Science.gov

Sample records for advanced coal extraction

  1. Health requirements for advanced coal extraction systems

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.

    1980-01-01

    Health requirements were developed as long range goals for future advanced coal extraction systems which would be introduced into the market in the year 2000. The goal of the requirements is that underground coal miners work in an environment that is as close as possible to the working conditions of the general population, that they do not exceed mortality and morbidity rates resulting from lung diseases that are comparable to those of the general population, and that their working conditions comply as closely as possible to those of other industries as specified by OSHA regulations. A brief technique for evaluating whether proposed advanced systems meet these safety requirements is presented, as well as a discussion of the costs of respiratory disability compensation.

  2. A moving baseline for evaluation of advanced coal extraction systems

    NASA Technical Reports Server (NTRS)

    Bickerton, C. R.; Westerfield, M. D.

    1981-01-01

    Results from the initial effort to establish baseline economic performance comparators for a program whose intent is to define, develop, and demonstrate advanced systems suitable for coal resource extraction beyond the year 2000 are reported. Systems used were selected from contemporary coal mining technology and from conservation conjectures of year 2000 technology. The analysis was also based on a seam thickness of 6 ft. Therefore, the results are specific to the study systems and the selected seam extended to other seam thicknesses.

  3. Evaluation of ADAM/1 model for advanced coal extraction concepts

    NASA Technical Reports Server (NTRS)

    Deshpande, G. K.; Gangal, M. D.

    1982-01-01

    Several existing computer programs for estimating life cycle cost of mining systems were evaluated. A commercially available program, ADAM/1 was found to be satisfactory in relation to the needs of the advanced coal extraction project. Two test cases were run to confirm the ability of the program to handle nonconventional mining equipment and procedures. The results were satisfactory. The model, therefore, is recommended to the project team for evaluation of their conceptual designs.

  4. Regional price targets appropriate for advanced coal extraction

    NASA Technical Reports Server (NTRS)

    Terasawa, K. L.; Whipple, D. M.

    1980-01-01

    A methodology is presented for predicting coal prices in regional markets for the target time frames 1985 and 2000 that could subsequently be used to guide the development of an advanced coal extraction system. The model constructed is a supply and demand model that focuses on underground mining since the advanced technology is expected to be developed for these reserves by the target years. Coal reserve data and the cost of operating a mine are used to obtain the minimum acceptable selling price that would induce the producer to bring the mine into production. Based on this information, market supply curves can be generated. Demand by region is calculated based on an EEA methodology that emphasizes demand by electric utilities and demand by industry. The demand and supply curves are then used to obtain the price targets. The results show a growth in the size of the markets for compliance and low sulphur coal regions. A significant rise in the real price of coal is not expected even by the year 2000. The model predicts heavy reliance on mines with thick seams, larger block size and deep overburden.

  5. Moving baseline for evaluation of advanced coal-extraction systems

    SciTech Connect

    Bickerton, C.R.; Westerfield, M.D.

    1981-04-15

    This document reports results from the initial effort to establish baseline economic performance comparators for a program whose intent is to define, develop, and demonstrate advanced systems suitable for coal resource extraction beyond the year 2000. Systems used in this study were selected from contemporary coal mining technology and from conservative conjectures of year 2000 technology. The analysis was also based on a seam thickness of 6 ft. Therefore, the results are specific to the study systems and the selected seam thickness. To be more beneficial to the program, the effort should be extended to other seam thicknesses. This document is one of a series which describe systems level requirements for advanced underground coal mining equipment. Five areas of performance are discussed: production cost, miner safety, miner health, environmental impact, and recovery efficiency. The projections for cost and production capability comprise a so-called moving baseline which will be used to assess compliance with the systems requirement for production cost. Separate projections were prepared for room and pillar, longwall, and shortwall technology all operating under comparable sets of mining conditions. This work is part of an effort to define and develop innovative coal extraction systems suitable for the significant resources remaining in the year 2000.

  6. Safety evaluation methodology for advanced coal extraction systems

    SciTech Connect

    Zimmerman, W.F.

    1981-07-15

    To be acceptable to the coal industry, an advanced extraction system must provide a significant improvement over conventional systems in cost, safety, environmental impact, and conservation of unmined coal. Qualitative and quantitative evaluation methodologies were developed to assist the designer in determining if a proposed extraction design will be safer than existing systems. The qualitative analysis is a process which tests the new system against regulations and hazards of existing similar systems. The analysis examines the soundness of the design, whether or not the major hazards have been eliminated or reduced, and how the reduction would be accomplished. The quantitative methodology provides the designer with a means of establishing the approximate impact of hazards on injury levels. The results are further weighted by peculiar geological elements, specialized safety training, peculiar mine environmental aspects, and reductions in labor force. The outcome is compared with injury level requirements based on similar, safer industries to get a measure of the new system's success in reducing injuries. This approach provides a more detailed and comprehensive analysis of hazards and their effects than existing safety analyses.

  7. Resource targets for advanced underground coal extraction systems

    NASA Technical Reports Server (NTRS)

    Hoag, J. H.; Whipple, D. W.; Habib-Agahi, H.; Lavin, M. L.

    1982-01-01

    Resource targets appropriate for federal sponsorship of research and development of advanced underground coal mining systems are identified. A comprehensive examination of conventional and unconventional coals with particular attention to exceptionally thin and thick seams, steeply dipping beds, and multiple seam geometry was made. The results indicate that the resource of primary importance is flat lying bituminous coal of moderate thickness, under moderate cover, and located within the lower 48 states. Resources of secondary importance are the flat lying multiple seams and thin seams (especially those in Appalachia). Steeply dipping coals, abandoned pillars, and exceptionally thick western coals may be important in some regions of subregions, but the limited tonnage available places them in a position of tertiary importance.

  8. Safety evaluation methodology for advanced coal extraction systems

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.

    1981-01-01

    Qualitative and quantitative evaluation methods for coal extraction systems were developed. The analysis examines the soundness of the design, whether or not the major hazards have been eliminated or reduced, and how the reduction would be accomplished. The quantitative methodology establishes the approximate impact of hazards on injury levels. The results are weighted by peculiar geological elements, specialized safety training, peculiar mine environmental aspects, and reductions in labor force. The outcome is compared with injury level requirements based on similar, safer industries to get a measure of the new system's success in reducing injuries. This approach provides a more detailed and comprehensive analysis of hazards and their effects than existing safety analyses.

  9. Advanced Coal-Extraction-Systems Project: report of activities for fiscal year 1980-1981. [By coal field and basin

    SciTech Connect

    Dutzi, E.J.

    1982-03-15

    The Advanced Coal Extraction Systems Project completed several major accomplishments in the definition of target resources, definition of conceptual design requirements for Central Appalachia coals, and initiation of the conceptual design effort. Geologically and economically significant resources were characterized, resulting in recommendations for additional target resources; conceptual design requirements for Central Appalachia coals in the areas of production cost, safety, health, environmental impact, and coal conservation were formulated; and strategies for internal and external design efforts were defined. In addition, an in-depth health and safety evaluation of a modified tunnel borer design for coal mining was completed. At the end of fiscal year 1980-1981, the project was prepared to begin evolution and evaluation of conceptual designs for advanced coal mining systems. The selection of Central Appalachia as the target region automatically imposes certain restrictions and constraints, pertinent to the geology, geography, and other aspects of the operating environment. Requirements imposed by the target resource are summarized. Figure 2-1 presents an overview of the relationship between the conceptual design requirements and the constraints imposed by the Central Appalachian target resource.

  10. Overall requirements for an advanced underground coal extraction system

    SciTech Connect

    Goldsmith, M.; Lavin, M.L.

    1980-10-15

    This report presents overall requirements on underground mining systems suitable for coal seams exploitable in the year 2000, with particular relevance to the resources of Central Appalachia. These requirements may be summarized as follows: (1) Production Cost: demonstrate a return on incremental investment of 1.5 to 2.5 times the value required by a low-risk capital project. (2) Miner Safety: achieve at least a 50% reduction in deaths and disabling injuries per million man-hours. (3) Miner Health: meet the intent of all applicable regulations, with particular attention to coal dust, carcinogens, and mutagens; and with continued emphasis on acceptable levels of noise and vibration, lighting, humidity and temperature, and adequate work space. (4) Environmental Impact: maintain the value of mined and adjacent lands at the pre-mining value following reclamation; mitigation of off-site impacts should not cost more than the procedures used in contemporary mining. (5) Coal Conservation: the recovery of coal from the seam being mined should be at least as good as the best available contemporary technology operating in comparable conditions. No significant trade-offs between production cost and other performance indices were found.

  11. Evaluation of ADAM/1 model for advanced coal-extraction concepts

    SciTech Connect

    Deshpande, G. K.; Gangal, M. D.

    1982-01-15

    The Advanced Coal Extraction Project is sponsored by the Department of Energy at the Jet Propulsion Laboratory to define and develop advanced underground coal extraction systems which: (1) are suitable for significant remaining resources after the year 2000, and (2) promise a significant improvement in production cost and miner safety, with no degradation in miner health, environmental quality and resource recovery. System requirements in the five performance areas have been defined by Goldsmith and Lavin (1980). Several existing computer programs for estimating life-cycle cost of mining systems have been evaluated. A commercially available program ADAM/1 was found to be satisfactory in relation to the needs of the Advanced Coal Extraction Project. Two test cases were run to confirm the ability of the program to handle non-conventional mining equipment and procedures. The results were satisfactory. The model, therefore, is recommended to the project team for evaluation of their conceptual designs. Since the model is commercially available, data preparation instructions are not reproduced in this document; instead the reader is referred to the original documents for this information.

  12. Regional price targets appropriate for advanced coal extraction. [Forecasting to 1985 and 2000; USA; Regional analysis

    SciTech Connect

    Terasawa, K.L.; Whipple, D.W.

    1980-12-01

    The object of the study is to provide a methodology for predicting coal prices in regional markets for the target time frames 1985 and 2000 that could subsequently be used to guide the development of an advanced coal extraction system. The model constructed for the study is a supply and demand model that focuses on underground mining, since the advanced technology is expected to be developed for these reserves by the target years. The supply side of the model is based on coal reserve data generated by Energy and Environmental Analysis, Inc. (EEA). Given this data and the cost of operating a mine (data from US Department of Energy and Bureau of Mines), the Minimum Acceptable Selling Price (MASP) is obtained. The MASP is defined as the smallest price that would induce the producer to bring the mine into production, and is sensitive to the current technology and to assumptions concerning miner productivity. Based on this information, market supply curves can then be generated. On the demand side of the model, demand by region is calculated based on an EEA methodology that emphasizes demand by electric utilities and demand by industry. The demand and supply curves are then used to obtain the price targets. This last step is accomplished by allocating the demands among the suppliers so that the combined cost of producing and transporting coal is minimized.

  13. Hydromechanical Advanced Coal Excavator

    NASA Technical Reports Server (NTRS)

    Estus, Jay M.; Summers, David

    1990-01-01

    Water-jet cutting reduces coal dust and its hazards. Advanced mining system utilizes full-face, hydromechanical, continuous miner. Coal excavator uses high-pressure water-jet lances, one in each of cutting heads and one in movable lance, to make cuts across top, bottom and middle height, respectively, of coal face. Wedge-shaped cutting heads advance into lower and upper cuts in turn, thereby breaking coal toward middle cut. Thrust cylinders and walking pads advance excavator toward coal face.

  14. Supercritical solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Compton, L. E. (Inventor)

    1984-01-01

    Yields of soluble organic extract are increased up to about 50% by the supercritical extraction of particulate coal at a temperature below the polymerization temperature for coal extract fragments (450 C.) and a pressure from 500 psig to 5,000 psig by the conjoint use of a solvent mixture containing a low volatility, high critical temperature coal dissolution catalyst such as phenanthrene and a high volatility, low critical temperature solvent such as toluene.

  15. Coal extraction - environmental prediction

    SciTech Connect

    C. Blaine Cecil; Susan J. Tewalt

    2002-08-01

    To predict and help minimize the impact of coal extraction in the Appalachian region, the U.S. Geological Survey (USGS) is addressing selected mine-drainage issues through the following four interrelated studies: spatial variability of deleterious materials in coal and coal-bearing strata; kinetics of pyrite oxidation; improved spatial geologic models of the potential for drainage from abandoned coal mines; and methodologies for the remediation of waters discharged from coal mines. As these goals are achieved, the recovery of coal resources will be enhanced. 2 figs.

  16. Coal Extraction - Environmental Prediction

    USGS Publications Warehouse

    Cecil, C. Blaine; Tewalt, Susan J.

    2002-01-01

    Coal from the Appalachian region has supplied energy to the Nation for more than 200 years. Appalachian coal fueled America through a civil war and helped win two world wars. Appalachian coal has also provided fuel for keeping America warm in the winter and cool in the summer and has served as the basis for the steel, automobile, organic chemicals, chlorine, and aluminum industries. These benefits have not come without environmental costs, however. Coal extraction and utilization have had significant environmental impacts.

  17. Requirements for the conceptual design of advanced underground coal-extraction systems

    SciTech Connect

    Gangal, M.D.; Lavin, M.L.

    1981-12-15

    This document presents conceptual design requirements for underground coal mining systems having substantially improved performance in the areas of production cost and miner safety. Mandatory performance levels are also set for miner health, environmental impact, and coal recovery. In addition to mandatory design goals and constraints, the document identifies a number of desirable system characteristics which must be assessed in terms of their impact on production cost and their compatibility with other system elements. Although developed for the flat-lying, moderately thick seams of Central Appalachia, these requirements are designed to be easily adaptable to other coals. This document results from the initial phase of a program to define, develop, and demonstrate advanced equipment suitable for the resources remaining beyond the year 2000. The requirements developed are meant to implement the broad systems performance goals formulated by Goldsmith and Lavin (1980) by providing a rational point of departure for the design of underground mining systems with emphasis on Central Appalachian coals. Because no one has yet attempted to design to these requirements, they may contain some inconsistencies and need clarification in some areas. Accordingly, the authors would very much appreciate commments and suggestions from those who have used or critically reviewed these requirements.

  18. Overall requirements for an advanced underground coal extraction system. [environment effects, miner health and safety, production cost, and coal conservation

    NASA Technical Reports Server (NTRS)

    Goldsmith, M.; Lavin, M. L.

    1980-01-01

    Underground mining systems suitable for coal seams expoitable in the year 2000 are examined with particular relevance to the resources of Central Appalachia. Requirements for such systems may be summarized as follows: (1) production cost; (2)miner safety; (3) miner health; (4) environmental impact; and (5) coal conservation. No significant trade offs between production cost and other performance indices were found.

  19. Requirements for the conceptual design of advanced underground coal extraction systems

    NASA Astrophysics Data System (ADS)

    Gangal, M. D.; Lavin, M. L.

    1981-12-01

    Conceptual design requirements are presented for underground coal mining systems having substantially improved performance in the areas of production cost and miner safety. Mandatory performance levels are also set for miner health, environmental impact, and coal recovery. In addition to mandatory design goals and constraints, a number of desirable system characteristics are identified which must be assessed in terms of their impact on production cost and their compatibility with other system elements. Although developed for the flat lying, moderately thick seams of Central Appalachia, these requirements are designed to be easily adaptable to other coals.

  20. Requirements for the conceptual design of advanced underground coal extraction systems

    NASA Technical Reports Server (NTRS)

    Gangal, M. D.; Lavin, M. L.

    1981-01-01

    Conceptual design requirements are presented for underground coal mining systems having substantially improved performance in the areas of production cost and miner safety. Mandatory performance levels are also set for miner health, environmental impact, and coal recovery. In addition to mandatory design goals and constraints, a number of desirable system characteristics are identified which must be assessed in terms of their impact on production cost and their compatibility with other system elements. Although developed for the flat lying, moderately thick seams of Central Appalachia, these requirements are designed to be easily adaptable to other coals.

  1. Report of activities of the advanced coal extraction systems definition project, 1979 - 1980

    NASA Technical Reports Server (NTRS)

    Lavin, M. L.; Isenberg, L.

    1981-01-01

    During this period effort was devoted to: formulation of system performance goals in the areas of production cost, miner safety, miner health, environmental impact, and coal conservation, survey and in depth assessment of promising technology, and characterization of potential resource targets. Primary system performance goals are to achieve a return on incremental investment of 150% of the value required for a low risk capital improvement project and to reduce deaths and disability injuries per million man-hour by 50%. Although these performance goals were developed to be immediately applicable to the Central Appalachian coal resources, they were also designed to be readily adaptable to other coals by appending a geological description of the new resource. The work done on technology assessment was concerned with the performance of the slurry haulage system.

  2. Supercritical multicomponent solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Corcoran, W. H.; Fong, W. S.; Pichaichanarong, P.; Chan, P. C. F.; Lawson, D. D. (Inventor)

    1983-01-01

    The yield of organic extract from the supercritical extraction of coal with larger diameter organic solvents such as toluene is increased by use of a minor amount of from 0.1 to 10% by weight of a second solvent such as methanol having a molecular diameter significantly smaller than the average pore diameter of the coal.

  3. A methodology for the environmental assessment of advanced coal extraction systems

    NASA Technical Reports Server (NTRS)

    Sullivan, P. J.; Hutchinson, C. F.; Makihara, J.; Evensizer, J.

