the type of substrate being cleaned and the specific process soil than on the solvent used. A few substrates that are microscopically rough or porous proved to be difficult to clean with any cleaner, and some soils were very tenacious and difficult to remove from any substrate below detection limits. Overall, the work showed that a wide variety of solvents will perform at least as well as 1,1,1-trichloroethane.

  19. Electrostatic Hazard Considerations for ODC Solvent Replacement Selection Testing

    NASA Technical Reports Server (NTRS)

    Fairbourn, Brad

    1999-01-01

    ODC solvents are used to clean many critical substrates during solid rocket motor production operations. Electrostatic charge generation incidental to these cleaning operations can pose a major safety issue. Therefore, while determining the acceptability of various ODC replacement cleaners, one aspect of the selection criteria included determining the extent of electric charge generation during a typical solvent cleaning operation. A total of six candidate replacement cleaners, sixteen critical substrates, and two types of cleaning swatch materials were studied in simulated cleaning operations. Charge generation and accumulation effects were investigated by measuring the peak voltage and brush discharging effects associated with each cleaning process combination. In some cases, charge generation was found to be very severe. Using the conductivity information for each cleaner, the peak voltage data could in some cases, be qualitatively predicted. Test results indicated that severe charging effects could result in brush discharges that could potentially result in flash fire hazards when occurring in close proximity to flammable vapor/air mixtures. Process controls to effectively mitigate these hazards are discussed.

  20. Validation of cleaning method for various parts fabricated at a Beryllium facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Cynthia M.

    This study evaluated and documented a cleaning process that is used to clean parts that are fabricated at a beryllium facility at Los Alamos National Laboratory. The purpose of evaluating this cleaning process was to validate and approve it for future use to assure beryllium surface levels are below the Department of Energy’s release limits without the need to sample all parts leaving the facility. Inhaling or coming in contact with beryllium can cause an immune response that can result in an individual becoming sensitized to beryllium, which can then lead to a disease of the lungs called chronic berylliummore » disease, and possibly lung cancer. Thirty aluminum and thirty stainless steel parts were fabricated on a lathe in the beryllium facility, as well as thirty-two beryllium parts, for the purpose of testing a parts cleaning method that involved the use of ultrasonic cleaners. A cleaning method was created, documented, validated, and approved, to reduce beryllium contamination.« less

  1. IV INTERNATIONAL CONFERENCE ON ATOM AND MOLECULAR PULSED LASERS (AMPL'99): Surface oxide removal by a XeCl laser for decontamination

    NASA Astrophysics Data System (ADS)

    Sentis, M. L.; Delaporte, Ph; Marine, W.; Uteza, O.

    2000-06-01

    The laser ablation performed with an automated excimer XeCl laser unit is used for large surface cleaning. The study focuses on metal surfaces that are oxidised and are representative of contaminated surfaces with radionuclides in a context of nuclear power plant maintenance. The unit contains an XeCl laser, the beam delivery system, the particle collection cell, and the system for real-time control of cleaning processes. The interaction of laser radiation with a surface is considered, in particular, the surface damage caused by cleaning radiation. The beam delivery system consists of an optical fibre bundle of 5 m long and allows delivering 150 W at 308 nm for laser surface cleaning. The cleaning process is controlled by analysing in real time the plasma electric field evolution. The system permits the cleaning of 2 to 6 m2 h-1 of oxides with only slight substrate modifications.

  2. Planetary quarantine. Space research and technology

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Planetary quarantine strategies for advanced spacecraft consider effects of satellite encounter, Jupiter atmosphere entry, space radiation, and cleaning and decontamination techniques on microbiological growth probability. Analytical restructuring is developed for microbial burden prediction and planetary contamination.

  3. NATO/CCMS PILOT STUDY - CLEAN PRODUCTS AND PROCESSES

    EPA Science Inventory

    The proposed objective of the NATO/CCMS Pilot on clean products and processes is to facilitate further gains in pollution prevention, waste minimization, and design for the environment. It is anticipated that the free exchange of knowledge, experience, data, and models will fost...

  4. SITE TECHNOLOGY CAPSULE: CLEAN BERKSHIRES, INC. THERMAL DESORPTION SYSTEM

    EPA Science Inventory

    The thermal desorption process devised by Clean Berkshires, Inc., works by vaporizing the organic contaminants from the soil with heat, isolating the contaminant! in a gas stream, and then destroying them in a high efficiency afterburner. The processed solids are either replaced ...

  5. Automated processing of endoscopic surgical instruments.

    PubMed

    Roth, K; Sieber, J P; Schrimm, H; Heeg, P; Buess, G

    1994-10-01

    This paper deals with the requirements for automated processing of endoscopic surgical instruments. After a brief analysis of the current problems, solutions are discussed. Test-procedures have been developed to validate the automated processing, so that the cleaning results are guaranteed and reproducable. Also a device for testing and cleaning was designed together with Netzsch Newamatic and PCI, called TC-MIC, to automate processing and reduce manual work.

  6. Automated Array Assembly Task In-depth Study of Silicon Wafer Surface Texturizing

    NASA Technical Reports Server (NTRS)

    Jones, G. T.; Chitre, S.; Rhee, S. S.; Allison, K. L.

    1979-01-01

    A low cost wafer surface texturizing process was studied. An investigation of low cost cleaning operations to clean residual wax and organics from the surface of silicon wafers was made. The feasibility of replacing dry nitrogen with clean dry air for drying silicon wafers was examined. The two stage texturizing process was studied for the purpose of characterizing relevant parameters in large volume applications. The effect of gettering solar cells on photovoltaic energy conversion efficiency is described.

  7. Evaluation of various cleaning methods to remove bacillus spores from spacecraft hardware materials

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; Chung, Shirley; Allton, Judith; Kern, Roger

    2004-01-01

    A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. Metal coupons (1 cm x 2.5 cm) were precleaned and inoculated with 5.8 x 10(3) cultivable Bacillus subtilis spores, which are commonly found on spacecraft surfaces and in the assembly environments. The inoculated coupons were subsequently cleaned using: (1) 70% isopropyl alcohol wipe; (2) water wipe; (3) multiple-solvent flight-hardware cleaning procedures used at the Jet Propulsion Laboratory (JPL); (4) Johnson Space Center-developed ultrapure water rinse; and (5) a commercial, semi-aqueous, multiple-solvent (SAMS) cleaning process. The biological cleaning effectiveness was measured by agar plate assay, sterility test (growing in liquid media), and epifluorescent microscopy. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.

  8. Evaluation of Various Cleaning Methods to Remove Bacillus Spores from Spacecraft Hardware Materials

    NASA Astrophysics Data System (ADS)

    Venkateswaran, Kasthuri; Chung, Shirley; Allton, Judith; Kern, Roger

    2004-09-01

    A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. Metal coupons (1 cm × 2.5 cm) were precleaned and inoculated with 5.8 × 103 cultivable Bacillus subtilis spores, which are commonly found on spacecraft surfaces and in the assembly environments. The inoculated coupons were subsequently cleaned using: (1) 70% isopropyl alcohol wipe; (2) water wipe; (3) multiple-solvent flight-hardware cleaning procedures used at the Jet Propulsion Laboratory (JPL); (4) Johnson Space Center-developed ultrapure water rinse; and (5) a commercial, semi-aqueous, multiple-solvent (SAMS) cleaning process. The biological cleaning effectiveness was measured by agar plate assay, sterility test (growing in liquid media), and epifluorescent microscopy. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.

  9. Evaluation of various cleaning methods to remove bacillus spores from spacecraft hardware materials.

    PubMed

    Venkateswaran, Kasthuri; Chung, Shirley; Allton, Judith; Kern, Roger

    2004-01-01

    A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. Metal coupons (1 cm x 2.5 cm) were precleaned and inoculated with 5.8 x 10(3) cultivable Bacillus subtilis spores, which are commonly found on spacecraft surfaces and in the assembly environments. The inoculated coupons were subsequently cleaned using: (1) 70% isopropyl alcohol wipe; (2) water wipe; (3) multiple-solvent flight-hardware cleaning procedures used at the Jet Propulsion Laboratory (JPL); (4) Johnson Space Center-developed ultrapure water rinse; and (5) a commercial, semi-aqueous, multiple-solvent (SAMS) cleaning process. The biological cleaning effectiveness was measured by agar plate assay, sterility test (growing in liquid media), and epifluorescent microscopy. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.

  10. 9 CFR 590.515 - Egg cleaning operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Egg cleaning operations. 590.515... EGG PRODUCTS INSPECTION INSPECTION OF EGGS AND EGG PRODUCTS (EGG PRODUCTS INSPECTION ACT) Sanitary, Processing, and Facility Requirements § 590.515 Egg cleaning operations. (a) The following requirements shall...

  11. 9 CFR 590.515 - Egg cleaning operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Egg cleaning operations. 590.515... EGG PRODUCTS INSPECTION INSPECTION OF EGGS AND EGG PRODUCTS (EGG PRODUCTS INSPECTION ACT) Sanitary, Processing, and Facility Requirements § 590.515 Egg cleaning operations. (a) The following requirements shall...

  12. Energy Department Helps Advance Island Clean Energy Goals (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-10-01

    This U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) fact sheet highlights a June 2012 solar power purchase agreement between the Virgin Islands Water and Power Authority and three corporations. The fact sheet describes how financial support from DOE and technical assistance from DOE's National Renewable Energy Laboratory enabled the U.S. Virgin Islands to realistically assess its clean energy resources and identify the most viable and cost-effective solutions to its energy challenges--resulting in a $65 million investment in solar energy in the territory.

  13. Development of a filter regeneration system for advanced spacecraft fluid systems

    NASA Technical Reports Server (NTRS)

    Behrend, A. F., Jr.; Descamp, V. A.

    1974-01-01

    The development of a filter regeneration system for efficiently cleaning fluid particulate filters is presented. Based on a backflush/jet impingement technique, the regeneration system demonstrated a cleaning efficiency of 98.7 to 100%. The operating principles and design features are discussed with emphasis on the primary system components that include a regenerable filter, vortex particle separator, and zero-g particle trap. Techniques and equipment used for ground and zero-g performance tests are described. Test results and conclusions, as well as possible areas for commercial application, are included.

  14. A commitment to coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shea, Q.

    2006-07-15

    Quin Shea explores the need for power generated with coal and the advanced technologies that will generate that power more efficiently and cleanly in the future. The article considers the air and waste challenges of using coal, including progress toward reducing emissions of SO{sub 2}, NOx, and mercury; efforts to address CO{sub 2}, including voluntary programs like the Climate Challenge, Power Partners, and the Asia-Pacific Partnership on Clean Development and Climate; and the regulation and beneficial use of coal-combustion byproducts (e.g., fly ash, bottom ash, flue gas desulfurization materials, boiler slag). 17 refs.

  15. Risk in cleaning: chemical and physical exposure.

    PubMed

    Wolkoff, P; Schneider, T; Kildesø, J; Degerth, R; Jaroszewski, M; Schunk, H

    1998-04-23

    Cleaning is a large enterprise involving a large fraction of the workforce worldwide. A broad spectrum of cleaning agents has been developed to facilitate dust and dirt removal, for disinfection and surface maintenance. The cleaning agents are used in large quantities throughout the world. Although a complex pattern of exposure to cleaning agents and resulting health problems, such as allergies and asthma, are reported among cleaners, only a few surveys of this type of product have been performed. This paper gives a broad introduction to cleaning agents and the impact of cleaning on cleaners, occupants of indoor environments, and the quality of cleaning. Cleaning agents are usually grouped into different product categories according to their technical functions and the purpose of their use (e.g. disinfectants and surface care products). The paper also indicates the adverse health and comfort effects associated with the use of these agents in connection with the cleaning process. The paper identifies disinfectants as the most hazardous group of cleaning agents. Cleaning agents contain evaporative and non-evaporative substances. The major toxicologically significant constituents of the former are volatile organic compounds (VOCs), defined as substances with boiling points in the range of 0 degree C to about 400 degrees C. Although laboratory emission testing has shown many VOCs with quite different time-concentration profiles, few field studies have been carried out measuring the exposure of cleaners. However, both field studies and emission testing indicate that the use of cleaning agents results in a temporal increase in the overall VOC level. This increase may occur during the cleaning process and thus it can enhance the probability of increased short-term exposure of the cleaners. However, the increased levels can also be present after the cleaning and result in an overall increased VOC level that can possibly affect the indoor air quality (IAQ) perceived by occupants. The variety and duration of the emissions depend inter alia on the use of fragrances and high boiling VOCs. Some building materials appear to increase their VOC emission through wet cleaning and thus may affect the IAQ. Particles and dirt contain a great variety of both volatile and non-volatile substances, including allergens. While the volatile fraction can consist of more than 200 different VOCs including formaldehyde, the non-volatile fraction can contain considerable amounts (> 0.5%) of fatty acid salts and tensides (e.g. linear alkyl benzene sulphonates). The level of these substances can be high immediately after the cleaning process, but few studies have been conducted concerning this problem. The substances partly originate from the use of cleaning agents. Both types are suspected to be airway irritants. Cleaning activities generate dust, mostly by resuspension, but other occupant activities may also resuspend dust over longer periods of time. Personal sampling of VOCs and airborne dust gives higher results than stationary sampling. International bodies have proposed air sampling strategies. A variety of field sampling techniques for VOC and surface particle sampling is listed.

