Science.gov

Sample records for advanced co2 removal

  1. Advanced CO2 Removal and Reduction System

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Dubovik, Margarita; Copeland, Robert J.

    2011-01-01

    An advanced system for removing CO2 and H2O from cabin air, reducing the CO2, and returning the resulting O2 to the air is less massive than is a prior system that includes two assemblies . one for removal and one for reduction. Also, in this system, unlike in the prior system, there is no need to compress and temporarily store CO2. In this present system, removal and reduction take place within a single assembly, wherein removal is effected by use of an alkali sorbent and reduction is effected using a supply of H2 and Ru catalyst, by means of the Sabatier reaction, which is CO2 + 4H2 CH4 + O2. The assembly contains two fixed-bed reactors operating in alternation: At first, air is blown through the first bed, which absorbs CO2 and H2O. Once the first bed is saturated with CO2 and H2O, the flow of air is diverted through the second bed and the first bed is regenerated by supplying it with H2 for the Sabatier reaction. Initially, the H2 is heated to provide heat for the regeneration reaction, which is endothermic. In the later stages of regeneration, the Sabatier reaction, which is exothermic, supplies the heat for regeneration.

  2. Advanced CO2 Removal Technology Development

    NASA Technical Reports Server (NTRS)

    Finn, John E.; Verma, Sunita; Forrest, Kindall; LeVan, M. Douglas

    2001-01-01

    The Advanced CO2 Removal Technical Task Agreement covers three active areas of research and development. These include a study of the economic viability of a hybrid membrane/adsorption CO2 removal system, sorbent materials development, and construction of a database of adsorption properties of important fixed gases on several adsorbent material that may be used in CO2 removal systems. The membrane/adsorption CO2 removal system was proposed as a possible way to reduce the energy consumption of the four-bed molecular sieve system now in use. Much of the energy used by the 4BMS is used to desorb water removed in the device s desiccant beds. These beds might be replaced by a desiccating membrane that moves the water from [he incoming stream directly into the outlet stream. The approach may allow the CO2 removal beds to operate at a lower temperature. A comparison between models of the 4BMS and hybrid systems is underway at Vanderbilt University. NASA Ames Research Center has been investigating a Ag-exchanged zeolites as a possible improvement over currently used Ca and Na zeolites for CO2 removal. Silver ions will complex with n:-bonds in hydrocarbons such as ethylene, giving remarkably improved selectivity for adsorption of those materials. Bonds with n: character are also present in carbon oxides. NASA Ames is also continuing to build a database for adsorption isotherms of CO2, N2, O2, CH4, and Ar on a variety of sorbents. This information is useful for analysis of existing hardware and design of new processes.

  3. Advanced CO2 removal process control and monitor instrumentation development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  4. Regenerable Sorbent for CO2 Removal

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Jayaraman, Ambal

    2013-01-01

    A durable, high-capacity regenerable sorbent can remove CO2 from the breathing loop under a Martian atmosphere. The system design allows near-ambient temperature operation, needs only a small temperature swing, and sorbent regeneration takes place at or above 8 torr, eliminating the potential for Martian atmosphere to leak into the regeneration bed and into the breathing loop. The physical adsorbent can be used in a metabolic, heat-driven TSA system to remove CO2 from the breathing loop of the astronaut and reject it to the Martian atmosphere. Two (or more) alternating sorbent beds continuously scrub and reject CO2 from the spacesuit ventilation loop. The sorbent beds are cycled, alternately absorbing CO2 from the vent loop and rejecting the adsorbed material into the environment at a high CO2 partial pressure (above 8 torr). The system does not need to run the adsorber at cryogenic temperatures, and uses a much smaller temperature swing. The sorbent removes CO2 via a weak chemical interaction. The interaction is strong enough to enable CO2 adsorption even at 3 to 7.6 torr. However, because the interaction between the surface adsorption sites and the CO2 is relatively weak, the heat input needed to regenerate the sorbent is much lower than that for chemical absorbents. The sorbent developed in this project could potentially find use in a large commercial market in the removal of CO2 emissions from coal-fired power plants, if regulations are put in place to curb carbon emissions from power plants.

  5. Atmospheric CO2 Removal by Enhancing Weathering

    NASA Astrophysics Data System (ADS)

    Koster van Groos, A. F.; Schuiling, R. D.

    2014-12-01

    The increase of the CO2 content in the atmosphere by the release of anthropogenic CO2 may be addressed by the enhancement of weathering at the surface of the earth. The average emission of mantle-derived CO2 through volcanism is ~0.3 Gt/year (109 ton/year). Considering the ~3.000 Gt of CO2 present in the atmosphere, the residence time of CO2 in the earth's atmosphere is ~10,000 years. Because the vast proportion of carbon in biomass is recycled through the atmosphere, CO2 is continuously removed by a series of weathering reactions of silicate minerals and stored in calcium and magnesium carbonates. The addition of anthropogenic CO2 from fossil fuel and cement production, which currently exceeds 35 Gt/year and dwarfs the natural production 100-fold, cannot be compensated by current rates of weathering, and atmospheric CO2 levels are rising rapidly. To address this increase in CO2 levels, weathering rates would have to be accelerated on a commensurate scale. Olivine ((Mg,Fe)2SiO4) is the most reactive silicate mineral in the weathering process. This mineral is the major constituent in relatively common ultramafic rocks such as dunites (olivine content > 90%). To consume the current total annual anthropogenic release of CO2, using a simplified weathering reaction (Mg2SiO4 + 4CO2 + 4H2O --> 2 Mg2+ + 4HCO3- + H4SiO4) would require ~30 Gt/year or ~8-9 km3/year of dunite. This is a large volume; it is about double the total amount of ore and gravel currently mined (~ 17 Gt/year). To mine and crush these rocks to <100 μm costs ~ 8/ton. The transport and distribution over the earth's surface involves additional costs, that may reach 2-5/ton. Thus, the cost of remediation for the release of anthropogenic CO2 is 300-400 billion/year. This compares to a 2014 global GDP of ~80 trillion. Because weathering reactions require the presence of water and proceed more rapidly at higher temperatures, the preferred environments to enhance weathering are the wet tropics. From a socio

  6. Enhanced Molecular Sieve CO2 Removal Evaluation

    NASA Technical Reports Server (NTRS)

    Rose, Susan; ElSherif, Dina; MacKnight, Allen

    1996-01-01

    The objective of this research is to quantitatively characterize the performance of two major types of molecular sieves for two-bed regenerative carbon dioxide removal at the conditions compatible with both a spacesuit and station application. One sorbent is a zeolite-based molecular sieve that has been substantially improved over the materials used in Skylab. The second sorbent is a recently developed carbon-based molecular sieve. Both molecular sieves offer the potential of high payoff for future manned missions by reducing system complexity, weight (including consumables), and power consumption in comparison with competing concepts. The research reported here provides the technical data required to improve CO2 removal systems for regenerative life support systems for future IVA and EVA missions.

  7. Technology advancement of the electrochemical CO2 concentrating process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Woods, R. R.; Hallick, T. M.; Heppner, D. B.

    1978-01-01

    The overall objectives of the present program are to: (1) improve the performance of the electrochemical CO2 removal technique by increasing CO2 removal efficiencies at pCO2 levels below 400 Pa, increasing cell power output and broadening the tolerance of electrochemical cells for operation over wide ranges of cabin relative humidity; (2) design, fabricate, and assemble development hardware to continue the evolution of the electrochemical concentrating technique from the existing level to an advanced level able to efficiently meet the CO2 removal needs of a spacecraft air revitalization system (ARS); (3) develop and incorporate into the EDC the components and concepts that allow for the efficient integration of the electrochemical technique with other subsystems to form a spacecraft ARS; (4) combine ARS functions to enable the elimination of subsystem components and interfaces; and (5) demonstrate the integration concepts through actual operation of a functionally integrated ARS.

  8. [Model study on CO2 removal by photobioreactor].

    PubMed

    Cheng, Gui-Lin; Cheng, Li-Hua; Zhou, Cheng-Xu; Zhang, Lin; Chen, Huan-Lin

    2006-09-01

    The key point of study on CO2 removal by microalgae cultured in a photobioreactor is to improve CO2 removal capability. In this paper, a model of air-lift photobioreactor was developed by combination of conditions including the velocity of flow, the degree of mixing, the gas-liquid mass transfer and the rate of photosynthesis, and two corresponding simplified methods, such as time discretization and lumped parameters were put forward. Using a method of lumped parameters, the model for simulation of time course of DO, pH in the column air-lift photobioreactor and prediction of CO2, O2 concentrations in the outlet gas under different CO2 concentration in the aeration gas was thoroughly discussed. Experimental data were also used to verify the model which could potentially be applied to rational design of the photobioreactor, high-density culture of microalgae and efficient removal of CO2. PMID:17037209

  9. Regenerative CO2 removal for PLSS application

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Woods, R. R.; Schubert, F. H.

    1979-01-01

    Various concepts for the design of the nonelectrochemical absorber were defined and evaluated. A preliminary design based on the use of hollow fiber membranes was developed. Small scale bench testing demonstrated the carbon dioxide removal capability and provided design data for scale-up to the one person level. A full scale conceptual design of the absorbent regeneration hardware using six electrochemical cells was also completed. The design was supported by single cell testing and showed that a full scale regeneration system, operating continuously over 24 hours, can regenerate the absorbent from one extravehicular activity mission. The single cell regeneration hardware was operated for over 800 hours.

  10. [Removal of tattoos by CO2 laser and acetic acid].

    PubMed

    Di Quirico, R; Pallini, G; Di Domenicantonio, G; Astolfi, A; Bindi, F; Gianfelice, F

    1992-10-31

    The Authors pay attention to small tattoo removal by means of the utilization of the CO2 laser. Moreover, the Authors emphasize the drawback of double treatment which, usually, the patient suffers in tattoo removal by CO2 laser. Then, the pressure of the Authors is small sized tattoo removal in only one sitting achieving so an excellent esthetic result. Besides, the Authors, in this medical study, explains two methods for tattoo removal. In the study's results, the Authors describes the manner and the time of the two lesion recovery by the different manners of treatment. Finally, the Authors affirms the great consequence of the surgical CO2 laser, they don't fail, however, to affirm that the laser and acetic acid combination is an excellent procedure for small tattoo removal. PMID:1480288

  11. Industrial CO2 Removal: CO2 Capture from Ambient Air and Geological Sequestration

    SciTech Connect

    Dooley, James J.

    2011-06-08

    This abstract and its accompanying presentation will provide an overview of two distinct industrial processes for removing carbon dioxide (CO2) from the atmosphere as a means of addressing anthropogenic climate change. The first of these is carbon dioxide capture and storage (CCS) coupled with large scale biomass production (hereafter referred to as bioCCS). The second is CO2 capture from ambient air via industrial systems (hereafter referred to as direct air capture (DAC)). In both systems, the captured CO2 would be injected into deep geologic formations so as to isolate it from the atmosphere. The technical literature is clear that both of these technologies are technically feasible as of today (IPCC, 2005; Keith, 2009; Lackner, 2009; Luckow et al., 2010; Ranjan and Herzog, 2011). What is uncertain is the relative cost of these industrial ambient-air CO2 removal systems when compared to other emissions mitigation measures, the ultimate timing and scale of their deployment, and the resolution of potential site specific constraints that would impact their ultimate commercial deployment.

  12. Rapid Removal of Atmospheric CO2 by Urban Soils.

    PubMed

    Washbourne, Carla-Leanne; Lopez-Capel, Elisa; Renforth, Phil; Ascough, Philippa L; Manning, David A C

    2015-05-01

    The measured calcium carbonate content of soils to a depth of 100 mm at a large urban development site has increased over 18 months at a rate that corresponds to the sequestration of 85 t of CO2/ha (8.5 kg of CO2 m(-2)) annually. This is a consequence of rapid weathering of calcium silicate and hydroxide minerals derived from the demolition of concrete structures, which releases Ca that combines with CO2 ultimately derived from the atmosphere, precipitating as calcite. Stable isotope data confirm an atmospheric origin for carbonate carbon, and 14C dating indicates the predominance of modern carbon in the pedogenic calcite. Trial pits show that carbonation extends to depths of ≥1 m. Work at other sites shows that the occurrence of pedogenic carbonates is widespread in artificially created urban soils containing Ca and Mg silicate minerals. Appropriate management of fewer than 12000 ha of urban land to maximize calcite precipitation has the potential to remove 1 million t of CO2 from the atmosphere annually. The maximal global potential is estimated to be approximately 700-1200 Mt of CO2 per year (representing 2.0-3.7% of total emissions from fossil fuel combustion) based on current rates of production of industry-derived Ca- and Mg-bearing materials. PMID:25837769

  13. Advanced Airborne CO2 LAS System

    NASA Astrophysics Data System (ADS)

    Dobler, J. T.; Braun, M. G.; McGregor, D. P.; Erxleben, W. H.; Browell, E. V.; Harrison, F. W.

    2009-12-01

    A unique airborne Laser Absorption Spectroscopy (LAS) system has been developed by ITT Space Systems, LLC to address the needs of the National Research Council Decadal Survey Tier 2 mission for Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS). This instrument has undergone multiple airborne field tests in cooperation with our partners at NASA Langley Research Center (LaRC). The instrument was built largely with off-the-shelf components and uses high reliability telecom components, including lasers, modulators and fiber amplifiers as the transmitter. Multiple wavelengths are transmitted simultaneously from a single collimator and the return signal is collected by a simple 8” telescope that is fiber coupled to a HgCdTe APD. The analog signal is sampled with a high resolution scope card housed in a National Instruments PXI chassis and the digitized signal is then passed through our custom-built software-based lock-in processing system which allows separation of the signals from the individual wavelengths. The separated signals are then used in the standard Differential Absorption Lidar (DIAL) relations to determine the integrated column differential optical depth. This presentation will give a detailed overview of this multi-frequency, single-beam, synchronous lock-in LAS instrument including the basic methodology of the measurement. Recent improvements in the lock-in methodology designed to eliminate the effects of multi- path fading and frequency dependence of the electronic components will also be discussed.

  14. CO2 Removal and Atmosphere Revitalization Systems for Next Generation Space Flight

    NASA Technical Reports Server (NTRS)

    Luna, Bernadette; Mulloth, Lila M.; Varghese, Mini M.; Hogan, John Andrew

    2010-01-01

    Removal of metabolic CO2 from breathing air is a vital process for life support in all crewed space missions. A CO2 removal processor called the Low Power CO2 Removal (LPCOR) system is being developed in the Bioengineering Branch at NASA Ames Research Center. LPCOR utilizes advanced adsorption and membrane gas separation processes to achieve substantial power and mass reduction when compared to the state-of-the-art carbon dioxide removal assembly (CORA) of the US segment of the International Space Station (ISS). LPCOR is an attractive alternative for use in commercial spacecraft for short-duration missions and can easily be adapted for closed-loop life support applications. NASA envisions a next-generation closed-loop atmosphere revitalization system that integrates advanced CO2 removal, O2 recovery, and trace contaminant control processes to improve overall system efficiency. LPCOR will serve as the front end to such a system. LPCOR is a reliable air revitalization technology that can serve both the near-term and long-term human space flight needs of NASA and its commercial partners.

  15. Advanced IMCW Lidar Techniques for ASCENDS CO2 Column Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel; lin, bing; nehrir, amin; harrison, fenton; obland, michael

    2015-04-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation.

  16. Concurrent CO2 Control and O2 Generation for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Duncan, Keith L.; Hagelin-Weaver, Helena E.; Bishop, Sean R.; Wachsman, Eric D.

    2007-01-01

    The electrochemical reduction of carbon dioxide (CO2) using ceramic oxygen generators (COGs) is well known and widely studied, however, conventional devices using yttria-stabilized zirconia (YSZ) electrolytes operate at temperatures greater than 700 C. Operating at such high temperatures increases system mass compared to lower temperature systems because of increased energy overhead to get the COG up to operating temperature and the need for heavier insulation and/or heat exchangers to reduce the COG oxygen (O2) output temperature for comfortable inhalation. Recently, the University of Florida developed novel ceramic oxygen generators employing a bilayer electrolyte of gadolinia-doped ceria and erbia-stabilized bismuth for NASA's future exploration of Mars. To reduce landed mass and operation expenditures during the mission, in-situ resource utilization was proposed using these COGs to obtain both lifesupporting oxygen and oxidant/propellant fuel, by converting CO2 from the Mars atmosphere. The results showed that oxygen could be reliably produced from CO2 at temperatures as low as 400 C. These results indicate that this technology could be adapted to CO2 removal from a spacesuit and other applications in which CO2 removal was an issue. The strategy proposed for CO2 removal for advanced life support systems employs a catalytic layer combined with a COG so that it is reduced all the way to solid carbon and oxygen. Hence, a three-phased approach was used for the development of a viable low weight COG for CO2 removal. First, to reduce the COG operating temperature a high oxide ion conductivity electrolyte was developed. Second, to promote full CO2 reduction while avoiding the problem of carbon deposition on the COG cathode, novel cathodes and a removable catalytic carbon deposition layer were designed. Third, to improve efficiency, a pre-stage for CO2 absorption was used to concentrate CO2 from the exhalate before sending it to the COG. These subsystems were then

  17. CO2 Removal using a Synthetic Analogue of Carbonic Anhydrase

    SciTech Connect

    Cordatos, Harry

    2010-09-14

    Project attempts to develop a synthetic analogue for carbonic anhydrase and incorporate it in a membrane for separation of CO2 from coal power plant flue gas. Conference poster presents result of first 9 months of project progress including concept, basic system architecture and membrane properties target, results of molecular modeling for analogue - CO2 interaction, and next steps of testing analogue resistance to flue gas contaminants.

  18. CO2 Sensing and CO2 Regulation of Stomatal Conductance: Advances and Open Questions.

    PubMed

    Engineer, Cawas B; Hashimoto-Sugimoto, Mimi; Negi, Juntaro; Israelsson-Nordström, Maria; Azoulay-Shemer, Tamar; Rappel, Wouter-Jan; Iba, Koh; Schroeder, Julian I

    2016-01-01

    Guard cells form epidermal stomatal gas-exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration ([CO2]) in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense [CO2] changes via guard cells and via mesophyll tissues in mediating stomatal movements. We review new discoveries and open questions on mechanisms mediating CO2-regulated stomatal movements and CO2 modulation of stomatal development, which together function in the CO2 regulation of stomatal conductance and gas exchange in plants. Research in this area is timely in light of the necessity of selecting and developing crop cultivars that perform better in a shifting climate. PMID:26482956

  19. Technology advancement of the electrochemical CO2 concentrating process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Heppner, D. B.; Hallick, T. M.; Woods, R. R.

    1979-01-01

    Two multicell, liquid-cooled, advanced electrochemical depolarized carbon dioxide concentrator modules were fabricated. The cells utilized advanced, lightweight, plated anode current collectors, internal liquid cooling and lightweight cell frames. Both were designed to meet the carbon dioxide removal requirements of one-person, i.e., 1.0 kg/d (2.2 lb/d).

  20. Development of design information for molecular-sieve type regenerative CO2-removal systems

    NASA Technical Reports Server (NTRS)

    Wright, R. M.; Ruder, J. M.; Dunn, V. B.; Hwang, K. C.

    1973-01-01

    Experimental and analytic studies were conducted with molecular sieve sorbents to provide basic design information, and to develop a system design technique for regenerable CO2-removal systems for manned spacecraft. Single sorbate equilibrium data were obtained over a wide range of conditions for CO2, water, nitrogen, and oxygen on several molecular sieve and silica gel sorbents. The coadsorption of CO2 with water preloads, and with oxygen and nitrogen was experimentally evaluated. Mass-transfer, and some limited heat-transfer performance evaluations were accomplished under representative operating conditions, including the coadsorption of CO2 and water. CO2-removal system performance prediction capability was derived.

  1. Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal?

    PubMed

    Acién Fernández, F Gabriel; González-López, C V; Fernández Sevilla, J M; Molina Grima, E

    2012-11-01

    Microalgae have been proposed as a CO(2) removal option to contribute to climate change avoidance and problems coming from the use of fossil fuels. However, even though microalgae can be used to fix CO(2) from air or flue gases, they do not permit long-term CO(2) storage because they are easily decomposed. On the other hand, microalgae can contribute to an enhancement in human sustainability by producing biofuels as an alternative to fossil fuels in addition to the production of other useful chemicals and commodities. Moreover, microalgae can contribute to enhancing the sustainability of waste treatment processes, reducing the energy consumed, and improving the recycling of nutrients contained within them. This paper reviews the potential contribution of these processes and the existing knowledge in these areas. PMID:22923096

  2. Technology advancement of the electrochemical CO2 concentrating process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Woods, R. R.; Hallick, T. M.; Heppner, D. B.

    1977-01-01

    A five-cell, liquid-cooled advanced electrochemical depolarized carbon dioxide concentrator module was fabricated. The cells utilized the advanced, lightweight, plated anode current collector concept and internal liquid-cooling. The five cell module was designed to meet the carbon dioxide removal requirements of one man and was assembled using plexiglass endplates. This one-man module was tested as part of an integrated oxygen generation and recovery subsystem.

  3. Removal of adsorbed gases with CO2 snow

    NASA Astrophysics Data System (ADS)

    Zito, Richard R.

    1991-09-01

    During the outgassing of orbiting astronomical observatories, the condensation of molecular species on optical surfaces can create difficulties for astronomers. The problem is particularly severe in ultraviolet astronomy where the adsorption of only a few atomic layers of some substances can be very damaging. In this paper the removal of adsorbed atomic layers using carbon dioxide snow is discussed. The rate of removal of adsorbed layers of isopropyl alcohol, Freon TF, and deionized distilled water on Teflon substrates was experimentally determined. The removal of fingerprints (containing fatty acids such as stearic acid) from optical surfaces is also demonstrated. The presence and rate of removal of the multilayers was monitored by detecting the molecular dipole field of adsorbed molecular species. For isopropyl alcohol, Freon TF (trichlorotrifluoroethane), and water adsorbed multilayers were removed in under 1.5 seconds. Fingerprint removal was much more difficult and required 20 seconds of spraying with a mixture of carbon dioxide snow flakes and atomized microdroplets of isopropyl alcohol.

  4. Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2015-2016

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Cmarik, Gregory E.; Watson, David

    2016-01-01

    Design of advanced carbon dioxide removal systems begins with the study of sorbents. Specifically, new CO2 sorbents and desiccants need to be studied to enable greater productivity from existing and future spaceflight systems. This presentation will discuss the studies used as input for selecting future CO2 sorbent materials. Also, the adjoining issues of understanding the effects of water co-adsorption and material selection for desiccant beds will be discussed. Current sorbents for CO2 removal are based on 5A zeolites, but a transition to sorbents derived from 13X will be necessary as CO2 levels in cabin air become leaner. Unfortunately, these 13X zeolites are more susceptible to long-term performance loss due to water co-adsorption than 5A due at achievable regeneration temperatures. A study on how impactful the presence of trace water will be to the cyclic operation of small-scale beds will be discussed. Also, methods to recover the performance of beds in a space environment after a major moisture adsorption event will be discussed. The information obtained from the water co-adsorption studies will play a major part in selecting a CO2 sorbent for advanced removal systems. Pellet structural properties play another major role in the selection process. One factor for long-term, hands-off operation of a system is pellet integrity. Maintaining integrity means preventing pellet fracture and the generation of fines due to various thermal and mechanical means which would eventually clog filters or damage downstream systems. Either of these problems require significant shutdowns and maintenance operations and must be avoided. Therefore, study of high-integrity pellets and design of new pellets will be discussed.

  5. A transient performance method for CO2 removal with regenerable adsorbents

    NASA Technical Reports Server (NTRS)

    Hwang, K. C.

    1972-01-01

    A computer program is described which can be used to predict the transient performance of vacuum-desorbed sorbent beds for CO2 or water removal, and composite beds of two sorbents for simultaneous humidity control and CO2 removal. The program was written primarily for silica gel and molecular sieve inorganic sorbents, but can be used for a variety of adsorbent materials. Part 2 of this report describes a computer program which can be used to predict performance for multiple-bed CO2-removal sorbent systems. This program is an expanded version of the composite sorbent bed program described in Part 1.

  6. Preliminary evaluation of a membrane-based system for removing CO2 from air

    NASA Technical Reports Server (NTRS)

    Mccray, Scott B.; Wytcherley, Randi W.; Friesen, Dwayne T.; Ray, Rod J.

    1990-01-01

    Processes to remove and/or recover CO2 from air are essential to the long-term success of the U.S. space program. The results of a preliminary investigation of the use of a novel membrane-based system for removal of CO2 from air are presented. Features of this technology that make it attractive include the following: (1) it is lightweight; (2) it requires no consumables or expendables; (3) it is relatively simple; and (4) it does not rely directly on other subsystems. Preliminary designs of systems for removing CO2 from spacecraft cabin atmospheres and from the extravehicular mobility unit are presented.

  7. Extended duration orbiter study: CO2 removal and water recovery

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Ellis, G. S.; Schubert, F. H.; Wynveen, R. A.

    1979-01-01

    Two electrochemical depolarized carbon dioxide concentrator subsystems were evaluated against baseline lithium hydroxide for (1) the baseline orbiter when expanded to accommodate a crew of seven (mission option one), (2) an extended duration orbiter with a power extension package to reduce fuel cell expendables (mission option two), and (3) an extended duration orbiter with a full capability power module to eliminate fuel cell expendables (mission option three). The electrochemical depolarized carbon dioxide concentrator was also compared to the solid amine regenerable carbon dioxide removal concept. Water recovery is not required for Mission Option One since sufficient water is generated by the fuel cells. The vapor compression distillation subsystem was evaluated for mission option two and three only. Weight savings attainable using the vapor compression distillation subsystem for water recovery versus on-board water storage were determined. Combined carbon dioxide removal and water recovery was evaluated to determine the effect on regenerable carbon dioxide removal subsystem selection.

  8. The role of artificial atmospheric CO2 removal in stabilizing Earth's climate

    NASA Astrophysics Data System (ADS)

    Zickfeld, K.; Tokarska, K.

    2014-12-01

    The current CO2 emission trend entails a risk that the 2°C target will be missed, potentially causing "dangerous" changes in Earth's climate system. This research explores the role of artificial atmospheric CO2 removal (also referred to as "negative emissions") in stabilizing Earth's climate after overshoot. We designed a range of plausible CO2 emission scenarios, which follow a gradual transition from a fossil fuel driven economy to a zero-emission energy system, followed by a period of negative emissions. The scenarios differ in peak emissions rate and, accordingly, the amount of negative emissions, to reach the same cumulative emissions compatible with the 2°C temperature stabilization target. The climate system components' responses are computed using the University of Victoria Earth System Climate Model of intermediate complexity. Results suggest that negative emissions are effective in reversing the global mean temperature and stabilizing it at a desired level (2°C above pre-industrial) after overshoot. Also, changes in the meridional overturning circulation and sea ice are reversible with the artificial removal of CO2 from the atmosphere. However, sea level continues to rise and is not reversible for several centuries, even under assumption of large amounts of negative emissions. For sea level to decline, atmospheric CO2 needs to be reduced to pre-industrial levels in our simulations. During the negative emission phase, outgassing of CO2 from terrestrial and marine carbon sinks offsets the artificial removal of atmospheric CO2, thereby reducing its effectiveness. On land, the largest CO2 outgassing occurs in the Tropics and is partially compensated by CO2 uptake at northern high latitudes. In the ocean, outgassing occurs mostly in the Southern Ocean, North Atlantic and tropical Pacific. The strongest outgassing occurs for pathways entailing greatest amounts of negative emissions, such that the efficiency of CO2 removal - here defined as the change in

  9. Pruning removal from orchards for energetic use: impacts on SOC and CO2-emissions

    NASA Astrophysics Data System (ADS)

    Germer, Sonja; Lanza, Giacomo; Schleicher, Sarah; Bischoff, Wolf-Anno; Gomez Palermo, Maider; Nogues, Fernando Sebastian; Kern, Jürgen

    2016-04-01

    Prunings of orchards are usually burnt or left on the soil for nutrient and organic carbon recycling. Recently the interest rose to remove prunings for energetic use. Effects of pruning removal on soil physical and chemical characteristics are expected rather in the long term. Under certain circumstances, however, soil characteristics as organic carbon content and greenhouse gas emissions might change on the short term as our literature review revealed. The main objective of this research was to determine if pruning removal from orchards changes soil organic carbon content and CO2-emission from soils in the short-term. We compared six different study sites in Spain, France and Germany in terms of impacts on soil chemistry (total and organic carbon) and four sites for impacts on CO2-emissions during 2 years. A block design was set up over two rows each with two parcels where we removed prunings and two parcels where prunings were chipped and left on the soil (n=4). As soil characteristics may vary between tree rows and interrows of orchards, we sampled both positions separately. To assess the relative contribution of CO2 emissions from carbonate and organic material, the isotopic signature of CO2 (δ 13CO_2) was analyzed for one orchard. Our results show that pruning removal could significantly decrease soil organic carbon in the tree row after 2 years of pruning removal, as found for one German orchard. No treatment effects were detected on CO2-emissions. We found, however, differences in CO2 emissions according to the sampling position in tree rows and interrows. More CO2 emission was found for that row position per orchard with higher soil organic carbon. Isotopic CO2 signature indicated that elevated CO2 emissions were rather linked to higher microbial decomposition or root respiration than to the release from carbonates. As no pruning wood decomposition effect on CO2 emissions were apparent, but soil with higher organic carbon released more CO2, it is expected

  10. Removal of CO2 in a multistage fluidized bed reactor by diethanol amine impregnated activated carbon.

    PubMed

    Das, Dipa; Samal, Debi Prasad; Meikap, Bhim C

    2016-07-28

    To mitigate the emission of carbon dioxide (CO2), we have developed and designed a four-stage fluidized bed reactor. There is a counter current exchange between solid adsorbent and gas flow. In this present investigation diethanol amine (DEA) impregnated activated carbon made from green coconut shell was used as adsorbent. This type of adsorbent not only adsorbs CO2 due to the presence of pore but also chemically reacts with CO2 and form secondary zwitterions. Sampling and analysis of CO2 was performed using Orsat apparatus. The effect of initial CO2 concentration, gas velocity, solid rate, weir height etc. on removal efficiency of CO2 have been investigated and presented. The percentage removal of CO2 has been found close to 80% under low gas flow rate (0.188 m/s), high solid flow rate (4.12 kg/h) and weir height of 50 mm. From this result it has been found out that multistage fluidized bed reactor may be a suitable equipment for removal of CO2 from flue gas. PMID:27163861

  11. CO2 , NOx and SOx removal from flue gas via microalgae cultivation: a critical review.

    PubMed

    Yen, Hong-Wei; Ho, Shih-Hsin; Chen, Chun-Yen; Chang, Jo-Shu

    2015-06-01

    Flue gas refers to the gas emitting from the combustion processes, and it contains CO2 , NOx , SOx and other potentially hazardous compounds. Due to the increasing concerns of CO2 emissions and environmental pollution, the cleaning process of flue gas has attracted much attention. Using microalgae to clean up flue gas via photosynthesis is considered a promising CO2 mitigation process for flue gas. However, the impurities in the flue gas may inhibit microalgal growth, leading to a lower microalgae-based CO2 fixation rate. The inhibition effects of SOx that contribute to the low pH could be alleviated by maintaining a stable pH level, while NOx can be utilized as a nitrogen source to promote microalgae growth when it dissolves and is oxidized in the culture medium. The yielded microalgal biomass from fixing flue gas CO2 and utilizing NOx and SOx as nutrients would become suitable feedstock to produce biofuels and bio-based chemicals. In addition to the removal of SOx , NOx and CO2 , using microalgae to remove heavy metals from flue gas is also quite attractive. In conclusion, the use of microalgae for simultaneous removal of CO2 , SOx and NOx from flue gas is an environmentally benign process and represents an ideal platform for CO2 reutilization. PMID:25931246

  12. Extending CO2 cryogenic aerosol cleaning for advanced optical and EUV mask cleaning

    NASA Astrophysics Data System (ADS)

    Varghese, Ivin; Bowers, Charles W.; Balooch, Mehdi

    2011-11-01

    Cryogenic CO2 aerosol cleaning being a dry, chemically-inert and residue-free process is used in the production of optical lithography masks. It is an attractive cleaning option for the mask industry to achieve the requirement for removal of all printable soft defects and repair debris down to the 50nm printability specification. In the technique, CO2 clusters are formed by sudden expansion of liquid from high to almost atmospheric pressure through an optimally designed nozzle orifice. They are then directed on to the soft defects or debris for momentum transfer and subsequent damage free removal from the mask substrate. Unlike aggressive acid based wet cleaning, there is no degradation of the mask after processing with CO2, i.e., no critical dimension (CD) change, no transmission/phase losses, or chemical residue that leads to haze formation. Therefore no restriction on number of cleaning cycles is required to be imposed, unlike other cleaning methods. CO2 aerosol cleaning has been implemented for several years as full mask final clean in production environments at several state of the art mask shops. Over the last two years our group reported successful removal of all soft defects without damage to the fragile SRAF features, zero adders (from the cleaning and handling mechanisms) down to a 50nm printability specification. In addition, CO2 aerosol cleaning is being utilized to remove debris from Post-RAVE repair of hard defects in order to achieve the goal of no printable defects. It is expected that CO2 aerosol cleaning can be extended to extreme ultraviolet (EUV) masks. In this paper, we report advances being made in nozzle design qualification for optimum snow properties (size, velocity and flux) using Phase Doppler Anemometry (PDA) technique. In addition the two new areas of focus for CO2 aerosol cleaning i.e. pellicle glue residue removal on optical masks, and ruthenium (Ru) film on EUV masks are presented. Usually, the residue left over after the pellicle

  13. Applying a low-flow CO2 removal device in severe acute hypercapnic respiratory failure.

    PubMed

    Sharma, Ajay S; Weerwind, Patrick W; Strauch, Uli; van Belle, Arne; Maessen, Jos G; Wouters, Emiel F M

    2016-03-01

    A novel and portable extracorporeal CO2-removal device was evaluated to provide additional gas transfer, auxiliary to standard therapy in severe acute hypercapnic respiratory failure. A dual-lumen catheter was inserted percutaneously in five subjects (mean age 55 ± 0.4 years) and, subsequently, connected to the CO2-removal device. The median duration on support was 45 hours (interquartile range 26-156), with a blood flow rate of approximately 500 mL/min. The mean PaCO2 decreased from 95.8 ± 21.9 mmHg to 63.9 ± 19.6 mmHg with the pH improving from 7.11 ± 0.1 to 7.26 ± 0.1 in the initial 4 hours of support. Three subjects were directly weaned from the CO2-removal device and mechanical ventilation, one subject was converted to ECMO and one subject died following withdrawal of support. No systemic bleeding or device complications were observed. Low-flow CO2 removal adjuvant to standard therapy was effective in steadily removing CO2, limiting the progression of acidosis in subjects with severe acute hypercapnic respiratory failure. PMID:26040584

  14. Maintaining Adequate CO2 Washout for an Advanced EMU via a New Rapid Cycle Amine Technology

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Conger, Bruce

    2012-01-01

    Over the past several years, NASA has realized tremendous progress in Extravehicular Activity (EVA) technology development. This has been evidenced by the progressive development of a new Rapid Cycle Amine (RCA) system for the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support Subsystem (PLSS). The PLSS is responsible for the life support of the crew member in the spacesuit. The RCA technology is responsible for carbon dioxide (CO2) and humidity control. Another aspect of the RCA is that it is on-back vacuum-regenerable, efficient, and reliable. The RCA also simplifies the PLSS schematic by eliminating the need for a condensing heat exchanger for humidity control in the current EMU. As development progresses on the RCA, it is important that the sizing be optimized so that the demand on the PLSS battery is minimized. As well, maintaining the CO2 washout at adequate levels during an EVA is an absolute requirement of the RCA and associated ventilation system. Testing has been underway in-house at NASA Johnson Space Center and analysis has been initiated to evaluate whether the technology provides exemplary performance in ensuring that the CO2 is removed sufficiently and the ventilation flow is adequate for maintaining CO2 washout in the AEMU spacesuit helmet of the crew member during an EVA. This paper will review the recent developments of the RCA unit, testing planned in-house with a spacesuit simulator, and the associated analytical work along with insights from the medical aspect on the testing. 1

  15. Enzyme-based CO2 capture for advanced life support

    NASA Technical Reports Server (NTRS)

    Ge, Jijun; Cowan, Robert M.; Tu, Chingkuang; McGregor, Martin L.; Trachtenberg, Michael C.

    2002-01-01

    Elevated CO2 levels in air can lead to impaired functioning and even death to humans. Control of CO2 is critical in confined spaces that have little physical or biological buffering capacity (e.g., spacecraft, submarines, or aircraft). A novel enzyme-based contained liquid membrane bioreactor was designed for CO2 capture and certain application cases are reported in this article. The results show that the liquid layer accounts for the major transport resistance. With addition of carbonic anhydrase, the transport resistance decreased by 71%. Volatile organic compounds of the type and concentration expected to be present in either the crew cabin or a plant growth chamber did not influence carbonic anhydrase activity or reactor operation during 1-day operation. Alternative sweep method studies, examined as a means of eliminating consumables, showed that the feed gas could be used successfully in a bypass mode when combined with medium vacuum pressure (-85 kPa) to achieve CO2 separation comparable to that with an inert sweep gas. The reactor exhibited a selectivity for CO2 versus N2 of 1400:1 and CO2 versus O2 is 866:1. The CO2 permeance was 1.44 x 10(-7) mol m-2 Pa-1 s-1 (4.3 x 10(-4) cm3 cm-2 s-1 cmHg-1) at a feed concentration of 0.1% CO2. These data show that the enzyme-based contained liquid membrane is a promising candidate technology that may be suitable for NASA applications to control CO2 in the crew or plant chambers.

  16. Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2015-2016

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Watson, David W.; Wingard, Charles D.; West, Phillip W.; Cmarik, Gregory E.; Miller, Lee A.

    2016-01-01

    Advanced Exploration Systems are integral to crewed missions beyond low earth orbit and beyond the moon. The long-term goal is to reach Mars and return to Earth, but current air revitalization systems are not capable of extended operation within the mass, power, and volume requirements of such a mission. Two primary points are the mechanical stability of sorbent pellets and recovery of sorbent productivity after moisture exposure in the event of a leak. In this paper, we discuss the present efforts towards screening and characterizing commercially-available sorbents for extended operation in desiccant and CO2 removal beds.

  17. Materials selection guidelines for membranes that remove CO 2 from gas mixtures

    NASA Astrophysics Data System (ADS)

    Lin, Haiqing; Freeman, Benny D.

    2005-04-01

    Membrane technology has been investigated for removing CO 2 from mixtures with light gases such as CH 4, N 2 and H 2, and optimal membranes with high CO 2 permeability and high CO 2/light gas selectivity are of great interest. This overview describes the material science approaches to achieve high CO 2 solubility and CO 2/light gas solubility selectivity by introducing polar groups in polymers. CO 2 solubility and CO 2/N 2 solubility selectivity in both liquid solvents and solid polymers containing a variety of polar groups are discussed. Optimum materials appear to have a solubility parameter of about 21.8 MPa 0.5 to achieve both high solubility and high solubility selectivity. However, the introduction of polar groups can decrease CO 2 diffusion coefficients and can make a material more size-selective, which is detrimental to, for example, CO 2/H 2 separation properties. So far, ether oxygens in ethylene oxide (EO) units appear to provide a good balance of CO 2 separation and permeation properties. One drawback of using pure poly(ethylene oxide) (PEO) is its strong tendency to crystallize. This report reviews strategies for incorporating high concentrations of EO units into polymers while suppressing crystallization. A simple model, based on free volume theory, is used to correlate a wide range of CO 2 permeability coefficients in PEO containing materials, and the results are satisfactory, particularly given the simplicity of the model. Crosslinked poly(ethylene glycol) acrylate (XLPEO) containing branches with methoxy end groups exhibit the highest CO 2 permeability (i.e. 570 Barrers) and highest CO 2/H 2 selectivity (i.e. 12) at 35 °C and infinite dilution among all PEO containing materials reported to date. Because such materials do not crystallize at typically accessible temperatures, CO 2/H 2 selectivity can be further improved by decreasing temperature. For example, at an upstream pressure of 4.4 atm, CO 2/H 2 pure gas selectivity reaches a value of 40 at

  18. Endoscopic removal of PMMA in hip revision surgery with a CO2 laser

    NASA Astrophysics Data System (ADS)

    Sazy, John; Kollmer, Charles; Uppal, Gurvinder S.; Lane, Gregory J.; Sherk, Henry H.

    1991-05-01

    Purpose: to compare CO2 laser to mechanical means of PMMA removal in total hip arthroplasty revision surgery. Materials and methods: Forty-five patients requiring hip revision surgery were studied and compared to historical controls. Cement was removed from the femoral canal utilizing a 30 centimeter laparoscope. A CO2 laser waveguide was passed through the laparoscope into the femoral canal and a TV camera was placed over the eye piece to permit visualization of the depths of the femoral canal on a video monitor. The leg was placed in a horizontal position which avoided the pooling of blood or saline in the depths of the femur. Under direct vision the distal plug could be vaporized with a 40 centimeter CO2 laser waveguide. Power settings of 20 to 25 watts and a superpulsed mode were used. A 2 mm suction tube was welded to the outside of the laparoscope permitting aspiration of the products of vaporization. Results: Of 45 hip revisions there were no shaft perforation, fractures or undue loss of bone stock. There was no statistically different stay in hospital time, blood loss or operative time between the CO2 revision group compared to the non-laser revision group, in which cement was removed by mechanical methods. Conclusions: Mechanical methods used in removing bone cement using high speed burrs, reamers, gouges, and osteotomies is technically difficult and fraught with complications including shaft fracture, perforations, and unnecessary loss of bone stock. The authors' experience using the CO2 laser in hip revision surgery has permitted the removal of bone cement. Use of a modified laparoscope has allowed for precise, complete removal of bone cement deep within the femoral shaft without complication or additional operative time. The authors now advocate the use of a CO2 laser with modified laparoscope in hip revision surgery in which bone cement is to be removed from within the femoral shaft.

  19. Advances in CO2-Laser Drilling of Glass Substrates

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Queisser, Marco; Gentsch, Clemens; Schröder, Henning; Lang, Klaus-Dieter

    The CO2 -laser drilling in Schott D263Teco thin glass having a thickness of 500 μm is intensively studied. The nearly cylindrical holes having diameters smaller 100 μm could be drilled in 0.25 seconds per hole. Reliability investigations by performing temperature cycling show cracks in 51% of the drilled holes in the glass substrate. The reason is thermally induced stress during thermal CO2 -laser ablation. Different thermal pre- and post-treatments have been successfully studied avoiding such cracks (98.4% crack-free holes) and show the high potential of CO2 -laser drilling for through glass via (TGV) processing in glass substrates for micro-system applications.

  20. Development of an advanced Sabatier CO2 reduction subsystem

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Cusick, R. J.

    1981-01-01

    A preprototype Sabatier CO2 reduction subsystem was successfully designed, fabricated and tested. The lightweight, quick starting (less than 5 minutes) reactor utlizes a highly active and physically durable methanation catalyst composed of ruthenium on alumina. The use of this improved catalyst permits a simple, passively controlled reactor design with an average lean component H2/CO2 conversion efficiency of over 99% over a range of H2/CO2 molar ratios of 1.8 to 5 while operating with process flows equivalent to a crew size of up to five persons. The subsystem requires no heater operation after start-up even during simulated 55 minute lightside/39 minute darkside orbital operation.

  1. Recent advances in CO2 capture and utilization.

    PubMed

    Yu, Kai Man Kerry; Curcic, Igor; Gabriel, Joseph; Tsang, Shik Chi Edman

    2008-01-01

    Energy and the environment are two of the most important issues this century. More than 80 % of our energy comes from the combustion of fossil fuels, which will still remain the dominant energy source for years to come. It is agreed that carbon dioxide produced from the combustion process to be the most important anthropogenic greenhouse gas leading to global warming. Atmospheric CO(2) concentrations have indeed increased by almost 100 ppm since their pre-industrial level, reaching 384 ppm in 2007 with a total annual emission of over 35 Gt. Prompt global action to resolve the CO(2) crisis is therefore needed. To pursue such an action, we are urged to save energy without the unnecessary production of carbon emissions and to use energy in more efficient ways, but alternative methods to mitigate the greenhouse gas have to be considered. This Minireview highlights some recent promising research activities and their prospects in the areas of carbon capture and storage and chemical fixation of CO(2) in constructing a future low-carbon global economy with reference to energy source, thermodynamic considerations, net carbon emissions and availability of reagents. PMID:18985640

  2. Maintaining Adequate CO2 Washout for an Advanced EMU via a New Rapid Cycle Amine Technology

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda

    2011-01-01

    Over the past several years, NASA has realized tremendous progress in Extravehicular Activity (EVA) technology development. This has been evidenced by the progressive development of a new Rapic Cycle Amine (RCA) system for the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support Subsystem (PLSS). The PLSS is responsible for the life support of the crew member in the spacesuit. The RCA technology is responsible for carbon dioxide (CO2) and humidity control. Another aspect of the RCA is that it is on-back vacuum-regenerable, efficient, and reliable. The RCA also simplifies the PLSS schematic by eliminating the need for a condensing heat exchanger for humidity control in the current EMU. As development progresses on the RCA, it is important that the sizing be optimized so that the demand on the PLSS battery is minimized. As well, maintaining the CO2 washout at adequate levels during an EVA is an absolute requirement of the RCA and associated ventilation system. Testing has been underway in-house at NASA Johnson Space Center and analysis has been initiated to evaluate whether the technology provides exemplary performance in ensuring that the CO2 is removed sufficiently enough and the ventilation flow is adequate enough to maintain CO2 1 Project Engineer, Space Suit and Crew Survival Systems Branch, Crew and Thermal Systems Division, 2101 NASA Parkway, Houston, TX 77058/EC5. washout in the AEMU spacesuit helmet of the crew member during an EVA. This paper will review the recent developments of the RCA unit, the testing results performed in-house with a spacesuit simulator, and the associated analytical work along with insights from the medical aspect on the testing.

  3. Long-term response of oceans to CO2 removal from the atmosphere

    NASA Astrophysics Data System (ADS)

    Mathesius, Sabine; Hofmann, Matthias; Caldeira, Ken; Schellnhuber, Hans Joachim

    2015-12-01

    Carbon dioxide removal (CDR) from the atmosphere has been proposed as a measure for mitigating global warming and ocean acidification. To assess the extent to which CDR might eliminate the long-term consequences of anthropogenic CO2 emissions in the marine environment, we simulate the effect of two massive CDR interventions with CO2 extraction rates of 5 GtC yr-1 and 25 GtC yr-1, respectively, while CO2 emissions follow the extended RCP8.5 pathway. We falsify two hypotheses: the first being that CDR can restore pre-industrial conditions in the ocean by reducing the atmospheric CO2 concentration back to its pre-industrial level, and the second being that high CO2 emissions rates (RCP8.5) followed by CDR have long-term oceanic consequences that are similar to those of low emissions rates (RCP2.6). Focusing on pH, temperature and dissolved oxygen, we find that even after several centuries of CDR deployment, past CO2 emissions would leave a substantial legacy in the marine environment.

  4. Mixed Wastewater Coupled with CO2 for Microalgae Culturing and Nutrient Removal

    PubMed Central

    Yao, Lili; Shi, Jianye; Miao, Xiaoling

    2015-01-01

    Biomass, nutrient removal capacity, lipid productivity and morphological changes of Chlorella sorokiniana and Desmodesmus communis were investigated in mixed wastewaters with different CO2 concentrations. Under optimal condition, which was 1:3 ratio of swine wastewater to second treated municipal wastewater with 5% CO2, the maximum biomass concentrations were 1.22 g L-1 and 0.84 g L-1 for C. sorokiniana and D. communis, respectively. Almost all of the ammonia and phosphorus were removed, the removal rates of total nitrogen were 88.05% for C. sorokiniana and 83.18% for D. communis. Lipid content reached 17.04% for C. sorokiniana and 20.37% for D. communis after 10 days culture. CO2 aeration increased intracellular particle numbers of both microalgae and made D. communis tend to be solitary. The research suggested the aeration of CO2 improve the tolerance of microalgae to high concentration of NH4-N, and nutrient excess stress could induce lipid accumulation of microalgae. PMID:26418261

  5. Mixed Wastewater Coupled with CO2 for Microalgae Culturing and Nutrient Removal.

    PubMed

    Yao, Lili; Shi, Jianye; Miao, Xiaoling

    2015-01-01

    Biomass, nutrient removal capacity, lipid productivity and morphological changes of Chlorella sorokiniana and Desmodesmus communis were investigated in mixed wastewaters with different CO2 concentrations. Under optimal condition, which was 1:3 ratio of swine wastewater to second treated municipal wastewater with 5% CO2, the maximum biomass concentrations were 1.22 g L-1 and 0.84 g L-1 for C. sorokiniana and D. communis, respectively. Almost all of the ammonia and phosphorus were removed, the removal rates of total nitrogen were 88.05% for C. sorokiniana and 83.18% for D. communis. Lipid content reached 17.04% for C. sorokiniana and 20.37% for D. communis after 10 days culture. CO2 aeration increased intracellular particle numbers of both microalgae and made D. communis tend to be solitary. The research suggested the aeration of CO2 improve the tolerance of microalgae to high concentration of NH4-N, and nutrient excess stress could induce lipid accumulation of microalgae. PMID:26418261

  6. Removal of CO2 and H2S from natural gases

    SciTech Connect

    Wagner, E.; Volkamer, K.; Wagner, U.

    1985-08-27

    CO2 and, where relevant, H2S are removed from natural gases which contain CO2 and may or may not contain H2S by a process in which the said natural gases are treated, in an absorption stage at from 40 to 100 C., with an aqueous absorption liquid containing from 20 to 70% by weight of methyldiethanolamine, the treated natural gases are taken off at the top of the absorption stage, the aqueous absorption liquid laden with CO2 and, where relevant, H2S is taken off at the bottom of the absorption stage and then regenerated in one or more flash stages, and the regenerated absorption liquid is recycled to the absorption stage.

  7. Advances in post AFM repair cleaning of photomask with CO2 cryogenic aerosol technology

    NASA Astrophysics Data System (ADS)

    Bowers, Charles; Varghese, Ivin; Balooch, Mehdi; Brandt, Werner

    2009-04-01

    As the mask technology matures, critical printing features and sub-resolution assist features (SRAF) shrink below 100 nm, forcing critical cleaning processes to face significant challenges. These challenges include use of new materials, oxidation, chemical contamination sensitivity, proportionally decreasing printable defect size, and a requirement for a damage-free clean. CO2 cryogenic aerosol cleaning has the potential to offer a wide process window for meeting these new challenges, if residue adder issues and damage can be eliminated. Some key differentiations of CO2 cryogenic aerosol cleaning are the non-oxidizing and non-etching properties compared to conventional chemical wet clean processes with or without megasonics. In prior work, the feasibility of CO2 cryogenic aerosol in post AFM repair photomask cleaning was demonstrated. In this paper, recent advancements of CO2 cryogenic aerosol cleaning technology are presented, focusing on the traditional problem areas of particle adders, electrostatic discharge (ESD), and mask damage mitigation. Key aspects of successful CO2 cryogenic aerosol cleaning include the spray nozzle design, CO2 liquid purity, and system design. The design of the nozzle directly controls the size, density, and velocity of the CO2 snow particles. Methodology and measurements of the solid CO2 particle size and velocity distributions will be presented, and their responses to various control parameters will be discussed. Adder control can be achieved only through use of highly purified CO2 and careful materials selection. Recent advances in CO2 purity will be discussed and data shown. The mask cleaning efficiency by CO2 cryogenic aerosol and damage control is essentially an optimization of the momentum of the solid CO2 particles and elimination of adders. The previous damage threshold of 150 nm SRAF structures has been reduced to 70nm and data will be shown indicating 60 nm is possible in the near future. Data on CO2 tribocharge mitigation

  8. Manned Mission Planning Considerations when Using a Non-Regenerable CO2 Removal System

    NASA Technical Reports Server (NTRS)

    DeSimpelaere, Edward

    2011-01-01

    As the commercial spacecraft industry increases in size, there will be a corresponding increase in the number of manned spacecraft built and operationally flown each year. Industry teams for these new spacecraft will have multiple design and operational choices to make for each of these spacecraft s subsystems. The carbon dioxide (CO2) removal subsystem of the environmental control and life support system is one that presents such challenges. This paper seeks to aid industry in making design and operations choices by providing a document containing lessons learned by the Space Shuttle Program s Operations team, with specific focus given to the non-regenerable CO2 removal system currently used by the Space Shuttle. Carbon dioxide, one of the key byproducts of respiration, can lead to injury and death if allowed to build up in a spacecraft s habitable environment. Therefore, any spacecraft s environmental control and life support system must contain a method for removing this hazard. These removal systems can either be non-regenerable or regenerable. While this paper defines the difference between these types and presents a generic comparison of their capabilities, the focus is specifically on the Space Shuttle s CO2 removal systems. This will include a short discussion of the Space Shuttle s regenerable amine solid absorption system that was part of the Extended Duration Orbiter (EDO) modification, however, emphasis is given to the non-regenerable Lithium Hydroxide canister system used as the prime removal method employed by the Space Shuttle, including a discussion on why this method was chosen over a regenerable system. A full exposition is given on all of the considerations required for mission planning when using a non-regenerable CO2 removal system. Key discussion items include: airflow lessons learned, recent physiological issues related to short term and long term exposure and how lower levels may be more harmful than previously thought, lithium hydroxide

  9. Extracorporeal CO2 removal: Technical and physiological fundaments and principal indications.

    PubMed

    Romay, E; Ferrer, R

    2016-01-01

    In recent years, technological improvements have reduced the complexity of extracorporeal membrane oxygenation devices. This have enabled the development of specific devices for the extracorporeal removal of CO2. These devices have a simpler configuration than extracorporeal membrane oxygenation devices and uses lower blood flows which could reduce the potential complications. Experimental studies have demonstrated the feasibility, efficacy and safety of extracorporeal removal of CO2 and some of its effects in humans. This technique was initially conceived as an adjunct therapy in patients with severe acute respiratory distress syndrome, as a tool to optimize protective ventilation. More recently, the use of this technique has allowed the emergence of a relatively new concept called "tra-protective ventilation"whose effects are still to be determined. In addition, the extracorporeal removal of CO2 has been used in patients with exacerbated hypercapnic respiratory failure with promising results. In this review we will describe the physiological and technical fundamentals of this therapy and its variants as well as an overview of the available clinical evidence, focused on its current potential. PMID:26432628

  10. Chlorella stigmatophora for urban wastewater nutrient removal and CO2 abatement.

    PubMed

    Arbib, Zouhayr; Ruiz, Jesus; Alvarez, Pablo; Garrido, Carmen; Barragan, Jesus; Perales, Jose Antonio

    2012-08-01

    Batch experiments were performed to study biomass growth rate, nutrient removal and carbon dioxide bio-fixation of the marine microalgae Chlorella stigmatophora. Four different cultures at different salinities were tested: wastewater (WW), synthetic wastewater (SWW), seawater (SW) and diluted seawater (DSW). Experimental results showed that Chlorella stigmatophora grew satisfactorily in all culture media, except in SWW where inhibition occurred. In all cases, biomass experimental data were fitted to the Verlhust Logistic model (R2 > 0.982, p < or = 0.05). Maximum biomass productivity (P(bmax)) and CO2 biofixation (P(vCO2)) were reached in the WW medium, 1.146g SSL(-1)day(-1) and 2.324g CO2L(-1)day(-1) respectively. The order of maximum specific growth rates (micro max) was WW >DSW>SW. In order to compare nitrogen and phosphorous removal kinetics, an estimation of the time required to reach the most restrictive concentration of total N and P in effluents as defined in the Directive 98/1565/CE (10 mg sigmaNL(-1) (T10(N)) and 1 mg sigmaPL(-1) (T1(p)) was performed. In the WW test T10(N) and T1(p) needed were of 45.15 and 32.27 hours respectively and at the end of the experimental the removal was in both 100%. PMID:22908639

  11. Advanced Amine Solvent Formulations and Process Integration for Near-Term CO2 Capture Success

    SciTech Connect

    Fisher, Kevin S.; Searcy, Katherine; Rochelle, Gary T.; Ziaii, Sepideh; Schubert, Craig

    2007-06-28

    This Phase I SBIR project investigated the economic and technical feasibility of advanced amine scrubbing systems for post-combustion CO2 capture at coal-fired power plants. Numerous combinations of advanced solvent formulations and process configurations were screened for energy requirements, and three cases were selected for detailed analysis: a monoethanolamine (MEA) base case and two “advanced” cases: an MEA/Piperazine (PZ) case, and a methyldiethanolamine (MDEA) / PZ case. The MEA/PZ and MDEA/PZ cases employed an advanced “double matrix” stripper configuration. The basis for calculations was a model plant with a gross capacity of 500 MWe. Results indicated that CO2 capture increased the base cost of electricity from 5 cents/kWh to 10.7 c/kWh for the MEA base case, 10.1 c/kWh for the MEA / PZ double matrix, and 9.7 c/kWh for the MDEA / PZ double matrix. The corresponding cost per metric tonne CO2 avoided was 67.20 $/tonne CO2, 60.19 $/tonne CO2, and 55.05 $/tonne CO2, respectively. Derated capacities, including base plant auxiliary load of 29 MWe, were 339 MWe for the base case, 356 MWe for the MEA/PZ double matrix, and 378 MWe for the MDEA / PZ double matrix. When compared to the base case, systems employing advanced solvent formulations and process configurations were estimated to reduce reboiler steam requirements by 20 to 44%, to reduce derating due to CO2 capture by 13 to 30%, and to reduce the cost of CO2 avoided by 10 to 18%. These results demonstrate the potential for significant improvements in the overall economics of CO2 capture via advanced solvent formulations and process configurations.

  12. CO2 Compressor Requirements for Integration of Space Station Carbon Dioxide Removal and Carbon Dioxide Reduction Assemblies

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Lewis, John F.; Graf, John; LaFuse, Sharon; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    This paper describes the analysis on integration requirements, CO2 compressor in particular, for integration of Carbon Dioxide Removal Assembly (CDRA) and CO2 Reduction Assembly (CRA) as a part of the Node 3 project previously conducted at JSC/NASA. A system analysis on the volume and operation pressure range of the CO2 accumulator was conducted. The hardware and operational configurations of the CO2 compressor were developed. The performance and interface requirements of the compressor were specified. An existing Four-Bed Molecular Sieve CO2 removal computer model was modified into a CDRA model and used in analyzing the requirements of the CDRA CO2 compressor. This CDRA model was also used in analyzing CDRA operation parameters that dictate CO2 pump sizing. Strategy for the pump activation was also analyzed.

  13. CO2 and humidity removal system for extended Shuttle missions - CO2, H2O, and trace contaminant equilibrium testing

    NASA Technical Reports Server (NTRS)

    Davis, S. H.; Kissinger, L. D.

    1977-01-01

    The equilibrium relationships for the co-adsorption of CO2 and H2O on an amine coated acrylic ester are presented. The equilibrium data collection and reduction techniques are discussed. Based on the equilibrium relationship, other modes of operation of systems containing HS-C are discussed and specific space applications for HS-C are presented. Equilibrium data for 10 compounds which are found as trace contaminants in closed environments are also presented.

  14. Development of activated carbon derived from banana peel for CO2 removal

    NASA Astrophysics Data System (ADS)

    Borhan, Azry; Thangamuthu, Subhashini; Taha, Mohd Faisal; Ramdan, Amira Nurain

    2015-08-01

    This research work highlights on the constraints involved in the preparation of the banana peel bio-sorbent, such as impregnation ratio, activation temperature and period of activation for reducing carbon dioxide (CO2) in the atmosphere. Micromeritics ASAP 2020 and Field Emission Scanning Electron Microscope (FESEM) were used in identifying the best sample preparation method with the largest surface area which directly contributes to the effectiveness of adsorbent in removing CO2. Sample A10 was identified to yield activated carbon with the largest surface area (260.3841 m2/g), total pore volume (0.01638 cm3/g) and pore diameter (0.2508 nm). Through nitrogen adsorption-desorption isotherm analysis, the existence of sub-micropores was proven when a combination of Type-I and Type-II isotherms were exhibited by the activated carbon produced. The results from the final adsorption test found that the material synthesized from the above mentioned parameter is capable of removing up to 1.65% wt of CO2 through adsorption at 25°C, suggesting that it can be effectively used as an adsorption material.

  15. Advanced Coating Removal Techniques

    NASA Technical Reports Server (NTRS)

    Seibert, Jon

    2006-01-01

    An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid

  16. Advances in CO2 cryogenic aerosol technology for photomask post AFM repair

    NASA Astrophysics Data System (ADS)

    Bowers, Charles; Varghese, Ivin; Balooch, Mehdi; Rodriguez, Jaime

    2009-10-01

    As the mask technology moves towards production of 36 nm and 22 nm DRAM half pitch nodes, printing features and sub-resolution assist features (SRAF) shrink below 80 nm. These narrow features become more fragile and place new demands on cleaning processes for a physically non damaging solution. These challenges include compatibility with new materials, oxidation, chemical contamination sensitivity, proportionally decreasing printable defect size, and a requirement for a damage-free clean. CO2 cryogenic aerosol cleaning has, for many years, shown potential to offer a wide process window for meeting some of these new challenges. CO2 cryogenic aerosol cleaning for post AFM repair debris cleaning has been used for many years on masks greater than 90 nm DRAM half pitch nodes. Until recently, CO2 purity and delivery hardware issues resulted in foreign material adder (FMACO2) contamination and SRAF damage below 150 nm critical feature size. Some key desirable properties of CO2 cryogenic aerosol cleaning are the non-oxidizing and non-etching properties when compared to current chemical wet clean processes. In this paper, recent advancements of CO2 cryogenic aerosol cleaning technology are presented, highlighting improvements in the areas of FMACO2 reduction, lowering the critical feature size without damage, and electrostatic discharge (ESD) mitigation. Key aspects of successful CO2 cryogenic aerosol cleaning include the spray nozzle design, CO2 liquid purity, and integrated system design. The design of the nozzle directly controls the size, flux, and velocity of the CO2 snow particles. Methodology and measurements of the solid CO2 particle size and velocity distributions will be presented, and their responses to various control parameters will be discussed. FMACO2 mitigation can be achieved only through use of highly purified CO2 and careful materials selection of the delivery hardware. Recent advances in CO2 purity will be discussed and data shown. The mask cleaning

  17. Advanced EMU electrochemically regenerable CO2 and moisture absorber module breadboard

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Sudar, M.; Chang, B. J.

    1988-01-01

    The applicability of the Electrochemically Regenerable Carbon Dioxide and Moisture Absorption Technology to the advanced extravehicular mobility unit was demonstrated by designing, fabricating, and testing a breadboard Absorber Module and an Electrochemical Regenerator. Test results indicated that the absorber module meets or exceeds the carbon dioxide removal requirements specified for the design and can meet the moisture removal requirement when proper cooling is provided. CO2 concentration in the vent gas stream was reduced from 0.52 to 0.027 kPa (3.9 to 0.20 mm Hg) for the full five hour test period. Vent gas dew point was reduced from inlet values of 294 K (69 F) to 278 K (41 F) at the outlet. The regeneration of expended absorbent was achieved by the electrochemical method employed in the testing. An absorbent bed using microporous hydrophobic membrane sheets with circulating absorbent is shown to be the best approach to the design of an Absorber Module based on sizing and performance. Absorber Module safety design, comparison of various absorbents and their characteristics, moisture absorption and cooling study and subsystem design and operation time-lining study were also performed.

  18. A Fine-Tuned Fluorinated MOF Addresses the Needs for Trace CO2 Removal and Air Capture Using Physisorption.

    PubMed

    Bhatt, Prashant M; Belmabkhout, Youssef; Cadiau, Amandine; Adil, Karim; Shekhah, Osama; Shkurenko, Aleksander; Barbour, Leonard J; Eddaoudi, Mohamed

    2016-07-27

    The development of functional solid-state materials for carbon capture at low carbon dioxide (CO2) concentrations, namely, from confined spaces (<0.5%) and in particular from air (400 ppm), is of prime importance with respect to energy and environment sustainability. Herein, we report the deliberate construction of a hydrolytically stable fluorinated metal-organic framework (MOF), NbOFFIVE-1-Ni, with the appropriate pore system (size, shape, and functionality), ideal for the effective and energy-efficient removal of trace carbon dioxide. Markedly, the CO2-selective NbOFFIVE-1-Ni exhibits the highest CO2 gravimetric and volumetric uptake (ca. 1.3 mmol/g and 51.4 cm(3) (STP) cm(-3)) for a physical adsorbent at 400 ppm of CO2 and 298 K. Practically, NbOFFIVE-1-Ni offers the complete CO2 desorption at 328 K under vacuum with an associated moderate energy input of 54 kJ/mol, typical for the full CO2 desorption in conventional physical adsorbents but considerably lower than chemical sorbents. Noticeably, the contracted square-like channels, affording the close proximity of the fluorine centers, permitted the enhancement of the CO2-framework interactions and subsequently the attainment of an unprecedented CO2 selectivity at very low CO2 concentrations. The precise localization of the adsorbed CO2 at the vicinity of the periodically aligned fluorine centers, promoting the selective adsorption of CO2, is evidenced by the single-crystal X-ray diffraction study on NbOFFIVE-1-Ni hosting CO2 molecules. Cyclic CO2/N2 mixed-gas column breakthrough experiments under dry and humid conditions corroborate the excellent CO2 selectivity under practical carbon capture conditions. Pertinently, the notable hydrolytic stability positions NbOFFIVE-1-Ni as the new benchmark adsorbent for direct air capture and CO2 removal from confined spaces. PMID:27388208

  19. Development of a Rapid Cycling CO2 and H2O Removal Sorbent

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Cates, Matthew; Bernal, Casey; Dubovik, Margarita; Paul, Heather L.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) planned future missions set stringent demands on the design of the Portable Life Support System (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility on the types of missions. Use of regenerable systems that reduce weight and volume of the Extravehicular Mobility Unit (EMU) is of critical importance to NASA, both for low orbit operations and for long duration manned missions. The carbon dioxide and humidity control unit in the existing PLSS design is relatively large, since it has to remove and store eight hours worth of carbon dioxide (CO2). If the sorbent regeneration can be carried out during the Extravehicular Activity (EVA) with a relatively high regeneration frequency, the size of the sorbent canister and weight can be significantly reduced. TDA Research, Inc. is developing compact, regenerable sorbent materials to control CO2 and humidity in the space suit ventilation loop. The sorbent can be regenerated using space vacuum during the EVA, eliminating all CO2 and humidity duration-limiting elements in the life support system. The material also has applications in other areas of space exploration including long duration exploration missions requiring regenerable technologies and possibly the Crew Exploration Vehicle (CEV) spacecraft. This paper summarizes the results of the sorbent development, testing, and evaluation efforts to date.