    1980-01-01

    Procedures developed to identify and assess potential environment impacts of advanced mining technology as it moves from a generic concept to a more systems definition are described. Two levels of assessment are defined in terms of the design stage of the technology being evaluated. The first level of analysis is appropriate to a conceptual design. At this level it is assumed that each mining process has known and potential environmental impacts that are generic to each mining activity. By using this assumption, potential environmental impacts can be identified for new mining systems. When two or more systems have been assessed, they can be evaluated comparing potential environmental impacts. At the preliminary stage of design, a systems performance can be assessed again with more precision. At this level of systems definition, potential environmental impacts can be analyzed and their significane determined in a manner to facilitate comparisons between systems. At each level of analysis, suggestions calculated to help the designer mitigate potentially harmful impacts are provided.

  4. Method of extracting coal from a coal refuse pile

    DOEpatents

    Yavorsky, Paul M.

    1991-01-01

    A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

  5. Coal and coal-bearing strata: recent advances

    SciTech Connect

    Scott, A.C.

    1987-01-01

    This volume contains keynote papers presented at the International Symposium on Coal and Coal-bearing Strata held at the University of London, April 1986. The authors reviewed progress in their fields over the past 15 years. Nine keynote lectures plus seven other invited contributions by experts in geology, geochemistry, sedimentology and biology are included in the volume. Coal, a major fossil fuel, is of broad interest to geologists and technological professionals alike. Topics in this volume include the formation of peat, coalification, coal geochemistry, palaeobotanical and palynological studies, sedimentology, coal exploration, oil-prone coals, and numerous coal basins. This volume is of interest not only to workers in the coal, oil, and gas industries, but also to survey geologists, lecturers, and students alike who are concerned with recent advances in the study of coal and coal-bearing strata.

  6. Improved Supercritical-Solvent Extraction of Coal

    NASA Technical Reports Server (NTRS)

    Compton, L.

    1982-01-01

    Raw coal upgraded by supercritical-solvent extraction system that uses two materials instead of one. System achieved extraction yields of 20 to 49 weight percent. Single-solvent yields are about 25 weight percent. Experimental results show extraction yields may be timedependent. Observed decreases in weight of coal agreed well with increases in ash content of residue.

  7. Report of activities of the advanced coal extraction systems definition project for the period 1979-1980

    SciTech Connect

    Lavin, M.L.; Isenberg, L.

    1981-08-01

    The primary focus of the Project during 1979-1980 was formulation of system level performance goals and the translation of these goals into conceptual design requirements. The overall performance goals, although presented as specific to the Central Appalachian resource, are general in all areas except mine size and regional geology. Five system performance areas were covered: production cost, miner safety and health, environmental impact, and coal conservation. During the latter portion of 1980, project attention turned to transformation into conceptual design requirements the previously identified opportunities to meet the systems requirements. The Central Appalachian coals were chosen as the focus of the early system definition work on the basis of a brief analysis. Preliminary estimates indicated substantial deposits of coal in the Gulf Coast and the Brooks Range region of Alaska. At the close of 1980, this resource study was in the midst of an in-depth analysis of substantial coal deposits within the five major coal provinces - Appalachia, the Interior, the Rocky Mountains, the Gulf Coast, and Alaska. Finally, the project launched a brief conceptual design activity in early 1979, and performed a broad survey of current R and D in underground mining technology. Subsequent work in the area of technology assessment focused on underground slurry transport.

  8. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL

    SciTech Connect

    K. Osseo-Asare; X. Zeng

    2002-01-01

    The objective of this research project is to develop an aqueous biphase extraction process for the treatment of fine coals. Aqueous biphase extraction is an advanced separation technology that relies on the ability of an aqueous system consisting of a water-soluble polymer and another component, e.g., another polymer, an inorganic salt, or a nonionic surfactant, to separate into two immiscible aqueous phases. The principle behind the partition of solid particles in aqueous biphase systems is the physicochemical interaction between the solid surface and the surrounding liquid solution. In order to remove sulfur and mineral matter from fine coal with aqueous biphasic extraction, it is necessary to know the partitioning behavior of coal, as well as the inorganic mineral components. Therefore, in this research emphasis was placed on the partitioning behavior of fine coal particles as well as model fine inorganic particles in aqueous biphase systems.

  9. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  10. Service Modules for Coal Extraction

    NASA Technical Reports Server (NTRS)

    Gangal, M. D.; Lewis, E. V.

    1985-01-01

    Service train follows group of mining machines, paying out utility lines as machines progress into coal face. Service train for four mining machines removes gases and coal and provides water and electricity. Flexible, coiling armored carriers protect cables and hoses. High coal production attained by arraying row of machines across face, working side by side.

  11. Advanced PDV velocity extraction

    NASA Astrophysics Data System (ADS)

    Dolan, Daniel; Ao, Tommy; Furnish, Michael

    2015-06-01

    While PDV has become a standard diagnostic, reliable velocity extraction remains challenging. Measurements with multiple real/apparent velocities are intrinsically difficult to analyze, and overlapping frequency components invalidate standard extraction methods. This presentation describes an advanced analysis technique where overlapping frequency components are resolved in the complex Fourier spectrum. Practical matters--multiple region of interest selection, component intersection, and shock transitions--will also be discussed. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85.

  12. COSTS FOR ADVANCED COAL COMBUSTION TECHNOLOGIES

    EPA Science Inventory

    The report gives results of an evaluation of the development status of advanced coal combustion technologies and discusses the preparation of performance and economic models for their application to electric utility plants. he technologies addressed were atmospheric fluidized bed...

  13. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Bi, H.; Campbell, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.

    1991-01-01

    The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 90% pyrite sulfur rejection at an energy recovery greater than 90% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning, method for analysis of samples, development of standard beneficiation test, grinding studies, modification of particle surface, and exploratory R D and support. 5 refs., 22 figs., 34 tabs.

  14. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, W.; Zou, Y.; Chen, W. ); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. )

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  15. TRW advanced slagging coal combustor utility demonstration

    SciTech Connect

    Not Available

    1990-01-01

    The TRW Advanced Entrained Coal Combustor Demonstration Project consists of retrofitting Orange and Rockland (O R) Utility Corporation's Lovett Plant Unit No. 3 with four (4) slagging combustors which will allow the gas/oil unit to fire 2.5% sulfur coal. The slagging combustor process will provide NO{sub x} and SO{sub x} emissions that meet NSPS and New York State Environmental Standards. The TRW-Utility Demonstration Unit (UDU) is responsible for the implementation of program policies and overall direction of the project. The following projects will be carried out: process and design development of clean coal technology CCT-1 the development and operation of the entrained coal combustor will enable the boiler to burn low and medium sulfur coal while meeting all the Federal/State emission requirements; demonstrate sulfur dioxide emissions control by pulverized limestone injection into the entrained coal combustor system.

  16. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  17. Resource targets for advanced underground coal-extraction systems. [Identification of location and geology of deposit for which greatest savings can be realized by advanced mining systems in 2000

    SciTech Connect

    Hoag, J.H.; Whipple, D.W.; Habib-Agahi, H.; Lavin, M.L.

    1982-08-01

    This report identifies resource targets appropriate for federal sponsorship of research and development of advanced underground coal mining systems. In contrast to previous research, which focused on a particular resource type, this study made a comprehensive examination of both conventional and unconventional coals, with particular attention to exceptionally thin and thick seams, steeply dipping beds, and multiple seam geometry. The major thrust of the targeting analysis was forecasting which coals would be of clear commercial significance at the beginning of the 21st century under three widely different scenarios for coal demand. The primary measure of commercial importance was an estimate of the aggregate dollar savings realized by consumers if advanced technology were available to mine coal at prices at or below the price projected for conventional technology in the year 2000. Both deterministic and probabilistic savings estimates were prepared for each demand scenario. The results indicate that the resource of primary importance is flat-lying bituminous coal of moderate thickness, under moderate cover, and located within the lower 48 states. Resources of secondary importance are the flat-lying multiple seams and thin seams (especially those in Appalachia). The rather substantial deposits of bituminous coal in North Alaska and the deeply buried lignites of the Gulf Coast present transportation and ground control problems which appear to postpone their commercial importance well beyond 2000. Steeply dipping coals, abandoned pillars, and exceptionally thick western coals may be important in some regions or sub-regions, but the limited tonnage available places them in a position of tertiary importance.

  18. Advanced Coal-Based Power Generations

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1982-01-01

    Advanced power-generation systems using coal-derived fuels are evaluated in two-volume report. Report considers fuel cells, combined gas- and steam-turbine cycles, and magnetohydrodynamic (MHD) energy conversion. Presents technological status of each type of system and analyzes performance of each operating on medium-Btu fuel gas, either delivered via pipeline to powerplant or generated by coal-gasification process at plantsite.

  19. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, Dolores C.; DaPrato, Philip L.; Gouker, Toby R.; Knoer, Peter

    1986-01-01

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

  20. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

    1984-07-06

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

  1. Controlling air toxics through advanced coal preparation

    SciTech Connect

    Straszheim, W.E.; Buttermore, W.H.; Pollard, J.L.

    1995-11-01

    This project involves the assessment of advanced coal preparation methods for removing trace elements from coal to reduce the potential for air toxic emissions upon combustion. Scanning electron microscopy-based automated image analysis (SEM-AIA) and advanced washability analyses are being applied with state-of-the-art analytical procedures to predict the removal of elements of concern by advanced column flotation and to confirm the effectiveness of preparation on the quality of quantity of clean coal produced. Specific objectives are to maintain an acceptable recovery of combustible product, while improving the rejection of mineral-associated trace elements. Current work has focused on determining conditions for controlling column flotation system across its operating range and on selection and analysis of samples for determining trace element cleanability.

  2. Advanced direct coal liquefaction concepts

    SciTech Connect

    Berger, D.J.; Parker, R.J.; Simpson, P.L. )

    1992-01-01

    During the first quarter of FY 1993, the Project proceeded close to the Project Plan. The analysis of the feed material has been completed as far as possible. Some unplanned distillation was needed to correct the boiling range of the Black Thunder solvent used during the autoclave tests. Additional distillation will be required if the same solvent is to be used for the bench unit tests. A decision on this is still outstanding. The solvent to be used with Illinois No. 6 coal has not yet been defined. As a result, the procurement of the feed and the feed analysis is somewhat behind schedule. Agglomeration tests with Black Thunder coal indicates that small agglomerates can be formed. However, the ash removal is quite low (about 10%), which is not surprising in view of the low ash content of the coal. The first series of autoclave tests with Black Thunder coal was completed as planned. Also, additional runs are in progress as repeats of previous runs or at different operating conditions based on the data obtained so far. The results are promising indicating that almost complete solubilization (close to 90%) of Black Thunder coal can be achieved in a CO/H[sub 2]O environment at our anticipated process conditions. The design of the bench unit has been completed. In contrast to the originally planned modifications, the bench unit is now designed based on a computerized control and data acquisition system. All major items of equipment have been received, and prefabrication of assemblies and control panels is proceeding on schedule. Despite a slight delay in the erection of the structural steel, it is anticipated that the bench unit will be operational at the beginning of April 1993.

  3. Supercritical-Multiple-Solvent Extraction From Coal

    NASA Technical Reports Server (NTRS)

    Corcoran, W.; Fong, W.; Pichaichanarong, P.; Chan, P.; Lawson, D.

    1983-01-01

    Large and small molecules dissolve different constituents. Experimental apparatus used to test supercritical extraction of hydrogen rich compounds from coal in various organic solvents. In decreasing order of importance, relevant process parameters were found to be temperature, solvent type, pressure, and residence time.

  4. Prospects for advanced coal-fuelled fuel cell power plants

    NASA Astrophysics Data System (ADS)

    Jansen, D.; Vanderlaag, P. C.; Oudhuis, A. B. J.; Ribberink, J. S.

    1994-04-01

    As part of ECN's in-house R&D programs on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO2 emissions, and to find possible ways for CO2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fueled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fueled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency.

  5. Magnetic relaxation--coal swelling, extraction, pore size

    SciTech Connect

    Doetschman, D.C.

    1991-01-01

    The grant activities during this period fall into four categories: (1) Completion of preparatory work, (2) Procedure refinement and actual preparation of whole coal, coal residue, coal extract and swelled coal samples for NMR studies, (3) Related studies of coal photolysis that employ materials from preliminary extractions and that examine the u.v.-visible and mass spectra of the extracts and (4) Continued investigations of the pulsed EPR characteristics of the whole coal samples that were prepared in the first quarter of the grant.

  6. Advanced clean coal utilization technologies

    SciTech Connect

    Moritomi, Hiroshi

    1993-12-31

    The most important greenhouse gas is CO{sub 2} from coal utilization. Ways of mitigating CO{sub 2} emissions include the use of alternative fuels, using renewable resources and increasing the efficiency of power generation and end use. Adding to such greenhouse gas mitigation technologies, post combustion control by removing CO{sub 2} from power station flue gases and then storing or disposing it will be available. Although the post combustion control have to be evaluated in a systematic manner relating them to whether they are presently available technology, to be available in the near future or long term prospects requiring considerable development, it is considered to be a less promising option owing to the high cost and energy penalty. By contrast, abatement technologies aimed at improving conversion efficiency or reducing energy consumption will reduce emissions while having their own commercial justification.

  7. 30 CFR 750.21 - Coal extraction incidental to the extraction of other minerals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal extraction incidental to the extraction of... ENFORCEMENT, DEPARTMENT OF THE INTERIOR INDIAN LANDS PROGRAM REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.21 Coal extraction incidental to the extraction of other...

  8. 30 CFR 750.21 - Coal extraction incidental to the extraction of other minerals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal extraction incidental to the extraction of... ENFORCEMENT, DEPARTMENT OF THE INTERIOR INDIAN LANDS PROGRAM REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.21 Coal extraction incidental to the extraction of other...

  9. 30 CFR 750.21 - Coal extraction incidental to the extraction of other minerals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal extraction incidental to the extraction of... ENFORCEMENT, DEPARTMENT OF THE INTERIOR INDIAN LANDS PROGRAM REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.21 Coal extraction incidental to the extraction of other...

  10. 30 CFR 750.21 - Coal extraction incidental to the extraction of other minerals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal extraction incidental to the extraction of... ENFORCEMENT, DEPARTMENT OF THE INTERIOR INDIAN LANDS PROGRAM REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.21 Coal extraction incidental to the extraction of other...

  11. 30 CFR 750.21 - Coal extraction incidental to the extraction of other minerals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal extraction incidental to the extraction of... ENFORCEMENT, DEPARTMENT OF THE INTERIOR INDIAN LANDS PROGRAM REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON INDIAN LANDS § 750.21 Coal extraction incidental to the extraction of other...

  12. Advanced systems for producing superclean coal

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T.

    1990-08-01

    The purpose of this project was to develop several advanced separation processes for producing superclean coal containing 0.4--2.0% ash and very little pyritic sulfur. Three physical and physico-chemical processes were studied: microbubble flotation, selective hydrophobic coagulation, and electrochemical coal cleaning. Information has been collected from bench-scale experiments in order to determine the basic mechanisms of all three processes. Additionally, because microbubble flotation has already been proven on a bench scale, preliminary scale-up models have been developed for this process. A fundamental study of the electrochemistry of coal pyrite has also been conducted in conjunction with this scale-up effort in order to provide information useful for improving sulfur rejection. The effects of additives (NaCl and kerosene) were also investigated. 94 refs., 167 figs., 25 tabs.

  13. Assessment of advanced coal gasification processes

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-01-01

    A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.

  14. Process to upgrade coal liquids by extraction prior to hydrodenitrogenation

    DOEpatents

    Schneider, Abraham; Hollstein, Elmer J.; Janoski, Edward J.; Scheibel, Edward G.

    1982-01-01

    Oxygen compounds are removed, e.g., by extraction, from a coal liquid prior to its hydrogenation. As a result, compared to hydrogenation of such a non-treated coal liquid, the rate of nitrogen removal is increased.

  15. Advanced Coal Wind Hybrid: Economic Analysis

    SciTech Connect

    Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter; Yih-Huei, Wan

    2008-11-28

    Growing concern over climate change is prompting new thinking about the technologies used to generate electricity. In the future, it is possible that new government policies on greenhouse gas emissions may favor electric generation technology options that release zero or low levels of carbon emissions. The Western U.S. has abundant wind and coal resources. In a world with carbon constraints, the future of coal for new electrical generation is likely to depend on the development and successful application of new clean coal technologies with near zero carbon emissions. This scoping study explores the economic and technical feasibility of combining wind farms with advanced coal generation facilities and operating them as a single generation complex in the Western US. The key questions examined are whether an advanced coal-wind hybrid (ACWH) facility provides sufficient advantages through improvements to the utilization of transmission lines and the capability to firm up variable wind generation for delivery to load centers to compete effectively with other supply-side alternatives in terms of project economics and emissions footprint. The study was conducted by an Analysis Team that consists of staff from the Lawrence Berkeley National Laboratory (LBNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), and Western Interstate Energy Board (WIEB). We conducted a screening level analysis of the economic competitiveness and technical feasibility of ACWH generation options located in Wyoming that would supply electricity to load centers in California, Arizona or Nevada. Figure ES-1 is a simple stylized representation of the configuration of the ACWH options. The ACWH consists of a 3,000 MW coal gasification combined cycle power plant equipped with carbon capture and sequestration (G+CC+CCS plant), a fuel production or syngas storage facility, and a 1,500 MW wind plant. The ACWH project is connected to load centers by a 3,000 MW

  16. Magnetic relaxation: Coal swelling, extraction, pore size

    SciTech Connect

    Doetschman, D.C.

    1992-11-06

    The goals for year I of the grant were to extract the Argonne Coals, to swell them, to reswell their residues, to seal the various samples for measurements, to perform analyses of the samples and to measure their NMR decays. Because of an unexpected characteristic of the extraction process, more detailed analyses of the samples are being done than originally anticipated. The mass spectrometric analyses have not been completed. Because routine NMR analyses needed to be done in greater detail than anticipated, the NMR decay measurements have also been delayed. In order to offset these delays, all of the EPR samples, which were to have been examined in year III, have been prepared and a substantial proportion of the pulsed EPR measurements have been made.