  16. SEMICONDUCTOR TECHNOLOGY A new cleaning process for the metallic contaminants on a post-CMP wafer's surface

    NASA Astrophysics Data System (ADS)

    Baohong, Gao; Yuling, Liu; Chenwei, Wang; Yadong, Zhu; Shengli, Wang; Qiang, Zhou; Baimei, Tan

    2010-10-01

    This paper presents a new cleaning process using boron-doped diamond (BDD) film anode electrochemical oxidation for metallic contaminants on polished silicon wafer surfaces. The BDD film anode electrochemical oxidation can efficiently prepare pyrophosphate peroxide, pyrophosphate peroxide can oxidize organic contaminants, and pyrophosphate peroxide is deoxidized into pyrophosphate. Pyrophosphate, a good complexing agent, can form a metal complex, which is a structure consisting of a copper ion, bonded to a surrounding array of two pyrophosphate anions. Three polished wafers were immersed in the 0.01 mol/L CuSO4 solution for 2 h in order to make comparative experiments. The first one was cleaned by pyrophosphate peroxide, the second by RCA (Radio Corporation of America) cleaning, and the third by deionized (DI) water. The XPS measurement result shows that the metallic contaminants on wafers cleaned by the RCA method and by pyrophosphate peroxide is less than the XPS detection limits of 1 ppm. And the wafer's surface cleaned by pyrophosphate peroxide is more efficient in removing organic carbon residues than RCA cleaning. Therefore, BDD film anode electrochemical oxidation can be used for microelectronics cleaning, and it can effectively remove organic contaminants and metallic contaminants in one step. It also achieves energy saving and environmental protection.

  17. Integrated Science Assessment (ISA) for Oxides of Nitrogen ...

    EPA Pesticide Factsheets

    EPA is announcing the availability of the First External Review Draft of the Integrated Science Assessment for Oxides of Nitrogen – Health Criteria for public comment and independent peer review. This draft document provides EPA’s evaluation and synthesis of the most policy-relevant science related to the health effects of oxides of nitrogen. When final, it will provide a critical part of the scientific foundation for EPA’s decision regarding the adequacy of the current primary (health-based) national ambient air quality standards for nitrogen dioxide. The Clean Air Act (CAA) requires EPA to periodically review and revise, as appropriate, existing air quality criteria and NAAQS. The CAA also requires an independent scientific committee to review the criteria and to advise the Administrator regarding any recommended revisions to the existing criteria and standards, as may be appropriate. The Clean Air Scientific Advisory Committee (CASAC) of EPA’s Science Advisory Board serves as this independent scientific committee. The ISA is one of the four major elements of the NAAQS review process that will inform the Agency’s final decisions; other components of the process are an integrated plan highlighting the key policy-relevant issues; a risk/exposure assessment if warranted; and an advance notice of proposed rulemaking (ANPRM) reflecting the Agency’s views regarding options to retain or revise the NO2 NAAQS based on the evaluation of key information cont

  18. Water splitting on semiconductor catalysts under visible-light irradiation.

    PubMed

    Navarro Yerga, Rufino M; Alvarez Galván, M Consuelo; del Valle, F; Villoria de la Mano, José A; Fierro, José L G

    2009-01-01

    Sustainable hydrogen production is a key target for the development of alternative, future energy systems that will provide a clean and affordable energy supply. The Sun is a source of silent and precious energy that is distributed fairly all over the Earth daily. However, its tremendous potential as a clean, safe, and economical energy source cannot be exploited unless the energy is accumulated or converted into more useful forms. The conversion of solar energy into hydrogen via the water-splitting process, assisted by photo-semiconductor catalysts, is one of the most promising technologies for the future because large quantities of hydrogen can potentially be generated in a clean and sustainable manner. This Minireview provides an overview of the principles, approaches, and research progress on solar hydrogen production via the water-splitting reaction on photo-semiconductor catalysts. It presents a survey of the advances made over the last decades in the development of catalysts for photochemical water splitting under visible-light irradiation. The Minireview also analyzes the energy requirements and main factors that determine the activity of photocatalysts in the conversion of water into hydrogen and oxygen using sunlight. Remarkable progress has been made since the pioneering work by Fujishima and Honda in 1972, but he development of photocatalysts with improved efficiencies for hydrogen production from water using solar energy still faces major challenges. Research strategies and approaches adopted in the search for active and efficient photocatalysts, for example through new materials and synthesis methods, are presented and analyzed.

  19. US-China Clean Energy Research Center on Building Energy Efficiency: Materials that Improve the Cost-Effectiveness of Air Barrier Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hun, Diana E.

    The US–China Clean Energy Research Center (CERC) was launched in 2009 by US Energy Secretary Steven Chu, Chinese Minister of Science and Technology Wan Gang, and Chinese National Energy Agency Administrator Zhang Guobao. This 5-year collaboration emerged from the fact that the United States and China are the world’s largest energy producers, energy consumers, and greenhouse gas emitters, and that their joint effort could have significant positive repercussions worldwide. CERC’s main goal is to develop and deploy clean energy technologies that will help both countries meet energy and climate challenges. Three consortia were established to address the most pressing energy-relatedmore » research areas: Advanced Coal Technology, Clean Vehicles, and Building Energy Efficiency (BEE). The project discussed in this report was part of the CERC-BEE consortia; its objective was to lower energy use in buildings by developing and evaluating technologies that improve the cost-effectiveness of air barrier systems for building envelopes.« less

  20. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances.

    PubMed

    De Almeida, Darne G; Soares Da Silva, Rita de Cássia F; Luna, Juliana M; Rufino, Raquel D; Santos, Valdemir A; Banat, Ibrahim M; Sarubbo, Leonie A

    2016-01-01

    The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning, and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulfate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands, and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernize petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries.

  1. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances

    PubMed Central

    De Almeida, Darne G.; Soares Da Silva, Rita de Cássia F.; Luna, Juliana M.; Rufino, Raquel D.; Santos, Valdemir A.; Banat, Ibrahim M.; Sarubbo, Leonie A.

    2016-01-01

    The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning, and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulfate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands, and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernize petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries. PMID:27843439

  2. 40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for pneumatic coal-cleaning... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a) On and after...

  3. 40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for pneumatic coal-cleaning... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a) On and after...

  4. 40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for pneumatic coal-cleaning... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a) On and after...

  5. 40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for pneumatic coal-cleaning... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a) On and after...

  6. 40 CFR 60.253 - Standards for pneumatic coal-cleaning equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for pneumatic coal-cleaning... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation and Processing Plants § 60.253 Standards for pneumatic coal-cleaning equipment. (a) On and after...

  7. Advanced CHP Control Algorithms: Scope Specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katipamula, Srinivas; Brambley, Michael R.

    2006-04-28

    The primary objective of this multiyear project is to develop algorithms for combined heat and power systems to ensure optimal performance, increase reliability, and lead to the goal of clean, efficient, reliable and affordable next generation energy systems.

  8. Advanced Concept

    NASA Image and Video Library

    2008-02-15

    Testing of the subsonic and transonic mach number for clean and full protuberances in support of the Ares/CLV Integrated Vehicle at the Boeing facility in Missouri. This image is extracted from a high definition video file and is the highest resolution available.

  9. Powering Cities of the Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-09-20

    As NREL celebrates 40 years of advancing energy innovation this year, leaders from cities across the country gathered at the lab and talked about how cities could transform over the next 40 years as they transition to clean energy.

  10. Science and Technology at Oak Ridge National Laboratory

    ScienceCinema

    Mason, Thomas

    2017-12-22

    ORNL Director Thom Mason explains the groundbreaking work in neutron sciences, supercomputing, clean energy, advanced materials, nuclear research, and global security taking place at the Department of Energy's Office of Science laboratory in Oak Ridge, TN.

  11. Collodion-reinforcement and plasma-cleaning of target foils

    NASA Astrophysics Data System (ADS)

    Stoner, John O.

    2002-03-01

    The preparation of evaporated target foils can often be facilitated by use of collodion coatings either on the substrate sides or on the exterior surfaces of the foils. Later, such coatings must usually be removed. Cleaning of a foil is necessary if thin layers of adhesives have crept onto the foil. Removal and/or cleaning can often be done satisfactorily with an oxygen plasma. Apparatus and procedures used for this are described. Foils that were cleaned successfully, and some that were incompatible with the cleaning process are listed.

  12. Estimation of the monthly average daily solar radiation using geographic information system and advanced case-based reasoning.

    PubMed

    Koo, Choongwan; Hong, Taehoon; Lee, Minhyun; Park, Hyo Seon

    2013-05-07

    The photovoltaic (PV) system is considered an unlimited source of clean energy, whose amount of electricity generation changes according to the monthly average daily solar radiation (MADSR). It is revealed that the MADSR distribution in South Korea has very diverse patterns due to the country's climatic and geographical characteristics. This study aimed to develop a MADSR estimation model for the location without the measured MADSR data, using an advanced case based reasoning (CBR) model, which is a hybrid methodology combining CBR with artificial neural network, multiregression analysis, and genetic algorithm. The average prediction accuracy of the advanced CBR model was very high at 95.69%, and the standard deviation of the prediction accuracy was 3.67%, showing a significant improvement in prediction accuracy and consistency. A case study was conducted to verify the proposed model. The proposed model could be useful for owner or construction manager in charge of determining whether or not to introduce the PV system and where to install it. Also, it would benefit contractors in a competitive bidding process to accurately estimate the electricity generation of the PV system in advance and to conduct an economic and environmental feasibility study from the life cycle perspective.

  13. Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilello, D.; Katz, J.; Esterly, S.

    2014-09-01

    Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers asmore » they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.« less

  14. Development of Improved Iron-Aluminide Filter Tubes and Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkins, R.R.; Sutton, T.G.; Miller, C.J.

    2008-01-14

    The purpose of this Cooperative Research and Development Agreement (CRADA) was to explore and develop advanced manufacturing techniques to fabricate sintered iron-aluminide intermetallic porous bodies used for gas filtration so as to reduce production costs while maintaining or improving performance in advanced coal gasification and combustion systems. The use of a power turbine fired with coal-derived synthesis gas requires some form of gas cleaning in order to protect turbine and downstream components from degradation by erosion, corrosion, and/or deposition. Hot-gas filtration is one form of cleaning that offers the ability to remove particles from the gases produced by gasification processesmore » without having to substantially cool and, possibly, reheat them before their introduction into the turbine. This technology depends critically on materials durability and reliability, which have been the subject of study for a number of years.« less

  15. Fossil Energy Program Annual Progress Report for the Period April 1, 2000 through March 31, 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkins, RR

    This report covers progress made at Oak Ridge National Laboratory (ORNL) on research and development projects that contribute to the advancement of fossil energy technologies. Projects on the ORNL Fossil Energy Program are supported by the U.S. Department of Energy (DOE) Office of Fossil Energy, the DOE National Energy Technology Laboratory (NETL), the DOE Fossil Energy Clean Coal Technology (CCT) Program, the DOE National Petroleum Technology Office, and the DOE Fossil Energy Office of Strategic Petroleum Reserve (SPR). The ORNL Fossil Energy Program research and development activities cover the areas of coal, clean coal technology, gas, petroleum, and support tomore » the SPR. An important part of the Fossil Energy Program is technical management of all activities on the DOE Fossil Energy Advanced Research (AR) Materials Program. The AR Materials Program involves research at other DOE and government laboratories, at universities, and at industrial organizations.« less

  16. The Interaction of Spacecraft Cabin Atmospheric Quality and Water Processing System Performance

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Croomes, Scott D. (Technical Monitor)

    2002-01-01

    Although designed to remove organic contaminants from a variety of waste water streams, the planned U.S.- and present Russian-provided water processing systems onboard the International Space Station (ISS) have capacity limits for some of the more common volatile cleaning solvents used for housekeeping purposes. Using large quantities of volatile cleaning solvents during the ground processing and in-flight operational phases of a crewed spacecraft such as the ISS can lead to significant challenges to the water processing systems. To understand the challenges facing the management of water processing capacity, the relationship between cabin atmospheric quality and humidity condensate loading is presented. This relationship is developed as a tool to determine the cabin atmospheric loading that may compromise water processing system performance. A comparison of cabin atmospheric loading with volatile cleaning solvents from ISS, Mir, and Shuttle are presented to predict acceptable limits to maintain optimal water processing system performance.

  17. Environmental monitoring of the orbiter payload bay and Orbiter Processing Facilities

    NASA Technical Reports Server (NTRS)

    Bartelson, D. W.; Johnson, A. M.

    1985-01-01

    Contamination control in the Orbiter Processing Facility (OPF) is studied. The clean level required in the OPF is generally clean, which means no residue, dirt, debris, or other extraneous contamination; various methods of maintaining this level of cleanliness are described. The monitoring and controlling of the temperature, relative humidity, and air quality in the OPF are examined. Additional modifications to the OPF to improve contamination control are discussed. The methods used to maintain the payload changeout room at a level of visually clean, no particulates are to be detected by the unaided eye, are described. The payload bay (PLB) must sustain the cleanliness level required for the specific Orbiter's mission; the three levels of clean are defined as: (1) standard, (2) sensitive, and (3) high sensitive. The cleaning and inspection verification required to achieve the desired cleanliness level on a variety of PLB surface types are examined.

  18. Characterization of Laser Cleaning of Artworks

    PubMed Central

    Marczak, Jan; Koss, Andrzej; Targowski, Piotr; Góra, Michalina; Strzelec, Marek; Sarzyński, Antoni; Skrzeczanowski, Wojciech; Ostrowski, Roman; Rycyk, Antoni

    2008-01-01

    The main tasks of conservators of artworks and monuments are the estimation and analysis of damages (present condition), object conservation (cleaning process), and the protection of an object against further degradation. One of the physical methods that is becoming more and more popular for dirt removal is the laser cleaning method. This method is non-contact, selective, local, controlled, self-limiting, gives immediate feedback and preserves even the gentlest of relief - the trace of a paintbrush. Paper presents application of different, selected physical sensing methods to characterize condition of works of art as well as laser cleaning process itself. It includes, tested in our laboratories, optical surface measurements (e.g. colorimetry, scatterometry, interferometry), infrared thermography, optical coherent tomography and acoustic measurements for “on-line” evaluation of cleaning progress. Results of laser spectrometry analyses (LIBS, Raman) will illustrate identification and dating of objects superficial layers. PMID:27873884

  19. 78 FR 41025 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... that import seed for cleaning or processing, to enter into compliance agreements with APHIS. This... other information activities to enable the importation of seeds for cleaning and processing so that they...: Imported Seed and Screening. OMB Control Number: 0579-0124. Summary of Collection: The United States...