  20. Rapid Cycling CO2 and H2O Removal System for EMU

    NASA Technical Reports Server (NTRS)

    Alptekin, Gokhan; Cates, Matthew; Dubovik, Margarita; Gershanovich, Yevgenia; Paul, Heather; Thomas, Gretchen

    2006-01-01

    NASA's planned future missions set stringent demands on the design of the Portable Life Support Systems (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility on the types of missions. Use of regenerable systems that reduce weight and volume of the EMU is of critical importance to NASA, both for low orbit operations and for long duration manned missions. The CO2 and humidity control unit in the existing PLSS design is relatively large, since it has to remove 8 hours worth of CO2. If the sorbent regeneration can be carried out during the extravehicular activity (EVA) with a relatively high regeneration frequency, the size of the sorbent canister and weight can be significantly reduced. TDA Research, Inc. (TDA) is developing a compact, regenerable sorbent-based system to control CO2 and humidity in the space suit ventilation loop. The sorbent can be regenerated using space vacuum during the EVA, eliminating all duration-limiting elements in the life support system. This paper summarizes the results of the sorbent development and testing, and evaluation efforts. The results of a preliminary system analysis are also included, showing the size and volume reductions provided by the new system.

  1. BESTIA - The next generation ultra-fast CO2 laser for advanced accelerator research

    NASA Astrophysics Data System (ADS)

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; Skaritka, John; Polyanskiy, Mikhail N.

    2016-09-01

    Over the last two decades, BNL's ATF has pioneered the use of high-peak power CO2 lasers for research in advanced accelerators and radiation sources. Our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimes in the particle acceleration of ions and electrons.

  2. BESTIA - the next generation ultra-fast CO2 laser for advanced accelerator research

    DOE PAGESBeta

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; Skaritka, John; Polyanskiy, Mikhail N.

    2015-12-02

    Over the last two decades, BNL’s ATF has pioneered the use of high-peak power CO2 lasers for research in advanced accelerators and radiation sources. In addition, our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimes in the particlemore » acceleration of ions and electrons.« less

  3. [Removal of CO2 from simulated flue gas of power plants by membrane-based gas absorption processes].

    PubMed

    Yang, Ming-Fen; Fang, Meng-Xiang; Zhang, Wei-Feng; Wang, Shu-Yuan; Xu, Zhi-Kang; Luo, Zhong-Yang; Cen, Ke-Fa

    2005-07-01

    Three typical absorbents such as aqueous of aminoacetic acid potassium (AAAP), monoethanolamine (MEA) and methyldiethanolamine(MDEA) are selected to investigate the performance of CO2 separation from flue gas via membrane contactors made of hydrophobic hollow fiber polypropylene porous membrane. Impacts of absorbents, concentrations and flow rates of feeding gas and absorbent solution, cyclic loading of CO2 on the removal rate and the mass transfer velocity of CO2 are discussed. The results demonstrate that the mass transfer velocity was 7.1 mol x (m2 x s)(-1) for 1 mol x L(-1) MEA with flow rate of 0.1 m x s(-1) and flue gas with that of 0.211 m x s(-1). For 1 mol L(-1) AAAP with flow rate of 0.05 m x s(-1) and flue gas of 0.211 m x s(-1), CO2 removal rate (eta) was 93.2 % and eta was 98% for 4 mol x L(-1) AAAP under the same conditions. AAAP being absorbent, eta was higher than 90% in a wider range of concentrations of CO2. It indicates that membrane-based absorption process is a widely-applied and promising way of CO2 removal from flue gas of power plants, which not only appropriates for CO2 removal of flue gas of widely-used PF and NGCC, but also for that of flue gas of IGCC can be utilized widely in future. PMID:16212162

  4. 40 CFR 86.1866-12 - CO2 credits for advanced technology vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1866-12 CO2 credits for advanced... carbon-related exhaust emissions under § 600.512 of this chapter. Full size pickup trucks eligible for... nominal storage capacity of electricity when operated on the highway fuel economy test...

  5. Extracorporeal CO2 Removal by Respiratory Electrodialysis: An In Vitro Study.

    PubMed

    Zanella, Alberto; Castagna, Luigi; Abd El Aziz El Sayed Deab, Salua; Scaravilli, Vittorio; Ferlicca, Daniela; Magni, Federico; Giani, Marco; Salerno, Domenico; Casati, Marco; Pesenti, Antonio

    2016-01-01

    We previously described a highly efficient extracorporeal CO2 removal technique called respiratory electrodialysis (R-ED). Respiratory electrodialysis was composed of a hemodiafilter and a membrane lung (ML) positioned along the extracorporeal blood circuit, and an electrodialysis (ED) cell positioned on the hemodiafiltrate. The ED regionally increased blood chloride concentration to convert bicarbonate to CO2 upstream the ML, thus enhancing ML CO2 extraction (VCO2ML). In this in vitro study, with an aqueous polyelectrolytic carbonated solution mimicking blood, we tested a new R-ED setup, featuring an ML positioned on the hemodiafiltrate after the ED, at increasing ED current levels (0, 2, 4, 6, and 8 A). We measured VCO2ML, electrolytes concentrations, and pH of the extracorporeal circuit. Raising levels of ED-current increased chloride concentration from 107.5 ± 1.6 to 114.6 ± 1.3 mEq/L (0 vs. 8 A, p < 0.001) and reduced pH from 7.48 ± 0.01 to 6.51 ± 0.05 (0 vs. 8 A, p < 0.001) of the hemodiafiltrate entering the ML. Subsequently, VCO2ML increased from 27 ± 1.7 to 91.3 ± 1.5 ml/min (0 vs. 8 A, p < 0.001). Respiratory electrodialysis is efficient in increasing VCO2ML of an extracorporeal circuit featuring an ML perfused by hemodiafiltrate. During R-ED, the VCO2ML can be significantly enhanced by increasing the ED current. PMID:26692403

  6. Modeling the operation of a three-stage fluidized bed reactor for removing CO2 from flue gases.

    PubMed

    Mohanty, C R; Meikap, B C

    2011-03-15

    A bubbling counter-current multistage fluidized bed reactor for the sorption of carbon dioxide (CO(2)) by hydrated lime particles was simulated employing a two-phase model, with the bubble phase assumed to be in plug flow, and the emulsion phase in plug flow and perfectly mixed flow conditions. To meet prescribed permissible limit to emit carbon dioxide from industrial flue gases, dry scrubbing of CO(2) was realized. For the evaluation, a pilot plant was built, on which also the removal efficiency of CO(2) was verified at different solids flow rates. The model results were compared with experimental data in terms of percentage removal efficiency of carbon dioxide. The comparison showed that the EGPF model agreed well with the experimental data satisfactorily. The removal efficiency was observed to be mainly influenced by flow rates of adsorbent and CO(2) concentration. PMID:21255918

  7. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Obland, M. D.; Liu, Z.; Browell, E. V.; Chen, S.; Kooi, S. A.; Fan, T. F.

    2015-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and Atmospheric Carbon and Transport (ACT) - America airborne investigation are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are being investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the mission science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of intervening optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the Earth's surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These techniques are used in a new data processing architecture to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.

  8. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  9. [Technique for removal of anaesthetic vapours from the operation theater. CO2-concentrations in the Jackson Rees system using a removal unit (author's transl)].

    PubMed

    Kroesen, G; Sankofi, P; Geir, W; Menardi, G

    1978-04-01

    The Jackson Rees system was used for short operations in 50 infants combined with or without a system for removal of excess anaesthetic vapours developed by the authors. The CO2-concentration in the system was measured directly before the upper airway of the patients. No statistically significance difference between the CO2-concentration with or without the use of the removal system. A variable power of suction up to 61/min is thought to be sufficient and harmless. PMID:655369

  10. Enhanced Extracorporeal CO2 Removal by Regional Blood Acidification: Effect of Infusion of Three Metabolizable Acids.

    PubMed

    Scaravilli, Vittorio; Kreyer, Stefan; Linden, Katharina; Belenkiy, Slava; Pesenti, Antonio; Zanella, Alberto; Cancio, Leopoldo C; Batchinsky, Andriy I

    2015-01-01

    Acidification of blood entering a membrane lung (ML) with lactic acid enhances CO2 removal (VCO2ML). We compared the effects of infusion of acetic, citric, and lactic acids on VCO2ML. Three sheep were connected to a custom-made circuit, consisting of a Hemolung device (Alung Technologies, Pittsburgh, PA), a hemofilter (NxStage, NxStage Medical, Lawrence, MA), and a peristaltic pump recirculating ultrafiltrate before the ML. Blood flow was set at 250 ml/min, gas flow (GF) at 10 L/min, and recirculating ultrafiltrate flow at 100 ml/min. Acetic (4.4 M), citric (0.4 M), or lactic (4.4 M) acids were infused in the ultrafiltrate at 1.5 mEq/min, for 2 hours each, in randomized fashion. VCO2ML was measured by the Hemolung built-in capnometer. Circuit and arterial blood gas samples were collected at baseline and during acid infusion. Hemodynamics and ventilation were monitored. Acetic, citric, or lactic acids similarly enhanced VCO2ML (+35%), from 37.4 ± 3.6 to 50.6 ± 7.4, 49.8 ± 5.6, and 52.0 ± 8.2 ml/min, respectively. Acids similarly decreased pH, increased pCO2, and reduced HCO3 of the post-acid extracorporeal blood sample. No significant effects on arterial gas values, ventilation, or hemodynamics were observed. In conclusion, it is possible to increase VCO2ML by more than one-third using any one of the three metabolizable acids. PMID:26273934

  11. Optimising reef-scale CO2 removal by seaweed to buffer ocean acidification

    NASA Astrophysics Data System (ADS)

    Mongin, Mathieu; Baird, Mark E.; Hadley, Scott; Lenton, Andrew

    2016-03-01

    The equilibration of rising atmospheric {{CO}}2 with the ocean is lowering {pH} in tropical waters by about 0.01 every decade. Coral reefs and the ecosystems they support are regarded as one of the most vulnerable ecosystems to ocean acidification, threatening their long-term viability. In response to this threat, different strategies for buffering the impact of ocean acidification have been proposed. As the {pH} experienced by individual corals on a natural reef system depends on many processes over different time scales, the efficacy of these buffering strategies remains largely unknown. Here we assess the feasibility and potential efficacy of a reef-scale (a few kilometers) carbon removal strategy, through the addition of seaweed (fleshy multicellular algae) farms within the Great Barrier Reef at the Heron Island reef. First, using diagnostic time-dependent age tracers in a hydrodynamic model, we determine the optimal location and size of the seaweed farm. Secondly, we analytically calculate the optimal density of the seaweed and harvesting strategy, finding, for the seaweed growth parameters used, a biomass of 42 g N m-2 with a harvesting rate of up 3.2 g N m-2 d-1 maximises the carbon sequestration and removal. Numerical experiments show that an optimally located 1.9 km2 farm and optimally harvested seaweed (removing biomass above 42 g N m-2 every 7 d) increased aragonite saturation by 0.1 over 24 km2 of the Heron Island reef. Thus, the most effective seaweed farm can only delay the impacts of global ocean acidification at the reef scale by 7-21 years, depending on future global carbon emissions. Our results highlight that only a kilometer-scale farm can partially mitigate global ocean acidification for a particular reef.

  12. Reproducing Experiment in the Shock-Induced Removal of CO2 From the Atmosphere on the Early Mars

    NASA Astrophysics Data System (ADS)

    Ikeda, K.; Isobe, H.

    2005-12-01

    The evolution of the Mars is one of the most important problems on the environmental issues of terrestrial planets. The early Martian atmosphere was formed by degassing and it consisted thick CO2. Most of the CO2 must have been removed from the early Martian atmosphere in order to change to the present thin atmosphere. Heavy bombardment of planetesimals had been one of the important high energy processes on the primitive Mars. In this study, we experiment to reproduce the reaction between the early Martian atmosphere and the minerals in the high temperature condition caused by the shock-induced heating and discuss its effect of CO2 removal from the atmosphere. Reaction experiments were carried out with CO2 or CO2- H2O fluid at the pressure of 100MPa or 50MPa. A range of the temperature is 200-650°C and run duration is 7 days. Starting materials was the mixture of olivine, orthopyroxene, diopside, and plagioclase represented the main mineral phases of the early Mars. After the experiment, the reacted CO2 was weighed by CO2 mass remained in the experimental capsule. CO2 reactivity increased with decreasing temperature. If removed CO2 fixed as carbonate minerals in the run products, abundance of the carbonate minerals may be as much as 10% of the run products. Presence of H2O has no remarkable effect on CO2 reactivity. A Martian meteorite, ALH84001 includes approximately 1% of carbonate. Large-scale impact on the Martian surface brought shock-induced heating up to several hundred degrees C at several kilometers in depth. Accessory carbonate minerals in Martian rocks may be formed by reactions of CO2 atmosphere and brecciated rocks under craters. A layer of 1% carbonate-bearing rocks with 5km in thickness at Martian surface can settle 0.5MPa of CO2 (1MPa equivalent at the terrestrial gravity) from the Martian atmosphere. Carbonate formation by the shock-induced heating may have played a significant role in the evolution of the primitive Martian atmosphere.

  13. ENHANCING THE ATOMIC-LEVEL UNDERSTANDING OF CO2 MINERAL SEQUESTRATION MECHANISMS VIA ADVANCED COMPUTATIONAL MODELING

    SciTech Connect

    A.V.G. Chizmeshya; M.J. McKelvy; G.H. Wolf; R.W. Carpenter; D.A. Gormley; J.R. Diefenbacher; R. Marzke

    2006-03-01

    significantly improved our understanding of mineral carbonation. Group members at the Albany Research Center have recently shown that carbonation of olivine and serpentine, which naturally occurs over geological time (i.e., 100,000s of years), can be accelerated to near completion in hours. Further process refinement will require a synergetic science/engineering approach that emphasizes simultaneous investigation of both thermodynamic processes and the detailed microscopic, atomic-level mechanisms that govern carbonation kinetics. Our previously funded Phase I Innovative Concepts project demonstrated the value of advanced quantum-mechanical modeling as a complementary tool in bridging important gaps in our understanding of the atomic/molecular structure and reaction mechanisms that govern CO2 mineral sequestration reaction processes for the model Mg-rich lamellar hydroxide feedstock material Mg(OH)2. In the present simulation project, improved techniques and more efficient computational schemes have allowed us to expand and augment these capabilities and explore more complex Mg-rich, lamellar hydroxide-based feedstock materials, including the serpentine-based minerals. These feedstock materials are being actively investigated due to their wide availability, and low-cost CO2 mineral sequestration potential. Cutting-edge first principles quantum chemical, computational solid-state and materials simulation methodology studies proposed herein, have been strategically integrated with our new DOE supported (ASU-Argonne National Laboratory) project to investigate the mechanisms that govern mineral feedstock heat-treatment and aqueous/fluid-phase serpentine mineral carbonation in situ. This unified, synergetic theoretical and experimental approach has provided a deeper understanding of the key reaction mechanisms than either individual approach can alone. We used ab initio techniques to significantly advance our understanding of atomic-level processes at the solid/solution interface by

  14. Advances in CO2 laser fabrication for high power fibre laser devices

    NASA Astrophysics Data System (ADS)

    Boyd, Keiron; Rees, Simon; Simakov, Nikita; Daniel, Jae M. O.; Swain, Robert; Mies, Eric; Hemming, Alexander; Clarkson, W. A.; Haub, John

    2016-03-01

    CO2 laser processing facilitates contamination free, rapid, precise and reproducible fabrication of devices for high power fibre laser applications. We present recent progress in fibre end-face preparation and cladding surface modification techniques. We demonstrate a fine feature CO2 laser process that yields topography significantly smaller than that achieved with typical mechanical cleaving processes. We also investigate the side processing of optical fibres for the fabrication of all-glass cladding light strippers and demonstrate extremely efficient cladding mode removal. We apply both techniques to fibres with complex designs containing multiple layers of doped and un-doped silica as well as shaped and circularly symmetric structures. Finally, we discuss the challenges and approaches to working with various fibre and glass-types.

  15. Development of a Next-Generation Membrane-Integrated Adsorption Processor for CO2 Removal and Compression for Closed-Loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila; LeVan, Douglas

    2002-01-01

    The current CO2 removal technology of NASA is very energy intensive and contains many non-optimized subsystems. This paper discusses the concept of a next-generation, membrane integrated, adsorption processor for CO2 removal nd compression in closed-loop air revitalization systems. This processor will use many times less power than NASA's current CO2 removal technology and will be capable of maintaining a lower CO2 concentration in the cabin than that can be achieved by the existing CO2 removal systems. The compact, consolidated, configuration of gas dryer, CO2 separator, and CO2 compressor will allow continuous recycling of humid air in the cabin and supply of compressed CO2 to the reduction unit for oxygen recovery. The device has potential application to the International Space Station and future, long duration, transit, and planetary missions.

  16. Computer Simulation and Modeling of CO2 Removal Systems for Exploration 2013-2014

    NASA Technical Reports Server (NTRS)

    Coker, R.; Knox, J.; Gomez, C.

    2015-01-01

    The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project and the follow-on Life Support Systems (LSS) project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper will describes the testing and 1-D modeling of the combined water desiccant and carbon dioxide sorbent subsystems of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development.

  17. Forest soil CO2 fluxes as a function of understory removal and N-fixing species addition.

    PubMed

    Li, Haifang; Fu, Shenglei; Zhao, Hongting; Xia, Hanping

    2011-01-01

    We report on the effects of forest management practices of understory removal and N-fixing species (Cassia alata) addition on soil CO2 fluxes in an Eucalyptus urophylla plantation (EUp), Acacia crassicarpa plantation (ACp), 10-species-mixed plantation (Tp), and 30-species-mixed plantation (THp) using the static chamber method in southern China. Four forest management treatments, including (1) understory removal (UR); (2) C. alata addition (CA); (3) understory removal and replacement with C. alata (UR+CA); and (4) control without any disturbances (CK), were applied in the above four forest plantations with three replications for each treatment. The results showed that soil CO2 fluxes rates remained at a high level during the rainy season (from April to September), followed by a rapid decrease after October reaching a minimum in February. Soil CO2 fluxes were significantly higher (P < 0.01) in EUp (132.6 mg/(m2 x hr)) and ACp (139.8 mg/(m2 x hr)) than in Tp (94.0 mg/(m2 x hr)) and THp (102.9 mg/(m2 x hr)). Soil CO2 fluxes in UR and CA were significantly higher (P < 0.01) among the four treatments, with values of 105.7, 120.4, 133.6 and 112.2 mg/(m2 x hr) for UR+CA, UR, CA and CK, respectively. Soil CO2 fluxes were positively correlated with soil temperature (P < 0.01), soil moisture (P < 0.01), NO3(-)-N (P < 0.05), and litterfall (P < 0.01), indicating that all these factors might be important controlling variables for soil CO2 fluxes. This study sheds some light on our understanding of soil CO2 flux dynamics in forest plantations under various management practices. PMID:22066218

  18. Metabolic Heat Regenerated Temperature Swing Adsorption for CO2 and Heat Removal/Rejection in a Martian PLSS

    NASA Technical Reports Server (NTRS)

    Iacomini, Christine; Powers, Aaron; Bower, Chad; Straub-Lopez, Kathrine; Anderson, Grant; MacCallum, Taber; Paul, Heather L.

    2007-01-01

    Two of the fundamental problems facing the development of a Portable Life Support System (PLSS) for use on Mars, are (i) heat rejection (because traditional technologies use sublimation of water, which wastes a scarce resource and contaminates the premises), and (ii) rejection of carbon dioxide (CO2) in an environment with a CO2 partial pressure (ppCO2) of 0.4-0.9 kPa. Patent-pending Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed to address both these challenges. The technology utilizes an adsorbent that when cooled with liquid CO2 to near sublimation temperatures (195K) removes metabolically-produced CO2 in the ventilation loop. Once fully loaded, the adsorbent is then warmed externally by the ventilation loop (300K), rejecting the captured CO2 to Mars ambient. Two beds are used to provide a continuous cycle of CO2 removal/rejection as well as facilitate heat exchange out of the ventilation loop. Any cryogenic fluid can be used in the application; however, since CO2 is readily available on Mars and can be easily produced and stored on the Martian surface, the solution is rather elegant and less complicated when employing liquid CO2. As some metabolic heat will need to be rejected anyway, finding a practical use for metabolic heat is also an overall benefit to the PLSS. To investigate the feasibility of the technology, a series of experiments were conducted which lead to the selection and partial characterization of an appropriate adsorbent. The Molsiv Adsorbents 13X 8x12 (also known as NaX zeolite) successfully removed CO2 from a simulated ventilation loop at the prescribed temperature swing anticipated during PLSS operating conditions on Mars using a cryogenic fluid. Thermal conductivity of the adsorbent was also measured to eventually aid in a demonstrator design of the technology. These results provide no show stoppers to the development of MTSA technology and allow its development to focus on other design

  19. Rational molecular design of PEOlated ladder-structured polysilsesquioxane membranes for high performance CO2 removal.

    PubMed

    Park, Sunghwan; Lee, Albert S; Do, Yu Seong; Hwang, Seung Sang; Lee, Young Moo; Lee, Jung-Hyun; Lee, Jong Suk

    2015-10-25

    Poly(methoxy(polyethyleneoxy)propyl-co-methacryloxypropyl) silsesquioxane membranes with different copolymer ratios were successfully fabricated via UV-induced crosslinking with mechanical stability. By selectively introducing polyethylene oxide (PEO) groups covalently bound to the ladder-structured polysilsesquioxane, we effectively suppressed the PEO crystallization, allowing for excellent CO2/H2 and CO2/N2 separation under single as well as mixed gas conditions. PMID:26340230

  20. Removal of adhesives and coatings on iron artifacts using pulsed TEA CO2 and Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Koh, Yangsook; Sarady, Istvan

    2001-10-01

    Selective and precise removal of surface coatings and contaminants can be achieved using lasers with a suitable wavelength. In this study pulsed TEA CO2- and Nd:YAG- lasers have been used to remove old adhesive and coatings from iron artifacts. This laser cleaning technique can enable extremely precise removal of old coating layers without damaging the underlying metal. Cleaning test on different samples using an Nd:YAG-laser with wavelengths of 1,064 nm, 532 nm and a TEA CO2-laser with 10,600 nm have been carried out. Trial sample were treated with different kinds of adhesive and coatings used in metal conservation and then cleaned using the three lasers. The results were compared with a conventional technique, micro blasting. Comparison of the laser cleaned surfaces was performed by optical microscopy and Raman-spectroscopy. The comparative study showed that the best results were achieved with the TEA CO2 laser, with the coatings being removed entirely without damage to the substrate. The original surface of the substrate was preserved and any re-deposited particles could be removed easily using a scalpel or brush after the laser radiation treatment.

  1. A review on optimization production and upgrading biogas through CO2 removal using various techniques.

    PubMed

    Andriani, Dian; Wresta, Arini; Atmaja, Tinton Dwi; Saepudin, Aep

    2014-02-01

    Biogas from anaerobic digestion of organic materials is a renewable energy resource that consists mainly of CH4 and CO2. Trace components that are often present in biogas are water vapor, hydrogen sulfide, siloxanes, hydrocarbons, ammonia, oxygen, carbon monoxide, and nitrogen. Considering the biogas is a clean and renewable form of energy that could well substitute the conventional source of energy (fossil fuels), the optimization of this type of energy becomes substantial. Various optimization techniques in biogas production process had been developed, including pretreatment, biotechnological approaches, co-digestion as well as the use of serial digester. For some application, the certain purity degree of biogas is needed. The presence of CO2 and other trace components in biogas could affect engine performance adversely. Reducing CO2 content will significantly upgrade the quality of biogas and enhancing the calorific value. Upgrading is generally performed in order to meet the standards for use as vehicle fuel or for injection in the natural gas grid. Different methods for biogas upgrading are used. They differ in functioning, the necessary quality conditions of the incoming gas, and the efficiency. Biogas can be purified from CO2 using pressure swing adsorption, membrane separation, physical or chemical CO2 absorption. This paper reviews the various techniques, which could be used to optimize the biogas production as well as to upgrade the biogas quality. PMID:24293277

  2. Removing traffic emissions from CO2 time series measured at a tall tower using mobile measurements and transport modeling

    NASA Astrophysics Data System (ADS)

    Schmidt, Andres; Rella, Chris W.; Göckede, Mathias; Hanson, Chad; Yang, Zhenlin; Law, Beverly E.

    2014-11-01

    In recent years, measurements of atmospheric carbon dioxide with high precision and accuracy have become increasingly important for climate change research, in particular to inform terrestrial biosphere models. Anthropogenic carbon dioxide emissions from fossil fuel burning have long been recognized to contribute a significant portion of the carbon dioxide in the atmosphere. Here, we present an approach to remove the traffic related carbon dioxide emissions from mole fractions measured at a tall tower by using the corresponding carbon monoxide measurements in combination with footprint analyses and transport modeling. This technique improves the suitability of the CO2 data to be used in inverse modeling approaches of atmosphere-biosphere exchange that do not account for non-biotic portions of CO2. In our study region in Oregon, road traffic emissions are the biggest source of anthropogenic carbon dioxide and carbon monoxide. A three-day mobile campaign covering 1700 km of roads in northwestern Oregon was performed during summer of 2012 using a laser-based Cavity Ring-Down Spectrometer. The mobile measurements incorporated different roads including main highways, urban streets, and back-roads, largely within the typical footprint of a tall CO/CO2 observation tower in Oregon's Willamette Valley. For the first time, traffic related CO:CO2 emission ratios were measured directly at the sources during an on-road campaign under a variety of different driving conditions. An average emission ratio of 7.43 (±1.80) ppb CO per ppm CO2 was obtained for the study region and applied to separate the traffic related portion of CO2 from the mole fraction time series. The road traffic related portion of the CO2 mole fractions measured at the tower site reached maximum values ranging from 9.8 to 12 ppm, depending on the height above the surface, during summer 2012.

  3. Technological advances in CO2 conversion electro-biorefinery: A step toward commercialization.

    PubMed

    ElMekawy, Ahmed; Hegab, Hanaa M; Mohanakrishna, Gunda; Elbaz, Ashraf F; Bulut, Metin; Pant, Deepak

    2016-09-01

    The global atmospheric warming due to increased emissions of carbon dioxide (CO2) has attracted great attention in the last two decades. Although different CO2 capture and storage platforms have been proposed, the utilization of captured CO2 from industrial plants is progressively prevalent strategy due to concerns about the safety of terrestrial and aquatic CO2 storage. Two utilization forms were proposed, direct utilization of CO2 and conversion of CO2 to chemicals and energy products. The latter strategy includes the bioelectrochemical techniques in which electricity can be used as an energy source for the microbial catalytic production of fuels and other organic products from CO2. This approach is a potential technique in which CO2 emissions are not only reduced, but it also produce more value-added products. This review article highlights the different methodologies for the bioelectrochemical utilization of CO2, with distinctive focus on the potential opportunities for the commercialization of these techniques. PMID:27020396

  4. "Supergreen" Renewables: Integration of Mineral Weathering Into Renewable Energy Production for Air CO2 Removal and Storage as Ocean Alkalinity

    NASA Astrophysics Data System (ADS)

    Rau, G. H.; Carroll, S.; Ren, Z. J.

    2015-12-01

    Excess planetary CO2 and accompanying ocean acidification are naturally mitigated on geologic time scales via mineral weathering. Here, CO2 acidifies the hydrosphere, which then slowly reacts with silicate and carbonate minerals to produce dissolved bicarbonates that are ultimately delivered to the ocean. This alkalinity not only provides long-term sequestration of the excess atmospheric carbon, but it also chemically counters the effects of ocean acidification by stabilizing or raising pH and carbonate saturation state, thus helping rebalance ocean chemistry and preserving marine ecosystems. Recent research has demonstrated ways of greatly accelerating this process by its integration into energy systems. Specifically, it has been shown (1) that some 80% of the CO2 in a waste gas stream can be spontaneously converted to stable, seawater mineral bicarbonate in the presence of a common carbonate mineral - limestone. This can allow removal of CO2 from biomass combustion and bio-energy production while generating beneficial ocean alkalinity, providing a potentially cheaper and more environmentally friendly negative-CO2-emissions alternative to BECCS. It has also been demonstrated that strong acids anodically produced in a standard saline water electrolysis cell in the formation of H2 can be reacted with carbonate or silicate minerals to generate strong base solutions. These solutions are highly absorptive of air CO2, converting it to mineral bicarbonate in solution. When such electrochemical cells are powered by non-fossil energy (e.g. electricity from wind, solar, tidal, biomass, geothermal, etc. energy sources), the system generates H2 that is strongly CO2-emissions-negative, while producing beneficial marine alkalinity (2-4). The preceding systems therefore point the way toward renewable energy production that, when tightly coupled to geochemical mitigation of CO2 and formation of natural ocean "antacids", forms a high capacity, negative-CO2-emissions, "supergreen

  5. Possible Responsibility of Silicone Materials for Degradation of the CO2 Removal System in the International Space Station

    NASA Technical Reports Server (NTRS)

    Baeza, Mario; Sharma, Hemant; Borrok, David; Ren, Mingua; Pannell, Keith

    2011-01-01

    From data concerning the degradation of the CO2 removal system in the International Space Station (ISS) two important features were apparent: (1) The atmosphere within the International Space Station (ISS) contained many organic compounds including alcohols, halocarbons, aldehydes, esters, and ketones, inter alia. Various cyclosiloxanes Dn, hexamethylcyclotrisiloxane (D3) and its higher homologs (D4) and (D5) are also present presumably due to offgassing. (2) Screens within the zeolite-containing canisters, used for the removal of CO2, exhibited partial clogging due to zeolitic fragments (dust) along with "sticky" residues, that in toto significantly reduced the efficiency of the CO2 removal process. Samples of the ISS fresh zeolite, used zeolite, filter clogging zeolite particles and residual polymeric materials were examined using, inter alia, NMR, EM and HRSEM. These data were compared to equivalent samples obtained prior and subsequent to Dn polymerization experiments performed in our laboratories using the clean ISS zeolite samples as catalyst. Polysiloxane materials produced were essentially equivalent in the two cases and the EM images demonstrate a remarkable similarity between the ISS filter zeolite samples and the post-polymerization zeolite material from our experiments. In this regard even the changes in the Al/Si ratio from the virgin zeolite material to the filter samples and the post-polymerization laboratory samples samples is noteworthy. This research was supported by a contract from the Boeing Company

  6. Oxy-fuel Combustion and Integrated Pollutant Removal as Retrofit Technologies for Removing CO2 from Coal Fired Power Plants

    SciTech Connect

    Ochs, T.L.; Oryshchyn, D.B.; Summers, C.A.; Gerdemann, S.J.

    2001-01-01

    One third of the US installed capacity is coal-fired, producing 49.7% of net electric generation in 20051. Any approach to curbing CO2 production must consider the installed capacity and provide a mechanism for preserving this resource while meeting CO2 reduction goals. One promising approach to both new generation and retrofit is oxy-fuel combustion. Using oxygen instead of air as the oxidizer in a boiler provides a concentrated CO2 combustion product for processing into a sequestration-ready fluid.... Post-combustion carbon capture and oxy-fuel combustion paired with a compression capture technology such as IPR are both candidates for retrofitting pc combustion plants to meet carbon emission limits. This paper will focus on oxy-fuel combustion as applied to existing coal power plants.

  7. [Advances in research on CO2 concentrating mechanism of green algae].

    PubMed

    Xia, Jianrong; Gao, Kunshan

    2002-11-01

    Unicellular green algae plays a key role in freshwater ecosystem, which possesses a CO2 concentrating mechanism that can increase the level of CO2 at the active site of ribulose bisphosphate carboxylase-oxygenase (Rubisco) by actively transporting inorganic carbon when adapted to low CO2 concentration. The mechanism results in an increase in photosynthetic rate, and a decrease in photorespiration. This mechanism and its environmental regulation such as light, temperature, CO2 concentration and nutrient are reviewed in this paper to enhance further studies on response of phytoplankton to elevated atmospheric CO2 concentration in China. PMID:12625019

  8. Development of a Low-Power CO2 Removal and Compression System for Closed-Loop Air Revitalization in Future Spacecraft

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Rosen, Micha; Affleck, David; LeVan, M. Douglas; Moate, Joe R.

    2005-01-01

    The current CO2 removal technology of NASA is very energy intensive and contains many non-optimized subsystems. This paper discusses the design and prototype development of a two-stage CO2 removal and compression system that will utilize much less power than NASA s current CO2 removal technology. This integrated system contains a Nafion membrane followed by a residual water adsorber that performs the function of the desiccant beds in the four-bed molecular sieve (4BMS) system of the International Space Station (ISS). The membrane and the water adsorber are followed by a two-stage CO2 removal and compression subsystem that satisfies the operations of the CO2 adsorbent beds of the 4BMS aid the interface compressor for the Sabatier reactor connection. The two-stage compressor will utilize the principles of temperature-swing adsorption (TSA) compression technology for CO2 removal and compression. The similarities in operation and cycle times of the CO2 removal (first stage) and compression (second stage) operations will allow thermal coupling of the processes to maximize the efficiency of the system. In addition to the low-power advantage, this processor will maintain a lower CO2 concentration in the cabin than that can be achieved by the existing CO2 removal systems. The compact, consolidated, configuration of membrane gas dryer and CO2 separator and compressor will allow continuous recycling of humid air in the cabin and supply of compressed CO2 to the reduction unit for oxygen recovery. The device has potential application to the International Space Station and future, long duration, transit, and planetary missions.

  9. Development of a Prototype Algal Reactor for Removing CO2 from Cabin Air

    NASA Technical Reports Server (NTRS)

    Patel, Vrajen; Monje, Oscar

    2013-01-01

    Controlling carbon dioxide in spacecraft cabin air may be accomplished using algal photobioreactors (PBRs). The purpose of this project was to evaluate the use of a commercial microcontroller, the Arduino Mega 2560, for measuring key photioreactor variables: dissolved oxygen, pH, temperature, light, and carbon dioxide. The Arduino platform is an opensource physical computing platform composed of a compact microcontroller board and a C++/C computer language (Arduino 1.0.5). The functionality of the Arduino platform can be expanded by the use of numerous add-ons or 'shields'. The Arduino Mega 2560 was equipped with the following shields: datalogger, BNC shield for reading pH sensor, a Mega Moto shield for controlling CO2 addition, as well as multiple sensors. The dissolved oxygen (DO) probe was calibrated using a nitrogen bubbling technique and the pH probe was calibrated via an Omega pH simulator. The PBR was constructed using a 2 L beaker, a 66 L box for addition of CO2, a micro porous membrane, a diaphragm pump, four 25 watt light bulbs, a MasterFiex speed controller, and a fan. The algae (wild type Synechocystis PCC6803) was grown in an aerated flask until the algae was dense enough to used in the main reactor. After the algae was grown, it was transferred to the 2 L beaker where CO2 consumption and O2 production was measured using the microcontroller sensor suite. The data was recorded via the datalogger and transferred to a computer for analysis.

  10. Iron fertilisation and century-scale effects of open ocean dissolution of olivine in a simulated CO2 removal experiment

    NASA Astrophysics Data System (ADS)

    Hauck, Judith; Köhler, Peter; Wolf-Gladrow, Dieter; Völker, Christoph

    2016-02-01

    Carbon dioxide removal (CDR) approaches are efforts to reduce the atmospheric CO2 concentration. Here we use a marine carbon cycle model to investigate the effects of one CDR technique: the open ocean dissolution of the iron-containing mineral olivine. We analyse the maximum CDR potential of an annual dissolution of 3 Pg olivine during the 21st century and focus on the role of the micro-nutrient iron for the biological carbon pump. Distributing the products of olivine dissolution (bicarbonate, silicic acid, iron) uniformly in the global surface ocean has a maximum CDR potential of 0.57 gC/g-olivine mainly due to the alkalinisation of the ocean, with a significant contribution from the fertilisation of phytoplankton with silicic acid and iron. The part of the CDR caused by ocean fertilisation is not permanent, while the CO2 sequestered by alkalinisation would be stored in the ocean as long as alkalinity is not removed from the system. For high CO2 emission scenarios the CDR potential due to the alkalinity input becomes more efficient over time with increasing ocean acidification. The alkalinity-induced CDR potential scales linearly with the amount of olivine, while the iron-induced CDR saturates at 113 PgC per century (on average ˜ 1.1 PgC yr-1) for an iron input rate of 2.3 Tg Fe yr-1 (1% of the iron contained in 3 Pg olivine). The additional iron-related CO2 uptake occurs in the Southern Ocean and in the iron-limited regions of the Pacific. Effects of this approach on surface ocean pH are small (\\lt 0.01).

  11. An environmentally friendly approach for contaminants removal using supercritical CO2 for remanufacturing industry

    NASA Astrophysics Data System (ADS)

    Liu, Wei-wei; Zhang, Bin; Li, Yan-zeng; He, Yan-ming; Zhang, Hong-chao

    2014-02-01

    The cleaning technology plays an important role in product quality during the remanufacturing processing. Remanufacturing cleaning is among the most demanding steps and is a particularly essential process in remanufacturing. In the meantime, remanufacturing cleaning is often the main source of pollution in the remanufacturing process. During the past decades, supercritical fluids due to their unique properties gained an increasingly attention in many cleaning industries. The supercritical carbon dioxide as a novel cleaning technology for remanufacturing cleaning process is discussed, which can realize cleaning and drying at the same time, promoting a greener solution for remanufacturing industry. In this paper, we reported the experimental results of the effect of some operating parameters. The CO2 at different operating pressures, temperatures and residence time was made to continuously flowing over this. The decontamination rate and amount were monitored and compared. The obtained results show that the optimum parameters were operating temperature and pressure of 60 °C and 20 MPa respectively, to have the highest decontamination rate value at the investigated experimental conditions. In additon, the success of supercritical CO2 cleaning effectively promotes the research for next-generation cleaning methods for remanufacturing industry.

  12. Efficient Removal of Co2+ from Aqueous Solution by 3-Aminopropyltriethoxysilane Functionalized Montmorillonite with Enhanced Adsorption Capacity.

    PubMed

    Huang, Zhujian; Wu, Pingxiao; Gong, Beini; Dai, Yaping; Chiang, Pen-Chi; Lai, Xiaolin; Yu, Guangwei

    2016-01-01

    To achieve a satisfactory removal efficiency of heavy metal ions from wastewater, silane-functionalized montmorillonite with abundant ligand-binding sites (-NH2) was synthesized as an efficient adsorbent. Ca-montmorillonite (Ca-Mt) was functionalized with 3-aminopropyl triethoxysilane (APTES) to obtain the APTES-Mt products (APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt, APTES4.0CEC-Mt) with enhanced adsorption capacity for Co2+. The physico-chemical properties of the synthesized adsorbents were characterized by spectroscopic and microscopic methods, and the results demonstrated that APTES was successfully intercalated into the gallery of Ca-Mt or grafted onto the surface of Ca-Mt through Si-O bonds. The effect of solution pH, ionic strength, temperature, initial concentrations and contact time on adsorption of Co2+ by APTES-Mt was evaluated. The results indicated that adsorption of Co2+ onto Ca-Mt, APTES1.0CEC-Mt and APTES2.0CEC-Mt can be considered to be a pseudo-second-order process. In contrast, adsorption of Co2+ onto APTES3.0CEC-Mt and APTES4.0CEC-Mt fitted well with the pseudo-first-order kinetics. The adsorption isotherms were described by the Langmuir model, and the maximum adsorption capacities of APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt and APTES4.0CEC-Mt were 25.1, 33.8, 61.6, and 61.9 mg·g-1, respectively. In addition, reaction temperature had no impact on the adsorption capacity, while both the pH and ionic strength significantly affected the adsorption process. A synergistic effect of ion exchange and coordination interactions on adsorption was observed, thereby leading to a significant enhancement of Co2+ adsorption by the composites. Thus, APTES-Mt could be a cost-effective and environmental-friendly adsorbent, with potential for treating Co2+-rich wastewater. PMID:27448094

  13. Efficient Removal of Co2+ from Aqueous Solution by 3-Aminopropyltriethoxysilane Functionalized Montmorillonite with Enhanced Adsorption Capacity

    PubMed Central

    Huang, Zhujian; Gong, Beini; Dai, Yaping; Chiang, Pen-Chi; Lai, Xiaolin; Yu, Guangwei

    2016-01-01

    To achieve a satisfactory removal efficiency of heavy metal ions from wastewater, silane-functionalized montmorillonite with abundant ligand-binding sites (-NH2) was synthesized as an efficient adsorbent. Ca-montmorillonite (Ca-Mt) was functionalized with 3-aminopropyl triethoxysilane (APTES) to obtain the APTES-Mt products (APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt, APTES4.0CEC-Mt) with enhanced adsorption capacity for Co2+. The physico-chemical properties of the synthesized adsorbents were characterized by spectroscopic and microscopic methods, and the results demonstrated that APTES was successfully intercalated into the gallery of Ca-Mt or grafted onto the surface of Ca-Mt through Si-O bonds. The effect of solution pH, ionic strength, temperature, initial concentrations and contact time on adsorption of Co2+ by APTES-Mt was evaluated. The results indicated that adsorption of Co2+ onto Ca-Mt, APTES1.0CEC-Mt and APTES2.0CEC-Mt can be considered to be a pseudo-second-order process. In contrast, adsorption of Co2+ onto APTES3.0CEC-Mt and APTES4.0CEC-Mt fitted well with the pseudo-first-order kinetics. The adsorption isotherms were described by the Langmuir model, and the maximum adsorption capacities of APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt and APTES4.0CEC-Mt were 25.1, 33.8, 61.6, and 61.9 mg·g-1, respectively. In addition, reaction temperature had no impact on the adsorption capacity, while both the pH and ionic strength significantly affected the adsorption process. A synergistic effect of ion exchange and coordination interactions on adsorption was observed, thereby leading to a significant enhancement of Co2+ adsorption by the composites. Thus, APTES-Mt could be a cost-effective and environmental-friendly adsorbent, with potential for treating Co2+-rich wastewater. PMID:27448094

  14. Advanced 2-micron Solid-state Laser for Wind and CO2 Lidar Applications

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo C.; Petros, Mulugeta; Bai, Yingxin; Petzar, Paul J.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.

    2006-01-01

    Significant advancements in the 2-micron laser development have been made recently. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. The world record 2-micron laser energy is demonstrated with an oscillator and two amplifiers system. It generates more than one joule per pulse energy with excellent beam quality. Based on the successful demonstration of a fully conductive cooled oscillator by using heat pipe technology, an improved fully conductively cooled 2-micron amplifier was designed, manufactured and integrated. It virtually eliminates the running coolant to increase the overall system efficiency and reliability. In addition to technology development and demonstration, a compact and engineering hardened 2-micron laser is under development. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser is expected to be integrated to a lidar system and take field measurements. The recent achievements push forward the readiness of such a laser system for space lidar applications. This paper will review the developments of the state-of-the-art solid-state 2-micron laser.

  15. Carbonation of Artificial Silicate Minerals in Soils: Passive Removal of Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Washbourne, C.; Renforth, P.; Manning, D. A.

    2010-12-01

    Sequestration of CO2 in global soils is a widely recognised phenomenon, which is amenable to an environmental engineering approach. It is proposed that the use of direct soil engineering, promoting CO2 sequestration by accelerating the activity of reactive mineral substrates, has the potential to harness the significant carbon turnover of the global pedologic system (75 x 10^15 gC/yr [1]) [2][3][4]. Estimates of C capture potential through this process are 100-1000 MTa-1. This study focuses on the ambient carbonation of high-Ca residues as agents of mineral CCS. A synergy of contemporary field observations is presented, alongside data acquired from laboratory testing (acid digestion, optical petrography, SEM, IRMS) of carbonated material recovered from urban brown-field and former industrial sites in north east England. It is demonstrated that urban soils may accumulate ~30 kg/m2 (300 T/ha) of carbon over 10 years as inorganic calcium carbonate, approximately twice the typical organic C content of rural soils, ~17.5 kg/m2 in the UK. Stable isotope data (δ13C and δ18O) confirm that over 90% of the carbon is derived from the atmosphere. Economic and mechanical constraints on experimental performance in industrial batch reactor settings have strongly influenced the contemporary view on the efficacy of mineral CCS for large-scale environmental application [5][6][7]. Effective, low-energy field-scale implementation of mineral CCS through soil engineering would counter many of these concerns. Proof of principle for carbon capture efficacy of artificial silicates in soil engineering has been demonstrated [4]; proof of field scale feasibility will be demonstrated though continuing empirical field observation, engineered field cell construction and laboratory investigation. [1] Schlesinger, W. H., et al. (2000), Biogeochemistry, Vol. 48: 7-20. [2] Lal, R. (2003), Critical Reviews in Plant Sciences, 22, pp. 151-184. [3] Manning, D. A. C., (2008), Mineralogical Magazine

  16. Effect of CO2 Flow Rate on the Pinang Frond-Based Activated Carbon for Methylene Blue Removal

    PubMed Central

    Herawan, S. G.; Ahmad, M. A.; Putra, A.; Yusof, A. A.

    2013-01-01

    Activated carbons are regularly used the treatment of dye wastewater. They can be produced from various organics materials having high level of carbon content. In this study, a novel Pinang frond activated carbon (PFAC) was produced at various CO2 flow rates in the range of 150–600 mL/min at activation temperature of 800°C for 3 hours. The optimum PFAC sample is found on CO2 flow rate of 300 mL/min which gives the highest BET surface area and pore volume of 958 m2/g and 0.5469 mL/g, respectively. This sample shows well-developed pore structure with high fixed carbon content of 79.74%. The removal of methylene blue (MB) by 95.8% for initial MB concentration of 50 mg/L and 72.6% for 500 mg/L is achieved via this sample. The PFAC is thus identified to be a suitable adsorbent for removing MB from aqueous solution. PMID:24027443

  17. Recent advances in developing COS as a tracer of Biosphere-atmosphere exchange of CO2

    NASA Astrophysics Data System (ADS)

    Asaf, D.; Stimler, K.; Yakir, D.

    2012-04-01

    Potential use of COS as tracer of CO2 flux into vegetation, based on its co-diffusion with CO2 into leaves without outflux, stimulated research on COS-CO2 interactions. Atmospheric measurements by NOAA in recent years, across a global latitudinal transect, indicated a ratio of the seasonal drawdowns in COS and CO2 (normalized to their respective ambient concentrations) of about 6. We carried out leaf-scale gas exchange measurements of COS and CO2 in 22 plant species of deciduous, evergreen trees, grasses, and shrubs, under a range of light intensities and ambient COS concentrations (using mid IR laser spectroscopy). A narrow range in the normalized ratio of the net uptake rates of COS and CO2 (termed leaf relative uptake; LRU) was observed with a mean value of 1.61±0.26. These results reflect the dominance of stomatal conductance over both COS and CO2 uptake, imposing a relatively constant ratio between the two fluxes, except under low light conditions when CO2, but not COS, metabolism is light limited. A relatively constant ratio under common ambient conditions will facilitate the application of COS as a tracer of gross photosynthesis from leaf to global scales. We also report first eddy flux measurements of COS/CO2 at the ecosystem scales. Preliminarily results indicate a ratio of the COS flux, Fcos, to net ecosystem CO2 exchange, NEE, of 3-5 (termed ecosystem relative uptake; ERU). Combining measurements of COS and CO2 and the new information on their ratios at different scales should permit the direct estimation of gross CO2 uptake, GPP, by land ecosystems according to: GPP=NEE*ERU/LRU. In addition, we show that COS effect on stomatal conductance may require a special attention. Increasing COS concentrations between 250 and 2800 pmol mol-1 (enveloping atmospheric levels) stimulate stomatal conductance. It seems likely that the stomata are responding to H2S produced in the leaves from COS.

  18. Carbon Dioxide Adsorption on a 5A Zeolite Designed for CO2 Removal in Spacecraft Cabins

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Finn, John E.

    1998-01-01

    Carbon dioxide adsorption data were obtained for a 5A zeolite manufactured by AlliedSignal Inc. (Des Plaines, Illinois). The material is planned for use in the Carbon Dioxide Removal Assembly (CDRA) for U.S. elements of the International Space Station. The family of adsorption isotherms covers a temperature range of O to 250 C, and a pressure range of 0.001 to 800 torr. Coefficients of the Toth equation are fit to the data. Isosteric heats of adsorption are derived from the equilibrium loading data.

  19. 40 CFR 86.1866-12 - CO2 credits for advanced technology vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1866-12 CO2 credits...

  20. Application of Advanced Very High Resolution Radiometer vegetation index to study atmosphere-biosphere exchange of CO2

    NASA Technical Reports Server (NTRS)

    Fung, I. Y.; Tucker, C. J.; Prentice, K. C.

    1987-01-01

    Normalized difference vegetation indices derived from radiances measured by the Advanced Very High Resolution Radiometer were used to prescribe the phasing of terrestrial photosynthesis. The satellite data were combined with field data on soil respiration and a global map of net primary productivity to obtain the seasonal exchange of CO2 between the atmosphere and the terrestrial biosphere. The monthly fluxes of CO2 thus obtained were employed as source/sink functions in a global three-dimensional atmospheric tracer transport model to simulate the annual oscillations of CO2 in the atmosphere. The results demonstrate that satellite data of high spatial and temporal resolution can be used to provide quantitative information about seasonal and longer-term variations of photosynthetic activity on a global scale.

  1. Advanced concepts for high-power, short-pulse CO2 laser development

    NASA Astrophysics Data System (ADS)

    Gordon, Daniel F.; Hasson, Victor; von Bergmann, Hubertus; Chen, Yu-hsin; Schmitt-Sody, A.; Penano, Joseph R.

    2016-06-01

    Ultra-short pulse lasers are dominated by solid-state technology, which typically operates in the near-infrared. Efforts to extend this technology to longer wavelengths are meeting with some success, but the trend remains that longer wavelengths correlate with greatly reduced power. The carbon dioxide (CO2) laser is capable of delivering high energy, 10 micron wavelength pulses, but the gain structure makes operating in the ultra-short pulse regime difficult. The Naval Research Laboratory and Air Force Research Laboratory are developing a novel CO2 laser designed to deliver ~1 Joule, ~1 picosecond pulses, from a compact gain volume (~2x2x80 cm). The design is based on injection seeding an unstable resonator, in order to achieve high energy extraction efficiency, and to take advantage of power broadening. The unstable resonator is seeded by a solid state front end, pumped by a custom built titanium sapphire laser matched to the CO2 laser bandwidth. In order to access a broader range of mid infrared wavelengths using CO2 lasers, one must consider nonlinear frequency multiplication, which is non-trivial due to the bandwidth of the 10 micron radiation.

  2. Advanced virtual energy simulation training and research: IGCC with CO2 capture power plant

    SciTech Connect

    Zitney, S.; Liese, E.; Mahapatra, P.; Bhattacharyya, D.; Provost, G.

    2011-01-01

    In this presentation, we highlight the deployment of a real-time dynamic simulator of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture at the Department of Energy's (DOE) National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTARTM) Center. The Center was established as part of the DOE's accelerating initiative to advance new clean coal technology for power generation. IGCC systems are an attractive technology option, generating low-cost electricity by converting coal and/or other fuels into a clean synthesis gas mixture in a process that is efficient and environmentally superior to conventional power plants. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Fueled with coal, petroleum coke, and/or biomass, the gasification island of the simulated IGCC plant consists of two oxygen-blown, downward-fired, entrained-flow, slagging gasifiers with radiant syngas coolers and two-stage sour shift reactors, followed by a dual-stage acid gas removal process for CO{sub 2} capture. The combined cycle island consists of two F-class gas turbines, steam turbine, and a heat recovery steam generator with three-pressure levels. The dynamic simulator can be used for normal base-load operation, as well as plant start-up and shut down. The real-time dynamic simulator also responds satisfactorily to process disturbances, feedstock blending and switchovers, fluctuations in ambient conditions, and power demand load shedding. In addition, the full-scope simulator handles a wide range of abnormal situations, including equipment malfunctions and failures, together with changes initiated through actions from plant field operators. By providing a comprehensive IGCC operator training system, the AVESTAR Center is poised to develop a

  3. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  4. Selective removal of demineralized enamel using a CO2 laser coupled with near-IR reflectance imaging

    NASA Astrophysics Data System (ADS)

    Tom, Henry; Chan, Kenneth H.; Saltiel, Daniel; Fried, Daniel

    2015-02-01

    Detection and diagnosis of early dental caries lesions can be difficult due to variable tooth coloration, staining of the teeth and poor contrast between sound and demineralized enamel. These problems can be overcome by using near-infrared (NIR) imaging. Previous studies have demonstrated that lasers can be integrated with NIR imaging devices, allowing image-guided ablation. The aim of this study was to demonstrate that NIR light at 1500 - 1700 nm can be used to guide a 9.3-μm CO2 laser for the selective ablation of early demineralization on tooth occlusal surfaces. The occlusal surfaces of ten sound human molars were used in this in-vitro study. Shallow simulated caries lesions of varying depth and position were produced on tooth occlusal surfaces using a demineralization solution. Sequential NIR reflectance images at 1500 - 1700 nm were used to guide the laser for selective ablation of the lesion areas. Digital microscopy and polarization sensitive optical coherence tomography (PS-OCT) were used to assess the selectivity of removal. This study demonstrates that high contrast NIR reflectance images can be used for the image-guided laser ablation of early demineralization from tooth occlusal surfaces.

  5. CONCEPTUAL DESIGN AND ECONOMICS OF THE ADVANCED CO2 HYBRID POWER CYCLE

    SciTech Connect

    A. Nehrozoglu

    2004-12-01

    Research has been conducted under United States Department of Energy Contract DEFC26-02NT41621 to analyze the feasibility of a new type of coal-fired plant for electric power generation. This new type of plant, called the Advanced CO{sub 2} Hybrid Power Plant, offers the promise of efficiencies nearing 36 percent, while concentrating CO{sub 2} for 100% sequestration. Other pollutants, such as SO{sub 2} and NOx, are sequestered along with the CO{sub 2} yielding a zero emissions coal plant. The CO{sub 2} Hybrid is a gas turbine-steam turbine combined cycle plant that uses CO{sub 2} as its working fluid to facilitate carbon sequestration. The key components of the plant are a cryogenic air separation unit (ASU), a pressurized circulating fluidized bed gasifier, a CO{sub 2} powered gas turbine, a circulating fluidized bed boiler, and a super-critical pressure steam turbine. The gasifier generates a syngas that fuels the gas turbine and a char residue that, together with coal, fuels a CFB boiler to power the supercritical pressure steam turbine. Both the gasifier and the CFB boiler use a mix of ASU oxygen and recycled boiler flue gas as their oxidant. The resulting CFB boiler flue gas is essentially a mixture of oxygen, carbon dioxide and water. Cooling the CFB flue gas to 80 deg. F condenses most of the moisture and leaves a CO{sub 2} rich stream containing 3%v oxygen. Approximately 30% of this flue gas stream is further cooled, dried, and compressed for pipeline transport to the sequestration site (the small amount of oxygen in this stream is released and recycled to the system when the CO{sub 2} is condensed after final compression and cooling). The remaining 70% of the flue gas stream is mixed with oxygen from the ASU and is ducted to the gas turbine compressor inlet. As a result, the gas turbine compresses a mixture of carbon dioxide (ca. 64%v) and oxygen (ca. 32.5%v) rather than air. This carbon dioxide rich mixture then becomes the gas turbine working fluid and

  6. Functionalized Polysilsesquioxane-Based Hybrid Silica Solid Amine Sorbents for the Regenerative Removal of CO2 from Air.

    PubMed

    Abhilash, Kochukunju Adisser Saraladevi; Deepthi, Thomas; Sadhana, Retnakumari Amma; Benny, K George

    2015-08-19

    Functionalized polysilsesquioxane-based hybrid silica materials are presented as solid amine sorbents for direct CO2 capture from air. The sorbent was synthesized from amine and vinyl functionalized alkoxysilanes by a simple, energy efficient, and cost-effective co-condensation method. The material, containing bound amine functionalities, was found to have a selective CO2 capturing capacity of 1.68 mmol/g from atmospheric air with an adsorption half time of 50 min. This material also showed a maximum adsorption capacity of 2.28 mmol/g in pure CO2 and 1.92 mmol/g in 10% CO2. Desorption started at a temperature as low as 60 °C, and complete desorption occurred at 80 °C. The sorbent exhibited high recycling ability, and 100 cycles of adsorption/desorption were demonstrated in pure CO2 and 50 cycles in ambient air without any loss in efficiency. PMID:26196267

  7. Advances in Fluid Dynamics of Subsurface Flow of Groundwater, Hydrocarbons, and CO2

    NASA Astrophysics Data System (ADS)

    Weyer, K. U.

    2015-12-01

    In the past, the chemical methods of contaminant hydrogeology have dominated much of hydrogeological thinking. In their wake, understanding the physics of subsurface fluid flow and its application to practice and science seemingly has played a secondary role and it often has been replaced by numerical modelling only. Building an understanding of the actual physics of subsurface flow beyond numerical modelling, however, is a confusing experience exposing one to conflicting statements from the sides of engineers, hydrogeologists, and, for a decade or more, by the followers of free convection and density-driven flow. Within the physics of subsurface flow a number of questions arise, such as: Is water really incompressible as assumed in engineering hydraulics? How does buoyancy work? Are underground buoyancy forces generally directed vertically upwards or downwards? What is the consequential difference between hydrostatic and hydrodynamic conditions? What are the force fields causing subsurface flow for water, hydrocarbons and CO2? Is fluid flow really driven by pressure gradients as assumed in reservoir engineering? What is the effect of geothermal gradients on subsurface flow? Do convection cells and free convection exist on-shore? How does variable density flow work? Can today's numerical codes adequately determine variable density flow? Does saltwater really sink to the bottom of geologic systems due to its higher density? Aquitards create confining conditions and thereby confine fluid movements to aquifers? Does more water flow in aquifers than aquitards? The presentation will shed light on the maze of conflicting statements issued within engineering hydraulics and groundwater dynamics. It will also present a field case and its numerical modelling of variable density flow at a major industrial landfill site. The presentation will thereby foster the understanding of the correct physics involved and how this physics can be beneficially applied to practical cases

  8. Combining Experiments and Simulation of Gas Absorption for Teaching Mass Transfer Fundamentals: Removing CO2 from Air Using Water and NaOH

    ERIC Educational Resources Information Center

    Clark, William M.; Jackson, Yaminah Z.; Morin, Michael T.; Ferraro, Giacomo P.

    2011-01-01

    Laboratory experiments and computer models for studying the mass transfer process of removing CO2 from air using water or dilute NaOH solution as absorbent are presented. Models tie experiment to theory and give a visual representation of concentration profiles and also illustrate the two-film theory and the relative importance of various…

  9. Investigation of the liquid/vapor composition of compressed liquid CO2 with N2 and O2 in integrated pollutant removal systems for coal combustion

    SciTech Connect

    Oryshchyn, Danylo B.; Ochs, Thomas L.; Summers, Cathy A.; Penner, Larry R.; Gerdemann, Stephen J.

    2005-01-01

    Accurate prediction of the processes in Integrated Pollutant Removal (IPR) using compression and condensation of coal combustion products requires an understanding of the liquid/vapor ternary CO2/O2/N2 system. At conditions close to the critical point of CO2 the existing equations of state deviate from the sparse measured results available in the literature. Building on existing data and procedures, the USDOE/Albany Research Center has designed an apparatus for examining compositions in this region. The design of the apparatus and planned initial experiments are presented.

  10. Advanced Oxyfuel Boilers and Process Heaters for Cost Effective CO2 Capture and Sequestration

    SciTech Connect

    Max Christie; Rick Victor; Bart van Hassel; Nagendra Nagabushana; Juan Li; Joseph Corpus; Jamie Wilson

    2007-03-31

    The purpose of the advanced boilers and process heaters program is to assess the feasibility of integrating Oxygen Transport Membranes (OTM) into combustion processes for cost effective CO{sub 2} capture and sequestration. Introducing CO{sub 2} capture into traditional combustion processes can be expensive, and the pursuit of alternative methods, like the advanced boiler/process heater system, may yield a simple and cost effective solution. In order to assess the integration of an advanced boiler/process heater process, this program addressed the following tasks: Task 1--Conceptual Design; Task 2--Laboratory Scale Evaluation; Task 3--OTM Development; Task 4--Economic Evaluation and Commercialization Planning; and Task 5--Program Management. This Final report documents and summarizes all of the work performed for the DOE award DE-FC26-01NT41147 during the period from January 2002-March 2007. This report outlines accomplishments for the following tasks: conceptual design and economic analysis, oxygen transport membrane (OTM) development, laboratory scale evaluations, and program management.

  11. New CO2 laser waveguide systems: advances in surgery of tracheal stenosis

    NASA Astrophysics Data System (ADS)

    Stasche, Norbert; Bernecker, Frank; Hoermann, Karl

    1996-01-01

    The carbon dioxide laser is a well established tool in the surgical treatment of laryngeal and tracheal stenosis. Usually the laser beam is applied by a microscope/micromanipulator device. Different types of rigid laryngoscopes and bronchoscopes provide access to nearly every area of larynx, trachea and main bronchi. In order to be treated with this equipment the target tissue has to be in a straight optical axis with the laser beam output at the micromanipulator. We report about one patient who presented with severe dyspnea due to granulation tissue directly below his left vocal cord. He was suffering from tracheomalacia for several years and was successfully treated by tracheostomy and a Montgomery's silicone T-tube as a stent. Then granulation tissue blocked the upper orifice of the Montgomery's T-tube. First removal by a carbon dioxide laser beam through the laryngoscope would have required sacrificing his intact left vocal cord. We removed the obstructing tissue by using the ArthroLaseTM System: the carbon dioxide laser beam was conducted through a 90 degree bent rigid probe, using the tracheostomy as an access. This ArthroLaseTM System was originally designed for arthroscopic surgery. In this special case however it successfully extends the use of the carbon dioxide laser in otolaryngology.

  12. Removal of CO2 from the terrestrial atmosphere to curtail global warming: From methodology to laboratory prototype

    NASA Astrophysics Data System (ADS)

    Orton, Andrea E.

    This research has focused on the initial phase of required investigations in pursuit of a global scale methodology for reduction of CO 2 in terrestrial air for the purpose of curtailment of global warming. This methodology was initially presented by Agee, Orton, and Rogers (2013), and has provided the basis for pursuing this thesis research. The first objective of the research project was to design and build a laboratory prototype system, capable of depleting CO2 from terrestrial air at 1 bar of pressure through LN2 refrigeration. Design considerations included a 26.5L cylindrical Pyrex glass sequestration chamber, a container to hold a reservoir of LN2 and an interface between the two to allow for cooling and instrumentation ports for measurements inside the sequestration chamber. Further, consideration was given to the need for appropriate insulating material to enclose the assembled apparatus to help achieve efficient cooling and the threshold depositional temperature of 135 K. The Amy Facility in the Department of Chemistry provided critical expertise to machine the apparatus to specifications, especially the stainless steel interface plate. Research into available insulating materials resulted in the adaption of TRYMER RTM 2500 Polyisocyanurate, effective down to 90 K. The above described DAC prototype designed for CO2 sequestration accomplished two of the initial research objectives investigated: 1) conduct refrigeration experiments to achieve CO2 terrestrial deposition temperature of 135 K (uniformly) and 2) deplete CO2 from the chamber air at 1 bar of pressure, documented by appropriate measurements. It took approximately 5.5 hours for the chamber to be completely uniform in temperature of 135 K (and below) through the use of LN2 poured into the container sitting on an aluminum interface on top of the sequestration Pyrex chamber. As expected, Rayleigh-Taylor instability (more dense fluid over less dense fluid) was observed through the duration of the

  13. Photochemical Removal of SO2 and CO2 by 172 nm Xe2 and 146 nm Kr2 Excimer Lamps in N2 or Air at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Tsuji, Masaharu; Kawahara, Takashi; Kawahara, Masashi; Kamo, Naohiro; Hishinuma, Nobuyuki

    2008-12-01

    The photochemical removal of SO2 and CO2 was investigated in N2 or air using 172 nm Xe2 (50 or 300 mW/cm2) and 146 nm Kr2 (25 mW/cm2) excimer lamps and without using any expensive catalysts. After 30 min photoirradiation, 45 and 75% of SO2 (1000 ppm) were removed in N2 and air (20% O2) at 172 nm photoirradiation, respectively, whereas 39 and 8% of SO2 were removed in N2 and air at 146 nm, respectively. By using a high-power Xe2 lamp, ˜10 and ˜45% of SO2 (200 ppm) could be removed in N2 and air in a flow system, respectively. Although no photolysis of CO2 (1000 ppm) was observed at 172 nm, ˜16 and ˜8% of CO2 were converted to CO+O2 in N2 and air at 146 nm after about 10 min photoirradiation, respectively. Possible decomposition mechanisms were discussed.