  17. Coal and Coal Constituent Studies by Advanced EMR Techniques

    SciTech Connect

    Alex I. Smirnov; Mark J. Nilges; R. Linn Belford; Robert B. Clarkson

    1998-03-31

    Advanced electronic magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. We have achieved substantial progress on upgrading the high field (HF) EMR (W-band, 95 GHz) spectrometers that are especially advantageous for such studies. Particularly, we have built a new second W-band instrument (Mark II) in addition to our Mark I. Briefly, Mark II features: (i) an Oxford custom-built 7 T superconducting magnet which is scannable from 0 to 7 T at up to 0.5 T/min; (ii) water-cooled coaxial solenoid with up to ±550 G scan under digital (15 bits resolution) computer control; (iii) custom-engineered precision feed-back circuit, which is used to drive this solenoid, is based on an Ultrastab 860R sensor that has linearity better than 5 ppm and resolution of 0.05 ppm; (iv) an Oxford CF 1200 cryostat for variable temperature studies from 1.8 to 340 K. During this grant period we have completed several key upgrades of both Mark I and II, particularly microwave bridge, W-band probehead, and computer interfaces. We utilize these improved instruments for HF EMR studies of spin-spin interaction and existence of different paramagnetic species in carbonaceous solids.

  18. Magnetic relaxation - coal swelling, extraction, pore size. Final technical report

    SciTech Connect

    Doetschman, D.C.

    1994-10-26

    The aim of the contract was to employ electron and nuclear magnetic relaxation techniques to investigate solvent swelling of coals, solvent extraction of coals and molecular interaction with solvent coal pores. Many of these investigations have appeared in four major publications and a conference proceedings. Another manuscript has been submitted for publication. The set of Argonne Premium Coals was chosen as extensively characterized and representative samples for this project.

  19. Advanced Coal Conversion Process Demonstration Project

    SciTech Connect

    Not Available

    1992-04-01

    Western Energy Company (WECO) was selected by the Department of Energy (DOE) to demonstrate the Advanced Coal Conversion Process (ACCP) which upgrades low rank coals into high Btu, low sulfur, synthetic bituminous coal. As specified in the Corporate Agreement, RSCP is required to develop an Environmental Monitoring Plan (EMP) which describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) identify monitoring activities that will be undertaken to show compliance to applicable regulations, (2) confirm the specific environmental impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base of the assessment of the environmental performance of the technology demonstrated by the project. The EMP specifies the streams to be monitored (e.g. gaseous, aqueous, and solid waste), the parameters to be measured (e.g. temperature, pressure, flow rate), and the species to be analyzed (e.g. sulfur compounds, nitrogen compounds, trace elements) as well as human health and safety exposure levels. The operation and frequency of the monitoring activities is specified, as well as the timing for the monitoring activities related to project phase (e.g. preconstruction, construction, commissioning, operational, post-operational). The EMP is designed to assess the environmental impacts and the environmental improvements resulting from construction and operation of the project.

  20. Advanced integrated solvent extraction systems

    SciTech Connect

    Horwitz, E.P.; Dietz, M.L.; Leonard, R.A.

    1997-10-01

    Advanced integrated solvent extraction systems are a series of novel solvent extraction (SX) processes that will remove and recover all of the major radioisotopes from acidic-dissolved sludge or other acidic high-level wastes. The major focus of this effort during the last 2 years has been the development of a combined cesium-strontium extraction/recovery process, the Combined CSEX-SREX Process. The Combined CSEX-SREX Process relies on a mixture of a strontium-selective macrocyclic polyether and a novel cesium-selective extractant based on dibenzo 18-crown-6. The process offers several potential advantages over possible alternatives in a chemical processing scheme for high-level waste treatment. First, if the process is applied as the first step in chemical pretreatment, the radiation level for all subsequent processing steps (e.g., transuranic extraction/recovery, or TRUEX) will be significantly reduced. Thus, less costly shielding would be required. The second advantage of the Combined CSEX-SREX Process is that the recovered Cs-Sr fraction is non-transuranic, and therefore will decay to low-level waste after only a few hundred years. Finally, combining individual processes into a single process will reduce the amount of equipment required to pretreat the waste and therefore reduce the size and cost of the waste processing facility. In an ongoing collaboration with Lockheed Martin Idaho Technology Company (LMITCO), the authors have successfully tested various segments of the Advanced Integrated Solvent Extraction Systems. Eichrom Industries, Inc. (Darien, IL) synthesizes and markets the Sr extractant and can supply the Cs extractant on a limited basis. Plans are under way to perform a test of the Combined CSEX-SREX Process with real waste at LMITCO in the near future.

  1. 30 CFR 921.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 921.702 Section 921.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... other minerals. Part 702 of the chapter, Exemption for Coal Extraction Incidental to the Extraction...

  2. 30 CFR 905.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 905.702 Section 905.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... other minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction...

  3. 30 CFR 933.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 933.702 Section 933.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... other minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction...

  4. 30 CFR 947.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 947.702 Section 947.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... other minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction...

  5. 30 CFR 937.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 937.702 Section 937.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of...

  6. 30 CFR 941.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 941.702 Section 941.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... other minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction...

  7. 30 CFR 912.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 912.702 Section 912.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of...

  8. 30 CFR 910.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 910.702 Section 910.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of...

  9. 30 CFR 942.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 942.702 Section 942.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of...

  10. 30 CFR 939.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 939.702 Section 939.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... other minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction...

  11. 30 CFR 903.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 903.702 Section 903.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of...

  12. 30 CFR 922.702 - Exemption for coal extraction incidental to the extraction of other minerals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Exemption for coal extraction incidental to the extraction of other minerals. 922.702 Section 922.702 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION... minerals. Part 702 of this chapter, Exemption for Coal Extraction Incidental to the Extraction of...

  13. Advanced bioreactor concepts for coal processing

    SciTech Connect

    Scott, C.D.

    1988-01-01

    The development of advanced bioreactor systems for the processing of coal should follow some basic principles. Continuous operation is preferred, with maximum bioreagent concentrations and enhanced mass transfer. Although conventional stirred-tank bioreactors will be more appropriate for some processing concepts, columnar reactors with retained bioreagents could be the system of choice for most of the applications. Serious consideration must now be given to process development of some biological coal processing concepts. Process biology and biochemistry will continue to be very important, but efficient bioreactor systems will be necessary for economic feasibility. Conventional bioreactor concepts will be useful for some applications, but columnar systems represent an innovative approach to the design of continuous bioreactors with high productivity and good operational control. Fluidized and packed beds are the most promising configurations, especially where three-phase operation is required and where interphase mass transport is a likely controlling mechanism. Although the biocatalyst must be immobilized into or onto particles to be retained in the bioreactors, this also results in a very high biocatalyst concentration without washout and a significant enhancement in bioconversion rates. The multistage nature of these types of bioreactors also contributes to higher efficiencies for many types of biocatalytic processes. 25 refs.

  14. Advanced Coal-Fueled Gas Turbine Program

    SciTech Connect

    Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

    1989-02-01

    The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

  15. Advanced Coal Conversion Process Demonstration: A DOE Assessment

    SciTech Connect

    National Energy Technology Laboratory

    2005-04-01

    The objective of this project was to demonstrate a process for upgrading subbituminous coal by reducing its moisture and sulfur content and increasing its heating value using the Advanced Coal Conversion Process (ACCP) unit. The ACCP unit, with a capacity of 68.3 tons of feed coal per hour (two trains of 34 tons/hr each), was located next to a unit train loading facility at WECo's Rosebud Coal Mine near Colstrip, Montana. Most of the coal processed was Rosebud Mine coal, but several other coals were also tested. The SynCoal® produced was tested both at utilities and at several industrial sites. The demonstration unit was designed to handle about one tenth of the projected throughput of a commercial facility.

  16. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect

    1998-03-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. The main activity during this granting period was a detailed comparative analysis of the suite of spectral editing results obtained on the Argonne coals. We have extended our fitting procedure to include carbons of all types in the analysis.

  17. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S-H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Venkatadri, R.; Bi, H.; Campbell, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.

    1990-01-01

    Research continued on surface control of coal. This report describes Task 7 of the program. The following topics are discussed: quantitative distribution of iron species; surface functional groups; comparison of wet and dry ground samples; study of Illinois No. 6 coal wet ground using additives; study of wet grinding using tall oil; elemental distribution of coal samples wet ground without additives; elemental distribution of coal samples wet ground with tall oil; direct determination of pyrite by x-ray diffraction; electron microprobe measurements; morphology; zeta potential measurements; pyrite size distribution; statistical analysis of grinding study data; grinding using N-pentane; cyclohexane, and N-heptane; study of the effects of the grinding method and time; study of the effects of the agglomeration time; and the pentane to coal ratio. 13 refs.

  18. Advances in the shell coal gasification process

    SciTech Connect

    Doering, E.L.; Cremer, G.A.

    1995-12-31

    The Shell Coal Gasification Process (SCGP) is a dry-feed, oxygen-blown, entrained flow coal gasification process which has the capability to convert virtually any coal or petroleum coke into a clean medium Btu synthesis gas, or syngas, consisting predominantly of carbon monoxide and hydrogen. In SCGP, high pressure nitrogen or recycled syngas is used to pneumatically convey dried, pulverized coal to the gasifier. The coal enters the gasifier through diametrically opposed burners where it reacts with oxygen at temperatures in excess of 2500{degrees}F. The gasification temperature is maintained to ensure that the mineral matter in the coal is molten and will flow smoothly down the gasifier wall and out the slag tap. Gasification conditions are optimized, depending on coal properties, to achieve the highest coal to gas conversion efficiency, with minimum formation of undesirable byproducts.

  19. Extracting value from coal mine methane

    SciTech Connect

    Liebert, B.

    2009-06-15

    Emerging US policy to regulate greenhouse gas (GHG) emissions through a cap-and-trade program presents mine managers with a new opportunity to explore and develop methane utilization or abatement projects that generate value from the anodization of carbon offset credits. In addition, the rising focus on US energy security and domestic energy supply is promoting mine managers and engineers to give further consideration to the importance of their methane gas by-products. The market through which coal mine methane offset projects can be developed and carbon offset credits monetized is quickly maturing. While many methane utilization projects have previously been uneconomical, the carbon offset credit market provides a new set of financing tools for mine engineers to capitalize these projects today. Currently , there are two certification programs that have approved project protocols for CMM projects. The Voluntary Carbon Standard (VCS) offers a methodology approved under the Clean Development Mechanism, the international compliance based offset market under the Kyoto Protocol. The VCS protocol is applicable to projects that combust ventilation air methane (VAM) and methane extracted from pre-and post-mine drainage systems. The Chicago Climate Exchange (CCX), which operates a voluntary yet binding cap-and-trade market, also has an approved protocol for CMM projects. CCX's protocol can be applied to projects combusting VAM, and methane extracted from pre-and-post-mine drainage systems, as well as abandoned mines. The article describes two case studies - Developing a gob gas utilization project financed by carbon offset credits and First VAM oxidation system to be commissioned at an operating mine in the US. 1 tab., 4 photos.

  20. New coal tar extract and coal tar shampoos. Evaluation by epidermal cell DNA synthesis suppression assay.

    PubMed

    Lowe, N J; Breeding, J H; Wortzman, M S

    1982-07-01

    Coal tar therapy has been used for many years in the treatment of scaling skin diseases, including psoriasis and eczema. Previous studies of the potential effectiveness of tar have utilized phototoxic erythema assays with long-wave ultraviolet light (UV-A). However, in clinical use, coal tar is rarely used with UV-A, particularly for scalp disease. Therefore, we investigated a nonphototoxic approach to evaluate different coal tar products. Coal tar was found to suppress epidermal cell DNA synthesis in the hairless mouse model, and this is the basis for the assay presented. Using the epidermal cell DNA synthesis suppression assay, we observed that crude coal tar and a new extract of crude coal tar were equally effective and that a concentration gradient effect was achieved. In addition, four commercial coal tar shampoos assayed varied greatly in their ability to suppress epidermal cell DNA synthesis. One shampoo was washed after ten minutes and no significant alteration of suppressive effect was seen.

  1. Advanced Hydrogen Transport Membrane for Coal Gasification

    SciTech Connect

    Schwartz, Joseph; Porter, Jason; Patki, Neil; Kelley, Madison; Stanislowski, Josh; Tolbert, Scott; Way, J. Douglas; Makuch, David

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  2. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    NASA Astrophysics Data System (ADS)

    Post, David

    2014-05-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States and potentially in Europe, extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus in Australia. The two sources of methane share many of the same characteristics, with hydraulic fracturing generally (but not always) required to extract coal seam gas also. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction and hydraulic fracturing on surface and groundwater resources may be potentially of more concern for coal seam gas than for shale gas. To determine the potential for coal seam gas extraction (and coal mining more generally) to impact on water resources and water-related assets in Australia, the Commonwealth Government has recently established an Independent Expert Scientific Committee (the IESC) to provide advice to Commonwealth and State Government regulators on potential water-related impacts of coal seam gas and large coal mining developments. The IESC has in turn implemented a program of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment can be defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion, with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are now being carried out across large portions of eastern Australia which are underlain by coal reserves. Further details of the program can be found at http://www.environment.gov.au/coal-seam-gas-mining/bioregional-assessments.html. This presentation will provide an overview of the issues related to the impacts of coal seam gas extraction on surface and groundwater resources and water-related assets in Australia. The

  3. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect

    1997-09-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. The main activity during this granting period was a completion of a detailed comparative analysis of the suite of spectral editing techniques developed in our laboratory for this purpose. The appended report is a manuscript being submitted to the Journal of Magnetic Resonance on this subject.

  4. Measurement and modeling of advanced coal conversion processes

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. Brigham Young Univ., Provo, UT )

    1991-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  5. Advanced coal technologies in Czech heat and power systems

    SciTech Connect

    Noskievic, P.; Ochodek, T.

    1998-04-01

    Coal is the only domestic source of fossil fuel in the Czech Republic. The coal reserves are substantial and their share in total energy use is about 60%. Presently necessary steps in making coal utilisation more friendly towards the environment have been taken and fairly well established, and an interest to develop and build advanced coal units has been observed. One IGCC system has been put into operation, and circa 10 AFBC units are in operation or under construction. Preparatory steps have been taken in building an advanced combustion unit fuelled by pulverised coal and retrofit action is taking place in many heating plants. An actual experience has shown two basic problems: (1) Different characteristic of domestic lignite, especially high content of ash, cause problems applying well-tried foreign technologies and apparently a more focused attention shall have to be paid to the quality of coal combusted. (2) Low prices of lignite (regarding energy, lignite is four times cheaper then coal) do not oblige to increase efficiency of the standing equipment applying advanced technologies. It will be of high interest to observe the effect of the effort of the European Union to establish a kind of carbon tax. It could dramatically change the existing scene in clean coal power generation by the logical pressure to increase the efficiency of energy transformation. In like manner the gradual liberalisation of energy prices might have similar consequences and it is a warranted expectation that, up to now not the best, energy balance will improve in near future.

  6. Carbon cycle in advanced coal chemical engineering.

    PubMed

    Yi, Qun; Li, Wenying; Feng, Jie; Xie, Kechang

    2015-08-01

    This review summarizes how the carbon cycle occurs and how to reduce CO2 emissions in highly efficient carbon utilization from the most abundant carbon source, coal. Nowadays, more and more attention has been paid to CO2 emissions and its myriad of sources. Much research has been undertaken on fossil energy and renewable energy and current existing problems, challenges and opportunities in controlling and reducing CO2 emission with technologies of CO2 capture, utilization, and storage. The coal chemical industry is a crucial area in the (CO2 value chain) Carbon Cycle. The realization of clean and effective conversion of coal resources, improving the utilization and efficiency of resources, whilst reducing CO2 emissions is a key area for further development and investigation by the coal chemical industry. Under a weak carbon mitigation policy, the value and price of products from coal conversion are suggested in the carbon cycle.

  7. Quality of economically extractable coal beds in the Gillette coal field as compared with other Tertiary coal beds in the Powder River basin, Wyoming and Montana

    USGS Publications Warehouse

    Ellis, Margaret S.

    2002-01-01

    The Powder River Basin, and specifically the Gillette coal field, contains large quantities of economically extractable coal resources. These coal resources have low total sulfur content and ash yield, and most of the resources are subbituminous in rank. A recent U.S Geological Survey study of economically extractable coal in the Gillette coal field focused on five coal beds, the Wyodak rider, Upper Wyodak, Canyon, Lower Wyodak-Werner, and Gates/Kennedy. This report compares the coal quality of these economically extractable coal beds to coal in the Wyodak-Anderson coal zone in the Powder River Basin and in the Gillette coal field (Flores and others, 1999) and other produced coal in the Gillette coal field (Glass, 2000). The Upper Wyodak, Canyon, and Lower Wyodak/Werner beds are within the Wyodak-Anderson coal zone. Compared with all coal in the Wyodak-Anderson coal zone, both throughout the Powder River Basin and just within the Gillette coal field; the thick, persistent Upper Wyodak coal bed in the Gillette coal field has higher mean gross calorific value (8,569 Btu/lb), lower mean ash yield (5.8 percent), and lower mean total sulfur content (0.46 percent).

  8. Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992

    SciTech Connect

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F.; Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C.; Hu, W.; Zou, Y.; Chen, W.; Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R.

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  9. Materials of construction for advanced coal conversion systems

    SciTech Connect

    Nangia, V.K.