  20. 40 CFR 463.21 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND STANDARDS PLASTICS MOLDING AND FORMING POINT SOURCE CATEGORY Cleaning Water Subcategory § 463.21... usage flow rate” for a plant with more than one plastics molding and forming process that uses cleaning... process and comes in contact with the plastic product over a period of one year. ...

  1. Automated Reflectance Measurement System Designed and Fabricated to Determine the Limits of Atomic Oxygen Treatment of Art Through Contrast Optimization

    NASA Technical Reports Server (NTRS)

    Sechkar, Edward A.; Stueber, Thomas J.; Rutledge, Sharon K.

    2000-01-01

    Atomic oxygen generated in ground-based research facilities has been used to not only test erosion of candidate spacecraft materials but as a noncontact technique for removing organic deposits from the surfaces of artwork. NASA has patented the use of atomic oxygen to remove carbon-based soot contamination from fire-damaged artwork. The process of cleaning soot-damaged paintings with atomic oxygen requires exposures for variable lengths of time, dependent on the condition of a painting. Care must be exercised while cleaning to prevent the removal of pigment. The cleaning process must be stopped as soon as visual inspection or surface reflectance measurements indicate that cleaning is complete. Both techniques rely on optical comparisons of known bright locations against known dark locations on the artwork being cleaned. Difficulties arise with these techniques when either a known bright or dark location cannot be determined readily. Furthermore, dark locations will lighten with excessive exposure to atomic oxygen. Therefore, an automated test instrument to quantitatively characterize cleaning progression was designed and developed at the NASA Glenn Research Center at Lewis Field to determine when atomic oxygen cleaning is complete.

  2. Advanced Boost System Developing for High EGR Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Harold

    2012-09-30

    To support industry efforts of clean and efficient internal combustion engine development for passenger and commercial applications • This program focuses on turbocharger improvement for medium and light duty diesel applications, from complete system optimization percepective to enable commercialization of advanced diesel combustion technologies, such as HCCI/LTC. • Improve combined turbocharger efficiency up to 10% or fuel economy by 3% on FTP cycle at Tier II Bin 5 emission level.

  3. Defect printability for high-exposure dose advanced packaging applications

    NASA Astrophysics Data System (ADS)

    Mikles, Max; Flack, Warren; Nguyen, Ha-Ai; Schurz, Dan

    2003-12-01

    Pellicles are used in semiconductor lithography to minimize printable defects and reduce reticle cleaning frequency. However, there are a growing number of microlithography applications, such as advanced packaging and nanotechnology, where it is not clear that pellicles always offer a significant benefit. These applications have relatively large critical dimensions and require ultra thick photoresists with extremely high exposure doses. Given that the lithography is performed in Class 100 cleanroom conditions, it is possible that the risk of defects from contamination is sufficiently low that pellicles would not be required on certain process layer reticles. The elimination of the pellicle requirement would provide a cost reduction by saving the original pellicle cost and eliminating future pellicle replacement and repair costs. This study examines the imaging potential of defects with reticle patterns and processes typical for gold-bump and solder-bump advanced packaging lithography. The test reticle consists of 30 to 90 μm octagonal contact patterns representative of advanced packaging reticles. Programmed defects are added that represent the range of particle sizes (3 to 30 μm) normally protected by the pellicle and that are typical of advanced packaging lithography cleanrooms. The reticle is exposed using an Ultratech Saturn Spectrum 300e2 1X stepper on wafers coated with a variety of ultra thick (30 to 100 μm) positive and negative-acting photoresists commonly used in advanced packaging. The experimental results show that in many cases smaller particles continue to be yield issues for the feature size and density typical of advanced packaging processes. For the two negative photoresists studied it appears that a pellicle is not required for protection from defects smaller than 10 to 15 μm depending on the photoresist thickness. Thus the decision on pellicle usage for these materials would need to be made based on the device fabrication process and the cleanliness of a fabrication facility. For the two positive photoresists studied it appears that a pellicle is required to protect from defects down to 3 μm defects depending on the photoresist thickness. This suggests that a pellicle should always be used for these materials. Since a typical fabrication facility would use both positive and negative photoresists it may be advantageous to use pellicles on all reticles simply to avoid confusion. The cost savings of not using a pellicle could easily be outweighed by the yield benefits of using one.

  4. Effective reprocessing of reusable dispensers for surface disinfection tissues – the devil is in the details

    PubMed Central

    Kampf, Günter; Degenhardt, Stina; Lackner, Sibylle; Ostermeyer, Christiane

    2014-01-01

    Background: It has recently been reported that reusable dispensers for surface disinfection tissues may be contaminated, especially with adapted Achromobacter species 3, when products based on surface-active ingredients are used. Fresh solution may quickly become recontaminated if dispensers are not processed adequately. Methods: We evaluated the abilities of six manual and three automatic processes for processing contaminated dispensers to prevent recolonisation of a freshly-prepared disinfectant solution (Mikrobac forte 0.5%). Dispensers were left at room temperature for 28 days. Samples of the disinfectant solution were taken every 7 days and assessed quantitatively for bacterial contamination. Results: All automatic procedures prevented recolonisation of the disinfectant solution when a temperature of 60–70°C was ensured for at least 5 min, with or without the addition of chemical cleaning agents. Manual procedures prevented recontamination of the disinfectant solution when rinsing with hot water or a thorough cleaning step was performed before treating all surfaces with an alcohol-based disinfectant or an oxygen-releaser. Other cleaning and disinfection procedures, including the use of an alcohol-based disinfectant, did not prevent recolonisation. Conclusions: These results indicate that not all processes are effective for processing reusable dispensers for surface-disinfectant tissues, and that a high temperature during the cleaning step or use of a biofilm-active cleaning agent are essential. PMID:24653973

  5. Use of Bioregenerative Technologies for Advanced Life Support: Some Considerations for BIO-Plex and Related Testbeds

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Strayer, Richard F.

    1997-01-01

    A review of bioregenerative life support concepts is provided as a guide for developing ground-based testbeds for NASA's Advanced Life Support Program. Key among these concepts are the use of controlled environment plant culture for the production of food, oxygen, and clean water, and the use of bacterial bioreactors for degrading wastes and recycling nutrients. Candidate crops and specific bioreactor approaches are discussed based on experiences from the. Kennedy Space Center Advanced Life Support Breadboard Project, and a review of related literature is provided.

  6. Applications of nanotechnology in water and wastewater treatment.

    PubMed

    Qu, Xiaolei; Alvarez, Pedro J J; Li, Qilin

    2013-08-01

    Providing clean and affordable water to meet human needs is a grand challenge of the 21st century. Worldwide, water supply struggles to keep up with the fast growing demand, which is exacerbated by population growth, global climate change, and water quality deterioration. The need for technological innovation to enable integrated water management cannot be overstated. Nanotechnology holds great potential in advancing water and wastewater treatment to improve treatment efficiency as well as to augment water supply through safe use of unconventional water sources. Here we review recent development in nanotechnology for water and wastewater treatment. The discussion covers candidate nanomaterials, properties and mechanisms that enable the applications, advantages and limitations as compared to existing processes, and barriers and research needs for commercialization. By tracing these technological advances to the physicochemical properties of nanomaterials, the present review outlines the opportunities and limitations to further capitalize on these unique properties for sustainable water management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Recent advances in nanoscale-metal assisted biochar derived from waste biomass used for heavy metals removal.

    PubMed

    Ho, Shih-Hsin; Zhu, Shishu; Chang, Jo-Shu

    2017-12-01

    Pollution of heavy metals (HMs) is a detrimental treat to human health and need to be cleaned up in a proper way. Biochar (BC), a low-cost and "green" adsorbent, has attracted significant attention due to its considerable HMs removal capacity. In particular, nano-metals have recently been used to assist BC in improving its reactivity, surface texture and magnetism. Synthesis methods and metal precursors greatly influence the properties and structures of the nanocomposites, thereby affecting their HMs removal performance. This review presents advances in synthesis methods, formation mechanisms and surface characteristics of BC nanocomposites, along with the discussions on HMs removal mechanisms and the effects of environmental factors on HMs removal efficiency. Performance of using BC nanocomposites to remediate real HMs-containing wastewater and issues associated with its process scale-up are also discussed. This review aims to provide useful information to facilitate the development of HMs removal by nanoscale-metal assisted BC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2015-12-01

    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Guiding gate-etch process development using 3D surface reaction modeling for 7nm and beyond

    NASA Astrophysics Data System (ADS)

    Dunn, Derren; Sporre, John R.; Deshpande, Vaibhav; Oulmane, Mohamed; Gull, Ronald; Ventzek, Peter; Ranjan, Alok

    2017-03-01

    Increasingly, advanced process nodes such as 7nm (N7) are fundamentally 3D and require stringent control of critical dimensions over high aspect ratio features. Process integration in these nodes requires a deep understanding of complex physical mechanisms to control critical dimensions from lithography through final etch. Polysilicon gate etch processes are critical steps in several device architectures for advanced nodes that rely on self-aligned patterning approaches to gate definition. These processes are required to meet several key metrics: (a) vertical etch profiles over high aspect ratios; (b) clean gate sidewalls free of etch process residue; (c) minimal erosion of liner oxide films protecting key architectural elements such as fins; and (e) residue free corners at gate interfaces with critical device elements. In this study, we explore how hybrid modeling approaches can be used to model a multi-step finFET polysilicon gate etch process. Initial parts of the patterning process through hardmask assembly are modeled using process emulation. Important aspects of gate definition are then modeled using a particle Monte Carlo (PMC) feature scale model that incorporates surface chemical reactions.1 When necessary, species and energy flux inputs to the PMC model are derived from simulations of the etch chamber. The modeled polysilicon gate etch process consists of several steps including a hard mask breakthrough step (BT), main feature etch steps (ME), and over-etch steps (OE) that control gate profiles at the gate fin interface. An additional constraint on this etch flow is that fin spacer oxides are left intact after final profile tuning steps. A natural optimization required from these processes is to maximize vertical gate profiles while minimizing erosion of fin spacer films.2

  10. The National Carbon Capture Center at the Power Systems Development Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-12-30

    The National Carbon Capture Center (NCCC) at the Power Systems Development Facility supports the Department of Energy (DOE) goal of promoting the United States’ energy security through reliable, clean, and affordable energy produced from coal. Work at the NCCC supports the development of new power technologies and the continued operation of conventional power plants under CO 2 emission constraints. The NCCC includes adaptable slipstreams that allow technology development of CO 2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research atmore » the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development path to commercialization. During its first contract period, from October 1, 2008, through December 30, 2014, the NCCC designed, constructed, and began operation of the Post-Combustion Carbon Capture Center (PC4). Testing of CO 2 capture technologies commenced in 2011, and through the end of the contract period, more than 25,000 hours of testing had been achieved, supporting a variety of technology developers. Technologies tested included advanced solvents, enzymes, membranes, sorbents, and associated systems. The NCCC continued operation of the existing gasification facilities, which have been in operation since 1996, to support the advancement of technologies for next-generation gasification processes and pre-combustion CO 2 capture. The gasification process operated for 13 test runs, supporting over 30,000 hours combined of both gasification and pre-combustion technology developer testing. Throughout the contract period, the NCCC incorporated numerous modifications to the facilities to accommodate technology developers and increase test capabilities. Preparations for further testing were ongoing to continue advancement of the most promising technologies for future power generation processes.« less

  11. Effect of a new regeneration process by adsorption-coagulation and flocculation on the physicochemical properties and the detergent efficiency of regenerated cleaning solutions.

    PubMed

    Blel, Walid; Dif, Mehdi; Sire, Olivier

    2015-05-15

    Reprocessing soiled cleaning-in-place (CIP) solutions has large economic and environmental costs, and it would be cheaper and greener to recycle them. In food industries, recycling of CIP solutions requires a suitable green process engineered to take into account the extreme physicochemical conditions of cleaning while not altering the process efficiency. To this end, an innovative treatment process combining adsorption-coagulation with flocculation was tested on multiple recycling of acid and basic cleaning solutions. In-depth analysis of time-course evolutions was carried out in the physicochemical properties (concentration, surface tension, viscosity, COD, total nitrogen) of these solutions over the course of successive regenerations. Cleaning and disinfection efficiencies were assessed based on both microbiological analyses and organic matter detachment and solubilization from fouled stainless steel surfaces. Microbiological analyses using a resistant bacterial strain (Bacillus subtilis spores) highlighted that solutions regenerated up to 20 times maintained the same bactericidal efficiency as de novo NaOH solutions. The cleanability of stainless steel surfaces showed that regenerated solutions allow better surface wettability, which goes to explain the improved detachment and solubilization found on different types of organic and inorganic fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Film loss-free cleaning chemicals for EUV mask lifetime elongation developed through combinatorial chemical screening

    NASA Astrophysics Data System (ADS)

    Choi, Jaehyuck; Kim, Jinsu; Lowe, Jeff; Dattilo, Davide; Koh, Soowan; Choi, Jun Yeol; Dietze, Uwe; Shoki, Tsutomu; Kim, Byung Gook; Jeon, Chan-Uk

    2015-10-01

    EUV masks include many different layers of various materials rarely used in optical masks, and each layer of material has a particular role in enhancing the performance of EUV lithography. Therefore, it is crucial to understand how the mask quality and patterning performance can change during mask fabrication, EUV exposure, maintenance cleaning, shipping, or storage. SPM (Sulfuric acid peroxide mixture) which has been extensively used for acid cleaning of photomask and wafer has serious drawback for EUV mask cleaning. It shows severe film loss of tantalum-based absorber layers and limited removal efficiency of EUV-generated carbon contaminants on EUV mask surface. Here, we introduce such novel cleaning chemicals developed for EUV mask as almost film loss free for various layers of the mask and superior carbon removal performance. Combinatorial chemical screening methods allowed us to screen several hundred combinations of various chemistries and additives under several different process conditions of temperature and time, eventually leading to development of the best chemistry selections for EUV mask cleaning. Recently, there have been many activities for the development of EUV pellicle, driven by ASML and core EUV scanner customer companies. It is still important to obtain film-loss free cleaning chemicals because cleaning cycle of EUV mask should be much faster than that of optic mask mainly due to EUV pellicle lifetime. More frequent cleaning, combined with the adoption of new materials for EUV masks, necessitates that mask manufacturers closely examine the performance change of EUV masks during cleaning process. We have investigated EUV mask quality changes and film losses during 50 cleaning cycles using new chemicals as well as particle and carbon contaminant removal characteristics. We have observed that the performance of new chemicals developed is superior to current SPM or relevant cleaning chemicals for EUV mask cleaning and EUV mask lifetime elongation.