  14. Removing Traffic Emissions from CO2 Time Series Measured at a Tall Tower Using on-Road Measurements and WRF-Stilt Transport Modeling

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Rella, C.; Goeckede, M.; Hanson, C. V.; Yang, Z.; Law, B. E.

    2014-12-01

    In recent years, measurements of atmospheric carbon dioxide with high precision and accuracy have become increasingly important for climate change research, in particular to inform terrestrial biosphere models. Anthropogenic carbon dioxide emissions from fossil fuel burning have long been recognized to contribute a significant portion of the carbon dioxide in the atmosphere. Here, we present an approach to remove the traffic related carbon dioxide emissions from mole fractions measured at a tall tower by using the corresponding carbon monoxide measurements in combination with footprint analyses and transport modeling. This technique improves the suitability of the CO2 data to be used in inverse modeling approaches of atmosphere-biosphere exchange that do not account for non-biotic portions of CO2. In our study region in Oregon, road traffic emissions are the biggest source of anthropogenic carbon dioxide and carbon monoxide. A three-day mobile campaign covering 1700 km of roads in northwestern Oregon was performed during summer of 2012 using a laser-based Cavity Ring Down Spectrometer. The mobile measurements incorporated different roads including main highways, urban streets, and back-roads, largely within the typical footprint of a tall CO2 observation tower in Oregon's Willamette Valley. For the first time, traffic related CO:CO2 emission ratios were measured directly at the sources during an on-road campaign under a variety of different driving conditions. An average emission ratio of 7.43 (±1.80) ppb CO per ppm CO2 was obtained for the study region and applied to separate the traffic related portion of CO2 from the mole fraction time series. The road traffic related portion of the CO2 mole fractions measured at the tower site reached maximum values from 9.8 to 12 ppm, depending on the height above the surface, during summer 2012.

  15. Recent advances in efficient long-life, eye-safe solid state and CO2 lasers for laser radar applications

    NASA Technical Reports Server (NTRS)

    Hess, R. V.; Buoncristiani, A. M.; Brockman, P.; Bair, C. H.; Schryer, D. R.; Upchurch, B. T.; Wood, G. M.

    1989-01-01

    The key problems in the development of eye-safe solid-state lasers are discussed, taking into account the energy transfer mechanisms between the complicated energy level manifolds of the Tm, Ho, Er ion dopants in hosts with decreasing crystal fields such as YAG or YLF. Optimization of energy transfer for efficient lasing through choice of dopant concentration, power density, crystal field and temperature is addressed. The tailoring of energy transfer times to provide efficient energy extraction for short pulses used in DIAL and Doppler lidar is considered. Recent advances in Pt/SnO2 oxide catalysts and other noble metal/metal oxide combinations for CO2 lasers are discussed. Emphasis is given to the dramatic effects of small quantities of H2O vapor for increasing the activity and lifetime of Pt/SnO2 catalysts and to increased lifetime operation with rare isotope (C-12)(O-18)2 lasing mixtures.

  16. Development of a Test for Evaluation of the Hydrothermal Stability of Sorbents Used in Closed-Loop CO2 Removal Systems

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Gauto, Hernando; Miller, Lee A.

    2015-01-01

    The International Space Station Carbon Dioxide Removal Assembly uses zeolite 5A molecular sieve material packed into beds for the capture of cabin CO2. The beds are cyclically heated to drive off the CO2 and restore the removal capacity. Over time, the sorbent material has been found to break down resulting in dust that restricts flow through the beds. Humidity adsorbed in the 5A zeolite when it is heated is a suspected cause of this sorbent degradation. To evaluate the impact of adsorbed water during thermal cycling, the Hydrothermal Stability Test was developed. The test configuration provides comparative side-by-side flow restriction data for two sorbent materials at specifically controlled humidity levels. While the initial focus of the testing is on 5A zeolite materials currently used on the ISS, the system will also be used to evaluate future candidate materials. This paper describes the approach, the test system, current results, and future testing.

  17. Training toward Advanced 3D Seismic Methods for CO2 Monitoring, Verification, and Accounting

    SciTech Connect

    Christopher Liner

    2012-05-31

    The objective of our work is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. We utilize data and results developed through previous DOE-funded CO{sub 2} characterization project (DE-FG26-06NT42734) at the Dickman Field of Ness County, KS. Dickman is a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontinent to Indiana and Illinois. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. In a previous DOE-funded project, geological and seismic data were integrated to create a geological property model and a flow simulation grid. We believe that sequestration of CO{sub 2} will largely occur in areas of relatively flat geology and simple near surface, similar to Dickman. The challenge is not complex geology, but development of improved, lower-cost methods for detecting natural fractures and subtle faults. Our project used numerical simulation to test methods of gathering multicomponent, full azimuth data ideal for this purpose. Our specific objectives were to apply advanced seismic methods to aide in quantifying reservoir properties and lateral continuity of CO{sub 2} sequestration targets. The purpose of the current project is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2

  18. ADVANCED OXYFUEL BOILERS AND PROCESS HEATERS FOR COST EFFECTIVE CO2 CAPTURE AND SEQUESTRATION

    SciTech Connect

    John Sirman; Leonard Switzer; Bart van Hassel

    2004-06-01

    This annual technical progress report summarizes the work accomplished during the second year of the program, January-December 2003, in the following task areas: Task 1--Conceptual Design, Task 2--Laboratory Scale Evaluations, Task 3--OTM Development, Task 4--Economic Evaluation and Commercialization Planning and Task 5--Program Management. The program has experienced significant delays due to several factors. The budget has also been significantly under spent. Based on recent technical successes and confirmation of process economics, significant future progress is expected. Concepts for integrating Oxygen Transport Membranes (OTMs) into boilers and process heaters to facilitate oxy-fuel combustion have been investigated. OTM reactor combustion testing was delayed to insufficient reliability of the earlier OTM materials. Substantial improvements to reliability have been identified and testing will recommence early in 2004. Promising OTM material compositions and OTM architectures have been identified that improve the reliability of the ceramic elements. Economic evaluation continued. Information was acquired that quantified the attractiveness of the advanced oxygen-fired boiler. CO{sub 2} capture and compression are still estimated to be much less than $10/ton CO{sub 2}.

  19. ENHANCING THE ATOMIC-LEVEL UNDERSTANDING OF CO2 MINERAL SEQUESTRATION MECHANISMS VIA ADVANCED COMPUTATIONAL MODELING

    SciTech Connect

    A.V.G. Chizmeshya

    2002-12-19

    /NETL managed National Mineral Sequestration Working Group we have already significantly improved our understanding of mineral carbonation. Group members at the Albany Research Center have recently shown that carbonation of olivine and serpentine, which naturally occurs over geological time (i.e., 100,000s of years), can be accelerated to near completion in hours. Further process refinement will require a synergetic science/engineering approach that emphasizes simultaneous investigation of both thermodynamic processes and the detailed microscopic, atomic-level mechanisms that govern carbonation kinetics. Our previously funded Phase I Innovative Concepts project demonstrated the value of advanced quantum-mechanical modeling as a complementary tool in bridging important gaps in our understanding of the atomic/molecular structure and reaction mechanisms that govern CO{sub 2} mineral sequestration reaction processes for the model Mg-rich lamellar hydroxide feedstock material Mg(OH){sub 2}. In the present simulation project, improved techniques and more efficient computational schemes have allowed us to expand and augment these capabilities and explore more complex Mg-rich, lamellar hydroxide-based feedstock materials, including the serpentine-based minerals. These feedstock materials are being actively investigated due to their wide availability, and low-cost CO{sub 2} mineral sequestration potential. Cutting-edge first principles quantum chemical, computational solid-state and materials simulation methodology studies proposed herein, have been strategically integrated with our new DOE supported (ASU-Argonne National Laboratory) project to investigate the mechanisms that govern mineral feedstock heat-treatment and aqueous/fluid-phase serpentine mineral carbonation in situ. This unified, synergetic theoretical and experimental approach will provide a deeper understanding of the key reaction mechanisms than either individual approach can alone. Ab initio techniques will also

  20. ENHANCING THE ATOMIC-LEVEL UNDERSTANDING OF CO2 MINERAL SEQUESTRATION MECHANISMS VIA ADVANCED COMPUTATIONAL MODELING

    SciTech Connect

    A.V.G. Chizmeshya

    2003-12-19

    /NETL managed National Mineral Sequestration Working Group we have already significantly improved our understanding of mineral carbonation. Group members at the Albany Research Center have recently shown that carbonation of olivine and serpentine, which naturally occurs over geological time (i.e., 100,000s of years), can be accelerated to near completion in hours. Further process refinement will require a synergetic science/engineering approach that emphasizes simultaneous investigation of both thermodynamic processes and the detailed microscopic, atomic-level mechanisms that govern carbonation kinetics. Our previously funded Phase I Innovative Concepts project demonstrated the value of advanced quantum-mechanical modeling as a complementary tool in bridging important gaps in our understanding of the atomic/molecular structure and reaction mechanisms that govern CO{sub 2} mineral sequestration reaction processes for the model Mg-rich lamellar hydroxide feedstock material Mg(OH){sub 2}. In the present simulation project, improved techniques and more efficient computational schemes have allowed us to expand and augment these capabilities and explore more complex Mg-rich, lamellar hydroxide-based feedstock materials, including the serpentine-based minerals. These feedstock materials are being actively investigated due to their wide availability, and low-cost CO{sub 2} mineral sequestration potential. Cutting-edge first principles quantum chemical, computational solid-state and materials simulation methodology studies proposed herein, have been strategically integrated with our new DOE supported (ASU-Argonne National Laboratory) project to investigate the mechanisms that govern mineral feedstock heat-treatment and aqueous/fluid-phase serpentine mineral carbonation in situ. This unified, synergetic theoretical and experimental approach will provide a deeper understanding of the key reaction mechanisms than either individual approach can alone. Ab initio techniques will also

  1. Designed polar cosolvent-modified supercritical CO2 removing caffeine from and retaining catechins in green tea powder using response surface methodology.

    PubMed

    Huang, Kuo-Jong; Wu, Jia-Jiuan; Chiu, Yung-Ho; Lai, Cheng-Yung; Chang, Chieh-Ming J

    2007-10-31

    This study examines cosolvent-modified supercritical carbon dioxide (SC-CO2) to remove caffeine from and to retain catechins in green tea powder. The response surface method was adopted to determine the optimal operation conditions in terms of the extraction efficiencies and concentration factors of caffeine and catechins during the extractions. When SC-CO2 was used at 333 K and 300 bar, 91.5% of the caffeine was removed and 80.8% of catechins were retained in the tea: 3600 g of carbon dioxide was used in the extraction of 4 g of tea soaked with 1 g of water. Under the same extraction conditions, 10 g of water was added to <800 g of carbon dioxide in an extraction that completely removed caffeine (that is, the caffeine extraction efficiency was 100%). The optimal result as predicted by three-factor response surface methodology and supported by experimental data was that in 1.5 h of extraction, 640 g of carbon dioxide at 323 K and 275 bar with the addition of 6 g of water extracted 71.9% of the caffeine while leaving 67.8% of the catechins in 8 g of tea. Experimental data indicated that supercritical carbon dioxide decaffeination increased the concentrations of caffeine in the SC-CO2 extracts at 353 K. PMID:17914876

  2. Iron availability, nitrate uptake, and exportable new production in the subarctic Pacific. [phytoplankton population growth support and atmospheric CO2 removal

    NASA Technical Reports Server (NTRS)

    Banse, Karl

    1991-01-01

    This paper presents a critique of experimental data and papers by Martin et al. (1989, 1990), who suggested that the phytoplankton growth is iron-limited and that, small additions of iron to large subarctic ocean areas might be a way of removing significant amounts of atmospheric CO2 by increasing phytoplancton growth. Data are presented to show that, in the summer of 1987, the phytoplankton assemblage as a whole was not iron limited, as measured by the bulk removal of nitrate or by the increase of chlorophyll. It is suggested that grazing normally prevents the phytoplankton from reaching concentrations that reduce the iron (and nitrate) to levels that depress division rates drastically.

  3. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    SciTech Connect

    Wier, Don R. Chimanhusky, John S.; Czirr, Kirk L.; Hallenbeck, Larry; Gerard, Matthew G.; Dollens, Kim B.; Owen, Rex; Gaddis, Maurice; Moshell, M.K.

    2002-11-18

    The purpose of this project was to economically design an optimum carbon dioxide (CO2) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO2 horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields.

  4. Simultaneous nutrient removal, optimised CO2 mitigation and biofuel feedstock production by Chlorogonium sp. grown in secondary treated non-sterile saline sewage effluent.

    PubMed

    Lee, Kwan Yin; Ng, Tsz Wai; Li, Guiying; An, Taicheng; Kwan, Ka Ki; Chan, King Ming; Huang, Guocheng; Yip, Ho Yin; Wong, Po Keung

    2015-10-30

    The phycoremediation process has great potential for effectively addressing environmental pollution. To explore the capabilities of simultaneous algal nutrient removal, CO2 mitigation and biofuel feedstock production from spent water resources, a Chlorogonium sp. isolated from a tilapia pond in Hong Kong was grown in non-sterile saline sewage effluent for a bioremediation study. With high removal efficiencies of NH3-N (88.35±14.39%), NO3(-)-N (85.39±14.96%), TN (93.34±6.47%) and PO4(3-)-P (91.80±17.44%), Chlorogonium sp. achieved a CO2 consumption rate of 58.96 mg L(-1) d(-1), which was optimised by the response surface methodology. Under optimised conditions, the lipid content of the algal biomass reached 24.26±2.67%. Overall, the isolated Chlorogonium sp. showed promising potential in the simultaneous purification of saline sewage effluent in terms of tertiary treatment and CO2 sequestration while delivering feedstock for potential biofuel production in a waste-recycling manner. PMID:25967099

  5. Image-guided removal of occlusal caries lesions with a λ= 9.3-μm CO2 laser using near-IR transillumination

    NASA Astrophysics Data System (ADS)

    Chung, Leon C.; Tom, Henry; Chan, Kenneth H.; Simon, Jacob C.; Fried, Daniel; Darling, Cynthia L.

    2015-02-01

    Previous studies have shown that near-IR transillumination is well suited for imaging deep occlusal lesions. The purpose of this study was to determine if near-IR images can be used to guide a CO2 laser for the selective removal of natural occlusal lesions on extracted teeth. Near-IR occlusal transillumination images of extracted human teeth with natural occlusal caries lesions were acquired using an InGaAs camera and near-IR light at wavelengths from 1290 to 1470-nm from a filtered tungsten halogen source. A CO2 laser operating at 9.3-μm with a pulse duration of 10-15-μs and a pulse repetition rate of 100-300-Hz was used for caries removal. Optical Coherence tomography was used to confirm lesion presence and serial scans were used to assess selective removal. Teeth were also sectioned for histological examination using polarized light microscopy. This study suggests that near-infrared transillumination is a promising method for the image guided laser ablation of occlusal caries lesions but the use of serial near-IR transillumination imaging for monitoring lesion removal was limited.

  6. Sorbent Structural Impacts Due to Humidity on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Watson, David; Knox, James C.; West, Phillip; Stanley, Christine M.; Bush, Richard

    2015-01-01

    The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The CO2 removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort encompasses structural stability testing of existing and emerging sorbents. Testing will be performed on dry sorbents and sorbents that have been conditioned to three humidity levels. This paper describes the sorbent structural stability screening efforts in support of the LSS Project within the AES Program.

  7. No More HF: Teflon-Assisted Ultrafast Removal of Silica to Generate High-Surface-Area Mesostructured Carbon for Enhanced CO2 Capture and Supercapacitor Performance.

    PubMed

    Singh, Dheeraj Kumar; Krishna, Katla Sai; Harish, Srinivasan; Sampath, Srinivasan; Eswaramoorthy, Muthusamy

    2016-02-01

    An innovative technique to obtain high-surface-area mesostructured carbon (2545 m(2)  g(-1)) with significant microporosity uses Teflon as the silica template removal agent. This method not only shortens synthesis time by combining silica removal and carbonization in a single step, but also assists in ultrafast removal of the template (in 10 min) with complete elimination of toxic HF usage. The obtained carbon material (JNC-1) displays excellent CO2 capture ability (ca. 26.2 wt % at 0 °C under 0.88 bar CO2 pressure), which is twice that of CMK-3 obtained by the HF etching method (13.0 wt %). JNC-1 demonstrated higher H2 adsorption capacity (2.8 wt %) compared to CMK-3 (1.2 wt %) at -196 °C under 1.0 bar H2 pressure. The bimodal pore architecture of JNC-1 led to superior supercapacitor performance, with a specific capacitance of 292 F g(-1) and 182 F g(-1) at a drain rate of 1 A g(-1) and 50 A g(-1) , respectively, in 1 m H2 SO4 compared to CMK-3 and activated carbon. PMID:26836336

  8. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales, Class III

    SciTech Connect

    Perri, Pasquale R.; Cooney, John; Fong, Bill; Julander, Dale; Marasigan, Aleks; Morea, Mike; Piceno, Deborah; Stone, Bill; Emanuele, Mark; Sheffield, Jon; Wells, Jeff; Westbrook, Bill; Karnes, Karl; Pearson, Matt; Heisler, Stuart

    2000-04-24

    The primary objective of this project was to conduct advanced reservoir characterization and modeling studies in the Antelope Shale of the Bureau Vista Hills Field. Work was subdivided into two phases or budget periods. The first phase of the project focused on a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work would then be used to evaluate how the reservoir would respond to enhanced oil recovery (EOR) processes such as of CO2 flooding. The second phase of the project would be to implement and evaluate a CO2 in the Buena Vista Hills Field. A successful project would demonstrate the economic viability and widespread applicability of CO2 flooding in siliceous shale reservoirs of the San Joaquin Valley.

  9. Collisional Removal of OH (X (sup 2)Pi, nu=7) by O2, N2, CO2, and N2O

    NASA Technical Reports Server (NTRS)

    Knutsen, Karen; Dyer, Mark J.; Copeland, Richard A.

    1996-01-01

    Collisional removal rate constants for the OH (X 2PI, nu = 7) radical are measured for the colliders O2, CO2, and N2O, and an upper limit is established for N2. OH(nu = 4) molecules, generated in a microwave discharge flow cell by the reaction of hydrogen atoms with ozone, are excited to v = 7 by the output of a pulsed infrared laser via direct vibrational overtone excitation. The temporal evolution of the P = 7 population is probed as a function of the collider gas partial pressure by a time-delayed pulsed ultraviolet laser. Fluorescence from the B 21 + state is detected in the visible spectral region.

  10. Modeling the CO2 and N2O Emissions From Stover Removal for Biofuel Production From Continuous Corn Production in Iowa

    NASA Astrophysics Data System (ADS)

    Paustian, K.; Killian, K.; Brenner, J.

    2003-12-01

    Corn stover, an agricultural residue, can be used as feedstock for near term bioethanol production and is available today at levels that can significantly impact energy supply. We evaluated the environmental impact of such a large-scale change in agricultural practices on green house gas production, soil erosion and soil carbon using the Century model. Estimates of soil C changes and GHG emissions were performed for the 99 counties in Iowa where previous environmental, management and erosion data was available. We employed climate, soil and historical management databases from a separate USDA-funded project as input to Century. RUSLE estimates of the residue requirements for acceptable soil loss rates under continuous corn agriculture were available from a previous study done Dr. Richard Nelson (Enersol Resources). Two mulch tillage and a no-till systems, where erosion estimates were available, were used as the basis for the simulations. Century simulations of these systems were run under a variety of stover removal rates. For each soil type within each county the model was run for 15 years (1980-1995) under continuous corn with convention tillage, and full residue return. Model simulation of crop yields and residue production were then calibrated to match those used by the Polysys model team at Oak Ridge and the simulation was repeated with the addition of the three corn tillage regimes, and several residue removal rates. County-average soil C changes (and net CO2 emissions) were calculated as area-weighted averages of the individual soil types in each county. For this study, we have utilized the IPCC approach to estimate annual N2O emissions. At low or zero residue removal rates, county-averaged soil C stocks were predicted to increase (i.e. net CO2 emissions are negative). Where the allowable residue removal rates (based on erosion tolerance) for mulch-tillage are on the order of 40-50% or more, the reduced input of C is such that the soils no longer sequester C

  11. Rapid and Selective Removal of Composite From Tooth Surfaces With a 9.3 μm CO2 Laser Using Spectral Feedback

    PubMed Central

    Chan, Kenneth H.; Hirasuna, Krista; Fried, Daniel

    2015-01-01

    Objective Dental composite restorative materials are color matched to the tooth and are difficult to remove by mechanical means without excessive removal or damage to peripheral enamel and dentin. Lasers are ideally suited for selective ablation to minimize healthy tissue loss when replacing existing restorations, sealants, or removing composite adhesives such as residual composite left after debonding orthodontic brackets. Methods In this study, a carbon dioxide laser operating at 9.3-μm with a pulse duration of 10–20-microsecond and a pulse repetition rate of ~200 Hz was integrated with a galvanometer based scanner and used to selectively remove composite from tooth surfaces. Spectra of the plume emission were acquired after each laser pulse and used to differentiate between the ablation of dental enamel or composite. Microthermocouples were used to monitor the temperature rise in the pulp chamber during composite removal. The composite was placed on tooth buccal and occlusal surfaces and the carbon dioxide laser beam was scanned across the surface to selectively remove the composite without excessive damage to the underlying sound enamel. The residual composite and the damage to the underlying enamel was evaluated using optical microscopy. Results The laser was able to rapidly remove composite from tooth buccal and occlusal surfaces with minimal damage to the underlying sound enamel and without excessive heat accumulation in the tooth. Conclusion This study demonstrated that composite can be selectively removed from tooth surfaces at clinically relevant rates using a CO2 laser operating at 9.3-μm with high pulse repetition rates with minimal heat deposition and damage to the underlying enamel. PMID:21956630

  12. Improving pollutants removal by microalgae Chlorella PY-ZU1 with 15% CO2 from undiluted anaerobic digestion effluent of food wastes with ozonation pretreatment.

    PubMed

    Cheng, Jun; Ye, Qing; Xu, Jiao; Yang, Zongbo; Zhou, Junhu; Cen, Kefa

    2016-09-01

    In order to purify various pollutants (3108mg COD/L, 2120mg NH3-N/L) in the undiluted anaerobic digestion effluent of food wastes (UADEFW), ozonation pretreatment was employed to improve pollutants removal by microalgae mutant Chlorella PY-ZU1 with 15% CO2. Ozonation pretreatment broke CC bonds and benzene rings of refractory organics such as unsaturated fatty acids and phenols in UADEFW and degraded them into low-molecular-weight organics such as methanoic acid and methanal, but excessive ozone induced the accumulation of toxic by-products. The microalgal growth rate and biomass yield markedly increased to the peaks of 456mg/L/d and 4.3g/L, respectively, when the UADEFW was pretreated with 2mg-O3/mg-C of ozone. The removal efficiencies of NH3-N, TP and COD reached 99%, 99% and 68%, respectively. The lipid and carbohydrate contents of microalgal biomass increased because of the relative lack of nitrogen when microalgae was cultured with 15% CO2 to purify the UADEFW with ozonation pretreatment. PMID:27243605

  13. NiCo2O4/N-doped graphene as an advanced electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Li, Huiyong; Wang, Haiyan; He, Kejian; Wang, Shuangyin; Tang, Yougen; Chen, Jiajie

    2015-04-01

    Developing low-cost catalyst for high-performance oxygen reduction reaction (ORR) is highly desirable. Herein, NiCo2O4/N-doped reduced graphene oxide (NiCo2O4/N-rGO) hybrid is proposed as a high-performance catalyst for ORR for the first time. The well-formed NiCo2O4/N-rGO hybrid is studied by cyclic voltammetry (CV) curves and linear-sweep voltammetry (LSV) performed on the rotating-ring-disk-electrode (RDE) in comparison with N-rGO-free NiCo2O4 and the bare N-rGO. Due to the synergistic effect, the NiCo2O4/N-rGO hybrid exhibits significant improvement of catalytic performance with an onset potential of -0.12 V, which mainly favors a direct four electron pathway in ORR process, close to the behavior of commercial carbon-supported Pt. Also, the benefits of N-incorporation are investigated by comparing NiCo2O4/N-rGO with NiCo2O4/rGO, where higher cathodic currents, much more positive half-wave potential and more electron transfer numbers are observed for the N-doping one, which should be ascribed to the new highly efficient active sites created by N incorporation into graphene. The NiCo2O4/N-rGO hybrid could be used as a promising catalyst for high power metal/air battery.

  14. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect

    Morea, Michael F.

    1999-11-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: (1) Reservoir Matrix and Fluid Characterization; (2) Fracture characterization; (3) reservoir Modeling and Simulation; and (4) CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  15. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect

    Morea, Michael F.

    1999-11-08

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: (1) Reservoir Matrix and Fluid Characterization; (2) Fracture characterization; (3) reservoir Modeling and Simulation; and (4) CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  16. Chemical structures of coal lithotypes before and after CO2 adsorption as investigated by advanced solid-state 13C nuclear magnetic resonance spectroscopy

    USGS Publications Warehouse

    Cao, X.; Mastalerz, Maria; Chappell, M.A.; Miller, L.F.; Li, Y.; Mao, J.

    2011-01-01

    Four lithotypes (vitrain, bright clarain, clarain, and fusain) of a high volatile bituminous Springfield Coal from the Illinois Basin were characterized using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The NMR techniques included quantitative direct polarization/magic angle spinning (DP/MAS), cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CHn selection, and recoupled C-H long-range dipolar dephasing techniques. The lithotypes that experienced high-pressure CO2 adsorption isotherm analysis were also analyzed to determine possible changes in coal structure as a result of CO2 saturation at high pressure and subsequent evacuation. The main carbon functionalities present in original vitrain, bright clarain, clarain and fusain were aromatic carbons (65.9%-86.1%), nonpolar alkyl groups (9.0%-28.9%), and aromatic C-O carbons (4.1%-9.5%). Among these lithotypes, aromaticity increased in the order of clarain, bright clarain, vitrain, and fusain, whereas the fraction of alkyl carbons decreased in the same order. Fusain was distinct from other three lithotypes in respect to its highest aromatic composition (86.1%) and remarkably small fraction of alkyl carbons (11.0%). The aromatic cluster size in fusain was larger than that in bright clarain. The lithotypes studied responded differently to high pressure CO2 saturation. After exposure to high pressure CO2, vitrain and fusain showed a decrease in aromaticity but an increase in the fraction of alkyl carbons, whereas bright clarain and clarain displayed an increase in aromaticity but a decrease in the fraction of alkyl carbons. Aromatic fused-rings were larger for bright clarain but smaller for fusain in the post-CO2 adsorption samples compared to the original lithotypes. These observations suggested chemical CO2-coal interactions at high pressure and the selectivity of lithotypes in response to CO2 adsorption. ?? 2011 Elsevier B.V.

  17. Development of Carbon Dioxide Removal Systems for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Trinh, Diep; Gostowski, Rudy; King, Eric; Mattox, Emily M.; Watson, David; Thomas, John

    2012-01-01

    "NASA's Advanced Exploration Systems (AES) program is pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit" (NASA 2012). These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must not only blast out of earth's gravity well as during the Apollo moon missions, but also launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach, which is then implemented in a full-scale integrated atmosphere revitalization test. This paper describes the carbon dioxide (CO2) removal hardware design and sorbent screening and characterization effort in support of the Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project within the AES program. A companion paper discusses development of atmosphere revitalization models and simulations for this project.

  18. Minimization of steam requirements and enhancement of water-gas shift reaction with warm gas temperature CO2 removal

    DOEpatents

    Siriwardane, Ranjani V; Fisher, II, James C

    2013-12-31

    The disclosure utilizes a hydroxide sorbent for humidification and CO.sub.2 removal from a gaseous stream comprised of CO and CO.sub.2 prior to entry into a water-gas-shift reactor, in order to decrease CO.sub.2 concentration and increase H.sub.2O concentration and shift the water-gas shift reaction toward the forward reaction products CO.sub.2 and H.sub.2. The hydroxide sorbent may be utilized for absorbtion of CO.sub.2 exiting the water-gas shift reactor, producing an enriched H.sub.2 stream. The disclosure further provides for regeneration of the hydroxide sorbent at temperature approximating water-gas shift conditions, and for utilizing H.sub.2O product liberated as a result of the CO.sub.2 absorption.

  19. Technical and Energy Performance of an Advanced, Aqueous Ammonia-Based CO2 Capture Technology for a 500 MW Coal-Fired Power Station.

    PubMed

    Li, Kangkang; Yu, Hai; Feron, Paul; Tade, Moses; Wardhaugh, Leigh

    2015-08-18

    Using a rate-based model, we assessed the technical feasibility and energy performance of an advanced aqueous-ammonia-based postcombustion capture process integrated with a coal-fired power station. The capture process consists of three identical process trains in parallel, each containing a CO2 capture unit, an NH3 recycling unit, a water separation unit, and a CO2 compressor. A sensitivity study of important parameters, such as NH3 concentration, lean CO2 loading, and stripper pressure, was performed to minimize the energy consumption involved in the CO2 capture process. Process modifications of the rich-split process and the interheating process were investigated to further reduce the solvent regeneration energy. The integrated capture system was then evaluated in terms of the mass balance and the energy consumption of each unit. The results show that our advanced ammonia process is technically feasible and energy-competitive, with a low net power-plant efficiency penalty of 7.7%. PMID:26208135

  20. Advanced Reservoir Characterization and Evaluation of CO2 Gravity Drainage in the Naturally Fractured Spraberry Trend Area, Class III

    SciTech Connect

    Knight, Bill; Schechter, David S.

    2002-07-26

    The goal of this project was to assess the economic feasibility of CO2 flooding the naturally fractured Spraberry Trend Area in west Texas. This objective was accomplished through research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This provides results of the final year of the six-year project for each of the four areas.

  1. Advanced Reservoir Characterization and Evaluation of CO2 Gravity Drainage in the Naturally Fractured Spraberry Trend Area

    SciTech Connect

    McDonald, Paul; Schechter, David S.

    1999-11-01

    The overall goal of this project was to assess the economic feasibility of CO2 flooding the naturally fractured Spraberry Trend Area in West Texas. This objective was accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, (3) analytical and numerical simulation of Spraberry reservoirs, and, (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. Additionally, a ten (10) acre field demonstration pilot project is part of this project. This report discusses the activity, during the third calendar quarter (July through September) of 1998 (fourth quarter of the projects fiscal year).

  2. Synthesis and application of a new carboxylated cellulose derivative. Part I: Removal of Co(2+), Cu(2+) and Ni(2+) from monocomponent spiked aqueous solution.

    PubMed

    Teodoro, Filipe Simões; Ramos, Stela Nhandeyara do Carmo; Elias, Megg Madonyk Cota; Mageste, Aparecida Barbosa; Ferreira, Gabriel Max Dias; da Silva, Luis Henrique Mendes; Gil, Laurent Frédéric; Gurgel, Leandro Vinícius Alves

    2016-12-01

    A new carboxylated cellulose derivative (CTA) was prepared from the esterification of cellulose with 1,2,4-Benzenetricarboxylic anhydride. CTA was characterized by percent weight gain (pwg), amount of carboxylic acid groups (nCOOH), elemental analysis, FTIR, TGA, solid-state (13)C NMR, X-ray diffraction (DRX), specific surface area, pore size distribution, SEM and EDX. The best CTA synthesis condition yielded a pwg and nCOOH of 94.5% and 6.81mmolg(-1), respectively. CTA was used as an adsorbent material to remove Co(2+), Cu(2+) and Ni(2+) from monocomponent spiked aqueous solution. Adsorption studies were developed as a function of the solution pH, contact time and initial adsorbate concentration. Langmuir model better fitted the experimental adsorption data and the maximum adsorption capacities estimated by this model were 0.749, 1.487 and 1.001mmolg(-1) for Co(2+), Cu(2+) and Ni(2+), respectively. The adsorption mechanism was investigated by using isothermal titration calorimetry. The values of ΔadsH° were in the range from 5.36 to 8.09kJmol(-1), suggesting that the mechanism controlling the phenomenon is physisorption. Desorption and re-adsorption studies were also performed. Desorption and re-adsorption efficiencies were closer to 100%, allowing the recovery of both metal ions and CTA adsorbent. PMID:27552427

  3. Optimal control system design of an acid gas removal unit for an IGCC power plants with CO2 capture

    SciTech Connect

    Jones, D.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    Future IGCC plants with CO{sub 2} capture should be operated optimally in the face of disturbances without violating operational and environmental constraints. To achieve this goal, a systematic approach is taken in this work to design the control system of a selective, dual-stage Selexol-based acid gas removal (AGR) unit for a commercial-scale integrated gasification combined cycle (IGCC) power plant with pre-combustion CO{sub 2} capture. The control system design is performed in two stages with the objective of minimizing the auxiliary power while satisfying operational and environmental constraints in the presence of measured and unmeasured disturbances. In the first stage of the control system design, a top-down analysis is used to analyze degrees of freedom, define an operational objective, identify important disturbances and operational/environmental constraints, and select the control variables. With the degrees of freedom, the process is optimized with relation to the operational objective at nominal operation as well as under the disturbances identified. Operational and environmental constraints active at all operations are chosen as control variables. From the results of the optimization studies, self-optimizing control variables are identified for further examination. Several methods are explored in this work for the selection of these self-optimizing control variables. Modifications made to the existing methods will be discussed in this presentation. Due to the very large number of candidate sets available for control variables and due to the complexity of the underlying optimization problem, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. The second stage is a bottom-up design of the control layers used for the operation of the process. First, the regulatory control layer is

  4. The Climate Potentials and Side-Effects of Large-Scale terrestrial CO2 Removal - Insights from Quantitative Model Assessments

    NASA Astrophysics Data System (ADS)

    Boysen, L.; Heck, V.; Lucht, W.; Gerten, D.

    2015-12-01

    Terrestrial carbon dioxide removal (tCDR) through dedicated biomass plantations is considered as one climate engineering (CE) option if implemented at large-scale. While the risks and costs are supposed to be small, the effectiveness depends strongly on spatial and temporal scales of implementation. Based on simulations with a dynamic global vegetation model (LPJmL) we comprehensively assess the effectiveness, biogeochemical side-effects and tradeoffs from an earth system-analytic perspective. We analyzed systematic land-use scenarios in which all, 25%, or 10% of natural and/or agricultural areas are converted to tCDR plantations including the assumption that biomass plantations are established once the 2°C target is crossed in a business-as-usual climate change trajectory. The resulting tCDR potentials in year 2100 include the net accumulated annual biomass harvests and changes in all land carbon pools. We find that only the most spatially excessive, and thus undesirable, scenario would be capable to restore the 2° target by 2100 under continuing high emissions (with a cooling of 3.02°C). Large-scale biomass plantations covering areas between 1.1 - 4.2 Gha would produce a climate reduction potential of 0.8 - 1.4°C. tCDR plantations at smaller scales do not build up enough biomass over this considered period and the potentials to achieve global warming reductions are substantially lowered to no more than 0.5-0.6°C. Finally, we demonstrate that the (non-economic) costs for the Earth system include negative impacts on the water cycle and on ecosystems, which are already under pressure due to both land use change and climate change. Overall, tCDR may lead to a further transgression of land- and water-related planetary boundaries while not being able to set back the crossing of the planetary boundary for climate change. tCDR could still be considered in the near-future mitigation portfolio if implemented on small scales on wisely chosen areas.

  5. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion

    SciTech Connect

    Czirr, Kirk

    1999-10-28

    The first project objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO2) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second project objective is to demonstrate the performance and economic viability of the project in the field. All work during the fourth quarter falls within the demonstration project.

  6. Design Considerations for Financing a National Trust to Advance the Deployment of Geologic CO2 Storage and Motivate Best Practices

    SciTech Connect

    Dooley, James J.; Trabucchi, Chiara; Patton , Lindene

    2010-03-01

    This paper explores how the flawed, widely held public policy view of an ever growing risk associated with long-term carbon dioxide (CO2) storage profoundly influences the public policy dialogue about how to best address the long term risk profile for geologic storage. In order to accomplish this, the authors present evidence from the rapidly emerging science and engineering of CO2 storage which demonstrates that, with proper site characterization and sound operating practices, retention of stored CO2 will increase with time thus invalidating the premise of an ever growing risk. The authors focus on key issues of fit, interplay, and scalability associated with a trust fund funded by a hypothetical $1/tonCO2 tipping fee for each ton of CO2 stored in the United States under WRE450 and WRE550 climate policies. The authors conclude there is no intrinsic value in creating a trust fund predicated solely on collecting a fixed fee that is not mapped to site-specific risk profiles. If left to grow unchecked, a trust fund that is predicated on a constant stream of annual payments unrelated to the site’s risk profile could result in the accumulation of hundreds of billions to more than a trillion dollars in real terms contributing to significant opportunity cost of capital. Further, rather than mitigating the financial consequences of long-term CCS risks, this analysis suggests a blanket $1/tonCO2 tipping fee may increase the probability and frequency of long-term risk by eliminating financial incentives for sound operating behavior and site selection criteria – contribute to moral hazard. At a minimum, effective use of a trust fund requires: (1) strong oversight regarding site selection and fund management, and (2) a clear process by which the fund is periodically valued and funds collected are mapped to the risk profile of the pool of covered CCS sites. Without appropriate checks and balances, there is no a priori reason to believe that the amount of funds held in trust

  7. State estimation of an acid gas removal (AGR) plant as part of an integrated gasification combined cycle (IGCC) plant with CO2 capture

    SciTech Connect

    Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    An accurate estimation of process state variables not only can increase the effectiveness and reliability of process measurement technology, but can also enhance plant efficiency, improve control system performance, and increase plant availability. Future integrated gasification combined cycle (IGCC) power plants with CO2 capture will have to satisfy stricter operational and environmental constraints. To operate the IGCC plant without violating stringent environmental emission standards requires accurate estimation of the relevant process state variables, outputs, and disturbances. Unfortunately, a number of these process variables cannot be measured at all, while some of them can be measured, but with low precision, low reliability, or low signal-to-noise ratio. As a result, accurate estimation of the process variables is of great importance to avoid the inherent difficulties associated with the inaccuracy of the data. Motivated by this, the current paper focuses on the state estimation of an acid gas removal (AGR) process as part of an IGCC plant with CO2 capture. This process has extensive heat and mass integration and therefore is very suitable for testing the efficiency of the designed estimators in the presence of complex interactions between process variables. The traditional Kalman filter (KF) (Kalman, 1960) algorithm has been used as a state estimator which resembles that of a predictor-corrector algorithm for solving numerical problems. In traditional KF implementation, good guesses for the process noise covariance matrix (Q) and the measurement noise covariance matrix (R) are required to obtain satisfactory filter performance. However, in the real world, these matrices are unknown and it is difficult to generate good guesses for them. In this paper, use of an adaptive KF will be presented that adapts Q and R at every time step of the algorithm. Results show that very accurate estimations of the desired process states, outputs or disturbances can be

  8. Water decontamination via the removal of Pb (II) using a new generation of highly energetic surface nano-material: Co(+2)Mo(+6) LDH.

    PubMed

    Mostafa, Mohsen S; Bakr, Al-Sayed A; El Naggar, Ahmed M A; Sultan, El-Sayed A

    2016-01-01

    CoMo(CO3(2-)) layered double hydroxide of a highly energetic surface, as a new LDH consisting of divalent and hexavalent cations (M(+2)/M(+6)-LDH), was prepared by a homogeneous co-precipitation method. The structure and morphology of the prepared material was confirmed by several analytical techniques namely; X-ray diffraction analysis (XRD), X-ray fluorescence (XRF), Fourier transform infra-red (FT-IR) spectroscopy, differential scanning calorimetry and thermal gravimetric analysis (DSC-TGA), N2 adsorption-desorption isotherm and scanning electron microscope (SEM). The highly energetic surface of the prepared LDH was demonstrated via the X-ray photoelectron spectroscopy (XPS). The surface energy is due to the formation of +4 surface charges in the brucite layer between Co(+2) and Mo(+6). The prepared LDH was applied as a novel adsorbent for the removal of Pb (II) from its aqueous solution at different experimental conditions of time, temperature and initial Pb (II) concentrations. The change of the Pb (II) concentrations; due to adsorption, was monitored by atomic absorption spectrophotometer (AAS). The maximum uptake of Pb (II) by the Co Mo LDH was (73.4 mg/g) at 298 K. The Pb (II) adsorption was found to follow Langmuir isotherm and pseudo second order model. The adsorption process was spontaneous and endothermic. The interference of other cations on the removal of the Pb (II) was studied. Na(+) and K(+) were found to increase the adsorption capacity of the Co Mo LDH toward Pb (II) while it was slightly decreased by the presence of Mn(+2) and Cu(+2). The synthesized LDH showed a great degree of recoverability (7 times) while completely conserving its parental morphology and adsorption capacity. The mechanism of the lead ions removal had exhibited more reliability through a surface adsorption by the coordination between the Mo(+6) of the brucite layers and the oxygen atoms of the nitrates counter ions. PMID:26402785

  9. Removable Tensor Strainmeter and Vector Tiltmeter System for Use With Forward and Inverse Methods for Characterizing Deformation During CO2 Injection

    NASA Astrophysics Data System (ADS)

    DeWolf, S.; Murdoch, L. C.; Moysey, S. M.; Germanovich, L. N.; Hanna, A.; Smith, J. E.

    2015-12-01

    Injecting fluids into a well deforms the enveloping rocks in a complex pattern that increases in magnitude and expands outward with time. While this evolving strain field creates space needed to store these fluids, it can also signal problems. Fault slip occurs when stresses caused by injection reach a critical value, and maintaining stresses below a critical stress state is important for limiting the risk of faulting and subsequent leakage. Since it is impossible to measure stresses directly, the approach is to measure displacement or strain, and then calculate stress change. The geodetic research community has developed borehole strainmeters capable of measuring the horizontal strain tensor with high resolution (>1 nanostrain), but these require permanent installation and are too expensive to be abandoned after short term studies. A far less expensive, removable instrument capable of measuring four components of strain and two components of tilt has been developed. Each sensing component employs non-contact eddy current transducers capable of measuring nanometer displacements. While not as precise as permanent borehole instruments, this new removable system should be able to resolve ground deformations associated with 0.5 to 1 microstrain per day rates expected at a proposed CO2 injection site. This system should also be well-suited for aquifer monitoring as well as for some geophysical signals. Finite element techniques are used to simulate a field injection test within the Bartlesville sandstone reservoir at the Avant field CO2 storage analog site, Oklahoma. These models suggest that measuring strain change at shallow depths, on the scale of 100s of ft, can be used to monitor the proposed water injection during a water flooding operation at a depth of approximately 1700 ft. A set of stochastic optimization algorithms are then used to iteratively generate a sequence of parameter estimates, and a high performance cluster computer efficiently evaluates this

  10. ADVANCES IN HEXAVALENT CHROMIUM REMOVAL AT HANFORD

    SciTech Connect

    NESHEM DO; RIDDELLE J

    2012-01-30

    At the Hanford Site, chromium was used as a corrosion inhibitor in the reactor cooling water and was introduced into the groundwater as a result of planned and unplanned discharges from reactors during plutonium production since 1944. Beginning in 1995, groundwater treatment methods were evaluated leading to the use of pump and treat facilities with ion exchange using Dowex 21 K, a regenerable strong base anion exchange resin. This required regeneration of the resin, which is currently performed offsite. Resin was installed in a 4 vessel train, with resin removal required from the lead vessel approximately once a month. In 2007, there were 8 trains (32 vessels) in operation. In 2008, DOE recognized that regulatory agreements would require significant expansion in the groundwater chromium treatment capacity. Previous experience from one of the DOE project managers led to identification of a possible alternative resin, and the contractor was requested to evaluate alternative resins for both cost and programmatic risk reductions. Testing was performed onsite in 2009 and 2010, using a variety of potential resins in two separate facilities with groundwater from specific remediation sites to demonstrate resin performance in the specific groundwater chemistry at each site. The testing demonstrated that a weak base anion single-use resin, ResinTech SIR-700, was effective at removing chromium, had a significantly higher capacity, could be disposed of efficiently on site, and would eliminate the complexities and programmatic risks from sampling, packaging, transportation and return of resin for regeneration. This resin was installed in Hanford's newest groundwater treatment facility, called 100-DX, which began operations in November, 2010, and used in a sister facility, 100-HX, which started up in September of 2011. This increased chromium treatment capacity to 25 trains (100 vessels). The resin is also being tested in existing facilities that utilize Dowex 21 K for

  11. Limits, complementarity and improvement of Advanced SAR Interferometry monitoring of anthropogenic subsidence/uplift due to long term CO2 storage

    NASA Astrophysics Data System (ADS)

    de Michele, M.; Raucoules, D.; Rohmer, J.; Loschetter, A.; Raffard, D.; Le Gallo, Y.

    2013-12-01

    A prerequisite to the large scale industrial development of CO2 Capture and geological Storage is the demonstration that the storage is both efficient and safe. In this context, precise uplift/subsidence monitoring techniques constitute a key component of any CO2 storage risk management. Space-borne Differential SAR (Synthetic Aperture Radar) interferometry is a promising monitoring technique. It can provide valuable information on vertical positions of a set of scatterer undergoing surface deformation induced by volumetric changes through time and space caused by CO2 injection in deep aquifers. To what extent ? To date, InSAR techniques have been successfully used in a variety of case-studies involving the measure of surface deformation caused by subsurface fluid withdrawal / injection. For instance, groundwater flow characterization in complex aquifers systems, oil / gas field characterization, verification of enhanced oil recovery efficiency, monitoring of seasonal gas storage. The successful use of InSAR is strictly related to the favourable scattering conditions in terms of spatial distribution of targets and their temporal stability. In arid regions, natural radar scatterers density can be very high, exceeding 1,000 per square km. But future onshore industrial-scale CO2 storage sites are planned in more complex land-covers such as agricultural or vegetated terrains. Those terrains are characterized by poor to moderate radar scatterers density, which decrease the detection limits of the space-borne interferometric technique. The present study discusses the limits and constraints of advanced InSAR techniques applied to deformation measurements associated with CO2 injection/storage into deep aquifers in the presence of agricultural and vegetated land-covers. We explore different options to enhance the measurement performances of InSAR techniques. As a first option, we propose to optimize the deployment of a network of 'artificial' scatterers, i.e. corner

  12. Sequestration of CO2 by halotolerant algae

    PubMed Central

    2014-01-01

    The potential of halotolerant algae isolated from natural resources was used to study CO2 fixation and algal lipid production. Biological fixation of CO2 in photobioreactor in presence of salinity is exploited. The CO2 concentration 1060 ppm gave the highest biomass yield (700 mg dry wt/l), the highest total lipid content (10.33%) with 80% of CO2 removal. PMID:24847439

  13. Advances in High Energy Solid-State 2-micron Laser Transmitter Development for Ground and Airborne Wind and CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Kavaya, Michael J.; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Modlin, Edward A.; Koch, Grady; Beyon, Jeffrey

    2010-01-01

    Sustained research efforts at NASA Langley Research Center (LaRC) during last fifteen years have resulted in a significant advancement in 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurement from ground, air and space-borne platform. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar (DIAL) system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  14. Advanced solid electrolyte cell for CO2 and H2O electrolysis. [for extended duration manned spaceflights

    NASA Technical Reports Server (NTRS)

    Shumar, J. W.; Berger, T. A.

    1978-01-01

    A solid electrolyte cell with improved sealing characteristics was examined. A tube cell was designed, developed, fabricated, and tested. Design concepts incorporated in the tube cell to improve its sealing capability included minimizing the number of seals per cell and moving seals to lower temperature regions. The advanced tube cell design consists of one high temperature ceramic cement seal, one high temperature gasket seal, and three low temperature silicone elastomer seals. The two high temperature seals in the tube cell design represent a significant improvement over the ten high temperature precious metal seals required by the electrolyzer drum design. For the tube cell design the solid electrolyte was 8 mole percent yttria stabilized zirconium oxide slip cast into the shape of a tube with electrodes applied on the inside and outside surfaces.

  15. CO2-Neutral Fuels

    NASA Astrophysics Data System (ADS)

    Goede, Adelbert; van de Sanden, Richard

    2016-06-01

    Mimicking the biogeochemical cycle of System Earth, synthetic hydrocarbon fuels are produced from recycled CO2 and H2O powered by renewable energy. Recapturing CO2 after use closes the carbon cycle, rendering the fuel cycle CO2 neutral. Non-equilibrium molecular CO2 vibrations are key to high energy efficiency.

  16. Analysis of leading edge and trailing edge cover glass samples before and after treatment with advanced satellite contamination removal techniques

    NASA Technical Reports Server (NTRS)

    Hotaling, S. P.

    1993-01-01

    Two samples from Long Duration Exposure Facility (LDEF) experiment M0003-4 were analyzed for molecular and particulate contamination prior to and following treatment with advanced satellite contamination removal techniques (CO2 gas/solid jet spray and oxygen ion beam). The pre- and post-cleaning measurements and analyses are presented. The jet spray removed particulates in seconds. The low energy reactive oxygen ion beam removed 5,000 A of photo polymerized organic hydrocarbon contamination in less than 1 hour. Spectroscopic analytical techniques were applied to the analysis of cleaning efficiency including: Fourier transform infrared, Auger, x ray photoemissions, energy dispersive x ray, and ultraviolet/visible. The results of this work suggest that the contamination studied here was due to spacecraft self-contamination enhanced by atomic oxygen plasma dynamics and solar UV radiation. These results also suggest the efficacy for the jet spray and ion beam contamination control technologies for spacecraft optical surfaces.

  17. Integrating organic micropollutant removal into tertiary filtration: Combining PAC adsorption with advanced phosphorus removal.

    PubMed

    Altmann, Johannes; Sperlich, Alexander; Jekel, Martin

    2015-11-01

    Direct addition of powdered activated carbon (PAC) to a deep-bed filter was investigated at pilot-scale as a single advanced treatment stage for simultaneous removal of organic micropollutants (OMPs) and phosphorus from secondary effluent. PAC doses of 10-50 mg/L were assessed with regard to their impacts on filter performance and removal of 15 selected OMPs over a period of 18 months. The PAC was effectively retained by the filter and had no negative effect on filter head loss. Filter runtime until particle breakthrough depended mainly on coagulant dose and did not decrease significantly due to the additional PAC load. Removal of suspended solids and phosphorus by coagulation was effective independent of the PAC dose. A PAC dose of 35 mg/L PAC was suitable to remove well-adsorbing OMPs (e.g. carbamazepine, diclofenac) by >80% and medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) by 50-80%. Median removals were 50-80% for well-adsorbing and 30-50% for medium adsorbing OMPs with 20 mg/L PAC. Abatement of all OMPs was low (<50%) with 10 mg/L PAC, possibly because of the high effluent organic matter content (median dissolved organic carbon (DOC) concentrations of 11.2 mg/L). In addition to adsorptive removal, relevant concentration decreases of certain OMPs (e.g. 4-formylaminoantipyrine) were attributed to biological transformation in the filter. Adsorption onto accumulating PAC in the top layer of the filter bed led to improved OMP adsorption with increasing filter runtime. The comparison of OMP removal in the pilot filter with laboratory adsorption tests demonstrates that batch test results can be applied to estimate adsorptive OMP removal in real applications. PMID:26210030

  18. CO2 laser modeling

    NASA Technical Reports Server (NTRS)

    Johnson, Barry

    1992-01-01

    The topics covered include the following: (1) CO2 laser kinetics modeling; (2) gas lifetimes in pulsed CO2 lasers; (3) frequency chirp and laser pulse spectral analysis; (4) LAWS A' Design Study; and (5) discharge circuit components for LAWS. The appendices include LAWS Memos, computer modeling of pulsed CO2 lasers for lidar applications, discharge circuit considerations for pulsed CO2 lidars, and presentation made at the Code RC Review.

  19. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales, Class III

    SciTech Connect

    Perri, Pasquale R.

    2001-04-04

    This report describes the evaluation, design, and implementation of a DOE funded CO2 pilot project in the Lost Hills Field, Kern County, California. The pilot consists of four inverted (injector-centered) 5-spot patterns covering approximately 10 acres, and is located in a portion of the field, which has been under waterflood since early 1992. The target reservoir for the CO2 pilot is the Belridge Diatomite. The pilot location was selected based on geology, reservoir quality and reservoir performance during the waterflood. A CO2 pilot was chosen, rather than full-field implementation, to investigate uncertainties associated with CO2 utilization rate and premature CO2 breakthrough, and overall uncertainty in the unproven CO2 flood process in the San Joaquin Valley.

  20. Zinc depolarized electrochemical CO2 concentration

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Marshall, R. D.; Schubert, F. H.

    1975-01-01

    Two zinc depolarized electrochemical carbon dioxide concentrator concepts were analytically and experimentally evaluated for portable life support system carbon dioxide (CO2) removal application. The first concept, referred to as the zinc hydrogen generator electrochemical depolarized CO2 concentrator, uses a ZHG to generate hydrogen for direct use in an EDC. The second concept, referred to as the zinc/electrochemical depolarized concentrator, uses a standard EDC cell construction modified for use with the Zn anode. The Zn anode is consumed and subsequently regenerated, thereby eliminating the need to supply H2 to the EDC for the CO2 removal process. The evaluation was based primarily on an analytical evaluation of the two ZnDCs at projected end item performance and hardware design levels. Both ZnDC concepts for PLSS CO2 removal application were found to be noncompetitive in both total equivalent launch weight and individual extravehicular activity mission volume when compared to other candidate regenerable PLSS CO2 scrubbers.

  1. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    SciTech Connect

    Czirr, K.L.; Gaddis, M.P.; Moshell, M.K.

    2002-02-21

    The principle objective of this project is to demonstrate the economic viability and widespread applicability of an innovative reservoir management and carbon dioxide (CO2) flood project development approach for improving CO2 flood project economics in shallow shelf carbonate (SSC) reservoirs.

  2. An obsession with CO2.

    PubMed

    Jones, Norman L

    2008-08-01

    The concept that underlies this paper is that carbon dioxide (CO2) removal is at least as important as the delivery of oxygen for maximum performance during exercise. Increases in CO2 pressure and reductions in the pH of muscle influence muscle contractile properties and muscle metabolism (via effects on rate-limiting enzymes), and contribute to limiting symptoms. The approach of Barcroft exemplified the importance of integrative physiology, in describing the adaptive responses of the circulatory and respiratory systems to the demands of CO2 production during exercise. The extent to which failure in the response of one system may be countered by adaptation in another is also explained by this approach. A key factor in these linked systems is the transport of CO2 in the circulation. CO2 is mainly (90%) transported as bicarbonate ions--as such, transport of CO2 is critically related to acid-base homeostasis. Understanding in this field has been facilitated by the approach of Peter Stewart. Rooted in classical physico-chemical relationships, the approach identifies the independent variables contributing to homeostasis--the strong ion difference ([SID]), ionization of weak acids (buffers, Atot) and CO2 pressure (PCO2). The independent variables may be reliably measured or estimated in muscle, plasma, and whole blood. Equilibrium conditions are calculated to derive the dependent variables--the most important being the concentrations of bicarbonate and hydrogen ions. During heavy exercise, muscle [H+] can exceed 300 nEq.L-1 (pH 6.5), mainly due to a greatly elevated PCO2 and fall in [SID] as a result of increased lactate (La-) production. As blood flows through active muscle, [La-] increase in plasma is reduced by uptake of La- and Cl- by red blood cells, with a resultant increase in plasma [HCO3-]. Inactive muscle contributes to homeostasis through transfer of La- and Cl- into the muscle from both plasma and red blood cells; this results in a large increase in [HCO3

  3. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect

    Cordatos, Harry

    2010-11-08

    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  4. Removing baseline flame's spectrum by using advanced recovering spectrum techniques.

    PubMed

    Arias, Luis; Sbarbaro, Daniel; Torres, Sergio

    2012-09-01

    In this paper, a novel automated algorithm to estimate and remove the continuous baseline from measured flame spectra is proposed. The algorithm estimates the continuous background based on previous information obtained from a learning database of continuous flame spectra. Then, the discontinuous flame emission is calculated by subtracting the estimated continuous baseline from the measured spectrum. The key issue subtending the learning database is that the continuous flame emissions are predominant in the sooty regions, in absence of discontinuous radiation. The proposed algorithm was tested using natural gas and bio-oil flames spectra at different combustion conditions, and the goodness-of-fit coefficient (GFC) quality metric was used to quantify the performance in the estimation process. Additionally, the commonly used first derivative method (FDM) for baseline removing was applied to the same testing spectra in order to compare and to evaluate the proposed technique. The achieved results show that the proposed method is a very attractive tool for designing advanced combustion monitoring strategies of discontinuous emissions. PMID:22945158

  5. R&D100: CO2 Memzyme

    SciTech Connect

    Rempe, Susan; Brinker, Jeff; Jiang, Ying-Bing; Vanegas, Juan

    2015-11-19

    By combining a water droplet loaded with CO2 enzymes in an ultrathin nanopore on a flexible substrate, researchers at Sandia National Laboratories realized the first technology that meets and exceeds DOE targets for cost-effective CO2 capture. When compared with the nearest membrane competitor, this technology delivers a three times permeation rate, twenty times higher selectivity, and ten time lower fabrication cost. The CO2 Memzyme has the potential to remove 90% of CO2 emissions and is forecasted to save the U.S. coal industry $90 billion a year compared to conventional technology.

  6. Sorbent Structural Testing on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Watson, David; Knox, James C.; West, Phillip; Bush, Richard

    2016-01-01

    Long term space missions require carbon dioxide removal systems that can function with minimal downtime required for maintenance, low power consumption and maximum efficiency for CO2 removal. A major component of such a system are the sorbents used for the CO2 and desiccant beds. Sorbents must not only have adequate CO2 and H2O removal properties, but they must have the mechanical strength to prevent structural breakdown due to pressure and temperature changes during operation and regeneration, as well as resistance to breakdown due to moisture in the system from cabin air. As part of the studies used to select future CO2 sorbent materials, mechanical tests are performed on various zeolite sorbents to determine mechanical performance while dry and at various humidified states. Tests include single pellet crush, bulk crush and attrition tests. We have established a protocol for testing sorbents under dry and humid conditions, and previously tested the sorbents used on the International Space Station carbon dioxide removal assembly. This paper reports on the testing of a series of commercial sorbents considered as candidates for use on future exploration missions.

  7. One-step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Gan; Jin, Dandan; Zhou, Rui; Shen, Chao; Xie, Keyu; Wei, Bingqing

    2016-02-01

    A simple one-step and low-temperature synthesis approach has been developed to grow hierarchical NiCo2S4 ultrathin nanosheets (2-3 nm in thickness) on Ni foam. Owing to the unique nanoarchitecture, the NiCo2S4 nanosheets not only offer abundant electro-active sites for energy storage, but also have good electrical and mechanical connections to the conductive Ni foam for enhancing reaction kinetics and improving electrode integrity. When used as anodes for Li-ion batteries, the NiCo2S4 nanosheets demonstrate exceptional energy storage performance in terms of high specific capacity, excellent rate capability, and good cycling stability. The mild-solution synthesis of NiCo2S4 nanostructures and the outstanding electrochemical performance enable the novel electrodes to hold great potential for high-efficient energy storage systems.

  8. Metal oxide absorbents for regenerative carbon dioxide and water vapor removal for advanced portable life support systems

    NASA Technical Reports Server (NTRS)

    Hart, Joan M.; Borghese, Joseph B.; Chang, Craig H.; Stonesifer, Greg T.

    1991-01-01

    Recent studies of Allied Signal metal oxide based absorbents demonstrated that these absorbents offer a unique capability to regeneratively remove both metabolic carbon dioxide and water vapor from breathing air; previously, metal oxides were considered only for the removal of CO2. The concurrent removal of CO2 and H2O vapor can simplify the astronaut Portable Life Support System (PLSS) by combining the CO2 and humidity control functions into one regenerative component. The use of metal oxide absorbents for removal of both CO2 ad H2O vapor in the PLSS is the focus of an ongoing program. The full scale Metal Oxide Carbon dioxide and Humidity Remover (MOCHR) and regeneration unit is described.

  9. Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants.

    PubMed

    Price, G Dean; Badger, Murray R; Woodger, Fiona J; Long, Ben M

    2008-01-01

    Cyanobacteria have evolved a significant environmental adaptation, known as a CO(2)-concentrating-mechanism (CCM), that vastly improves photosynthetic performance and survival under limiting CO(2) concentrations. The CCM functions to transport and accumulate inorganic carbon actively (Ci; HCO(3)(-), and CO(2)) within the cell where the Ci pool is utilized to provide elevated CO(2) concentrations around the primary CO(2)-fixing enzyme, ribulose bisphosphate carboxylase-oxygenase (Rubisco). In cyanobacteria, Rubisco is encapsulated in unique micro-compartments known as carboxysomes. Cyanobacteria can possess up to five distinct transport systems for Ci uptake. Through database analysis of some 33 complete genomic DNA sequences for cyanobacteria it is evident that considerable diversity exists in the composition of transporters employed, although in many species this diversity is yet to be confirmed by comparative phenomics. In addition, two types of carboxysomes are known within the cyanobacteria that have apparently arisen by parallel evolution, and considerable progress has been made towards understanding the proteins responsible for carboxysome assembly and function. Progress has also been made towards identifying the primary signal for the induction of the subset of CCM genes known as CO(2)-responsive genes, and transcriptional regulators CcmR and CmpR have been shown to regulate these genes. Finally, some prospects for introducing cyanobacterial CCM components into higher plants are considered, with the objective of engineering plants that make more efficient use of water and nitrogen. PMID:17578868

  10. The Performance of a Novel Synthetic Ca-Based Solid Sorbent Suitable for the Removal of CO2 and SO2 from Flue Gases in a Fluidised Bed

    NASA Astrophysics Data System (ADS)

    Pacciani, R.; Müller, C. R.; Davidson, J. F.; Dennis, J. S.; Hayhurst, A. N.

    The extent and mechanism of the sulphation and carbonation of a limestone, dolomite and chalk, have been compared with a novel, synthetic sorbent (85 wt% CaO and 15 wt% Ca12Al14O33), from experiments in a small, electrically-heated fluidised bed. The sorbent particles were either (i) untreated, but then sieved into two particle sizes and reacted with SO2 of two different concentrations, or (ii) cycled 20 times between (a) carbonation in 14 vol.% CO2 in N2, and (b) calcination, in pure N2, at 750°C. The uptake of SO2 by untreated limestone and dolomite was generally low (<0.2 gSO 2/gsorbent) and dependent on particle size, confirming previous results. In comparison with limestone and dolomite, the untreated chalk and the synthetic sorbent were found to be substantially more reactive with SO2; their final uptake was significantly higher (> 0.5 gSO 2/gsorbent) and essentially independent of the particle size. Hg-intrusion porosimetry, performed on calcined sorbents, revealed that the volume inside the pores of limestone and dolomite was entirely in small pores (<200 nm dia.), confirmed by EDAX analysis. The small pores were easily plugged, hindering the diffusion of SO2 through the particle. On the other hand, calcined chalk and fresh synthetic sorbent possessed large volumes in wide pores (> 200 nm dia.); these bigger pores were not blocked by newly formed CaSO4. This allowed sulphation to proceed uniformly throughout the particle. It was also found that the uptake of SO2 by limestone, dolomite and chalk was substantially lower when the particles had been subjected to cycles of calcination and carbonation in CO2 prior to sulphation; this was attributed to a loss of volume inside the small pores during carbonation and calcination, confirmed by Hg-intrusion porosimetry. The uptake of SO2 by the synthetic sorbent, on the other hand, was much closer to that achieved when it was used untreated, because large pores remained accessible after cycling.

  11. CO2 blood test

    MedlinePlus

    Bicarbonate test; HCO3-; Carbon dioxide test; TCO2; Total CO2; CO2 test - serum ... Many medicines can interfere with blood test results. Your health care provider will tell you if you need to stop taking any medicines before you have this test. DO ...

  12. Covalent Organic Frameworks for CO2 Capture.

    PubMed

    Zeng, Yongfei; Zou, Ruqiang; Zhao, Yanli

    2016-04-01

    As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they can serve as ideal platforms for capturing CO2 to mitigate the dilemma caused by the greenhouse effect. Recent research achievements using COFs for CO2 capture are highlighted. A background overview is provided, consisting of a brief statement on the current CO2 issue, a summary of representative materials utilized for CO2 capture, and an introduction to COFs. Research progresses on: i) experimental CO2 capture using different COFs synthesized based on different covalent bond formations, and ii) computational simulation results of such porous materials on CO2 capture are summarized. Based on these experimental and theoretical studies, careful analyses and discussions in terms of the COF stability, low- and high-pressure CO2 uptake, CO2 selectivity, breakthrough performance, and CO2 capture conditions are provided. Finally, a perspective and conclusion section of COFs for CO2 capture is presented. Recent advancements in the field are highlighted and the strategies and principals involved are discussed. PMID:26924720

  13. Advanced Techniques for Removal of Retrievable Inferior Vena Cava Filters

    SciTech Connect

    Iliescu, Bogdan; Haskal, Ziv J.

    2012-08-15

    Inferior vena cava (IVC) filters have proven valuable for the prevention of primary or recurrent pulmonary embolism in selected patients with or at high risk for venous thromboembolic disease. Their use has become commonplace, and the numbers implanted increase annually. During the last 3 years, in the United States, the percentage of annually placed optional filters, i.e., filters than can remain as permanent filters or potentially be retrieved, has consistently exceeded that of permanent filters. In parallel, the complications of long- or short-term filtration have become increasingly evident to physicians, regulatory agencies, and the public. Most filter removals are uneventful, with a high degree of success. When routine filter-retrieval techniques prove unsuccessful, progressively more advanced tools and skill sets must be used to enhance filter-retrieval success. These techniques should be used with caution to avoid damage to the filter or cava during IVC retrieval. This review describes the complex techniques for filter retrieval, including use of additional snares, guidewires, angioplasty balloons, and mechanical and thermal approaches as well as illustrates their specific application.