    1982-01-01

    This book describes materials of construction, and materials problems for equipment used in advanced coal conversion systems. The need for cost effective industrial operation is always a prime concern, particularly in this age of energy consciousness. Industry is continually seeking improved materials for more efficient systems. The information presented here is intended to be of use in the design and planning of these systems. Coal conversion and utilization impose severe demands on construction materials because of high temperature, high pressure, corrosive/erosive, and other hostile environmental factors. Successful economic development of these processes can be achieved only to the extent that working materials can withstand increasingly more aggressive operating conditions. The book, which reviews present and past work on the behavior of materials in the environments of advanced coal conversion systems, is divided into three parts: atmospheric fluidized bed combustion, coal gasification and liquefaction, and advanced power systems.

  10. Advanced coal liquefaction research: Final report

    SciTech Connect

    Gall, W.; McIlvried, H.G. III

    1988-07-01

    This study had two objectives: (1) To enhance the fundamental understanding of observed differences in the short contact time, donor solvent liquefaction of bituminous and subbituminous coals. (2) To determine if physical refining of subbituminous coals could be used to give a better feedstock for the first stage of two-stage liquefaction processes. Liquefaction studies using microautoclaves were carried out. Results are discussed. 11 refs., 25 figs., 29 tabs.

  11. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  12. Optimizing conditions for ultrasound extraction of fullerenes from coal matrices

    SciTech Connect

    Vitek, P.; Jehlicka, J.; Frank, O.; Hamplova, V.; Pokorna, Z.; Juha, L.; Bohacek, Z.

    2009-07-01

    Conditions for ultrasound toluene extraction of synthetic C60 added to powdered bituminous coal were tested. High-performance liquid chromatography (HPLC) was used to determine the fullerene content in the obtained extracts. The results indicated a possible negative effect of sample demineralization (HCl/HF) and N{sub 2} purging on the extraction yield of C60. On the contrary, a 30% yield increase was registered when the coal was pre-extracted with pentane or pentane/toluene. The best conditions for C60 recovery in the investigated mixtures are 30min of sonication at 280-285K. The effects of sample filtration, sequential extraction, ultrasound bath power and treatments of C60 solution alone are also discussed.

  13. Development of an Advanced Fine Coal Suspension Dewatering Process

    SciTech Connect

    B. K. Parekh; D. P. Patil

    2008-04-30

    With the advancement in fine coal cleaning technology, recovery of fine coal (minus 28 mesh) has become an attractive route for the U.S. coal industry. The clean coal recovered using the advanced flotation technology i.e. column flotation, contains on average 20% solids and 80% water, with an average particle size of 35 microns. Fine coal slurry is usually dewatered using a vacuum dewatering technique, providing a material with about 25 to 30 percent moisture. The process developed in this project will improve dewatering of fine (0.6mm) coal slurry to less than 20 percent moisture. Thus, thermal drying of dewatered wet coal will be eliminated. This will provide significant energy savings for the coal industry along with some environmental benefits. A 1% increase in recovery of coal and producing a filter cake material of less than 20 % moisture will amount to energy savings of 1900 trillion Btu/yr/unit. In terms of the amount of coal it will be about 0.8% of the total coal being used in the USA for electric power generation. It is difficult to dewater the fine clean coal slurry to about 20% moisture level using the conventional dewatering techniques. The finer the particle, the larger the surface area and thus, it retains large amounts of moisture on the surface. The coal industry has shown some reluctance in using the advanced coal recovery techniques, because of unavailability of an economical dewatering technique which can provide a product containing less than 20% moisture. The U.S.DOE and Industry has identified the dewatering of coal fines as a high priority problem. The goal of the proposed program is to develop and evaluate a novel two stage dewatering process developed at the University of Kentucky, which involves utilization of two forces, namely, vacuum and pressure for dewatering of fine coal slurries. It has been observed that a fine coal filter cake formed under vacuum has a porous structure with water trapped in the capillaries. When this porous cake

  14. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL

    SciTech Connect

    K. Osseo-Asare; X. Zeng

    2001-06-30

    Ever-stringent environmental constraints dictate that future coal cleaning technologies be compatible with micron-size particles. This research program seeks to develop an advanced coal cleaning technology uniquely suited to micron-size particles, i.e., aqueous biphase extraction. The partitioning behaviors of hematite in the dextran (Dex)/Triton X-100 (TX100) and polyethylene glycol (PEG)/dextran systems were investigated and the effects of some ionic surfactants on solid partition were studied. In both biphase systems, the particles stayed in the bottom dextran-rich phase under all pH conditions. This behavior is attributable to the fact that the hydrophilic oxide particles prefer the more hydrophilic bottom phase. Also, the strong favorable interaction between dextran and ferric oxide facilitates the dispersion of the solids in the polysaccharide-rich phase. In the Dex/TX100 system, addition of sodium dodecylsulfate (SDS) or potassium oleate had no effect on the solid partition; on the other hand, addition of dodecyltrimethylammonium bromide (DTAB) transferred the particles to the top phase or interface at high pH values. In the PEG/Dex system, the preferred location of hematite remained the bottom phase in the presence of either SDS or DTAB. The effects of anionic surfactants on the partition behavior are attributable to the fact that they are not able to replace the strongly adsorbed polysaccharide layer on the ferric oxide surface. The results with the cationic surfactant are due to electrostatic interaction between the cationic surfactant and the charged surface of the solid particles. The difference in solids partitioning in the two systems is the result of the different distribution of DTAB in these systems. In the Dex/TX100 system, DTAB prefers the top surfactant-rich phase, while it concentrates in the bottom phase in the PEG/dextran system.

  15. PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

    SciTech Connect

    Dady Dadyburjor; Philip R. Biedler; Chong Chen; L. Mitchell Clendenin; Manoj Katakdaunde; Elliot B. Kennel; Nathan D. King; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2004-08-31

    This Department of Energy National Energy Technology Laboratory sponsored project developed carbon products, using mildly hydrogenated solvents to extract the organic portion of coal to create synthetic pitches, cokes, carbon foam and carbon fibers. The focus of this effort was on development of lower cost solvents, milder hydrogenation conditions and improved yield in order to enable practical production of these products. This technology is needed because of the long-term decline in production of domestic feedstocks such as petroleum pitch and coal tar pitch. Currently, carbon products represents a market of roughly 5 million tons domestically, and 19 million tons worldwide. Carbon products are mainly derived from feedstocks such as petroleum pitch and coal tar pitch. The domestic supply of petroleum pitch is declining because of the rising price of liquid fuels, which has caused US refineries to maximize liquid fuel production. As a consequence, the long term trend has a decline in production of petroleum pitch over the past 20 years. The production of coal tar pitch, as in the case of petroleum pitch, has likewise declined significantly over the past two decades. Coal tar pitch is a byproduct of metallurgical grade coke (metcoke) production. In this industry, modern metcoke facilities are recycling coal tar as fuel in order to enhance energy efficiency and minimize environmental emissions. Metcoke production itself is dependent upon the production requirements for domestic steel. Hence, several metcoke ovens have been decommissioned over the past two decades and have not been replaced. As a consequence sources of coal tar are being taken off line and are not being replaced. The long-term trend is a reduction in coal tar pitch production. Thus import of feedstocks, mainly from Eastern Europe and China, is on the rise despite the relatively large transportation cost. To reverse this trend, a new process for producing carbon products is needed. The process must be

  16. Advanced coal technologies in Czech heat and power systems

    SciTech Connect

    Noskievic, P. Ochodek, T.

    1998-07-01

    Coal is the only domestic source of fossil fuel in the Czech Republic. The coal reserves are substantial and their share in total energy use is about 60%. Presently, necessary steps in making coal utilization more friendly towards the environment have been taken and fairly well established, and an interest to develop and build advanced coal units has been observed. One IGCC system has been put into operation, and circa 10 AFBC units are in operation or under construction. preparatory steps have been taken in building an advanced combustion unit fueled by pulverized coal and retrofit action is taking place in many heating plants. An actual experience has shown two basic problems: (1) Different characteristic of domestic lignite, especially high content of ash, cause problems applying well-tried foreign technologies and apparently a more focused attention shall have to be paid to the quality of coal combusted. (2) Low prices of lignite (regarding energy, lignite is four times cheaper than coal) do not result in an increased efficiency of the standing equipment by applying advanced technologies. It will be of high interest to observe the effect of the effort of the European Union to establish a kind of carbon tax. It could dramatically change the existing scene in clean coal power generation by the logical pressure to increase the efficiency of energy transformation. In like manner the gradual liberalization of energy prices might have similar consequences and it is a warranted expectation that, up to now not the best, energy balance will improve in the near future.

  17. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  18. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  19. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    NASA Astrophysics Data System (ADS)

    Post, David

    2015-04-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States and Europe, in Australia extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However as coal seam gas deposits generally occur at shallower depths than shale gas the potential impacts of extraction and hydraulic fracturing on surface and groundwater resources may be of even greater concern for coal seam gas than for shale gas. In Australia an Independent Expert Scientific Committee (IESC) has been established to provide scientific advice to federal and state government regulators on the impact that coal seam gas and large coal mining developments may have on water resources. This advice is provided to enable decisions to be informed by the best available science about the potential water-related impacts associated with these developments. To support this advice the Australian Government Department of the Environment has implemented a three-year programme of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment is defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are currently being carried out across large portions of eastern Australia underlain by coal reserves. Further details of the program and results to date can be found at http://www.bioregionalassessments.gov.au. In this presentation the methodology for undertaking bioregional assessments will be described and the application of this methodology to six priority bioregions in eastern Australia

  20. Impacts of Coal Seam Gas (Coal Bed Methane) Extraction on Water Resources in Australia

    NASA Astrophysics Data System (ADS)

    Post, David

    2016-04-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States and Europe, in Australia extraction of methane from coal bed methane deposits (termed 'coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction on surface and groundwater resources may be of even greater concern. In Australia, an Independent Expert Scientific Committee (IESC) has been established to provide scientific advice to federal and state government regulators on the impact that coal seam gas and large coal mining developments may have on water resources. This advice is provided to enable decisions to be informed by the best available science about the potential water-related impacts associated with these developments. To support this advice, the Australian Government Department of the Environment has implemented a programme of research termed 'bioregional assessments' to investigate these potential impacts. A bioregional assessment is defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are currently being carried out across large portions of eastern Australia underlain by coal reserves. Further details of the programme and results to date can be found at http://www.bioregionalassessments.gov.au. Surface water and groundwater modelling is now complete for two regions where coal seam gas development may proceed, namely the Clarence-Moreton and Gloucester regions in eastern New South Wales. This presentation will discuss how the results of these

  1. RESEARCH ON CARBON PRODUCTS FROM COAL USING AN EXTRACTIVE PROCESS

    SciTech Connect

    Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo; Chong Chen; Brian Bland; David Fenton

    2002-03-31

    This report presents the results of a one-year effort directed at the exploration of the use of coal as a feedstock for a variety of industrially-relevant carbon products. The work was basically divided into three focus areas. The first area dealt with the acquisition of laboratory equipment to aid in the analysis and characterization of both the raw coal and the coal-derived feedstocks. Improvements were also made on the coal-extraction pilot plant which will now allow larger quantities of feedstock to be produced. Mass and energy balances were also performed on the pilot plant in an attempt to evaluate the scale-up potential of the process. The second focus area dealt with exploring hydrogenation conditions specifically aimed at testing several less-expensive candidate hydrogen-donor solvents. Through a process of filtration and vacuum distillation, viable pitch products were produced and evaluated. Moreover, a recycle solvent was also isolated so that the overall solvent balance in the system could be maintained. The effect of variables such as gas pressure and gas atmosphere were evaluated. The pitch product was analyzed and showed low ash content, reasonable yield, good coking value and a coke with anisotropic optical texture. A unique plot of coke yield vs. pitch softening point was discovered to be independent of reaction conditions or hydrogen-donor solvent. The third area of research centered on the investigation of alternate extraction solvents and processing conditions for the solvent extraction step. A wide variety of solvents, co-solvents and enhancement additives were tested with varying degrees of success. For the extraction of raw coal, the efficacy of the alternate solvents when compared to the benchmark solvent, N-methyl pyrrolidone, was not good. However when the same coal was partially hydrogenated prior to solvent extraction, all solvents showed excellent results even for extractions performed at room temperature. Standard analyses of the

  2. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect

    Not Available

    1992-01-01

    This report presents the results of Run 260 performed at the Advanced Coal Liquefaction R D Facility in Wilsonville. The run was started on July 17, 1990 and continued until November 14, 1990, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). Both thermal/catalytic and catalytic/thermal tests were performed to determine the methods for reducing solids buildup in a subbituminous coal operation, and to improve product yields. A new, smaller interstage separator was tested to reduce solids buildup by increasing the slurry space velocity in the separator. In order to obtain improved coal and resid conversions (compared to Run 258) full-volume thermal reactor and 3/4-volume catalytic reactor were used. Shell 324 catalyst, 1/16 in. cylindrical extrudate, at a replacement rate of 3 lb/ton of MF coal was used in the catalytic stage. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run. (TNPS was the sulfiding agent.)

  3. Performance and economics of advanced energy conversion systems for coal and coal-derived fuels

    NASA Technical Reports Server (NTRS)

    Corman, J. C.; Fox, G. R.

    1978-01-01

    The desire to establish an efficient Energy Conversion System to utilize the fossil fuel of the future - coal - has produced many candidate systems. A comparative technical/economic evaluation was performed on the seven most attractive advanced energy conversion systems. The evaluation maintains a cycle-to-cycle consistency in both performance and economic projections. The technical information base can be employed to make program decisions regarding the most attractive concept. A reference steam power plant was analyzed to the same detail and, under the same ground rules, was used as a comparison base. The power plants were all designed to utilize coal or coal-derived fuels and were targeted to meet an environmental standard. The systems evaluated were two advanced steam systems, a potassium topping cycle, a closed cycle helium system, two open cycle gas turbine combined cycles, and an open cycle MHD system.

  4. AQUEOUS BIPHASE EXTRACTION FOR PROCESSING OF FINE COAL

    SciTech Connect

    K. Osseo-Asare; X. Zeng

    2001-06-30

    Ever-stringent environmental constraints dictate that future coal cleaning technologies be compatible with micron-size particles. This research program seeks to develop an advanced coal cleaning technology uniquely suited to micron-size particles, i.e., aqueous biphase extraction. The partitioning behaviors of silica in the polyethylene glycol (PEG)/dextran (Dex) and dextran/Triton X-100 (TX100) systems have been investigated, and the effects of sodium dodecylsulfate (SDS) and dodecyltrimethylammonium bromide (DTAB) on solid partition have been studied. In both biphase systems, silica particles stayed in the top PEG-rich phase at low pH. With increase in pH, the particles moved from the top phase to the interface, then to the bottom phase. At very high pH, the solids preferred the top phase again. These trends are attributable to variations in the polymer/solid and nonionic surfactant/solid interactions. Addition of ionic surfactants into these two systems introduces a weakly charged environment, since ionic surfactants concentrate into one phase, either the top phase or the bottom phase. Therefore, coulombic forces also play a key role in the partition of silica particles because electrostatic attractive or repulsive forces are produced between the solid surface and the ionic-surfactant-concentrated phase. For the PEG/dextran system in the presence of SDS, SiO{sub 2} preferred the bottom dextran-rich phase above its pH{sub PZC}. However, addition of DTAB moved the oxide particles from the top phase to the interface, and then to the bottom phase, with increase in pH. These different behaviors are attributable to the fact that SDS and DTAB concentrated into the opposite phase of the PEG/dextran system. On the other hand, in the dextran/Triton X-100 system, both ionic surfactants concentrated in the top surfactant-rich phase and formed mixed micelles with TX100. Therefore, addition of the anionic surfactant, SDS, moved the silica particles from top phase to the

  5. Economic aspects of advanced coal-fired gas turbine locomotives

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Bonzo, B. B.; Houser, B. C.

    1983-01-01

    Increases in the price of such conventional fuels as Diesel No. 2, as well as advancements in turbine technology, have prompted the present economic assessment of coal-fired gas turbine locomotive engines. A regenerative open cycle internal combustion gas turbine engine may be used, given the development of ceramic hot section components. Otherwise, an external combustion gas turbine engine appears attractive, since although its thermal efficiency is lower than that of a Diesel engine, its fuel is far less expensive. Attention is given to such a powerplant which will use a fluidized bed coal combustor. A life cycle cost analysis yields figures that are approximately half those typical of present locomotive engines.

  6. COAL AND CHAR STUDIES BY ADVANCED EMR TECHNIQUES

    SciTech Connect

    R. Linn Belford; Robert B. Clarkson; Mark J. Nilges; Boris M. Odintsov; Alex I. Smirnov

    2001-04-30

    Advanced electronic magnetic resonance (EMR) as well as nuclear magnetic resonance (NMR) methods have been used to examine properties of coals, chars, and molecular species related to constituents of coal. During the span of this grant, progress was made on construction and applications to coals and chars of two high frequency EMR systems particularly appropriate for such studies--48 GHz and 95 GHz electron magnetic resonance spectrometer, on new low-frequency dynamic nuclear polarization (DNP) experiments to examine the interaction between water and the surfaces of suspended char particulates in slurries, and on a variety of proton nuclear magnetic resonance (NMR) techniques to measure characteristics of the water directly in contact with the surfaces and pore spaces of carbonaceous particulates.

  7. Need of advanced technologies for coal ash utilization programs

    SciTech Connect

    Dube, S.K.