  13. NATO/CCMS PILOT STUDY - CLEAN PRODUCTS AND PROCESSES (PHASE I) 2000 ANNUAL REPORT, NUMBER 242

    EPA Science Inventory

    This annual report presents the proceedings of the Third Annual NATO/CCMS pilot study meeting in Copenhagen, Denmark. Guest speakers focused on efforts in the area of research of clean products and processes, life cycle analysis, computer tools and pollution prevention.

  14. NATO CCMS PILOT STUDY ON CLEAN PRODUCTS AND PROCESSES -(PHASE I) - 2002 ANNUAL REPORT

    EPA Science Inventory

    The annual report summarizes the activities of the NATO CCMS Pilot Study on clean products and processes for 2002, including the proceedings of the 2002 annual meeting held in Vilnius, Lithuania. The report presents a wealth of information on cleaner production activities in ove...

  15. DEMONSTRATION OF A LIQUID CARBON DIOXIDE PROCESS FOR CLEANING METAL PARTS

    EPA Science Inventory

    The report gives results of a demonstration of liquid carbon dioxide (LCO2) as an alternative to chlorinated solvents for cleaning metal parts. It describes the LCO2 process, the parts tested, the contaminants removed, and results from preliminary laboratory testing and on-site d...

  16. Cheap non-toxic non-corrosive method of glass cleaning evaluated by contact angle, AFM, and SEM-EDX measurements.

    PubMed

    Dey, Tania; Naughton, Daragh

    2017-05-01

    Glass surface cleaning is the very first step in advanced coating deposition and it also finds use in conserving museum objects. However, most of the wet chemical methods of glass cleaning use toxic and corrosive chemicals like concentrated sulfuric acid (H 2 SO 4 ), piranha (a mixture of concentrated sulfuric acid and 30% hydrogen peroxide), and hydrogen fluoride (HF). On the other hand, most of the dry cleaning techniques like UV-ozone, plasma, and laser treatment require costly instruments. In this report, five eco-friendly wet chemical methods of glass cleaning were evaluated in terms of contact angle (measured by optical tensiometer), nano-scale surface roughness (measured by atomic force microscopy or AFM), and elemental composition (measured by energy dispersive x-ray spectroscopy or SEM-EDX). These glass cleaning methods are devoid of harsh chemicals and costly equipment, hence can be applied in situ in close proximity with plantation such as greenhouse or upon subtle objects such as museum artifacts. Out of these five methods, three methods are based on the chemical principle of chelation. It was found that the citric acid cleaning method gave the greatest change in contact angle within the hydrophilic regime (14.25° for new glass) indicating effective cleansing and the least surface roughness (0.178 nm for new glass) indicating no corrosive effect. One of the glass sample showed unique features which were traced backed to the history of the glass usage.

  17. Evaluating the use of laser radiation in cleaning of copper embroidery threads on archaeological Egyptian textiles

    NASA Astrophysics Data System (ADS)

    Abdel-Kareem, Omar; Harith, M. A.

    2008-07-01

    Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles.

  18. Benchmark Campaign of the COST Action GNSS4SWEC: Main Goals and Achievements

    NASA Astrophysics Data System (ADS)

    Dick, G.; Dousa, J.; Kacmarik, M.; Pottiaux, E.; Zus, F.; Brenot, H. H.; Moeller, G.; Kaplon, J.; Morel, L.; Hordyniec, P.

    2016-12-01

    This talk will give an overview of achievements of the Benchmark campaign, one of the central activities in the framework of the COST Action ES 1206 GNSS4SWEC. The main goal of the campaign is supporting the development and validation of advanced Global Navigation Satellite System (GNSS) tropospheric products, in particular high-resolution and ultra-fast/real-time zenith total delays (ZTD) and asymmetry products in terms of tropospheric horizontal gradients and slant delays.For the Benchmark campaign a complex data set of GNSS observations and various meteorological data were collected for a two-month period in 2013 (May-June) which included severe weather events in central Europe. An initial processing of data sets from GNSS and numerical weather models (NWM) provided independently estimated tropospheric reference products - ZTDs, tropospheric horizontal gradients and others. The comparison of horizontal tropospheric gradients from GNSS and NWM data demonstrated a very good agreement among independent solutions with negligible biases and an accuracy of about 0.5 mm. Visual comparisons of maps of zenith wet delays and tropospheric horizontal gradients showed very promising results for future exploitations of advanced GNSS tropospheric products in meteorological applications such as severe weather event monitoring and weather nowcasting.The benchmark data set is also used for an extensive validation of line-of-sight tropospheric Slant Total Delays (STD) from GNSS, NWM-raytracing and Water Vapour Radiometer (WVR) solutions. Six institutions delivered their STDs based on GNSS observations processed using different software and strategies. STDs from NWM ray-tracing came from three institutions using three different NWM models. Results show generally a very good mutual agreement among all solutions from all techniques. Among all an influence of adding not cleaned as well as cleaned GNSS post-fit residuals, i.e. residuals with eliminated and not eliminated non-tropospheric systematic effects such as multipath, to estimated STDs will be presented.

  19. Activities That Reduce Global Anthropogenic Methane Emissions Grant - Closed Announcement FY 2012

    EPA Pesticide Factsheets

    Grant to fund eligible projects for activities that advance near-term, cost-effective methane abatement or recovery and use as a clean energy source, and support the goals of of theGlobal Methane Initiative.

  20. Planetary quarantine: Supporting research and technology

    NASA Technical Reports Server (NTRS)

    Taylor, D. M.

    1975-01-01

    Planetary quarantine strategies for advanced missions are described, along with natural space environment studies and post launch recontamination studies. Spacecraft cleaning and decontamination techniques and assay activities are reviewed. Teflon ribbon experiments and pyrolsis gas-liquid chromatography study are also considered.

  1. Gevo, Inc. Approval

    EPA Pesticide Factsheets

    This December 22, 2016 letter from EPA approves the petition from Gevo, Inc. for butanol produced from corn starch and/or grain sorghum as renewable fuel and in some cases advanced biofuel under the Clean Air Act and the Renewable Fuel Standard Program.

  2. Cleaning By Blasting With Pellets Of Dry Ice

    NASA Technical Reports Server (NTRS)

    Fody, Jody

    1993-01-01

    Dry process strips protective surface coats from parts to be cleaned, without manual scrubbing. Does not involve use of flammable or toxic solvents. Used to remove coats from variety of materials, including plastics, ceramics, ferrous and nonferrous metals, and composites. Adds no chemical-pollution problem to problem of disposal of residue of coating material. Process consists of blasting solid carbon dioxide (dry ice) pellets at surface to be cleaned. Pellets sublime on impact and pass into atmosphere as carbon dioxide gas. Size, harness, velocity, and quantity of pellets adjusted to suit coating material and substrate.

  3. KSC-07pd0862

    NASA Image and Video Library

    2007-04-11

    KENNEDY SPACE CENTER, FLA. -- In clean room C of Astrotech's Payload Processing Facility, a worker wearing a "bunny suit," or clean-room attire, begins removing the protective cover surrounding the Dawn spacecraft. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/George Shelton

  4. KSC-07pd0863

    NASA Image and Video Library

    2007-04-11

    KENNEDY SPACE CENTER, FLA. -- In clean room C of Astrotech's Payload Processing Facility, a worker wearing a "bunny suit," or clean-room attire, looks over the Dawn spacecraft after removing the protective cover, at bottom right. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/George Shelton

  5. Experimental study of cleaning aircraft GTE fuel injectors using a vortex ejector

    NASA Astrophysics Data System (ADS)

    Evdokimov, O. A.; Piralishvili, Sh A.; Veretennikov, S. V.; Elkes, A. A.

    2017-11-01

    The main ways of cleaning the fuel injectors and the circuits of jet and vortex ejectors used for pumping gas, liquid and two-phase media, as well as for evacuation of enclosed spaces are analyzed. The possibility of organizing the process of pumping the liquid out of the fuel injection manifold secondary circuit using a vortex ejector is shown experimentally. The regimes of manifold evacuation at various inlet liquid pressure values are studied. The technology of carbon cleaning fuel injectors using a washing liquid at various working process parameters is tested.

  6. Guidelines for qualifying cleaning and verification materials

    NASA Technical Reports Server (NTRS)

    Webb, D.

    1995-01-01

    This document is intended to provide guidance in identifying technical issues which must be addressed in a comprehensive qualification plan for materials used in cleaning and cleanliness verification processes. Information presented herein is intended to facilitate development of a definitive checklist that should address all pertinent materials issues when down selecting a cleaning/verification media.

  7. Method for removing metals from a cleaning solution

    DOEpatents

    Deacon, Lewis E.

    2002-01-01

    A method for removing accumulated metals from a cleaning solution is provided. After removal of the metals, the cleaning solution can be discharged or recycled. The process manipulates the pH levels of the solution as a means of precipitating solids. Preferably a dual phase separation at two different pH levels is utilized.

  8. RECYCLING A NONIONIC AQUEOUS-BASED METAL-CLEANING SOLUTION WITH A CERAMIC MEMBRANE: PILOT SCALE EVALUATION

    EPA Science Inventory

    The effectiveness of a zirconium dioxide (ZrO2) membrane filter was evaluated for recycling a nonionic aqueous metal cleaning bath under real-world conditions. The pilot-scale study consisted of four 7- to 16-day filtration runs, each processed a portion of the cleaning bath duri...

  9. Idea Bank: Does Your Health Depend on a Clean Instrument?

    ERIC Educational Resources Information Center

    Gutoff, Olivia W.

    2011-01-01

    Music teachers have a responsibility to give detailed instruction on the regular cleaning of brass and wind instruments because of new, compelling research. Recent findings reinforce the importance of teaching proper instrument cleaning. Serious health consequences can be avoided by making instrument care an integral part of the educative process.…

  10. KENNEDY SPACE CENTER, FLA. - A KSC employee uses a clean-air shower before entering a clean room. Streams of pressurized air directed at the occupant from nozzles in the chamber's ceiling and walls are designed to dislodge particulate matter from hair, clothing and shoes. The adhesive mat on the floor captures soil from shoe soles, as well as particles that fall on its surface. Particulate matter has the potential to contaminate the space flight hardware being stored or processed in the clean room. The shower is part of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

    NASA Image and Video Library

    2003-08-29

    KENNEDY SPACE CENTER, FLA. - A KSC employee uses a clean-air shower before entering a clean room. Streams of pressurized air directed at the occupant from nozzles in the chamber's ceiling and walls are designed to dislodge particulate matter from hair, clothing and shoes. The adhesive mat on the floor captures soil from shoe soles, as well as particles that fall on its surface. Particulate matter has the potential to contaminate the space flight hardware being stored or processed in the clean room. The shower is part of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.

  11. Advanced Control Synthesis for Reverse Osmosis Water Desalination Processes.

    PubMed

    Phuc, Bui Duc Hong; You, Sam-Sang; Choi, Hyeung-Six; Jeong, Seok-Kwon

    2017-11-01

      In this study, robust control synthesis has been applied to a reverse osmosis desalination plant whose product water flow and salinity are chosen as two controlled variables. The reverse osmosis process has been selected to study since it typically uses less energy than thermal distillation. The aim of the robust design is to overcome the limitation of classical controllers in dealing with large parametric uncertainties, external disturbances, sensor noises, and unmodeled process dynamics. The analyzed desalination process is modeled as a multi-input multi-output (MIMO) system with varying parameters. The control system is decoupled using a feed forward decoupling method to reduce the interactions between control channels. Both nominal and perturbed reverse osmosis systems have been analyzed using structured singular values for their stabilities and performances. Simulation results show that the system responses meet all the control requirements against various uncertainties. Finally the reduced order controller provides excellent robust performance, with achieving decoupling, disturbance attenuation, and noise rejection. It can help to reduce the membrane cleanings, increase the robustness against uncertainties, and lower the energy consumption for process monitoring.

  12. Conversion Coatings for Aluminum Alloys by Chemical Vapor Deposition Mechanisms

    NASA Technical Reports Server (NTRS)

    Reye, John T.; McFadden, Lisa S.; Gatica, Jorge E.; Morales, Wilfredo

    2004-01-01

    With the rise of environmental awareness and the renewed importance of environmentally friendly processes, the United States Environmental Protection Agency has targeted surface pre-treatment processes based on chromates. Indeed, this process has been subject to regulations under the Clean Water Act as well as other environmental initiatives, and there is today a marked movement to phase the process out in the near future. Therefore, there is a clear need for new advances in coating technology that could provide practical options for replacing present industrial practices. Depending on the final application, such coatings might be required to be resistant to corrosion, act as chemically resistant coatings, or both. This research examined a chemical vapor deposition (CVD) mechanism to deposit uniform conversion coatings onto aluminum alloy substrates. Robust protocols based on solutions of aryl phosphate ester and multi-oxide conversion coating (submicron) films were successfully grown onto the aluminum alloy samples. These films were characterized by X-ray Photoelectron Spectroscopy (XPS). Preliminary results indicate the potential of this technology to replace aqueous-based chromate processes.