  14. An Advanced Reservoir Simulator for Tracer Transport in Multicomponent Multiphase Compositional Flow and Applications to the Cranfield CO2 Sequestration Site

    NASA Astrophysics Data System (ADS)

    Moortgat, J.

    2015-12-01

    Reservoir simulators are widely used to constrain uncertainty in the petrophysical properties of subsurface formations by matching the history of injection and production data. However, such measurements may be insufficient to uniquely characterize a reservoir's properties. Monitoring of natural (isotopic) and introduced tracers is a developing technology to further interrogate the subsurface for applications such as enhanced oil recovery from conventional and unconventional resources, and CO2 sequestration. Oak Ridge National Laboratory has been piloting this tracer technology during and following CO2 injection at the Cranfield, Mississippi, CO2 sequestration test site. Two campaigns of multiple perfluorocarbon tracers were injected together with CO2 and monitored at two wells at 68 m and 112 m from the injection site. The tracer data suggest that multiple CO2 flow paths developed towards the monitoring wells, indicative of either channeling through high permeability pathways or of fingering. The results demonstrate that tracers provide an important complement to transient pressure data. Numerical modeling is essential to further explain and interpret the observations. To aid the development of tracer technology, we enhanced a compositional multiphase reservoir simulator to account for tracer transport. Our research simulator uses higher-order finite element (FE) methods that can capture the small-scale onset of fingering on the coarse grids required for field-scale modeling, and allows for unstructured grids and anisotropic heterogeneous permeability fields. Mass transfer between fluid phases and phase behavior are modeled with rigorous equation-of-state based phase-split calculations. We present our tracer simulator and preliminary results related to the Cranfield experiments. Applications to noble gas tracers in unconventional resources are presented by Darrah et al.

  15. Advancements in Algorithms for the Retrieval of CO2 Column Amount and Path Length Using an Intensity-Modulated Continuous-Wave Lidar

    NASA Astrophysics Data System (ADS)

    Harrison, F. W.; Lin, B.; Ismail, S.; Nehrir, A. R.; Dobler, J. T.; Browell, E. V.; Kooi, S. A.; Campbell, J. F.; Obland, M. D.; Yang, M. M.; Meadows, B.

    2014-12-01

    This paper presents an overview of the methods for the retrieval of carbon dioxide (CO2) and oxygen (O2) column amounts and their associated path lengths measured by the Multi-Functional Fiber Laser Lidar (MFLL) and the ASCENDS CarbonHawk Experiment Simulator (ACES). MFLL and ACES are multi-frequency, Intensity-Modulated, Continuous-Wave (IM-CW) Lidar systems developed as proof-of-concept demonstrators for NASA's Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The National Research Council identified ASCENDS in 2007 as an important mid-term decadal survey mission to provide measurements critical to improved projections of the Earth's future climate. The ASCENDS measurement requirements have evolved significantly since first proposed by the NRC as has our understanding of the IM-CW measurement technique we propose for use by ASCENDS. To meet these requirements, both MFLL and ACES transmit wavelengths near 1.57 and 1.26 μm modulated with range-encoded signals to minimize bias from thin clouds in the CO2 and O2 column measurements while simultaneously measuring the path length to the surface and to intervening cloud layers. In preparation for the ASCENDS mission, the MFLL has been deployed on 13 airborne field campaigns since 2005, including the latest series of flights in August 2014. NASA also flew the ACES instrument as a technology demonstrator in 2014. In this paper we describe the current ASCENDS retrieval technique and present the accuracy and precision of the measurements obtained using this technique. We also present a reanalysis of the 2011 MFLL measurements and compare the results previously reported to the reanalysis. Reanalysis yields range precisions of less that one meter from an altitude of 12 kilometers from the CO2 offline channel with 1.6 watts of transmitted power.

  16. Capnography: monitoring CO2.

    PubMed

    Casey, Georgina

    2015-10-01

    MONITORING RESPIRATORY and metabolic function by using capnography to measure end tidal carbon dioxide is standard practice in anaesthesia. It is also becoming more common in intensive care units and during procedural sedation. End tidal carbon dioxide (EtCO2) monitoring may also be used to assess effectiveness of cardiopulmonary resuscitation. Capnography is now emerging in general medical and surgical wards to monitor respiratory depression in patients using opioid analgesics. Using EtCO2 to monitor respiratory function offers many benefits over pulse oximetry. It is important to understand the differences between these two monitoring methods, and why capnography is increasingly favoured in many situations. An understanding of the physiological processes involved in CO2 excretion allows nurses to use capnography in a safe and meaningful way, while monitoring at-risk patients in acute care. PMID:26638570

  17. Sensor placement algorithm development to maximize the efficiency of acid gas removal unit for integrated gasifiction combined sycle (IGCC) power plant with CO2 capture

    SciTech Connect

    Paul, P.; Bhattacharyya, D.; Turton, R.; Zitney, S.

    2012-01-01

    Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In this work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel

  18. Assessment of sulfur removal processes for advanced fuel cell systems

    NASA Astrophysics Data System (ADS)

    Lorton, G. A.

    1980-01-01

    The performance characteristics of potential sulfur removal processes were evaluated and four of these processes, the Selexol process, the Benfield process, the Sulfinol process, and the Rectisol process, were selected for detailed technical and economic comparison. The process designs were based on a consistent set of technical criteria for a grass roots facility with a capacity of 10,000 tons per day of Illinois No. 6 coal. Two raw gas compositions, based on oxygen blown and air blown Texaco gasification, were used. The bulk of the sulfur was removed in the sulfur removal unit, leaving a small amount of sulfur compounds in the gas. The remaining sulfur compounds were removed by reaction with zinc oxide in the sulfur polishing unit. The impact of COS hydrolysis pretreatment on sulfur removal was evaluated. Comprehensive capital and O and M cost estimates for each of the process schemes were developed.

  19. CO2-neutral fuels

    NASA Astrophysics Data System (ADS)

    Goede, A. P. H.

    2015-08-01

    The need for storage of renewable energy (RE) generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G) scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel cycle is

  20. Advances in High Energy Solid-State Pulsed 2-micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Singh, Upendra; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael; Remus, Ruben

    2015-04-01

    NASA Langley Research Center has a long history of developing 2 µm lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2 µm lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250-mJ in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2 μm Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hrs of flight measurement were made from an altitude ranging 1500 meter to 8000 meter. These measurements were compared to in-situ measurements and NOAA airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a triple-pulsed 2 μm Integrated Differential Absorption Lidar (IPDA

  1. Advances in High Energy Solid-State Pulsed 2-Micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Kavaya, Michael J.; Remus, Ruben

    2015-01-01

    NASA Langley Research Center has a long history of developing 2-micron lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2-micron lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250 millijoules in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hours of flight measurement were made from an altitude ranging 1500 meters to 8000 meters. These measurements were compared to in-situ measurements and National Oceanic and Atmospheric Administration (NOAA) airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a

  2. CO2 Acquisition Membrane (CAM)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.; Way, J. Douglas; Vlasse, Marcus

    2003-01-01

    The objective of CAM is to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes are targeted toward In Situ Resource Utilization (ISRU) applications that will operate in extraterrestrial environments and support future unmanned and human space missions. A primary application is the Sabatier Electrolysis process that uses Mars atmosphere CO2 as raw material for producing water, oxygen, and methane for rocket fuel and habitat support. Other applications include use as an inlet filter to collect and concentrate Mars atmospheric argon and nitrogen gases for habitat pressurization, and to remove CO2 from breathing gases in Closed Environment Life Support Systems (CELSS). CAM membrane materials include crystalline faujasite (FAU) zeolite and rubbery polymers such as silicone rubber (PDMS) that have been shown in the literature and via molecular simulation to favor adsorption and permeation of CO2 over nitrogen and argon. Pure gas permeation tests using commercial PDMS membranes have shown that both CO2 permeance and the separation factor relative to other gases increase as the temperature decreases, and low (Delta)P(Sub CO2) favors higher separation factors. The ideal CO2/N2 separation factor increases from 7.5 to 17.5 as temperature decreases from 22 C to -30 C. For gas mixtures containing CO2, N2, and Ar, plasticization decreased the separation factors from 4.5 to 6 over the same temperature range. We currently synthesize and test our own Na(+) FAU zeolite membranes using standard formulations and secondary growth methods on porous alumina. Preliminary tests with a Na(+) FAU membrane at 22 C show a He/SF6 ideal separation factor of 62, exceeding the Knudsen diffusion selectivity by an order of magnitude. This shows that the membrane is relatively free from large defects and associated non-selective (viscous flow) transport

  3. Assessment of sulfur removal processes for advanced fuel cell systems

    SciTech Connect

    Lorton, G.A.

    1980-01-01

    This study consisted of a technical evaluation and economic comparison of sulfur removal processes for integration into a coal gasification-molten carbonate (CGMC) fuel cell power plant. Initially, the performance characteristics of potential sulfur removal processes were evaluated and screened for conformance to the conditions and requirements expected in commercial CGMC power plants. Four of these processes, the Selexol process, the Benfield process, the Sulfinol process, and the Rectisol process, were selected for detailed technical and economic comparison. The process designs were based on a consistent set of technical criteria for a grass roots facility with a capacity of 10,000 tons per day of Illinois No. 6 coal. Two raw gas compositions, based on oxygen-blown and air-blown Texaco gasification, were used. The bulk of the sulfur was removed in the sulfur removal unit, leaving a small amount of sulfur compounds in the gas (1 ppMv or 25 ppMv). The remaining sulfur compounds were removed by reaction with zinc oxide in the sulfur polishing unit. The impact of COS hydrolysis pretreatment on sulfur removal was evaluated. Comprehensive capital and O and M cost estimates for each of the process schemes were developed for the essentially complete removal of sulfur compounds. The impact on the overall plant performance was also determined. The total capital requirement for sulfur removal schemes ranged from $59.4/kW to $84.8/kW for the oxygen-blown cases and from $89.5/kW to $133/kW for the air-blown cases. The O and M costs for sulfur removal for 70% plant capacity factor ranged from 0.82 mills/kWh to 2.76 mills/kWh for the oxygen-blown cases and from 1.77 mills/kWh to 4.88 mills/kWh for the air-blown cases. The Selexol process benefitted the most from the addition of COS hydrolysis pretreatment.

  4. Advances in Dust Detection and Removal for Tokamaks

    NASA Astrophysics Data System (ADS)

    Campos, A.; Skinner, C. H.; Roquemore, A. L.; Leisure, J. O. V.; Wagner, S.

    2008-11-01

    Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. An electrostatic dust detector[1] developed in the laboratory is being applied to NSTX. In the tokamak environment, large particles or fibres can fall on the grid potentially causing a permanent short. We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have obtained an optimal configuration that effectively removes particles from a 25 cm^2 area. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tripolar grid of fine interdigitated traces has been designed that generates an electrostatic travelling wave for conveying dust particles to a ``drain.'' First trials have shown particle motion in optical microscope images. [1] C. H. Skinner et al., J. Nucl. Mater., 376 (2008) 29.

  5. Vadose Zone Remediation of CO2 Leakage from Geologic CO2 Storage Sites

    SciTech Connect

    Zhang, Yingqi; Oldenburg, Curtis M.; Benson, Sally M.

    2004-03-03

    In the unlikely event that CO2 leakage from deep geologic CO2 sequestration sites reaches the vadose zone, remediation measures for removing the CO2 gas plume may have to be undertaken. Carbon dioxide leakage plumes are similar in many ways to volatile organic compound (VOC) vapor plumes, and the same remediation approaches are applicable. We present here numerical simulation results of passive and active remediation strategies for CO2 leakage plumes in the vadose zone. The starting time for the remediation scenarios is assumed to be after a steady-state CO2 leakage plume is established in the vadose zone, and the source of this plume has been cut off. We consider first passive remediation, both with and without barometric pumping. Next, we consider active methods involving extraction wells in both vertical and horizontal configurations. To compare the effectiveness of the various remediation strategies, we define a half-life of the CO2 plume as a convenient measure of the CO2 removal rate. For CO2 removal by passive remediation approaches such as barometric pumping, thicker vadose zones generally require longer remediation times. However, for the case of a thin vadose zone where a significant fraction of the CO2 plume mass resides within the high liquid saturation region near the water table, the half-life of the CO2 plume without barometric pumping is longer than for somewhat thicker vadose zones. As for active strategies, results show that a combination of horizontal and vertical wells is the most effective among the strategies investigated, as the performance of commonly used multiple vertical wells was not investigated.

  6. Oxidation in Environments with Elevated CO2 Levels

    SciTech Connect

    Gordon H. Holcomb

    2009-05-01

    Efforts to reduce greenhouse gas emissions from fossil energy power productions focus primarily on either pre- or post-combustion removal of CO2. The research presented here examines corrosion and oxidation issues associated with two types of post-combustion CO2 removal processes—oxyfuel combustion in refit boilers and oxyfuel turbines.

  7. Demonstrating Advanced Oxidation Coupled with Biodegradation for Removal of Carbamazepine (WERF Report INFR6SG09)

    EPA Science Inventory

    Carbamazepine is an anthropogenic pharmaceutical found in wastewater effluents that is quite resistant to removal by conventional wastewater treatment processes. Hydroxyl radical-based advanced oxidation processes can transform carbamazepine into degradation products but cannot m...

  8. ADVANCES IN DUST DETECTION AND REMOVAL FOR TOKAMAKS

    SciTech Connect

    Campos, A.; Skinner, C.H.

    2009-01-01

    Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. In the tokamak environment, large particles or fi bers can fall on the electrostatic detector potentially causing a permanent short. An electrostatic dust detector developed in the laboratory is being applied to the National Spherical Torus Experiment (NSTX). We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments at atmospheric pressure with varying nozzle designs, backing pressures, puff durations and exit fl ow orientations have given an optimal confi guration that effectively removes particles from a 25 cm² area. Similar removal effi ciencies were observed under a vacuum base pressure of 1 mTorr. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tri-polar grid of fi ne interdigitated traces has been designed that generates an electrostatic traveling wave for conveying dust particles to a “drain.” First trials with only two working electrodes have shown particle motion in optical microscope images.

  9. Advanced Technologies for Monitoring CO2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties

    SciTech Connect

    Mavko, G.; Vanorio, T.; Vialle, S.; Saxena, N.

    2014-03-31

    Ultrasonic P- and S-wave velocities were measured over a range of confining pressures while injecting CO2 and brine into the samples. Pore fluid pressure was also varied and monitored together with porosity during injection. Effective medium models were developed to understand the mechanisms and impact of observed changes and to provide the means for implementation of the interpretation methodologies in the field. Ultrasonic P- and S-wave velocities in carbonate rocks show as much as 20-50% decrease after injection of the reactive CO2-brine mixture; the changes were caused by permanent changes to the rock elastic frame associated with dissolution of mineral. Velocity decreases were observed under both dry and fluid-saturated conditions, and the amount of change was correlated with the initial pore fabrics. Scanning Electron Microscope images of carbonate rock microstructures were taken before and after injection of CO2-rich water. The images reveal enlargement of the pores, dissolution of micrite (micron-scale calcite crystals), and pitting of grain surfaces caused by the fluid- solid chemical reactivity. The magnitude of the changes correlates with the rock microtexture – tight, high surface area samples showed the largest changes in permeability and smallest changes in porosity and elastic stiffness compared to those in rocks with looser texture and larger intergranular pore space. Changes to the pore space also occurred from flow of fine particles with the injected fluid. Carbonates with grain-coating materials, such as residual oil, experienced very little permanent change during injection. In the tight micrite/spar cement component, dissolution is controlled by diffusion: the mass transfer of products and reactants is thus slow and the fluid is expected to be close to thermodynamical equilibrium with the calcite, leading to very little dissolution, or even precipitation. In the microporous rounded micrite and macropores, dissolution is controlled by

  10. Advanced treatment process for pharmaceuticals, endocrine disruptors, and flame retardants removal.

    PubMed

    Sundaram, Vijay; Emerick, Robert W; Shumaker, Stanley E

    2014-02-01

    The objective of this project was to demonstrate the effectiveness of an advanced treatment process that did not utilize reverse osmosis for the removal of pharmaceuticals, endocrine disruptors and flame retardants (collectively referred as contaminants of emerging concern [CECs]) from municipal effluent. The advanced treatment process consisted of (in the order of use): membrane filtration, ozonation (O3), and biologically active carbon (BAC) filtration. Ozone dosage of 5 mg/L or more was needed for desired CEC removal. Biologically active carbon removed flame retardants, and ozonation byproducts including NDMA and aldehydes. The project successfully demonstrated 1) the removal of a wide range of CECs, 2) reduction of estrogen activity to background levels, and 3) removal of ozonation byproducts. Treatment was achieved at lower costs and power utilization than reverse osmosis and without generating a concentrate stream. Results from this project could make CEC removal feasible, especially in situations where reverse osmosis treatment is infeasible. PMID:24645541

  11. Advances in Ammonia Removal from Hot Coal Gas

    SciTech Connect

    Jothimurugesan, K.; Gangwal, S.K.

    1996-12-31

    Nitrogen occurs in coal in the form of tightly bound organic ring compounds, typically at levels of 1 to 2 wt%. During coal gasification, this fuel bound nitrogen is released principally as ammonia (NH{sub 3}). When hot coal gas is used to generate electricity in integrated gasification combined cycle (IGCC) power plants, NH{sub 3} is converted to nitrogen oxides (NO{sub x}) which are difficult to remove and are highly undesirable as atmospheric pollutants. Similarly, while the efficiency of integrated gasification molten carbonate fuel cell (IGFC) power plants is not affected by NH{sub 3}, NO{sub x} is generated during combustion of the anode exhaust gas. Thus NH{sub 3} must be removed from hot coal gas before it can be burned in a turbine or fuel cell. The objective of this study is to develop a successful combination of an NH{sub 3} decomposition catalyst with a zinc-based mixed-metal oxide sorbent so that the sorbent-catalyst activity remains stable for NH{sub 3} decomposition in addition to H{sub 2}S removal under cycle sulfidation-regeneration conditions in the temperature range of 500 to 750{degrees}C.

  12. CO2 laser radar

    NASA Astrophysics Data System (ADS)

    Brown, D.; Callan, R.; Constant, G.; Davies, P. H.; Foord, R.

    CO2 laser-based radars operating at 10 microns are both highly energy-efficient and eye-safe, as well as compact and rugged; they also furnish covertness-enhancing fine pointing accuracy, and are difficult to jam or otherwise confuse. Two modes of operation are generally employed: incoherent, in which the laser is simply used as a high power illumination source, and in the presently elaborated coherent or heterodyne mode. Applications encompass terrain-following and obstacle avoidance, Doppler discrimination of missile and aircraft targets, pollutant gas detection, wind measurement for weapons-aiming, and global wind field monitoring.

  13. Advanced process selectively removes H/sub 2/S

    SciTech Connect

    Not Available

    1981-06-08

    A selective H/sub 2/S-removal scheme called the HS process is being tested at a New Mexico pilot plant having an 18-in-diam contactor, a 24-in-diam stripping still, and a 30-gpm solution flow capacity. The test program goals are to (1) demonstrate the technical and economic superiority of the process over other options, and (2) redefine mass-transfer and ray hydraulic data for scale-up to commercial size. The technology combines a selective chemical solvent based on methyldiethanolamine (MDEA), a unique contactor design, and an innovative selective contactor tray.

  14. CO2 laser preionisation

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1991-01-01

    The final report for work done during the reporting period of January 25, 1990 to January 24, 1991 is presented. A literature survey was conducted to identify the required parameters for effective preionization in TEA CO2 lasers and the methods and techniques for characterizing preionizers are reviewed. A numerical model of the LP-140 cavity was used to determine the cause of the transverse mode stability improvement obtained when the cavity was lengthened. The measurement of the voltage and current discharge pulses on the LP-140 were obtained and their subsequent analysis resulted in an explanation for the low efficiency of the laser. An assortment of items relating to the development of high-voltage power supplies is also provided. A program for analyzing the frequency chirp data files obtained with the HP time and frequency analyzer is included. A program to calculate the theoretical LIMP chirp is also included and a comparison between experiment and theory is made. A program for calculating the CO2 linewidth and its dependence on gas composition and pressure is presented. The program also calculates the number of axial modes under the FWHM of the line for a given resonator length. A graphical plot of the results is plotted.

  15. The overlooked tropical oceanic CO2 sink

    NASA Astrophysics Data System (ADS)

    Ibánhez, J. Severino P.; Araujo, Moacyr; Lefèvre, Nathalie

    2016-04-01

    The intense rainfall in the tropical Atlantic spatially overlaps with the spread of the Amazon plume. Based on remote-sensed sea surface salinity and rainfall, we removed the contribution of rainfall to the apparent Amazon plume area, thus refining the quantification of its extension (0.84 ± 0.06 × 106 km2 to 0.89 ± 0.06 × 106 km2). Despite the previous overestimation of the Amazon plume area due to the influence of rainfall (>16%), our calculated annual CO2 flux based on rainfall-corrected sea surface CO2 fugacity confirms that the Amazon River plume is an atmospheric CO2 sink of global importance (-7.61 ± 1.01 to -7.85 ± 1.02 Tg C yr-1). Yet we show that current sea-air CO2 flux assessments for the tropical Atlantic could be overestimated in about 10% by neglecting the CO2 sink associated to the Amazon plume. Thus, including the Amazon plume, the sea-air CO2 exchange for the tropical Atlantic is estimated to be 81.1 ± 1.1 to 81.5 ± 1.1 Tg C yr-1.

  16. CO2 Acquisition Membrane (CAM) Project

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    2003-01-01

    The CO2 Acquisition Membrane (CAM) project was performed to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes developed in this project are targeted toward In Situ Resource Utilization (ISRU) applications, such as In Situ Propellant Production (ISPP) and In Situ Consumables Production (ISCP). These membrane materials may be used in a variety of ISRU systems, for example as the atmospheric inlet filter for an ISPP process to enhance the concentration of CO2 for use as a reactant gas, to passively separate argon and nitrogen trace gases from CO2 for habitat pressurization, to provide a system for removal of CO2 from breathing gases in a closed environment, or within a process stream to selectively separate CO2 from other gaseous components. The membranes identified and developed for CAM were evaluated for use in candidate ISRU processes and other gas separation applications, and will help to lay the foundation for future unmanned sample return and human space missions. CAM is a cooperative project split among three institutions: Lockheed Martin Astronautics (LMA), the Colorado School of Mines (CSM), and Marshall Space Flight Center (MSFC).

  17. Optimization of the Carbon Dioxide Removal Assembly (CDRA-4EU) in Support of the International Space System and Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Stanley, Christine M.

    2015-01-01

    The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The Carbon Dioxide (CO2) removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort utilizes a virtual Carbon Dioxide Removal Assembly, revision 4 (CDRA-4) test bed to test a large number of potential operational configurations with independent variations in flow rate, cycle time, heater ramp rate, and set point. Initial ground testing will provide prerequisite source data and provide baseline data in support of the virtual CDRA. Once the configurations with the highest performance and lowest power requirements are determined by the virtual CDRA, the results will be confirmed by testing these configurations with the CDRA-4EU ground test hardware. This paper describes the initial ground testing of select configurations. The development of the virtual CDRA under the AES-LSS Project will be discussed in a companion paper.

  18. The Role of the CO2 Laser and Fractional CO2 Laser in Dermatology

    PubMed Central

    Omi, Tokuya; Numano, Kayoko

    2014-01-01

    Background: Tremendous advances have been made in the medical application of the laser in the past few decades. Many diseases in the dermatological field are now indications for laser treatment that qualify for reimbursement by many national health insurance systems. Among laser types, the carbon dioxide (CO2) laser remains an important system for the dermatologist. Rationale: The lasers used in photosurgery have wavelengths that differ according to their intended use and are of various types, but the CO2 laser is one of the most widely used lasers in the dermatology field. With its wavelength in the mid-infrared at 10,600 nm, CO2 laser energy is wellabsorbed in water. As skin contains a very high water percentage, this makes the CO2 laser ideal for precise, safe ablation with good hemostasis. In addition to its efficacy in ablating benign raised lesions, the CO2 laser has been reported to be effective in the field of esthetic dermatology in the revision of acne scars as well as in photorejuvenation. With the addition of fractionation of the beam of energy into myriad microbeams, the fractional CO2 laser has offered a bridge between the frankly full ablative indications and the nonablative skin rejuvenation systems of the 2000s in the rejuvenation of photoaged skin on and off the face. Conclusions: The CO2 laser remains an efficient, precise and safe system for the dermatologist. Technological advances in CO2 laser construction have meant smaller spot sizes and greater precision for laser surgery, and more flexibility in tip sizes and protocols for fractional CO2 laser treatment. The range of dermatological applications of the CO2 laser is expected to continue to increase in the future. PMID:24771971

  19. Simulating Remediation of CO2 Leakage from Geological Storage Sites

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Oldenburg, C. M.; Benson, S. M.

    2003-12-01

    One strategy to reduce net greenhouse gas emissions is to inject carbon dioxide (CO2) deep into subsurface formations where presumably it would be stored indefinitely. Although geologic storage formations will be carefully selected, CO2 injected into a target formation may unexpectedly migrate upwards and ultimately seep out at the ground surface, creating a potential hazard to human beings and ecosystems. In this case, CO2 that has leaked from the geologic storage site is considered a contaminant, and remediation strategies such as passive venting and active pumping are needed. The purpose of this study is to investigate remediation strategies for CO2 leakage from geologic storage sites. We use the integral finite-difference code TOUGH2 to simulate the remediation of CO2 in subsurface systems. We consider the components of water, CO2 and air, and model flow and transport in aqueous and gas phases subject to a variety of initial and boundary conditions including passive venting and active pumping. We have investigated the time it takes for a gas plume of CO2 to be removed from the vadose zone both by natural attenuation processes and by active extraction wells. The time for removal is parameterized in terms of a CO2 plume half-life, defined as the time required for one-half of the CO2 mass to be removed. Initial simulations show that barometric pressure fluctuations enhance the removal of CO2 from the vadose zone, but that CO2 trapped near the water table is difficult to remove by either passive or active remediation approaches. This work was supported by a Cooperative Research and Development Agreement (CRADA) between BP Corporation North America, as part of the CO2 Capture Project (CCP), and the U.S. Department of Energy (DOE) through the National Energy Technologies Laboratory (NETL), and by the U.S. Department of Energy under contract DE-AC03-76SF00098.

  20. CO2 Laser Market

    NASA Astrophysics Data System (ADS)

    Simonsson, Samuel

    1989-03-01

    It gives me a great deal of pleasure to introduce our final speaker of this morning's session for two reasons: First of all, his company has been very much in the news not only in our own community but in the pages of Wall Street Journal and in the world economic press. And, secondly, we would like to welcome him to our shores. He is a temporary resident of the United States, for a few months, forsaking his home in Germany to come here and help with the start up of a new company which we believe, probably, ranks #1 as the world supplier of CO2 lasers now, through the combination of former Spectra Physics Industrial Laser Division and Rofin-Sinar GMBH. Samuel Simonsson is the Chairman of the Board of Rofin-Sinar, Inc., here in the U.S. and managing director of Rofin-Sinar GMBH. It is a pleasure to welcome him.

  1. CO2 Absorption Spectroscopy and Climate Change

    NASA Astrophysics Data System (ADS)

    Feldman, Daniel; Mlawer, Eli; Mlynczak, Martin; Gero, Jon; Collins, William; Torn, Margaret

    2014-03-01

    Most of the absorption, and therefore radiative forcing, due to increased atmospheric CO2 occurs in line wings, so utilizing an accurate line shape is necessary for climate science. Recent advances in CO2 absorption spectroscopy have been incorporated into benchmark line-by-line radiative transfer models. These updates include the Energy Corrected Sudden Approximation to represent isolated line profiles, line mixing, and line clusters. The CO2 line profiles are sub-Lorentzian and are explicitly modeled up to 25 cm-1 from each line's center. Consistent continuum absorption is implemented over the remainder of the profile except for modest empirical adjustments based on observations. Thus, line-by-line models calculate the absorption effects of CO2 that agree with theory and measurements. This is validated with long-term spectroscopic measurements from the ARM program's AERI instrument. This spectroscopy trains computationally-efficient correlated-k methods for climate model radiative transfer, but they overpredict instantaneous radiative forcing from doubled CO2 by approximately 7% in part because they have larger errors handling the impact of increased CO2 in the stratosphere than the troposphere. The implications of this can be tested with supercomputers. This work was supported by the Director, Office of Science, Office of Biol. & Env. Res., Clim. & Env. Sci. Div., of the U.S. D.O.E., Contract No. DE-AC02-05CH11231 as part of the Atmos. Sys. Res.

  2. Design and Implementation of a CO(2) Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells in Shallow Shelf Carbonate Approaching Waterflood Depletion

    SciTech Connect

    Harpole, K.J.; Dollens, K.B.; Durrett, E.G.; Bles, J.S

    1997-10-31

    The first objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second objective is to demonstrate the performance and economic viability of the project in the field. All work this quarter falls within the demonstration project.

  3. International Space Station Carbon Dioxide Removal Assembly (ISS CDRA) Concepts and Advancements

    NASA Technical Reports Server (NTRS)

    ElSherif, Dina; Knox, James C.

    2005-01-01

    An important aspect of air revitalization for life support in spacecraft is the removal of carbon dioxide from cabin air. Several types of carbon dioxide removal systems are in use in spacecraft life support. These systems rely on various removal techniques that employ different architectures and media for scrubbing CO2, such as permeable membranes, liquid amine, adsorbents, and absorbents. Sorbent systems have been used since the first manned missions. The current state of key technology is the existing International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA), a system that selectively removes carbon dioxide from the cabin atmosphere. The CDRA system was launched aboard UF-2 in February 2001 and resides in the U.S. Destiny Laboratory module. During the past four years, the CDRA system has operated with varying degrees of success. There have been several approaches to troubleshooting the CDRA system aimed at developing work-around solutions that would minimize the impact on astronaut time required to implement interim solutions. The paper discusses some of the short-term fixes applied to promote hardware life and restore functionality, as well as long-term plans and solutions for improving operability and reliability. The CDRA is a critical piece of life support equipment in the air revitalization system of the ISS, and is demonstrated technology that may ultimately prove well-suited for use in lunar or Mars base, and Mars transit life support applications.

  4. Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems.

    PubMed

    Nancharaiah, Y V; Venkata Mohan, S; Lens, P N L

    2016-09-01

    Nitrogen and phosphorous are key pollutants in wastewater to be removed and recovered for sustainable development. Traditionally, nitrogen removal is practiced through energy intensive biological nitrification and denitrification entailing a major cost in wastewater treatment. Recent innovations in nitrogen removal aim at reducing energy requirements and recovering ammonium nitrogen. Bioelectrochemical systems (BES) are promising for recovering ammonium nitrogen from nitrogen rich waste streams (urine, digester liquor, swine liquor, and landfill leachate) profitably. Phosphorus is removed from the wastewater in the form of polyphosphate granules by polyphosphate accumulating organisms. Alternatively, phosphorous is removed/recovered as Fe-P or struvite through chemical precipitation (iron or magnesium dosing). In this article, recent advances in nutrients removal from wastewater coupled to recovery are presented by applying a waste biorefinery concept. Potential capabilities of BES in recovering nitrogen and phosphorous are reviewed to spur future investigations towards development of nutrient recovery biotechnologies. PMID:27053446

  5. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks.

    PubMed

    McDonald, Thomas M; Mason, Jarad A; Kong, Xueqian; Bloch, Eric D; Gygi, David; Dani, Alessandro; Crocellà, Valentina; Giordanino, Filippo; Odoh, Samuel O; Drisdell, Walter S; Vlaisavljevich, Bess; Dzubak, Allison L; Poloni, Roberta; Schnell, Sondre K; Planas, Nora; Lee, Kyuho; Pascal, Tod; Wan, Liwen F; Prendergast, David; Neaton, Jeffrey B; Smit, Berend; Kortright, Jeffrey B; Gagliardi, Laura; Bordiga, Silvia; Reimer, Jeffrey A; Long, Jeffrey R

    2015-03-19

    The process of carbon capture and sequestration has been proposed as a method of mitigating the build-up of greenhouse gases in the atmosphere. If implemented, the cost of electricity generated by a fossil fuel-burning power plant would rise substantially, owing to the expense of removing CO2 from the effluent stream. There is therefore an urgent need for more efficient gas separation technologies, such as those potentially offered by advanced solid adsorbents. Here we show that diamine-appended metal-organic frameworks can behave as 'phase-change' adsorbents, with unusual step-shaped CO2 adsorption isotherms that shift markedly with temperature. Results from spectroscopic, diffraction and computational studies show that the origin of the sharp adsorption step is an unprecedented cooperative process in which, above a metal-dependent threshold pressure, CO2 molecules insert into metal-amine bonds, inducing a reorganization of the amines into well-ordered chains of ammonium carbamate. As a consequence, large CO2 separation capacities can be achieved with small temperature swings, and regeneration energies appreciably lower than achievable with state-of-the-art aqueous amine solutions become feasible. The results provide a mechanistic framework for designing highly efficient adsorbents for removing CO2 from various gas mixtures, and yield insights into the conservation of Mg(2+) within the ribulose-1,5-bisphosphate carboxylase/oxygenase family of enzymes. PMID:25762144

  6. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    McDonald, Thomas M.; Mason, Jarad A.; Kong, Xueqian; Bloch, Eric D.; Gygi, David; Dani, Alessandro; Crocellà, Valentina; Giordanino, Filippo; Odoh, Samuel O.; Drisdell, Walter S.; Vlaisavljevich, Bess; Dzubak, Allison L.; Poloni, Roberta; Schnell, Sondre K.; Planas, Nora; Lee, Kyuho; Pascal, Tod; Wan, Liwen F.; Prendergast, David; Neaton, Jeffrey B.; Smit, Berend; Kortright, Jeffrey B.; Gagliardi, Laura; Bordiga, Silvia; Reimer, Jeffrey A.; Long, Jeffrey R.

    2015-03-01

    The process of carbon capture and sequestration has been proposed as a method of mitigating the build-up of greenhouse gases in the atmosphere. If implemented, the cost of electricity generated by a fossil fuel-burning power plant would rise substantially, owing to the expense of removing CO2 from the effluent stream. There is therefore an urgent need for more efficient gas separation technologies, such as those potentially offered by advanced solid adsorbents. Here we show that diamine-appended metal-organic frameworks can behave as `phase-change' adsorbents, with unusual step-shaped CO2 adsorption isotherms that shift markedly with temperature. Results from spectroscopic, diffraction and computational studies show that the origin of the sharp adsorption step is an unprecedented cooperative process in which, above a metal-dependent threshold pressure, CO2 molecules insert into metal-amine bonds, inducing a reorganization of the amines into well-ordered chains of ammonium carbamate. As a consequence, large CO2 separation capacities can be achieved with small temperature swings, and regeneration energies appreciably lower than achievable with state-of-the-art aqueous amine solutions become feasible. The results provide a mechanistic framework for designing highly efficient adsorbents for removing CO2 from various gas mixtures, and yield insights into the conservation of Mg2+ within the ribulose-1,5-bisphosphate carboxylase/oxygenase family of enzymes.

  7. Atmospheric measurement of point source fossil fuel CO2 emissions

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Keller, E. D.; Baisden, W. T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.

    2013-11-01

    We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m a.g.l. We also determined the surface CO2ff content averaged over several weeks from the 14CO2 content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~1 week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14CO2 sampling strategies.

  8. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    SciTech Connect

    Fauth, D.J.; Filburn, T.P.; Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

    2007-06-01

    concentration resulted in incremental loss in IAS performance and revealed progressive degrees of “staining” upon testing. Adsorption of SO2 by the IAS necessitates upstream removal of SO2 prior to CO2 capture.

  9. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    NASA Astrophysics Data System (ADS)

    Lac, C.; Donnelly, R. P.; Masson, V.; Pal, S.; Donier, S.; Queguiner, S.; Tanguy, G.; Ammoura, L.; Xueref-Remy, I.

    2012-10-01

    the vicinity of airports due to small errors on the horizontal transport (wind direction). A sensitivity test without urban parameterisation removes UHI and underpredicts nighttime BLH over urban and sub-urban sites, leading to large overestimation of nocturnal CO2 concentration at the sub-urban sites. The agreement of daytime and nighttime BLH and CO2 predictions of the reference simulation over Paris agglomeration demonstrates the potential of using the meso-scale system on urban and sub-urban area in the context of inverse modelling.

  10. Ar + CO2 and He + CO2 Plasmas in ASTRAL

    NASA Astrophysics Data System (ADS)

    Boivin, R. F.; Gardner, A.; Munoz, J.; Kamar, O.; Loch, S.

    2007-11-01

    Spectroscopy study of the ASTRAL helicon plasma source running Ar + CO2 and He + CO2 gas mixes is presented. ASTRAL produces plasmas with the following parameters: ne = 10^10 - 10^13 cm-3, Te = 2 - 10 eV and Ti = 0.03 - 0.5 eV, B-field <= 1.3 kGauss, rf power <= 2 kWatt. A 0.33 m scanning monochromator is used for this study. Using Ar + CO2 gas mixes, very different plasmas are observed as the concentration of CO2 is changed. At low CO2 concentration, the bluish plasma is essentially atomic and argon transitions dominate the spectra. Weak C I and O I lines are present in the 750 - 1000 nm range. At higher CO2 concentration, the plasma becomes essentially molecular and is characterized by intense, white plasma columns. Here, spectra are filled with molecular bands (CO2, CO2^+, CO and CO^+). Limited molecular dissociative excitation processes associated with the production of C I and O I emission are also observed. On the other hand, He + CO2 plasmas are different. Here, rf matches are only possible at low CO2 concentration. Under these conditions, the spectra are characterized by strong C I and O I transitions with little or no molecular bands. Strong dissociative processes observed in these plasmas can be link to the high Te associated with He plasmas. An analysis of the spectra with possible scientific and industrial applications will be presented.

  11. Low pCO2 Air-Polarized CO2 Concentrator Development

    NASA Technical Reports Server (NTRS)

    Schubert, Franz H.

    1997-01-01

    Life Systems completed a Ground-based Space Station Experiment Development Study Program which verifies through testing the performance and applicability of the electrochemical Air-Polarized Carbon Dioxide Concentrator (APC) process technology for space missions requiring low (i.e., less than 3 mm Hg) CO2 partial pressure (pCO2) in the cabin atmosphere. Required test hardware was developed and testing was accomplished at an approximate one-person capacity CO2 removal level. Initially, two five-cell electrochemical modules using flight-like 0.5 sq ft cell hardware were tested individually, following by their testing at the integrated APC system level. Testing verified previously projected performance and established a database for sizing of APC systems. A four person capacity APC system was sized and compared with four candidate CO2 removal systems. At its weight of 252 lb, a volume of 7 cu ft and a power consumption of 566 W while operating at 2.2 mm Hg pCO2, the APC was surpassed only by an Electrochemical Depolarized CO2 Concentrator (EDC) (operating with H2), when compared on a total equivalent basis.

  12. Sequestration of CO2 by concrete carbonation.

    PubMed

    Galan, Isabel; Andrade, Carmen; Mora, Pedro; Sanjuan, Miguel A

    2010-04-15

    Carbonation of reinforced concrete is one of the causes of corrosion, but it is also a way to sequester CO2. The characteristics of the concrete cover should ensure alkaline protection for the steel bars but should also be able to combine CO2 to a certain depth. This work attempts to advance the knowledge of the carbon footprint of cement. As it is one of the most commonly used materials worldwide, it is very important to assess its impact on the environment. In order to quantify the capacity of cement based materials to combine CO2 by means of the reaction with hydrated phases to produce calcium carbonate, Thermogravimetry and the phenolphthalein indicator have been used to characterize several cement pastes and concretes exposed to different environments. The combined effect of the main variables involved in this process is discussed. The moisture content of the concrete seems to be the most influential parameter. PMID:20225850

  13. CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project

    NASA Astrophysics Data System (ADS)

    Lac, C.; Donnelly, R. P.; Masson, V.; Pal, S.; Riette, S.; Donier, S.; Queguiner, S.; Tanguy, G.; Ammoura, L.; Xueref-Remy, I.

    2013-05-01

    urban parameterisation removes the UHI and underpredicts nighttime BLH over urban and suburban sites, leading to large overestimation of nocturnal CO2 mixing ratio at the suburban sites (bias of +17 ppm). The agreement between observation and prediction for BLH and CO2 concentrations and urban-rural increments, both day and night, demonstrates the potential of using the urban mesoscale system in the context of inverse modelling

  14. CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana.

    PubMed

    Adamczyk, Michał; Lasek, Janusz; Skawińska, Agnieszka

    2016-08-01

    CO2 biofixation was investigated using tubular bioreactors (15 and 1.5 l) either in the presence of green algae Chlorella vulgaris or Nannochloropsis gaditana. The cultivation was carried out in the following conditions: temperature of 25 °C, inlet-CO2 of 4 and 8 vol%, and artificial light enhancing photosynthesis. Higher biofixation were observed in 8 vol% CO2 concentration for both microalgae cultures than in 4 vol%. Characteristic process parameters such as productivity, CO2 fixation, and kinetic rate coefficient were determined and discussed. Simplified and advanced methods for determination of CO2 fixation were compared. In a simplified method, it is assumed that 1 kg of produced biomass equals 1.88 kg recycled CO2. Advance method is based on empirical results of the present study (formula with carbon content in biomass). It was observed that application of the simplified method can generate large errors, especially if the biomass contains a relatively low amount of carbon. N. gaditana is the recommended species for CO2 removal due to a high biofixation rate-more than 1.7 g/l/day. On day 10 of cultivation, the cell concentration was more than 1.7 × 10(7) cells/ml. In the case of C. vulgaris, the maximal biofixation rate and cell concentration did not exceed 1.4 g/l/day and 1.3 × 10(7) cells/ml, respectively. PMID:27052208

  15. DESIGN AND IMPLEMENTATION OF A CO2 FLOOD UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL INJECTION WELLS IN A SHALLOW SHELF CARBONATE APPROACHING WATERFLOOD DEPLETION

    SciTech Connect

    K.J. Harpole; Ed G. Durrett; Susan Snow; J.S. Bles; Carlon Robertson; C.D. Caldwell; D.J. Harms; R.L. King; B.A. Baldwin; D. Wegener; M. Navarrette

    2002-09-01

    The purpose of this project was to economically design an optimum carbon dioxide (CO{sub 2}) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO{sub 2} horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields. The Unit was a mature waterflood with water cut exceeding 95%. Oil must be mobilized through the use of a miscible or near-miscible fluid to recover significant additional reserves. Also, because the unit was relatively small, it did not have the benefit of economies of scale inherent in normal larger scale projects. Thus, new and innovative methods were required to reduce investment and operating costs. Two primary methods used to accomplish improved economics were use of reservoir characterization to restrict the flood to the higher quality rock in the unit and use of horizontal injection wells to cut investment and operating costs. The project consisted of two budget phases. Budget Phase I started in June 1994 and ended late June 1996. In this phase Reservoir Analysis, Characterization Tasks and Advanced Technology Definition Tasks were completed. Completion enabled the project to be designed, evaluated, and an Authority for Expenditure (AFE) for project implementation submitted to working interest owners for approval. Budget Phase II consisted of the implementation and execution of the project in the field. Phase II was completed in July 2001. Performance monitoring, during Phase II, by mid 1998 identified the majority of producing wells which under performed their anticipated withdrawal rates. Newly drilled and re-activated wells had lower offtake rates than originally forecasted. As a result of poor offtake, higher reservoir pressure was a concern

  16. The Relationship Between CO2 Levels and CO2 Related Symptoms Reported on the ISS

    NASA Technical Reports Server (NTRS)

    VanBaalen, M.; Law, J.; Foy, M.; Wear, M. L.; Mason, S.; Mendez, C.; Meyers, V.

    2014-01-01

    Medical Operations, Toxicology, and the Lifetime Surveillance of Astronaut Health collaborated to assess the association of CO2 levels on board the International Space Station and USOS crew reported symptoms inflight, i.e. headache and vision changes. Private Medical Conference (PMC) documents and the weekly Space Medicine Operations Team (SMOT) Notes were used to provide a robust data set of inflight medical events. All events and non-events were documented independent of CO2 levels and other potential contributors. Average (arithmetic mean) and single point maximum ppCO2 was calculated for the 24 hours and 7 days prior to the PMC or SMOT date and time provided by LSAH. Observations falling within the first 7 days of flight (147) were removed from the datasets analyzed to avoid confounding with Space Adaptation Syndrome. The final analysis was based on 1716 observations. For headache, 46 headaches were observed. CO2 level, age at launch, time inflight, and data source were all significantly associated with headache. In particular, for each 1 mmHg increase in CO2, the odds of a crewmember reporting a headache doubled. For vision changes, 29 reports of vision changes were observed. These observations were not found to be statistically associated with CO2 levels as analyzed. While the incidence of headache has was not high (3%), headaches may be an indicator of underlying increases in intracranial pressure, which may result likely from the synergy between CO2-induced cerebral vasodilatation and decreased venous drainage in microgravity. Vision changes were inconsistently reported and as a result did not align appropriately with the CO2 levels. Further analysis is needed. Our results support ongoing efforts to lower the CO2 exposure limits in spacecraft.

  17. Co2 geological sequestration

    SciTech Connect

    Xu, Tianfu

    2004-11-18

    Human activities are increasingly altering the Earth's climate. A particular concern is that atmospheric concentrations of carbon dioxide (CO{sub 2}) may be rising fast because of increased industrialization. CO{sub 2} is a so-called ''greenhouse gas'' that traps infrared radiation and may contribute to global warming. Scientists project that greenhouse gases such as CO{sub 2} will make the arctic warmer, which would melt glaciers and raise sea levels. Evidence suggests that climate change may already have begun to affect ecosystems and wildlife around the world. Some animal species are moving from one habitat to another to adapt to warmer temperatures. Future warming is likely to exceed the ability of many species to migrate or adjust. Human production of CO{sub 2} from fossil fuels (such as at coal-fired power plants) is not likely to slow down soon. It is urgent to find somewhere besides the atmosphere to put these increased levels of CO{sub 2}. Sequestration in the ocean and in soils and forests are possibilities, but another option, sequestration in geological formations, may also be an important solution. Such formations could include depleted oil and gas reservoirs, unmineable coal seams, and deep saline aquifers. In many cases, injection of CO2 into a geological formation can enhance the recovery of hydrocarbons, providing value-added byproducts that can offset the cost of CO{sub 2} capture and sequestration. Before CO{sub 2} gas can be sequestered from power plants and other point sources, it must be captured. CO{sub 2} is also routinely separated and captured as a by-product from industrial processes such as synthetic ammonia production, H{sub 2} production, and limestone calcination. Then CO{sub 2} must be compressed into liquid form and transported to the geological sequestration site. Many power plants and other large emitters of CO{sub 2} are located near geological formations that are amenable to CO{sub 2} sequestration.

  18. THE REMOVAL OF METALS AND VIRUSES IN ADVANCED WASTEWATER TREATMENT SEQUENCES

    EPA Science Inventory

    An extensive study of metals and virus removals by advanced wastewater treatment processes was conducted in Dallas, Texas from June 1972 through December 1973. Processes applied to a biologically nitrified effluent included chemical coagulation with alum and/or lime, high-pH lime...

  19. 43 CFR 5461.1 - Payment in advance of cutting or removal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Payment in advance of cutting or removal. 5461.1 Section 5461.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR FOREST MANAGEMENT (5000) SALES ADMINISTRATION...

  20. 43 CFR 5461.1 - Payment in advance of cutting or removal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Payment in advance of cutting or removal. 5461.1 Section 5461.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR FOREST MANAGEMENT (5000) SALES ADMINISTRATION...

  1. Electrochemical carbon dioxide concentrator advanced technology tasks

    NASA Technical Reports Server (NTRS)

    Schneider, J. J.; Schubert, F. H.; Hallick, T. M.; Woods, R. R.

    1975-01-01

    Technology advancement studies are reported on the basic electrochemical CO2 removal process to provide a basis for the design of the next generation cell, module and subsystem hardware. An Advanced Electrochemical Depolarized Concentrator Module (AEDCM) is developed that has the characteristics of low weight, low volume, high CO2, removal, good electrical performance and low process air pressure drop. Component weight and noise reduction for the hardware of a six man capacity CO2 collection subsystem was developed for the air revitalization group of the Space Station Prototype (SSP).

  2. CO2 monitoring at the pilot-scale CO2 injection site in Nagaoka, Japan

    NASA Astrophysics Data System (ADS)

    Tanase, D.; Xue, Z.; Watanabe, J.; Saito, H.

    2005-12-01

    A pilot-scale CO2 sequestration project supported by the Japanese Government (METI) has been conducted by Research Institute of Innovative Technology for the Earth (RITE) in co-operation with Engineering Advancement Association of Japan (ENAA). The test site is located at the South Nagaoka gas field operated by Teikoku Oil Co., Ltd. in Nagaoka city, Niigata Prefecture, 200 km north of Tokyo. The targeted layer for the CO2 injection is a thin permeable zone intercalated in a 60 m thick sandstone bed of early Pleistocene age, which lies about 1,100 m below the ground surface. One injection well (IW-1) and three observation wells (OB-2, -3, -4) were drilled at the site. The CO2 injection started on 7 July 2003 and ended on 11 January 2005 with the total injected amount of 10,400 tonnes within eighteen months. Purchased CO2 of 99.9 % pure was injected in the supercritical state at the rate of 20-40 tonnes per day. A series of time-lapse CO2 monitoring consisted of geophysical well logging and cross-well seismic tomography has been performed at the injection site and the results provide valuable insight into the CO2 movement in the sandstone reservoir. Time-lapse well loggings of induction, gamma ray, neutron and sonic were performed almost once a month to monitor CO2 breakthrough at the three observation wells. On 10 March 2004, a breakthrough was first detected at OB-2, 40 m apart from the injection well, after the cumulative injection of 4,000 tonnes. As an evidence of CO2 breakthrough changes appeared in results of sonic, induction and neutron logs. The sonic P-wave velocity decreased significantly up to 23% after the breakthrough, and then results of sonic logging showed the CO2-bearing zone getting wider during the injection of CO2. Differences appeared also in widths of CO2-bearing zone of induction and neutron logs. On 16 July 2004, another breakthrough of CO2 was detected at OB-4 of 60 m away from the injection well as changes in sonic and neutron logs. No sign

  3. CO2 interaction with geomaterials.

    SciTech Connect

    Guthrie, George D.; Al-Saidi, Wissam A.; Jordan, Kenneth D.; Voora, Vamsee, K.; Romanov, Vyacheslav N.; Lopano, Christina L; Myshakin, Eugene M.; Hur, Tae Bong; Warzinski, Robert P.; Lynn, Ronald J.; Howard, Bret H.; Cygan, Randall Timothy

    2010-09-01

    This work compares the sorption and swelling processes associated with CO2-coal and CO2-clay interactions. We investigated the mechanisms of interaction related to CO2 adsortion in micropores, intercalation into sub-micropores, dissolution in solid matrix, the role of water, and the associated changes in reservoir permeability, for applications in CO2 sequestration and enhanced coal bed methane recovery. The structural changes caused by CO2 have been investigated. A high-pressure micro-dilatometer was equipped to investigate the effect of CO2 pressure on the thermoplastic properties of coal. Using an identical dilatometer, Rashid Khan (1985) performed experiments with CO2 that revealed a dramatic reduction in the softening temperature of coal when exposed to high-pressure CO2. A set of experiments was designed for -20+45-mesh samples of Argonne Premium Pocahontas No.3 coal, which is similar in proximate and ultimate analysis to the Lower Kittanning seam coal that Khan used in his experiments. No dramatic decrease in coal softening temperature has been observed in high-pressure CO2 that would corroborate the prior work of Khan. Thus, conventional polymer (or 'geopolymer') theories may not be directly applicable to CO2 interaction with coals. Clays are similar to coals in that they represent abundant geomaterials with well-developed microporous structure. We evaluated the CO2 sequestration potential of clays relative to coals and investigated the factors that affect the sorption capacity, rates, and permanence of CO2 trapping. For the geomaterials comparison studies, we used source clay samples from The Clay Minerals Society. Preliminary results showed that expandable clays have CO2 sorption capacities comparable to those of coal. We analyzed sorption isotherms, XRD, DRIFTS (infrared reflectance spectra at non-ambient conditions), and TGA-MS (thermal gravimetric analysis) data to compare the effects of various factors on CO2 trapping. In montmorillonite, CO2

  4. Leaves: Elevated CO2 levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Burning fossil fuels and land use changes such as deforestation and urbanization have led to a dramatic rise in the concentration of carbon dioxide (CO2) in the atmosphere since the onset of the Industrial Revolution. The highly dilute CO2 from the atmosphere enters plant leaves where it is concentr...

  5. CO2 Sequestration short course

    SciTech Connect

    DePaolo, Donald J.; Cole, David R; Navrotsky, Alexandra; Bourg, Ian C

    2014-12-08

    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  6. Life-Cycle Assessment of Advanced Nutrient Removal Technologies for Wastewater Treatment.

    PubMed

    Rahman, Sheikh M; Eckelman, Matthew J; Onnis-Hayden, Annalisa; Gu, April Z

    2016-03-15

    Advanced nutrient removal processes, while improving the water quality of the receiving water body, can also produce indirect environmental and health impacts associated with increases in usage of energy, chemicals, and other material resources. The present study evaluated three levels of treatment for nutrient removal (N and P) using 27 representative treatment process configurations. Impacts were assessed across multiple environmental and health impacts using life-cycle assessment (LCA) following the Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) impact-assessment method. Results show that advanced technologies that achieve high-level nutrient removal significantly decreased local eutrophication potential, while chemicals and electricity use for these advanced treatments, particularly multistage enhanced tertiary processes and reverse osmosis, simultaneously increased eutrophication indirectly and contributed to other potential environmental and health impacts including human and ecotoxicity, global warming potential, ozone depletion, and acidification. Average eutrophication potential can be reduced by about 70% when Level 2 (TN = 3 mg/L; TP = 0.1 mg/L) treatments are employed instead of Level 1 (TN = 8 mg/L; TP = 1 mg/L), but the implementation of more advanced tertiary processes for Level 3 (TN = 1 mg/L; TP = 0.01 mg/L) treatment may only lead to an additional 15% net reduction in life-cycle eutrophication potential. PMID:26871301

  7. Response of Photosynthesis and Yield of Sweetpotato and Peanut to Super-optimal CO2 levels

    NASA Astrophysics Data System (ADS)

    Bonsi, C.; Bullard, J.; Hileman, D.; Mortley, D.; Hill, J.; Hill, W.; Morrris, C.

    The fate of persons involved in long-term space travel and habitation will depend greatly on the ability to provide food and a livable environment for them In the National Aeronautics and Space Administration NASA Advanced Life Support ALS program photosynthesis of higher plants will be utilized to provide food and oxygen while removing carbon dioxide produced by humans and other heterotrophs as well as transpiring water that can be recycled for drinking This plant-mediated process is collectively referred to as Bioregenerative Life Support Carbon dioxide concentrations on board a space shuttle cabin atmosphere range between 4000 and 6000 mu mol mol -1 CO 2 but with large crews may exceed 10 000- mu mol mol -1 CO 2 Thus it is critical to evaluate the responses of candidate crops to super optimal levels of CO 2 Soybean and potato have been exposed to CO 2 concentrations up to 5000 and 10 000- mu mol mol -1 Very little research has been published about the effects of super-optimal CO 2 levels on sweetpotato and peanut growth and physiology thus indicating a need for extensive research on these plants The aim of this study was to evaluate the effects of super-optimal CO 2 enrichment on growth of TU-82-155 sweetpotato and Georgia Red peanut in a Microporous Tube Membrane MPT using Turface Media and Nutrient Film Technique NFT nutrient delivery systems Sweetpotato Ipomoea batatas L Lam and peanut Arachis hypogaea L were exposed to three CO 2 levels of 400

  8. Occurrence and Removal of Organic Micropollutants in Landfill Leachates Treated by Electrochemical Advanced Oxidation Processes.

    PubMed

    Oturan, Nihal; van Hullebusch, Eric D; Zhang, Hui; Mazeas, Laurent; Budzinski, Hélène; Le Menach, Karyn; Oturan, Mehmet A

    2015-10-20

    In recent years, electrochemical advanced oxidation processes have been shown to be an effective alternative for the removal of refractory organic compounds from water. This study is focused on the effective removal of recalcitrant organic matter (micropollutants, humic substances, etc.) present in municipal solid waste landfill leachates. A mixture of eight landfill leachates has been studied by the electro-Fenton process using a Pt or boron-doped diamond (BDD) anode and a carbon felt cathode or by the anodic oxidation process with a BDD anode. These processes exhibit great oxidation ability due to the in situ production of hydroxyl radicals ((•)OH), a highly powerful oxidizing species. Both electrochemical processes were shown to be efficient in the removal of dissolved total organic carbon (TOC) from landfill leachates. Regarding the electro-Fenton process, the replacement of the classical anode Pt by the anode BDD allows better performance in terms of dissolved TOC removal. The occurrence and removal yield of 19 polycyclic aromatic hydrocarbons, 15 volatile organic compounds, 7 alkylphenols, 7 polychlorobiphenyls, 5 organochlorine pesticides, and 2 polybrominated diphenyl ethers in landfill leachate were also investigated. Both electrochemical processes allow one to reach a quasicomplete removal (about 98%) of these organic micropollutants. PMID:26378656

  9. Use of CO2 laser in lingual and labial frenectomy

    NASA Astrophysics Data System (ADS)

    Fiorotti, Renata C.; Bellini, Bruno S.; Cassitas, Nilceu P.; Baldin, Diva H. Z.; Nicola, Ester M. D.

    2000-03-01

    Ankiloglossia or frenum lingual alteration leads to important tongue dysfunction, which, besides discomfort and pain during function, is generally responsible for the difficulty to express specific phonemes. In other cases, a heavy muscular abnormal attachment of labial frenum can promote clinical changes. In such case, an eventual orthodontic therapy is indicated and aesthetic alteration is observed. In both cases, surgical removal is indicated. The surgery, for prevention purposes, must be done as soon as possible, but considering that the majority of patients are young (5 - 14 years old), difficulties during surgery are expected to occur. Correction of speech or orthodontic dysfunction in advanced ages is much more complex and difficult than in childhood. In the present work we demonstrate that the use of CO2 lasers in these cases are advantageous and simple. The laser energy causes the tissue of the frenum to open in the classic shape with no bleeding and no need for suture, reducing the risk of cross- contamination and of postoperative infection. Scarring and other complications are also minimized. A CO2 laser (continuous, 8 W, 10.6 micrometers) was used assisted with local anesthesia. The major advantage of laser is the possibility of its application in early ages, preventing further problems.

  10. Target selection and comparison of mission design for space debris removal by DLR's advanced study group

    NASA Astrophysics Data System (ADS)

    van der Pas, Niels; Lousada, Joao; Terhes, Claudia; Bernabeu, Marc; Bauer, Waldemar

    2014-09-01

    Space debris is a growing problem. Models show that the Kessler syndrome, the exponential growth of debris due to collisions, has become unavoidable unless an active debris removal program is initiated. The debris population in LEO with inclination between 60° and 95° is considered as the most critical zone. In order to stabilize the debris population in orbit, especially in LEO, 5 to 10 objects will need to be removed every year. The unique circumstances of such a mission could require that several objects are removed with a single launch. This will require a mission to rendezvous with a multitude of objects orbiting on different altitudes, inclinations and planes. Removal models have assumed that the top priority targets will be removed first. However this will lead to a suboptimal mission design and increase the ΔV-budget. Since there is a multitude of targets to choose from, the targets can be selected for an optimal mission design. In order to select a group of targets for a removal mission the orbital parameters and political constraints should also be taken into account. Within this paper a number of the target selection criteria are presented. The possible mission targets and their order of retrieval is dependent on the mission architecture. A comparison between several global mission architectures is given. Under consideration are 3 global missions of which a number of parameters are varied. The first mission launches multiple separate deorbit kits. The second launches a mother craft with deorbit kits. The third launches an orbital tug which pulls the debris in a lower orbit, after which a deorbit kit performs the final deorbit burn. A RoM mass and cost comparison is presented. The research described in this paper has been conducted as part of an active debris removal study by the Advanced Study Group (ASG). The ASG is an interdisciplinary student group working at the DLR, analyzing existing technologies and developing new ideas into preliminary

  11. Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture

    SciTech Connect

    Li, Shiguang; Shou, S.; Pyrzynski, Travis; Makkuni, Ajay; Meyer, Howard

    2013-12-31

    % CO2 product purity was achieved throughout the test. Membrane contactor modules have been scaled from bench scale 2-inch diameter by 12-inch long (20 ft2 membrane surface area) modules to 4-inch diameter by 60-inch long pilot scale modules (165 ft2 membrane surface area). Pilot scale modules were tested in an integrated absorption/regeneration system for CO2 capture field tests at a coal-fired power plant (Midwest Generation’s Will County Station located in Romeoville, IL). Absorption and regeneration contactors were constructed utilizing high performance super-hydrophobic, nano-porous PEEK membranes with CO2 gas permeance of 2,000 GPU and a 1,000 GPU, respectively. Field tests using aMDEA solvent achieved greater than 90% CO2 removal in a single stage. The absorption mass transfer coefficient was 1.2 (sec)-1, exceeding the initial target of 1.0 (sec)-1. This mass transfer coefficient is over one order of magnitude greater than that of conventional gas/liquid contacting equipment. The economic evaluation based on field tests data indicates that the CO2 capture cost associated with membrane contactor technology is $54.69 (Yr 2011$)/tonne of CO2 captured when using aMDEA as a solvent. It is projected that the DOE’s 2025 cost goal of $40 (Yr 2011$)/tonne of CO2 captured can be met by decreasing membrane module cost and by utilizing advanced CO2 capture solvents. In the second stage of the field test, an advanced solvent, Hitachi’s H3-1 was utilized. The use of H3-1 solvent increased mass transfer coefficient by 17% as compared to aMDEA solvent. The high mass transfer coefficient of H3-1 solvent combined with much more favorable solvent regeneration requirements, indicate that the projected savings achievable with membrane contactor process can be further improved. H3-1 solvent will be used in the next pilot-scale development phase. The integrated absorption/regeneration process design and high performance membrane contactors developed in the current bench

  12. A peak and decline in North Atlantic CO2 uptake

    NASA Astrophysics Data System (ADS)

    Halloran, Paul; Lebehot, Alice; Watson, Andy; McNeall, Doug; Schuster, Ute; Voelker, Christoph; Booth, Ben; Totterdell, Ian; Jones, Chris; Lambert, Hugo

    2016-04-01

    The oceans play a vital role in mitigating climate change by removing anthropogenic CO2 from the atmosphere. Presently, only around half of human-emitted CO2 remains in the atmosphere, with the rest being taken up by the land and ocean carbon sinks in approximately equal proportions. Of the ocean's CO2 uptake, that occurring in that high-latitude North Atlantic is the most intense. We develop a theoretical framework which proposes that Subpolar North Atlantic CO2 uptake is likely to peak and decline within the coming century. Considering the CMIP5 models within this framework, and comparing their behaviour to observations, we find that the CMIP5 models underestimate how close the real world's Subpolar North Atlantic CO2 uptake is to reaching peak uptake.

  13. A 40-million-year history of atmospheric CO(2).

    PubMed

    Zhang, Yi Ge; Pagani, Mark; Liu, Zhonghui; Bohaty, Steven M; Deconto, Robert

    2013-10-28

    The alkenone-pCO2 methodology has been used to reconstruct the partial pressure of ancient atmospheric carbon dioxide (pCO2) for the past 45 million years of Earth's history (Middle Eocene to Pleistocene epochs). The present long-term CO2 record is a composite of data from multiple ocean localities that express a wide range of oceanographic and algal growth conditions that potentially bias CO2 results. In this study, we present a pCO2 record spanning the past 40 million years from a single marine locality, Ocean Drilling Program Site 925 located in the western equatorial Atlantic Ocean. The trends and absolute values of our new CO2 record site are broadly consistent with previously published multi-site alkenone-CO2 results. However, new pCO2 estimates for the Middle Miocene are notably higher than published records, with average pCO2 concentrations in the range of 400-500 ppm. Our results are generally consistent with recent pCO2 estimates based on boron isotope-pH data and stomatal index records, and suggest that CO2 levels were highest during a period of global warmth associated with the Middle Miocene Climatic Optimum (17-14 million years ago, Ma), followed by a decline in CO2 during the Middle Miocene Climate Transition (approx. 14 Ma). Several relationships remain contrary to expectations. For example, benthic foraminiferal δ(18)O records suggest a period of deglaciation and/or high-latitude warming during the latest Oligocene (27-23 Ma) that, based on our results, occurred concurrently with a long-term decrease in CO2 levels. Additionally, a large positive δ(18)O excursion near the Oligocene-Miocene boundary (the Mi-1 event, approx. 23 Ma), assumed to represent a period of glacial advance and retreat on Antarctica, is difficult to explain by our CO2 record alone given what is known of Antarctic ice sheet history and the strong hysteresis of the East Antarctic Ice Sheet once it has grown to continental dimensions. We also demonstrate that in the

  14. ACCURACY OF CO2 SENSORS

    SciTech Connect

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2008-10-01

    Are the carbon dioxide (CO2) sensors in your demand controlled ventilation systems sufficiently accurate? The data from these sensors are used to automatically modulate minimum rates of outdoor air ventilation. The goal is to keep ventilation rates at or above design requirements while adjusting the ventilation rate with changes in occupancy in order to save energy. Studies of energy savings from demand controlled ventilation and of the relationship of indoor CO2 concentrations with health and work performance provide a strong rationale for use of indoor CO2 data to control minimum ventilation rates1-7. However, this strategy will only be effective if, in practice, the CO2 sensors have a reasonable accuracy. The objective of this study was; therefore, to determine if CO2 sensor performance, in practice, is generally acceptable or problematic. This article provides a summary of study methods and findings ? additional details are available in a paper in the proceedings of the ASHRAE IAQ?2007 Conference8.