    1997-09-01

    National Thermal Power Corporation Ltd. (NTPC) alone produces year about 17 million tonnes of coal ash every year, out of 13 coal based stations having about 12,000 MW coal based installed capacity. The coal ash utilization program in NTPC has explored the uses of ash in the areas of raising of ash dykes, structural fills, development of low lying lands, construction of road, building materials, small brick plants, PPC, etc. In taking the studies further the Center for Power Efficiency and Environmental Protection (Cenpeep) of NTPC is evaluating the scope of employing the advanced technologies in coal ash utilization to maximize its consumption and with improved productivity. To start with it is being suggested to develop the ash ponds using more economical compacting techniques to increase the life of current ash pond. The other areas include the development of suitable grout for back filling of mine without sacrificing the productivity of mine, use of fly ash and bottom ash in the road base construction work, manufacture of clay-ash and lime ash bricks using high speed brick plants and manufacture of light weight aggregates near the consumption center. There are many other areas also where ash can find its application in large volumes.

  8. Advanced hot gas cleaning system for coal gasification processes

    NASA Astrophysics Data System (ADS)

    Newby, R. A.; Bannister, R. L.

    1994-04-01

    The United States electric industry is entering a period where growth and the aging of existing plants will mandate a decision on whether to repower, add capacity, or do both. The power generation cycle of choice, today, is the combined cycle that utilizes the Brayton and Rankine cycles. The combustion turbine in a combined cycle can be used in a repowering mode or in a greenfield plant installation. Today's fuel of choice for new combined cycle power generation is natural gas. However, due to a 300-year supply of coal within the United States, the fuel of the future will include coal. Westinghouse has supported the development of coal-fueled gas turbine technology over the past thirty years. Working with the U.S. Department of Energy and other organizations, Westinghouse is actively pursuing the development and commercialization of several coal-fueled processes. To protect the combustion turbine and environment from emissions generated during coal conversion (gasification/combustion) a gas cleanup system must be used. This paper reports on the status of fuel gas cleaning technology and describes the Westinghouse approach to developing an advanced hot gas cleaning system that contains component systems that remove particulate, sulfur, and alkali vapors. The basic process uses ceramic barrier filters for multiple cleaning functions.

  9. A procedure for the supercritical fluid extraction of coal samples, with subsequent analysis of extracted hydrocarbons

    SciTech Connect

    Jonathan J. Kolak

    2006-07-01

    This report provides a detailed, step-by-step procedure for conducting extractions with supercritical carbon dioxide (CO{sub 2}) using the ISCO SFX220 supercritical fluid extraction system. Protocols for the subsequent separation and analysis of extracted hydrocarbons are also included in this report. These procedures were developed under the auspices of the project 'Assessment of geologic reservoirs for carbon dioxide sequestration', to investigate possible environmental ramifications associated with CO{sub 2} storage (sequestration) in geologic reservoirs, such as deep coal beds. Supercritical CO{sub 2} has been used previously to extract contaminants from geologic matrices. Pressure-temperature conditions within deep coal beds may render CO{sub 2} supercritical. In this context, the ability of supercritical CO{sub 2} to extract contaminants from geologic materials may serve to mobilize noxious compounds from coal, possibly complicating storage efforts. There currently exists little information on the physicochemical interactions between supercritical CO{sub 2} and coal in this setting. The procedures described were developed to improve the understanding of these interactions and provide insight into the fate of CO{sub 2} and contaminants during simulated CO{sub 2} injections. 4 figs., 3 tabs., 1 app.

  10. A Procedure for the supercritical fluid extraction of coal samples, with subsequent analysis of extracted hydrocarbons

    USGS Publications Warehouse

    Kolak, Jonathan J.

    2006-01-01

    Introduction: This report provides a detailed, step-by-step procedure for conducting extractions with supercritical carbon dioxide (CO2) using the ISCO SFX220 supercritical fluid extraction system. Protocols for the subsequent separation and analysis of extracted hydrocarbons are also included in this report. These procedures were developed under the auspices of the project 'Assessment of Geologic Reservoirs for Carbon Dioxide Sequestration' (see http://pubs.usgs.gov/fs/fs026-03/fs026-03.pdf) to investigate possible environmental ramifications associated with CO2 storage (sequestration) in geologic reservoirs, such as deep (~1 km below land surface) coal beds. Supercritical CO2 has been used previously to extract contaminants from geologic matrices. Pressure-temperature conditions within deep coal beds may render CO2 supercritical. In this context, the ability of supercritical CO2 to extract contaminants from geologic materials may serve to mobilize noxious compounds from coal, possibly complicating storage efforts. There currently exists little information on the physicochemical interactions between supercritical CO2 and coal in this setting. The procedures described herein were developed to improve the understanding of these interactions and provide insight into the fate of CO2 and contaminants during simulated CO2 injections.

  11. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    SciTech Connect

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  12. Advanced coal-fired glass melting development program

    SciTech Connect

    Not Available

    1991-05-01

    The objective of Phase 1 of the current contract was to verify the technical feasibility and economic benefits of Vortec's advanced combustion/melting technology using coal as the fuel of choice. The objective of the Phase 2 effort was to improve the performance of the primary components and demonstrate the effective operation of a subscale process heater system integrated with a glass separator/reservoir. (VC)

  13. Air extraction in gas turbines burning coal-derived gas

    SciTech Connect

    Yang, Tah-teh; Agrawal, A.K.; Kapat, J.S.

    1993-11-01

    In the first phase of this contracted research, a comprehensive investigation was performed. Principally, the effort was directed to identify the technical barriers which might exist in integrating the air-blown coal gasification process with a hot gas cleanup scheme and the state-of-the-art, US made, heavy-frame gas turbine. The guiding rule of the integration is to keep the compressor and the expander unchanged if possible. Because of the low-heat content of coal gas and of the need to accommodate air extraction, the combustor and perhaps, the flow region between the compressor exit and the expander inlet might need to be modified. In selecting a compressed air extraction scheme, one must consider how the scheme affects the air supply to the hot section of the turbine and the total pressure loss in the flow region. Air extraction must preserve effective cooling of the hot components, such as the transition pieces. It must also ensure proper air/fuel mixing in the combustor, hence the combustor exit pattern factor. The overall thermal efficiency of the power plant can be increased by minimizing the total pressure loss in the diffusers associated with the air extraction. Therefore, a study of airflow in the pre- and dump-diffusers with and without air extraction would provide information crucial to attaining high-thermal efficiency and to preventing hot spots. The research group at Clemson University suggested using a Griffith diffuser for the prediffuser and extracting air from the diffuser inlet. The present research establishes that the analytically identified problems in the impingement cooling flow are factual. This phase of the contracted research substantiates experimentally the advantage of using the Griffith diffuser with air extraction at the diffuser inlet.

  14. PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

    SciTech Connect

    Dady Dadyburjor; Chong Chen; Elliot B. Kennel; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-12-12

    High melting temperature synthetic pitches (Synpitches) were created using coal derivatives produced from a solvent extraction technique. Solvent extraction is used to separate hydrocarbons from mineral matter as well as other insolubles. Mild hydrogenation can be used to chemically modify resultant material to produce a true pitch. There are three main techniques which can be used to tailor the softening point of the Synpitch. First, the softening point can be controlled by varying the conditions of hydrogenation, chiefly the temperature, pressure and residence time in a hydrogen overpressure. Second, by selectively distilling light hydrocarbons, the softening point of the remaining pitch can be raised. Third, the Synpitch can be blended with another mutually soluble pitch or hydrocarbon liquid. Through such techniques, spinnable isotropic Synpitches have been created from coal feedstocks. Characteristics of Synpitches include high cross-linking reactivity and high molecular weight, resulting in carbon fibers with excellent mechanical properties. To date, mechanical properties have been achieved which are comparable to the state of the art achievable with conventional coal tar pitch or petroleum pitch.

  15. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect

    Not Available

    1992-09-01

    This report presents the results of Run 262 performed at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. The run started on July 10, 1991 and continued until September 30, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder Mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). A dispersed molybdenum catalyst was evaluated for its performance. The effect of the dispersed catalyst on eliminating solids buildup was also evaluated. Half volume reactors were used with supported Criterion 324 1/16'' catalyst in the second stage at a catalyst replacement rate of 3 lb/ton of MF coal. The hybrid dispersed plus supported catalyst system was tested for the effect of space velocity, second stage temperature, and molybdenum concentration. The supported catalyst was removed from the second stage for one test period to see the performance of slurry reactors. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run (dimethyl disulfide (DMDS) was used as the sulfiding agent). The close-coupled reactor unit was on-stream for 1271.2 hours for an on-stream factor of 89.8% and the ROSE-SR unit was on-feed for 1101.6 hours for an on-stream factor of 90.3% for the entire run.

  16. Measurement and modeling of advanced coal conversion processes

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1992-01-01

    The objectives of this proposed study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. This report describes progress during twenty second quarter of the program. Specifically, the paper discusses progress in three task areas: (1) Submodel development and evaluation: coal to char chemistry submodel; fundamental high-pressure reaction rate data; secondary reaction of pyrolysis product and burnout submodels; ash physics and chemistry submodel; large particle submodels; large char particle oxidation at high pressures; and SO[sub x]-NO[sub x] submodel development and evaluation; (2) Comprehensive model development and evaluation: integration of advanced submodels into entrained-flow code, with evaluation and documentation; comprehensive fixed-bed modeling review, development evaluation and implementation; and generalized fuels feedstock submodel; and (3) Application of integrated codes: application of generalized pulverized coal comprehensive code and application of fixed-bed code.

  17. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Smit, F.J.; Jha, M.C.; Phillips, D.I.; Yoon, R.H.

    1997-04-25

    The goal of this project is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Its scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design and construction of a 2 t/h process development unit (PDU). Large lots of clean coal are to be produced in the PDU from three project coals. Investigation of the near-term applicability of the two advanced fine coal cleaning processes in an existing coal preparation plant is another goal of the project and is the subject of this report.

  18. Induction of sister chromatid exchanges by coal dust and tobacco snuff extracts in human peripheral lymphocytes

    SciTech Connect

    Tucker, J.D.; Ong, T.

    1985-01-01

    The organic solvent extracts of sub-bituminous coal dust and tobacco snuff, both together and separately, were tested for the induction of sister chromatid exchanges (SCEs) in human peripheral lymphocytes. The results indicate that these extracts induced SCEs, and that when tested together synergistically induced SCEs in two of three donors. Studies with the organic solvent extracts of all five ranks of coal indicate that the extracts of bituminous, lignite, and peat, but not anthracite, induced SCEs. Similar experiments conducted with water extracts, induced SCEs, and that anthracite was equivocal. To determine whether individuals differed in their SCE responses to coal dust extracts, lymphocytes from five donors were tested with organic solvent extracts of bituminous and sub-bituminous coal. An analysis of variance indicates that the SCE response was significantly influenced by the donor and each of the two coal extracts. The findings presented here suggest that coal dust, with or without tobacco snuff, may play a role in the elevated incidence of gastric cancer in coal miners. Because water extracts of some ranks of coal induced SCEs, there exists the possibility of adverse environmental effects due to coal leachates.

  19. Performance of a high efficiency advanced coal combustor

    SciTech Connect

    Toqan, M.A.; Paloposki, T.; Yu, T.; Teare, J.D.; Beer, J.M. )

    1989-12-01

    Under contract from DOE-PETC, Combustion Engineering, Inc. undertook the lead-role in a multi-task R D program aimed at development of a new burner system for coal-based fuels; the goal was that this burner system should be capable of being retrofitted in oil- or gas-fired industrial boilers, or usable in new units. In the first phase of this program a high efficiency advanced coal combustor was designed jointly by CE and MIT. Its burner is of the multiannular design with a fixed shrouded swirler in the center immediately surrounding the atomizer gun to provide the primary act,'' and three further annuli for the supply of the secondary air.'' The degree of rotation (swirl) in the secondary air is variable. The split of the combustion air into primary and secondary air flows serves the purpose of flame stabilization and combustion staging, the latter to reduce NO{sub x} formation.

  20. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  1. Technology and development requirements for advanced coal conversion systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A compendium of coal conversion process descriptions is presented. The SRS and MC data bases were utilized to provide information paticularly in the areas of existing process designs and process evaluations. Additional information requirements were established and arrangements were made to visit process developers, pilot plants, and process development units to obtain information that was not otherwise available. Plant designs, process descriptions and operating conditions, and performance characteristics were analyzed and requirements for further development identified and evaluated to determine the impact of these requirements on the process commercialization potential from the standpoint of economics and technical feasibility. A preliminary methodology was established for the comparative technical and economic assessment of advanced processes.

  2. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect

    Not Available

    1992-09-01

    This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

  3. Advanced Coal Conversion Process Demonstration Project. Environmental Monitoring Plan

    SciTech Connect

    Not Available

    1992-04-01

    Western Energy Company (WECO) was selected by the Department of Energy (DOE) to demonstrate the Advanced Coal Conversion Process (ACCP) which upgrades low rank coals into high Btu, low sulfur, synthetic bituminous coal. As specified in the Corporate Agreement, RSCP is required to develop an Environmental Monitoring Plan (EMP) which describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) identify monitoring activities that will be undertaken to show compliance to applicable regulations, (2) confirm the specific environmental impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base of the assessment of the environmental performance of the technology demonstrated by the project. The EMP specifies the streams to be monitored (e.g. gaseous, aqueous, and solid waste), the parameters to be measured (e.g. temperature, pressure, flow rate), and the species to be analyzed (e.g. sulfur compounds, nitrogen compounds, trace elements) as well as human health and safety exposure levels. The operation and frequency of the monitoring activities is specified, as well as the timing for the monitoring activities related to project phase (e.g. preconstruction, construction, commissioning, operational, post-operational). The EMP is designed to assess the environmental impacts and the environmental improvements resulting from construction and operation of the project.

  4. Coal tar phototherapy for psoriasis reevaluated: erythemogenic versus suberythemogenic ultraviolet with a tar extract in oil and crude coal tar

    SciTech Connect

    Lowe, N.J.; Wortzman, M.S.; Breeding, J.; Koudsi, H.; Taylor, L.

    1983-06-01

    Recent studies have questioned the therapeutic value of coal tar versus ultraviolet (UV) radiation and their relative necessity in phototherapy for psoriasis. In this investigation, different aspects of tar phototherapy have been studied in single-blind bilateral paired comparison studies. The effects of 1% crude coal tar were compared with those of petrolatum in conjunction with erythemogenic and suberythemogenic doses of ultraviolet light (UVB) using a FS72 sunlamp tubed cabinet. Crude coal tar was clinically superior to petrolatum with suberythemogenic ultraviolet. With the erythemogenic UVB, petrolatum was equal in efficacy to crude coal tar. Suberythemogenic UVB was also used adjunctively to compare the effects of a 5% concentration of a tar extract in an oil base to 5% crude coal tar in petrolatum or the oil base without tar. The tar extract in oil plus suberythemogenic UVB produced significantly more rapid improvement than the oil base plus UVB. The direct bilateral comparison of equal concentrations of tar extract in oil base versus crude coal tar in petrolatum in a suberythemogenic UV photo regimen revealed no statistical differences between treatments. In a study comparing tar extract in oil and the oil base without ultraviolet radiation, the tar extract in oil side responded more rapidly.

  5. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Smit, F.J.; Jha, M.C.

    1993-01-18

    This project is a step in the Department of Energy's program to show that ultra-clean fuel can be produced from selected coals and that the fuel will be a cost-effective replacement for oil and natural gas now fueling boilers in this country. The replacement of premium fossil fuels with coal can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the ultra-clean coal. The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. A secondary objective is to develop the design base for near-term commercial integration of advanced fine coal cleaning technologies in new or existing coal preparation plants for economically and efficiently processing minus 28-mesh coal fines. A third objective is to determine the distribution of toxic trace elements between clean coal and refuse when applying the advance column flotation and selective agglomeration technologies. The project team consists of Amax Research Development Center (Amax R D), Amax Coal industries, Bechtel Corporation, Center for Applied Energy Research (CAER) at the University of Kentucky, and Arcanum Corporation.

  6. Technological and Social Impact Assessment of Resource Extraction: The Case of Coal

    ERIC Educational Resources Information Center

    Krebs, Girard

    1975-01-01

    This paper is a preliminary report of work in progress on the assessment of the social impact of coal extraction. The research is directed at examining the implications for the human community of the underground and surface mining methods of coal extraction. (BT)

  7. Advanced Coal Conversion Process Demonstration. Technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Not Available

    1994-03-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from April 1, 1993, through June 30, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  8. Advanced Coal Conversion Process Demonstration. Technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Not Available

    1994-03-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1993, through May 31, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  9. Advanced Coal Conversion Process Demonstration. Technical progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Not Available

    1994-03-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1993, through September 30, 1993. The ACCP Demonstration Project is a US DOE Clean Coal Technology Project. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques that are designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel registered as the SynCoal{reg_sign} process. The coal is processed through three stages of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  10. Markets for small-scale, advanced coal-combustion technologies

    SciTech Connect

    Placet, M.; Kenkeremath, L.D.; Streets, D.G.; Dials, G.E.; Kern, D.M.; Nehring, J.L.; Szpunar, C.B.

    1988-12-01

    This report examines the potential of using US-developed advanced coal technologies (ACTs) for small combustors in foreign markets; in particular, the market potentials of the member countries of the Organization of Economic Co-operation and Development (OECD) were determined. First, the United States and those OECD countries with very low energy demands were eliminated. The remaining 15 countries were characterized on the basis of eight factors that would influence their decision to use US ACTs: energy plan and situation, dependence on oil and gas imports, experience with coal, residential/commercial energy demand, industrial energy demand, trade relationship with the United States, level of domestic competition with US ACT manufacturers, and environmental pressure to use advanced technology. Each country was rated high, medium-high, low-medium, or low on each factor, based on statistical and other data. The ratings were then used to group the countries in terms of their relative market potential (good, good but with impediments, or limited). The best potential markets appear to be Spain, Italy, turkey, Greece, and Canada. 25 refs., 1 fig., 37 tabs.