  13. A Centrifugal Contactor Design to Facilitate Remote Replacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David H. Meikrantz; Jack. D. Law; Troy G. Garn

    2011-03-01

    Advanced designs of nuclear fuel recycling and radioactive waste treatment plants are expected to include more ambitious goals for solvent extraction based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, Annular Centrifugal Contactors (ACCs) are destined to play a more important role for such future processing schemes. This work continues the development of remote designs for ACCs that can process the large throughputs needed for future nuclear fuel recycling and radioactive waste treatment plants. A three stage, 12.5 cm diameter rotor module has been constructed and ismore » being evaluated for use in highly radioactive environments. This prototype assembly employs three standard CINC V-05 clean-in-place (CIP) units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain and CIP. Hydraulic testing and functional checks were successfully conducted and then the prototype was evaluated for remote handling and maintenance. Removal and replacement of the center position V-05R contactor in the three stage assembly was demonstrated using an overhead rail mounted PaR manipulator. Initial evaluation indicates a viable new design for interconnecting and cleaning individual stages while retaining the benefits of commercially reliable ACC equipment. Replacement of a single stage via remote manipulators and tools is estimated to take about 30 minutes, perhaps fast enough to support a contactor change without loss of process equilibrium. The design presented in this work is scalable to commercial ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 liters per minute.« less

  14. Harsh environment sensor development for advanced energy systems

    NASA Astrophysics Data System (ADS)

    Romanosky, Robert R.; Maley, Susan M.

    2013-05-01

    Highly efficient, low emission power systems have extreme conditions of high temperature, high pressure, and corrosivity that require monitoring. Sensing in these harsh environments can provide key information that directly impacts process control and system reliability. To achieve the goals and demands of clean energy, the conditions under which fossil fuels are converted into heat and power are harsh compared to traditional combustion/steam cycles. Temperatures can extend as high as 1600 Celsius (°C) in certain systems and pressures can reach as high as 5000 pounds per square inch (psi)/340 atmospheres (atm). The lack of suitable measurement technology serves as a driver for the innovations in harsh environment sensor development. Two major considerations in the development of harsh environments sensors are the materials used for sensing and the design of the sensing device. This paper will highlight the U.S. Department of Energy's, Office of Fossil Energy and National Energy Technology Laboratory's Program in advanced sensing concepts that are aimed at addressing the technology needs and drivers through the development of new sensor materials and designs capable of withstanding harsh environment conditions. Recent developments with harsh environment sensors will be highlighted and future directions towards in advanced sensing will be introduced.

  15. Ultrasonic Mastering of Filter Flow and Antifouling of Renewable Resources.

    PubMed

    Radziuk, Darya; Möhwald, Helmuth

    2016-04-04

    Inadequate access to pure water and sanitation requires new cost-effective, ergonomic methods with less consumption of energy and chemicals, leaving the environment cleaner and sustainable. Among such methods, ultrasound is a unique means to control the physics and chemistry of complex fluids (wastewater) with excellent performance regarding mass transfer, cleaning, and disinfection. In membrane filtration processes, it overcomes diffusion limits and can accelerate the fluid flow towards the filter preventing antifouling. Here, we outline the current state of knowledge and technological design, with a focus on physicochemical strategies of ultrasound for water cleaning. We highlight important parameters of ultrasound for the delivery of a fluid flow from a technical perspective employing principles of physics and chemistry. By introducing various ultrasonic methods, involving bubbles or cavitation in combination with external fields, we show advancements in flow acceleration and mass transportation to the filter. In most cases we emphasize the main role of streaming and the impact of cavitation with a perspective to prevent and remove fouling deposits during the flow. We also elaborate on the deficiencies of present technologies and on problems to be solved to achieve a wide-spread application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowlin, S.; Cochran, J.; Cox, S.

    Low emission development strategies (LEDS) articulate policies and implementation plans that enable countries to advance sustainable, climate-resilient development and private sector growth while significantly reducing the greenhouse gas (GHG) emissions traditionally associated with economic growth. In creating a LEDS, policy makers often have access to information on abatement potential and costs for clean energy technologies, but there is a scarcity of economy-wide approaches for evaluating and presenting information on other dimensions of importance to development, such as human welfare, poverty alleviation, and energy security. To address this shortcoming, this paper proposes a new tool for communicating development benefits to policymore » makers as part of a LEDS process. The purpose of this tool is two-fold: 1. Communicate development benefits associated with each clean energy-related intervention; 2. Facilitate decision-making on which combination of interventions best contributes to development goals. To pilot this tool, the authors created a visual using data on developmental impacts identified through the Technology Needs Assessment (TNA) project in Montenegro. The visual will then be revised to reflect new data established through the TNA that provides information on cost, GHG mitigation, as well as the range and magnitude of developmental impacts.« less

  17. [Assessment of decontamination processes: cleaning, disinfection and sterilization in dental practice in Poland in the years 2011-2012].

    PubMed

    Röhm-Rodowald, Ewa; Jakimiak, Bozenna; Chojecka, Agnieszka; Zmuda-Baranowska, Magdalena; Kanclerski, Krzysztof

    2012-01-01

    Effective decontamination of instruments is a key element of infection control and the provision of high quality in dental care. The aim of the study was to evaluate the efficiency of decontamination procedures including cleaning, disinfection and sterilization of re-usable instruments in dental practices in Poland. The efficiency of disinfection and sterilization processes have been evaluated on the results of the questionnaires. The following information were taken into account: setting where disinfection and sterilization had been performed, preparation of dental equipment for sterilization (disinfection, washing and cleaning, packaging), the types of autoclaves and used types of sterilization cycles, routine monitoring and documentation of sterilization processes, treatment of handpieces and the frequency of surface decontamination. Data were collected from 43 dental practices (35 dental offices and 8 clinics). Disinfection and cleaning processes were performed manually in 63% of dental offices and ultrasonic baths were used in 53% of settings. Washer disinfectors were used in 23% of dental practices: in every researched clinic and in a few dental offices. All sterilization processes were performed in steam autoclaves, mainly in small steam sterilizers (81%). Dental handpieces were sterilized in 72% of practices, but only 33% of them performed sterilization in recommended cycle B. Sterilization processes were monitored with chemical indicators in 33% of practices. Biological monitoring of the processes was carried out at different intervals. Incorrect documentation of instruments and surfaces decontamination was recorded in several settings. There is still a need for improvement of decontamination processes in dental practice in Poland. Areas for improvement include: replacement of manual cleaning and disinfection processes with automatic processes, sterilization of dental handpieces after each patient, monitoring of a sterilization process with chemical and biological indicators. Reported incorrect procedures in decontamination of medical devices performed by questioned dentists and lack or inadequate response to asked questions indicate the lack of adequate knowledge about decontamination. Personnel who performs decontamination processes should be continuously trained.

  18. Sono-leather technology with ultrasound: a boon for unit operations in leather processing - review of our research work at Central Leather Research Institute (CLRI), India.

    PubMed

    Sivakumar, Venkatasubramanian; Swaminathan, Gopalaraman; Rao, Paruchuri Gangadhar; Ramasami, Thirumalachari

    2009-01-01

    Ultrasound is a sound wave with a frequency above the human audible range of 16 Hz to 16 kHz. In recent years, numerous unit operations involving physical as well as chemical processes are reported to have been enhanced by ultrasonic irradiation. There have been benefits such as improvement in process efficiency, process time reduction, performing the processes under milder conditions and avoiding the use of some toxic chemicals to achieve cleaner processing. These could be a better way of augmentation for the processes as an advanced technique. The important point here is that ultrasonic irradiation is physical method activation rather than using chemical entities. Detailed studies have been made in the unit operations related to leather such as diffusion rate enhancement through porous leather matrix, cleaning, degreasing, tanning, dyeing, fatliquoring, oil-water emulsification process and solid-liquid tannin extraction from vegetable tanning materials as well as in precipitation reaction in wastewater treatment. The fundamental mechanism involved in these processes is ultrasonic cavitation in liquid media. In addition to this there also exist some process specific mechanisms for the enhancement of the processes. For instance, possible real-time reversible pore-size changes during ultrasound propagation through skin/leather matrix could be a reason for diffusion rate enhancement in leather processing as reported for the first time. Exhaustive scientific research work has been carried out in this area by our group working in Chemical Engineering Division of CLRI and most of these benefits have been proven with publications in valued peer-reviewed international journals. The overall results indicate that about 2-5-fold increase in the process efficiency due to ultrasound under the given process conditions for various unit operations with additional benefits. Scale-up studies are underway for converting these concepts in to a real viable larger scale operation. In the present paper, summary of our research findings from employing this technique in various unit operations such as cleaning, diffusion, emulsification, particle-size reduction, solid-liquid leaching (tannin and natural dye extraction) as well as precipitation has been presented.

  19. Tank 12H Acidic Chemical Cleaning Sample Analysis And Material Balance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C. J.; Reboul, S. H.; Wiersma, B. J.

    2013-11-08

    A process of Bulk Oxalic Acid (BOA) chemical cleaning was performed for Tank 12H during June and July of 2013 to remove all or a portion of the approximately 4400 gallon sludge heel. Three strikes of oxalic acid (nominally 4 wt% or 2 wt%) were used at 55°C and tank volumes of 96- to 140-thousand gallons. This report details the sample analysis of a scrape sample taken prior to BOA cleaning and dip samples taken during BOA cleaning. It also documents a rudimentary material balance for the Tank 12H cleaning results.

  20. Taguchi Experimental Design for Cleaning PWAs with Ball Grid Arrays

    NASA Technical Reports Server (NTRS)

    Bonner, J. K.; Mehta, A.; Walton, S.

    1997-01-01

    Ball grid arrays (BGAs), and other area array packages, are becoming more prominent as a way to increase component pin count while avoiding the manufacturing difficulties inherent in processing quad flat packs (QFPs)...Cleaning printed wiring assemblies (PWAs) with BGA components mounted on the surface is problematic...Currently, a low flash point semi-aqueous material, in conjunction with a batch cleaning unit, is being used to clean PWAs. The approach taken at JPL was to investigate the use of (1) semi-aqueous materials having a high flash point and (2) aqueous cleaning involving a saponifier.

  1. Method for removal of beryllium contamination from an article

    DOEpatents

    Simandl, Ronald F.; Hollenbeck, Scott M.

    2012-12-25

    A method of removal of beryllium contamination from an article is disclosed. The method typically involves dissolving polyisobutylene in a solvent such as hexane to form a tackifier solution, soaking the substrate in the tackifier to produce a preform, and then drying the preform to produce the cleaning medium. The cleaning media are typically used dry, without any liquid cleaning agent to rub the surface of the article and remove the beryllium contamination below a non-detect level. In some embodiments no detectible residue is transferred from the cleaning wipe to the article as a result of the cleaning process.

  2. Megasonic cleaning strategy for sub-10nm photomasks

    NASA Astrophysics Data System (ADS)

    Hsu, Jyh-Wei; Samayoa, Martin; Dress, Peter; Dietze, Uwe; Ma, Ai-Jay; Lin, Chia-Shih; Lai, Rick; Chang, Peter; Tuo, Laurent

    2016-10-01

    One of the main challenges in photomask cleaning is balancing particle removal efficiency (PRE) with pattern damage control. To overcome this challenge, a high frequency megasonic cleaning strategy is implemented. Apart from megasonic frequency and power, photomask surface conditioning also influences cleaning performance. With improved wettability, cleanliness is enhanced while pattern damage risk is simultaneously reduced. Therefore, a particle removal process based on higher megasonic frequencies, combined with proper surface pre-treatment, provides improved cleanliness without the unintended side effects of pattern damage, thus supporting the extension of megasonic cleaning technology into 10nm half pitch (hp) device node and beyond.

  3. Structural Health Monitoring: Leveraging Pain in the Human Body

    NASA Astrophysics Data System (ADS)

    Nayak, Subhadarshi

    2012-07-01

    Tissue damage, or the perception thereof, is managed through pain experience. The neurobiological process of pain triggers most effective defense mechanisms for our safety. Structural health monitoring (SHM) is also a very similar function, albeit in engineering systems. SHM technology can leverage many aspects of pain mechanisms to progress in several critical areas. Discrimination between features from the undamaged and damaged structures can follow the threshold gate mechanism of the pain perception. Furthermore, the sensing mechanisms can be adaptive to changes by adjusting the threshold as does the pain perception. A distributed sensor network, often advanced by SHM, can be made fault-tolerant and robust by following the perception way of self-organization and redundancy. Data handling in real life is a huge challenge for large-scale SHM. As sensory data of pain is first cleaned, the threshold is then processed through experiential information gathering and use.

  4. Testing of the 15-inch air-sparged hydrocyclone for fine coal flotation at the Homer City preparation plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.D.; Yi, Y.; Gopalakrishnan, S.

    1993-12-31

    Previous plant testing had been limited to the processing of minus 100 mesh classifier overflow (Upper Freeport Coal {approximately} 20% ash) with the 6-inch air-sparged hydrocyclone (ASH-6C) as reported at Coal Prep 92. The ASH-6C unit was found to provide separation efficiencies equivalent, or superior, to separations with the ASH-2C system. During the summer of 1992 the construction of the first 15-inch air-sparged hydrocyclone prototype was completed by the Advanced Processing Technologies, Inc. Installation at the Homer City Coal Preparation Plant was accomplished and testing began in October 1992. The ASH-15C unit can operate at a flowrate as high asmore » 1,000 gpm. Experimental results are reported with respect to capacity, combustible recovery and clean coal quality.« less

  5. How coalescing droplets jump.

    PubMed

    Enright, Ryan; Miljkovic, Nenad; Sprittles, James; Nolan, Kevin; Mitchell, Robert; Wang, Evelyn N

    2014-10-28

    Surface engineering at the nanoscale is a rapidly developing field that promises to impact a range of applications including energy production, water desalination, self-cleaning and anti-icing surfaces, thermal management of electronics, microfluidic platforms, and environmental pollution control. As the area advances, more detailed insights of dynamic wetting interactions on these surfaces are needed. In particular, the coalescence of two or more droplets on ultra-low adhesion surfaces leads to droplet jumping. Here we show, through detailed measurements of jumping droplets during water condensation coupled with numerical simulations of binary droplet coalescence, that this process is fundamentally inefficient with only a small fraction of the available excess surface energy (≲ 6%) convertible into translational kinetic energy. These findings clarify the role of internal fluid dynamics during the jumping droplet coalescence process and underpin the development of systems that can harness jumping droplets for a wide range of applications.