  15. CO2 Sequestration Crosswell Monitoring

    NASA Astrophysics Data System (ADS)

    Morency, C.; Luo, Y.; Tromp, J.

    2010-12-01

    Geologic sequestration of CO2, a green house gas, represents an effort to reduce the large amount of CO2 generated as a by-product of fossil fuels combustion and emitted into the atmosphere. This process of sequestration involves CO2 storage deep underground into highly permeable porous media sealed by caprock. "4D seismics" is a natural non-intrusive monitoring technique which involves 3D time-lapse seismic surveys. The success of monitoring CO2 movement relies upon a proper description of the physics of the problem. We realize time-lapse migrations comparing acoustic, elastic (with or without Gassmann's formulae), and poroelastic simulations of 4D seismic imaging. This approach highlights the influence of using different physical theories on interpreting seismic data, and, more importantly, on extracting the CO2 signature from the seismic wave field. We investigate various types of inversions using (1) P-wave traveltimes, (2) P- & S-wave traveltimes and (3) P- & S-wave traveltimes and amplitudes. Simulations are performed using a spectral-element method, and finite-frequency sensitivity kernels, used in the non-linear iterative inversions, are calculated based on an adjoint method. Biot's equations are implemented in the forward and adjoint simulations to account for poroelastic effects.

  16. Breadboard CO2 and humidity control system

    NASA Technical Reports Server (NTRS)

    Boehm, A. M.

    1976-01-01

    A regenerable CO2 and humidity control system is being developed for potential use on shuttle as an alternate to the baseline lithium hydroxide (LiOH)/condensing heat exchanger system. The system utilizes a sorbent material, designated HS-C, to adsorb CO2 and water vapor from the cabin atmosphere. The material is regenerated by exposing it to space vacuum. A half-size breadboard system, utilizing a flight representative HS-C canister, was designed, built, and performance tested to shuttle requirements for total CO2 and total humidity removal. The use of a new chemical matrix material allowed significant optimization of the system design by packing the HS-C chemical into the core of a heat exchanger which is manifolded to form two separate and distinct beds. Breadboard system performance was proven by parametric testing and simulated mission testing over the full range of shuttle crew sizes and metabolic loadings. Vacuum desorption testing demonstrated considerable savings in previously projected shuttle vacuum duct sizing.

  17. CO2-Triggered Switchable Solvents, Surfactants, and Other Materials

    SciTech Connect

    Jessop, Philip G.; Mercer, Sean; Heldebrant, David J.

    2012-06-14

    Waste CO2 at atmospheric pressure can be used to trigger dramatic changes in the properties of certain switchable materials. Compared to other triggers such as light, acids, oxidants, CO2 has the advantages that it is inexpensive, nonhazardous, non-accumulating in the system, easily removed, and it does not require the material to be transparent. Known CO2-triggered switchable materials 10 now include solvents, surfactants, solutes, catalysts, particles, polymers, and gels. The added flexibility of switchable materials represents a new strategy for minimizing energy and material consumption in process and product design.

  18. Breadboard Solid Amine Water Desorbed CO2 Control System

    NASA Technical Reports Server (NTRS)

    Colling, A. K.; Hultman, M. M.

    1980-01-01

    A regenerable CO2 removal system was developed for potential use on the shuttle as an alternate to the baseline lithium hydroxide (LiOH) system. It uses a solid amine material to adsorb CO2 from the atmosphere. The material is regenerated by heating it with steam from a zero gravity water evaporator. A full sized, thermally representative breadboard canister and a preprototype water evaporator were built and tested to shuttle requirements for CO2 control. The test program was utilized to evaluate and verify the operation and performance of these two primary components of the SAWD system.

  19. Spectral analysis of chemisorbed CO2 on Mars analog materials

    NASA Technical Reports Server (NTRS)

    Zent, A. P.; Roush, T. L.

    1993-01-01

    The goal of this work is to estimate the mass of CO2 that may have been removed to a quasi-stable reservoir on the Martian surface by chemisorption and to estimate the spectral effects of chemisorbed CO2 in remotely-sensed Martian spectra. Our approach is to characterize the conditions most favorable for the formation of carbonate on common terrestrial oxide minerals and to search for infrared spectral bands that result from chemisorption of CO2 molecules onto oxide and other Mars analog materials.

  20. Partial pressure of CO2 and CO2 emission in a monsoon-driven hydroelectric reservoir (Danjiangkou Reservoir), China

    NASA Astrophysics Data System (ADS)

    Li, S. Y.; Zhang, Q. F.

    2013-06-01

    3.4 × 109 mol C. Remarkably spatial and temporal heterogeneities in CO2 flux from China's hydroelectric reservoirs are urgently included for advancing global models of reservoirs' carbon emissions.

  1. Update on CO2 emissions

    SciTech Connect

    Friedingstein, P.; Houghton, R.A.; Marland, Gregg; Hackler, J.; Boden, Thomas A; Conway, T.J.; Canadell, J.G.; Raupach, Mike; Ciais, Philippe; Le Quere, Corrine

    2010-12-01

    Emissions of CO2 are the main contributor to anthropogenic climate change. Here we present updated information on their present and near-future estimates. We calculate that global CO2 emissions from fossil fuel burning decreased by 1.3% in 2009 owing to the global financial and economic crisis that started in 2008; this is half the decrease anticipated a year ago1. If economic growth proceeds as expected2, emissions are projected to increase by more than 3% in 2010, approaching the high emissions growth rates that were observed from 2000 to 20081, 3, 4. We estimate that recent CO2 emissions from deforestation and other land-use changes (LUCs) have declined compared with the 1990s, primarily because of reduced rates of deforestation in the tropics5 and a smaller contribution owing to forest regrowth elsewhere.

  2. Distribution and nature of CO2 on Enceladus

    NASA Astrophysics Data System (ADS)

    Combe, J. P.; McCord, T. B.; Matson, D.; Johnson, T. V.; Scipioni, F.; Tosi, F.

    2015-12-01

    We present the first global mapping and analysis of CO2 on the surface of Enceladus, and we report the largest concentrations of free CO2 on the southern polar region using the Visual and Infrared Mapping Spectrometer (VIMS) on Cassini. Free CO2 ice and complexed CO2 were already reported near the South Pole (Brown et al., Science, 2006; Hansen, LPSC, 2010). Our work focuses on determining the amount, location and molecular state of CO2 on Enceladus, which could help identify and model geophysical processes that currently occur in the interior. One hypothesis for bringing heat and chemicals to the surface is a warm subsurface ocean containing dissolved gases, mostly CO2 (Postberg F. et al., Nature, 2009). Therefore, our observations are consistent with erupted and condensed materials onto Enceladus' surface (Matson et al., Icarus, 2012; Matson et al. AGU Fall meeting 2015). Free CO2 ice absorbs at 4.268 µm (Sandford and Allamandola, 1990) and CO2 complexed with other molecules absorbs at 4.247 μm (Chaban et al., Icarus, 2007). The Enceladus case is complicated because both free and complexed CO2 are present, and the absorption band of interest is shallow and close to the instrument detection limit. Many of the few Enceladus VIMS data sets have significant and sometimes unusual noise, which we attempted to avoid or remove. We utilized all VIMS data sets available that were collected over ten years of the Cassini mission as a way to improve the detection statistics and signal to noise. We also used wavelengths near 2.7 μm where CO2 has a narrow absorption as a filter to help identify CO2-rich areas. Finally, we selected observations that have spatial resolution better than 100 km in order to create a map that can be compared with the largest fractures, known as Tiger Stripes, in the southern polar region.

  3. Reaction of CO2 and Carbonate Mineral in Seawater for Mitigation of CO2 and Ocean Acidity

    NASA Astrophysics Data System (ADS)

    Rau, G. H.

    2010-12-01

    A lab-scale seawater/mineral carbonate gas scrubber was found to remove up to 97% of CO2 in a simulated flue gas stream at ambient temperature and pressure, with a large fraction of this carbon ultimately converted to dissolved calcium bicarbonate. Contrary to predictions based on classical carbonate chemistry, up to 85% of the captured carbon was retained in solution, i.e., it did not degas or precipitate, even after full equilibration with air. This is because abiotic precipitation of CaCO3 from seawater is chemically inhibited up to dissolved concentrations approaching 20X supersaturation. Thus, above-ground CO2 hydration with seawater, reaction with mineral carbonate, and conversion to dissolved Ca(HCO3)2 may provide a relatively simple point-source CO2 capture and storage scheme at coastal locations. This approach is analogous to wet limestone scrubbing of flue gas that is commonly used for SO2 removal. Such low-tech CO2 mitigation could be especially relevant for retrofitting to existing coastal power plants and for deployment in the developing world, the primary source of future CO2 emissions. An electrochemically powered version of the preceding has been demonstrated for air capture of CO2. In any case, the addition of the resulting alkaline solution to the ocean would benefit marine ecosystems that are currently challenged by acidification. This is indicated by the widespread use of miniature CO2/carbonate mineral/seawater reactors in saltwater aquaria to generate alkalinity for preserving or enhancing coral and shellfish growth. Large-scale applications would thus allow use of the planet’s largest saline reservoir, the ocean, to safely and effectively store anthropogenic carbon in a form other than molecular CO2 or carbonic acid. This approach in essence hastens Nature's own very effective but slow CO2 mitigation process; carbonate mineral weathering is a major consumer of excess atmospheric CO2 and ocean acidity on geologic times scales.

  4. Decadal predictions of the North Atlantic CO2 uptake

    PubMed Central

    Li, Hongmei; Ilyina, Tatiana; Müller, Wolfgang A.; Sienz, Frank

    2016-01-01

    As a major CO2 sink, the North Atlantic, especially its subpolar gyre region, is essential for the global carbon cycle. Decadal fluctuations of CO2 uptake in the North Atlantic subpolar gyre region are associated with the evolution of the North Atlantic Oscillation, the Atlantic meridional overturning circulation, ocean mixing and sea surface temperature anomalies. While variations in the physical state of the ocean can be predicted several years in advance by initialization of Earth system models, predictability of CO2 uptake has remained unexplored. Here we investigate the predictability of CO2 uptake variations by initialization of the MPI-ESM decadal prediction system. We find large multi-year variability in oceanic CO2 uptake and demonstrate that its potential predictive skill in the western subpolar gyre region is up to 4–7 years. The predictive skill is mainly maintained in winter and is attributed to the improved physical state of the ocean. PMID:27026490

  5. Decadal predictions of the North Atlantic CO2 uptake.

    PubMed

    Li, Hongmei; Ilyina, Tatiana; Müller, Wolfgang A; Sienz, Frank

    2016-01-01

    As a major CO2 sink, the North Atlantic, especially its subpolar gyre region, is essential for the global carbon cycle. Decadal fluctuations of CO2 uptake in the North Atlantic subpolar gyre region are associated with the evolution of the North Atlantic Oscillation, the Atlantic meridional overturning circulation, ocean mixing and sea surface temperature anomalies. While variations in the physical state of the ocean can be predicted several years in advance by initialization of Earth system models, predictability of CO2 uptake has remained unexplored. Here we investigate the predictability of CO2 uptake variations by initialization of the MPI-ESM decadal prediction system. We find large multi-year variability in oceanic CO2 uptake and demonstrate that its potential predictive skill in the western subpolar gyre region is up to 4-7 years. The predictive skill is mainly maintained in winter and is attributed to the improved physical state of the ocean. PMID:27026490

  6. Decadal predictions of the North Atlantic CO2 uptake

    NASA Astrophysics Data System (ADS)

    Li, Hongmei; Ilyina, Tatiana; Müller, Wolfgang A.; Sienz, Frank

    2016-03-01

    As a major CO2 sink, the North Atlantic, especially its subpolar gyre region, is essential for the global carbon cycle. Decadal fluctuations of CO2 uptake in the North Atlantic subpolar gyre region are associated with the evolution of the North Atlantic Oscillation, the Atlantic meridional overturning circulation, ocean mixing and sea surface temperature anomalies. While variations in the physical state of the ocean can be predicted several years in advance by initialization of Earth system models, predictability of CO2 uptake has remained unexplored. Here we investigate the predictability of CO2 uptake variations by initialization of the MPI-ESM decadal prediction system. We find large multi-year variability in oceanic CO2 uptake and demonstrate that its potential predictive skill in the western subpolar gyre region is up to 4-7 years. The predictive skill is mainly maintained in winter and is attributed to the improved physical state of the ocean.

  7. Textile dry cleaning in high pressure CO2

    NASA Astrophysics Data System (ADS)

    Sutanto, Stevia; van der Kamp, Maaike; Witkamp, Geert-Jan

    2013-06-01

    High-pressure carbon dioxide (CO2) is one of the most suitable replacements for perchloroethylene (PER), a common but harmful textile dry cleaning solvent. Previous studies have indicated that the particulate soil removal with CO2 is lower compared to that with PER, because of the lesser amount of mechanical action in CO2. Furthermore, there is a lack of understanding of textile-dirt-CO2 interaction. It is the objective of this study to get an insight in the mechanical forces that play a role in CO2 dry cleaning and to use this information to improve the CO2 washing performance. Various mechanical actions were investigated with the experiments in an in-situ high pressure observation cell. Textiles stained with different kinds of particulate soils were washed in CO2. The washing results show that the combination of rotating and vertical action gives the highest cleaning performance and liquid CO2 spray may be a suitable additional mechanism to increase the cleaning performance. Authors thank the scientific foundation STW for the financial support.

  8. Improved monitoring of subsurface CO2 storage using novel electrical and seismic measurements: scaled laboratory studies

    NASA Astrophysics Data System (ADS)

    Ghose, R.; Kirichek, A.; Draganov, D.; Heller, K.

    2013-05-01

    For monitoring CO2 stored in appropriate geological settings like depleted oil or gas reservoirs, deep saline aquifers and deep unminable coalbeds, geophysical methods e.g., seismic, electromagnetics, gravity, and surface deformation studies serve as remote sensing techniques which generally provide a large coverage but a low spatial resolution. It has been concluded that of the various approaches, seismic methods have the broadest applicability for stored CO2 monitoring in various geologic settings. As a result, advanced and dedicated seismic monitoring techniques have been developed. However, three major issues that remain unresolved are: 1) to remove accurately the effect of the overburden layers in order to capture the change in seismic properties in the reservoir and thereby obtain reliable estimates of temporal and spatial changes of the rock-physical properties like pressure and saturation, 2) the difficulty to minimize the source-related variation in time-lapse seismic, and 3) the inability to monitor the changes in phase (supercritical, liquid or gaseous) of the stored CO2 in time and space. In order to address these crucial issues, we have concentrated on scaled laboratory tests mimicking realistic storage conditions, and have tested novel approaches involving analysis of complex electrical impedance coupled with seismic-interferometric characterization. A new laboratory experimental facility for simultaneous, multichannel seismic and AC electrical measurements has been developed. We have found that electrical permittivity is a very sensitive parameter to monitor the phase of the stored CO2. Secondly, a novel approach has been developed, which takes advantage of the nonphysical reflections retrieved by seismic interferometry to estimate reliable values of seismic wave velocity and attenuation in the CO2 reservoir, efficiently minimizing the effect of the overburden and removing the detrimental effect of the source-related irreproducibility. Finally, new

  9. Pulpotomies with CO2 laser in dogs

    NASA Astrophysics Data System (ADS)

    Figueiredo, Jose A. P.; Chavantes, Maria C.; Gioso, Marco A.; Pesce, Hildeberto F.; Jatene, Adib D.

    1995-05-01

    The aim of this study was to evaluate the clinical aspects of dental pulps submitted to shallow pulpotomy followed by CO2 laser radiation at five different procedures. For this purpose, initially 66 dogs' teeth were opened and about 2 or 3 mm of coronal dental pulp was removed. Continuous irrigation with saline solution was implemented. The teeth were randomly divided into 6 groups of 11 each. After cessation of bleeding, in group I, CO2 laser (Xanar-20, USA) was irradiated for 1 second at a power of 5 watts; in group II, 2 seconds at 3 watts; in Group III, 2 seconds at 5 watts; in Group IV, 1 second at 3 watts; in Group V, a continuous mode at 3 watts; Group VI served as a control, with no laser irradiation. The results showed no clinical differences between the 3 W and 5 W powers. Time period of irradiation exposition influenced definitively the clinical appearance of the dental pulps. Groups I and IV (1 second) were unable to stop the bleeding, which persisted over 15 minutes for all teeth. This may be due to the intense heat generated by CO2 laser, causing vasodilatation. Groups II and III displayed a similar appearance, but bleeding stopped in about 10 minutes. Group V (continuous mode) had no bleeding after irradiation, but a plasma-like liquid would come out for almost 2 minutes. When comparing to the control (Group VI), all the pulps would assume a jelly-like aspect, with black granulated tissue on the surface, covering totally the pulps of Group V and partially the other groups. The histological results will be discussed in a further study. From the data obtained, it seems that CO2 laser irradiation for pulpotomies should be done in a continuous mode, for clinical convenience in terms of time taken and effective irradiation.

  10. The CO2nnect activities

    NASA Astrophysics Data System (ADS)

    Eugenia, Marcu

    2014-05-01

    Climate change is one of the biggest challenges we face today. A first step is the understanding the problem, more exactly what is the challenge and the differences people can make. Pupils need a wide competencies to meet the challenges of sustainable development - including climate change. The CO2nnect activities are designed to support learning which can provide pupils the abilities, skills, attitudes and awareness as well as knowledge and understanding of the issues. The project "Together for a clean and healthy world" is part of "The Global Educational Campaign CO2nnect- CO2 on the way to school" and it was held in our school in the period between February and October 2009. It contained a variety of curricular and extra-curricular activities, adapted to students aged from 11 to 15. These activities aimed to develop in students the necessary skills to understanding man's active role in improving the quality of the environment, putting an end to its degrading process and to reducing the effects of climate changes caused by the human intervention in nature, including transport- a source of CO2 pollution. The activity which I propose can be easily adapted to a wide range of age groups and linked to the curricula of many subjects: - Investigate CO2 emissions from travel to school -Share the findings using an international database -Compare and discuss CO2 emissions -Submit questions to a climate- and transport expert -Partner with other schools -Meet with people in your community to discuss emissions from transport Intended learning outcomes for pupils who participate in the CO2nnect campaign are: Understanding of the interconnected mobility- and climate change issue climate change, its causes and consequences greenhouse-gas emissions from transport and mobility the interlinking of social, environmental, cultural and economic aspects of the local transport system how individual choices and participation can contribute to creating a more sustainable development

  11. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants

    PubMed Central

    Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya

    2015-01-01

    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes—catalyst/oxidant concentrations, incident radiation flux, and pH—need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities. PMID:26287222

  12. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes.

    PubMed

    Klavarioti, Maria; Mantzavinos, Dionissios; Kassinos, Despo

    2009-02-01

    Over the past few years, pharmaceuticals are considered as an emerging environmental problem due to their continuous input and persistence to the aquatic ecosystem even at low concentrations. Advanced oxidation processes (AOPs) are technologies based on the intermediacy of hydroxyl and other radicals to oxidize recalcitrant, toxic and non-biodegradable compounds to various by-products and eventually to inert end-products. The environmental applications of AOPs are numerous, including water and wastewater treatment (i.e. removal of organic and inorganic pollutants and pathogens), air pollution abatement and soil remediation. AOPs are applied for the abatement of pollution caused by the presence of residual pharmaceuticals in waters for the last decade. In this light, this paper reviews and assesses the effectiveness of various AOPs for pharmaceutical removal from aqueous systems. PMID:18760478

  13. Enhancing the Ocean's Role in CO2 Mitigation

    NASA Astrophysics Data System (ADS)

    Rau, G. H.

    2012-12-01

    The possibility of safely increasing the ocean's significant, natural consumption and storage of excess CO2 deserves consideration since land-based efforts are thus far failing to stabilize atmospheric CO2 and associated climate and ocean chemistry impacts. Of the approximately 34 GT/yr of CO2 currently emitted to the atmosphere by human activity, the ocean consumes the equivalent of about 8 GT/yr of these emissions. These fluxes are, however, dwarfed by the annual gross amount of CO2 naturally taken up and released by the ocean, in excess of 300 GT CO2/yr. Additionally, the carbon content in the ocean is about 50 times that of the atmosphere, with the majority in a form (HCO2-) that can, through equilibrium reactions, interact with atmospheric CO2. Marine chemical, biological and physical processes that naturally affect ocean CO2 gain and loss thus intimately influence the natural carbon content of the atmosphere. Indeed, ocean chemistry in conjunction with carbonate and silicate mineral weathering is the primary mechanism that naturally moderates and consumes excess atmospheric CO2 on geologic timescales. The ocean is therefore a logical place to explore means of enhancing atmospheric and anthropogenic carbon uptake and/or sequestration in efforts to stabilize or possibly reduce atmospheric CO2 concentrations. Modification of such global processes (often only relatively slightly) forms the basis for many of the ocean-based CO2 mitigation approaches thus far proposed. These include: 1) the storage in or under the ocean of molecular CO2, or organic or inorganic derivatives that have been captured or formed on land; 2) the removal of ocean/atmosphere CO2 via biological uptake enhanced by artificially increased upwelling or nutrient addition; 3) the chemical, geochemical, or electrochemical alkalization of the ocean to increase ocean CO2 uptake with chemical transformation to bicarbonates or carbonates, and subsequent ocean storage; and 4) increased production and

  14. Reducing cement's CO2 footprint

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  15. Transformation of CO2 to Value-Added Materials

    NASA Astrophysics Data System (ADS)

    Khoo, Rebecca Shu Hui; Luo, He-Kuan; Braunstein, Pierre; Hor, T. S. Andy

    2015-09-01

    Carbon dioxide (CO2) is an attractive C1 resource because it is cheap and abundant and its more extensive use would be beneficial for the environment. However, its high thermodynamic stability and poor reactivity have seriously limited its utilization as a ready carbon source. The scientific challenges facing CO2 transformation are accordingly very attractive. This paper summarizes recent advances made in transformation of CO2 to value-added high-molecular-weight materials such as polymers, star-shaped molecules and nanocarbons.

  16. Effect of carbon source on biomass growth and nutrients removal of Scenedesmus obliquus for wastewater advanced treatment and lipid production.

    PubMed

    Shen, Qiao-Hui; Jiang, Jia-Wei; Chen, Li-Ping; Cheng, Li-Hua; Xu, Xin-Hua; Chen, Huan-Lin

    2015-08-01

    The combination of tertiary wastewater treatment and microalgal lipid production is considered to be a promising approach to water eutrophication as well as energy crisis. To intensify wastewater treatment and microalgal biofuel production, the effect of organic and inorganic carbon on algal growth and nutrient removal of Scenedesmus obliquus were examined by varying TOC (total organic carbon) concentrations of 20-120mgL(-1) in wastewater and feeding CO2 concentrations in the range of 0.03-15%, respectively. The results showed that the maximal biomass and average lipid productivity were 577.6 and 16.7mgL(-1)d(-1) with 5% CO2 aeration. The total nitrogen, total phosphorus and TOC removal efficiencies were 97.8%, 95.6% and 59.1% respectively within 6days when cultured with real secondary municipal wastewater. This work further showed that S. obliquus could be utilized for simultaneous organic pollutants reduction, N, P removal and lipid accumulation. PMID:25958150

  17. Solid Sorbents for CO2 Capture from Post-Combustion and Pre-Combustion Gas Streams

    SciTech Connect

    Siriwardane, R.V.; Robinson, C.; Stevens, R.W.

    2007-08-01

    A novel liquid impregnated solid sorbent was developed for CO2 removal in the temperature range of ambient to 60 °C for both fixed bed and fluidized bed reactor applications. The sorbent is regenerable at 60-80 °C. Multi-cycle tests conducted in an atmospheric bench scale reactor with simulated flue gas demonstrated that the sorbent retains its CO2 sorption capacity with CO2 removal efficiency of about 99%. A second, novel solid sorbent containing mixture of alkali earth and alkali compounds was developed for CO2 removal at 200-315 °C from high pressure gas streams (i.e., suitable for IGCC systems). The sorbent showed very high capacity for CO2 removal from gas streams containing 28% CO2 at 200 °C and 11.2 atm during lab-scale flow reactor tests as well as regenerability at 375 °C.

  18. A multi-biome gap in understanding of crop and ecosystem responses to elevated CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Open-top chamber (OTC) and Free Air CO2 Enrichment (FACE) experiments have advanced understanding of plant and ecosystem responses to rising atmospheric carbon dioxide concentrations ([CO2]). A key result from long-term experiments is that the magnitude of response to elevated [CO2] is dependent upo...

  19. Evaluation of dry technology for removal of pellicle adhesive residue on advanced optical reticles

    NASA Astrophysics Data System (ADS)

    Paracha, Shazad; Bekka, Samy; Eynon, Benjamin; Choi, Jaehyuck; Balooch, Mehdi; Varghese, Ivin; Hopkins, Tyler

    2013-09-01

    The fast pace of MOSFET scaling is accelerating the introduction of smaller technology nodes to extend CMOS beyond 20nm as required by Moore's law. To meet these stringent requirements, the industry is seeing an increase in the number of critical layers per reticle set as it move to lower technology nodes especially in a high volume manufacturing operation. These requirements are resulting in reticles with higher feature densities, smaller feature sizes and highly complex Optical Proximity Correction (OPC), built with using new absorber and pellicle materials. These rapid changes are leaving a gap in maintaining these reticles in a fab environment, for not only haze control but also the functionality of the reticle. The industry standard of using wet techniques (which uses aggressive chemicals, like SPM, and SC1) to repel reticles can result in damage to the sub-resolution assist features (SRAF's), create changes to CD uniformity and have potential for creating defects that require other means of removal or repair. Also, these wet cleaning methods in the fab environment can create source for haze growth. Haze can be controlled by: 1) Chemical free (dry) reticle cleaning, 2) In-line reticle inspection in fab, and 3) Manage the environment where reticles are stored. In this paper we will discuss a dry technique (chemical free) to remove pellicle adhesive residue from advanced optical reticles. Samsung Austin Semiconductors (SAS), jointly worked with Eco-Snow System (a division of RAVE N.P., Inc.) to evaluate the use of Dry Reactive Gas (DRG) technique to remove pellicle adhesive residue on reticles. This technique can significantly reduce the impact to the critical geometry in active array of the reticle, resulting in preserving the reticle performance level seen at wafer level. The paper will discuss results on the viability of this technique used on advanced reticles.

  20. Development status of regenerable solid amine CO2 control systems

    NASA Technical Reports Server (NTRS)

    Colling, A. K., Jr.; Nalette, T. A.; Cusick, R. J.; Reysa, R. P.

    1985-01-01

    The development history of solid amine/water desorbed (SAWD) CO2 control systems is reviewed. The design of the preprototype SAWD I CO2 system on the basis of a three-man metabolic load at the 3.8 mm Hg ambient CO2 level, and the functions of the CO2 removal, CO2 storage/delivery, controller, and life test laboratory support packages are described. The development of a full-scale multiple canister SAWD II preprototype system, which is capable of conducting the CO2 removal/concentration function in a closed-loop atmosphere revitalization system during zero-gravity operation, is examined. The operation of the SAWD II system, including the absorption and desorption cycles, is analyzed. A reduction in the thermal mass of the canister and the system's energy transfer technique result in efficient energy use. The polyether foam, nylon felt, nickel foam, spring retained, and metal bellows bed tests performed to determine the design of the zero-gravity canister are studied; metal bellows are selected for the canister's configuration.

  1. Synthesis, characterization and application of alkanolamidines and alkanolguanidines in CO(2) capture

    SciTech Connect

    Koech, Phillip K; Heldebrant, David J; Lee, Suh-Jane; Rainbolt, James E; Smurthwaite, Tricia D

    2011-03-01

    Global carbon dioxide (CO2) emission to the atmosphere is partly responsible for climate change. In order to mitigate these environmental effects CO2 capture and storage is required. Solvents currently used for this application are the energy intensive aqueous amines. Here we present the synthesis, characterization and CO2 uptake of new advanced solvents called alkanolamidines and alkanolguanidines otherwise known as CO2-binding organic Liquids (CO2BOLs). These solvents have been designed to have decreased vapor pressure and low viscosity in order to increase the CO2 uptake capacity while minimizing evaporative losses. Alkanolamidines were synthesized in 1-3 steps from commercially available materials. These compounds bind CO2 chemically via the alcohol moiety forming zwitterionic alkylcarbonates. The alkanolamidines can be regenerated thermally by heating the alkylcarbonate to 75 °C. CO2 binding capacities up to 10 wt% were achieved using these compounds. These compounds have the potential to be energy efficient CO2 capture solvents.

  2. CO2 mitigation via capture and chemical conversion in seawater.

    PubMed

    Rau, Greg H

    2011-02-01

    A lab-scale seawater/mineral carbonate gas scrubber was found to remove up to 97% of CO(2) in a simulated flue gas stream at ambient temperature and pressure, with a large fraction of this carbon ultimately converted to dissolved calcium bicarbonate. After full equilibration with air, up to 85% of the captured carbon was retained in solution, that is, it did not degas or precipitate. Thus, above-ground CO(2) hydration and mineral carbonate scrubbing may provide a relatively simple point-source CO(2) capture and storage scheme at coastal locations. Such low-tech CO(2) mitigation could be especially relevant for retrofitting to existing power plants and for deployment in the developing world, the primary source of future CO(2) emissions. Addition of the resulting alkaline solution to the ocean may benefit marine ecosystems that are currently threatened by acidification, while also allowing the utilization of the vast potential of the sea to safely sequester anthropogenic carbon. This approach in essence hastens Nature's own very effective but slow CO(2) mitigation process; carbonate mineral weathering is a major consumer of excess atmospheric CO(2) and ocean acidity on geologic times scales. PMID:21189009

  3. Clinical effects of CO2 laser on equine diseases

    NASA Astrophysics Data System (ADS)

    Lindholm, Arne; Svensson, Ulf; Collinder, Eje

    2002-10-01

    CO2 lasers has been used for five years at Malaren Equine Hospital, as an alternative treatment of some equine diseases. The application of CO2 laser has been studied for evaluation of its appropriateness for treatment of the equine diseases sarcoids, lameness in fetlock joints or pulmonary haemorrhage. During the last five years, above 100 equine sarcoids have been removed by laser surgery (CO2 laser) and so far resulting in significantly few recurrences compared with results from usual excision surgery. In one study, acute traumatic arthritis in fetlock joints was treated three times every second day with defocalised CO2 laser. The therapeutic effectiveness of CO2 laser in this study was better than that of the customary therapy with betamethasone plus hyaluronan. During one year, chronic pulmonary bleeders, namely exercise induced pulmonary haemorrhage, has been treated with defocalised CO2 laser. Six race horses have been treated once daily during five days. Until now, three of these horses have subsequently been successfully racing and no symptoms of pulmonary haemorrhage have been observed. These studies indicate that CO2 laser might be an appropriate therapy on sarcoids and traumatic arthritis, and probably also on exercise induced pulmonary haemorrhage. Other treatments for this pulmonary disease are few.

  4. Supersonic Technology for CO2 Capture: A High Efficiency Inertial CO2 Extraction System

    SciTech Connect

    2010-07-01

    IMPACCT Project: Researchers at ATK and ACENT Laboratories are developing a device that relies on aerospace wind-tunnel technologies to turn CO2 into a condensed solid for collection and capture. ATK’s design incorporates a special nozzle that converges and diverges to expand flue gas, thereby cooling it off and turning the CO2 into solid particles which are removed from the system by a cyclonic separator. This technology is mechanically simple, contains no moving parts and generates no chemical waste, making it inexpensive to construct and operate, readily scalable, and easily integrated into existing facilities. The increase in the cost to coal-fired power plants associated with introduction of this system would be 50% less than current technologies.

  5. Decadal predictions of the North Atlantic CO2 uptake

    NASA Astrophysics Data System (ADS)

    Li, Hongmei; Ilyina, Tatiana; Müller, Wolfgang

    2015-04-01

    Oceanic uptake of anthropogenic CO2 is critical for predicting and projecting climate and ocean acidification. The North Atlantic Ocean plays a crucial role in modulating global carbon cycle as a major CO2 sink region, and the subpolar gyre (SPG) region contributes the most to the variation of the North Atlantic CO2 uptake. Previous studies revealed abrupt warming/cooling events in the SPG region, with sea surface temperature (SST) increasing/decreasing by 1°C in only a few years. The abrupt SPG warming/cooling events can be predicted several years in advance by initialization of the earth system models. The CO2 uptake in the North Atlantic is largely driven by ocean mixing variations and SST anomalies. In this study, we investigate the response of the North Atlantic CO2 uptake to observed SST variations and explore the decadal predictability of the North Atlantic CO2 uptake during the period of 1961-2013 with the Max Planck Institute Earth System Model (MPI-ESM). Our results suggest significant inter-annual and decadal variability of the North Atlantic CO2 uptake which is closely related to the evolution of North Atlantic Oscillation (NAO) and corresponding oceanic mixing strength, and this coherence is confined to the western SPG region. We show that the potential predictability of CO2 uptake in the western SPG region is up to 4 years, which is similar to the prediction skill of SPG SST. Direct comparison of initialized simulations with observations implies prediction skill of the North Atlantic CO2 uptake. The predictability of both CO2 uptake and SST in the North Atlantic is assured by initialization of the Atlantic meridional overturning circulation (AMOC).

  6. Direct measurements of CO2 flux in the Greenland Sea

    NASA Astrophysics Data System (ADS)

    Lauvset, Siv K.; McGillis, Wade R.; Bariteau, Ludovic; Fairall, C. W.; Johannessen, Truls; Olsen, Are; Zappa, Christopher J.

    2011-06-01

    During summer 2006 eddy correlation CO2 fluxes were measured in the Greenland Sea using a novel system set-up with two shrouded LICOR-7500 detectors. One detector was used exclusively to determine, and allow the removal of, the bias on CO2 fluxes due to sensor motion. A recently published correction method for the CO2-H2O cross-correlation was applied to the data set. We show that even with shrouded sensors the data require significant correction due to this cross-correlation. This correction adjusts the average CO2 flux by an order of magnitude from -6.7 × 10-2 mol m-2 day-1 to -0.61 × 10-2 mol m-2 day-1, making the corrected fluxes comparable to those calculated using established parameterizations for transfer velocity.

  7. Flight prototype CO2 and humidity control system

    NASA Technical Reports Server (NTRS)

    Rudy, K. M.

    1977-01-01

    A regenerable CO2 and humidity control system is presently being developed for potential use on the space shuttle as an alternative to the baseline lithium hydroxide system. The system utilizes a sorbent material (designated HS-C) to adsorb CO2 and water vapor from the cabin atmosphere and desorb the CO2 and water vapor overboard when exposed to a space vacuum. Continuous operation is achieved by utilizing two beds which are alternately cycled between adsorption and desorption. A shuttle vehicle integration study showed that the HS-C system offers substantial weight advantages compared to the baseline shuttle orbiter expendable lithium hydroxide CO2 removal system for extended missions beyond the nominal design of four men for seven days. This study defined a system packaging envelope in the area presently occupied by the LiOH cartridges.

  8. Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications.

    PubMed

    Bui, X T; Vo, T P T; Ngo, H H; Guo, W S; Nguyen, T T

    2016-09-01

    With the introduction and discharge of thousands of new micropollutants (MPs) every year, traditional water and wastewater treatment plants may be incapable of tackling them all. With their low concentrations and diversity in nature, MP removal encounters numerous challenges. Although some MPs are effectively eliminated via conventional treatment methods, most of them can easily escape and are retained in the discharged effluent. Therefore, advanced methods such as (i) adsorption, (ii) oxidation and advanced oxidation processes (O3 and O3-based advanced oxidation processes, UV/H2O2), (iii) membrane processes, and (iv) membrane bioreactors, become an inevitable approach. Despite the unsurprisingly vast number of papers on MP treatment available at present, most of these studies were carried out at a laboratory scale while only a few pilot- and full-scale studies have experimented. Nevertheless, an in-depth assessment of real-world MP treatment methods is extremely crucial for practitioners. To date, no paper has been dedicated to look at this issue. Therefore, this paper aims to review these large-scale treatment methods. First, the paper goes through the regulations and standards which deal with MPs in water courses. It will then assess these methods in various case-studies with reference to different criteria towards serving as a reference for further practical applications. PMID:27198651

  9. Estimation of continuous anthropogenic CO2 using CO2, CO, δ13C(CO2) and Δ14C(CO2)

    NASA Astrophysics Data System (ADS)

    Vardag, S. N.; Gerbig, C.; Janssens-Maenhout, G.; Levin, I.

    2015-07-01

    We investigate different methods for estimating anthropogenic CO2 using modelled continuous atmospheric concentrations of CO2 alone, as well as CO2 in combination with the surrogate tracers CO, δ13C(CO2) and Δ14C(CO2). These methods are applied at three hypothetical stations representing rural, urban and polluted conditions. We find that independent of the tracer used, an observation-based estimate of continuous anthropogenic CO2 is not feasible at rural measurement sites due to the low signal to noise ratio of anthropogenic CO2 estimates at such settings. At urban and polluted sites, potential future continuous Δ14C(CO2) measurements with a precision of 5 ‰ or better are most promising for anthropogenic CO2 determination (precision ca. 10-20%), but the insensitivity against CO2 contributions from biofuel emissions may reduce its accuracy in the future. Other tracers, such as δ13C(CO2) and CO could provide an accurate and already available alternative if all CO2 sources in the catchment area are well characterized with respect to their isotopic signature and CO to anthropogenic CO2 ratio. We suggest a strategy for calibrating these source characteristics on an annual basis using precise Δ14C(CO2) measurements on grab samples. The precision of anthropogenic CO2 determination using δ13C(CO2) is largely determined by the measurement precision of δ13C(CO2) and CO2. The precision when using the CO-method is mainly limited by the variation of natural CO sources and CO sinks. At present, continuous anthropogenic CO2 could be determined using the tracers δ13C(CO2) and/or CO with a precision of about 30 %, a mean bias of about 10 % and without significant diurnal discrepancies. This allows significant improvement, validation and bias reduction of highly resolved emission inventories using atmospheric observation and regional modelling.

  10. The Nanoscale Basis of CO2 Trapping for Geologic Storage.

    PubMed

    Bourg, Ian C; Beckingham, Lauren E; DePaolo, Donald J

    2015-09-01

    Carbon capture and storage (CCS) is likely to be a critical technology to achieve large reductions in global carbon emissions over the next century. Research on the subsurface storage of CO2 is aimed at reducing uncertainties in the efficacy of CO2 storage in sedimentary rock formations. Three key parameters that have a nanoscale basis and that contribute uncertainty to predictions of CO2 trapping are the vertical permeability kv of seals, the residual CO2 saturation Sg,r in reservoir rocks, and the reactive surface area ar of silicate minerals. This review summarizes recent progress and identifies outstanding research needs in these areas. Available data suggest that the permeability of shale and mudstone seals is heavily dependent on clay fraction and can be extremely low even in the presence of fractures. Investigations of residual CO2 trapping indicate that CO2-induced alteration in the wettability of mineral surfaces may significantly influence Sg,r. Ultimately, the rate and extent of CO2 conversion to mineral phases are uncertain due to a poor understanding of the kinetics of slow reactions between minerals and fluids. Rapidly improving characterization techniques using X-rays and neutrons, and computing capability for simulating chemical interactions, provide promise for important advances. PMID:26266820

  11. CO2 fluxes near a forest edge: a numerical study.

    PubMed

    Sogachev, Andrey; Leclerc, Monique Y; Zhang, Gengsheng; Rannik, Ullar; Vesala, Timo

    2008-09-01

    In contrast with recent advances on the dynamics of the flow at a forest edge, few studies have considered its role on scalar transport and, in particular, on CO2 transfer. The present study addresses the influence of the abrupt roughness change on forest atmosphere CO2 exchange and contrasts the concentration and flux fields against those of a uniform forested surface. We use an atmospheric boundary layer two-equation closure model that accounts for the flow dynamics and vertical divergence of CO2 sources/sinks within a plant canopy. This paper characterizes the spatial variation of CO2 fluxes as a function of both sources/sinks distribution and the vertical structure of the canopy. Results suggest that the ground source plays a major role in the formation of wave-like vertical CO2 flux behavior downwind of a forest edge, despite the fact that the contribution of foliage sources/sinks changes monotonously. Such a variation is caused by scalar advection in the trunk space and reveals itself as a decrease or increase in vertical fluxes over the forest relative to carbon dioxide exchange of the underlying forest. The effect was more pronounced in model forests where the leaf area is concentrated in the upper part of the canopy. These results can be useful both for interpretation of existing measurements of net ecosystem exchange of CO2 (NEE) from flux towers in limited fetch conditions and in planning future CO2 transport experiments. PMID:18767622

  12. Shocking Results on the Adverse Effects of CO2 Exposures

    NASA Technical Reports Server (NTRS)

    James, John T.

    2012-01-01

    Carbon dioxide (CO2) is released in large quantities from humans while they live and work in spacecraft or work outside the spacecraft during extravehicular activity (EVA). Removal of this anthropogenic pollutant requires major resources, and these resources increase dramatically as the levels of CO2 set to protect human health and performance are reduced. The current Spacecraft Maximum Allowable Concentration of CO2 aboard the ISS is 0.7% or 5.3 mmHg; however, according to Chits (mission action requests), NASA and its international partners have agreed to control CO2 levels to less than 4 mmHg. In the meantime, retrospective investigations attempting to associate crew symptoms with elevated CO2 levels over the life if the International Space Station (ISS) are underway to determine if this level is sufficient to protect against health and performance decrements. Anecdotal reports suggest that crewmembers are not able to perform complex tasks as readily in spaceflight as they were able during ground-based training. While physiological effects of CO2 have been studied for many decades, it is only recently that the effects of CO2 on higher reasoning capabilities have been studied. The initial results are shocking. For example, one study published in the respected journal Environmental Health Perspectives showed obvious adverse effects of CO2 exposures on higher reasoning at 1.9 mmHg. The implications and limitations of this study are paramount in determining future CO2 SMACs for human spaceflight, both aboard the ISS and in exploration-class missions. Key Words: carbon dioxide, spacecraft, air quality, toxic effects

  13. Surface Condensation of CO2 onto Kaolinite

    SciTech Connect

    Schaef, Herbert T.; Glezakou, Vassiliki Alexandra; Owen, Antionette T.; Ramprasad, Sudhir; Martin, Paul F.; McGrail, B. Peter

    2014-02-11

    The fundamental adsorption behavior of gaseous and supercritical carbon dioxide (CO2) onto poorly crystalline kaolinite (KGa-2) at conditions relevant to geologic sequestration has been investigated using a quartz crystal microbalance (QCM) and density functional theory (DFT) methods. The QCM data indicated linear adsorption of CO2 (0-0.3 mmol CO2/g KGa-2) onto the kaolinite surface up through the gaseous state (0.186 g/cm3). However in the supercritical region, CO2 adsorption increases dramatically, reaching a peak (0.9-1.0 mmol CO2/g KGa-2) near 0.43 g/cm3, before declining rapidly to surface adsorption values equivalent or below gaseous CO2. This adsorption profile was not observed with He or N2. Comparative density functional studies of CO2 interactions with kaolinite surface models rule out CO2 intercalation and confirm that surface adsorption is favored up to approximately 0.35 g/cm3 of CO2, showing distorted T-shaped CO2-CO2 clustering, typical of supercritical CO2 aggregation over the surface as the density increases. Beyond this point, the adsorption energy gain for any additional CO2 becomes less than the CO2 interaction energy (~0.2 eV) in the supercritical medium resulting in overall desorption of CO2 from the kaolinite surface.

  14. Photocatalytic removal of microcystin-LR by advanced WO3-based nanoparticles under simulated solar light.

    PubMed

    Zhao, Chao; Li, Dawei; Liu, Yonggang; Feng, Chuanping; Zhang, Zhenya; Sugiura, Norio; Yang, Yingnan

    2015-01-01

    A series of advanced WO3-based photocatalysts including CuO/WO3, Pd/WO3, and Pt/WO3 were synthesized for the photocatalytic removal of microcystin-LR (MC-LR) under simulated solar light. In the present study, Pt/WO3 exhibited the best performance for the photocatalytic degradation of MC-LR. The MC-LR degradation can be described by pseudo-first-order kinetic model. Chloride ion (Cl-) with proper concentration could enhance the MC-LR degradation. The presence of metal cations (Cu2+ and Fe3+) improved the photocatalytic degradation of MC-LR. This study suggests that Pt/WO3 photocatalytic oxidation under solar light is a promising option for the purification of water containing MC-LR. PMID:25884038

  15. Photocatalytic Removal of Microcystin-LR by Advanced WO3-Based Nanoparticles under Simulated Solar Light

    PubMed Central

    Zhao, Chao; Li, Dawei; Feng, Chuanping; Zhang, Zhenya; Sugiura, Norio; Yang, Yingnan

    2015-01-01

    A series of advanced WO3-based photocatalysts including CuO/WO3, Pd/WO3, and Pt/WO3 were synthesized for the photocatalytic removal of microcystin-LR (MC-LR) under simulated solar light. In the present study, Pt/WO3 exhibited the best performance for the photocatalytic degradation of MC-LR. The MC-LR degradation can be described by pseudo-first-order kinetic model. Chloride ion (Cl−) with proper concentration could enhance the MC-LR degradation. The presence of metal cations (Cu2+ and Fe3+) improved the photocatalytic degradation of MC-LR. This study suggests that Pt/WO3 photocatalytic oxidation under solar light is a promising option for the purification of water containing MC-LR. PMID:25884038

  16. Development of a three-man preprototype CO2 collection subsystem for spacecraft application

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.; Quattrone, P. D.; Marshall, R. D.

    1977-01-01

    Future long-duration manned space missions will require regenerable carbon dioxide (CO2) collection concepts such as the Electrochemical Depolarized CO2 Concentrator (EDC). A three-man-capacity preprototype CO2 Collection Subsystem (CS-3) is being developed for eventual flight demonstration as part of the Air Revitalization System (ARS) of the Regenerative Life Support Evaluation (RLSE) experiment. The CS-3 employs an EDC to concentrate CO2 from the low partial-pressure levels required of spacecraft atmospheres to high partial-pressure levels needed for oxygen (O2) recovery through CO2 reduction processes. The CS-3 is sized to remove a nominal 3.0 kg/day (6.6 lb/day) of the CO2 to maintain the CO2 partial pressure (pCO2) of the cabin atmosphere at 400 Pa (3 mm Hg) or less. This paper presents the preprototype design, configuration, operation, and projected performance characteristics.

  17. CO2 laser therapy of rhinophyma

    NASA Astrophysics Data System (ADS)

    Voigt, Peggy; Jovanovic, Sergije; Sedlmaier, Benedikt W.

    2000-06-01

    Laser treatment of skin changes has become common practice in recent years. High absorption of the CO2 laser wavelength in water is responsible for its low penetration dpt in biological tissue. Shortening the tissue exposure time minimizes thermic side effects of laser radiation such as carbonization and coagulation. This can be achieved with scanner systems that move the focused laser beam over a defined area by microprocessor-controlled rapidly rotating mirrors. This enables controlled and reliable removal of certain dermal lesions, particularly hypertrophic scars, scars after common acne, wrinkles and rhinophyma. Laser ablation of rhinophyma is a stress-minimizing procedure for the surgeon and the patient, since it is nearly bloodless and can be performed under local anaesthesia. Cosmetically favorable reepithelization of the lasered surfaces is achieved within a very short period of time.

  18. Anterior capsulotomy using the CO2 laser

    NASA Astrophysics Data System (ADS)

    Barak, Adiel; Ma-Naim, Tova; Rosner, Mordechai; Eyal, Ophir; Belkin, Michael

    1998-06-01

    Continuous circular capsulorhexis (CCC) is the preferred technique for removal of the anterior capsule during cataract surgery due to this technique assuring accurate centration of the intraocular lens. During modern cataract surgery, especially with small or foldable intra ocular lenses, centration of the lens is obligatory. Radial tears at the margin of an anterior capsulotomy may be associated with the exit of at least one loop of an intraocular lens out of the capsular bag ('pea pod' effect) and its subsequent decentration. The anterior capsule is more likely to ream intact if the continuous circular capsulorhexis (CCC) technique is used. Although manual capsulorhexis is an ideal anterior capsulectomy technique for adults, many ophthalmologists are still uncomfortable with it and find it difficult to perform, especially in complicated cases such as these done behind small pupil, cataract extraction in children and pseudoexfoliation syndrome. We have developed a technique using a CO2 laser system for safe anterior capsulotomy and tested it in animal eyes.

  19. Outsourcing CO2 within China

    PubMed Central

    Feng, Kuishuang; Davis, Steven J.; Sun, Laixiang; Li, Xin; Guan, Dabo; Liu, Weidong; Liu, Zhu; Hubacek, Klaus

    2013-01-01

    Recent studies have shown that the high standard of living enjoyed by people in the richest countries often comes at the expense of CO2 emissions produced with technologies of low efficiency in less affluent, developing countries. Less apparent is that this relationship between developed and developing can exist within a single country’s borders, with rich regions consuming and exporting high-value goods and services that depend upon production of low-cost and emission-intensive goods and services from poorer regions in the same country. As the world’s largest emitter of CO2, China is a prominent and important example, struggling to balance rapid economic growth and environmental sustainability across provinces that are in very different stages of development. In this study, we track CO2 emissions embodied in products traded among Chinese provinces and internationally. We find that 57% of China’s emissions are related to goods that are consumed outside of the province where they are produced. For instance, up to 80% of the emissions related to goods consumed in the highly developed coastal provinces are imported from less developed provinces in central and western China where many low–value-added but high–carbon-intensive goods are produced. Without policy attention to this sort of interprovincial carbon leakage, the less developed provinces will struggle to meet their emissions intensity targets, whereas the more developed provinces might achieve their own targets by further outsourcing. Consumption-based accounting of emissions can thus inform effective and equitable climate policy within China. PMID:23754377

  20. Influencing Factors of Limestone Sorption and its Usage in Advanced Wastewater Treatment for Phosphorus Removal

    NASA Astrophysics Data System (ADS)

    Li, Linyong; Zhang, Hua; Wang, Dunqiu

    2012-01-01

    Phosphorus (P) is one of the main triggering nutrients responsible for eutrophication which troubles many waters in China. This study was to investigate the influencing factors of limestone (LS) adsorption and establish the parameter of constructed wetland (CW) using LS as the main substrate when treating effluent from a municipal wastewater treatment plant (MWTP) for P removal. First, a series of batch experiments were conducted to study the influencing factors of LS adsorption. Consequently, the P removal efficiency increased with the temperature and was high during the initial 3 h; the efficiency was over 75% even at initial P content 50 mg/L; under 2 mm small LS particle size enhanced the adsorption but the difference was not significant; the efficiency was over 90% when initial pH was below 6.37 and decreased sharply at pH above 8.15; sodium chloride as background electrolyte decreased the adsorption; organic acids including tartaric acid, oxalic acid and citric acid all suppressed the adsorption, and citric acid demonstrated the strongest effect. Then column experiment was conducted to evaluate the effect of the continuous vertical-flow LS bed treating effluent from a MWTP with varying hydraulic retention time (HRT). Over 80 days, the effluent pH was between 7 and 9, and effective running time increased with HRT during which the effluent total P content was below 0.5 mg/L. Short HRT such as 1 h or 1.5 h was recommended for dynamic LS adsorption. It showed that LS was suitable for the substrate in CW for P removal in wastewater advanced treatment.

  1. Intelligent CO 2 beam guiding

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Stimpfl, Joffrey; Emonts, Michael

    The Fraunhofer IPT has recently developed a self-diagnosing laser system technology which can monitor the process parameters of all laser system components and supports the adjustment of the beam guidance of CO2 laser production systems with large ranges of travel. The intelligent system furthermore interprets the correlated laser beam parameter responses and proposes appropriate measures for preventive maintenance. The new assisted beam guidance adjustment bases upon active reflector modules adjusting with a large angular range of average ±0.8∘ at maximum resolution and a position-sensitive detector for the position of the pilot laser.

  2. New directions: Potential climate and productivity benefits from CO2 capture in commercial buildings

    NASA Astrophysics Data System (ADS)

    Gall, Elliott T.; Nazaroff, William W.

    2015-02-01

    Primarily because of humanity's heavy reliance on fossil fuels, ambient CO2 levels have risen from 280 ppm in preindustrial times to 400 ppm today, and levels continue to rise by a few ppm per year (Tans and Keeling, 2014). Progress toward stabilizing atmospheric CO2 levels can be achieved not only through reducing emissions but also through the engineering of new or enhanced sinks of atmospheric CO2. Research and private sector initiatives on removing CO2 from ambient air (Boot-Handford et al., 2014) lead us to consider this challenge in the context of a well-known indoor air quality concern: elevated CO2 concentrations in occupied buildings.

  3. Potential environmental impacts of offshore UK geological CO2 storage

    NASA Astrophysics Data System (ADS)

    Carruthers, Kit; Wilkinson, Mark; Butler, Ian B.

    2016-04-01

    Geological carbon dioxide storage in the United Kingdom (UK) will almost certainly be entirely offshore, with storage for over 100 years' worth of UK CO2 output from industry and power generation in offshore depleted hydrocarbon fields and sandstone formations. Storage capacity can be limited by the increase in formation water pressure upon CO2 injection, therefore removal and disposal of formation waters ('produced waters') can control formation water pressures, and increase CO2 storage capacity. Formation waters could also be produced during CO2-Enhanced Oil Recovery (CO2-EOR). The precedent from current UK North Sea hydrocarbon extraction is to 'overboard' produced waters into the ocean, under current regulations. However, laboratory and field scale studies, with an emphasis on the effects on onshore shallow potable groundwaters, have shown that CO2 dissolution in formation waters during injection and storage acidifies the waters and promotes mobilisation from the reservoir sandstones of major and trace elements into solution, including heavy metals. Eight of these elements are specifically identified in the UK as potentially hazardous to the marine environment (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn). A comparison was made between the concentrations of these eight trace elements in the results of laboratory batch leaching experiments of reservoir rock in CO2-rich saline solutions and overboarded waters from current offshore UK hydrocarbon production. This showed that, taking the North Sea as a whole, the experimental results fall within the range of concentrations of current oil and gas activities. However, on a field-by-field basis, concentrations may be enhanced with CO2 storage, such that they are higher than waters normally produced from a particular field. Lead, nickel and zinc showed the greatest concentration increases in the experiments with the addition of CO2, with the other five elements of interest not showing any strong trends with respect to enhanced CO2

  4. Passive CO2 concentration in higher plants.

    PubMed

    Sage, Rowan F; Khoshravesh, Roxana

    2016-06-01

    Photorespiratory limitations on C3 photosynthesis are substantial in warm, low CO2 conditions. To compensate, certain plants evolved mechanisms to actively concentrate CO2 around Rubisco using ATP-supported CO2 pumps such as C4 photosynthesis. Plants can also passively accumulate CO2 without additional ATP expenditure by localizing the release of photorespired and respired CO2 around Rubisco that is diffusively isolated from peripheral air spaces. Passive accumulation of photorespired CO2 occurs when glycine decarboxylase is localized to vascular sheath cells in what is termed C2 photosynthesis, and through forming sheaths of chloroplasts around the periphery of mesophyll cells. The peripheral sheaths require photorespired CO2 to re-enter chloroplasts where it can be refixed. Passive accumulation of respiratory CO2 is common in organs such as stems, fruits and flowers, due to abundant heterotrophic tissues and high diffusive resistance along the organ periphery. Chloroplasts within these organs are able to exploit this high CO2 to reduce photorespiration. CO2 concentration can also be enhanced passively by channeling respired CO2 from roots and rhizomes into photosynthetic cells of stems and leaves via lacunae, aerenchyma and the xylem stream. Through passive CO2 concentration, C3 species likely improved their carbon economy and maintained fitness during episodes of low atmospheric CO2. PMID:27058940

  5. Monitoring Atmospheric CO2 From Space: Challenge & Approach

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Dobler, Jeremy; Campbell, Joel; Meadows, Byron; Obland, Michael; Kooi, Susan; Fan, Tai-Fang; Ismail, Syed

    2015-01-01

    Atmospheric CO2 is the key radiative forcing for the Earth's climate and may contribute a major part of the Earth's warming during the past 150 years. Advanced knowledge on the CO2 distributions and changes can lead considerable model improvements in predictions of the Earth's future climate. Large uncertainties in the predictions have been found for decades owing to limited CO2 observations. To obtain precise measurements of atmospheric CO2, certain challenges have to be overcome. For an example, global annual means of the CO2 are rather stable, but, have a very small increasing trend that is significant for multi-decadal long-term climate. At short time scales (a second to a few hours), regional and subcontinental gradients in the CO2 concentration are very small and only in an order of a few parts per million (ppm) compared to the mean atmospheric CO2 concentration of about 400 ppm, which requires atmospheric CO2 space monitoring systems with extremely high accuracy and precision (about 0.5 ppm or 0.125%) in spatiotemporal scales around 75 km and 10-s. It also requires a decadal-scale system stability. Furthermore, rapid changes in high latitude environments such as melting ice, snow and frozen soil, persistent thin cirrus clouds in Amazon and other tropical areas, and harsh weather conditions over Southern Ocean all increase difficulties in satellite atmospheric CO2 observations. Space lidar approaches using Integrated Path Differential Absorption (IPDA) technique are considered to be capable of obtaining precise CO2 measurements and, thus, have been proposed by various studies including the 2007 Decadal Survey (DS) of the U.S. National Research Council. This study considers to use the Intensity-Modulated Continuous-Wave (IM-CW) lidar to monitor global atmospheric CO2 distribution and variability from space. Development and demonstration of space lidar for atmospheric CO2 measurements have been made through joint adventure of NASA Langley Research Center and

  6. Study of Pyridine-Mediated Electrochemical Reduction of CO2 to Methanol at High CO2 Pressure.

    PubMed

    Rybchenko, Sergey I; Touhami, Dalila; Wadhawan, Jay D; Haywood, Stephanie K

    2016-07-01

    The recently proposed highly efficient route of pyridine-catalyzed CO2 reduction to methanol was explored on platinum electrodes at high CO2 pressure. At 55 bar (5.5 MPa) of CO2 , the bulk electrolysis in both potentiostatic and galvanostatic regimes resulted in methanol production with Faradaic yields of up to 10 % for the first 5-10 C cm(-2) of charge passed. For longer electrolysis, the methanol concentration failed to increase proportionally and was limited to sub-ppm levels irrespective of biasing conditions and pyridine concentration. This limitation cannot be removed by electrode reactivation and/or pre-electrolysis and appears to be an inherent feature of the reduction process. In agreement with bulk electrolysis findings, the CV analysis supported by simulation indicated that hydrogen evolution is still the dominant electrode reaction in pyridine-containing electrolyte solution, even with an excess CO2 concentration in the solution. No prominent contribution from either a direct or coupled CO2 reduction was found. The results obtained suggest that the reduction of CO2 to methanol is a transient process that is largely decoupled from the electrode charge transfer. PMID:27253886

  7. Use of CO2 laser gingivoplasty in heart-transplant subjects

    NASA Astrophysics Data System (ADS)

    de Rysky, Carlo; Forni, Franco

    1992-08-01

    In this work we observed the result of CO2 laser surgery used to remove hyperplastic gingiva in patients who were under cyclosporine maintenance treatment after they underwent heart transplant. The objectives were to reduce, as much as possible, bleeding, to avoid any subsequent intervention to remove stitches, and to minimize the operatory and postoperatory discomfort for the patient. Our data confirm the advantages of CO2 laser surgery when used to remove overgrowing tissue in accessible areas.

  8. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations.

    PubMed

    Cowan, Matthew G; Gin, Douglas L; Noble, Richard D

    2016-04-19

    -films (ca. 100-nm-thick active layer). Traditional polymeric membrane materials are limited by a trade-off between permeability and selectivity empirically described by the "Robeson upper bound"-placing the desired membrane properties beyond reach. Therefore, the investigation of advanced and composite materials that can overcome the limitations of traditional polymeric materials is the focus of significant academic and industrial research. In particular, there has been substantial work on ionic-liquid (IL)-based materials due to their gas transport properties. This review provides an overview of our collaborative work on developing poly(ionic liquid)/ionic liquid (PIL/IL) ion-gel membrane technology. We detail developmental work on the preparation of PIL/IL composites and describe how this chemical technology was adapted to allow the roll-to-roll processing and preparation of membranes with defect-free active layers ca. 100 nm thick, CO2 permeances of over 6000 GPU, and CO2/N2 selectivity of ≥20-properties with the potential to reduce the cost of CO2 removal from coal-fired power plant flue gas to ca. $15 per ton of CO2 captured. Additionally, we examine the materials developments that have produced advanced PIL/IL composite membranes. These advancements include cross-linked PIL/IL blends, step-growth PIL/IL networks with facilitated transport groups, and PIL/IL composites with microporous additives for CO2/CH4 separations. PMID:27046045

  9. Optical properties of heusler alloys Co2FeSi, Co2FeAl, Co2CrAl, and Co2CrGa

    NASA Astrophysics Data System (ADS)

    Shreder, E. I.; Svyazhin, A. D.; Belozerova, K. A.

    2013-11-01

    The results of an investigation of optical properties and the calculations of the electronic structure of Co2FeSi, Co2FeAl, Co2CrAl, and Co2CrGa Heusler alloys are presented. The main focus of our attention is the study of the spectral dependence of the real part (ɛ1) and imaginary part (ɛ2) of the dielectric constant in the range of wavelengths λ = 0.3-13 μm using the ellipsometric method. An anomalous behavior of the optical conductivity σ(ω) has been found in the infrared range in the Co2CrAl and Co2CrGa alloys, which differs substantially from that in the Co2FeSi and Co2FeAl alloys. The results obtained are discussed based on the calculations of the electronic structure.

  10. CO2 laser frequency multiplication

    SciTech Connect

    Not Available

    1992-03-01

    The duration of the mode-locked CO(2) laser pulses was measured to be 0.9 + or - nsec by the technique of (second harmonic) autocorrelation. Knowing the pulse duration, the spot size, and the harmonic conversion efficiency, a detailed fit of experiment to theory gave an estimate of the nonlinear coefficient of AgGaSe(2). d36 = 31 + or - V(1), in agreement with the most accurate literature values. A number of experiments were made with longer pulse trains in which the highest harmonic energy conversion reached 78%. The damage threshold was measured and it turned out to be related much more strongly to fluence than intensity. The shorter pulse trains had peak intensities of close to 300 MW 1/cm squared whereas the longer trains (3 usec) had intensities up to 40 MW 1/cm squared.

  11. Electrocatalytic recycling of CO2 and small organic molecules.

    PubMed

    Lee, Jaeyoung; Kwon, Youngkook; Machunda, Revocatus L; Lee, Hye Jin

    2009-10-01

    As global warming directly affects the ecosystems and humankind in the 21st century, attention and efforts are continuously being made to reduce the emission of greenhouse gases, especially carbon dioxide (CO2). In addition, there have been numerous efforts to electrochemically convert CO2 gas to small organic molecules (SOMs) and vice versa. Herein, we highlight recent advances made in the electrocatalytic recycling of CO2 and SOMs including (i) the overall trend of research activities made in this area, (ii) the relations between reduction conditions and products in the aqueous phase, (iii) the challenges in the use of gas diffusion electrodes for the continuous gas phase CO2 reduction, as well as (iv) the development of state of the art hybrid techniques for industrial applications. Perspectives geared to fully exploit the potential of zero-gap cells for CO2 reduction in the gaseous phase and the high applicability on a large scale are also presented. We envision that the hybrid system for CO2 reduction supported by sustainable solar, wind, and geothermal energies and waste heat will provide a long term reduction of greenhouse gas emissions and will allow for continued use of the abundant fossil fuels by industries and/or power plants but with zero emissions. PMID:19579251

  12. Throwing new light on the reduction of CO2.

    PubMed

    Ozin, Geoffrey A

    2015-03-18

    While the chemical energy in fossil fuels has enabled the rapid rise of modern civilization, their utilization and accompanying anthropogenic CO2 emissions is occurring at a rate that is outpacing nature's carbon cycle. Its effect is now considered to be irreversible and this could lead to the demise of human society. This is a complex issue without a single solution, yet from the burgeoning global research activity and development in the field of CO2 capture and utilization, there is light at the end of the tunnel. In this article a couple of recent advances are illuminated. Attention is focused on the discovery of gas-phase, light-assisted heterogeneous catalytic materials and processes for CO2 photoreduction that operate at sufficiently high rates and conversion efficiencies, and under mild conditions, to open a new pathway for an energy transition from today's "fossil fuel economy" to a new and sustainable "CO2 economy". Whichever of the competing CO2 capture and utilization approaches proves to be the best way forward for the development of a future CO2-based solar fuels economy, hopefully this can occur in a period short enough to circumvent the predicted adverse consequences of greenhouse gas climate change. PMID:25656300

  13. Enhanced nitrogen and phosphorus removal by an advanced simultaneous sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal wastewater treatment process.