  11. Development of clean coal and clean soil technologies using advanced agglomeration technologies

    SciTech Connect

    Ignasiak, B.; Pawlak, W.; Szymocha, K.; Marr, J.

    1990-04-01

    The specific objectives of the bituminous coal program were to explore and evaluate the application of advanced agglomeration technology for: (1)desulphurization of bituminous coals to sulphur content acceptable within the current EPA SO{sub 2} emission guidelines; (2) deashing of bituminous coals to ash content of less than 10 percent; and (3)increasing the calorific value of bituminous coals to above 13,000 Btu/lb. (VC)

  12. Extraction, separation and analysis of high sulfur coal

    SciTech Connect

    Olesik, S.V.

    1990-04-02

    In summary, significant bond cleavage was found only for thiophenol under the supercritical conditions studied. Less than 5% yield was found for the observed reaction products for all the other organosulfur compounds. The hydrogen sulfur bond in thiophenol is clearly the weakest of those studied and therefore it is the easiest to rupture. Also a general trend was observed the solvolysis reaction products such as ethylthiobenzene were the products initially formed at lower temperatures. But with higher temperatures the reaction product were those typically produced from the bimolecular association of free-radicals, such as phenylsulfide for the thiophenol sample. This type of reaction would be expected in pyrolysis reactions. Bimolecular reactions between organosulfur compounds would not be expected when the reaction is occurring at the surface of the solid coal matrix. The probability of the extracted organosulfur radicals having such bimolecular reactions is quite low. However, the reactions that are observed from the interaction of supercritical ethanol and the model coal compounds are not ones that show obvious indications of desulfurization of the compound.

  13. Advanced direct coal liquefaction concepts. Final report, Volume 2

    SciTech Connect

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    1994-07-01

    Integration of innovative steps into new advanced processes have the potential to reduce costs for producing liquid fuels. In this program, objective is to develop a new approach to liquefaction that generates an all distillate product slate at a reduced cost of about US$25/barrel of crude oil equivalent. A Counterflow Reactor was developed in cooperation with GfK mbH, Germany. Advantages are low hydrogen recycle rates and low feed preheating requirements. Coal/heavy oil slurry is injected into the top of the reactor while the recycle gas and make up hydrogen is introduced into the bottom; hydrogenation products are withdrawn from the top. PU study resulted in distillable oil yields up to 74 wt % on feed (dry ash free) from coprocessing feed slurries containing 40 wt % Vesta subbituminous coal and 60 wt % Cold Lake heavy vacuum tower bottoms. Technologies developed separately by CED and ARC were combined. A 1-kg/hr integrated continuous flow bench scale unit was constructed at the ARC site in Devon, Alberta, based on modifications to a unit at Nisku, Alberta (the modified unit was used in the preliminary economic evaluation).

  14. Advanced Coal-Fueled Gas Turbine Program. Final report

    SciTech Connect

    Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

    1989-02-01

    The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

  15. Advanced coal gasifier-fuel cell power plant systems design

    NASA Technical Reports Server (NTRS)

    Heller, M. E.

    1983-01-01

    Two advanced, high efficiency coal-fired power plants were designed, one utilizing a phosphoric acid fuel cell and one utilizing a molten carbonate fuel cell. Both incorporate a TRW Catalytic Hydrogen Process gasifier and regenerator. Both plants operate without an oxygen plant and without requiring water feed; they, instead, require makeup dolomite. Neither plant requires a shift converter; neither plant has heat exchangers operating above 1250 F. Both plants have attractive efficiencies and costs. While the molten carbonate version has a higher (52%) efficiency than the phosphoric acid version (48%), it also has a higher ($0.078/kWh versus $0.072/kWh) ten-year levelized cost of electricity. The phosphoric acid fuel cell power plant is probably feasible to build in the near term: questions about the TRW process need to be answered experimentally, such as weather it can operate on caking coals, and how effective the catalyzed carbon-dioxide acceptor will be at pilot scale, both in removing carbon dioxide and in removing sulfur from the gasifier.

  16. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-08-28

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction and operation of 2 t/hr process development unit (PDU). This report represents the findings of the PDU Advanced Column Flotation Testing and Evaluation phase of the program and includes a discussion of the design and construction of the PDU. Three compliance steam coals, Taggart, Indiana VII and Hiawatha, were processed in the PDU to determine performance and design parameters for commercial production of premium fuel by advanced flotation. Consistent, reliable performance of the PDU was demonstrated by 72-hr production runs on each of the test coals. Its capacity generally was limited by the dewatering capacity of the clean coal filters during the production runs rather than by the flotation capacity of the Microcel column. The residual concentrations of As, Pb, and Cl were reduced by at least 25% on a heating value basis from their concentrations in the test coals. The reduction in the concentrations of Be, Cd, Cr, Co, Mn, Hg, Ni and Se varied from coal to coal but the concentrations of most were greatly reduced from the concentrations in the ROM parent coals. The ash fusion temperatures of the Taggart and Indiana VII coals, and to a much lesser extent the Hiawatha coal, were decreased by the cleaning.

  17. Vanadium Extraction from Refractory Stone Coal Using Novel Composite Additive

    NASA Astrophysics Data System (ADS)

    Cai, Z. L.; Zhang, Y. M.; Liu, T.; Huang, J.

    2015-11-01

    Based on the novel composite additive BaCO3/CaO for the vanadium extraction from the refractory stone coal, the vanadium leaching effect has been investigated and many technical conditions have also been optimized. The results indicated that an optimum vanadium leaching efficiency of 81.07% can be obtained under the conditions that the mass ratio of BaCO3 to CaO was 1:9 with the total proportion of the raw ore was 5 wt.%, the roasting temperature was 850°C, the roasting time was 2 h, the sulfuric acid concentration was 15% (v/v), the leaching temperature was 95°C, the liquid-to-solid ratio was 4 mL/g, and the leaching time was 3 h. Meanwhile, the vanadium leaching mechanisms demonstrated that the composite additive BaCO3/CaO can destroy the lattice structure of muscovite and phlogopite with the production of BaSi4O9 and Ca2Al2SiO7 during the roasting process, which can therefore facilitate the release and extraction of vanadium.

  18. Characterization of coals, other kerogens, and their extracts by thermal mass spectrometry

    SciTech Connect

    Winans, R.E.; Melnikov, P.E.; McBeth, R.L.

    1992-01-01

    The objective of this study is to elucidate the nature of the medium size molecules derived from coals by a succession of stronger extraction conditions. The Argonne Premium Coals have been extracted with pyridine, binary solvents and with KOH/ethylene glycol at 250{degrees}C. Thermal desorption and pyrolysis mass spectrometry were the major approaches chosen to provide detailed information on structure and heteroatom composition. Soft ionization techniques including desorption chemical ionization (DCI) and fast atom bombardment (FAB) were combined with high resolution and tandem MS techniques. This paper will focus on the comparison of the nature of the unextracted coals, the pyridine extract and the extracted coal residue. With this approach the desorption-pyrolysis yields of the extracts and residues combined were greater than the yields from the starting material. Although molecule weight distributions had a monitor dependence on rank, the nature of molecules with the same nominal mass varied greatly with rank.

  19. Characterization of coals, other kerogens, and their extracts by thermal mass spectrometry

    SciTech Connect

    Winans, R.E.; Melnikov, P.E.; McBeth, R.L.

    1992-04-01

    The objective of this study is to elucidate the nature of the medium size molecules derived from coals by a succession of stronger extraction conditions. The Argonne Premium Coals have been extracted with pyridine, binary solvents and with KOH/ethylene glycol at 250{degrees}C. Thermal desorption and pyrolysis mass spectrometry were the major approaches chosen to provide detailed information on structure and heteroatom composition. Soft ionization techniques including desorption chemical ionization (DCI) and fast atom bombardment (FAB) were combined with high resolution and tandem MS techniques. This paper will focus on the comparison of the nature of the unextracted coals, the pyridine extract and the extracted coal residue. With this approach the desorption-pyrolysis yields of the extracts and residues combined were greater than the yields from the starting material. Although molecule weight distributions had a monitor dependence on rank, the nature of molecules with the same nominal mass varied greatly with rank.

  20. Preparation and evaluation of coal extracts as precursors for carbon and graphite products

    SciTech Connect

    Zondlo, J.W.; Stiller, A.W.; Stansberry, P.G.

    1996-08-01

    A coal extraction process coupled with coal hydrotreatment has been shown capable of producing suitable precursors for a variety of commercially important carbon and graphite products. The N-methylpyrolidone (NMP) extracts of hydrotreated coals have been analytically and chemically characterized and shown to have properties acceptable for use as binder and impregnation pitch. Mesophase formation studies have demonstrated their capability for producing both needle and anode grade coke as well as precursors for mesophase pitch fibers. A graphite artifact has been produced using a coal extract as a binder and coke derived from the extract as a filler. Further evaluation of the extract materials is being carried out by industrial members of the Carbon Products Consortium.

  1. Sequential solvent extraction for forms of antimony in five selected coals

    USGS Publications Warehouse

    Qi, C.; Liu, Gaisheng; Kong, Y.; Chou, C.-L.; Wang, R.

    2008-01-01

    Abundance of antimony in bulk samples has been determined in five selected coals, three coals from Huaibei Coalfield, Anhui, China, and two from the Illinois Basin in the United States. The Sb abundance in these samples is in the range of 0.11-0.43 ??g/g. The forms of Sb in coals were studied by sequential solvent extraction. The six forms of Sb are water soluble, ion changeable, organic matter bound, carbonate bound, silicate bound, and sulfide bound. Results of sequential extraction show that silicate-bound Sb is the most abundant form in these coals. Silicate- plus sulfide-bound Sb accounts for more than half of the total Sb in all coals. Bituminous coals are higher in organic matterbound Sb than anthracite and natural coke, indicating that the Sb in the organic matter may be incorporated into silicate and sulfide minerals during metamorphism. ?? 2008 by The University of Chicago. All rights reserved.

  2. Sequential solvent extraction for forms of antimony in five selected coals

    SciTech Connect

    Qi, C.C.; Liu, G.J.; Kang, Y.; Chou, C.L.; Wang, R.W.

    2008-03-15

    Abundance of antimony in bulk samples has been determined in five selected coals, three coals from Huaibei Coalfield, Anhui, China, and two from the Illinois Basin in the United States. The Sb abundance in these samples is in the range of 0.11-0.43 {mu} g/g. The forms of Sb in coals were studied by sequential solvent extraction. The six forms of Sb are water soluble, ion changeable, organic matter bound, carbonate bound, silicate bound, and sulfide bound. Results of sequential extraction show that silicate-bound Sb is the most abundant form in these coals. Silicate-plus sulfide-bound Sb accounts for more than half of the total Sb in all coals. Bituminous coals are higher in organic matter bound Sb than anthracite and natural coke, indicating that the Sb in the organic matter may be incorporated into silicate and sulfide minerals during metamorphism.

  3. Advanced Coal Conversion Process Demonstration Project. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    1996-02-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1994, through March 31, 1994. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

  4. Advanced Coal Conversion Process Demonstration Project. Technical progress report, January 1, 1993--December 31, 1993

    SciTech Connect

    1995-02-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1993, through December 31, 1993. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low- rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

  5. Magnetic relaxation--coal swelling, extraction, pore size. Technical progress report, October 1, 1991--December 31, 1991

    SciTech Connect

    Doetschman, D.C.

    1991-12-31

    The grant activities during this period fall into four categories: (1) Completion of preparatory work, (2) Procedure refinement and actual preparation of whole coal, coal residue, coal extract and swelled coal samples for NMR studies, (3) Related studies of coal photolysis that employ materials from preliminary extractions and that examine the u.v.-visible and mass spectra of the extracts and (4) Continued investigations of the pulsed EPR characteristics of the whole coal samples that were prepared in the first quarter of the grant.

  6. Performance and risks of advanced pulverized-coal plants

    SciTech Connect

    Nalbandian, H.

    2009-07-01

    This article is based on an in-depth report of the same title published by the IEA Clean Coal Centre, CCC/135 (see Coal Abstracts entry Sep 2008 00535). It discusses the commercial, developmental and future status of pulverized fuel power plants including subcritical supercritical and ultra supercritical systems of pulverized coal combustion, the most widely used technology in coal-fired power generation. 1 fig., 1 tab.

  7. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1992-01-01

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO[sub 2] per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO[sub 2] emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  8. Development of Continuous Solvent Extraction Processes for Coal Derived Carbon Products

    SciTech Connect

    Elliot B. Kennel

    2006-12-31

    This DOE NETL-sponsored effort seeks to develop continuous processes for producing carbon products from solvent-extracted coal. A key process step is removal of solids from liquefied coal. Three different processes were compared: gravity separation, centrifugation using a decanter-type Sharples Pennwalt centrifuge, and a Spinner-II centrifuge. The data suggest that extracts can be cleaned to as low as 0.5% ash level and probably lower using a combination of these techniques.

  9. Advanced spectroscopic analysis of coal surfaces during beneficiation

    SciTech Connect

    McClelland, J.F.; Oh, J.S.

    1989-10-01

    Preliminary FTIR spectra are reported on coals undergoing flotation where enhanced recovery was achieved by ultrasonic or chemical treatments. The spectra of sonicated coals indicate that ultrasonic treatment (10 kHz Swen Sonic) reduces the surface oxidation of heavily oxidized coal. Spectra of chemically treated coal indicate that a higher mineral concentration is present on or near the surface of float coal suggesting that a slime might be present. Spectra are reported for coal-, mineral-, and crystal-derived pyrite which show a strong absorbance band at 420 cm{sup {minus}1}. Spectra of eight Argonne Premium Coal Library specimens have been examined in the 420 cm{sup {minus}1} spectral region and are found to have numerous overlapping bands. 4 figs.

  10. Extraction, separation, and analysis of high sulfur coal. Final report

    SciTech Connect

    Olesik, S.V.; Pekay, L.A.; Larkins, W. Jr.

    1992-05-31

    The work described in this report studies the removal of sulfur by oxidative interaction of various cupric salts with coal and also considers the possibility of removing organic sulfur by the selective interaction of supercritical ethanol with the organic coal matrix. Either one of these methods could potentially be used to pretreat coals before burning. The primary purpose of these studies is to ascertain the nature of the chemical reactions occurring, the chemical composition of the resultant products, and information on possible reaction mechanisms. This information should allow prediction of reasonable reaction conditions for the removal of organosulfur compound from coal.

  11. Extraction, separation, and analysis of high sulfur coal

    SciTech Connect

    Olesik, S.V.; Pekay, L.A.; Larkins, W. Jr.

    1992-05-31

    The work described in this report studies the removal of sulfur by oxidative interaction of various cupric salts with coal and also considers the possibility of removing organic sulfur by the selective interaction of supercritical ethanol with the organic coal matrix. Either one of these methods could potentially be used to pretreat coals before burning. The primary purpose of these studies is to ascertain the nature of the chemical reactions occurring, the chemical composition of the resultant products, and information on possible reaction mechanisms. This information should allow prediction of reasonable reaction conditions for the removal of organosulfur compound from coal.

  12. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.; Rawls, P.

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  13. Low-rank coal research: Volume 2, Advanced research and technology development: Final report

    SciTech Connect

    Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

    1987-04-01

    Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

  14. Water Extraction from Coal-Fired Power Plant Flue Gas

    SciTech Connect

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or

  15. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect

    Elliot B. Kennel; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-07-13

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. The Hydrotreatment Facility is being prepared for trials with coal liquids. Raw coal tar distillate trials have been carried out by heating coal tar in the holding tank in the Hydrotreatment Facility. The liquids are centrifuged to warm the system up in preparation for the coal liquids. The coal tar distillate is then recycled to keep the centrifuge hot. In this way, the product has been distilled such that a softening point of approximately 110 C is reached. Then an ash test is conducted.

  16. Factors that influence the extraction of polycyclic aromatic hydrocarbons from coal

    USGS Publications Warehouse

    Xue, J.; Liu, Gaisheng; Niu, Z.; Chou, C.-L.; Qi, C.; Zheng, Lingyun; Zhang, H.

    2007-01-01

    Coal samples and carbonaceous mudstone were collected from the Huaibei coalfield, China, and experiments investigating the factors influencing the extraction of the sixteen US EPA (Environmental Protection Agency) priority polycyclic aromatic hydrocarbons (PAHs) were carried out. Different extraction times, solvents, and methods were used. Major interest was focused on finding optimum conditions for extracting the PAHs from coal. We conclude that (1) coal composition, including the H/C and O/C ratios, is an important factor for the distribution of PAHs in coals; (2) the total amount of EPA priority PAHs increases with increasing extraction time, 30 min being suitable for ultrasonic-assisted extraction and 24 h for Soxhlet extraction; (3) CS2 is effective in extracting low molecular weight PAHs, while CH2Cl2 is better for extracting high molecular weight PAHs (both are excellent extraction solvents vs hexane); (4) both Soxhlet and ultrasonic extraction showed a similar PAH concentration profile, but the ultrasonic method is less efficient. ?? 2007 American Chemical Society.

  17. 76 FR 55837 - Workshops To Discuss Revisions to Federal and Indian Coal Valuation Regulations: Advance Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... Revisions to Federal and Indian Coal Valuation Regulations: Advance Notice of Proposed Rulemaking AGENCY...-2225, e- mail hyla.hurst@onrr.gov . SUPPLEMENTARY INFORMATION: The comment period for the Advance... without advance registration; however, attendance may be limited to the space available at each venue....