  6. Thio-amide functionalized polymers via polymerization or post-polymerization modification

    NASA Astrophysics Data System (ADS)

    Ozcam, Ali; Henke, Adam; Stibingerova, Iva; Srogl, Jiri; Genzer, Jan

    2011-03-01

    Decreasing supplies of fresh water and increasing population necessitates development of advanced water cleaning technologies, which would facilitate the removal of water pollutants. Amongst the worst of such contaminants are heavy metals and cyanides, infamous for their high toxicity. To assist the water purification processes, we aim to synthesize functionalized macromolecules that would contribute in the decontamination processes by scavenging detrimental chemicals. Epitomizing this role thio-amide unit features remarkable chemical flexibility that facilitates reversible catch-release of the ions, where the behavior controlled by subtle red-ox changes in the environment. Chemical tunability of the thio-amide moiety enables synthesis of thio-amide based monomers and post-polymerization modification agents. Two distinct synthetic pathways, polymerization and post-polymerization modification, have been exploited, leading to functional thioamide-based macromolecules: thioamide-monomers were copolymerized with N-isopropylacrylamide and post-polymerization modifications of poly(dimethylaminoethyl methacrylate) and poly(propargyl methacrylate) were accomplished via quarternization and ``click'' reactions, respectively.

  7. Incinerator technology overview

    NASA Astrophysics Data System (ADS)

    Santoleri, Joseph J.

    1991-04-01

    In the 1960's, much effort was expended on cleaning up the air and water. Air Quality and Water Quality Acts were written and inpleinented in many states and coninunities. New products such as unleaded gasoline and water base paints were developed to aid in minimizing pollution. Conversion from oil fired combustion systems to natural gas fired for comfort and industrial heating was the normal practice. In 1970, the Clean Air Act was passed. There was concern on how to safely dispose of hazardous wastes. Indiscriminate dumping of chemical process wastes had been the practice since the birth of the chemical industry in the USA. Land dumping, inadequate landfills, and river-ocean dumping were the most economical ways to dispose of chemical wastes. Processes that would have reduced or eliminated wastes were disregarded as being too costly. Many of the major chemical companies who regarded a safe environment as their responsibility installed waste treatment and disposal facilities on their plant sites. Many of these plants elected to use incinerators as the treatment process. This was not always the most economical method, but in many cases it was the only method of disposal that provided a safe and sure method of maximum destruction. Environmental concern over contamination from uncontrolled land disposal sites, and the emergence of tougher regulations for land disposal provide incentives for industry to employ a wide variety of traditional and advanced technologies for managing hazardous wastes. Incineration systems utilizing proper design, operation, and maintenance provides the safest and in the long run, the most economical avenue to the maximum level of destruction of organic hazardous wastes.

  8. Nanoscale control of energy and matter in plasma-surface interactions: towards energy-efficient nanotech

    NASA Astrophysics Data System (ADS)

    Ostrikov, Kostya

    2010-11-01

    This presentation focuses on the plasma issues related to the solution of the grand challenge of directing energy and matter at nanoscales. This ability is critical for the renewable energy and energy-efficient technologies for sustainable future development. It will be discussed how to use environmentally and human health benign non-equilibrium plasma-solid systems and control the elementary processes of plasma-surface interactions to direct the fluxes of energy and matter at multiple temporal and spatial scales. In turn, this makes it possible to achieve the deterministic synthesis of self- organised arrays of metastable nanostructures in the size range beyond the reach of the present-day nanofabrication. Such structures have tantalising prospects to enhance performance of nanomaterials in virtually any area of human activity yet remain almost inaccessible because the Nature's energy minimisation rules allow only a small number of stable equilibrium states. By using precisely controlled and kinetically fast nanoscale transfer of energy and matter under non-equilibrium conditions and harnessing numerous plasma- specific controls of species creation, delivery to the surface, nucleation and large-scale self-organisation of nuclei and nanostructures, the arrays of metastable nanostructures can be created, arranged, stabilised, and further processed to meet the specific requirements of the envisaged applications. These approaches will eventually lead to faster, unprecedentedly- clean, human-health-friendly, and energy-efficient nanoscale synthesis and processing technologies for the next-generation renewable energy and light sources, biomedical devices, information and communication systems, as well as advanced functional materials for applications ranging from basic food, water, health and clean environment needs to national security and space missions.

  9. Mechanical vs. manual cleaning of hospital beds: a prospective intervention study.

    PubMed

    Hopman, J; Nillesen, M; de Both, E; Witte, J; Teerenstra, S; Hulscher, M; Voss, A

    2015-06-01

    Cleaning regimens for hospital beds were evaluated in the context of a rising prevalence of highly resistant micro-organisms and increasing financial pressure on healthcare systems. Dutch hospitals have to choose between standardized, mechanical bed-washers advised in national guidance and manual cleaning. To evaluate the quality of mechanical and manual bed-cleaning regimens. The multi-faceted analysis of bed-cleaning regimens consisted of three steps. In Step 1, the training of the domestic service team was evaluated. In Step 2, the cleaning quality of manual and mechanical regimens was assessed. Soiled beds, obtained at random, from different departments were evaluated using microbiological analysis (N = 40) and ATP (N = 20). ATP and microbiological contamination were measured in five predetermined locations on all beds. In Step 3, manual cleaning was introduced over a two-month pilot study at the surgical short-stay unit, and beds from other departments were processed according to the 'gold standard' mechanical cleaning. ATP levels were evaluated in three locations on 300 beds after cleaning. Training was found to improve the quality of cleaning significantly. Mechanical cleaning resulted in significantly lower ATP levels than manual cleaning. Mechanical cleaning shows less variation and results in consistently lower ATP levels than manual cleaning. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  10. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    DOEpatents

    Balachandran, Uthamalingam

    1996-01-01

    A process for the preparation of amorphous precursor powders for Pb-doped Bi.sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.x (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains.

  11. Rapid formation of phase-clean 110 K (Bi-2223) powders derived via freeze-drying process

    DOEpatents

    Balachandran, U.

    1996-06-04

    A process for the preparation of amorphous precursor powders for Pb-doped Bi{sub 2}Sr{sub 2} Ca{sub 2}Cu{sub 3}O{sub x} (2223) includes a freeze-drying process incorporating a splat-freezing step. The process generally includes splat freezing a nitrate solution of Bi, Pb, Sr, Ca, and Cu to form flakes of the solution without any phase separation; grinding the frozen flakes to form a powder; freeze-drying the frozen powder; heating the dried powder to form a dry green precursor powders; denitrating the green-powders; heating the denitrated powders to form phase-clean Bi-2223 powders. The grain boundaries of the 2223 grains appear to be clean, leading to good intergrain contact between 2223 grains. 11 figs.

  12. Experience with chemical system decontamination by the CORD process and electrochemical decontamination of pipe ends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wille, H.; Bertholdt, H.O.; Operschall, H.

    Efforts to reduce occupational radiation exposure during inspection and repair work in nuclear power plants turns steadily increasing attention to the decontamination of systems and components. Due to the advanced age of nuclear power plants resulting in increasing dose rates, the decontamination of components, or rather of complete systems, or loops to protect operating and inspection personnel becomes demanding. Besides, decontaminating complete primary loops is in many cases less difficult than cleaning large components. Based on experience gained in nuclear power plants, an outline of two different decontamination methods performed recently are given. For the decontamination of complete systems ormore » loops, Kraftwerk Union AG has developed CORD, a low-concentration process. For the decontamination performance of a subsystem, such as the steam generator (SG) channel heads of a pressurized water reactor or the recirculation loops of a boiling water reactor the automated mobile decontamination appliance is used. The electrochemical decontamination process is primarily applicable for the treatment of specially limited surface areas.« less

  13. Biofilms of Enterococcus faecalis and Enterococcus faecium isolated from the processing of ricotta and the control of these pathogens through cleaning and sanitization procedures.

    PubMed

    da Silva Fernandes, Meg; Kabuki, Dirce Yorika; Kuaye, Arnaldo Yoshiteru

    2015-05-04

    The biofilm formation of Enterococcus faecalis and Enterococcus faecium isolated from the processing of ricotta on stainless steel coupons was evaluated, and the effect of cleaning and sanitization procedures in the control of these biofilms was determined. The formation of biofilms was observed while varying the incubation temperature (7, 25 and 39°C) and time (0, 1, 2, 4, 6 and 8 days). At 7°C, the counts of E. faecalis and E. faecium were below 2 log10 CFU/cm(2). For the temperatures of 25 and 39°C, after 1 day, the counts of E. faecalis and E. faecium were 5.75 and 6.07 log10 CFU/cm(2), respectively, which is characteristic of biofilm formation. The tested sanitation procedures a) acid-anionic tensioactive cleaning, b) anionic tensioactive cleaning+sanitizer and c) acid-anionic tensioactive cleaning+sanitizer were effective in removing the biofilms, reducing the counts to levels below 0.4 log10 CFU/cm(2). The sanitizer biguanide was the least effective, and peracetic acid was the most effective. These studies revealed the ability of enterococci to form biofilms and the importance of the cleaning step and the type of sanitizer used in sanitation processes for the effective removal of biofilms. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Novel Cleanup Agents Designed Exclusively for Oil Field Membrane Filtration Systems Low Cost Field Demonstrations of Cleanup Agents in Controlled Experimental Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Burnett; Harold Vance

    2007-08-31

    The goal of our project is to develop innovative processes and novel cleaning agents for water treatment facilities designed to remove fouling materials and restore micro-filter and reverse osmosis (RO) membrane performance. This project is part of Texas A&M University's comprehensive study of the treatment and reuse of oilfield brine for beneficial purposes. Before waste water can be used for any beneficial purpose, it must be processed to remove contaminants, including oily wastes such as residual petroleum hydrocarbons. An effective way of removing petroleum from brines is the use of membrane filters to separate oily waste from the brine. Texasmore » A&M and its partners have developed highly efficient membrane treatment and RO desalination for waste water including oil field produced water. We have also developed novel and new cleaning agents for membrane filters utilizing environmentally friendly materials so that the water from the treatment process will meet U.S. EPA drinking water standards. Prototype micellar cleaning agents perform better and use less clean water than alternate systems. While not yet optimized, the new system restores essentially complete membrane flux and separation efficiency after cleaning. Significantly the amount of desalinated water that is required to clean the membranes is reduced by more than 75%.« less

  15. Final Report of NATO/SPS Pilot Study on Clean Products and Processes (Phase I and II)

    EPA Science Inventory

    Early in 1998 the NATO Committee for Challenges to Modern Society (SPS) (Science for Peace and Security) approved the Pilot Study on Clean Products and Processes for an initial period of five years. The pilot was to provide a forum for member country representatives to discuss t...

  16. Aqueous Cleaning and Validation for Space Shuttle Propulsion Hardware at the White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Hornung, Steven D.; Biesinger, Paul; Kirsch, Mike; Beeson, Harold; Leuders, Kathy

    1999-01-01

    The NASA White Sands Test Facility (WSTF) has developed an entirely aqueous final cleaning and verification process to replace the current chlorofluorocarbon (CFC) 113 based process. This process has been accepted for final cleaning and cleanliness verification of WSTF ground support equipment. The aqueous process relies on ultrapure water at 50 C (323 K) and ultrasonic agitation for removal of organic compounds and particulate. The cleanliness is verified bv determining the total organic carbon (TOC) content and filtration with particulate counting. The effectiveness of the aqueous methods for detecting hydrocarbon contamination and particulate was compared to the accepted CFC 113 sampling procedures. Testing with known contaminants, such as hydraulic fluid and cutting and lubricating oils, to establish a correlation between aqueous TOC and CFC 113 nonvolatile residue (NVR) was performed. Particulate sampling on cleaned batches of hardware that were randomly separated and sampled by the two methods was performed. This paper presents the approach and results, and discusses the issues in establishing the equivalence of aqueous sampling to CFC 113 sampling, while describing the approach for implementing aqueous techniques on Space Shuttle Propulsion hardware.

  17. 2013 Renewable Energy Data Book (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esterly, S.

    2014-12-01

    This Renewable Energy Data Book for 2013 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar power, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investment.

  18. 2011 Renewable Energy Data Book (Book)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelman, R.

    2012-10-01

    This Renewable Energy Data Book for 2011 provides facts and figures on energy in general, renewable electricity in the United States, global renewable energy development, wind power, solar energy, geothermal power, biopower, hydropower, advanced water power, hydrogen, renewable fuels, and clean energy investments.

  19. The SEED Initiative

    ERIC Educational Resources Information Center

    Teich, Carolyn R.

    2011-01-01

    Committed to fulfilling the promise of the green economy, the American Association of Community Colleges (AACC) launched the Sustainability Education and Economic Development (SEED) initiative (www.theseedcenter.org) in October 2010. The project advances sustainability and clean energy workforce development practices at community colleges by…

  20. General Aviation Propulsion

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Programs exploring and demonstrating new technologies in general aviation propulsion are considered. These programs are the quiet, clean, general aviation turbofan (QCGAT) program; the general aviation turbine engine (GATE) study program; the general aviation propeller technology program; and the advanced rotary, diesel, and reciprocating engine programs.