    PubMed

    Yan, Peng; Guo, Jin-Song; Wang, Jing; Chen, You-Peng; Ji, Fang-Ying; Dong, Yang; Zhang, Hong; Ouyang, Wen-juan

    2015-05-01

    An advanced wastewater treatment process (SIPER) was developed to simultaneously decrease sludge production, prevent the accumulation of inorganic solids, recover phosphorus, and enhance nutrient removal. The feasibility of simultaneous enhanced nutrient removal along with sludge reduction as well as the potential for enhanced nutrient removal via this process were further evaluated. The results showed that the denitrification potential of the supernatant of alkaline-treated sludge was higher than that of the influent. The system COD and VFA were increased by 23.0% and 68.2%, respectively, after the return of alkaline-treated sludge as an internal C-source, and the internal C-source contributed 24.1% of the total C-source. A total of 74.5% of phosphorus from wastewater was recovered as a usable chemical crystalline product. The nitrogen and phosphorus removal were improved by 19.6% and 23.6%, respectively, after incorporation of the side-stream system. Sludge minimization and excellent nutrient removal were successfully coupled in the SIPER process. PMID:25735007

  14. Photocatalytic Reduction of CO2 over Heterostructure Semiconductors into Value-Added Chemicals.

    PubMed

    Guo, Ling-Ju; Wang, Yan-Jie; He, Tao

    2016-08-01

    Photoreduction of CO2 , which utilizes solar energy to convert CO2 into hydrocarbons, can be an effective means to overcome the increasing energy crisis and mitigate the rising emissions of greenhouse gas. This article covers recent advances in the CO2 photoreduction over heterostructure-based photocatalysts. The fundamentals of CO2 photoreduction and classification of the heterostructured photocatalysts are discussed first, followed by the latest work on the CO2 photoreduction over heterostructured photocatalysts in terms of the classification of the coupling semiconductors. Finally, a brief summary and a perspective on the challenges in this area are presented. PMID:27276171

  15. CO2 mitigation via accelerated limestone weathering

    USGS Publications Warehouse

    Rau, G.H.; Knauss, K.G.; Langer, W.H.; Caldeira, K.

    2004-01-01

    The climate and environmental impacts of the current, carbon-intensive energy usage demands that effective and practical energy alternatives and CO2 mitigation strategies be found. A discussion on CO2 mitigation via accelerated limestone weathering covers limestone and seawater availability and cost; reaction rates and densities; effectiveness in CO2 sequestration; and environmental impacts and benefits.

  16. Recent Trends in Atmospheric 14CO2

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Rayner, P.; Bousquet, P.; Cozic, A.; Miller, J. B.; Lehman, S. J.; Peters, W.; Tans, P. P.; Ciais, P.

    2007-12-01

    The radiocarbon content of atmospheric CO2 (14CO2) varies due to a number of factors. After the near-doubling of the 14CO2 loading in the early 1960s (due to atmospheric nuclear weapons testing), many studies examined the fate of this 'bomb 14C' to understand exchange processes of CO2 with the surface reservoirs. Today, however, the atmosphere and surface reservoirs are close to equilibrium with respect to bomb 14C, and instead, changes in 14CO2 more strongly reflect the response to the addition of 14C-free fossil fuel CO2 to the atmosphere. We use an atmospheric transport model to simulate recent atmospheric 14CO2, and compare this to observations at several sites over the Northern Hemisphere continents. We show that, in the Northern Hemisphere, 14CO2 variability is dominated by the effect of fossil fuel CO2 emissions. The model simulates the time trends quite well, including both the overall secular trend and the seasonal cycle. A seasonal cycle in 14CO2 is observed at the high altitude sites of Niwot Ridge, Colorado, and Jungfraujoch, Switzerland, but the magnitude varies from year to year. Our modeling studies demonstrate that this inter-annual variability can be explained by differences in atmospheric transport. This is in contrast to CO2 concentration seasonal cycles, which are dominated by seasonal changes in CO2 source strengths.

  17. Photosynthesis in a CO2 rich atmosphere

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concentration of CO2 ([CO2]) in the atmosphere is projected to reach ~550 ppm by 2050. C3 plants respond directly to growth at elevated [CO2] via stimulated photosynthesis and reduced stomatal conductance. The enhancement of photosynthesis is the result of increased velocity of carboxylation of ...

  18. Modeling Atmospheric CO2 Processes to Constrain the Missing Sink

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Denning, A. S.; Erickson, D. J.; Collatz, J. C.; Pawson, S.

    2005-01-01

    We report on a NASA supported modeling effort to reduce uncertainty in carbon cycle processes that create the so-called missing sink of atmospheric CO2. Our overall objective is to improve characterization of CO2 source/sink processes globally with improved formulations for atmospheric transport, terrestrial uptake and release, biomass and fossil fuel burning, and observational data analysis. The motivation for this study follows from the perspective that progress in determining CO2 sources and sinks beyond the current state of the art will rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. The major components of this effort are: 1) Continued development of the chemistry and transport model using analyzed meteorological fields from the Goddard Global Modeling and Assimilation Office, with comparison to real time data in both forward and inverse modes; 2) An advanced biosphere model, constrained by remote sensing data, coupled to the global transport model to produce distributions of CO2 fluxes and concentrations that are consistent with actual meteorological variability; 3) Improved remote sensing estimates for biomass burning emission fluxes to better characterize interannual variability in the atmospheric CO2 budget and to better constrain the land use change source; 4) Evaluating the impact of temporally resolved fossil fuel emission distributions on atmospheric CO2 gradients and variability. 5) Testing the impact of existing and planned remote sensing data sources (e.g., AIRS, MODIS, OCO) on inference of CO2 sources and sinks, and use the model to help establish measurement requirements for future remote sensing instruments. The results will help to prepare for the use of OCO and other satellite data in a multi-disciplinary carbon data assimilation system for analysis and prediction of carbon cycle changes and carbodclimate interactions.

  19. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    PubMed

    Cristale, Joyce; Ramos, Dayana D; Dantas, Renato F; Machulek Junior, Amilcar; Lacorte, Silvia; Sans, Carme; Esplugas, Santiago

    2016-01-01

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L(-1) to 150 µg L(-1). During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g(-1) dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatment and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H2O2 and O3) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H2O2 and O3. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs. PMID:26540311

  20. Characterization of the dissolved phosphorus uptake kinetics for the effluents from advanced nutrient removal processes.

    PubMed

    Li, Bo; Brett, Michael T

    2015-11-01

    Given the importance of the watershed protection plans, direct determination of phosphorus (P) mineralization rates in advanced wastewater treatment facility effluents is crucial for developing the most protective strategies minimiz eutrophication in receiving surface waters. In this study, algal bioassays were used to determine the uptake rate of dissolved P in effluents from a broad range of advanced nutrient removal technologies (e.g., membrane biological reactor, traditional biological, tertiary membrane, Blue PRO™, etc.). Dissolved P uptake kinetics were fit to a gamma model and three first-order decay models. A traditional one-pool model correlated poorly with the experimental data (i.e., r(2) = 0.73 ± 0.09), whereas two-pool model and three-pool models performed much better (i.e., r(2) > 0.9). These models also provided strong evidence for the existence of recalcitrant P in the effluents from these tertiary facilities. The Gamma model showed the mineralization of organic P followed a reactive continuum and further suggested the partitioning of P loads with different bioavailability levels should be accounted for the future modeling practices. From a modeling perspective, the Gamma model should be considered to be the theoretically best model as it gave the most parsimonious fit to the data using the fewest terms. Our study suggested that the current Total Maximum Daily Load (TMDL) model could be easily modified with the updated mineralization kinetics, which should lead to both ecological and economic benefits. PMID:26233657

  1. Amine-based CO2 capture technology development from the beginning of 2013-a review.

    PubMed

    Dutcher, Bryce; Fan, Maohong; Russell, Armistead G

    2015-02-01

    It is generally accepted by the scientific community that anthropogenic CO2 emissions are leading to global climate change, notably an increase in global temperatures commonly referred to as global warming. The primary source of anthropogenic CO2 emissions is the combustion of fossil fuels for energy. As society's demand for energy increases and more CO2 is produced, it becomes imperative to decrease the amount emitted to the atmosphere. One promising approach to do this is to capture CO2 at the effluent of the combustion site, namely, power plants, in a process called postcombustion CO2 capture. Technologies to achieve this are heavily researched due in large part to the intuitive nature of removing CO2 from the stack gas and the ease in retrofitting existing CO2 sources with these technologies. As such, several reviews have been written on postcombustion CO2 capture. However, it is a fast-developing field, and the most recent review papers already do not include the state-of-the-art research. Notable among CO2 capture technologies are amine-based technologies. Amines are well-known for their reversible reactions with CO2, which make them ideal for the separation of CO2 from many CO2-containing gases, including flue gas. For this reason, this review will cover amine-based technology developed and published in and after the year 2013. PMID:25607244

  2. Hybridization of natural systems with advanced treatment processes for organic micropollutant removals: new concepts in multi-barrier treatment.

    PubMed

    Sudhakaran, Sairam; Maeng, Sung Kyu; Amy, Gary

    2013-07-01

    Organic micropollutants (OMPs) represent a major constraint in drinking water supply. In the past, emphasis has been on individual treatment processes comprising conventional treatment (coagulation, sedimentation, and filtration) followed by advanced treatment processes (adsorption, ion-exchange, oxidation, and membrane separation). With the depletion of water resources and high demand for power and chemical usage, efforts need to be made to judiciously use advanced treatment processes. There is a new interest in multiple barriers with synergies in which two coupled processes can function as a hybrid process. Within the context of this paper, the hybrid processes include a natural treatment process coupled with an advanced process. Pilot/full-scale studies have shown efficient removal of OMPs by these hybrid processes. With this hybridization, the usage of resources such as power and chemicals can be reduced. In this study, coupling/hybridization of aquifer recharge and recovery (ARR) with oxidation (O3), advanced oxidation process which involves OH radicals (AOP), nanofiltration (NF), reverse osmosis (RO) and granular activated carbon (GAC) adsorption for OMP removal was studied. O3 or AOP as a pre-treatment and GAC, NF, RO, or UV/chlorination as a post-treatment to ARR was studied. NF can be replaced by RO for removal of OMPs since studies have shown similar performance of NF to RO for removal of many OMPs, thereby reducing costs and providing a more sustainable approach. PMID:23664475

  3. Shock-induced CO2 loss from CaCO3 - Implications for early planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1986-01-01

    Recovered samples from shock recovery experiments on single crystal calcite were subjected to thermogravimetric analysis to determine the amount of post-shock CO2, the decarbonization interval and the activation energy, for the removal of remaining CO2 in shock-loaded calcite. Comparison of post-shock CO2 with that initially present determines shock-induced CO2 loss as a function of shock pressure. Incipient to complete CO2 loss occurs over a pressure range of approximately 10 to approximately 70 GPa. Optical and scanning electron microscopy reveal structural changes which are related to the shock-loading. The occurrence of dark, diffuse areas, which can be resolved as highly vesticular areas as observed with a scanning electron microscope are interpreted as representing quenched partial melts, into which shock-released CO2 was injected. The experimental results are used to constrain models of shock-produced, primary CO2 atmospheres on the accreting terrestrial planets.

  4. Shock-induced CO2 loss from CaCO3: Implications for early planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1984-01-01

    Recovered samples from shock recovery experiments on single crystal calcite were subjected to thermogravimetric analysis to determine the amount of post-shock CO2, the decarbonization interval and the activation energy, for the removal of remaining CO2 in shock-loaded calcite. Comparison of post-shock CO2 with that initially present determines shock-induced CO2 loss as a function of shock pressure. Incipient to complete CO2 loss occurs over a pressure range of approximately 10 to approximately 70 GPa. Optical and scanning electron microscopy reveal structural changes, which are related to the shock-loading. The occurrence of dark, diffuse areas, which can be resolved as highly vesicular areas as observed with a scanning electron microscope are interpreted as representing quenched partial melts, into which shock-released CO2 was injected. The experimental results are used to constrain models of shock-produced, primary CO2 atmospheres on the accreting terrestrial planets.

  5. Efficient removal of insecticide "imidacloprid" from water by electrochemical advanced oxidation processes.

    PubMed

    Turabik, Meral; Oturan, Nihal; Gözmen, Belgin; Oturan, Mehmet A

    2014-01-01

    The oxidative degradation of imidacloprid (ICP) has been carried out by electrochemical advanced oxidation processes (EAOPs), anodic oxidation, and electro-Fenton, in which hydroxyl radicals are generated electrocatalytically. Carbon-felt cathode and platinum or boron-doped diamond (BDD) anodes were used in electrolysis cell. To determine optimum operating conditions, the effects of applied current and catalyst concentration were investigated. The decay of ICP during the oxidative degradation was well fitted to pseudo-first-order reaction kinetics and absolute rate constant of the oxidation of ICP by hydroxyl radicals was found to be k abs(ICP) = 1.23 × 10(9) L mol(-1) s(-1). The results showed that both anodic oxidation and electro-Fenton process with BDD anode exhibited high mineralization efficiency reaching 91 and 94% total organic carbon (TOC) removal at 2 h, respectively. For Pt-EF process, mineralization efficiency was also obtained as 71%. The degradation products of ICP were identified and a plausible general oxidation mechanism was proposed. Some of the main reaction intermediates such as 6-chloronicotinic acid, 6-chloronicotinaldehyde, and 6-hydroxynicotinic acid were determined by GC-MS analysis. Before complete mineralization, formic, acetic, oxalic, and glyoxylic acids were identified as end-products. The initial chlorine and organic nitrogen present in ICP were found to be converted to inorganic anions Cl(-), NO₃(-), and NH₄(+). PMID:24671401

  6. Isotopic CO2 Instrumentation for UAV Measurements

    NASA Astrophysics Data System (ADS)

    Gomez, A.; Silver, J.

    2013-12-01

    Carbon dioxide is the largest component of anthroprogenic green house gas emissions. Knowing atmospheric 13CO2/12CO2 ratios precisely is important for understanding biogenic and anthroprogenic sources and sinks for carbon. Instrumentation mounted on UAV aircraft would enable important spatial isotopic CO2 information. However, current isotopic CO2 instrumentation have unfavorable attributes for UAV use, such as high power requirements, high cost, high weight, and large size. Here we present the early development of a compact isotopic CO2 instrument that is designed to nullify effects of pressure, temperature and moisture, and will ultimately be suitable for UAV deployment.

  7. Forest succession at elevated CO2

    SciTech Connect

    Clark, James S.; Schlesinger, William H.

    2002-02-01

    We tested hypotheses concerning the response of forest succession to elevated CO2 in the FACTS-1 site at the Duke Forest. We quantified growth and survival of naturally recruited seedlings, tree saplings, vines, and shrubs under ambient and elevated CO2. We planted seeds and seedlings to augment sample sites. We augmented CO2 treatments with estimates of shade tolerance and nutrient limitation while controlling for soil and light effects to place CO2 treatments within the context of natural variability at the site. Results are now being analyzed and used to parameterize forest models of CO2 response.

  8. Selecting CO2 Sources for CO2 Utilization by Environmental-Merit-Order Curves.

    PubMed

    von der Assen, Niklas; Müller, Leonard J; Steingrube, Annette; Voll, Philip; Bardow, André

    2016-02-01

    Capture and utilization of CO2 as alternative carbon feedstock for fuels, chemicals, and materials aims at reducing greenhouse gas emissions and fossil resource use. For capture of CO2, a large variety of CO2 sources exists. Since they emit much more CO2 than the expected demand for CO2 utilization, the environmentally most favorable CO2 sources should be selected. For this purpose, we introduce the environmental-merit-order (EMO) curve to rank CO2 sources according to their environmental impacts over the available CO2 supply. To determine the environmental impacts of CO2 capture, compression and transport, we conducted a comprehensive literature study for the energy demands of CO2 supply, and constructed a database for CO2 sources in Europe. Mapping these CO2 sources reveals that CO2 transport distances are usually small. Thus, neglecting transport in a first step, we find that environmental impacts are minimized by capturing CO2 first from chemical plants and natural gas processing, then from paper mills, power plants, and iron and steel plants. In a second step, we computed regional EMO curves considering transport and country-specific impacts for energy supply. Building upon regional EMO curves, we identify favorable locations for CO2 utilization with lowest environmental impacts of CO2 supply, so-called CO2 oases. PMID:26752014

  9. Microbial Growth under Supercritical CO2

    PubMed Central

    Peet, Kyle C.; Freedman, Adam J. E.; Hernandez, Hector H.; Britto, Vanya; Boreham, Chris; Ajo-Franklin, Jonathan B.

    2015-01-01

    Growth of microorganisms in environments containing CO2 above its critical point is unexpected due to a combination of deleterious effects, including cytoplasmic acidification and membrane destabilization. Thus, supercritical CO2 (scCO2) is generally regarded as a sterilizing agent. We report isolation of bacteria from three sites targeted for geologic carbon dioxide sequestration (GCS) that are capable of growth in pressurized bioreactors containing scCO2. Analysis of 16S rRNA genes from scCO2 enrichment cultures revealed microbial assemblages of varied complexity, including representatives of the genus Bacillus. Propagation of enrichment cultures under scCO2 headspace led to isolation of six strains corresponding to Bacillus cereus, Bacillus subterraneus, Bacillus amyloliquefaciens, Bacillus safensis, and Bacillus megaterium. Isolates are spore-forming, facultative anaerobes and capable of germination and growth under an scCO2 headspace. In addition to these isolates, several Bacillus type strains grew under scCO2, suggesting that this may be a shared feature of spore-forming Bacillus spp. Our results provide direct evidence of microbial activity at the interface between scCO2 and an aqueous phase. Since microbial activity can influence the key mechanisms for permanent storage of sequestered CO2 (i.e., structural, residual, solubility, and mineral trapping), our work suggests that during GCS microorganisms may grow and catalyze biological reactions that influence the fate and transport of CO2 in the deep subsurface. PMID:25681188

  10. Residual CO2 trapping in Indiana limestone.

    PubMed

    El-Maghraby, Rehab M; Blunt, Martin J

    2013-01-01

    We performed core flooding experiments on Indiana limestone using the porous plate method to measure the amount of trapped CO(2) at a temperature of 50 °C and two pressures: 4.2 and 9 MPa. Brine was mixed with CO(2) for equilibration, then the mixture was circulated through a sacrificial core. Porosity and permeability tests conducted before and after 884 h of continuous core flooding confirmed negligible dissolution. A trapping curve for supercritical (sc)CO(2) in Indiana showing the relationship between the initial and residual CO(2) saturations was measured and compared with that of gaseous CO(2). The results were also compared with scCO(2) trapping in Berea sandstone at the same conditions. A scCO(2) residual trapping end point of 23.7% was observed, indicating slightly less trapping of scCO(2) in Indiana carbonates than in Berea sandstone. There is less trapping for gaseous CO(2) (end point of 18.8%). The system appears to be more water-wet under scCO(2) conditions, which is different from the trend observed in Berea; we hypothesize that this is due to the greater concentration of Ca(2+) in brine at higher pressure. Our work indicates that capillary trapping could contribute to the immobilization of CO(2) in carbonate aquifers. PMID:23167314

  11. Sequestration of Martian CO2 by mineral carbonation

    PubMed Central

    Tomkinson, Tim; Lee, Martin R.; Mark, Darren F.; Smith, Caroline L.

    2013-01-01

    Carbonation is the water-mediated replacement of silicate minerals, such as olivine, by carbonate, and is commonplace in the Earth’s crust. This reaction can remove significant quantities of CO2 from the atmosphere and store it over geological timescales. Here we present the first direct evidence for CO2 sequestration and storage on Mars by mineral carbonation. Electron beam imaging and analysis show that olivine and a plagioclase feldspar-rich mesostasis in the Lafayette meteorite have been replaced by carbonate. The susceptibility of olivine to replacement was enhanced by the presence of smectite veins along which CO2-rich fluids gained access to grain interiors. Lafayette was partially carbonated during the Amazonian, when liquid water was available intermittently and atmospheric CO2 concentrations were close to their present-day values. Earlier in Mars’ history, when the planet had a much thicker atmosphere and an active hydrosphere, carbonation is likely to have been an effective mechanism for sequestration of CO2. PMID:24149494

  12. Origin of CO2 undersaturation in the western tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Lefèvre, Nathalie; Diverrès, Denis; Gallois, Francis

    2010-11-01

    ABSTRACT Underway fCO2 has been measured from two merchant ships sailing from France to French Guyana and France to Brazil, and during two zonal cruises from Africa to French Guyana. In the western Tropical Atlantic, the strongest undersaturation is associated with the Amazon discharge near 55°W. In the 5°S-10°N, 65-35°W region, the carbon system is strongly correlated to salinity and robust empirical relationships could be determined. This region is a sink of CO2 in May-June during the high-flow period of the Amazon river. The eastward propagation of Amazon waters is observed when the retroflection of the North Brazil Current takes place. In August 2008, freshwater is observed as far as 40°W when the North Equatorial Counter Current is quite strong. The Amazon plume, defined as salinities less than 34.9, is a sink of CO2 of 0.96 mmol m-2d-1. Further east, near 27°W, CO2 undersaturation is recorded thoughout the year between 5°N and 8°N. This is caused by the high precipitation associated with the presence of the intertropical convergence zone (ITCZ). Removing the temperature effect leads to low (high) fCO2 associated with low (high) salinities in boreal summer (winter), which is consistent with the seasonal migration of the ITCZ.

  13. Sequestration of Martian CO2 by mineral carbonation.

    PubMed

    Tomkinson, Tim; Lee, Martin R; Mark, Darren F; Smith, Caroline L

    2013-01-01

    Carbonation is the water-mediated replacement of silicate minerals, such as olivine, by carbonate, and is commonplace in the Earth's crust. This reaction can remove significant quantities of CO2 from the atmosphere and store it over geological timescales. Here we present the first direct evidence for CO2 sequestration and storage on Mars by mineral carbonation. Electron beam imaging and analysis show that olivine and a plagioclase feldspar-rich mesostasis in the Lafayette meteorite have been replaced by carbonate. The susceptibility of olivine to replacement was enhanced by the presence of smectite veins along which CO2-rich fluids gained access to grain interiors. Lafayette was partially carbonated during the Amazonian, when liquid water was available intermittently and atmospheric CO2 concentrations were close to their present-day values. Earlier in Mars' history, when the planet had a much thicker atmosphere and an active hydrosphere, carbonation is likely to have been an effective mechanism for sequestration of CO2. PMID:24149494

  14. Fourier Transform Microwave Spectra of CO{2}-ETHYLENE Sulfide, CO{2}-ETHYLENE Oxide and CO{2}-PROPYLENE Oxide Complexes

    NASA Astrophysics Data System (ADS)

    Orita, Yukari; Kawashima, Yoshiyuki; Hirota, Eizi

    2010-06-01

    We have previously examined the difference in roles of O and S in structure and dynamics of the CO-ethylene oxide (EO) and CO-ethylene sulfide (ES) complexes. We have extended the investigation to CO{2}-EO and CO{2}-ES for comparison. We have also observed the CO{2}-propylene oxide (PO) complex, which is an important intermediate in the reaction of PO with CO{2} leading to polycarbonate. Both a-type and b-type transitions were observed for the CO{2}-EO and CO{2}-ES, but no c-type transitions were observed at all. We also detected the {34}S and {13}C isotopic species in natural abundance and the species containing {18}OCO and C{18}O% {2}, which were synthesized by burning paper in an {18}O{2} and{% 16}O{2} mixture. By analyzing the observed spectra we concluded the CO{2} moiety of CO{2}-EO and CO{2}-ES located in a plane % prependicular to the three-membered ring and bisecting the COC or CSC angle of EO or ES, respectively, as in the case of CO-EO and CO-ES complexes. An % ab initio MO calculation at the level of MP2/6-311G(d, p) yielded an optimized structure in good agreement with the experimental result. We have derived from the observed spectra the distance, the stretching force constant, and the binding energy of the bonds between the constituents of the CO{2}-EO and CO{2}-ES complexes and have found that the distances of the two complexes were shorter by 0.2Å than those in CO-EO and CO-ES, respectively, and that the intermolecular bonds were two times stronger in the CO{2} complexes than in the corresponding CO complexes. We have concluded from the observed spectra that the CO{2} moiety in CO{2}-PO is located on the PO three-membered ring plane opposite to the methyl group. The constituents in CO{2}-PO were more weakly bound than those in CO{2}-EO and CO{2}-ES. S. Sato, Y. Kawashima, Y. Tatamitani, and E. Hirota, 63rd International Symposium on Molecular Spectroscopy, WF05 (2008).

  15. Continuously Regenerable Freeze-Out CO2 Control Technology

    NASA Technical Reports Server (NTRS)

    Fricker, John; Dyer, Chris; Myers, Jeff; Patten, Rich; Paul, Heather

    2007-01-01

    Carbon dioxide (CO2) removal technology development for portable life support systems (PLSS) has traditionally concentrated in the areas of solid and liquid chemical sorbents and semi-permeable membranes. Most of these systems are too heavy in gravity environments, require prohibitive amounts of consumables for operation on long term planetary missions, or are inoperable on the surface of Mars due to the presence of a CO2 atmosphere. This paper describes the effort performed to mature an innovative CO2 removal technology that meets NASA s planetary mission needs while adhering to the important guiding principles of simplicity, reliability, and operability. A breadboard cryogenic carbon dioxide scrubber (Cryo Scrubber) for a closed loop cryogenic PLSS was developed, designed, and tested, and a conceptual design suitable for a PLSS was developed based on the results of the breadboard testing. The Cryo Scrubber freezes CO2 and other trace contaminants out of expired vent loop gas using cooling available from a liquid oxygen (LOX) based PLSS. The device is continuously regenerable, with solid CO2 being removed from the cold freeze-out surfaces, sublimated, and vented overboard. Duration is limited only by the supply of LOX stored in the PLSS. Simplicity, reliability, and operability are universally important criteria for critical hardware on long duration Lunar or Mars missions. The Cryo Scrubber has no moving parts, requires no additional consumables, and uses no electrical power, contributing to its simplicity and reliability. It is easy to use; no operator action is required to prepare, use, or shut down the Cryo Scrubber, and it does not require charging or regeneration. The versatility of the concept allows for operation on earth, the moon, and Mars, and in microgravity.

  16. Clinical applications of CO2 lasers: clinical cases

    NASA Astrophysics Data System (ADS)

    Sinibaldi, Kenneth R.

    1994-09-01

    The most common surgery performed in our clinic with the CO2 laser is the cutting and vaporization of neoplasms associated with the head and neck, in particular, the squamous cell carcinoma in the cat. A majority of the tumors are malignant and 50% are metastatic at the time of presentation for surgery. Experience has taught us that early detection and removal with the CO2 laser affords the best prognosis. To date, roughly 100 cases have been treated with the CO2 laser. The success rate in the dog is not as rewarding as in the cat. Most cases were done with 5 - 10 watts of power continuous or pulsed wave, using a 125 mm or 50 mm handpiece. The laser beam was focused or defocused to adjust for cutting, vaporization, and coagulation. No post-op care of the wounds was recommended. Other small neoplasms in and around the ears, head, and neck can also be removed easily with the CO2 laser.

  17. SPECTROSCOPY, MODELING AND COMPUTATION OF METAL CHELATE SOLUBILITY IN SUPERCRITICAL CO2

    EPA Science Inventory

    The objectives of this project are to gain a fundamental understanding of the solubility and stability of metal chelates in supercritical CO2. Extraction with CO2 is a excellent way to remove organic compounds from soils, sludges and aqueous solutions and recent research has demo...

  18. Energyless CO2 Absorption, Generation, and Fixation Using Atmospheric CO2.

    PubMed

    Inagaki, Fuyuhiko; Okada, Yasuhiko; Matsumoto, Chiaki; Yamada, Masayuki; Nakazawa, Kenta; Mukai, Chisato

    2016-01-01

    From an economic and ecological perspective, the efficient utilization of atmospheric CO2 as a carbon resource should be a much more important goal than reducing CO2 emissions. However, no strategy to harvest CO2 using atmospheric CO2 at room temperature currently exists, which is presumably due to the extremely low concentration of CO2 in ambient air (approximately 400 ppm=0.04 vol%). We discovered that monoethanolamine (MEA) and its derivatives efficiently absorbed atmospheric CO2 without requiring an energy source. We also found that the absorbed CO2 could be easily liberated with acid. Furthermore, a novel CO2 generator enabled us to synthesize a high value-added material (i.e., 2-oxazolidinone derivatives based on the metal catalyzed CO2-fixation at room temperature) from atmospheric CO2. PMID:26596773

  19. Exogenously produced CO2 doubles the CO2 efflux from three north temperate lakes

    NASA Astrophysics Data System (ADS)

    Wilkinson, Grace M.; Buelo, Cal D.; Cole, Jonathan J.; Pace, Michael L.

    2016-03-01

    It is well established that lakes are typically sources of CO2 to the atmosphere. However, it remains unclear what portion of CO2 efflux is from endogenously processed organic carbon or from exogenously produced CO2 transported into lakes. We estimated high-frequency CO2 and O2 efflux from three north temperate lakes in summer to determine the proportion of the total CO2 efflux that was exogenously produced. Two of the lakes were amended with nutrients to experimentally enhance endogenous CO2 uptake. In the unfertilized lake, 50% of CO2 efflux was from exogenous sources and hydrology had a large influence on efflux. In the fertilized lakes, endogenous CO2 efflux was negative (into the lake) yet exogenous CO2 made the lakes net sources of CO2 to the atmosphere. Shifts in hydrologic regimes and nutrient loading have the potential to change whether small lakes act primarily as reactors or vents in the watershed.

  20. CO2 transport over complex terrain

    USGS Publications Warehouse

    Sun, Jielun; Burns, Sean P.; Delany, A.C.; Oncley, S.P.; Turnipseed, A.A.; Stephens, B.B.; Lenschow, D.H.; LeMone, M.A.; Monson, Russell K.; Anderson, D.E.

    2007-01-01

    CO2 transport processes relevant for estimating net ecosystem exchange (NEE) at the Niwot Ridge AmeriFlux site in the front range of the Rocky Mountains, Colorado, USA, were investigated during a pilot experiment. We found that cold, moist, and CO2-rich air was transported downslope at night and upslope in the early morning at this forest site situated on a ???5% east-facing slope. We found that CO2 advection dominated the total CO2 transport in the NEE estimate at night although there are large uncertainties because of partial cancellation of horizontal and vertical advection. The horizontal CO2 advection captured not only the CO2 loss at night, but also the CO2 uptake during daytime. We found that horizontal CO2 advection was significant even during daytime especially when turbulent mixing was not significant, such as in early morning and evening transition periods and within the canopy. Similar processes can occur anywhere regardless of whether flow is generated by orography, synoptic pressure gradients, or surface heterogeneity as long as CO2 concentration is not well mixed by turbulence. The long-term net effect of all the CO2 budget terms on estimates of NEE needs to be investigated. ?? 2007 Elsevier B.V. All rights reserved.

  1. Radiocarbon in Tree STEM CO2 Efflux

    NASA Astrophysics Data System (ADS)

    Muhr, J.; Czimczik, C. I.; Angert, A.; Trumbore, S.

    2011-12-01

    Carbon dioxide efflux from tree stems can be a significant component of the stand-level carbon balance. Recent studies have demonstrated that tree stem CO2 efflux may reflect more than just in-situ respiration but also transport from other locations and it has been suggested that it may also include C originally respired in roots or even uptake of soil CO2. We report measurements of the radiocarbon signature of carbon emitted from a range of mature tree stems in tropical and temperate forest ecosystems. Comparison of the radiocarbon signature of respired CO2 with the observed rate of decline in atmsopheric 14C-CO2 provides a measure of the time elapsed between C fixation by the plant and its return to the atmosphere as stem CO2 efflux. In all investigated trees, we observed that stem CO2 efflux had higher radiocarbon signatures than the contemporary atmospheric 14C-CO2, and therefore was derived from C fixed one to several years earlier. In tropical forest trees, we found that the 14C signature of CO2 within the stem (~4-5 cm depth) had even higher radiocarbon signatures than the stem CO2 efflux. In one of the investigated tree species, the in-stem CO2 was derived from C sources fixed on average ~20 years previously. These results confirm observations of root-respired CO2 that also have shown contributions of C substrates older than recent photosynthetic products, and the presence of extracable C reserves in wood that reflect the presence of older C sources. Our results imply that stem CO2 efflux is not only derived from respiration of recent photosynthetic products but includes contributions from older, stored C pools. Ongoing investigations will enable us to compare CO2 efflux for trees subjected to experimental drought, and using different life strategies (deciduous versus evergreen oaks) to determine if the use of these older C stores varies with stress.

  2. Potential of satellite CO2 data to infer CO2 fluxes, using atmospheric inversion: influence of data uncertainty correlations

    NASA Astrophysics Data System (ADS)

    Montandon, V.; Peylin, P.; Bousquet, P.; Ciais, P.; Breon, F.-M.

    2003-04-01

    Knowledge of present surface sources and sinks of atmospheric CO2 is crucial to quantify the future man-induced green-house effect. Measurements of radiation from space potentially offer denser samplings of CO2 column amount, both in time and space than in situ measurements. This could allow in turn to decrease the uncertainties of CO2 flux estimates, depending on the achievable precision of CO2 retrievals from space, and on the removal of any spatially coherent bias. In the framework of the COCO project, shaped to take advantage of the sooncoming or present satellite missions, we enriched some investigations about the satellite observations potential to improve the atmospheric CO2 sinks and sources knowledge. Our particular study dealt with the introduction of spatial correlations between the individual measurement errors of CO2 column amount, to inverstigate possible coherent biases between satellite data. One year of pseudo-data was generated according to the CARBOSAT project instrumental and orbital characteristics. These individual data were then grouped month by month onto the grid of the LMDZ transport model. The classical independance assumption made in all priors study about the measurement errors lead to a large decrease of the final satellite data uncertainty. However, spatially coherent bias would bring correlated data uncertainties, a feature that would largely affect the results. We quantified here the influence of these correlations on the retrieved CO2 flux uncertainties. Several transport model grids (regular / non regular) were used to aggregate the individual measurements, and their influence is also discussed. Such results could also be applied to other reactive chemical species like CH4, CO, ...

  3. A review of mineral carbonation technologies to sequester CO2.

    PubMed

    Sanna, A; Uibu, M; Caramanna, G; Kuusik, R; Maroto-Valer, M M

    2014-12-01

    Carbon dioxide (CO2) capture and sequestration includes a portfolio of technologies that can potentially sequester billions of tonnes of CO2 per year. Mineral carbonation (MC) is emerging as a potential CCS technology solution to sequester CO2 from smaller/medium emitters, where geological sequestration is not a viable option. In MC processes, CO2 is chemically reacted with calcium- and/or magnesium-containing materials to form stable carbonates. This work investigates the current advancement in the proposed MC technologies and the role they can play in decreasing the overall cost of this CO2 sequestration route. In situ mineral carbonation is a very promising option in terms of resources available and enhanced security, but the technology is still in its infancy and transport and storage costs are still higher than geological storage in sedimentary basins ($17 instead of $8 per tCO2). Ex situ mineral carbonation has been demonstrated on pilot and demonstration scales. However, its application is currently limited by its high costs, which range from $50 to $300 per tCO2 sequestered. Energy use, the reaction rate and material handling are the key factors hindering the success of this technology. The value of the products seems central to render MC economically viable in the same way as conventional CCS seems profitable only when combined with EOR. Large scale projects such as the Skyonic process can help in reducing the knowledge gaps on MC fundamentals and provide accurate costing and data on processes integration and comparison. The literature to date indicates that in the coming decades MC can play an important role in decarbonising the power and industrial sector. PMID:24983767

  4. Study of CO2 sorbents for extravehicular activity

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.

    1973-01-01

    Portable life support equipment was studied for meeting the requirements of extravehicular activities. Previous studies indicate that the most promising method for performing the CO2 removal function removal function were metallic oxides and/or metallic hydroxides. Mgo, Ag2, and Zno metallic oxides and Mg(OH)2 and Zn(OH)2 metallic hydroxides were studied, by measuring sorption and regeneration properties of each material. The hydroxides of Mg and Zn were not regenerable and the zinc oxide compounds showed no stable form. A silver oxide formulation was developed which rapidly absorbs approximately 95% of its 0.19 Kg CO2 Kg oxide and has shown no sorption or structural degeneration through 22 regenerations. It is recommended that the basic formula be further developed and tested in large-scale beds under simulated conditions.

  5. Global CO2 Emission from Volcanic Lakes

    NASA Astrophysics Data System (ADS)

    Perez, N.; Hernandez Perez, P. A.; Padilla, G.; Melian Rodriguez, G.; Padron, E.; Barrancos, J.; Calvo, D.; Kusukabe, M.; Mori, T.; Nolasco, D.

    2009-12-01

    During the last two decades, scientists have paid attention to CO2 volcanic emissions and its contribution to the global C budget. Excluding MORBs as a net source of CO2 to the atmosphere, the global CO2 discharge from subaerial volcanism has been estimated about 300 Mt y-1 and this rate accounts for both visible (plume & fumaroles) and non-visible (diffuse) volcanic gas emanations (Mörner & Etíope, 2002). However, CO2 emissions from volcanic lakes have not been considered to estimate the global CO2 discharge from subaerial volcanoes. In order to improve this global CO2 emission rate and estimate the global CO2 emission from volcanic lakes, an extensive research on CO2 emission of volcanic lakes from Phillipines, Nicaragua, Guatemala, Mexico, Indonesia, Germany, France, Cameroon, Costa Rica, El Salvador and Ecuador had been recently carried out. In-situ measurements of CO2 efflux from the surface environment of volcanic lakes were performed by means of a modified floating device of the accumulation chamber method. To quantify the total CO2 emission from each volcanic lake, CO2 efflux maps were constructed using sequential Gaussian simulations (sGs). CO2 emission rates were normalized by the lake area (km2), and volcanic lakes were grouped following classification in acid, alkaline and neutral lakes. The observed average normalized CO2 emission rate values increase from alkaline (5.5 t km-2 d-1), neutral (210.0 t km-2 d-1), to acid (676.8 t km-2 d-1) volcanic lakes. Taking into account (i) these normalized CO2 emission rates from 31 volcanic lakes, (ii) the number of volcanic lakes in the world (~ 1100), (iii) the fraction of the investigated alkaline (45%), neutral (39%), and acid (16%) volcanic lakes, and (iv) the average areas of the investigated alkaline (36,8 km2), neutral (3,7 km2), and acid (0,5 km2) volcanic lakes; the global CO2 emission from volcanic lakes is about ~ 182 Mt year-1. This estimated value is about ~ 50% of the actual estimated global CO2

  6. Biofuels from crop residue can reduce soil carbon and increase CO2 emissions

    NASA Astrophysics Data System (ADS)

    Liska, Adam J.; Yang, Haishun; Milner, Maribeth; Goddard, Steve; Blanco-Canqui, Humberto; Pelton, Matthew P.; Fang, Xiao X.; Zhu, Haitao; Suyker, Andrew E.

    2014-05-01

    Removal of corn residue for biofuels can decrease soil organic carbon (SOC; refs , ) and increase CO2 emissions because residue C in biofuels is oxidized to CO2 at a faster rate than when added to soil. Net CO2 emissions from residue removal are not adequately characterized in biofuel life cycle assessment (LCA; refs , , ). Here we used a model to estimate CO2 emissions from corn residue removal across the US Corn Belt at 580 million geospatial cells. To test the SOC model, we compared estimated daily CO2 emissions from corn residue and soil with CO2 emissions measured using eddy covariance, with 12% average error over nine years. The model estimated residue removal of 6 Mg per ha-1 yr-1 over five to ten years could decrease regional net SOC by an average of 0.47-0.66 Mg C ha-1 yr-1. These emissions add an average of 50-70 g CO2 per megajoule of biofuel (range 30-90) and are insensitive to the fraction of residue removed. Unless lost C is replaced, life cycle emissions will probably exceed the US legislative mandate of 60% reduction in greenhouse gas (GHG) emissions compared with gasoline.

  7. Soft Approaches to CO2 Activation.

    PubMed

    Das, Shoubhik; Bobbink, Felix D; Gopakumar, Aswin; Dyson, Paul J

    2015-01-01

    The utilization of CO(2) as a C1 synthon is becoming increasingly important as a feedstock derived from carbon capture and storage technologies. Herein, we describe some of our recent research on carbon dioxide valorization, notably, using organocatalysts to convert CO(2) into carboxylic acid, ester, formyl and methyl groups on various organic molecules. We describe these studies within the broader context of CO(2) capture and valorization and suggest approaches for future research. PMID:26842327

  8. CO2 sequestration: Storage capacity guideline needed

    USGS Publications Warehouse

    Frailey, S.M.; Finley, R.J.; Hickman, T.S.

    2006-01-01

    Petroleum reserves are classified for the assessment of available supplies by governmental agencies, management of business processes for achieving exploration and production efficiency, and documentation of the value of reserves and resources in financial statements. Up to the present however, the storage capacity determinations made by some organizations in the initial CO2 resource assessment are incorrect technically. New publications should thus cover differences in mineral adsorption of CO2 and dissolution of CO2 in various brine waters.

  9. Global Mapping of CO2 on Enceladus

    NASA Astrophysics Data System (ADS)

    McCord, T. B.; Combe, J. P.; Matson, D.; Johnson, T. V.

    2014-12-01

    We present the first global map of CO2 on Enceladus. The purpose is to determine whether CO2 is associated to fractures and eruptions, and if it formed recently. Cassini observed tectonic features and plumes on Enceladus, which could be caused by a warm subsurface ocean containing dissolved gases. CO2 should be one of these gases (Postberg F. et al., Nature, 2009), and some of it should be erupted and condensed onto the surface (Matson et al., Icarus, 2012). Validation of this hypothesis could be done by determining the amount, location and molecular state of the CO2. Free CO2 ice and complexed CO2 were reported on Enceladus (Brown et al., Science, 2006; Hansen, LPSC, 2010) from analysis of Cassini Visual and Infrared Mapping Spectrometer (VIMS) data, and on other Saturn icy satellites (Cruikshank et al., Icarus, 2010 ; Filacchione et al., Icarus, 2010). Complexed CO2 has also been found from Galileo Near-Infrared Mapping Spectrometer (NIMS) spectra on the icy Galilean satellites (McCord et al., Science, 1997 and JGR, 1998), apparently due to both interior outgassing and radiation processing. CO2 has an asymmetric stretching mode that creates an absorption band, the wavelength position of which is sensitive to the nature of molecular associations between CO2 and their neighbors. Free CO2 ice absorbs at 4.268 μm for (Sandford and Allamandola, 1990) and CO2 complexed with other molecules absorbs at shorter wavelengths, around 4.25 μm or shorter (Chaban et al., Icarus, 2007). In VIMS spectra of Enceladus, this stretching mode absorption band is near the instrument detection limit. We utilized all VIMS data sets available that had significant spatial resolution to increase the statistics of the observations for any given location and improve the signal to noise. CO2 has also a smaller absorption at 2.7 μm, although it occurs in a range of wavelength that has higher signal-to-noise ratio by several magnitudes, because the surface of Enceladus (mostly H2O ice) has

  10. CO2 MITIGATION VIA ACCELERATED LIMESTONE WEATHERING

    SciTech Connect

    Rau, G H; Knauss, K G; Langer, W H; Caldeira, K G

    2004-02-27

    The climate and environmental impacts of our current, carbon-intensive energy usage demands that effective and practical energy alternatives and CO2 mitigation strategies be found. As part of this effort, various means of capturing and storing CO2 generated from fossil-fuel-based energy production are being investigated. One of the proposed methods involves a geochemistry-based capture and sequestration process that hydrates point-source, waste CO2 with water to produce a carbonic acid solution. This in turn is reacted and neutralized with limestone, thus converting the original CO2 gas to calcium bicarbonate in solution, the overall reaction being:

  11. Hydrogen generation utilizing integrated CO2 removal with steam reforming

    DOEpatents

    Duraiswamy, Kandaswamy; Chellappa, Anand S

    2013-07-23

    A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

  12. A refined model of water and CO2 membrane diffusion: Effects and contribution of sterols and proteins

    PubMed Central

    Kai, Lei; Kaldenhoff, Ralf

    2014-01-01

    Black lipid bilayers, a general model system for biomembranes were studied for diffusion rates of small molecules such as water or CO2 using advanced analysis techniques and cell free synthesized proteins. We provide evidence that by simple insertion of proteins or sterols the diffusion rates of water or those of CO2 decrease. Insertion of cell free synthesized water permeable aquaporins restored water diffusion rates as well as insertion of CO2-facilitating aquaporins the CO2 diffusion. Insertion of water or CO2 impermeable proteins decreased the respective diffusion rates. Therefore, for normal high cellular CO2 diffusion rates specific aquaporins are mandatory. PMID:25331164

  13. Photosynthetic adaptations to low atmospheric CO2 evels of the Late Pleistocene

    SciTech Connect

    Sage, R.F.

    1995-06-01

    The Pleistocene was a period where atmospheric CO2 level fell to its lowest point (180 ppm) of the past 200 million years. At these low levels. photosynthesis in C3 plants is strongly limited by the availability of CO2 for the carboxylation reaction of Rubisco, and by photorespiration, which becomes extensive above 20{degrees}C. A reduction of CO2 to 180 ppm results in a mean 50% decline in photosynthesis relative to the rate at 350 ppm CO2. Plants can potentially adapt to low atmospheric CO2 by either increasing the specificity of Rubisco for CO2, minimizing leaf temperature, or through faster CO2 delivery to the chloroplast. Of these mechanisms, the facilitation of CO2 delivery (via C4, HCO3-1 pumping, or carbonic anhydrase) has been the most effective. Differences in Rubisco specificity for CO2 are not pronounced in organisms containing chloroplasts, indicating little evolutionary advancement in Rubisco in recent geological times. Avoidance of elevated leaf temperature through morphological, temporal, or stomatal adjustments has been of limited value, and usually involves a significant cost. Given the pronounced reduction in photosyntheticpotential because of low CO2 during the Pleistocene, it is not readily apparent how C3 species were able to maintain widespread dominance in the presence of CO2-concentrating species such as C4 plants. Paleo-ecological surveys indicate they did, however. Possible mechanisms for ecological success of C3 plants during the Pleistocene will be discussed.

  14. Post-Combustion and Pre-Combustion CO2 Capture Solid Sorbents

    SciTech Connect

    Siriwardane, R.V.; Stevens, R.W.; Robinson, Clark

    2007-11-01

    Combustion of fossil fuels is one of the major sources of the greenhouse gas CO2. Pressure swing adsorption/sorption (PSA/PSS) and temperature swing adsorption/sorption (TSA/TSS) are some of the potential techniques that could be utilized for removal of CO2 from fuel gas streams. It is very important to develop sorbents to remove CO2 from fuel gas streams that are applicable for a wide range of temperatures. NETL researchers have developed novel CO2 capture sorbents for low, moderate, and high temperature applications. A novel liquid impregnated solid sorbent was developed for CO2 removal in the temperature range of ambient to 60 °C. The sorbent is regenerable at 60 – 80 °C. The sorbent formulations were prepared to be suitable for various reactor configurations (i.e., fixed and fluidized bed). Minimum fluidization gas velocities were also determined. Multi-cycle tests conducted in an atmospheric bench scale reactor with simulated flue gas indicated that the sorbent retains its CO2 sorption capacity with a CO2 removal efficiency of approximately 99% and was unaffected by presence of water vapor. The sorbent was subsequently commercially prepared by Süd Chemie to determine the viability of the sorbent for mass production. Subsequent testing showed that the commercially-synthesized sorbent possesses the same properties as the lab-synthesized equivalent. An innovative solid sorbent containing mixture of alkali earth and alkali compounds was developed for CO2 removal at 200 – 315°C from high pressure gas streams suitable for IGCC systems. The sorbent showed very high capacity for CO2 removal from a gas streams containing 28% CO2 at 200 °C and at 20 atm during a lab scale reactor test. This sorbent can be regenerated at 20 atm and at 375 °C utilizing a gas stream containing steam. High pressure enhanced the CO2 sorption process. Bench scale testing showed consistent capacities and regenerability. A unique high temperature solid sorbent was developed for CO2

  15. Experimental Ion Mobility measurements in Ne-CO2 and CO2-N2 mixtures

    NASA Astrophysics Data System (ADS)

    Encarnação, P. M. C. C.; Cortez, A. F. V.; Veenhof, R.; Neves, P. N. B.; Santos, F. P.; Trindade, A. M. F.; Borges, F. I. G. M.; Conde, C. A. N.

    2016-05-01

    In this paper we present the experimental results for the mobility, K0, of ions in neon-carbon dioxide (Ne-CO2) and carbon dioxide-nitrogen (CO2-N2) gaseous mixtures for total pressures ranging from 8–12 Torr, reduced electric fields in the 10–25 Td range, at room temperature. Regarding the Ne-CO2 mixture only one peak was observed for CO2 concentrations above 25%, which has been identified as an ion originated in CO2, while below 25% of CO2 a second-small peak appears at the left side of the main peak, which has been attributed to impurities. The mobility values for the main peak range between 3.51 ± 0.05 and 1.07 ± 0.01 cm2V‑1s‑1 in the 10%-99% interval of CO2, and from 4.61 ± 0.19 to 3.00 ± 0.09 cm2V‑1s‑1 for the second peak observed (10%–25% of CO2). For the CO2-N2, the time-of-arrival spectra displayed only one peak for CO2 concentrations above 10%, which was attributed to ions originated in CO2, namely CO2+(CO2), with a second peak appearing for CO2 concentrations below 10%. This second peak, with higher mobility, was attributed to CO2+ ions. The mobility values of the main peak range between 2.11 ± 0.04 and 1.10 ± 0.03 cm2V‑1s‑1 in the 1%–99% interval of CO2, while the second peak's from 2.26 ± 0.02 and 1.95 ± 0.04 cm2V‑1s‑1 (1%–10% of CO2). The inverse of the mobility displays an aproximately linear dependence on the CO2 concentration in the mixture.

  16. Quantifying the "chamber effect" in CO2 flux measurements

    NASA Astrophysics Data System (ADS)

    Vihermaa, Leena; Childs, Amy; Long, Hazel; Waldron, Susan

    2014-05-01

    The significance of aquatic CO2 emissions has received attention in recent years. For example annual aquatic emissions in the Amazon basin have been estimated as 500 Mt of carbon1. Methods for determining the flux rates include eddy covariance flux tower measurements, flux estimates calculated from partial pressure of CO2 (pCO2) in water and the use floating flux chambers connected to an infra-red gas analyser. The flux chamber method is often used because it is portable, cheaper and allows smaller scale measurements. It is also a direct method and hence avoids problems related to the estimation of the gas transfer coefficient that is required when fluxes are calculated from pCO2. However, the use of a floating chamber may influence the flux measurements obtained. The chamber shields the water underneath from effects of wind which could lead to lower flux estimates. Wind increases the flux rate by i) causing waves which increase the surface area for efflux, and ii) removing CO2 build up above the water surface, hence maintaining a higher concentration gradient. Many floating chambers have an underwater extension of the chamber below the float to ensure better seal to water surface and to prevent any ingress of atmospheric air when waves rock the chamber. This extension may cause additional turbulence in flowing water and hence lead to overestimation of flux rates. Some groups have also used a small fan in the chamber headspace to ensure thorough mixing of air in the chamber. This may create turbulence inside the chamber which could increase the flux rate. Here we present results on the effects of different chamber designs on the detected flux rates. 1Richey et al. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416: 617-620.

  17. Advanced Life Support Water Recycling Technologies Case Studies: Vapor Phase Catalytic Ammonia Removal and Direct Osmotic Concentration

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2004-01-01

    Design for microgravity has traditionally not been well integrated early on into the development of advanced life support (ALS) technologies. NASA currently has a many ALS technologies that are currently being developed to high technology readiness levels but have not been formally evaluated for microgravity compatibility. Two examples of such technologies are the Vapor Phase Catalytic Ammonia Removal Technology and the Direct Osmotic Concentration Technology. This presentation will cover the design of theses two systems and will identify potential microgravity issues.

  18. Economic and energetic analysis of capturing CO2 from ambient air

    PubMed Central

    House, Kurt Zenz; Baclig, Antonio C.; Ranjan, Manya; van Nierop, Ernst A.; Wilcox, Jennifer; Herzog, Howard J.

    2011-01-01

    Capturing carbon dioxide from the atmosphere (“air capture”) in an industrial process has been proposed as an option for stabilizing global CO2 concentrations. Published analyses suggest these air capture systems may cost a few hundred dollars per tonne of CO2, making it cost competitive with mainstream CO2 mitigation options like renewable energy, nuclear power, and carbon dioxide capture and storage from large CO2 emitting point sources. We investigate the thermodynamic efficiencies of commercial separation systems as well as trace gas removal systems to better understand and constrain the energy requirements and costs of these air capture systems. Our empirical analyses of operating commercial processes suggest that the energetic and financial costs of capturing CO2 from the air are likely to have been underestimated. Specifically, our analysis of existing gas separation systems suggests that, unless air capture significantly outperforms these systems, it is likely to require more than 400 kJ of work per mole of CO2, requiring it to be powered by CO2-neutral power sources in order to be CO2 negative. We estimate that total system costs of an air capture system will be on the order of $1,000 per tonne of CO2, based on experience with as-built large-scale trace gas removal systems. PMID:22143760

  19. Economic and energetic analysis of capturing CO2 from ambient air.

    PubMed

    House, Kurt Zenz; Baclig, Antonio C; Ranjan, Manya; van Nierop, Ernst A; Wilcox, Jennifer; Herzog, Howard J

    2011-12-20

    Capturing carbon dioxide from the atmosphere ("air capture") in an industrial process has been proposed as an option for stabilizing global CO(2) concentrations. Published analyses suggest these air capture systems may cost a few hundred dollars per tonne of CO(2), making it cost competitive with mainstream CO(2) mitigation options like renewable energy, nuclear power, and carbon dioxide capture and storage from large CO(2) emitting point sources. We investigate the thermodynamic efficiencies of commercial separation systems as well as trace gas removal systems to better understand and constrain the energy requirements and costs of these air capture systems. Our empirical analyses of operating commercial processes suggest that the energetic and financial costs of capturing CO(2) from the air are likely to have been underestimated. Specifically, our analysis of existing gas separation systems suggests that, unless air capture significantly outperforms these systems, it is likely to require more than 400 kJ of work per mole of CO(2), requiring it to be powered by CO(2)-neutral power sources in order to be CO(2) negative. We estimate that total system costs of an air capture system will be on the order of $1,000 per tonne of CO(2), based on experience with as-built large-scale trace gas removal systems. PMID:22143760

  20. Solubility trapping in formation water as dominant CO(2) sink in natural gas fields.

    PubMed

    Gilfillan, Stuart M V; Lollar, Barbara Sherwood; Holland, Greg; Blagburn, Dave; Stevens, Scott; Schoell, Martin; Cassidy, Martin; Ding, Zhenju; Zhou, Zheng; Lacrampe-Couloume, Georges; Ballentine, Chris J

    2009-04-01

    Injecting CO(2) into deep geological strata is proposed as a safe and economically favourable means of storing CO(2) captured from industrial point sources. It is difficult, however, to assess the long-term consequences of CO(2) flooding in the subsurface from decadal observations of existing disposal sites. Both the site design and long-term safety modelling critically depend on how and where CO(2) will be stored in the site over its lifetime. Within a geological storage site, the injected CO(2) can dissolve in solution or precipitate as carbonate minerals. Here we identify and quantify the principal mechanism of CO(2) fluid phase removal in nine natural gas fields in North America, China and Europe, using noble gas and carbon isotope tracers. The natural gas fields investigated in our study are dominated by a CO(2) phase and provide a natural analogue for assessing the geological storage of anthropogenic CO(2) over millennial timescales. We find that in seven gas fields with siliciclastic or carbonate-dominated reservoir lithologies, dissolution in formation water at a pH of 5-5.8 is the sole major sink for CO(2). In two fields with siliciclastic reservoir lithologies, some CO(2) loss through precipitation as carbonate minerals cannot be ruled out, but can account for a maximum of 18 per cent of the loss of emplaced CO(2). In view of our findings that geological mineral fixation is a minor CO(2) trapping mechanism in natural gas fields, we suggest that long-term anthropogenic CO(2) storage models in similar geological systems should focus on the potential mobility of CO(2) dissolved in water. PMID:19340078

  1. A Numerical Study on Combining CO2 Mineral Carbonation and Geothermal Energy Development

    NASA Astrophysics Data System (ADS)

    Wan, Y.; Xu, T.; Pruess, K.

    2010-12-01

    There is growing interest in the novel concept of operating Enhanced Geothermal Systems (EGS) with CO2 instead of water as heat transmission fluid. Initial studies have suggested that CO2 may achieve larger rates of heat extraction, and can offer geologic storage of carbon as an ancillary benefit. A fully developed EGS with CO2 would consist of three distinct zones, (1) a central zone or “core” in which all aqueous phase has been removed by dissolution into the flowing CO2 stream, so that the reservoir fluid is a single supercritical CO2 phase; (2) a surrounding intermediate zone, in which the reservoir fluid consists of a two-phase water-CO2 mixture; and (3) an outer or peripheral zone, in which the reservoir fluid is a single aqueous phase with dissolved CO2. Fluid-rock interactions in EGS operated with CO2 are expected to be vastly different in zones with an aqueous phase present, as compared to the central reservoir zone with anhydrous supercritical CO2. We have performed chemically reactive transport (TOUGHREACT ) modeling to investigate fluid-rock interactions and CO2 mineral carbonation of an EGS operated with CO2. The quartz monzodiorite unit at the Enhanced Geothermal Systems (EGS) site at Desert Peak (Nevada) was taken as an example. A geothermal injection well system with supercritical CO2 injection was simulated to (1) investigate mineral dissolution/precipitation and associated porosity changes, and (2) impacts on reservoir growth and longevity, with ramifications for sustaining energy recovery, for estimating CO2 loss rates, and for figuring tradeoffs between power generation and CO2 mineralization (geologic storage).

  2. Photolytically Generated CO2 on Iapetus

    NASA Astrophysics Data System (ADS)

    Palmer, Eric; Brown, R. H.

    2007-10-01

    The leading edge of Iapetus is covered with a dark material that is carbon rich, suggested to be either a carbonaceous layer (Smith el al 1982), CH4 and NH3 embedded in water ice (Squyres et al 1983), or nitrogen-rich tholin and amorphous carbon (Buratti et al 2005). Laboratory experiments have shown that CO2 can be generated from such material both by photolysis (Allamandola, Sandford & Valero 1988) and radiolysis (Strazzulla & Palumbo 1998). We consider the accumulation of CO2 that could be photolytically generated and sequestered in the polar regions of Iapetus. The polar regions provide only a temporary cold trap for CO2, and any polar cap is expected to be seasonal in nature. Using a numerical model to track the movement of CO2, we find that as CO2 moves between poles, 10% of it would reach escape velocity and be lost from the system every solar orbit (29.46 years). CO2 would accumulate until its loss rate equaled its production rate; thus, the quantity of CO2 in a polar cap would be 10 times the amount produced in a single solar orbit. Provided that the generation of CO2 is large enough, Cassini VIMS would be able to detect a seasonal CO2 polar cap. Since the polar regions are comprised of water ice and do not have the same coating of carbon rich dark material as the dark side, any 4.26 micron band absorption would be CO2 frost rather than complexed CO2.

  3. CO2 (dry ice) cleaning system

    NASA Technical Reports Server (NTRS)

    Barnett, Donald M.

    1995-01-01

    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  4. CO2 (dry ice) cleaning system

    NASA Astrophysics Data System (ADS)

    Barnett, Donald M.

    1995-03-01

    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  5. A centrifuge CO2 pellet cleaning system

    NASA Technical Reports Server (NTRS)

    Foster, C. A.; Fisher, P. W.; Nelson, W. D.; Schechter, D. E.

    1995-01-01

    An advanced turbine/CO2 pellet accelerator is being evaluated as a depaint technology at Oak Ridge National Laboratory (ORNL). The program, sponsored by Warner Robins Air Logistics Center (ALC), Robins Air Force Base, Georgia, has developed a robot-compatible apparatus that efficiently accelerates pellets of dry ice with a high-speed rotating wheel. In comparison to the more conventional compressed air 'sandblast' pellet accelerators, the turbine system can achieve higher pellet speeds, has precise speed control, and is more than ten times as efficient. A preliminary study of the apparatus as a depaint technology has been undertaken. Depaint rates of military epoxy/urethane paint systems on 2024 and 7075 aluminum panels as a function of pellet speed and throughput have been measured. In addition, methods of enhancing the strip rate by combining infra-red heat lamps with pellet blasting and by combining the use of environmentally benign solvents with the pellet blasting have also been studied. The design and operation of the apparatus will be discussed along with data obtained from the depaint studies.

  6. Removal of C.I. Reactive Red 2 by low pressure UV/chlorine advanced oxidation.

    PubMed

    Wu, Qianyuan; Li, Yue; Wang, Wenlong; Wang, Ting; Hu, Hongying

    2016-03-01

    Azo dyes are commonly found as pollutants in wastewater from the textile industry, and can cause environmental problems because of their color and toxicity. The removal of a typical azo dye named C.I. Reactive Red 2 (RR2) during low pressure ultraviolet (UV)/chlorine oxidation was investigated in this study. UV irradiation at 254nm and addition of free chlorine provided much higher removal rates of RR2 and color than UV irradiation or chlorination alone. Increasing the free chlorine dose enhanced the removal efficiency of RR2 and color by UV/chlorine oxidation. Experiments performed with nitrobenzene (NB) or benzoic acid (BA) as scavengers showed that radicals (especially OH) formed during UV/chlorine oxidation are important in the RR2 removal. Addition of HCO3(-) and Cl(-) to the RR2 solution did not inhibit the removal of RR2 during UV/chlorine oxidation. PMID:26969069

  7. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria.

    PubMed

    Kumar, Kanhaiya; Dasgupta, Chitralekha Nag; Nayak, Bikram; Lindblad, Peter; Das, Debabrata

    2011-04-01

    CO(2) sequestration by cyanobacteria and green algae are receiving increased attention in alleviating the impact of increasing CO(2) in the atmosphere. They, in addition to CO(2) capture, can produce renewable energy carriers such as carbon free energy hydrogen, bioethanol, biodiesel and other valuable biomolecules. Biological fixation of CO(2) are greatly affected by the characteristics of the microbial strains, their tolerance to temperature and the CO(2) present in the flue gas including SO(X), NO(X). However, there are additional factors like the availability of light, pH, O(2) removal, suitable design of the photobioreactor, culture density and the proper agitation of the reactor that will affect significantly the CO(2) sequestration process. Present paper deals with the photobioreactors of different geometry available for biomass production. It also focuses on the hybrid types of reactors (integrating two reactors) which can be used for overcoming the bottlenecks of a single photobioreactor. PMID:21334885

  8. Phase-Changing Ionic Liquids: CO2 Capture with Ionic Liquids Involving Phase Change

    SciTech Connect

    2010-07-01

    IMPACCT Project: Notre Dame is developing a new CO2 capture process that uses special ionic liquids (ILs) to remove CO2 from the gas exhaust of coal-fired power plants. ILs are salts that are normally liquid at room temperature, but Notre Dame has discovered a new class of ILs that are solid at room temperature and change to liquid when they bind to CO2. Upon heating, the CO2 is released for storage, and the ILs re-solidify and donate some of the heat generated in the process to facilitate further CO2 release. These new ILs can reduce the energy required to capture CO2 from the exhaust stream of a coal-fired power plant when compared to state-ofthe- art technology.

  9. Modeling of time-lapse seismic reflection data from CO2 sequestration at West Pearl Queen Field

    NASA Astrophysics Data System (ADS)

    Bartel, L. C.; Haney, M. M.; Aldridge, D. F.; Symons, N. P.; Elbring, G. J.

    2006-12-01

    Sequestration of CO2 in depleted oil reservoirs, saline aquifers, or unminable coal sequences may prove to be an economical and environmentally safe means for long-term removal of carbon from the atmosphere. Requirements for storage of CO2 in subsurface geologic repositories (e.g., less than 0.1% per year leakage) pose significant challenges for geophysical remote sensing techniques. The many issues relevant to successful CO2 sequestration (volume in place, migration, leakage rate) require improved understanding of the advantages and pitfalls of potential monitoring methods. Advanced numerical modeling of time-lapse seismic reflection responses offers a controlled environment for testing hypotheses and exploring alternatives. The U.S. Department of Energy has conducted CO2 sequestration and monitoring tests at West Pearl Queen (WPQ) field in southeastern New Mexico. High-quality 9C/3D seismic reflection data were acquired before and after injection of ~2 kt of CO2 into a depleted sandstone unit at ~4200 ft depth. Images developed from time- lapse seismic data appear to reveal strong reflectivity changes attributed to displacement of brine by CO2. We are pursuing seismic numerical modeling studies with the goal of understanding and assessing the reliability and robustness of the time-lapse reflection responses. A 3D time-domain finite-difference isotropic elastic wave propagation algorithm generates realistic synthetic data. With this capability, we examine how various types of errors and noise in the 4D data degrade the ability to image a deep CO2 plume. Source/receiver sampling, subsurface illumination, correlated geologic heterogeneity, and static shifts are considered. As a result, we are able to make quantitative estimates of the tolerable errors for monitoring CO2 injection at WPQ field. Future plans include incorporating 3D poroelastic wave propagation modeling into the analysis. Sandia National Laboratories is a multiprogram science and engineering facility

  10. FINAL REPORT. MICELLE FORMATION AND SURFACE INTERACTIONS IN SUPERCRITICAL CO2: FUNDAMENTAL STUDIES FOR THE EXTRACTION OF ACTINIDES FROM CONTAMINATED SURFACES

    EPA Science Inventory

    The goal of this research was to build the fundamental understanding of microemulsion formation and mobility in supercritical CO2 necessary to develop an innovative extraction system for selectively removing metals (actinides) from contaminated surfaces. Supercritical CO2 has man...

  11. Capturing CO2 via reactions in nanopores.

    SciTech Connect

    Leung, Kevin; Nenoff, Tina Maria; Criscenti, Louise Jacqueline; Tang, Z; Dong, J. H.