  18. Numerical Investigation of the Dynamic Mechanical State of a Coal Pillar During Longwall Mining Panel Extraction

    NASA Astrophysics Data System (ADS)

    Wang, Hongwei; Jiang, Yaodong; Zhao, Yixin; Zhu, Jie; Liu, Shuai

    2013-09-01

    This study presents a numerical investigation on the dynamic mechanical state of a coal pillar and the assessment of the coal bump risk during extraction using the longwall mining method. The present research indicates that there is an intact core, even when the peak pillar strength has been exceeded under uniaxial compression. This central portion of the coal pillar plays a significant role in its loading capacity. In this study, the intact core of the coal pillar is defined as an elastic core. Based on the geological conditions of a typical longwall panel from the Tangshan coal mine in the City of Tangshan, China, a numerical fast Lagrangian analysis of continua in three dimensions (FLAC3D) model was created to understand the relationship between the volume of the elastic core in a coal pillar and the vertical stress, which is considered to be an important precursor to the development of a coal bump. The numerical results suggest that, the wider the coal pillar, the greater the volume of the elastic core. Therefore, a coal pillar with large width may form a large elastic core as the panel is mined, and the vertical stress is expected to be greater in magnitude. Because of the high stresses and the associated stored elastic energy, the risk of coal bumps in a coal pillar with large width is greater than for a coal pillar with small width. The results of the model also predict that the peak abutment stress occurs near the intersection between the mining face and the roadways at a distance of 7.5 m from the mining face. It is revealed that the bump-prone zones around the longwall panel are within 7-10 m ahead of the mining face and near the edge of the roadway during panel extraction.

  19. Advanced turbine design for coal-fueled engines

    SciTech Connect

    Bornstein, N.S.

    1992-07-17

    The objective of this task is to perform a technical assessment of turbine blading for advanced second generation PFBC conditions, identify specific problems/issues, and recommend an approach for solving any problems identified. A literature search was conducted, problems associated with hot corrosion defined and limited experiments performed. Sulfidation corrosion occurs in industrial, marine and aircraft gas turbine engines and is due to the presence of condensed alkali (sodium) sulfates. The principle source of the alkali in industrial, marine and aircraft gas turbine engines is sea salt crystals. The principle source of the sulfur is not the liquid fuels, but the same ocean born crystals. Moreover deposition of the corrosive salt occurs primarily by a non-equilibrium process. Sodium will be present in the cleaned combusted gases that enter the PFBC turbine. Although equilibrium condensation is not favored, deposition via impaction is probable. Marine gas turbines operate in sodium chloride rich environments without experiencing the accelerated attack noted in coal fired boilers where condensed chlorides contact metallic surfaces. The sulfates of calcium and magnesium are the products of the reactions used to control sulfur. Based upon industrial gas turbine experience and laboratory tests, calcium and magnesium sulfates are, at temperatures up to 1500[degrees]F (815[degrees]C), relatively innocuous salts. In this study it is found that at 1650[degrees]F (900[degrees]C) and above, calcium sulfate becomes an aggressive corrodent.

  20. Advanced turbine design for coal-fueled engines

    NASA Astrophysics Data System (ADS)

    Bornstein, N. S.

    1992-07-01

    The objective of this task is to perform a technical assessment of turbine blading for advanced second generation PFBC conditions, identify specific problems/issues, and recommend an approach for solving any problems identified. A literature search was conducted, problems associated with hot corrosion defined and limited experiments performed. Sulfidation corrosion occurs in industrial, marine and aircraft gas turbine engines and is due to the presence of condensed alkali (sodium) sulfates. The principle source of the alkali in industrial, marine and aircraft gas turbine engines is sea salt crystals. The principle source of the sulfur is not the liquid fuels, but the same ocean born crystals. Moreover deposition of the corrosive salt occurs primarily by a non-equilibrium process. Sodium will be present in the cleaned combusted gases that enter the PFBC turbine. Although equilibrium condensation is not favored, deposition via impaction is probable. Marine gas turbines operate in sodium chloride rich environments without experiencing the accelerated attack noted in coal fired boilers where condensed chlorides contact metallic surfaces. The sulfates of calcium and magnesium are the products of the reactions used to control sulfur. Based upon industrial gas turbine experience and laboratory tests, calcium and magnesium sulfates are, at temperatures up to 1500 F (815 C), relatively innocuous salts. In this study it is found that at 1650 F (900 C) and above, calcium sulfate becomes an aggressive corrodent.

  1. Advanced physical fine coal cleaning spherical agglomeration. Final report

    SciTech Connect

    Not Available

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  2. Advanced liquefaction using coal swelling and catalyst dispersion techniques

    SciTech Connect

    Curtis, C.W. ); Gutterman, C. ); Chander, S. )

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  3. Measurement and modeling of advanced coal conversion processes. Annual report, October 1990--September 1991

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. |

    1991-12-31

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  4. Geotechnical/geochemical characterization of advanced coal process waste streams: Task 2

    SciTech Connect

    Moretti, C.J.; Olson, E.S.

    1992-09-01

    Successful disposal practices for solid wastes produced from advanced coal combustion and coal conversion processes must provide for efficient management of relatively large volumes of wastes in a cost-effective and environmentally safe manner. At present, most coal-utilization solid wastes are disposed of using various types of land-based systems, and it is probable that this disposal mode will continue to be widely used in the future for advanced process wastes. Proper design and operation of land-based disposal systems for coal combustion wastes normally require appropriate waste transfer, storage, and conditioning subsystems at the plant to prepare the waste for transport to an ultimate disposal site. Further, the overall waste management plan should include a by-product marketing program to minimize the amount of waste that will require disposal. In order to properly design and operate waste management systems for advanced coal-utilization processes, a fundamental understanding of the physical properties, chemical and mineral compositions, and leaching behaviors of the wastes is required. In order to gain information about the wastes produced by advanced coal-utilization processes, 55 waste samples from 16 different coal gasification, fluidized-bed coal combustion (FBC), and advanced flue gas scrubbing processes were collected. Thirty-four of these wastes were analyzed for their bulk chemical and mineral compositions and tested for a detailed set of disposal-related physical properties. The results of these waste characterizations are presented in this report. In addition to the waste characterization data, this report contains a discussion of potentially useful waste management practices for advanced coal utilization processes.

  5. Supercritical fluid extraction of vapor-deposited pyrene from carbonaceous coal stack ash.

    PubMed

    Mauldin, R F; Vienneau, J M; Wehry, E L; Mamantov, G

    1990-11-01

    The efficiencies of extraction of vapor-deposited pyrene from a high-carbon coal stack ash by Soxhlet extraction with methanol, ultrasonic extraction with toluene, acid pretreatment and subsequent ultrasonic extraction with toluene, batch extraction with toluene, and supercritical fluid extraction (SFE) are compared. SFE using CO(2) or isobutane yielded extraction recoveries virtually identical with those obtained using ultrasonic or Soxhlet extraction processes. Collection of the SFE extract was performed by expansion into a solvent or onto the head of a gas chromatography (GC) column. No loss of extracted pyrene was observed upon collection of methanol-modified CO(2) SFE by expansion into methanol. Also, no loss of pure CO(2) SFE extract was observed upon collection on the head of a GC column. However, use of a methanol or toluene modifier for CO(2) SFE directly coupled to GC effected complete loss of extracted pyrene.

  6. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 260 with Black Thunder Mine subbituminous coal: Technical progress report

    SciTech Connect

    Not Available

    1992-01-01

    This report presents the results of Run 260 performed at the Advanced Coal Liquefaction R&D Facility in Wilsonville. The run was started on July 17, 1990 and continued until November 14, 1990, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). Both thermal/catalytic and catalytic/thermal tests were performed to determine the methods for reducing solids buildup in a subbituminous coal operation, and to improve product yields. A new, smaller interstage separator was tested to reduce solids buildup by increasing the slurry space velocity in the separator. In order to obtain improved coal and resid conversions (compared to Run 258) full-volume thermal reactor and 3/4-volume catalytic reactor were used. Shell 324 catalyst, 1/16 in. cylindrical extrudate, at a replacement rate of 3 lb/ton of MF coal was used in the catalytic stage. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run. (TNPS was the sulfiding agent.)

  7. PRODUCTION OF FOAMS, FIBERS AND PITCHES USING A COAL EXTRACTION PROCESS

    SciTech Connect

    Chong Chen; Elliot B. Kennel; Liviu Magean; Pete G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2004-06-20

    This Department of Energy National Energy Technology Laboratory sponsored project developed processes for converting coal feedstocks to carbon products, including coal-derived pitch, coke foams and fibers based on solvent extraction processes. A key technology is the use of hydrogenation accomplished at elevated temperatures and pressures to obtain a synthetic coal pitch. Hydrogenation, or partial direct liquefaction of coal, is used to modify the properties of raw coal such that a molten synthetic pitch can be obtained. The amount of hydrogen required to produce a synthetic pitch is about an order of magnitude less than the amount required to produce synthetic crude oil. Hence the conditions for synthetic pitch production consume very little hydrogen and can be accomplished at substantially lower pressure. In the molten state, hot filtration or centrifugation can be used to separate dissolved coal chemicals from mineral matter and insolubles (inertinite), resulting in the production of a purified hydrocarbon pitch. Alternatively, if hydrogenation is not used, aromatic hydrocarbon liquids appropriate for use as precursors to carbon products can obtained by dissolving coal in a solvent. As in the case for partial direct liquefaction pitches, undissolved coal is removed via hot filtration or centrifugation. Excess solvent is boiled off and recovered. The resultant solid material, referred to as Solvent Extracted Carbon Ore or SECO, has been used successfully to produce artificial graphite and carbon foam.

  8. Direct comparison of XAFS spectroscopy and sequential extraction for arsenic speciation in coal

    USGS Publications Warehouse

    Huggins, Frank E.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.A.; Finkelman, R.B.

    2000-01-01

    The speciation of arsenic in an Ohio bituminous coal and a North Dakota lignite has been examined by the complementary methods of arsenic XAFS spectroscopy and sequential extraction by aqueous solutions of ammonium acetate, HCl, HF, and HNO3. In order to facilitate a more direct comparison of the two methods, the arsenic XAFS spectra were obtained from aliquots of the coal prepared after each stage of the leaching procedure. For the aliquots, approximately linear correlations (r2 > 0.98 for the Ohio coal, > 0.90 for the ND lignite) were observed between the height of the edge-step in the XAFS analysis and the concentration of arsenic measured by instrumental neutron activation analysis. Results from the leaching sequence indicate that there are two major arsenic forms present in both coals; one is removed by leaching with HCl and the other by HNO3. Whereas the XAFS spectral signatures of the arsenic leached by HCl are compatible with arsenate for both coals, the arsenic leached by HNO3 is identified as arsenic associated with pyrite for the Ohio coal and as an As3+ species for the North Dakota lignite. Minor arsenate forms persist in both coals after the final leaching with nitric acid. The arsenate forms extracted in HCl are believed to be oxidation products derived from the other major arsenic forms upon exposure of the pulverized coals to air.

  9. Engineering development of advanced physical fine coal cleaning technologies - froth flotation

    SciTech Connect

    Ferris, D.D.; Bencho, J.R.

    1995-11-01

    In 1988, ICF Kaiser Engineers was awarded DOE Contract No. DE-AC22-88PC88881 to research, develop, engineer and design a commercially acceptable advanced froth flotation coal cleaning technology. The DOE initiative is in support of the continued utilization of our most abundant energy resource. Besides the goal of commercialability, coal cleaning performance and product quality goals were established by the DOE for this and similar projects. primary among these were the goals of 85 percent energy recovery and 85 percent pyrite rejection. Three nationally important coal resources were used for this project: the Pittsburgh No. 8 coal, the Upper Freeport coal, and the Illinois No. 6 coal. Following is a summary of the key findings of this project.

  10. POC-Scale Testing of an Advanced Fine Coal Dewatering Equipment/Technique

    SciTech Connect

    Karekh, B K; Tao, D; Groppo, J G

    1998-08-28

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 mm) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy's program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 45 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 - March 31, 1998.

  11. Extraction of iron and calcium from low rank coal by supercritical carbon dioxide with entrainers

    SciTech Connect

    Iwai, Y.; Okamoto, N.; Ohta, S.; Arai, Y.; Sakanishi, K.

    2007-03-15

    Iron and calcium were extracted from low rank coal with supercritical carbon dioxide and methanol, ethanol, acetic acid, acetyl acetone, ethanol and acetic acid, or acetyl acetone and water entrainers at 313.2 K and 15.0 MPa. The low rank coal used in this study was Berau coal from Indonesia. The addition of methanol, ethanol, or acetic acid entrainers in supercritical carbon dioxide showed very limited effect on enhancement of the recovery rates of Fe. The recovery rates of Fe from dried coal by supercritical carbon dioxide with acetyl acetone were low however, the addition of acetyl acetone with water in supercritical carbon dioxide remarkably enhanced the recovery rates of Fe. Water seems to play an important role in extracting Fe from coal with supercritical carbon dioxide and acetyl acetone. On the other hand, the extraction rates of Ca with supercritical carbon dioxide and water, methanol, ethanol, and acetyl acetone entrainers were very low. The addition of acetic acid with or without water in supercritical carbon dioxide slightly enhanced the recovery rates of Ca. The addition of acetic acid with ethanol in supercritical carbon dioxide remarkably enhanced the recovery rates of Ca. The effect of carbon dioxide flow rate and coal particle size on the recovery rates of Fe were examined. The recovery rate of Fe increased with increasing carbon dioxide flow rate and with decreasing particle size of the low rank coal.

  12. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, October--December 1992

    SciTech Connect

    Speight, J.G.

    1992-12-31

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  13. Measurement and modeling of advanced coal conversion processes

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1991-09-25

    The objectives of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. (VC)

  14. An evaluation of disposal and utilization options for advanced coal utilization wastes

    SciTech Connect

    Moretti, C.J.

    1996-05-01

    If the US is to continue to effectively use its substantial coal reserves, new clean coal technologies must be developed to improve power production efficiency and reduce emissions from power plants. In order to gain information about wastes produced by advanced coal utilization processes, a research project is being conducted to characterize the geotechnical and geochemical properties of advanced coal process wastes. The University of North Dakota Energy and Environmental Research Center (EERC) analyzed 34 of these wastes for their bulk chemical and mineral compositions and for the disposal-related physical properties listed in a table. This paper discusses potentially useful waste management practices for eight bulk waste samples obtained from four different clean coal processes: gas reburning with sorbent injection (GRSI); pressurized fluidized-bed combustion (PFBC); SO{sub x}, NO{sub x}, RO{sub x}, BOX (SNRB); and coal reburning (CR). All four processes have been demonstrated at either full-scale or pilot-scale facilities in the US. Since the properties of advanced process wastes are different from conventional coal combustion wastes, an analysis was performed to identify any potential problems that could occur when standard, off-the-shelf waste management technologies are used for handling and disposal of advanced process wastes. When potential problems were identified, possible alternative technologies were evaluated.

  15. Supercritical extraction and simultaneous catalytic hydrogenation of coal

    SciTech Connect

    Coenen, H.; Hagen, R.; Kriegel, E.

    1984-11-27

    A process for producing liquid hydrocarbons from coal comprises treating comminuted coal at 380/sup 0/ to 600/sup 0/ C. and 260 to 450 bar with water in a high pressure reactor to form a charged supercritical gas phase and a coal residue. Simultaneously with the water treatment, hydrogenation with hydrogen takes place in the presence of a catalyst. The catalyst is selected from the group consisting of NaOH, KOH, Na/sub 4/SiO/sub 4/, NaBO/sub 4/, or KOB/sub 2/. Then, the gas phase is divided into several fractions by lowering its pressure and temperature. Energy and/or gas is generated from the coal residue.

  16. Systems Analysis Of Advanced Coal-Based Power Plants

    NASA Technical Reports Server (NTRS)

    Ferrall, Joseph F.; Jennings, Charles N.; Pappano, Alfred W.

    1988-01-01

    Report presents appraisal of integrated coal-gasification/fuel-cell power plants. Based on study comparing fuel-cell technologies with each other and with coal-based alternatives and recommends most promising ones for research and development. Evaluates capital cost, cost of electricity, fuel consumption, and conformance with environmental standards. Analyzes sensitivity of cost of electricity to changes in fuel cost, to economic assumptions, and to level of technology. Recommends further evaluation of integrated coal-gasification/fuel-cell integrated coal-gasification/combined-cycle, and pulverized-coal-fired plants. Concludes with appendixes detailing plant-performance models, subsystem-performance parameters, performance goals, cost bases, plant-cost data sheets, and plant sensitivity to fuel-cell performance.

  17. Advanced Coal Conversion Process Demonstration Project. Final technical progress report, January 1, 1995--December 31, 1995

    SciTech Connect

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1995 through December 31, 1995. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal Process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. The SynCoal Process enhances low-rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,5000 to 9,000 British thermal units per pound (Btu/lb), by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. During this reporting period, the primary focus for the ACCP Demonstration Project team was to expand SynCoal market awareness and acceptability for both the products and the technology. The ACCP Project team continued to focus on improving the operation, developing commercial markets, and improving the SynCoal products as well as the product`s acceptance.