  1. Expanding the Clean Energy Economy for Manufacturing | Working with Us |

    Science.gov Websites

    EasyMile to develop wireless charging and advanced energy storage. Learn more. Photo of a modular apartment Solectria SPI Solar and Trimark Toyota Verizon Wireless Also see a list of our photovoltaic manufacturing R

  2. Nature: "Water, Water, Everywhere, nor Any Drop to Drink"

    ERIC Educational Resources Information Center

    Heinhorst, Sabine; Cannon, Gordon

    2004-01-01

    The difficulties faced by developing countries in obtaining clean water, and its misuse in advanced countries are reported. The new application of zeolites, or molecular synthesis of aluminosilicates in the desalination or purification of water forecasts a brighter future.

  3. REMOVAL OF SO2 FROM INDUSTRIAL WASTE GASES

    EPA Science Inventory

    The paper discusses technology for sulfur dioxide (SO2) pollution control by flue gas cleaning (called 'scrubbing') in the utility industry, a technology that has advanced significantly during the past 5 years. Federal Regulations are resulting in increasingly large-scale applica...

  4. Safety risks of hydrogen fuel for applications in transportation vehicles.

    DOT National Transportation Integrated Search

    2009-04-01

    Combustion of hydrocarbon fuels in many practical applications produces pollutants that are harmful to human health and environment. Hydrogen fuel is considered to be a potential answer to the clean energy demands, especially with the advances in fue...

  5. Nanoengineered cotton wipes

    USDA-ARS?s Scientific Manuscript database

    Advances in nanotechnology are creating synergy with nonwoven technology in cleaning and/or disinfecting power for the next generation of wipe products. However, there is little known about the use of cotton fiber in wipes as a nanoengineering tool, which self-produces silver nanoparticles -- one of...

  6. Emission measurement and safety assessment for the production process of silicon nanoparticles in a pilot-scale facility

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Asbach, Christof; Fissan, Heinz; Hülser, Tim; Kaminski, Heinz; Kuhlbusch, Thomas A. J.; Pui, David Y. H.

    2012-03-01

    Emission into the workplace was measured for the production process of silicon nanoparticles in a pilot-scale facility at the Institute of Energy and Environmental Technology e.V. (IUTA). The silicon nanoparticles were produced in a hot-wall reactor and consisted of primary particles around 60 nm in diameter. We employed real-time aerosol instruments to measure particle number and lung-deposited surface area concentrations and size distribution; airborne particles were also collected for off-line electron microscopic analysis. Emission of silicon nanoparticles was not detected during the processes of synthesis, collection, and bagging. This was attributed to the completely closed production system and other safety measures against particle release which will be discussed briefly. Emission of silicon nanoparticles significantly above the detection limit was only observed during the cleaning process when the production system was open and manually cleaned. The majority of the detected particles was in the size range of 100-400 nm and were silicon nanoparticle agglomerates first deposited in the tubing then re-suspended during the cleaning process. Appropriate personal protection equipment is recommended for safety protection of the workers during cleaning.

  7. Surfactant/Supercritical Fluid Cleaning of Contaminated Substrates

    NASA Technical Reports Server (NTRS)

    White, Gary L.

    1997-01-01

    CFC's and halogenated hydrocarbon solvents have been the solvents of choice to degrease and otherwise clean precision metal parts to allow proper function. Recent regulations have, however, rendered most of these solvents unacceptable for these purposes. New processes which are being used or which have been proposed to replace these solvents usually either fail to remove water soluble contaminants or produce significant aqueous wastes which must then be disposed of. In this work, a new method for cleaning surfaces will be investigated. Solubility of typical contaminants such as lubricating greases and phosphatizing bath residues will be studied in several surfactant/supercritical fluid solutions. The effect of temperature, pressure, and the composition of the cleaning mixture on the solubility of oily, polar, and ionic contaminants will be investigated. A reverse micellar solution in a supercritical light hydrocarbon solvent will be used to clean samples of industrial wastes. A reverse micellar solution is one where water is dissolved into a non-polar solvent with the aid of a surfactant. The solution will be capable of dissolving both water-soluble contaminants and oil soluble contaminants. Once the contaminants have been dissolved into the solution they will be separated from the light hydrocarbon and precipitated by a relatively small pressure drop and the supercritical solvent will be available for recycle for reuse. The process will be compared to the efficacy of supercritical CO2 cleaning by attempting to clean the same types of substrates and machining wastes with the same contaminants using supercritical CO2. It is anticipated that the supercritical CO2 process will not be capable of removing ionic residues.

  8. Model-Based Infrared Metrology for Advanced Technology Nodes and 300 mm Wafer Processing

    NASA Astrophysics Data System (ADS)

    Rosenthal, Peter A.; Duran, Carlos; Tower, Josh; Mazurenko, Alex; Mantz, Ulrich; Weidner, Peter; Kasic, Alexander

    2005-09-01

    The use of infrared spectroscopy for production semiconductor process monitoring has evolved recently from primarily unpatterned, i.e. blanket test wafer measurements in a limited historical application space of blanket epitaxial, BPSG, and FSG layers to new applications involving patterned product wafer measurements, and new measurement capabilities. Over the last several years, the semiconductor industry has adopted a new set of materials associated with copper/low-k interconnects, and new structures incorporating exotic materials including silicon germanium, SOI substrates and high aspect ratio trenches. The new device architectures and more chemically sophisticated materials have raised new process control and metrology challenges that are not addressed by current measurement technology. To address the challenges we have developed a new infrared metrology tool designed for emerging semiconductor production processes, in a package compatible with modern production and R&D environments. The tool incorporates recent advances in reflectance instrumentation including highly accurate signal processing, optimized reflectometry optics, and model-based calibration and analysis algorithms. To meet the production requirements of the modern automated fab, the measurement hardware has been integrated with a fully automated 300 mm platform incorporating front opening unified pod (FOUP) interfaces, automated pattern recognition and high throughput ultra clean robotics. The tool employs a suite of automated dispersion-model analysis algorithms capable of extracting a variety of layer properties from measured spectra. The new tool provides excellent measurement precision, tool matching, and a platform for deploying many new production and development applications. In this paper we will explore the use of model based infrared analysis as a tool for characterizing novel bottle capacitor structures employed in high density dynamic random access memory (DRAM) chips. We will explore the capability of the tool for characterizing multiple geometric parameters associated with the manufacturing process that are important to the yield and performance of advanced bottle DRAM devices.

  9. 9 CFR 590.547 - Albumen flake process drying operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... operations. (a) The fermentation, drying, and curing rooms shall be kept in a dust-free clean condition and free of flies, insects, and rodents. (b) Drying units, racks, and trucks shall be kept in a clean and... clean condition. (d) Oils and waxes used in oiling drying pans or trays shall be of edible quality. (e...

  10. 9 CFR 590.547 - Albumen flake process drying operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... operations. (a) The fermentation, drying, and curing rooms shall be kept in a dust-free clean condition and free of flies, insects, and rodents. (b) Drying units, racks, and trucks shall be kept in a clean and... clean condition. (d) Oils and waxes used in oiling drying pans or trays shall be of edible quality. (e...

  11. 9 CFR 590.547 - Albumen flake process drying operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... operations. (a) The fermentation, drying, and curing rooms shall be kept in a dust-free clean condition and free of flies, insects, and rodents. (b) Drying units, racks, and trucks shall be kept in a clean and... clean condition. (d) Oils and waxes used in oiling drying pans or trays shall be of edible quality. (e...

  12. 9 CFR 590.547 - Albumen flake process drying operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... operations. (a) The fermentation, drying, and curing rooms shall be kept in a dust-free clean condition and free of flies, insects, and rodents. (b) Drying units, racks, and trucks shall be kept in a clean and... clean condition. (d) Oils and waxes used in oiling drying pans or trays shall be of edible quality. (e...

  13. Cleaning Insertions and Collimation Challenges

    NASA Astrophysics Data System (ADS)

    Redaelli, S.; Appleby, R. B.; Bertarelli, A.; Bruce, R.; Jowett, J. M.; Lechner, A.; Losito, R.

    High-performance collimation systems are essential for operating efficiently modern hadron machine with large beam intensities. In particular, at the LHC the collimation system ensures a clean disposal of beam halos in the superconducting environment. The challenges of the HL-LHC study pose various demanding requests for beam collimation. In this paper we review the present collimation system and its performance during the LHC Run 1 in 2010-2013. Various collimation solutions under study to address the HL-LHC requirements are then reviewed, identifying the main upgrade baseline and pointing out advanced collimation concept for further enhancement of the performance.

  14. Medium- and Heavy-Duty Vehicle Field Evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Kenneth J; Prohaska, Robert S

    This presentation provides information about NREL's real-world evaluations of commercial vehicle technologies, which compare the performance of advanced medium- and heavy-duty fleet vehicles to conventional vehicles. NREL conducts these customized evaluations in partnership with commercial and government fleets across the nation. Current fleet and industry partners include UPS, Workhorse, Parker Hannifin, Proterra, Foothill Transit, Long Beach Transit, BYD, Odyne, Duke Energy, Miami-Dade, TransPower, Eaton, Cummins, Bosch, and Clean Cities/National Clean Fleet Partnership. The presentation focuses on two particular vehicle evaluation projects -- hydraulic hybrid refuse haulers operated by Miami-Dade and electric transit buses operated by Foothill Transit.

  15. Process Monitoring Evaluation and Implementation for the Wood Abrasive Machining Process

    PubMed Central

    Saloni, Daniel E.; Lemaster, Richard L.; Jackson, Steven D.

    2010-01-01

    Wood processing industries have continuously developed and improved technologies and processes to transform wood to obtain better final product quality and thus increase profits. Abrasive machining is one of the most important of these processes and therefore merits special attention and study. The objective of this work was to evaluate and demonstrate a process monitoring system for use in the abrasive machining of wood and wood based products. The system developed increases the life of the belt by detecting (using process monitoring sensors) and removing (by cleaning) the abrasive loading during the machining process. This study focused on abrasive belt machining processes and included substantial background work, which provided a solid base for understanding the behavior of the abrasive, and the different ways that the abrasive machining process can be monitored. In addition, the background research showed that abrasive belts can effectively be cleaned by the appropriate cleaning technique. The process monitoring system developed included acoustic emission sensors which tended to be sensitive to belt wear, as well as platen vibration, but not loading, and optical sensors which were sensitive to abrasive loading. PMID:22163477

  16. High throughput determination of cleaning solutions to prevent the fouling of an anion exchange resin.

    PubMed

    Elich, Thomas; Iskra, Timothy; Daniels, William; Morrison, Christopher J

    2016-06-01

    Effective cleaning of chromatography resin is required to prevent fouling and maximize the number of processing cycles which can be achieved. Optimization of resin cleaning procedures, however, can lead to prohibitive material, labor, and time requirements, even when using milliliter scale chromatography columns. In this work, high throughput (HT) techniques were used to evaluate cleaning agents for a monoclonal antibody (mAb) polishing step utilizing Fractogel(®) EMD TMAE HiCap (M) anion exchange (AEX) resin. For this particular mAb feed stream, the AEX resin could not be fully restored with traditional NaCl and NaOH cleaning solutions, resulting in a loss of impurity capacity with resin cycling. Miniaturized microliter scale chromatography columns and an automated liquid handling system (LHS) were employed to evaluate various experimental cleaning conditions. Cleaning agents were monitored for their ability to maintain resin impurity capacity over multiple processing cycles by analyzing the flowthrough material for turbidity and high molecular weight (HMW) content. HT experiments indicated that a 167 mM acetic acid strip solution followed by a 0.5 M NaOH, 2 M NaCl sanitization provided approximately 90% cleaning improvement over solutions containing solely NaCl and/or NaOH. Results from the microliter scale HT experiments were confirmed in subsequent evaluations at the milliliter scale. These results identify cleaning agents which may restore resin performance for applications involving fouling species in ion exchange systems. In addition, this work demonstrates the use of miniaturized columns operated with an automated LHS for HT evaluation of chromatographic cleaning procedures, effectively decreasing material requirements while simultaneously increasing throughput. Biotechnol. Bioeng. 2016;113: 1251-1259. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. Shear stress cleaning for surface departiculation

    NASA Technical Reports Server (NTRS)

    Musselman, R. P.; Yarbrough, T. W.

    1986-01-01

    A cleaning technique widely used by the nuclear utility industry for removal of radioactive surface contamination has proven effective at removing non-hazardous contaminant particles as small as 0.1 micrometer. The process employs a controlled high velocity liquid spray inside a vapor containment enclosure to remove particles from a surface. The viscous drag force generated by the cleaning fluid applies a shear stress greater than the adhesion force that holds small particles to a substrate. Fluid mechanics and field tests indicate general cleaning parameters.

  18. Balanced-Rotating-Spray Tank-And-Pipe-Cleaning System

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.; Caimi, Raoul E. B.

    1995-01-01

    Spray head translates and rotates to clean entire inner surface of tank or pipe. Cleansing effected by three laterally balanced gas/liquid jets from spray head that rotates about longitudinal axis. Uses much less liquid. Cleaning process in system relies on mechanical action of jets instead of contaminant dissolution. Eliminates very difficult machining needed to make multiple converging/diverging nozzles within one spray head. Makes nozzle much smaller. Basic two-phase-flow, supersonic-nozzle design applied to other spray systems for interior or exterior cleaning.

  19. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    The Dawn spacecraft is seen here in clean room C of Astrotech's Payload Processing Facility. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  20. The structure and formation of natural categories

    NASA Technical Reports Server (NTRS)

    Fisher, Douglas; Langley, Pat

    1990-01-01

    Categorization and concept formation are critical activities of intelligence. These processes and the conceptual structures that support them raise important issues at the interface of cognitive psychology and artificial intelligence. The work presumes that advances in these and other areas are best facilitated by research methodologies that reward interdisciplinary interaction. In particular, a computational model is described of concept formation and categorization that exploits a rational analysis of basic level effects by Gluck and Corter. Their work provides a clean prescription of human category preferences that is adapted to the task of concept learning. Also, their analysis was extended to account for typicality and fan effects, and speculate on how the concept formation strategies might be extended to other facets of intelligence, such as problem solving.

  1. [Biosynthesis of adipic acid].