    2008-10-01

    This one-year exploratory LDRD aims to provide fundamental understanding of the mechanism of CO2 scrubbing platforms that will reduce green house gas emission and mitigate the effect of climate change. The project builds on the team member's expertise developed in previous LDRD projects to study the capture or preferential retention of CO2 in nanoporous membranes and on metal oxide surfaces. We apply Density Functional Theory and ab initio molecular dynamics techniques to model the binding of CO2 on MgO and CaO (100) surfaces and inside water-filled, amine group functionalized silica nanopores. The results elucidate the mechanisms of CO2 trapping and clarify some confusion in the literature. Our work identifies key future calculations that will have the greatest impact on CO2 capture technologies, and provides guidance to science-based design of platforms that can separate the green house gas CO2 from power plant exhaust or even from the atmosphere. Experimentally, we modify commercial MFI zeolite membranes and find that they preferentially transmit H2 over CO2 by a factor of 34. Since zeolite has potential catalytic capability to crack hydrocarbons into CO2 and H2, this finding paves the way for zeolite membranes that can convert biofuel into H2 and separate the products all in one step.

  12. Mars South Pole CO2 Paleoatmosphere

    NASA Astrophysics Data System (ADS)

    Schneck, T.

    2004-03-01

    Seasonal asymmetry in the CO mixing ratio is explained by condensation of CO_2. High levels of deuteration can be obtained if the gas phase is depleted of CO. UV limbs measurements found intense Cameron band emissions of CO from 1900-2700 A produced by dissociative excitation of CO_2.

  13. CAPTURING CO2 WITH MGO AEROGELS

    EPA Science Inventory

    CO2 capture from flue gas requires that the adsorbent be active at relatively low CO2 concentrations (3 – 13 vol%), high temperatures (~ 250ºC), and in the presence of many other gas species. These conditions will be simulated in the student designed reactor. The...

  14. CO2 ice on Mars: Theoretical simulations

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee

    1992-01-01

    A theoretical model of the energy budget of the polar caps of Mars has been created which is used to study the hemispherical asymmetry in CO2 ice. The observations which show survival of seasonal CO2 ice in the Southern Hemisphere in summer and not in the Northern Hemisphere in summer have been reproduced.

  15. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect

    Cordatos, Harry

    2010-03-01

    Project overview provides background on carbonic anhydrase transport mechanism for CO2 in the human body and proposed approach for ARPA-E project to create a synthetic enzyme analogue and utilize it in a membrane for CO2 capture from flue gas.

  16. Aqueous ethylenediamine for CO(2) capture.

    PubMed

    Zhou, Shan; Chen, Xi; Nguyen, Thu; Voice, Alexander K; Rochelle, Gary T

    2010-08-23

    Aqueous ethylenediamine (EDA) has been investigated as a solvent for CO(2) capture from flue gas. EDA can be used at 12 M (mol kg(-1) H(2)O) with an acceptable viscosity of 16 cP (1 cP=10(-3) Pa s) with 0.48 mol CO(2) per equivalent of EDA. Similar to monoethanolamine (MEA), EDA can be used up to 120 degrees C in a stripper without significant thermal degradation. Inhibitor A will effectively eliminate oxidative degradation. Above 120 degrees C, loaded EDA degrades with the production of its cyclic urea and other related compounds. Unlike piperazine, when exposed to oxidative degradation, EDA does not result in excessive foaming. Over much of the loading range, the CO(2) absorption rate with 12 M EDA is comparable to 7 M MEA. However, at typical rich loading, 12 M EDA absorbs CO(2) 2 times slower than 7 M MEA. The capacity of 12 M EDA is 0.72 mol CO(2)/(kg H(2)O+EDA) (for P(CO(2) )=0.5 to 5 kPa at 40 degrees C), which is about double that of MEA. The apparent heat of CO(2) desorption in EDA solution is 84 kJ mol(-1) CO(2); greater than most other amine systems. PMID:20677204

  17. Improved Criteria for Increasing CO2 Storage Potential with CO2 Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Bauman, J.; Pawar, R.

    2013-12-01

    In recent years it has been found that deployment of CO2 capture and storage technology at large scales will be difficult without significant incentives. One of the technologies that has been a focus in recent years is CO2 enhanced oil/gas recovery, where additional hydrocarbon recovery provides an economic incentive for deployment. The way CO2 EOR is currently deployed, maximization of additional oil production does not necessarily lead to maximization of stored CO2, though significant amounts of CO2 are stored regardless of the objective. To determine the potential of large-scale CO2 storage through CO2 EOR, it is necessary to determine the feasibility of deploying this technology over a wide range of oil/gas field characteristics. In addition it is also necessary to accurately estimate the ultimate CO2 storage potential and develop approaches that optimize oil recovery along with long-term CO2 storage. This study uses compositional reservoir simulations to further develop technical screening criteria that not only improve oil recovery, but maximize CO2 storage during enhanced oil recovery operations. Minimum miscibility pressure, maximum oil/ CO2 contact without the need of significant waterflooding, and CO2 breakthrough prevention are a few key parameters specific to the technical aspects of CO2 enhanced oil recovery that maximize CO2 storage. We have developed reduced order models based on simulation results to determine the ultimate oil recovery and CO2 storage potential in these formations. Our goal is to develop and demonstrate a methodology that can be used to determine feasibility and long-term CO2 storage potential of CO2 EOR technology.

  18. Mechanistic Determination of Nitrogen Removal By Advanced Soil-Based Wastewater Treatment Systems Using 15n Isotopes

    NASA Astrophysics Data System (ADS)

    Cooper, J.; Loomis, G.; Kalen, D.; Boving, T. B.; Morales, I.; Amador, J.

    2014-12-01

    Current levels of nitrogen removal by onsite wastewater treatment systems (OWTS) are inadequate, with release of N from OWTS contributing to environmental N pollution, especially in coastal zones where aquatic ecosystems are sensitive to eutrophication. Current mechanistic understand of N removal are limited and mainly attributed to denitrification in the drainfield. Loss of N from N2O production during nitrification, a sparsely researched topic, may be a significant mechanism in advanced OWTS systems that enhance O2 diffusion by sand filter pre-treatment, shallow placement of infiltrative areas and timed dosing controls to prevent drainfield saturation. Replicate (n=3) intact soil mesocosms were used with 15N isotope to evaluate the effectiveness and mechanisms of N removal in drainfields with a conventional wastewater delivery (pipe-and-stone, P&S) compared to two advanced types of drainfields, pressurized shallow narrow drainfield (SND) and Geomat (GEO), a variation of a SND drainfield. Over the 11 day experiment, dissolved O2 was 1.6 mg/L for P&S and 3.0 mg/L for SND and GEO. Removal of total N was 13.5% for P&S, 4.8% for SND and 5.4% for GEO. 15NH4 labeled nitrogen inputs to drainfields were transformed primarily to 15NO3 in all outputs. Consistent low 15N2O levels were present in P&S, with increasing levels of N2 peaking 48h after 15NH4 injection, suggesting denitrification dominated N removal. By contrast, SND and GEO 15N2O levels rose quickly, peaking 8h after 15NH4 injection, suggesting N loss by nitrification. When the whole system is considered, including sand filter removal, 26 - 27% of total N was removed by the SND and GEO systems, whereas 14% of total N was removed in the P&S system. Our results suggest the SND and GEO systems as a whole are capable of removing a greater mass of N than the P&S system.

  19. The benefits of powdered activated carbon recirculation for micropollutant removal in advanced wastewater treatment.

    PubMed

    Meinel, F; Zietzschmann, F; Ruhl, A S; Sperlich, A; Jekel, M

    2016-03-15

    PAC adsorption is a widespread option for the removal of organic micropollutants (OMP) from secondary effluent. For an optimal exploitation of the adsorption capacity, PAC recirculation is nowadays a common practice, although the mechanistic interrelations of the complex recirculation process are not fully resolved. In this work, extensive multi-stage batch adsorption testing with repeated PAC and coagulant dosage was performed to evaluate the continuous-flow recirculation system. Partly loaded PAC showed a distinct amount of remaining capacity, as OMP and DOC removals considerably increased with each additional adsorption stage. At a low PAC dose of 10 mg PAC L(-1), removals of benzotriazole and carbamazepine were shown to rise from <40% in the first stage up to >80% in the 11th stage at 30 min adsorption time per stage. At a high PAC dose of 30 mg PAC L(-1), OMP and DOC removals were significantly higher and reached 98% (for benzotriazole and carbamazepine) after 11 stages. Coagulant dosage showed no influence on OMP removal, whereas a major part of DOC removal can be attributed to coagulation. Multi-stage adsorption is particularly beneficial for small PAC doses and significant PAC savings are feasible. A new model approach for predicting multi-stage OMP adsorption on the basis of a single-stage adsorption experiment was developed. It proved to predict OMP removals and PAC loadings accurately and thus contributes towards understanding the PAC recirculation process. PMID:26773491

  20. Venting of CO2 at Enceladus’ Surface

    NASA Astrophysics Data System (ADS)

    Matson, Dennis L.; Davies, Ashley G.; Johnson, Torrence V.; Combe, Jean-Philippe; McCord, Tom B.; Radebaugh, Jani

    2015-11-01

    Enceladus has CO2 surface deposits in its South Polar Region that have been recently mapped by J.-P. Combe et al. (2015 AGU Fall Meeting). Assuming that these are CO2 frost, we show how they can be formed. We use an ocean-water circulation model [1] that specifies pressure gradients that drive water to the surface from a relatively gas-rich, subsurface ocean. We now examine the movement of CO2 to the surface; formation of shallow CO2 gas pockets in the ice; and the venting of CO2, when at least some of the gas freezes to form frost. If the local heat flow is known (cf. [2]), then the depths of the corresponding gas pockets can be calculated. References: [1] Matson et al. (2012) Icarus, 221, 53-62. [2] Howett et al. (2011) J. Geophys. Res. 116, E03003. Acknowledgements: AGD thanks the NASA OPR Program for support.

  1. Geophysical monitoring technology for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Ma, Jin-Feng; Li, Lin; Wang, Hao-Fan; Tan, Ming-You; Cui, Shi-Ling; Zhang, Yun-Yin; Qu, Zhi-Peng; Jia, Ling-Yun; Zhang, Shu-Hai

    2016-06-01

    Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.

  2. Calibrating Laser Gas Measurements by Use of Natural CO2

    NASA Technical Reports Server (NTRS)

    Webster, Chris

    2003-01-01

    An improved method of calibration has been devised for instruments that utilize tunable lasers to measure the absorption spectra of atmospheric gases in order to determine the relative abundances of the gases. In this method, CO2 in the atmosphere is used as a natural calibration standard. Unlike in one prior calibration method, it is not necessary to perform calibration measurements in advance of use of the instrument and to risk deterioration of accuracy with time during use. Unlike in another prior calibration method, it is not necessary to include a calibration gas standard (and the attendant additional hardware) in the instrument and to interrupt the acquisition of atmospheric data to perform calibration measurements. In the operation of an instrument of this type, the beam from a tunable diode laser or a tunable quantum-cascade laser is directed along a path through the atmosphere, the laser is made to scan in wavelength over an infrared spectral region that contains one or two absorption spectral lines of a gas of interest, and the transmission (and, thereby, the absorption) of the beam is measured. The concentration of the gas of interest can then be calculated from the observed depth of the absorption line(s), given the temperature, pressure, and path length. CO2 is nearly ideal as a natural calibration gas for the following reasons: CO2 has numerous rotation/vibration infrared spectral lines, many of which are near absorption lines of other gases. The concentration of CO2 relative to the concentrations of the major constituents of the atmosphere is well known and varies slowly and by a small enough amount to be considered constant for calibration in the present context. Hence, absorption-spectral measurements of the concentrations of gases of interest can be normalized to the concentrations of CO2. Because at least one CO2 calibration line is present in every spectral scan of the laser during absorption measurements, the atmospheric CO2 serves

  3. Non-CO2 Greenhouse Gases in the Second Generation Model

    SciTech Connect

    Fawcett, Allen A.; Sands, Ronald D.

    2006-12-29

    The Second Generation Model (SGM) was developed for the purpose of analyzing policies designed to reduce greenhouse gas emissions. This paper documents how greenhouse gas emissions are calculated in the SGM, an application to several Energy Modeling Forum scenarios that stabilize radiative forcing by using policies that either exclusively limit CO2 emissions or include both CO2 and non-CO2 greenhouse gasses, and an extension including advanced fossil generating technologies with CO2 capture and storage in the USA region of the SGM.

  4. Role of Rective Mineral Surface Area on the CO2 Mineralisation of CO2 Under Natural Conditions

    NASA Astrophysics Data System (ADS)

    Zuddas, P.; Rillard, J.

    2011-12-01

    The understanding of complex reactions between CO2 rich fluids and rock is fundamental to secured, long-term CO2 storage in geological reservoirs. A natural hydrothermal field is considered to be a useful analogue of carbon dioxide mineralization because it integrates the long-term interaction signal. The hydrothermal field of Galicia (Spain) is characterized by co-genetic fluids resulting from a mostly homogeneous granite reservoir with pCO2 partial pressure ranging from 104 to105 Pa and pH from 10 to 6. Fluids are characterized by an increase of major elements (Ca, Mg, K and Na) and alkalinity, both correlated to pCO2. We evaluated the effects of deep CO2 perturbation on the fluid-rock interaction system. Mineral reactivity which produces changes in the fluid mineral composition is mainly dependent on the 'real' reactive surface area. The mineral surface area participating in reactions resulting from this pCO2 gradient was estimated by an inverse model approach. Input data was based on the chemical composition of the fluids we sampled. The rate of mineral dissolution was estimated by the observed pH and equilibrium conditions. Moreover, the major elemental concentrations allowed us to quantify the variation of the reactive surface area of minerals involved with the overall water-rock interaction. The irreversible mass transfer process, ruled by the continuum equilibrium condition, was defined by the overall degree of reaction advancement, using a set of polynomial equations solved independently of time scale. We found that reactive surface area of calcite, albite and K-feldspar increases by 2 orders of magnitude over the entire CO2 fluid-rock interaction process, while the reactive surface area of biotite increases by 4 orders of magnitude. This shows that fluid neutralisation and consequent CO2 mineralization under the form of carbonate species is greatly dependent on the behaviour of the reactive surface area of the mineral association in this geological

  5. Evaluation of soil CO2 production and transport in Duke Forest using a process-based modeling approach

    NASA Astrophysics Data System (ADS)

    Hui, Dafeng; Luo, Yiqi

    2004-12-01

    Soil surface CO2 efflux is an important component of the carbon cycle in terrestrial ecosystems. However, our understanding of mechanistic controls of soil CO2 production and transport is greatly limited. A multilayer process-based soil CO2 efflux model (PATCIS) was used to evaluate soil CO2 production and transport in the Duke Forest. CO2 production in the soil is the sum of root respiration and soil microbial respiration, and CO2 transport in the soil mainly simulates gaseous diffusion. Simulated soil CO2 efflux in the Duke Forest ranged from 5 g CO2 m-2 d-1 in the winter to 25 g CO2 m-2 d-1 in summer. Annual soil CO2 efflux was 997 and 1211 g C m-2 yr-1 in 1997 and 1998, respectively. These simulations were consistent with the observed soil CO2 efflux. Simulated root respiration contributed 53% to total soil respiration. Soil temperature had the dominant influence on soil CO2 production and CO2 efflux while soil moisture only regulated soil CO2 efflux in the summer when soil moisture was very low. Soil CO2 efflux was sensitive to the specific fine root respiratory rate and live fine root biomass. Elevated CO2 increased annual soil CO2 efflux by 26% in 1997 and 18% in 1998, due mainly to the enhanced live fine root biomass and litterfall. On a daily to yearly basis, CO2 production is almost identical to CO2 efflux, suggesting that CO2 transport is not a critical process regulating daily and long-term soil surface CO2 effluxes in the Duke Forest. We also developed a statistical model of soil CO2 efflux with soil temperature and moisture. Daily soil CO2 efflux estimation by the statistical model showed a similar pattern to the simulated soil CO2 efflux, but the total annual CO2 efflux was slightly lower. While the statistical model is simple, yet powerful, in simulating seasonal dynamics of soil CO2 efflux, the process-based model has the potential to advance our mechanistic understanding of soil CO2 efflux variations in the current and future worlds.

  6. The ins and outs of CO2.

    PubMed

    Raven, John A; Beardall, John

    2016-01-01

    It is difficult to distinguish influx and efflux of inorganic C in photosynthesizing tissues; this article examines what is known and where there are gaps in knowledge. Irreversible decarboxylases produce CO2, and CO2 is the substrate/product of enzymes that act as carboxylases and decarboxylases. Some irreversible carboxylases use CO2; others use HCO3(-). The relative role of permeation through the lipid bilayer versus movement through CO2-selective membrane proteins in the downhill, non-energized, movement of CO2 is not clear. Passive permeation explains most CO2 entry, including terrestrial and aquatic organisms with C3 physiology and biochemistry, terrestrial C4 plants and all crassulacean acid metabolism (CAM) plants, as well as being part of some mechanisms of HCO3(-) use in CO2 concentrating mechanism (CCM) function, although further work is needed to test the mechanism in some cases. However, there is some evidence of active CO2 influx at the plasmalemma of algae. HCO3(-) active influx at the plasmalemma underlies all cyanobacterial and some algal CCMs. HCO3(-) can also enter some algal chloroplasts, probably as part of a CCM. The high intracellular CO2 and HCO3(-) pools consequent upon CCMs result in leakage involving CO2, and occasionally HCO3(-). Leakage from cyanobacterial and microalgal CCMs involves up to half, but sometimes more, of the gross inorganic C entering in the CCM; leakage from terrestrial C4 plants is lower in most environments. Little is known of leakage from other organisms with CCMs, though given the leakage better-examined organisms, leakage occurs and increases the energetic cost of net carbon assimilation. PMID:26466660

  7. The ins and outs of CO2

    PubMed Central

    Raven, John A.; Beardall, John

    2016-01-01

    It is difficult to distinguish influx and efflux of inorganic C in photosynthesizing tissues; this article examines what is known and where there are gaps in knowledge. Irreversible decarboxylases produce CO2, and CO2 is the substrate/product of enzymes that act as carboxylases and decarboxylases. Some irreversible carboxylases use CO2; others use HCO3 –. The relative role of permeation through the lipid bilayer versus movement through CO2-selective membrane proteins in the downhill, non-energized, movement of CO2 is not clear. Passive permeation explains most CO2 entry, including terrestrial and aquatic organisms with C3 physiology and biochemistry, terrestrial C4 plants and all crassulacean acid metabolism (CAM) plants, as well as being part of some mechanisms of HCO3 – use in CO2 concentrating mechanism (CCM) function, although further work is needed to test the mechanism in some cases. However, there is some evidence of active CO2 influx at the plasmalemma of algae. HCO3 – active influx at the plasmalemma underlies all cyanobacterial and some algal CCMs. HCO3 – can also enter some algal chloroplasts, probably as part of a CCM. The high intracellular CO2 and HCO3 – pools consequent upon CCMs result in leakage involving CO2, and occasionally HCO3 –. Leakage from cyanobacterial and microalgal CCMs involves up to half, but sometimes more, of the gross inorganic C entering in the CCM; leakage from terrestrial C4 plants is lower in most environments. Little is known of leakage from other organisms with CCMs, though given the leakage better-examined organisms, leakage occurs and increases the energetic cost of net carbon assimilation. PMID:26466660

  8. Convective shutdown of CO2 in saline aquifers

    NASA Astrophysics Data System (ADS)

    Neufeld, J. A.; Hewitt, D. R.; Lister, J. R.

    2013-12-01

    Convective flow in a porous medium, driven by a buoyancy source along one boundary, is common in active geothermal aquifers and in the presence of evaporation in saline aquifers. More recently, convection driven by the dissolution of injected CO2 in saline aquifers has been shown to reduce the volume of mobile CO2 in carbon sequestration sites and analogues, thus reducing any concomitant risks of leakage. For carbon sequestration the rates of dissolution can depend strongly on the background CO2 concentration, and hence might be expected to wane in time. Here we present a simple analytic box model of the shutdown of convection in a closed aquifer, and compare these reduced model results against high-resolution numerical and analogue experiments. We find that the box model accurately captures the dynamics of the convective fluxes, and provides time scale over which free-phase CO2 may be completely removed. Furthermore, the model may provide insight into the geochemical record of dissolution in the deep carbon cycle.

  9. Amorphous Silk Fibroin Membranes for Separation of CO2

    NASA Technical Reports Server (NTRS)

    Aberg, Christopher M.; Patel, Anand K.; Gil, Eun Seok; Spontak, Richard J.; Hagg, May-Britt

    2009-01-01

    Amorphous silk fibroin has shown promise as a polymeric material derivable from natural sources for making membranes for use in removing CO2 from mixed-gas streams. For most applications of silk fibroin, for purposes other than gas separation, this material is used in its highly crystalline, nearly natural form because this form has uncommonly high tensile strength. However, the crystalline phase of silk fibroin is impermeable, making it necessary to convert the material to amorphous form to obtain the high permeability needed for gas separation. Accordingly, one aspect of the present development is a process for generating amorphous silk fibroin by treating native silk fibroin in an aqueous methanol/salt solution. The resulting material remains self-standing and can be prepared as thin film suitable for permeation testing. The permeability of this material by pure CO2 has been found to be highly improved, and its mixed-gas permeability has been found to exceed the mixed-gas permeabilities of several ultrahigh-CO2-permeable synthetic polymers. Only one of the synthetic polymers poly(trimethylsilylpropyne) [PTMSP] may be more highly permeable by CO2. PTMSP becomes unstable with time, whereas amorphous silk should not, although at the time of this reporting this has not been conclusively proven.

  10. Establishment of a novel advanced oxidation process for economical and effective removal of SO2 and NO.

    PubMed

    Hao, Runlong; Zhao, Yi; Yuan, Bo; Zhou, Sihan; Yang, Shuo

    2016-11-15

    SO2 and NO have caused serious haze in China. For coping with the terrible problem, this paper proposed a novel advanced oxidation process of ultraviolet (UV) catalyzing vaporized H2O2 for simultaneous removal of SO2 and NO. Effects of various factors on simultaneous removal of SO2 and NO were investigated, such as the mass concentration of H2O2, the UV energy density, the UV wavelength, the H2O2 pH, the temperatures of H2O2 vaporization and UV-catalysis, the flue gas residence time, the concentrations of SO2, NO and O2, and radical scavenger. The removal efficiencies of 100% for SO2 and 87.8% for NO were obtained under the optimal conditions. The proposed approach has some superiorities, i.e. less dosage and high utilization of oxidant, short flue gas residence time and inhibiting the competition between SO2 and NO for oxidants. The results indicated that the desulfurization process was dominated by the absorption by HA-Na, whereas the denitrification was primarily affected by the H2O2 dosage, UV energy density and H2O2 pH. Interestingly, an appropriate amount of SO2 was beneficial for NO removal. The reaction mechanism was speculated based on the characterizations of removal products by XRD, FT-IR and IC. PMID:27427889

  11. Dynamics of CO2 fluxes and concentrations during a shallow subsurface CO2 release

    SciTech Connect

    Lewicki, J.L.; Hilley, G.E.; Dobeck, L.; Spangler, L.

    2009-09-01

    A field facility located in Bozeman, Montana provides the opportunity to test methods to detect, locate, and quantify potential CO2 leakage from geologic storage sites. From 9 July to 7 August 2008, 0.3 t CO2 d{sup -1} were injected from a 100-m long, {approx}2.5 m deep horizontal well. Repeated measurements of soil CO2 fluxes on a grid characterized the spatio-temporal evolution of the surface leakage signal and quantified the surface leakage rate. Infrared CO2 concentration sensors installed in the soil at 30 cm depth at 0 to 10 m from the well and at 4 cm above the ground at 0 and 5 m from the well recorded surface breakthrough of CO2 leakage and migration of CO2 leakage through the soil. Temporal variations in CO2 concentrations were correlated with atmospheric and soil temperature, wind speed, atmospheric pressure, rainfall, and CO2 injection rate.

  12. Effects of CO2 leakage on soil bacterial communities from simulated CO2-EOR areas.

    PubMed

    Chen, Fu; Yang, Yongjun; Ma, Yanjun; Hou, Huping; Zhang, Shaoliang; Ma, Jing

    2016-05-18

    CO2-EOR (enhanced oil recovery) has been proposed as a viable option for flooding oil and reducing anthropogenic CO2 contribution to the atmospheric pool. However, the potential risk of CO2 leakage from the process poses a threat to the ecological system. High-throughput sequencing was used to investigate the effects of CO2 emission on the composition and structure of soil bacterial communities. The diversity of bacterial communities notably decreased with increasing CO2 flux. The composition of bacterial communities varied along the CO2 flux, with increasing CO2 flux accompanied by increases in the relative abundance of Bacteroidetes and Firmicutes phyla, but decreases in the relative abundance of Acidobacteria and Chloroflexi phyla. Within the Firmicutes phylum, the genus Lactobacillus increased sharply when the CO2 flux was at its highest point. Alpha and beta diversity analysis revealed that differences in bacterial communities were best explained by CO2 flux. The redundancy analysis (RDA) revealed that differences in bacterial communities were best explained by soil pH values which related to CO2 flux. These results could be useful for evaluating the risk of potential CO2 leakages on the ecosystems associated with CO2-EOR processes. PMID:27056285

  13. CO2 deserts: implications of existing CO2 supply limitations for carbon management.

    PubMed

    Middleton, Richard S; Clarens, Andres F; Liu, Xiaowei; Bielicki, Jeffrey M; Levine, Jonathan S

    2014-10-01

    Efforts to mitigate the impacts of climate change will require deep reductions in anthropogenic CO2 emissions on the scale of gigatonnes per year. CO2 capture and utilization and/or storage technologies are a class of approaches that can substantially reduce CO2 emissions. Even though examples of this approach, such as CO2-enhanced oil recovery, are already being practiced on a scale >0.05 Gt/year, little attention has been focused on the supply of CO2 for these projects. Here, facility-scale data newly collected by the U.S. Environmental Protection Agency was processed to produce the first comprehensive map of CO2 sources from industrial sectors currently supplying CO2 in the United States. Collectively these sources produce 0.16 Gt/year, but the data reveal the presence of large areas without access to CO2 at an industrially relevant scale (>25 kt/year). Even though some facilities with the capability to capture CO2 are not doing so and in some regions pipeline networks are being built to link CO2 sources and sinks, much of the country exists in "CO2 deserts". A life cycle analysis of the sources reveals that the predominant source of CO2, dedicated wells, has the largest carbon footprint further confounding prospects for rational carbon management strategies. PMID:25137398

  14. CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites.

    PubMed

    Dai, Zhenxue; Viswanathan, Hari; Middleton, Richard; Pan, Feng; Ampomah, William; Yang, Changbing; Jia, Wei; Xiao, Ting; Lee, Si-Yong; McPherson, Brian; Balch, Robert; Grigg, Reid; White, Mark

    2016-07-19

    Using CO2 in enhanced oil recovery (CO2-EOR) is a promising technology for emissions management because CO2-EOR can dramatically reduce sequestration costs in the absence of emissions policies that include incentives for carbon capture and storage. This study develops a multiscale statistical framework to perform CO2 accounting and risk analysis in an EOR environment at the Farnsworth Unit (FWU), Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil/gas-water flow and transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major risk metrics: CO2/water injection/production rates, cumulative net CO2 storage, cumulative oil/gas productions, and CO2 breakthrough time. The median and confidence intervals are estimated for quantifying uncertainty ranges of the risk metrics. A response-surface-based economic model has been derived to calculate the CO2-EOR profitability for the FWU site with a current oil price, which suggests that approximately 31% of the 1000 realizations can be profitable. If government carbon-tax credits are available, or the oil price goes up or CO2 capture and operating expenses reduce, more realizations would be profitable. The results from this study provide valuable insights for understanding CO2 storage potential and the corresponding environmental and economic risks of commercial-scale CO2-sequestration in depleted reservoirs. PMID:27362472

  15. Sensitivity of simulated CO2 concentration to sub-annual variations in fossil fuel CO2 emissions

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Gurney, Kevin R.; Rayner, Peter; Baker, David; Liu, Yu-ping

    2016-02-01

    Recent advances in fossil fuel CO2 (FFCO2) emission inventories enable sensitivity tests of simulated atmospheric CO2 concentrations to sub-annual variations in FFCO2 emissions and what this implies for the interpretation of observed CO2. Six experiments are conducted to investigate the potential impact of three cycles of FFCO2 emission variability (diurnal, weekly and monthly) using a global tracer transport model. Results show an annual FFCO2 rectification varying from -1.35 to +0.13 ppm from the combination of all three cycles. This rectification is driven by a large negative diurnal FFCO2 rectification due to the covariation of diurnal FFCO2 emissions and diurnal vertical mixing, as well as a smaller positive seasonal FFCO2 rectification driven by the covariation of monthly FFCO2 emissions and monthly atmospheric transport. The diurnal FFCO2 emissions are responsible for a diurnal FFCO2 concentration amplitude of up to 9.12 ppm at the grid cell scale. Similarly, the monthly FFCO2 emissions are responsible for a simulated seasonal CO2 amplitude of up to 6.11 ppm at the grid cell scale. The impact of the diurnal FFCO2 emissions, when only sampled in the local afternoon, is also important, causing an increase of +1.13 ppmv at the grid cell scale. The simulated CO2 concentration impacts from the diurnally and seasonally varying FFCO2 emissions are centered over large source regions in the Northern Hemisphere, extending to downwind regions. This study demonstrates the influence of sub-annual variations in FFCO2 emissions on simulated CO2 concentration and suggests that inversion studies must take account of these variations in the affected regions.

  16. Selective and Reversible Inhibition of Active CO2 Transport by Hydrogen Sulfide in a Cyanobacterium 1

    PubMed Central

    Espie, George S.; Miller, Anthony G.; Canvin, David T.

    1989-01-01

    The active transport of CO2 in the cyanobacterium Synechococcus UTEX 625 was inhibited by H2S. Treatment of the cells with up to 150 micromolar H2S + HS− at pH 8.0 had little effect on Na+-dependent HCO3− transport or photosynthetic O2 evolution, but CO2 transport was inhibited by more than 90%. CO2 transport was restored when H2S was removed by flushing with N2. At constant total H2S + HS− concentrations, inhibition of CO2 transport increased as the ratio of H2S to HS− increased, suggesting a direct role for H2S in the inhibitory process. Hydrogen sulfide does not appear to serve as a substrate for transport. In the presence of H2S and Na+ -dependent HCO3− transport, the extracellular CO2 concentration rose considerably above its equilibrium level, but was maintained far below its equilibrium level in the absence of H2S. The inhibition of CO2 transport, therefore, revealed an ongoing leakage from the cells of CO2 which was derived from the intracellular dehydration of HCO3− which itself had been recently transported into the cells. Normally, leaked CO2 is efficiently transported back into the cell by the CO2 transport system, thus maintaining the extracellular CO2 concentration near zero. It is suggested that CO2 transport not only serves as a primary means of inorganic carbon acquisition for photosynthesis but also serves as a means of recovering CO2 lost from the cell. A schematic model describing the relationship between the CO2 and HCO3− transport systems is presented. Images Figure 7 PMID:16667030

  17. The contribution of aquatic metabolism to CO2 emissions from New Hampshire streams

    NASA Astrophysics Data System (ADS)

    Koenig, L.; Snyder, L. E.; McDowell, W. H.; Hunt, C. W.

    2015-12-01

    Fluvial networks represent a significant source of carbon dioxide (CO2) to the atmosphere. Recent evidence has highlighted the ubiquity of CO2 supersaturation in streams, rivers, and lakes worldwide, yet our understanding of how the source of this CO2 flux (e.g. in situ aquatic production versus soil and groundwater sources within the catchment) varies in time and across different aquatic systems remains limited. In this study we used continuous, high-frequency measurements of dissolved oxygen (DO) and CO2 to model stream metabolism and CO2 emissions for five stream sites across New Hampshire that vary in size, nutrient loading, and landscape context, with the goal of quantitatively partitioning the aquatic CO2 flux into catchment and aquatic sources, respectively. Spectral analysis of the DO and CO2 time series indicates that these gases often deviated from the pure inverse behavior that would be expected if CO2 flux originated solely from in-stream biological activity. Across all streams, the estimated contribution of aquatic net ecosystem production (NEP) to stream CO2 flux varied from approximately 0% to 50%. For each site, the proportion of CO2 flux supported by aquatic NEP was lower at higher discharge, perhaps due to increased CO2 transport from soils to streams during wetter periods, and/or due to effects of scouring flows and carbon removal on stream metabolism. Our data provides evidence that catchment sources represent substantial contributions to aquatic CO2 flux across temperate streams, but that the proportion of CO2 flux originating from net in situ production and carbon transformation is variable throughout the growing season.

  18. Design and implementation of a CO2 flood utilizing advanced reservoirs characterization and horizontal injection wells in a shallow shelf carbonate approaching water floods depletion: Technical progress report, January 1, 1997--March 31, 1997

    SciTech Connect

    Chimahusky, J.S., Casteel, J.F.

    1997-05-01

    The first objective is to utilize reservoir characterization and advanced technologies to optimize the design of a carbon dioxide (CO{sub 2}) project for the South Cowden Unit (SCU) located in Ector County, Texas. The SCU is a mature, relatively small, shallow shelf carbonate unit nearing waterflood depletion. The second objective is to demonstrate the performance and economic viability of the project in the field. All work this quarter falls within the demonstration project.

  19. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO(2) Enhanced Oil Recovery in California`s Monterey formation Siliceous Shales. Progress report, April 1-June 30, 1997

    SciTech Connect

    Morea, M.F.

    1997-07-25

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a C0{sub 2} enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills Pilot C0{sub 2} project will demonstrate the economic viability and widespread applicability of C0{sub 2} flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and C0{sub 2} Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  20. Engineered yeast for enhanced CO2 mineralization†

    PubMed Central

    Barbero, Roberto; Carnelli, Lino; Simon, Anna; Kao, Albert; Monforte, Alessandra d’Arminio; Riccò, Moreno; Bianchi, Daniele; Belcher, Angela

    2014-01-01

    In this work, a biologically catalyzed CO2 mineralization process for the capture of CO2 from point sources was designed, constructed at a laboratory scale, and, using standard chemical process scale-up protocols, was modeled and evaluated at an industrial scale. A yeast display system in Saccharomyces cerevisae was used to screen several carbonic anhydrase isoforms and mineralization peptides for their impact on CO2 hydration, CaCO3 mineralization, and particle settling rate. Enhanced rates for each of these steps in the CaCO3 mineralization process were confirmed using quantitative techniques in lab-scale measurements. The effect of these enhanced rates on the CO2 capture cost in an industrial scale CO2 mineralization process using coal fly ash as the CaO source was evaluated. The model predicts a process using bCA2- yeast and fly ash is ~10% more cost effective per ton of CO2 captured than a process with no biological molecules, a savings not realized by wild-type yeast and high-temperature stable recombinant CA2 alone or in combination. The levelized cost of electricity for a power plant using this process was calculated and scenarios in which this process compares favorably to CO2 capture by MEA absorption process are presented. PMID:25289021

  1. Glacial CO2 Cycles: A Composite Scenario

    NASA Astrophysics Data System (ADS)

    Broecker, W. S.

    2015-12-01

    There are three main contributors to the glacial drawdown of atmospheric CO2 content: starvation of the supply of carbon to the ocean-atmosphere reservoir, excess CO2 storage in the deep sea, and surface-ocean cooling. In this talk, I explore a scenario in which all three play significant roles. Key to this scenario is the assumption that deep ocean storage is related to the extent of nutrient stratification of the deep Atlantic. The stronger this stratification, the larger the storage of respiration CO2. Further, it is my contention that the link between Milankovitch insolation cycles and climate is reorganizations of the ocean's thermohaline circulation leading to changes in the deep ocean's CO2 storage. If this is the case, the deep Atlantic d13C record kept in benthic foraminifera shells tells us that deep ocean CO2 storage follows Northern Hemisphere summer insolation cycles and thus lacks the downward ramp so prominent in the records of sea level, benthic 18O and CO2. Rather, the ramp is created by the damping of planetary CO2 emissions during glacial time intervals. As it is premature to present a specific scenario, I provide an example as to how these three contributors might be combined. As their magnitudes and shapes remain largely unconstrained, the intent of this exercise is to provoke creative thinking.

  2. Wettability shifts caused by CO2 aging on mineral surfaces

    NASA Astrophysics Data System (ADS)

    Liang, B.; Clarens, A. F.

    2015-12-01

    Interfacial forces at the CO2/brine/mineral ternary interface have a well-established impact on multiphase flow properties through porous media. In the context of geologic carbon sequestration, this wettability will impact capillary pressure, residual trapping, and a variety of other key parameters of interest. While the wettability of CO2 on pure mineral and real rock sample have been studied a great deal over the past few year, very little is known about how the wettability of these rocks could change over long time horizons as CO2 interacts with species in the brine and on the mineral surface. In this work we sought to explore the role that dilute inorganic and organic species that are likely to exist in connate brines might have on a suite of mineral species. High-pressure contact angle experiments were carried out on a suite of polished mineral surfaces. Both static captive bubble and advancing/receding contact angle measurements were carried out. The effect of ionic strength, and in particular the valence of the dominant ions in the brine are found to have an important impact on the wettability which cannot be explained solely based on the shifts in the interfacial tension between the CO2 and brine. More significantly, three organic species, formate, acetate, and oxalate, all three of which are representative species commonly encountered in the saline aquifers that are considered target repositories for carbon sequestration. All three organic species show impacts on wettability, with the organics generally increasing the CO2 wetting of the mineral surface. Not all pure minerals respond the same to the presence of organics, with micas showing a more pronounced influence than quartz. Sandstone and limestone samples aged with different kinds of hydrocarbons, a surrogate for oil-bearing rocks, are generally more CO2-wet, with larger contact angles in the CO2/brine system. Over multiple days, the contact angle decreases, which could be attributed to partitioning

  3. Estimating lake-atmosphere CO2 exchange

    USGS Publications Warehouse

    Anderson, D.E.; Striegl, R.G.; Stannard, D.I.; Michmerhuizen, C.M.; McConnaughey, T.A.; LaBaugh, J.W.

    1999-01-01

    Lake-atmosphere CO2 flux was directly measured above a small, woodland lake using the eddy covariance technique and compared with fluxes deduced from changes in measured lake-water CO2 storage and with flux predictions from boundary-layer and surface-renewal models. Over a 3-yr period, lake-atmosphere exchanges of CO2 were measured over 5 weeks in spring, summer, and fall. Observed springtime CO2 efflux was large (2.3-2.7 ??mol m-2 s-1) immediately after lake-thaw. That efflux decreased exponentially with time to less than 0.2 ??mol m-2 s-1 within 2 weeks. Substantial interannual variability was found in the magnitudes of springtime efflux, surface water CO2 concentrations, lake CO2 storage, and meteorological conditions. Summertime measurements show a weak diurnal trend with a small average downward flux (-0.17 ??mol m-2 s-1) to the lake's surface, while late fall flux was trendless and smaller (-0.0021 ??mol m-2 s-1). Large springtime efflux afforded an opportunity to make direct measurement of lake-atmosphere fluxes well above the detection limits of eddy covariance instruments, facilitating the testing of different gas flux methodologies and air-water gas-transfer models. Although there was an overall agreement in fluxes determined by eddy covariance and those calculated from lake-water storage change in CO2, agreement was inconsistent between eddy covariance flux measurements and fluxes predicted by boundary-layer and surface-renewal models. Comparison of measured and modeled transfer velocities for CO2, along with measured and modeled cumulative CO2 flux, indicates that in most instances the surface-renewal model underpredicts actual flux. Greater underestimates were found with comparisons involving homogeneous boundary-layer models. No physical mechanism responsible for the inconsistencies was identified by analyzing coincidentally measured environmental variables.

  4. Geological factors affecting CO2 plume distribution

    USGS Publications Warehouse

    Frailey, S.M.; Leetaru, H.

    2009-01-01

    Understanding the lateral extent of a CO2 plume has important implications with regards to buying/leasing pore volume rights, defining the area of review for an injection permit, determining the extent of an MMV plan, and managing basin-scale sequestration from multiple injection sites. The vertical and lateral distribution of CO2 has implications with regards to estimating CO2 storage volume at a specific site and the pore pressure below the caprock. Geologic and flow characteristics such as effective permeability and porosity, capillary pressure, lateral and vertical permeability anisotropy, geologic structure, and thickness all influence and affect the plume distribution to varying degrees. Depending on the variations in these parameters one may dominate the shape and size of the plume. Additionally, these parameters do not necessarily act independently. A comparison of viscous and gravity forces will determine the degree of vertical and lateral flow. However, this is dependent on formation thickness. For example in a thick zone with injection near the base, the CO2 moves radially from the well but will slow at greater radii and vertical movement will dominate. Generally the CO2 plume will not appreciably move laterally until the caprock or a relatively low permeability interval is contacted by the CO2. Conversely, in a relatively thin zone with the injection interval over nearly the entire zone, near the wellbore the CO2 will be distributed over the entire vertical component and will move laterally much further with minimal vertical movement. Assuming no geologic structure, injecting into a thin zone or into a thick zone immediately under a caprock will result in a larger plume size. With a geologic structure such as an anticline, CO2 plume size may be restricted and injection immediately below the caprock may have less lateral plume growth because the structure will induce downward vertical movement of the CO2 until the outer edge of the plume reaches a spill

  5. Simulation Studies of Satellite Laser CO2 Mission Concepts

    NASA Technical Reports Server (NTRS)

    Kawa, Stephan Randy; Mao, J.; Abshire, J. B.; Collatz, G. J.; Sun X.; Weaver, C. J.

    2011-01-01

    Results of mission simulation studies are presented for a laser-based atmospheric CO2 sounder. The simulations are based on real-time carbon cycle process modeling and data analysis. The mission concept corresponds to ASCENDS as recommended by the US National Academy of Sciences Decadal Survey. Compared to passive sensors, active (lidar) sensing of CO2 from space has several potentially significant advantages that hold promise to advance CO2 measurement capability in the next decade. Although the precision and accuracy requirements remain at unprecedented levels of stringency, analysis of possible instrument technology indicates that such sensors are more than feasible. Radiative transfer model calculations, an instrument model with representative errors, and a simple retrieval approach complete the cycle from "nature" run to "pseudodata" CO2. Several mission and instrument configuration options are examined, and the sensitivity to key design variables is shown. Examples are also shown of how the resulting pseudo-measurements might be used to address key carbon cycle science questions.

  6. Molten Salt Promoting Effect in Double Salt CO2 Absorbents

    SciTech Connect

    Zhang, Keling; Li, Xiaohong S.; Chen, Haobo; Singh, Prabhakar; King, David L.

    2016-01-01

    The purpose of this paper is to elaborate on the concept of molten salts as catalysts for CO2 absorption by MgO, and extend these observations to the MgO-containing double salt oxides. We will show that the phenomena involved with CO2 absorption by MgO and MgO-based double salts are similar and general, but with some important differences. This paper focuses on the following key concepts: i) identification of conditions that favor or disfavor participation of isolated MgO during double salt absorption, and investigation of methods to increase the absorption capacity of double salt systems by including MgO participation; ii) examination of the relationship between CO2 uptake and melting point of the promoter salt, leading to the recognition of the role of pre-melting (surface melting) in these systems; and iii) extension of the reaction pathway model developed for the MgO-NaNO3 system to the double salt systems. This information advances our understanding of MgO-based CO2 absorption systems for application with pre-combustion gas streams.

  7. Hybrid CO2-philic surfactants with low fluorine content.

    PubMed

    Mohamed, Azmi; Sagisaka, Masanobu; Hollamby, Martin; Rogers, Sarah E; Heenan, Richard K; Dyer, Robert; Eastoe, Julian

    2012-04-17

    The relationships between molecular architecture, aggregation, and interfacial activity of a new class of CO(2)-philic hybrid surfactants are investigated. The new hybrid surfactant CF2/AOT4 [sodium (4H,4H,5H,5H,5H-pentafluoropentyl-3,5,5-trimethyl-1-hexyl)-2-sulfosuccinate] was synthesized, having one hydrocarbon chain and one separate fluorocarbon chain. This hybrid H-F chain structure strikes a fine balance of properties, on one hand minimizing the fluorine content, while on the other maintaining a sufficient level of CO(2)-philicity. The surfactant has been investigated by a range of techniques including high-pressure phase behavior, UV-visible spectroscopy, small-angle neutron scattering (SANS), and air-water (a/w) surface tension measurements. The results advance the understanding of structure-function relationships for generating CO(2)-philic surfactants and are therefore beneficial for expanding applications of CO(2) to realize its potential using the most economic and efficient surfactants. PMID:22455477

  8. Key site abandonment steps in CO2 storage

    NASA Astrophysics Data System (ADS)

    Kühn, M.; Wipki, M.; Durucan, S.; Deflandre, J.-P.; Lüth, S.; Wollenweber, J.; Chadwick, A.; Böhm, G.

    2012-04-01

    bound, dissolved, and precipitated CO2 in form of specific mineral phases. Useful results, partly supported by laboratory and field experiments, can be gained by process simulations considering periods of hundreds or thousands of years. Risk management for the post-operational phases is another essential part of the workflow. A first version of a decision support system has been created by means of a number of high-level and low-level criteria, most of which had to be defined in advance. The system provides instructions for the operators on how to act in case of irregularities after site closure. A compilation of all relevant results will be available at the end of the project in form of best practice guidelines. However, dissemination of information about the latest results and developments in the field of site abandonment are given via the CO2CARE-website (www.co2care.org) and also in conferences, workshops or radio and TV interviews.

  9. Development of solid amine CO2 control systems for extended duration missions

    NASA Technical Reports Server (NTRS)

    Dresser, K. J.; Cusick, R. J.

    1984-01-01

    This paper briefly discusses the development history of solid amine CO2 control systems, describes two distinct CO2 control system concepts, and presents the performance characteristics for both system concepts. The first concept (developed under NASA Contract NAS9-13624) incorporates a solid amine canister, an automatic microprocessor controller, and an accumulator to collect CO2 and to provide regulated CO2 delivery to an oxygen recovery system. This system is currently operating in the Crew Systems Division's Advanced Life Support Development Laboratory (ALSDL). The second system concept (being developed under NASA Contract NAS9-16978) employs multiple solid amine canisters, an advanced automatic controller and system status display, the ability to regulate CO2 delivery for oxygen recovery, and energy saving features that allow system operation at lower power levels than the first concept.

  10. Natural Analog for Geologic Storage of CO2: CO2 accumulation in China

    NASA Astrophysics Data System (ADS)

    Liu, L.; Xu, T.; Liu, N.; Zhou, B.

    2012-12-01

    Natural accumulations of CO2 are potential analogues of CO2 geological storage that can provide useful information on the behaviour of supercritical CO2 in reservoirs. Natural CO2 accumulations are common across Northeast China, and, although they occur in a wide variety of geological settings, their distribution is principally controlled by the Mesozoic-Cenozoic rift basins and associated Quaternary volcanism. High CO2 concentrations (>60 CO2%) in natural gas reservoirs are usually related to volcanism and magmatism, and possesses mantle-genetic origin. CO2 reservoirs consist of sandstone, volcanic rocks and carbonate rocks with the buried depth from 2000-3000 m. Dawsonite is recognized in almost all of the CO2-bearing basin, which has been proved to share the same carbon source with CO2 in the reservoirs in Songliao basin, Hailaer basin and Donghai basin. Petrographic data show that dawsonite is abundant in feldspar- rich sandstone, volcanic rock fragment-rich sandstones and tuff. In some cases, high percentage of dawsonite cement constitutes a diagenetic seal, which occurs in the reservoir-mudstone caprock and prevents upward leakage of CO2. Besides dawsonite, mantle-genetic CO2 flux leads to the formation of calcite, ankerite and siderite. The statistics of porosity and permeability measured from the dawsonite-bearing sandstone and dawsonite-absent sandstone with the almost same burial depth in Songliao basin show that the mantle-genetic CO2 flux result in lower reservoir quality, suggesting that mineral trapping for CO2 is significant. Chemical analyses of formation water in Songliao basin and Hailaer basin indicate that the concentrations of TDS, HCO3-,CO32-, Mg2+,Ca2+ and Na+ + K+ in dawsonite-bearing sandstone are higher than that in dawsonite-absent sandstone. Distribution of CO2 and dawsonite is constrainted by the regional caprocks in the Songliao basin. The charging time of the mantle-genetic CO2 in China dates from 50 to 25 Ma.

  11. The Oceanic Sink for Anthropogenic CO2

    SciTech Connect

    Sabine, Chris; Feely, R. A.; Gruber, N.; Key, Robert; Lee, K.; Bullister, J.L.; Wanninkhof, R.; Wong, C. S.; Wallace, D.W.R.; Tilbrook, B.; Millero, F. J.; Peng, T.-H.; Kozyr, Alexander; Ono, Tsueno

    2004-01-01

    Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 19 petagrams of carbon. The oceanic sink accounts for ~48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential.

  12. Two-phase convective CO2 dissolution in saline aquifers

    DOE PAGESBeta

    Martinez, M. J.; Hesse, M. A.

    2016-01-30

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlyingmore » two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.« less

  13. Two-phase convective CO2 dissolution in saline aquifers

    DOE PAGESBeta

    Martinez, Mario J.; Hesse, Marc A.

    2016-01-01

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlyingmore » two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.« less

  14. Biomass burial and storage to reduce atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Zeng, N.

    2012-04-01

    To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a theoretical carbon sequestration potential for wood burial is 10 ± 5 GtC/y, but probably 1-3 GtC/y can be realized in practice. Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other environmental concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from forest industry, the cost for wood burial is estimated to be 14/tCO2 (50/tC), lower than the typical cost for power plant CO2 capture with geological storage. The low cost for carbon sequestration with wood burial is possible because the technique uses the natural process of photosynthesis to remove carbon from the atmosphere. The technique is low tech, distributed, safe, and can be stopped at any time, thus an attractive option for large-scale implementation in a world-wide carbon market.

  15. Vibrational relaxation of CO2(ν2) by atomic oxygen

    NASA Astrophysics Data System (ADS)

    Castle, Karen J.; Kleissas, Katherine M.; Rhinehart, Justin M.; Hwang, Eunsook S.; Dodd, James A.

    2006-09-01

    In the Earth's upper atmosphere, collisions with ambient O atoms efficiently excite the CO2 [0000] vibrational ground-state population to the first excited, [0110] or ν2, vibrational bend state. Subsequent relaxation of the ν2 population occurs through spontaneous emission of 15-μm radiation. Much of this radiation escapes into space, thereby removing ambient kinetic energy from the atmosphere. This cooling mechanism is especially important at altitudes between the mesopause and the lower thermosphere, approximately 80-120 km, where the O-atom density is relatively high and the kinetic temperature is rising. Laboratory measurements have been performed to better characterize the CO2(ν2)-O vibrational relaxation rate coefficient kO(ν2). A 266-nm laser pulse photolyzed trace amounts of O3 in a CO2-O3-rare gas mixture, simultaneously creating O atoms and raising the gas temperature to create a nonequilibrium CO2 vibrational distribution. Transient diode laser absorption spectroscopy was used to monitor CO2 vibrational level population reequilibration. A global nonlinear least squares fitting technique was used to interpret the kinetic data, yielding kO(ν2) = (1.8 ± 0.3) × 10-12 cm3s-1. The result is in good agreement with previous laboratory measurements, with published kO(ν2) values in the (1.2-1.5) × 10-12 cm3s-1 range and at the low end of the (2-6) × 10-12 cm3s-1 range estimated from the analysis of upper atmospheric data.

  16. Two-phase convective CO2 dissolution in saline aquifers

    NASA Astrophysics Data System (ADS)

    Martinez, M. J.; Hesse, M. A.

    2016-01-01

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlying two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. This removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.

  17. CO2 Absorption in an Alcoholic Solution of Heavily Hindered Alkanolamine: Reaction Mechanism of 2-(tert-Butylamino)ethanol with CO2 Revisited.

    PubMed

    Xie, Hong-Bin; Wei, Xiaoxuan; Wang, Pan; He, Ning; Chen, Jingwen

    2015-06-18

    To advance the optimal design of amines for postcombustion CO2 capture, a sound mechanistic understanding of the chemical process of amines with good CO2 capture performance is advantageous. A sterically hindered alkanolamine, 2-(tert-butylamino)ethanol (TBAE), in ethylene glycol (EG) solution was recently reported to have better CO2 capture performance and unusual reactivity toward CO2, in comparison with those of the prototypical alkanolamines. However, the reaction mechanism of TBAE with CO2 in EG solution is unclear. Here, various quantum chemistry methods were employed to probe the reaction mechanism of TBAE with CO2 in EG and aqueous solution. Six reaction pathways involving three kinds of possible reactive centers of TBAE solution were considered. The results indicated that the formation of anionic hydroxyethyl carbonate by the attack of -OH of EG on CO2 is the most favorable, which is confirmed by complementary high-resolution mass spectrum experiments. This clarified that the speculated zwitterionic carbonate species is not the main product in EG solution. The reaction process of TBAE in aqueous solution is similar to that in EG solution, leading to bicarbonate, which agrees with experimental observations. On the basis of the unveiled reaction mechanisms of TBAE + CO2, the role of the key tert-butyl functional group of TBAE was revealed. PMID:25993508

  18. The impact of groundwater quality on the removal of methyl tertiary-butyl ether (MTBE) using advanced oxidation technology.

    PubMed

    Tawabini, B; Fayad, N; Morsy, M

    2009-01-01

    In this study, the removal of methyl tertiary-butyl ether (MTBE) from contaminated groundwater using advanced oxidation technology was investigated. The UV/H(2)O(2) treatment process was applied to remove MTBE from two Saudi groundwater sources that have different quality characteristics with regard to their contents of inorganic species such as chloride, bromide, sulfates and alkalinity. MTBE was spiked into water samples collected from the two sources to a concentration level of about 250 microg/L. A 500 mL bench-scale forced-liquid circulation photoreactor was used to conduct the experiments. Two different UV lamps were utilized: 15 Watt low pressure (LP) and 150 Watt medium pressure (MP). Results of the study showed that the UV/H(2)O(2) process removed more than 90% of MTBE in 20 minutes when the MP lamp was used at an MTBE/H(2)O(2) molar ratio of 1:200. The results also showed that groundwater sources with higher levels of radical scavengers such as alkalinity, bromide, nitrate and sulfate showed lower rate of MTBE removal. PMID:19844063

  19. Laparoscopic Partial Nephrectomy Using a Flexible CO2 Laser Fiber

    PubMed Central

    Khalaileh, Abed; Ponomarenko, Oleg; Abu-Gazala, Mahmoud; Lewinsky, Reuven M.; Elazary, Ram; Shussman, Noam; Shalhav, Arieh; Mintz, Yoav

    2012-01-01

    Background and Objectives: Laparoscopic partial nephrectomy (LPN) is a challenging surgery that requires precise tissue cutting and meticulous hemostasis under warm ischemia conditions. In this study, we tested the feasibility of performing LPN using CO2 laser energy transmitted through a specialized flexible mirror optical fiber. Methods: General anesthesia and pneumoperitoneum were induced in 7 farm pigs. Various portions of a kidney, either a pole or a midportion of the kidney, were removed using a novel flexible fiber to transmit CO2 laser energy set at a power of 45W and energy per pulse of 100mJ. The collecting system was approximated with a suture or 2, but no hemostatic measures were taken besides applying a few pulses of the laser to bleeding points. The pigs were sacrificed 3 wk later. Results: Average renal mass removed was 18% of the total kidney weight. All pigs tolerated surgery well. Sharp renal cutting was accomplished in a single continuous incision, with minimal tissue charring and minimal blood loss (<10cc) in all animals. Necropsy revealed no peritoneal or retroperitoneal abnormalities. Histologic examination of the cut surface showed a thin sector of up to 100 μm of coagulation necrosis. Conclusions: We report on the first LPN done using a CO2 laser transmitted through a flexible fiber in an animal model. This novel application of the CO2 laser produced excellent parenchymal incision and hemostasis along with minimal damage to adjacent renal tissue, thus, potentially shortening ischemia time and kidney function loss. Further studies comparing this laser to standard technique are necessary to verify its usefulness for partial nephrectomy. PMID:23484569

  20. Partitioning of the Leaf CO2 Exchange into Components Using CO2 Exchange and Fluorescence Measurements.

    PubMed

    Laisk, A.; Sumberg, A.

    1994-10-01

    Photorespiration was calculated from chlorophyll fluorescence and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) kinetics and compared with CO2 evolution rate in the light, measured by three gas-exchange methods in mature sunflower (Helianthus annuus L.) leaves. The gas-exchange methods were (a) postillumination CO2 burst at unchanged CO2 concentration, (b) postillumination CO2 burst with simultaneous transfer into CO2-free air, and (c) extrapolation of the CO2 uptake to zero CO2 concentration at Rubisco active sites. The steady-state CO2 compensation point was proportional to O2 concentration, revealing the Rubisco specificity coefficient (Ksp) of 86. Electron transport rate (ETR) was calculated from fluorescence, and photorespiration rate was calculated from ETR using CO2 and O2 concentrations, Ksp, and diffusion resistances. The values of the best-fit mesophyll diffusion resistance for CO2 ranged between 0.3 and 0.8 s cm-1. Comparison of the gas-exchange and fluorescence data showed that only ribulose-1,5-bisphosphate (RuBP) carboxylation and photorespiratory CO2 evolution were present at limiting CO2 concentrations. Carboxylation of a substrate other than RuBP, in addition to RuBP carboxylation, was detected at high CO2 concentrations. A simultaneous decarboxylation process not related to RuBP oxygenation was also detected at high CO2 concentrations in the light. We propose that these processes reflect carboxylation of phosphoenolpyruvate, formed from phosphoglyceric acid and the subsequent decarboxylation of malate. PMID:12232361

  1. How secure is subsurface CO2 storage? Controls on leakage in natural CO2 reservoirs

    NASA Astrophysics Data System (ADS)

    Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, Stuart

    2014-05-01

    Carbon Capture and Storage (CCS) is the only industrial scale technology available to directly reduce carbon dioxide (CO2) emissions from fossil fuelled power plants and large industrial point sources to the atmosphere. The technology includes the capture of CO2 at the source and transport to subsurface storage sites, such as depleted hydrocarbon reservoirs or saline aquifers, where it is injected and stored for long periods of time. To have an impact on the greenhouse gas emissions it is crucial that there is no or only a very low amount of leakage of CO2 from the storage sites to shallow aquifers or the surface. CO2 occurs naturally in reservoirs in the subsurface and has often been stored for millions of years without any leakage incidents. However, in some cases CO2 migrates from the reservoir to the surface. Both leaking and non-leaking natural CO2 reservoirs offer insights into the long-term behaviour of CO2 in the subsurface and on the mechanisms that lead to either leakage or retention of CO2. Here we present the results of a study on leakage mechanisms of natural CO2 reservoirs worldwide. We compiled a global dataset of 49 well described natural CO2 reservoirs of which six are leaking CO2 to the surface, 40 retain CO2 in the subsurface and for three reservoirs the evidence is inconclusive. Likelihood of leakage of CO2 from a reservoir to the surface is governed by the state of CO2 (supercritical vs. gaseous) and the pressure in the reservoir and the direct overburden. Reservoirs with gaseous CO2 is more prone to leak CO2 than reservoirs with dense supercritical CO2. If the reservoir pressure is close to or higher than the least principal stress leakage is likely to occur while reservoirs with pressures close to hydrostatic pressure and below 1200 m depth do not leak. Additionally, a positive pressure gradient from the reservoir into the caprock averts leakage of CO2 into the caprock. Leakage of CO2 occurs in all cases along a fault zone, indicating that

  2. Conductive Graphitic Carbon Nitride as an Ideal Material for Electrocatalytically Switchable CO2 Capture

    NASA Astrophysics Data System (ADS)

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A.; Smith, Sean C.

    2015-12-01

    Good electrical conductivity and high electron mobility of the sorbent materials are prerequisite for electrocatalytically switchable CO2 capture. However, no conductive and easily synthetic sorbent materials are available until now. Here, we examined the possibility of conductive graphitic carbon nitride (g-C4N3) nanosheets as sorbent materials for electrocatalytically switchable CO2 capture. Using first-principle calculations, we found that the adsorption energy of CO2 molecules on g-C4N3 nanosheets can be dramatically enhanced by injecting extra electrons into the adsorbent. At saturation CO2 capture coverage, the negatively charged g-C4N3 nanosheets achieve CO2 capture capacities up to 73.9 × 1013 cm-2 or 42.3 wt%. In contrast to other CO2 capture approaches, the process of CO2 capture/release occurs spontaneously without any energy barriers once extra electrons are introduced or removed, and these processes can be simply controlled and reversed by switching on/off the charging voltage. In addition, these negatively charged g-C4N3 nanosheets are highly selective for separating CO2 from mixtures with CH4, H2 and/or N2. These predictions may prove to be instrumental in searching for a new class of experimentally feasible high-capacity CO2 capture materials with ideal thermodynamics and reversibility.

  3. Charge-controlled switchable CO2 capture on boron nitride nanomaterials.

    PubMed

    Sun, Qiao; Li, Zhen; Searles, Debra J; Chen, Ying; Lu, Gaoqing Max; Du, Aijun

    2013-06-01

    Increasing concerns about the atmospheric CO2 concentration and its impact on the environment are motivating researchers to discover new materials and technologies for efficient CO2 capture and conversion. Here, we report a study of the adsorption of CO2, CH4, and H2 on boron nitride (BN) nanosheets and nanotubes (NTs) with different charge states. The results show that the process of CO2 capture/release can be simply controlled by switching on/off the charges carried by BN nanomaterials. CO2 molecules form weak interactions with uncharged BN nanomaterials and are weakly adsorbed. When extra electrons are introduced to these nanomaterials (i.e., when they are negatively charged), CO2 molecules become tightly bound and strongly adsorbed. Once the electrons are removed, CO2 molecules spontaneously desorb from BN absorbents. In addition, these negatively charged BN nanosorbents show high selectivity for separating CO2 from its mixtures with CH4 and/or H2. Our study demonstrates that BN nanomaterials are excellent absorbents for controllable, highly selective, and reversible capture and release of CO2. In addition, the charge density applied in this study is of the order of 10(13) cm(-2) of BN nanomaterials and can be easily realized experimentally. PMID:23678978

  4. Conductive Graphitic Carbon Nitride as an Ideal Material for Electrocatalytically Switchable CO2 Capture

    PubMed Central

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A.; Smith, Sean C.

    2015-01-01

    Good electrical conductivity and high electron mobility of the sorbent materials are prerequisite for electrocatalytically switchable CO2 capture. However, no conductive and easily synthetic sorbent materials are available until now. Here, we examined the possibility of conductive graphitic carbon nitride (g-C4N3) nanosheets as sorbent materials for electrocatalytically switchable CO2 capture. Using first-principle calculations, we found that the adsorption energy of CO2 molecules on g-C4N3 nanosheets can be dramatically enhanced by injecting extra electrons into the adsorbent. At saturation CO2 capture coverage, the negatively charged g-C4N3 nanosheets achieve CO2 capture capacities up to 73.9 × 1013 cm−2 or 42.3 wt%. In contrast to other CO2 capture approaches, the process of CO2 capture/release occurs spontaneously without any energy barriers once extra electrons are introduced or removed, and these processes can be simply controlled and reversed by switching on/off the charging voltage. In addition, these negatively charged g-C4N3 nanosheets are highly selective for separating CO2 from mixtures with CH4, H2 and/or N2. These predictions may prove to be instrumental in searching for a new class of experimentally feasible high-capacity CO2 capture materials with ideal thermodynamics and reversibility. PMID:26621618

  5. Study of CO2 recovery in a carbonate fuel cell tri-generation plant

    NASA Astrophysics Data System (ADS)

    Rinaldi, Giorgio; McLarty, Dustin; Brouwer, Jack; Lanzini, Andrea; Santarelli, Massimo

    2015-06-01

    The possibility of separating and recovering CO2 in a biogas plant that co-produces electricity, hydrogen, and heat is investigated. Exploiting the ability of a molten carbonate fuel cell (MCFC) to concentrate CO2 in the anode exhaust stream reduces the energy consumption and complexity of CO2 separation techniques that would otherwise be required to remove dilute CO2 from combustion exhaust streams. Three potential CO2 concentrating configurations are numerically simulated to evaluate potential CO2 recovery rates: 1) anode oxidation and partial CO2 recirculation, 2) integration with exhaust from an internal combustion engine, and 3) series connection of molten carbonate cathodes initially fed with internal combustion engine (ICE) exhaust. Physical models have been calibrated with data acquired from an operating MCFC tri-generating plant. Results illustrate a high compatibility between hydrogen co-production and CO2 recovery with series connection of molten carbonate systems offering the best results for efficient CO2 recovery. In this case the carbon capture ratio (CCR) exceeds 73% for two systems in series and 90% for 3 MCFC in series. This remarkably high carbon recovery is possible with 1.4 MWe delivered by the ICE system and 0.9 MWe and about 350 kg day-1 of H2 delivered by the three MCFC.

  6. Study on CO2 global recycling system.

    PubMed

    Takeuchi, M; Sakamoto, Y; Niwa, S

    2001-09-28

    In order to assist in finding ways to mitigate CO2 emission and to slow the depletion of fossil fuels we have established and evaluated a representative system, which consists of three technologies developed in our laboratory. These technologies were in CO2 recovery, hydrogen production and methanol synthesis and in addition we established the necessary supporting systems. Analysis of outline designs of the large scale renewable energy power generation system and this system and energy input for building plant, energy input for running plant has been conducted based on a case using this system for a 1000-MW coal fired power plant, followed by an evaluation of the material balance and energy balance. The results are as follows. Energy efficiency is 34%, the CO2 reduction rate is 41%, the balance ratio of the energy and CO2 of the system is 2.2 and 1.8, respectively, on the assumption that the primary renewable energy is solar thermal power generation, the stationary CO2 emission source is a coal-fired power plant and the generation efficiency of the methanol power plant is 60%. By adopting the system, 3.7 million tons of CO2 can be recovered, approximately 2.7 million tons of methanol can be produced, and 15.4 billion kWh of electricity can be generated per year. Compared to generating all electrical power using only coal, approximately 2.6 million tons of coal per year can be saved and approximately 2.15 million tons of CO2 emission can be reduced. Therefore, it is clearly revealed that this system would be effective to reduce CO2 emissions and to utilize renewable energy. PMID:11589395

  7. Mechanisms of CO2 Interaction with Montmorillonite

    NASA Astrophysics Data System (ADS)

    Romanov, V.; Myshakin, E. M.; Howard, B.; Guthrie, G.

    2013-12-01

    Improved understanding of basic fluid-rock interactions can lead to more accurate models of the coupled fluid-flow and geomechanics in engineered geological systems. We studied carbon dioxide (CO2) interaction with source clay samples from The Clay Minerals Society. The manometric, infrared (IR) and X-ray diffraction (XRD) data indicated that montmorillonite can permanently trap CO2 molecules in its interlayer, after dynamic exposure to supercritical CO2. Such trapping is quite secure and appears to result in partial carbonate formation. Molecular dynamics simulations were carried out to investigate CO2 intercalation into the interlayer and its interaction with interlayer species. Previously reported results of simulations using simplified smectite models suggested that the experimentally observed red shift of the asymmetric-stretch vibrational mode for the trapped carbon dioxide can be attributed to induced polarization of the CO2 molecule by the interlayer water molecules. Modified smectite models were designed to account for the naturally occurring structural disorder that allows guest molecules to occupy localized interlamellar voids. In such models, energy dependences and structural rearrangements of the interlayer species are governed by rotational misalignment in turbostratically disordered clay. CO2 invasion in the interlayer disrupts the long-range ordering of water molecules and cations thus forcing the system to adopt energetically unfavorable configurations. New findings indicate that interaction between intercalated CO2 and H2O is limited and, with the increasing interlayer hydration, CO2 preferentially accumulates in interlamellar voids. The vibrational spectra produced by the new model, assuming that clay systems can exist in fractional hydration states, show either a combination of undisturbed and red-shifted asymmetric-stretch modes or a broad peak consistent with the multiple smeared peaks, which explain the multi-mode features that have appeared

  8. Photosynthetic biomineralization of radioactive Sr via microalgal CO2 absorption.

    PubMed

    Lee, Seung Yeop; Jung, Kwang-Hwan; Lee, Ju Eun; Lee, Keon Ah; Lee, Sang-Hyo; Lee, Ji Young; Lee, Jae Kwang; Jeong, Jong Tae; Lee, Seung-Yop

    2014-11-01

    Water-soluble radiostrontium ((90)Sr) was efficiently removed as a carbonate form through microalgal photosynthetic process. The immobilization of soluble (90)Sr radionuclide and production of highly-precipitable radio-strontianite ((90)SrCO3) biomineral are achieved by using Chlorella vulgaris, and the biologically induced mineralization drastically decreased the (90)Sr radioactivity in water to make the highest (90)Sr removal ever reported. The high-resolution microscopy revealed that the short-term removal of soluble (90)Sr by C. vulgaris was attributable to the rapid and selective carbonation of (90)Sr together with the consumption of dissolved CO2 during photosynthesis. A small amount of carbonate in water could act as Sr(2+) sinks through the particular ability of the microalga to make the carbonate mineral of Sr stabilized firmly at the surface site. PMID:25262456

  9. Space Suit CO2 Washout During Intravehicular Activity

    NASA Technical Reports Server (NTRS)

    Augustine, Phillip M.; Navarro, Moses; Conger, Bruce; Sargusingh, Miriam M.

    2010-01-01

    Space suit carbon dioxide (CO2) washout refers to the removal of CO2 gas from the oral-nasal area of a suited astronaut's (or crewmember's) helmet using the suit's ventilation system. Inadequate washout of gases can result in diminished mental/cognitive abilities as well as headaches and light headedness. In addition to general discomfort, these ailments can impair an astronaut s ability to perform mission-critical tasks ranging from flying the space vehicle to performing lunar extravehicular activities (EVAs). During design development for NASA s Constellation Program (CxP), conflicting requirements arose between the volume of air flow that the new Orion manned space vehicle is allocated to provide to the suited crewmember and the amount of air required to achieve CO2 washout in a space suit. Historically, space suits receive 6.0 actual cubic feet per minute (acfm) of air flow, which has adequately washed out CO2 for EVAs. For CxP, the Orion vehicle will provide 4.5 acfm of air flow to the suit. A group of subject matter experts (SM Es) among the EVA Systems community came to an early consensus that 4.5 acfm may be acceptable for low metabolic rate activities. However, this value appears very risky for high metabolic rates, hence the need for further analysis and testing. An analysis was performed to validate the 4.5 acfm value and to determine if adequate CO2 washout can be achieved with the new suit helmet design concepts. The analysis included computational fluid dynamic (CFD) modeling cases, which modeled the air flow and breathing characteristics of a human wearing suit helmets. Helmet testing was performed at the National Institute of Occupational Safety and Health (NIOSH) in Pittsburgh, Pennsylvania, to provide a gross-level validation of the CFD models. Although there was not a direct data correlation between the helmet testing and the CFD modeling, the testing data showed trends that are very similar to the CFD modeling. Overall, the analysis yielded

  10. The removal of organic precursors of DBPs during three advanced water treatment processes including ultrafiltration, biofiltration, and ozonation.

    PubMed

    Zha, Xiao-Song; Ma, Lu-Ming; Wu, Jin; Liu, Yan

    2016-08-01

    The removal efficiency of organic matter, the formation potential of trihalomethanes (THMFP), and the formation potential of haloacetic acids (HAAFP) in each unit of three advanced treatment processes were investigated in this paper. The molecular weight distribution and the components of organic matter in water samples were also determined to study the transformation of organic matter during these advanced treatments. Low-molecular-weight matter was the predominant fraction in raw water, and it could not be removed effectively by ultrafiltration and biofiltration. The dominant species of disinfection by-product formation potential (DBPFP) in raw water were chloroform and monochloroacetic acid (MCAA), with average concentrations of 107.3 and 125.9 μg/L, respectively. However, the formation potential of chloroform and MCAA decreased to 36.2 and 11.5 μg/L after ultrafiltration. Similarly, biological pretreatment obtained high removal efficiency for DBPFP. The total THMFP decreased from 173.8 to 81.8 μg/L, and the total HAAFP decreased from 211.9 to 84.2 μg/L. Separate ozonation had an adverse effect on DBPFP, especially for chlorinated HAAFP. Numerous low-molecular-weight compounds such as aldehydes, ketones, and alcohols were generated during the ozonation, which have been proven to be important precursors of HAAs. However, the ozonation/biological activated carbon (BAC) combined process had a better removal efficiency for DBPFP. The total DBPFP decreased remarkably from 338.7 to 113.3 μg/L after the O3/BAC process, far below the separated BAC of process B (189.1 μg/L). PMID:27180835

  11. CO2 As An Inverse Greenhouse Gas

    NASA Astrophysics Data System (ADS)

    Idso, Sherwood B.

    1984-01-01

    It is a well-known fact that mankind's burning of fossil fuels such as coal, gas and oil has significantly increased the CO2 content of Earth's atmosphere, from something less than 300 ppm (parts per million by volume) in the pre-Industrial Revolution era to a con-centration which is currently somewhat over 340 ppm. It is also fairly well established that a concentration of 600 ppm will be reached sometime in the next century. Atmospheric scientists using complex computer models of the atmosphere have predicted that such a concentration doubling will lead to a calamatous climatic warming, due to the thermal infra-red "greenhouse" properties of CO2. However, my investigation of a large body of empirical evidence suggests just the opposite. Indeed, long-term records of surface air temperature and snow cover data indicate that increasing concentrations of atmospheric CO2 may actually tend to cool the Earth and not warm it. These and other observations of the real world lead to the conclusion that, for the present composition of the Earth's atmosphere, CO2 appears to behave as an inverse greenhouse gas. A mechanism for this phenomenon is suggested; and it is then indicated how enhanced concentrations of atmospheric CO2 may be beneficial for the planet, particularly with respect to the ability of enhanced CO2 concentrations to stimulate plant growth and reduce water requirements.

  12. CO2 cooling in terrestrial planet thermospheres

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.; Hunten, D. M.; Roble, R. G.

    1994-01-01

    We examine the recent progress in the debate on the CO2-O relaxation rate, its temperature dependence, and its corresponding impact on the thermospheric heat budgets of Venus, Earth, and Mars. This comparative approach provides the broadest range of conditions under which a common CO2-O relaxation rate should provide consistent results. New global mean calculations are presented for the heat budgets of these three planets using large CO2-O relaxation rates that have been inferred recently from Earth CO2 radiance measurements and laboratory studies. Results indicate that available Venus and Mars data constrain the CO2-O relaxation rate to be 2-4 x 10(exp -12)/cu cm/s at 300 K. For Venus, this strong cooling serves as an effective thermostat that gives rise to a small variation of thermospheric temperatures over the solar cycle, just as observed. Conversely, CO2 cooling does not appear to be dominant in the dayside heat budget of the Mars thermosphere over most of the solar cycle. For the Earth, this strong cooling implies that the lower thermosphere does not typically require significant eddy diffusion or heat conduction. However, global-scale dynamics or an additional heating mechanism may be needed to restore calculated temperatures to observed values when relaxation rates exceeding 2 x 10(exp -12)/cu cm/s are employed.

  13. CO2 Efflux from Cleared Mangrove Peat

    PubMed Central

    Lovelock, Catherine E.; Ruess, Roger W.; Feller, Ilka C.

    2011-01-01

    Background CO2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils. Methodology/Principal Findings We measured CO2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO2 efflux. CO2 efflux from soils declines from time of clearing from ∼10 600 tonnes km−2 year−1 in the first year to 3000 tonnes km2 year−1 after 20 years since clearing. Disturbing peat leads to short term increases in CO2 efflux (27 umol m−2 s−1), but this had returned to baseline levels within 2 days. Conclusions/Significance Deforesting mangroves that grow on peat soils results in CO2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks. PMID:21738628

  14. Density of aqueous solutions of CO2

    SciTech Connect

    Garcia, Julio E.

    2001-10-10

    In this report, we present a numerical representation for the partial molar volume of CO2 in water and the calculation of the corresponding aqueous solution density. The motivation behind this work is related to the importance of having accurate representations for aqueous phase properties in the numerical simulation of carbon dioxide disposal into aquifers as well as in geothermal applications. According to reported experimental data the density of aqueous solutions of CO2 can be as much as 2-3% higher than pure water density. This density variation might produce an influence on the groundwater flow regime. For instance, in geologic sequestration of CO2, convective transport mixing might occur when, several years after injection of carbon dioxide has stopped, the CO2-rich gas phase is concentrated at the top of the formation, just below an overlaying caprock. In this particular case the heavier CO2 saturated water will flow downward and will be replaced by water with a lesser CO2 content.

  15. ACID GASES IN CO2-RICH SUBSURFACE GEOLOGIC ENVIRONMENTS

    SciTech Connect

    Chialvo, Ariel A; Vlcek, Lukas; Cole, David

    2013-01-01

    The analysis of species behavior involving dilute fluid environments has been crucial for the advance of modern solvation thermodynamics through molecular-based formalisms to guide the development of macroscopic regression tools in the description of fluid behavior and correlation of experimental data (Chialvo 2013). Dilute fluid environments involving geologic formations are of great theoretical and practical relevance regardless of the thermodynamic state conditions. The most challenging systems are those involving highly compressible and reactive confined environments, i.e., where small perturbations of pressure and/or temperature can trigger considerable density changes. This in turn can alter significantly the species solvation, their preferential solvation, and consequently, their reactivity with one another and with the surrounding mineral surfaces whose outcome is the modification of the substrate porosity and permeability, and ultimately, the integrity of the mineral substrates. Considering that changes in porosity and permeability resulting from dissolution and precipitation phenomena in confined environments are at the core of the aqueous CO2-mineral interactions, and that caprock integrity (e.g., sealing capacity) depends on these key parameters, it is imperative to gain fundamental understanding of the mineral-fluid interfacial phenomena and fluid-fluid equilibria under mineral confinement at subsurface conditions. In order to undertand the potential effects of acid gases as contaminants of supercritical CO2 streams, in the next section we will discuss the thermodynamic behavior of CO2 fluid systems by addressing two crucial issues in the context of carbon capture, utilization and sequestration (CCUS) technologies: (i) Why should we consider (acid gas) CO2 impurities? and (ii) Why are CO2 fluid - mineral interactions of paramount relevance?

  16. Laboratory Investigations of the Hydro-Mechanical-Chemical Coupling Behaviour of Sandstone in CO2 Storage in Aquifers

    NASA Astrophysics Data System (ADS)

    Zhou, Hui; Hu, Dawei; Zhang, Fan; Shao, Jianfu; Feng, Xiating

    2016-02-01

    This paper is devoted to experimental investigations of the hydro-mechanical-chemical coupling behaviour of sandstone in the context of CO2 storage in aquifers. We focused on the evolution of creep strain, the transport properties and the elastic modulus of sandstone under the effect of CO2-brine or CO2 alone. A summary of previous laboratory results is first presented, including mechanical, poromechanical and hydro-mechanical-chemical coupling properties. Tests were then performed to investigate the evolution of the creep strain and permeability during the injection of CO2-brine or CO2 alone. After the injection of CO2-brine or CO2 alone, an instantaneous volumetric dilatancy was observed due to the decrease in the effective confining stress. However, CO2 alone had a significant influence on the creep strain and permeability compared to the small influence of CO2-brine. This phenomenon can be attributed to the acceleration of the CO2-brine-rock reaction by the generation of carbonic acid induced by the dissolution of CO2 into the brine. The original indentation tests on samples after the CO2-brine-rock reaction were also performed and indicated that the elastic modulus decreased with an increasing reaction time. The present laboratory results can advance our knowledge of the hydro-mechanical-chemical coupling behaviour of sandstone in CO2 storage in aquifers.

  17. Global CO2 simulation using GOSAT-based surface CO2 flux estimates

    NASA Astrophysics Data System (ADS)

    Takagi, H.; Oda, T.; Saito, M.; Valsala, V.; Belikov, D.; Saeki, T.; Saito, R.; Morino, I.; Uchino, O.; Yoshida, Y.; Yokota, Y.; Bril, A.; Oshchepkov, S.; Andres, R. J.; Maksyutov, S.

    2012-04-01

    Investigating the distribution and temporal variability of surface CO2 fluxes is an active research topic in the field of contemporary carbon cycle dynamics. The technique central to this effort is atmospheric inverse modeling with which surface CO2 fluxes are estimated by making corrections to a priori flux estimates such that mismatches between model-predicted and observed CO2 concentrations are minimized. Past investigations were carried out by utilizing CO2 measurements collected in global networks of surface-based monitoring sites. Now, datasets of column-averaged CO2 dry air mole fraction (XCO2) retrieved from spectral soundings collected by GOSAT are available for complementing the surface-based CO2 observations. These space-based XCO2 data are expected to enhance the spatiotemporal coverage of the existing surface observation network and thus reduce uncertainty associated with the surface flux estimates. We estimated monthly CO2 fluxes in 64 sub-continental regions from a subset of the surface-based GLOBALVIEW CO2 data and the GOSAT FTS SWIR Level 2 XCO2 retrievals. We further simulated CO2 concentrations in 3-D model space using the surface flux estimates obtained. In this presentation, we report the result of a comparison between the simulated CO2 concentrations and independent surface observations. As part of an effort in inter-comparing GOSAT-based surface CO2 flux estimates, we also look at results yielded with XCO2 data retrieved with the PPDF-DOAS algorithm and those made available by the NASA Atmospheric CO2 Observations from Space team. For this study, we used version 08.1 of the National Institute for Environmental Studies atmospheric transport model, which was driven by the Japan Meteorological Agency's JCDAS wind analysis data. The CO2 forward simulations were performed on 2.5° × 2.5° horizontal grids at 32 vertical levels between the surface and the top of the atmosphere. The a priori flux dataset used was comprised of the sum of four

  18. Hybrid heat exchange for the compression capture of CO2 from recirculated flue gas

    SciTech Connect

    Oryshchyn, Danylo B.; Ochs, Thomas L.; Summers, Cathy A.

    2004-01-01

    An approach proposed for removal of CO2 from flue gas cools and compresses a portion of a recirculated flue-gas stream, condensing its volatile materials for capture. Recirculating the flue gas concentrates SOx, H2O and CO2 while dramatically reducing N2 and NOx, enabling this approach, which uses readily available industrial components. A hybrid system of indirect and direct-contact heat exchange performs heat and mass transfer for pollutant removal and energy recovery. Computer modeling and experimentation combine to investigate the thermodynamics, heat and mass transfer, chemistry and engineering design of this integrated pollutant removal (IPR) system.

  19. Recurrence of gingival overgrowth in CO2 laser-treated heart-transplant subjects

    NASA Astrophysics Data System (ADS)

    de Rysky, Carlo; Forni, Franco

    1993-07-01

    In this work we update our report about CO2 laser surgery used to remove hypertrophic gingiva in patients under cyclosporine treatment after heart-transplant. The indications and basic results were confirmed, but we present two cases where a second surgery was needed to remove recurrent overgrowing gingival tissue.

  20. Modeling CO2 Gas Migration of Shallow Subsurface CO2 Leakage Experiments

    NASA Astrophysics Data System (ADS)

    Porter, M. L.; Plampin, M. R.; Pawar, R.; Illangasekare, T. H.

    2013-12-01

    Leakage of injected CO2 into shallow subsurface aquifers or back into the atmosphere at geologic carbon sequestration sites is a risk that must be minimized. One potential CO2 leakage pathway involves the transport of dissolved CO2 into a shallow aquifer where the CO2 exsolves, forming a free CO2 gas phase that subsequently migrates through the aquifer. In order to reduce the negative effects of CO2 exsolution, it is important to fully understand each of the processes controlling the movement CO2, as well as the effects of aquifer heterogeneity on the overall fate and transport of CO2. In this work, we present multiphase flow simulations of intermediate scale CO2 exsolution experiments. The multiphase flow simulations were carried out using the Finite Element Heat and Mass Transfer code (FEHM) developed at Los Alamos National Laboratory. Simulations were first designed to model experiments conducted in two different homogeneous packed sands. PEST (Parameter Estimation and Uncertainty Analysis) was used to optimize multiphase flow parameters (i.e., porosity, permeability, relative permeability, and capillary pressure) within FEHM. The optimized parameters were subsequently used to model heterogeneous experiments consisting of various packing configurations using the same sands. Comparisons of CO2 saturation between experiments and simulations will be presented and analyzed.

  1. Fingerprinting captured CO2 using natural tracers: Determining CO2 fate and proving ownership

    NASA Astrophysics Data System (ADS)

    Flude, Stephanie; Gilfillan, Stuart; Johnston, Gareth; Stuart, Finlay; Haszeldine, Stuart

    2016-04-01

    In the long term, captured CO2 will most likely be stored in large saline formations and it is highly likely that CO2 from multiple operators will be injected into a single saline formation. Understanding CO2 behavior within the reservoir is vital for making operational decisions and often uses geochemical techniques. Furthermore, in the event of a CO2 leak, being able to identify the owner of the CO2 is of vital importance in terms of liability and remediation. Addition of geochemical tracers to the CO2 stream is an effective way of tagging the CO2 from different power stations, but may become prohibitively expensive at large scale storage sites. Here we present results from a project assessing whether the natural isotopic composition (C, O and noble gas isotopes) of captured CO2 is sufficient to distinguish CO2 captured using different technologies and from different fuel sources, from likely baseline conditions. Results include analytical measurements of CO2 captured from a number of different CO2 capture plants and a comprehensive literature review of the known and hypothetical isotopic compositions of captured CO2 and baseline conditions. Key findings from the literature review suggest that the carbon isotope composition will be most strongly controlled by that of the feedstock, but significant fractionation is possible during the capture process; oxygen isotopes are likely to be controlled by the isotopic composition of any water used in either the industrial process or the capture technology; and noble gases concentrations will likely be controlled by the capture technique employed. Preliminary analytical results are in agreement with these predictions. Comparison with summaries of likely storage reservoir baseline and shallow or surface leakage reservoir baseline data suggests that C-isotopes are likely to be valuable tracers of CO2 in the storage reservoir, while noble gases may be particularly valuable as tracers of potential leakage.

  2. Leaf cavity CO2 concentrations and CO2 exchange in onion, Allium cepa L.

    PubMed

    Byrd, G T; Loboda, T; Black, C C; Brown, R H

    1995-06-01

    Onion (Allium cepa L.) plants were examined to determine the photosynthetic role of CO2 that accumulates within their leaf cavities. Leaf cavity CO2 concentrations ranged from 2250 μL L(-1) near the leaf base to below atmospheric (<350 μL L(-1)) near the leaf tip at midday. There was a daily fluctuation in the leaf cavity CO2 concentrations with minimum values near midday and maximum values at night. Conductance to CO2 from the leaf cavity ranged from 24 to 202 μmol m(-2) s(-1) and was even lower for membranes of bulb scales. The capacity for onion leaves to recycle leaf cavity CO2 was poor, only 0.2 to 2.2% of leaf photosynthesis based either on measured CO2 concentrations and conductance values or as measured directly by (14)CO2 labeling experiments. The photosynthetic responses to CO2 and O2 were measured to determine whether onion leaves exhibited a typical C3-type response. A linear increase in CO2 uptake was observed in intact leaves up to 315 μL L(-1) of external CO2 and, at this external CO2 concentration, uptake was inhibited 35.4±0.9% by 210 mL L(-1) O2 compared to 20 mL L(-1) O2. Scanning electron micrographs of the leaf cavity wall revealed degenerated tissue covered by a membrane. Onion leaf cavity membranes apparently are highly impermeable to CO2 and greatly restrict the refixation of leaf cavity CO2 by photosynthetic tissue. PMID:24307095

  3. Precursory volcanic CO2 signals from space

    NASA Astrophysics Data System (ADS)

    Schwandner, Florian M.; Carn, Simon A.; Kataoka, Fumie; Kuze, Akihiko; Shiomi, Kei; Goto, Naoki

    2016-04-01

    Identification of earliest signals heralding volcanic unrest benefits from the unambiguous detection of precursors that reflect deviation of magmatic systems from metastable background activity. Ascent and emplacement of new basaltic magma at depth may precede eruptions by weeks to months. Transient localized carbon dioxide (CO2) emissions stemming from exsolution from depressurized magma are expected, and have been observed weeks to months ahead of magmatic surface activity. Detecting such CO2 precursors by continuous ground-based monitoring operations is unfortunately not a widely implemented method yet, save a handful of volcanoes. Detecting CO2 emissions from space offers obvious advantages - however it is technologically challenging, not the least due to the increasing atmospheric burden of CO2, against which a surface emission signal is hard to discern. In a multi-year project, we have investigated the feasibility of space-borne detection of pre-eruptive volcanic CO2 passive degassing signals using observations from the Greenhouse Gas Observing SATellite (GOSAT). Since 2010, we have observed over 40 active volcanoes from space using GOSAT's special target mode. Over 72% of targets experienced at least one eruption over that time period, demonstrating the potential utility of space-borne CO2 observations in non-imaging target-mode (point source monitoring mode). While many eruption precursors don't produce large enough CO2 signals to exceed space-borne detection thresholds of current satellite sensors, some of our observations have nevertheless already shown significant positive anomalies preceding eruptions at basaltic volcanoes. In 2014, NASA launched its first satellite dedicated to atmospheric CO2 observation, the Orbiting Carbon Observatory (OCO-2). Its observation strategy differs from the single-shot GOSAT instrument. At the expense of GOSAT's fast time series capability (3-day repeat cycle, vs. 16 for OCO-2), its 8-footprint continuous swath can slice

  4. Energy recovery during advanced wastewater treatment: simultaneous estrogenic activity removal and hydrogen production through solar photocatalysis.

    PubMed

    Zhang, Wenlong; Li, Yi; Wang, Chao; Wang, Peifang; Wang, Qing

    2013-03-01

    Simultaneous estrogenic activity removal and hydrogen production from secondary effluent were successfully achieved using TiO(2) microspheres modified with both platinum nanoparticles and phosphates (P-TiO(2)/Pt) for the first time. The coexistence of platinum and phosphate on the surface of TiO(2) microspheres was confirmed by transmission electron microscope, energy-dispersive X-ray and X-ray photoelectron spectroscopy analyses. P-TiO(2)/Pt microspheres showed a significantly higher photocatalytic activity than TiO(2) microspheres and TiO(2) powders (P25) for the removal of estrogenic activity from secondary effluent with the removal ratio of 100%, 58.2% and 48.5% in 200 min, respectively. Moreover, the marked production of hydrogen (photonic efficiency: 3.23 × 10(-3)) was accompanied by the removal of estrogenic activity only with P-TiO(2)/Pt as photocatalysts. The hydrogen production rate was increasing with decreased DO concentration in secondary effluent. Results of reactive oxygen species (ROS) evaluation during P-TiO(2)/Pt photocatalytic process showed that O(2)(-)and OH were dominant ROS in aerobic phase, while OH was the most abundant ROS in anoxic phase. Changes of effluent organic matter (EfOM) during photocatalysis revealed that aromatic, hydrophobic, and high molecular weight fractions of EfOM were preferentially transformed into non-humic, hydrophilic, and low MW fractions (e.g. aldehydes and carboxylic acids), which were continuously utilized as electron donors in hydrogen production process. PMID:23269320

  5. Comparison of the MBBR denitrification carriers for advanced nitrogen removal of wastewater treatment plant effluent.

    PubMed

    Yuan, Quan; Wang, Haiyan; Hang, Qianyu; Deng, Yangfan; Liu, Kai; Li, Chunmei; Zheng, Shengzhi

    2015-09-01

    The moving bed biofilm reactors (MBBRs) were used to remove the residual NO3(-)-N of wastewater treatment plant (WWTP) effluent, and the MBBR carriers for denitrification were compared. The results showed that high denitrification efficiency can be achieved with polyethylene, polypropylene, polyurethane foam, and haydite carriers under following conditions: 7.2 to 8.0 pH, 24 to 26 °C temperature, 12 h hydraulic retention time (HRT), and 25.5 mg L(-1) external methanol dosage, while the WWTP effluent total nitrogen (TN) was between 2.6 and 15.4 mg L(-1) and NO3(-)-N was between 0.2 and 12.6 mg L(-1). The MBBR filled with polyethylene carriers had higher TN and NO3(-)-N removal rate (44.9 ± 19.1 and 83.4 ± 13.0%, respectively) than those with other carriers. The minimum effluent TN and NO3(-)-N of polyethylene MBBR were 1.6 and 0.1 mg L(-1), respectively, and the maximum denitrification rate reached 23.0 g m(-2) day(-1). When chemical oxygen demand (COD)/TN ratio dropped from 6 to 4, the NO3(-)- N and TN removal efficiency decreased significantly in all reactors except for that filled with polyethylene, which indicated that the polyethylene MBBR can resist influent fluctuation much better. The three-dimensional excitation-emission matrix analysis showed that all the influent and effluent of MBBRs contain soluble microbial products (SMPs)-like organics and biochemical oxygen demand (BOD), which can be removed better by MBBRs filled with haydite and polyethylene carriers. The nitrous oxide reductase (nosZ)-based terminal restriction fragment length polymorphism (T-RFLP) analysis suggested that the dominant bacteria in polyethylene MBBR are the key denitrificans. PMID:25953607

  6. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path.

    PubMed

    Moreira, Diana; Pires, José C M

    2016-09-01

    Carbon dioxide is one of the most important greenhouse gas, which concentration increase in the atmosphere is associated to climate change and global warming. Besides CO2 capture in large emission point sources, the capture of this pollutant from atmosphere may be required due to significant contribution of diffuse sources. The technologies that remove CO2 from atmosphere (creating a negative balance of CO2) are called negative emission technologies. Bioenergy with Carbon Capture and Storage may play an important role for CO2 mitigation. It represents the combination of bioenergy production and carbon capture and storage, keeping carbon dioxide in geological reservoirs. Algae have a high potential as the source of biomass, as they present high photosynthetic efficiencies and high biomass yields. Their biomass has a wide range of applications, which can improve the economic viability of the process. Thus, this paper aims to assess the atmospheric CO2 capture by algal cultures. PMID:27005790

  7. Impact of CO2 fertilization on maximum foliage cover across the globe's warm, arid environments

    NASA Astrophysics Data System (ADS)

    Donohue, Randall J.; Roderick, Michael L.; McVicar, Tim R.; Farquhar, Graham D.

    2013-06-01

    Satellite observations reveal a greening of the globe over recent decades. The role in this greening of the "CO2 fertilization" effect - the enhancement of photosynthesis due to rising CO2 levels - is yet to be established. The direct CO2 effect on vegetation should be most clearly expressed in warm, arid environments where water is the dominant limit to vegetation growth. Using gas exchange theory, we predict that the 14% increase in atmospheric CO2 (1982-2010) led to a 5 to 10% increase in green foliage cover in warm, arid environments. Satellite observations, analyzed to remove the effect of variations in precipitation, show that cover across these environments has increased by 11%. Our results confirm that the anticipated CO2 fertilization effect is occurring alongside ongoing anthropogenic perturbations to the carbon cycle and that the fertilization effect is now a significant land surface process.

  8. CO2 mitigation potential of mineral carbonation with industrial alkalinity sources in the United States.

    PubMed

    Kirchofer, Abby; Becker, Austin; Brandt, Adam; Wilcox, Jennifer

    2013-07-01

    The availability of industrial alkalinity sources is investigated to determine their potential for the simultaneous capture and sequestration of CO2 from point-source emissions in the United States. Industrial alkalinity sources investigated include fly ash, cement kiln dust, and iron and steel slag. Their feasibility for mineral carbonation is determined by their relative abundance for CO2 reactivity and their proximity to point-source CO2 emissions. In addition, the available aggregate markets are investigated as possible sinks for mineral carbonation products. We show that in the U.S., industrial alkaline byproducts have the potential to mitigate approximately 7.6 Mt CO2/yr, of which 7.0 Mt CO2/yr are CO2 captured through mineral carbonation and 0.6 Mt CO2/yr are CO2 emissions avoided through reuse as synthetic aggregate (replacing sand and gravel). The emission reductions represent a small share (i.e., 0.1%) of total U.S. CO2 emissions; however, industrial byproducts may represent comparatively low-cost methods for the advancement of mineral carbonation technologies, which may be extended to more abundant yet expensive natural alkalinity sources. PMID:23738892

  9. Removal of organic wastewater contaminants in septic systems using advanced treatment technologies

    USGS Publications Warehouse

    Wilcox, J.D.; Bahr, J.M.; Hedman, C.J.; Hemming, J.D.C.; Barman, M.A.E.; Bradbury, K.R.

    2009-01-01

    The detection of pharmaceuticals and other organic wastewater contaminants (OWCs) in ground water and surface-water bodies has raised concerns about the possible ecological impacts of these compounds on nontarget organisms. On-site wastewater treatment systems represent a potentially significant route of entry for organic contaminants to the environment. In this study, effluent samples were collected and analyzed from conventional septic systems and from systems using advanced treatment technologies. Six of 13 target compounds were detected in effluent from at least one septic system. Caffeine, paraxanthine, and acetaminophen were the most frequently detected compounds, and estrogenic activity was detected in 14 of 15 systems. The OWC concentrations were significantly lower in effluent after sand filtration (p < 0.01) or aerobic treatment (p < 0.05) as compared with effluent that had not undergone advanced treatment. In general, concentrations in conventional systems were comparable to those measured in previous studies of municipal wastewater treatment plant (WWTP) influent, and concentrations in systems after advanced treatment were comparable to previously measured concentrations in WWTP effluent. These data indicate that septic systems using advanced treatment can reduce OWCs in treated effluent to similar concentrations as municipal WWTPs. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  10. CO2 utilization and storage in shale gas reservoirs: Experimental results and economic impacts

    DOE PAGESBeta

    Schaef, Herbert T.; Davidson, Casie L.; Owen, Antionette Toni; Miller, Quin R. S.; Loring, John S.; Thompson, Christopher J.; Bacon, Diana H.; Glezakou, Vassiliki Alexandra; McGrail, B. Peter

    2014-12-31

    Natural gas is considered a cleaner and lower-emission fuel than coal, and its high abundance from advanced drilling techniques has positioned natural gas as a major alternative energy source for the U.S. However, each ton of CO2 emitted from any type of fossil fuel combustion will continue to increase global atmospheric concentrations. One unique approach to reducing anthropogenic CO2 emissions involves coupling CO2 based enhanced gas recovery (EGR) operations in depleted shale gas reservoirs with long-term CO2 storage operations. In this paper, we report unique findings about the interactions between important shale minerals and sorbing gases (CH4 and CO2) andmore » associated economic consequences. Where enhanced condensation of CO2 followed by desorption on clay surface is observed under supercritical conditions, a linear sorption profile emerges for CH4. Volumetric changes to montmorillonites occur during exposure to CO2. Theory-based simulations identify interactions with interlayer cations as energetically favorable for CO2 intercalation. Thus, experimental evidence suggests CH4 does not occupy the interlayer and has only the propensity for surface adsorption. Mixed CH4:CO2 gas systems, where CH4 concentrations prevail, indicate preferential CO2 sorption as determined by in situ infrared spectroscopy and X-ray diffraction techniques. Collectively, these laboratory studies combined with a cost-based economic analysis provide a basis for identifying favorable CO2-EOR opportunities in previously fractured shale gas reservoirs approaching final stages of primary gas production. Moreover, utilization of site-specific laboratory measurements in reservoir simulators provides insight into optimum injection strategies for maximizing CH4/CO2 exchange rates to obtain peak natural gas production.« less

  11. NaSrCo2F7, a Co(2+) pyrochlore antiferromagnet.

    PubMed

    Krizan, J W; Cava, R J

    2015-07-29

    We report the crystal growth, by the Bridgeman-Stockbarger method, and the basic magnetic properties of a new cobalt-based pyrochlore, NaSrCo2F7. Single-crystal structure determination shows that Na and Sr are completely disordered on the non-magnetic large atom A sites, while magnetic [Formula: see text] Co(2+) fully occupies the pyrochlore lattice B sites. NaSrCo2F7 displays strong antiferromagnetic interactions ([Formula: see text]), a large effective moment ([Formula: see text]), and no spin freezing until 3 K. Thus, NaSrCo2F7 is a geometrically frustrated antiferromagnet with a frustration index [Formula: see text]. Ac susceptibility, dc susceptibility, and heat capacity are utilized to characterize the spin freezing. We argue that NaSrCo2F7 and the related material NaCaCo2F7 are examples of frustrated pyrochlore antiferromagnets with weak bond disorder. PMID:26154596

  12. CO2 and CO Simulations and Their Source Signature Indicated by CO/CO2

    NASA Technical Reports Server (NTRS)

    Kawa, Randy; Huisheng, Bian

    2004-01-01

    Three years (2000-2002) atmospheric CO2 and CO fields are simulated by a Chemistry Transport Model driven by the assimilated meteorological fields from GEOS-4. The simulated CO2 and CO are evaluated by measurements from surface (CMDL), satellite (MOPITT/CO), and aircraft. The model-observation comparisons indicate reasonable agreement in both source and remote regions, and in the lower and upper troposphere. The simulation also captures the seasonality of CO2 and CO variations. The ratios of CO/CO2 are analyzed over different representative regions to identify the source signature, since the anthropogenic CO comes fiom the same combustion processes as CO2. This work enables us to improve satellite inversion estimates of CO2 sources and sinks by simultaneously using satellite CO measurement.

  13. Advanced reservoir characterization in the Antelope Shale to establish the viability of CO2 enhanced oil recovery in California`s Monterey Formation siliceous shales. Annual report, February 7, 1997--February 6, 1998

    SciTech Connect

    Morea, M.F.

    1998-06-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO{sub 2} enhanced oil recovery project in the antelope Shale in Buena Vista Hills Field. The proposed pilot consists of four existing producers on 20 acre spacing with a new 10 acre infill well drilled as the pilot CO{sub 2} injector. Most of the reservoir characterization during Phase 1 of the project will be performed using data collected in the pilot pattern wells. During this period the following tasks have been completed: laboratory wettability; specific permeability; mercury porosimetry; acoustic anisotropy; rock mechanics analysis; core description; fracture analysis; digital image analysis; mineralogical analysis; hydraulic flow unit analysis; petrographic and confocal thin section analysis; oil geochemical fingerprinting; production logging; carbon/oxygen logging; complex lithologic log analysis; NMR T2 processing; dipole shear wave anisotropy logging; shear wave vertical seismic profile processing; structural mapping; and regional tectonic synthesis. Noteworthy technological successes for this reporting period include: (1) first (ever) high resolution, crosswell reflection images of SJV sediments; (2) first successful application of the TomoSeis acquisition system in siliceous shales; (3) first detailed reservoir characterization of SJV siliceous shales; (4) first mineral based saturation algorithm for SJV siliceous shales, and (5) first CO{sub 2} coreflood experiments for siliceous shale. Preliminary results from the CO{sub 2} coreflood experiments (2,500 psi) suggest that significant oil is being produced from the siliceous shale.

  14. Use of Chlorella vulgaris for CO(2) mitigation in a photobioreactor.

    PubMed

    Keffer, J E; Kleinheinz, G T

    2002-11-01

    Carbon dioxide (CO(2)) is a colorless gas that exists at a concentration of approximately 330 ppm in the atmosphere and is released in great quantities when fossil fuels are burned. The current flux of carbon out of fossil fuels is about 600 times greater than that into fossil fuels. With increased concerns about global warming and greenhouse gas emissions, there have been several approaches proposed for managing the levels of CO(2) emitted into the atmosphere. One of the most understudied methods for CO(2) mitigation is the use of biological processes in engineered systems such as photobioreactors. This research project describes the effectiveness of Chlorella vulgaris, used in a photobioreactor with a very short gas residence time, in sequestering CO(2) from an elevated CO(2) airstream. We evaluated a flow-through photobioreactor's operational parameters, as well as the growth characteristics of the C. vulgaris inoculum when exposed to an airstream with over 1850 ppm CO(2). When using dry weight, chlorophyll, and direct microscopic measurements, it was apparent that the photobioreactor's algal inoculum responded well to the elevated CO(2) levels and there was no build-up of CO(2) or carbonic acid in the photobioreactor. The photobioreactor, with a gas residence time of approximately 2 s, was able to remove up to 74% of the CO(2) in the airstream to ambient levels. This corresponded to a 63.9-g/m(3)/h bulk removal for the experimental photobioreactor. Consequently, this photobioreactor shows that biological processes may have some promise for treating point source emissions of CO(2) and deserve further study. PMID:12407463

  15. Monitoring of near surface CO2

    NASA Astrophysics Data System (ADS)

    Faber, E.; Möller, I.; Teschner, M.; Poggenburg, J.; Spickenbom, K.; Schulz, H. J.

    2009-04-01

    Monitoring of near surface CO2 ECKHARD FABER1, INGO MÖLLER1, MANFRED TESCHNER1, JÜRGEN POGGENBURG1, KAI SPICKENBOM1, HANS-MARTIN SCHULZ1,2 1Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Stilleweg 2, D-30655 Hannover, e.faber@bgr.de 2present adress: GeoForschungsZentrum Potsdam (GFZ), Telegrafenberg, D-14473 Potsdam Underground gas storage and sequestration of carbon dioxide is one of the methods to reduce the input of antropogenic CO2 into the atmosphere and its greenhouse effect. Storage of CO2 is planned in depleted reservoirs, in aquifers and in salt caverns. Storage sites must have very small leakage rates to safely store the CO2 for centuries. Thus, a careful investigation and site selection is crucial. However, any leakage of CO2 to the surface is potentially dangerous for humans and environment. Therefore, instruments and systems for the detection of any CO2 escaping the storage sites and reaching the atmosphere have to be developed. Systems to monitor gases in deep wells, groundwater and surface sediments for leaking CO2 are developed, tested and are contnuously improved. Our group is mainly analysing CO2 in shallow (down to 3 m) soil samples using automatically operating monitoring systems. The systems are equipped with sensors to measure CO2 (and other gases) concentrations and other environmental parameters (atmospheric pressure, ambient and soil temperatures, etc.). Data are measured in short intervals (minute to subminute), are stored locally and are transferred by telemetrical systems into the BGR laboratory (Weinlich et al., 2006). In addition to soil gases monitoring systems technical equipment is available for continuous underwater gas flow measurements. Several of those monitoring systems are installed in different areas like Czech Republic, Austria, Italy and Germany. To detect any leaking gas from a sequestration site after CO2 injection, the naturally existing CO2 concentration (before injection) must be known. Thus, the natural

  16. Validation of Airborne CO2 Laser Measurements

    NASA Astrophysics Data System (ADS)

    Browell, E. V.; Dobler, J. T.; Kooi, S.; Fenn, M. A.; Choi, Y.; Vay, S. A.; Harrison, F. W.; Moore, B.; Zaccheo, T. S.

    2010-12-01

    This paper discusses the flight test validation of a unique, multi-frequency, intensity-modulated, single-beam laser absorption spectrometer (LAS) that operates near 1.57 μm for remote column CO2 measurements. This laser system is under development for a future space-based mission to determine the global distribution of regional-scale CO2 sources and sinks, which is the objective of the NASA Active Sensing of CO2 Emissions during Nights, Days, and Seasons (ASCENDS) mission. A prototype of this LAS system, called the Multi-frequency Fiber Laser Lidar (MFLL), was developed by ITT, and it has been flight tested in nine airborne campaigns since May 2005. This paper focuses on the most recent results obtained over the last two years of flight-testing where the MFLL remote CO2 column measurements were evaluated against airborne in situ CO2 profile measurements traceable to World Meteorological Organization standards. A comprehensive multiple-aircraft flight test program was conducted over Oklahoma and Virginia in July-August 2009. The MFLL obtained surface reflectance and average CO2 column variations along the 50-km flight legs over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Central Facility (CF) in Lamont, Oklahoma; over rural Virginia and North Carolina; and over the Chesapeake Bay. For a flight altitude of 4.6 km, the average signal to noise ratio (SNR) for a 1-s CO2 column measurement was found to be 760, which is the equivalent of a CO2 mixing ratio precision of 0.60 ppmv, and for a 10-s average the SNR was found to be 2002 or 0.20 ppmv. Absolute comparisons of MFLL-derived and in situ-derived CO2 column measurements were made for all daytime flights conducted over Oklahoma and Virginia with an average agreement to within 0.32 ppmv. A major ASCENDS flight test campaign was conducted using the NASA DC-8 during 6-18 July 2010. The MFLL system and associated in situ CO2 instrumentation were operated on DC-8 flights over the Central Valley

  17. Decarboxylation, CO2 and the reversion problem.

    PubMed

    Kluger, Ronald

    2015-11-17

    Decarboxylation reactions occur rapidly in enzymes but usually are many orders of magnitude slower in solution, if the reaction occurs at all. Where the reaction produces a carbanion and CO2, we would expect that the high energy of the carbanion causes the transition state for C-C bond cleavage also to be high in energy. Since the energy of the carbanion is a thermodynamic property, an enzyme obviously cannot change that property. Yet, enzymes overcome the barrier to forming the carbanion. In thinking about decarboxylation, we had assumed that CO2 is well behaved and forms without its own barriers. However, we analyzed reactions in solution of compounds that resemble intermediates in enzymic reaction and found some of them to be subject to unexpected forms of catalysis. Those results caused us to discard the usual assumptions about CO2 and carbanions. We learned that CO2 can be a very reactive electrophile. In decarboxylation reactions, where CO2 forms in the same step as a carbanion, separation of the products might be the main problem preventing the forward reaction because the carbanion can add readily to CO2 in competition with their separation and solvation. The basicity of the carbanion also might be overestimated because when we see that the decarboxylation is slow, we assume that it is because the carbanion is high in energy. We found reactions where the carbanion is protonated internally; CO2 appears to be able to depart without reversion more rapidly. We tested these ideas using kinetic analysis of catalytic reactions, carbon kinetic isotope effects, and synthesis of predecarboxylation intermediates. In another case, we observed that the decarboxylation is subject to general base catalysis while producing a significant carbon kinetic isotope effect. This requires both a proton transfer from an intermediate and C-C bond-breaking in the rate-determining step. This would occur if the route involves the surprising initial addition of water to the carboxyl

  18. Direct Copolymerization of CO2 and Diols

    PubMed Central

    Tamura, Masazumi; Ito, Kazuki; Honda, Masayoshi; Nakagawa, Yoshinao; Sugimoto, Hiroshi; Tomishige, Keiichi

    2016-01-01

    Direct polymerization of CO2 and diols is promising as a simple and environmental-benign method in place of conventional processes using high-cost and/or hazardous reagents such as phosgene, carbon monoxide and epoxides, however, there are no reports on the direct method due to the inertness of CO2 and severe equilibrium limitation of the reaction. Herein, we firstly substantiate the direct copolymerization of CO2 and diols using CeO2 catalyst and 2-cyanopyridine promotor, providing the alternating cooligomers in high diol-based yield (up to 99%) and selectivity (up to >99%). This catalyst system is applicable to various diols including linear C4-C10 α,ω-diols to provide high yields of the corresponding cooligomers, which cannot be obtained by well-known methods such as copolymerization of CO2 and cyclic ethers and ring-opening polymerization of cyclic carbonates. This process provides us a facile synthesis method for versatile polycarbonates from various diols and CO2 owing to simplicity of diols modification. PMID:27075987

  19. Direct CO2-Methanation of flue gas

    NASA Astrophysics Data System (ADS)

    Müller, Klaus; Fleige, Michael; Rachow, Fabian; Israel, Johannes; Schmeißer, Dieter

    2013-04-01

    Already discovered by Paul Sabatier in 1902 the Hydrogenation according to CO2 + 4H2 ->CH4 + 2H2O nowadays is discussed in the course of the "Power-to-Gas" approach to utilize excess energy from renewable electricity generation in times of oversupply of electricity. We investigate the behavior of this process in a simulated flue gas atmosphere of conventional base load power plants, which could be used as constant sources of the reactant CO2. In relation to an approach related to carbon capture and cycling, the conversion of CO2 directly from the flue gas of a conventional power plant is a new aspect and has several advantages: The conversion of CO2 into methane could be integrated directly into the combustion process. Even older power plants could be upgraded and used as a possible source for CO2, in the same sense as the amine cleaning of flue gas, as a post combustion process. Further, waste heat of the power plant could be used as process energy for the catalytic reaction. Therefore the influence of different flue gas compositions such as varying contents of nitrogen and residual oxygen are tested in a laboratory scale. The heterogeneous catalysis process is investigated with regard to conversion rates, yield and selectivity and long-term stability of the Ni-catalyst. Also the influence of typical contaminations like SO2 is investigated and will be presented.

  20. The supply chain of CO2 emissions

    PubMed Central

    Davis, Steven J.; Peters, Glen P.; Caldeira, Ken

    2011-01-01

    CO2 emissions from the burning of fossil fuels are conventionally attributed to the country where the emissions are produced (i.e., where the fuels are burned). However, these production-based accounts represent a single point in the value chain of fossil fuels, which may have been extracted elsewhere and may be used to provide goods or services to consumers elsewhere. We present a consistent set of carbon inventories that spans the full supply chain of global CO2 emissions, finding that 10.2 billion tons CO2 or 37% of global emissions are from fossil fuels traded internationally and an additional 6.4 billion tons CO2 or 23% of global emissions are embodied in traded goods. Our results reveal vulnerabilities and benefits related to current patterns of energy use that are relevant to climate and energy policy. In particular, if a consistent and unavoidable price were imposed on CO2 emissions somewhere along the supply chain, then all of the parties along the supply chain would seek to impose that price to generate revenue from taxes collected or permits sold. The geographical concentration of carbon-based fuels and relatively small number of parties involved in extracting and refining those fuels suggest that regulation at the wellhead, mine mouth, or refinery might minimize transaction costs as well as opportunities for leakage. PMID:22006314

  1. Direct Copolymerization of CO2 and Diols

    NASA Astrophysics Data System (ADS)

    Tamura, Masazumi; Ito, Kazuki; Honda, Masayoshi; Nakagawa, Yoshinao; Sugimoto, Hiroshi; Tomishige, Keiichi

    2016-04-01

    Direct polymerization of CO2 and diols is promising as a simple and environmental-benign method in place of conventional processes using high-cost and/or hazardous reagents such as phosgene, carbon monoxide and epoxides, however, there are no reports on the direct method due to the inertness of CO2 and severe equilibrium limitation of the reaction. Herein, we firstly substantiate the direct copolymerization of CO2 and diols using CeO2 catalyst and 2-cyanopyridine promotor, providing the alternating cooligomers in high diol-based yield (up to 99%) and selectivity (up to >99%). This catalyst system is applicable to various diols including linear C4-C10 α,ω-diols to provide high yields of the corresponding cooligomers, which cannot be obtained by well-known methods such as copolymerization of CO2 and cyclic ethers and ring-opening polymerization of cyclic carbonates. This process provides us a facile synthesis method for versatile polycarbonates from various diols and CO2 owing to simplicity of diols modification.

  2. CO2 DIAL measurements of water vapor

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Margolis, Jack S.; Brothers, Alan M.; Tratt, David M.

    1987-01-01

    CO2 lidars have heretofore been used to measure water vapor concentrations primarily using the 10R(20) line at 10.247 microns, which has a strong overlap with a water vapor absorption line. This paper discusses the use of that line as well as other CO2 laser lines for which the absorption coefficients are weaker. The literature on measurement of water vapor absorption coefficients using CO2 lasers is reviewed, and the results from four laboratories are shown to be generally consistent with each other after they are normalized to the same partial pressure, temperature, and ethylene absorption coefficent for the 10P(14) CO2 laser line; however, the agreement with the Air Force Geophysics Laboratory's HITRAN and FASCOD 2 spectral data tapes is not good either for the water vapor absorption lines or for the water vapor continuum. Demonstration measurements of atmospheric water vapor have been conducted using the Mobile Atmospheric Pollutant Mapping System, a dual CO2 lidar system using heterodyne detection. Results are discussed for measurements using three sets of laser line pairs covering a wide range of water vapor partial pressures.

  3. Direct Copolymerization of CO2 and Diols.

    PubMed

    Tamura, Masazumi; Ito, Kazuki; Honda, Masayoshi; Nakagawa, Yoshinao; Sugimoto, Hiroshi; Tomishige, Keiichi

    2016-01-01

    Direct polymerization of CO2 and diols is promising as a simple and environmental-benign method in place of conventional processes using high-cost and/or hazardous reagents such as phosgene, carbon monoxide and epoxides, however, there are no reports on the direct method due to the inertness of CO2 and severe equilibrium limitation of the reaction. Herein, we firstly substantiate the direct copolymerization of CO2 and diols using CeO2 catalyst and 2-cyanopyridine promotor, providing the alternating cooligomers in high diol-based yield (up to 99%) and selectivity (up to >99%). This catalyst system is applicable to various diols including linear C4-C10 α,ω-diols to provide high yields of the corresponding cooligomers, which cannot be obtained by well-known methods such as copolymerization of CO2 and cyclic ethers and ring-opening polymerization of cyclic carbonates. This process provides us a facile synthesis method for versatile polycarbonates from various diols and CO2 owing to simplicity of diols modification. PMID:27075987

  4. Current advances of integrated processes combining chemical absorption and biological reduction for NO x removal from flue gas.

    PubMed

    Zhang, Shihan; Chen, Han; Xia, Yinfeng; Liu, Nan; Lu, Bi-Hong; Li, Wei

    2014-10-01

    Anthropogenic nitrogen oxides (NO x ) emitted from the fossil-fuel-fired power plants cause adverse environmental issues such as acid rain, urban ozone smoke, and photochemical smog. A novel chemical absorption-biological reduction (CABR) integrated process under development is regarded as a promising alternative to the conventional selective catalytic reduction processes for NO x removal from the flue gas because it is economic and environmentally friendly. CABR process employs ferrous ethylenediaminetetraacetate [Fe(II)EDTA] as a solvent to absorb the NO x following microbial denitrification of NO x to harmless nitrogen gas. Meanwhile, the absorbent Fe(II)EDTA is biologically regenerated to sustain the adequate NO x removal. Compared with conventional denitrification process, CABR not only enhances the mass transfer of NO from gas to liquid phase but also minimize the impact of oxygen on the microorganisms. This review provides the current advances of the development of the CABR process for NO x removal from the flue gas. PMID:25149446

  5. CO2 decomposition using electrochemical process in molten salts

    NASA Astrophysics Data System (ADS)

    Otake, Koya; Kinoshita, Hiroshi; Kikuchi, Tatsuya; Suzuki, Ryosuke O.

    2012-08-01

    The electrochemical decomposition of CO2 gas to carbon and oxygen gas in LiCl-Li2O and CaCl2-CaO molten salts was studied. This process consists of electrochemical reduction of Li2O and CaO, as well as the thermal reduction of CO2 gas by the respective metallic Li and Ca. Two kinds of ZrO2 solid electrolytes were tested as an oxygen ion conductor, and the electrolytes removed oxygen ions from the molten salts to the outside of the reactor. After electrolysis in both salts, the aggregations of nanometer-scale amorphous carbon and rod-like graphite crystals were observed by transmission electron microscopy. When 9.7 %CO2-Ar mixed gas was blown into LiCl-Li2O and CaCl2-CaO molten salts, the current efficiency was evaluated to be 89.7 % and 78.5 %, respectively, by the exhaust gas analysis and the supplied charge. When a solid electrolyte with higher ionic conductivity was used, the current and carbon production became larger. It was found that the rate determining step is the diffusion of oxygen ions into the ZrO2 solid electrolyte.

  6. CO2-Binding-Organic-Liquids-Enhanced CO2 Capture using Polarity-Swing-Assisted Regeneration

    SciTech Connect

    Zhang, Jian; Kutnyakov, Igor; Koech, Phillip K.; Zwoster, Andy; Howard, Chris; Zheng, Feng; Freeman, Charles J.; Heldebrant, David J.

    2013-01-01

    A new solvent-based CO2 capture process couples the unique attributes of non-aqueous, CO2-binding organic liquids (CO2BOLs) with the newly discovered polarity-swing-assisted regeneration (PSAR) process that is unique to switchable ionic liquids. Laboratory measurements with PSAR indicate the ability to achieve a regeneration effect at 75°C comparable to that at 120°C using thermal regeneration only. Initial measurements also indicate that the kinetic behavior of CO2 release is also improved with PSAR. Abstract cleared PNWD-SA-9743

  7. Light-duty vehicle CO2 targets consistent with 450 ppm CO2 stabilization.

    PubMed

    Winkler, Sandra L; Wallington, Timothy J; Maas, Heiko; Hass, Heinz

    2014-06-01

    We present a global analysis of CO2 emission reductions from the light-duty vehicle (LDV) fleet consistent with stabilization of atmospheric CO2 concentration at 450 ppm. The CO2 emission reductions are described by g CO2/km emission targets for average new light-duty vehicles on a tank-to-wheel basis between 2010 and 2050 that we call CO2 glide paths. The analysis accounts for growth of the vehicle fleet, changing patterns in driving distance, regional availability of biofuels, and the changing composition of fossil fuels. New light-duty vehicle fuel economy and CO2 regulations in the U.S. through 2025 and in the EU through 2020 are broadly consistent with the CO2 glide paths. The glide path is at the upper end of the discussed 2025 EU range of 68-78 g CO2/km. The proposed China regulation for 2020 is more stringent than the glide path, while the 2017 Brazil regulation is less stringent. Existing regulations through 2025 are broadly consistent with the light-duty vehicle sector contributing to stabilizing CO2 at approximately 450 ppm. The glide paths provide long-term guidance for LDV powertrain/fuel development. PMID:24798684

  8. Surface CO2 leakage during the first shallow subsurface CO2release experiment

    SciTech Connect

    Lewicki, J.L.; Oldenburg, C.; Dobeck, L.; Spangler, L.

    2007-09-15

    A new field facility was used to study CO2 migrationprocesses and test techniques to detect and quantify potential CO2leakage from geologic storage sites. For 10 days starting 9 July 2007,and for seven days starting 5 August 2007, 0.1 and 0.3 t CO2 d-1,respectively, were released from a ~;100-m long, sub-water table (~;2.5-mdepth) horizontal well. The spatio-temporal evolution of leakage wasmapped through repeated grid measurements of soil CO2 flux (FCO2). Thesurface leakage onset, approach to steady state, and post-release declinematched model predictions closely. Modeling suggested that minimal CO2was taken up by groundwater through dissolution, and CO2 spread out ontop of the water table. FCO2 spatial patterns were related to well designand soil physical properties. Estimates of total CO2 discharge along withsoil respiration and leakage discharge highlight the influence ofbackground CO2 flux variations on detection of CO2 leakagesignals.

  9. Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development

    SciTech Connect

    Stephenson, M.

    1994-03-01

    Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

  10. On the development of a methodology for extensive in-situ and continuous atmospheric CO2 monitoring

    NASA Astrophysics Data System (ADS)

    Wang, K.; Chang, S.; Jhang, T.

    2010-12-01

    Carbon dioxide is recognized as the dominating greenhouse gas contributing to anthropogenic global warming. Stringent controls on carbon dioxide emissions are viewed as necessary steps in controlling atmospheric carbon dioxide concentrations. From the view point of policy making, regulation of carbon dioxide emissions and its monitoring are keys to the success of stringent controls on carbon dioxide emissions. Especially, extensive atmospheric CO2 monitoring is a crucial step to ensure that CO2 emission control strategies are closely followed. In this work we develop a methodology that enables reliable and accurate in-situ and continuous atmospheric CO2 monitoring for policy making. The methodology comprises the use of gas filter correlation (GFC) instrument for in-situ CO2 monitoring, the use of CO2 working standards accompanying the continuous measurements, and the use of NOAA WMO CO2 standard gases for calibrating the working standards. The use of GFC instruments enables 1-second data sampling frequency with the interference of water vapor removed from added dryer. The CO2 measurements are conducted in the following timed and cycled manner: zero CO2 measurement, two standard CO2 gases measurements, and ambient air measurements. The standard CO2 gases are calibrated again NOAA WMO CO2 standards. The methodology is used in indoor CO2 measurements in a commercial office (about 120 people working inside), ambient CO2 measurements, and installed in a fleet of in-service commercial cargo ships for monitoring CO2 over global marine boundary layer. These measurements demonstrate our method is reliable, accurate, and traceable to NOAA WMO CO2 standards. The portability of the instrument and the working standards make the method readily applied for large-scale and extensive CO2 measurements.

  11. Ab initio study of the ν(CO 2) mode in EDA complexes

    NASA Astrophysics Data System (ADS)

    Jamróz, M. H.; Dobrowolski, J. Cz.; Bajdor, K.; Borowiak, M. A.

    1995-04-01

    Stabilization energy, geometry and ν2 mode of CO 2 molecule in EDA complexes with organic electron donors are ab initio modeled using SPARTAN program. We prove that the splitting of ν2 mode, observed previously in IR spectra, is an effect of removing the double degeneracy of this mode in the complex resulted from the deformation of CO 2 moiety. The dependence of the deformation on complex stabilization energy is discussed.

  12. Electrolysis byproduct D2O provides a third way to mitigate CO2

    SciTech Connect

    Schenewerk, William Ernest

    2009-09-01

    Rapid atomic power deployment may be possible without using fast breeder reactors or making undue demands on uranium resource. Using by-product D2O and thorium-U233 in CANDU and RBMK piles may circumvent need for either fast breeder reactors or seawater uranium. Atmospheric CO2 is presently increasing 2.25%/year in proportion to 2.25%/year exponential fossil fuel consumption increase. Roughly 1/3 anthropologic CO2 is removed by various CO2 sinks. CO2 removal is modelled as being proportional to 45-year-earlier CO2 amount above 280 ppm-C Water electrolysis produces roughly 0.1 kg-D20/kWe-y. Material balance assumes each electrolysis stage increases D2O bottoms concentration times 3. Except for first two electrolysis stages, all water from hydrogen consumption is returned to electrolysis. The unique characteristic of this process is the ability to economically burn all deuterium-enriched H2 in vehicles. Condensate from vehicles returns to appropriate electrolysis stage. Fuel cell condensate originally from reformed natural gas may augment second-sage feed. Atomic power expansion is 5%/year, giving 55000 GWe by 2100. World primary energy increases 2.25%/y, exceeding 4000 EJ/y by 2100. CO2 maximum is roughly 600 ppm-C around year 2085. CO2 declines back below 300 ppm-C by 2145 if the 45-year-delay seawater sink remains effective.

  13. Reducing the cost of Ca-based direct air capture of CO2.

    PubMed

    Zeman, Frank

    2014-10-01

    Direct air capture, the chemical removal of CO2 directly from the atmosphere, may play a role in mitigating future climate risk or form the basis of a sustainable transportation infrastructure. The current discussion is centered on the estimated cost of the technology and its link to "overshoot" trajectories, where atmospheric CO2 levels are actively reduced later in the century. The American Physical Society (APS) published a report, later updated, estimating the cost of a one million tonne CO2 per year air capture facility constructed today that highlights several fundamental concepts of chemical air capture. These fundamentals are viewed through the lens of a chemical process that cycles between removing CO2 from the air and releasing the absorbed CO2 in concentrated form. This work builds on the APS report to investigate the effect of modifications to the air capture system based on suggestions in the report and subsequent publications. The work shows that reduced carbon electricity and plastic packing materials (for the contactor) may have significant effects on the overall price, reducing the APS estimate from $610 to $309/tCO2 avoided. Such a reduction does not challenge postcombustion capture from point sources, estimated at $80/tCO2, but does make air capture a feasible alternative for the transportation sector and a potential negative emissions technology. Furthermore, air capture represents atmospheric reductions rather than simply avoided emissions. PMID:25207956

  14. Geological Sequestration of CO2 by Hydrous Carbonate Formation with Reclaimed Slag

    SciTech Connect

    Von L. Richards; Kent Peaslee; Jeffrey Smith

    2008-02-06

    The concept of this project is to develop a process that improves the kinetics of the hydrous carbonate formation reaction enabling steelmakers to directly remove CO2 from their furnace exhaust gas. It is proposed to bring the furnace exhaust stream containing CO2 in contact with reclaimed steelmaking slag in a reactor that has an environment near the unit activity of water resulting in the production of carbonates. The CO2 emissions from the plant would be reduced by the amount sequestered in the formation of carbonates. The main raw materials for the process are furnace exhaust gases and specially prepared slag.

  15. [Advanced nitrogen removal using innovative denitrification biofilter with sustained-release carbon source material].

    PubMed

    Tang, Lei; Li, Peng; Zuo, Jian-e; Yuan, Lin; Li, Zai-xing

    2013-09-01

    An innovative denitrification biofilter was developed with polycaprolactone (PCL) as the carbon source and biofilm carrier. The performance of nitrogen removal was investigated with biologically treated effluent from secondary clarifier, and the results indicated that a maximum TN removal efficiency of 98.9% was achieved under the following conditions: influent total nitrogen (TN) concentration 30.0 mg x L(-1), denitrification load 54.0 mg (L x h)(-1), operating temperature 20. 1-22.0 degrees C, hydraulic retention time 0. 5 h; the total organic carbon (TOC) in effluent was 6.5-8.4 mg x L(-1), which was increased by 2.0-3.0 mg x L(-1) compared with that in the influent; the suspended solids (SS) concentration was less than 4.0 mg x L(-1) during operation; nearly 84.2% of the total released organic carbon which was used as electron donor in the denitrification process, was derived in the presence of microbes. The surface of the PCL pellets was observed by scanning electron microscope (SEM), it was shown that thick biofilm was formed on the surface of pellets, and the main microbial species were Bacillus and Trichobacteria. PMID:24289000

  16. Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment

    NASA Astrophysics Data System (ADS)

    Visa, Maria; Chelaru, Andreea-Maria

    2014-06-01

    Fly ash resulted from coal burning is a waste that can be used in wastewater treatment for removal of dyes and heavy metals by adsorption. Class “F” fly ash (FA), collected from the Central Heat and Power (CHP) Plant Brasov (Romania), with oxides composition SiO2/Al2O3 over 2.4 was used for obtaining a new substrate with good adsorption capacity for dyes and heavy metals from wastewater. A new material was obtained from modified fly ash with NaOH and hexadecyltrimethylammonium bromide (HTAB) a cationic surfactant. Contact time, optimum amount of substrate and the pH corresponding to 50 mL solution of pollutants were the parameters optimized for obtaining the maximum efficiency in the adsorption process. The optimized adsorption parameters were further used in thermodynamic and kinetic studies of the adsorption processes. The adsorption kinetic mechanisms, and the substrate capacities are further discussed correlated with the surface structure (XRD), composition (EDS, FTIR), and morphology (SEM, AFM). The results indicate that the novel nano-substrate composite with fly ash modified can be used as an efficient and low cost adsorbent for simultaneous removal of dyes and heavy metals, the resulted water respects the discharge regulations.

  17. Oxygen isotope fractionation in stratospheric CO2

    NASA Technical Reports Server (NTRS)

    Thiemens, M. H.; Jackson, T.; Mauersberger, K.; Schueler, B.; Morton, J.

    1991-01-01

    A new cryogenic collection system has been flown on board a balloon gondola to obtain separate samples of ozone and carbon dioxide without entrapping major atmospheric gases. Precision laboratory isotopic analysis of CO2 samples collected between 26 and 35.5 km show a mass-independent enrichment in both O-17 and O-18 of about 11 per mil above tropospheric values. Ozone enrichment in its heavy isotopes was 9 to 16 percent in O3-50 and 8 to 11 percent in O3-49, respectively (Schueler et al., 1990). A mechanism to explain the isotope enrichment in CO2 has been recently proposed by Yung et al. (1991). The model is based on the isotope exchange between CO2 and O3 via O(1D), resulting in a transfer of the ozone isotope enrichment to carbon dioxide. Predicted enrichment and measured values agree well.

  18. CW CO2 Laser Induced Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Pola, Joseph

    1989-05-01

    CW CO