    PubMed

    Han, Li; Chen, Wujiu; Yuan, Fei; Zhang, Yuanyuan; Wang, Qinhong; Ma, Yanhe

    2013-10-01

    Adipic acid is a six-carbon dicarboxylic acid, mainly for the production of polymers such as nylon, chemical fiber and engineering plastics. Its annual demand is close to 3 million tons worldwide. Currently, the industrial production of adipic acid is based on the oxidation of aromatics from non-renewable petroleum resources by chemo-catalytic processes. It is heavily polluted and unsustainable, and the possible alternative method for adipic acid production should be developed. In the past years, with the development of synthetic biology and metabolic engineering, green and clean biotechnological methods for adipic acid production attracted more attention. In this study, the research advances of adipic acid and its precursor production are reviewed, followed by addressing the perspective of the possible new pathways for adipic acid production.

  2. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, December 30, 1996--March 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    The objective of this project is to utilize coal ashes to process hazardous materials such as industrial waste water treatment residues, contaminated soils, and air pollution control dusts from the metal industry and municipal waste incineration. This report describes the activities of the project team during the reporting period. The principal work has focused upon continuing evaluation of aged samples from Phase 1, planning supportive laboratory studies for Phase 2, completing scholarly work, reestablishing MAX Environmental Technologies, Inc., as the subcontractor for the field work of Phase 2, proposing two presentations for later in 1997, and making and responding tomore » several outside contacts.« less

  3. Bioreactor and process design for biohydrogen production.

    PubMed

    Show, Kuan-Yeow; Lee, Duu-Jong; Chang, Jo-Shu

    2011-09-01

    Biohydrogen is regarded as an attractive future clean energy carrier due to its high energy content and environmental-friendly conversion. It has the potential for renewable biofuel to replace current hydrogen production which rely heavily on fossil fuels. While biohydrogen production is still in the early stage of development, there have been a variety of laboratory- and pilot-scale systems developed with promising potential. This work presents a review of advances in bioreactor and bioprocess design for biohydrogen production. The state-of-the art of biohydrogen production is discussed emphasizing on production pathways, factors affecting biohydrogen production, as well as bioreactor configuration and operation. Challenges and prospects of biohydrogen production are also outlined. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Optimal trading strategies—a time series approach

    NASA Astrophysics Data System (ADS)

    Bebbington, Peter A.; Kühn, Reimer

    2016-05-01

    Motivated by recent advances in the spectral theory of auto-covariance matrices, we are led to revisit a reformulation of Markowitz’ mean-variance portfolio optimization approach in the time domain. In its simplest incarnation it applies to a single traded asset and allows an optimal trading strategy to be found which—for a given return—is minimally exposed to market price fluctuations. The model is initially investigated for a range of synthetic price processes, taken to be either second order stationary, or to exhibit second order stationary increments. Attention is paid to consequences of estimating auto-covariance matrices from small finite samples, and auto-covariance matrix cleaning strategies to mitigate against these are investigated. Finally we apply our framework to real world data.

  5. Space Science

    NASA Image and Video Library

    1999-04-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. The process allows fabricating precisely shaped mandrels to be used and reused as masters for replicating high-quality mirrors. Image shows Dr. Alan Shapiro cleaning mirror mandrel to be applied with highly reflective and high-density coating in the Large Aperture Coating Chamber, MFSC Space Optics Manufacturing Technology Center (SOMTC).

  6. Investigation of photolithography process on SPOs for the Athena mission

    NASA Astrophysics Data System (ADS)

    Massahi, S.; Girou, D. A.; Ferreira, D. D. M.; Christensen, F. E.; Jakobsen, A. C.; Shortt, B.; Collon, M.; Landgraf, B.

    2015-09-01

    As part of the ongoing effort to optimize the throughput of the Athena optics we have produced mirrors with a state-of-the-art cleaning process. We report on the studies related to the importance of the photolithographic process. Pre-coating characterization of the mirrors has shown and still shows photoresist remnants on the SiO2- rib bonding zones, which influences the quality of the metallic coating and ultimately the mirror performance. The size of the photoresist remnants is on the order of 10 nm which is about half the thickness of final metallic coating. An improved photoresist process has been developed including cleaning with O2 plasma in order to remove the remaining photoresist remnants prior to coating. Surface roughness results indicate that the SiO2-rib bonding zones are as clean as before the photolithography process is performed.

  7. [Importance of cleaning and disinfection of critical surfaces in dental health services. Impact of an intervention program].

    PubMed

    Véliz, Elena; Vergara, Teresa; Pearcy, Mercedes; Dabanch, Jeannette

    Introduction Dental care has become a challenge for healthcare associated infection prevention programs, since the environment, within other factors, plays an important role in the transmission chain. Materials and Methods An intervention program was designed for the Dental Unit of Hospital Militar de Santiago, between years 2014 and 2015. The program contemplated 3 stages: diagnostic, intervention and evaluation stage. Objective To improve the safety of critical surfaces involved in dental healthcare. Results During the diagnostic stage, the cleaning and disinfection process was found to be deficient. The most contaminated critical surface was the instrument holder unit, then the clean area and lamp handle. The surfaces that significantly reduced their contamination, after the intervention, were the clean area and the instrument carrier unit. Conclusion Training in the processes of cleaning and disinfecting surfaces and dental equipment is one of the cost-effective strategies in preventing healthcare-associated infections (HCAI), with simple and easy-to-apply methods.

  8. Evaluation of control parameters for Spray-In-Air (SIA) aqueous cleaning for shuttle RSRM hardware

    NASA Technical Reports Server (NTRS)

    Davis, S. J.; Deweese, C. D.

    1995-01-01

    HD-2 grease is deliberately applied to Shuttle Redesigned Solid Rocket Motor (RSRM) D6AC steel hardware parts as a temporary protective coating for storage and shipping. This HD-2 grease is the most common form of surface contamination on RSRM hardware and must be removed prior to subsequent surface treatment. Failure to achieve an acceptable level of cleanliness (HD-2 calcium grease removal) is a common cause of defect incidence. Common failures from ineffective cleaning include poor adhesion of surface coatings, reduced bond performance of structural adhesives, and failure to pass cleanliness inspection standards. The RSRM hardware is currently cleaned and refurbished using methyl chloroform (1,1,1-trichloroethane). This chlorinated solvent is mandated for elimination due to its ozone depleting characteristics. This report describes an experimental study of an aqueous cleaning system (which uses Brulin 815 GD) as a replacement for methyl chloroform. Evaluation of process control parameters for this cleaner are discussed as well as cleaning mechanisms for a spray-in-air process.

  9. Measuring quality indicators in the operating room: cleaning and turnover time.

    PubMed

    Jericó, Marli de Carvalho; Perroca, Márcia Galan; da Penha, Vivian Colombo

    2011-01-01

    This exploratory-descriptive study was carried out in the Surgical Center Unit of a university hospital aiming to measure time spent with concurrent cleaning performed by the cleaning service and turnover time and also investigated potential associations between cleaning time and the surgery's magnitude and specialty, period of the day and the room's size. The sample consisted of 101 surgeries, computing cleaning time and 60 surgeries, computing turnover time. The Kaplan-Meier method was used to analyze time and Pearson's correlation to study potential correlations. The time spent in concurrent cleaning was 7.1 minutes and turnover time was 35.6 minutes. No association between cleaning time and the other variables was found. These findings can support nurses in the efficient use of resources thereby speeding up the work process in the operating room.

  10. 76 FR 19829 - Clean Alternative Fuel Vehicle and Engine Conversions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ...EPA is streamlining the process by which manufacturers of clean alternative fuel conversion systems may demonstrate compliance with vehicle and engine emissions requirements. Specifically, EPA is revising the regulatory criteria for gaining an exemption from the Clean Air Act prohibition against tampering for the conversion of vehicles and engines to operate on a clean alternative fuel. This final rule creates additional compliance options beyond certification that protect manufacturers of clean alternative fuel conversion systems against a tampering violation, depending on the age of the vehicle or engine to be converted. The new options alleviate some economic and procedural impediments to clean alternative fuel conversions while maintaining environmental safeguards to ensure that acceptable emission levels from converted vehicles are sustained.

  11. Evaluation of a New Remote Handling Design for High Throughput Annular Centrifugal Contactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David H. Meikrantz; Troy G. Garn; Jack D. Law

    2009-09-01

    Advanced designs of nuclear fuel recycling plants are expected to include more ambitious goals for aqueous based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, Annular Centrifugal Contactors (ACCs) are destined to play a more important role for such future processing schemes. Previous efforts defined and characterized the performance of commercial 5 cm and 12.5 cm single-stage ACCs in a “cold” environment. The next logical step, the design and evaluation of remote capable pilot scale ACCs in a “hot” or radioactive environment was reported earlier. This reportmore » includes the development of remote designs for ACCs that can process the large throughput rates needed in future nuclear fuel recycling plants. Novel designs were developed for the remote interconnection of contactor units, clean-in-place and drain connections, and a new solids removal collection chamber. A three stage, 12.5 cm diameter rotor module has been constructed and evaluated for operational function and remote handling in highly radioactive environments. This design is scalable to commercial CINC ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 liters per minute. The V-05R three stage prototype was manufactured by the commercial vendor for ACCs in the U.S., CINC mfg. It employs three standard V-05 clean-in-place (CIP) units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain and CIP. Hydraulic testing and functional checks were successfully conducted and then the prototype was evaluated for remote handling and maintenance suitability. Removal and replacement of the center position V-05R ACC unit in the three stage prototype was demonstrated using an overhead rail mounted PaR manipulator. This evaluation confirmed the efficacy of this innovative design for interconnecting and cleaning individual stages while retaining the benefits of commercially reliable ACC equipment for remote applications in the nuclear industry. Minor modifications and suggestions for improved manual remote servicing by the remote handling specialists were provided but successful removal and replacement was demonstrated in the first prototype.« less

  12. Cleaning Out the Wheelbarrow: Planning Appropriate Assessments for Transition.

    ERIC Educational Resources Information Center

    Finn, David M.; Tazioli, Pam

    1993-01-01

    Examines issues in the transition of young disabled children between programs: ignorance or misinformation about available resources; eligibility criteria; interagency information exchange; and advance planning. Provides a troubleshooting guide to help agencies evaluate transition procedures. Discusses interagency assessment models and tools to…

  13. Planetary Quarantine Annual Review, Space Technology and Research, July 1971 - July 1972

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The effects of planetary quarantine constraints are assessed for advanced missions and unmanned planetary sample return missions. Considered are natural space environment factors, post launch recontamination effects, spacecraft microbial burden estimation and prediction, and spacecraft cleaning and decontamination techniques.

  14. Sadie Cox | NREL

    Science.gov Websites

    , advancing technical solutions for resilient power systems, and assessing development impacts of clean energy applications in developing countries Distributed generation policies and impacts Education M.A. in global Impacts Associated with Low Emission Development Strategies: Lessons Learned from Pilot Efforts in Kenya

  15. 미국 환경 보호국 - 한국어

    EPA Pesticide Factsheets

    Environmental information translated into Korean covers topics including nail salons, dry-cleaning, drinking water, fish consumption, asthma, cleaning and disinfecting foot spa basins, pesticides, and professional fabricare processes.

  16. Payload canister transporter in VPF clean room

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Payload canister transporter in Vertical Processing Facility (VPF) Clean Room loaded with Earth Radiation Budget Satellite (ERBS), Large Format Camera (LFC) and Orbital Refueling System (ORS) for STS-41G mission.

  17. Designing and Testing of Self-Cleaning Recirculating Zebrafish Tanks.

    PubMed

    Nema, Shubham; Bhargava, Yogesh

    2016-08-01

    Maintenance of large number of zebrafish in captive conditions is a daunting task. This can be eased by the use of recirculating racks with self-cleaning zebrafish tanks. Commercially available systems are costly, and compatibility of intercompany products has never been investigated. Although various cost-effective designs and methods of construction of custom-made recirculating zebrafish racks are available in literature, the design of self-cleaning zebrafish tanks is still not available. In this study, we report the design and method of construction of the self-cleaning unit, which can be fitted in any zebrafish tank. We validated the design by investigating sediment cleaning process in rectangular and cylindrical tank geometries using time lapse imaging. Our results suggest that for both tank geometries, the tanks fitted with self-cleaning unit provided superior sediment cleaning than the tanks fitted with overflow-drain unit. Although the self-cleaning unit could clean the sediment completely from both geometries over prolonged period, the cleaning of sediments was faster in the cylindrical tank than the rectangular tank. In conclusion, cost and efforts of zebrafish maintenance could be significantly reduced through the installation of our self-cleaning unit in any custom-made zebrafish tank.

  18. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    First, M.W.

    1991-02-01

    Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

  19. Application of surface-enhanced Raman spectroscopy (SERS) for cleaning verification in pharmaceutical manufacture.

    PubMed

    Corrigan, Damion K; Cauchi, Michael; Piletsky, Sergey; Mccrossen, Sean

    2009-01-01

    Cleaning verification is the process by which pharmaceutical manufacturing equipment is determined as sufficiently clean to allow manufacture to continue. Surface-enhanced Raman spectroscopy (SERS) is a very sensitive spectroscopic technique capable of detection at levels appropriate for cleaning verification. In this paper, commercially available Klarite SERS substrates were employed in order to obtain the necessary enhancement of signal for the identification of chemical species at concentrations of 1 to 10 ng/cm2, which are relevant to cleaning verification. The SERS approach was combined with principal component analysis in the identification of drug compounds recovered from a contaminated steel surface.

  20. Analysis of effluent filtrate in the hydro-entanglement process for producing cotton nonwovens: a progress report

    USDA-ARS?s Scientific Manuscript database

    A number of hydro-entangled cotton nonwoven fabrics were produced on commercial equipment, using UltraCleanTM Cotton (T.J. Beall Company). Polypropylene “sock” filters were used in the production trials to clean the effluent water for recycling it in the hydro-entanglement process. After each trial ...

Top