  18. Altered gene expression in HepG2 cells exposed to a methanolic coal dust extract.

    PubMed

    Guerrero-Castilla, Angelica; Olivero-Verbel, Jesus

    2014-11-01

    Exposure to coal dust has been associated with different chronic diseases and mortality risk. This airborne pollutant is produced during coal mining and transport activities, generating environmental and human toxicity. The aim of this study was to determine the effects of a coal dust methanolic extract on HepG2, a human liver hepatocellular carcinoma cell line. Cells were exposed to 5-100ppm methanolic coal extract for 12h, using DMSO as control. MTT and comet assays were used for the evaluation of cytotoxicity and genotoxicity, respectively. Real time PCR was utilized to quantify relative expression of genes related to oxidative stress, xenobiotic metabolism and DNA damage. Coal extract concentrations did not induce significant changes in HepG2 cell viability after 12h exposure; however, 50 and 100ppm of the coal extract produced a significant increase in genetic damage index with respect to negative control. Compared to vehicle control, mRNA CYP1A1 (up to 163-fold), NQO1 (up to 4.7-fold), and GADD45B (up to 4.7-fold) were up regulated, whereas PRDX1, SOD, CAT, GPX1, XPA, ERCC1 and APEX1 remained unaltered. This expression profile suggests that cells exposed to coal dust extract shows aryl hydrocarbon receptor-mediated alterations, changes in cellular oxidative status, and genotoxic effects. These findings share some similarities with those observed in liver of mice captured near coal mining areas, and add evidence that living around these industrial operations may be negatively impacting the biota and human health. PMID:25305735

  19. Altered gene expression in HepG2 cells exposed to a methanolic coal dust extract.

    PubMed

    Guerrero-Castilla, Angelica; Olivero-Verbel, Jesus

    2014-11-01

    Exposure to coal dust has been associated with different chronic diseases and mortality risk. This airborne pollutant is produced during coal mining and transport activities, generating environmental and human toxicity. The aim of this study was to determine the effects of a coal dust methanolic extract on HepG2, a human liver hepatocellular carcinoma cell line. Cells were exposed to 5-100ppm methanolic coal extract for 12h, using DMSO as control. MTT and comet assays were used for the evaluation of cytotoxicity and genotoxicity, respectively. Real time PCR was utilized to quantify relative expression of genes related to oxidative stress, xenobiotic metabolism and DNA damage. Coal extract concentrations did not induce significant changes in HepG2 cell viability after 12h exposure; however, 50 and 100ppm of the coal extract produced a significant increase in genetic damage index with respect to negative control. Compared to vehicle control, mRNA CYP1A1 (up to 163-fold), NQO1 (up to 4.7-fold), and GADD45B (up to 4.7-fold) were up regulated, whereas PRDX1, SOD, CAT, GPX1, XPA, ERCC1 and APEX1 remained unaltered. This expression profile suggests that cells exposed to coal dust extract shows aryl hydrocarbon receptor-mediated alterations, changes in cellular oxidative status, and genotoxic effects. These findings share some similarities with those observed in liver of mice captured near coal mining areas, and add evidence that living around these industrial operations may be negatively impacting the biota and human health.

  20. Phytotoxicity assessment of a methanolic coal dust extract in Lemna minor.

    PubMed

    Coronado-Posada, Nadia; Cabarcas-Montalvo, Maria; Olivero-Verbel, Jesus

    2013-09-01

    Coal mining generates negative effects on environment, human health, hydrodynamics of mining areas and biodiversity. However, the impacts of this activity are less known in plants. Lemna minor is one of the most commonly used plants in aquatic toxicity tests due to its ubiquitous distribution in ponds and lakes, culture conditions and the free-floating habitat that exposes it to hydrophobic as well as dissolved compounds. The goal of this research was to evaluate the effects of a methanolic coal dust extract on L. minor. Macrophytes were exposed to six different concentrations of coal extract (from 7.81 to 250 mg/L) for 5 days, following the OECD test guideline 221. The coal extract had a half inhibitory concentration (IC50) of 99.66 (184.95-54.59) mg/L for the number of fronds. Several signs of toxicity such as chlorosis, reduction in the size of the fronds, abscission of fronds and roots, and the presence of necrotic tissues were observed at concentrations lower than the IC50. Preliminary Gas Chromatography-Mass Spectrometry analysis of the coal dust extract revealed the presence of several compounds, including, among others, alkanes, carboxylic acids and polycyclic aromatic hydrocarbons (PAHs), these lasts, may be responsible for some of the observed effects. These results demonstrated that coal dust has phytotoxic effects and should not be considered as an inert material.

  1. Phytotoxicity assessment of a methanolic coal dust extract in Lemna minor.

    PubMed

    Coronado-Posada, Nadia; Cabarcas-Montalvo, Maria; Olivero-Verbel, Jesus

    2013-09-01

    Coal mining generates negative effects on environment, human health, hydrodynamics of mining areas and biodiversity. However, the impacts of this activity are less known in plants. Lemna minor is one of the most commonly used plants in aquatic toxicity tests due to its ubiquitous distribution in ponds and lakes, culture conditions and the free-floating habitat that exposes it to hydrophobic as well as dissolved compounds. The goal of this research was to evaluate the effects of a methanolic coal dust extract on L. minor. Macrophytes were exposed to six different concentrations of coal extract (from 7.81 to 250 mg/L) for 5 days, following the OECD test guideline 221. The coal extract had a half inhibitory concentration (IC50) of 99.66 (184.95-54.59) mg/L for the number of fronds. Several signs of toxicity such as chlorosis, reduction in the size of the fronds, abscission of fronds and roots, and the presence of necrotic tissues were observed at concentrations lower than the IC50. Preliminary Gas Chromatography-Mass Spectrometry analysis of the coal dust extract revealed the presence of several compounds, including, among others, alkanes, carboxylic acids and polycyclic aromatic hydrocarbons (PAHs), these lasts, may be responsible for some of the observed effects. These results demonstrated that coal dust has phytotoxic effects and should not be considered as an inert material. PMID:23726540

  2. Field study of disposed solid wastes from advanced coal processes

    SciTech Connect

    Not Available

    1992-01-01

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

  3. Organic coal-water fuel: Problems and advances (Review)

    NASA Astrophysics Data System (ADS)

    Glushkov, D. O.; Strizhak, P. A.; Chernetskii, M. Yu.

    2016-10-01

    The study results of ignition of organic coal-water fuel (OCWF) compositions were considered. The main problems associated with investigation of these processes were identified. Historical perspectives of the development of coal-water composite fuel technologies in Russia and worldwide are presented. The advantages of the OCWF use as a power-plant fuel in comparison with the common coal-water fuels (CWF) were emphasized. The factors (component ratio, grinding degree of solid (coal) component, limiting temperature of oxidizer, properties of liquid and solid components, procedure and time of suspension preparation, etc.) affecting inertia and stability of the ignition processes of suspensions based on the products of coaland oil processing (coals of various types and metamorphism degree, filter cakes, waste motor, transformer, and turbine oils, water-oil emulsions, fuel-oil, etc.) were analyzed. The promising directions for the development of modern notions on the OCWF ignition processes were determined. The main reasons limiting active application of the OCWF in power generation were identified. Characteristics of ignition and combustion of coal-water and organic coal-water slurry fuels were compared. The effect of water in the composite coal fuels on the energy characteristics of their ignition and combustion, as well as ecological features of these processes, were elucidated. The current problems associated with pulverization of composite coal fuels in power plants, as well as the effect of characteristics of the pulverization process on the combustion parameters of fuel, were considered. The problems hindering the development of models of ignition and combustion of OCWF were analyzed. It was established that the main one was the lack of reliable experimental data on the processes of heating, evaporation, ignition, and combustion of OCWF droplets. It was concluded that the use of high-speed video recording systems and low-inertia sensors of temperature and gas

  4. Measurement and modeling of advanced coal conversion processes, Volume II

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.

    1993-06-01

    A two dimensional, steady-state model for describing a variety of reactive and nonreactive flows, including pulverized coal combustion and gasification, is presented. The model, referred to as 93-PCGC-2 is applicable to cylindrical, axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using a discrete ordinates method. The particle phase is modeled in a lagrangian framework, such that mean paths of particle groups are followed. A new coal-general devolatilization submodel (FG-DVC) with coal swelling and char reactivity submodels has been added.

  5. Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Technical progress report, Run 243 with Illinois 6 coal

    SciTech Connect

    Not Available

    1984-02-01

    This report presents the operating results for Run 243 at the Advanced Coal Liquefaction R and D Facility in Wilsonville, Alabama. This run was made in an Integrated Two-Stage Liquefaction (ITSL) mode using Illinois 6 coal from the Burning Star mine. The primary objective was to demonstrate the effect of a dissolver on the ITSL product slate, especially on the net C/sub 1/-C/sub 5/ gas production and hydrogen consumption. Run 243 began on 3 February 1983 and continued through 28 June 1983. During this period, 349.8 tons of coal was fed in 2947 hours of operation. Thirteen special product workup material balances were defined, and the results are presented herein. 29 figures, 19 tables.

  6. Advanced coal-fueled gas turbine systems. Final report

    SciTech Connect

    Not Available

    1993-08-01

    The configuration of the subscale combustor has evolved during the six years of this program from a system using only an impact separator to remove particulates to a system which also included a slagging cyclone separator before the lean-quench combustor. The system also now includes active slag tapping after the impact separator rather than a bucket to collect the slag. The subscale 12 MM Btu/hr (higher heating value, HHV) slagging combustor has demonstrated excellent coal-fired operation at 6 atm. The combustor has fired both coal-water mixtures (CWM) and pulverized coal (PC). Three Wyoming subbituminous coals and two bituminous coals have been successfully fired in the TVC. As a result of this active testing, the following conclusions may be drawn: (1) it was possible to achieve the full design thermal capacity of 12 MM Btu/hr with the subscale slagging combustor, while burning 100% pulverized coal and operating at the design pressure of 6 atm; (2) because of the separate-chamber, rich-lean design of the subscale slagging combustor, NO{sub x} emissions that easily meet the New Source Performance Standards (NSPS) limits were achieved; (3) carbon burnout efficiency was in excess of 99% when 100% coal-fired; (4) ninety percent of the ash can be separated as slag in the impact separator, and a total 98 to 99% removed with the addition of the slagging cyclone separator; (5) Objectives for third-stage exit temperature (1850{degrees}F), and exit temperature pattern factor (14%) were readily achieved; (6) overall pressure loss is currently an acceptable 5 to 6% without cyclone separator and 7 to 9% with the cyclone; and (7) feeding pulverized coal or sorbent into the combustor against 6 atm pressure is achievable.

  7. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1990-07-01

    The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. This quarter, work was centered on design, fabrication, and testing of the combustor, cleanup, fuel specifications, and hot end simulation rig. 2 refs., 59 figs., 29 tabs.

  8. Technology for advanced liquefaction processes: Coal/waste coprocessing studies

    SciTech Connect

    Cugini, A.V.; Rothenberger, K.S.; Ciocco, M.V.

    1995-12-31

    The efforts in this project are directed toward three areas: (1) novel catalyst (supported and unsupported) research and development, (2) study and optimization of major operating parameters (specifically pressure), and (3) coal/waste coprocessing. The novel catalyst research and development activity has involved testing supported catalysts, dispersed catalysts, and use of catalyst testing units to investigate the effects of operating parameters (the second area) with both supported and unsupported catalysts. Several supported catalysts were tested in a simulated first stage coal liquefaction application at 404{degrees}C during this performance period. A Ni-Mo hydrous titanate catalyst on an Amocat support prepared by Sandia National laboratories was tested. Other baseline experiments using AO-60 and Amocat, both Ni-Mo/Al{sub 2}O{sub 3} supported catalysts, were also made. These experiments were short duration (approximately 12 days) and monitored the initial activity of the catalysts. The results of these tests indicate that the Sandia catalyst performed as well as the commercially prepared catalysts. Future tests are planned with other Sandia preparations. The dispersed catalysts tested include sulfated iron oxide, Bayferrox iron oxide (iron oxide from Miles, Inc.), and Bailey iron oxide (micronized iron oxide from Bailey, Inc.). The effects of space velocity, temperature, and solvent-to-coal ratio on coal liquefaction activity with the dispersed catalysts were investigated. A comparison of the coal liquefaction activity of these catalysts relative to iron catalysts tested earlier, including FeOOH-impregnated coal, was made. These studies are discussed.

  9. [Study on the occurrence of ferrum in coal by ultrasound-assisted sequential chemical extraction].

    PubMed

    Xiong, Jin-Yu; Li, Han-Xu; Dong, Zhong-Bing; Zhang, Song; Qian, Ning-Bo; Wu, Cheng-Li

    2013-11-01

    To reveal the occurrence of Ferrum in coal, seven coal samples were selected according to the different contents of ferric oxide in the coal ash, and the content of Ferric element was determined by atomic absorption spectrophotometer (AAS) using nitric acid-perchloric acid-hydrofluoric acid wet digestion. Modes of occurrence of ferrium in the seven coal samples were studied by AAS using ultrasound-assisted sequential chemical extraction experiment (SCEE). Ultrasound promoted the contact of the extraction reagent with the coal particles and enhanced the dissolution process by producing characteristic acoustic cavitations, which greatly shortened the experimental time. The total amount of ferrium obtained by sequential extraction was approximate to the result of wet digestion, which indicated the procedure of SCEE was reasonable. The results showed that the ferric element mainly occurred in forms of carbonate state, Fe-Mn oxides state, sulfide state, sialic state and organic bound Fe in these coal samples. Among the various forms of these occurrences, the content of carbonate was the least, below 3.1%, while the content of sulfide was the dominant occurrence, ranging from 40% to 81.5%.

  10. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research. Quarterly technical progress report, April--June 1992

    SciTech Connect

    Not Available

    1992-12-01

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  11. Advanced NMR approaches in the characterization of coal

    SciTech Connect

    Maciel, G.E.

    1992-01-01

    The paper submitted earlier on the use of (bicyclo[3.2.1]4pyrrolidino-N-methyl-octan-8-one triflate) ([sup 13]CO-123) as a [sup 13]C intensity standard was accepted for publication. Subsequently, [sup 13]CO-321 was used in this manner for quantitative [sup 13]C CP-MAS NMR analysis (including spin counting) of Argonne Premium coals. The cross-polarization time constants, T[sub CH], and the rotating-frame proton spin-lattice relaxation times, T[sub 1p][sup H], were determined for each major peak of each coal via a combination of variable contact-time and variable spin-lock (T[sub 1p][sup H]) experiments. Two or three components of rotating-frame [sup 1]H relaxation decay and two or three components of T[sub CH] behavior were observed for each major [sup 13]C peak of each coal. These data were used to determine the number of carbon atoms detected in each coal; these values are in the range between 77% and 87% of the amount of carbon known to be in each coal from elemental analysis data, except for Pocahontas No. 3, for which only 50% of the carbon was detected. In an attempt to use [sup 1]H CRAMPS to elucidate chemical functionality in coal, pyridine-saturated samples of the Argonne Premium coals were examined in detail in terms of their [sup 1]H CRAMPS NMR spectra. These spectra were deconvoluted to yield relative concentrations for individual peaks.

  12. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993

    SciTech Connect

    Not Available

    1993-09-01

    Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

  13. Advanced Coal Conversion Process Demonstration Project. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    1996-06-01

    This detailed report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project. This U.S. Department of Energy (DOE) Clean Coal Technology Project demonstrates an advanced thermal coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to high-quality, low-sulfur fuel. During this reporting period, the primary focus for the project was to expand market awareness and acceptability for the products and the technology. The use of covered hopper cars has been successful and marketing efforts have focused on this technique. Operational improvements are currently aimed at developing fines marketing systems, increasing throughput capacity, decreasing operation costs, and developing standardized continuous operator training. Testburns at industrial user sites were also conducted. A detailed process description; technical progress report including facility operations/plant production, facility testing, product testing, and testburn product; and process stability report are included. 3 figs., 8 tabs.

  14. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1990-01-01

    a study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. This document is the eighth quarterly report prepared in accordance with the project reporting requirements covering the period from July 1,1990 to September 30, 1990. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. The data from the basic research on coal surfaces, bench scale testing and proof-of-concept scale testing will be utilized to design a final conceptual flowsheet. The economics of the flowsheet will be determined to enable industry to assess the feasibility of incorporating the advanced fine coal cleaning technology into the production of clean coal for generating electricity. 22 figs., 11 tabs.

  15. Extraction of Vanadium from Stone Coal by Microwave Assisted Sulfation Roasting

    NASA Astrophysics Data System (ADS)

    Wang, Mingyu; Xian, Pengfei; Wang, Xuewen; Li, Bowen

    2015-02-01

    The extraction of vanadium from stone coal was investigated by microwave-assisted sulfation roasting followed by water leaching. The results showed that this process is an effective method for the extraction of vanadium from stone coal. Microwave-assisted sulfation roasting promotes the reaction of sulfuric acid with vanadium oxides and decreases roasting time. Under optimized conditions (roasting temperature 200°C, heating rate of 10°C/min, 25% sulfuric acid addition, water leaching at 75°C for 1 h, and liquid/solid ratio of 1.5 ml/g), the leaching rate of vanadium reached 92.6%.

  16. Applications study of advanced power generation systems utilizing coal-derived fuels, volume 2

    NASA Astrophysics Data System (ADS)

    Robson, F. L.

    1981-03-01

    Technology readiness and development trends are discussed for three advanced power generation systems: combined cycle gas turbine, fuel cells, and magnetohydrodynamics. Power plants using these technologies are described and their performance either utilizing a medium-Btu coal derived fuel supplied by pipeline from a large central coal gasification facility or integrated with a gasification facility for supplying medium-Btu fuel gas is assessed.

  17. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    SciTech Connect

    Not Available

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  18. Applications study of advanced power generation systems utilizing coal-derived fuels, volume 2

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1981-01-01

    Technology readiness and development trends are discussed for three advanced power generation systems: combined cycle gas turbine, fuel cells, and magnetohydrodynamics. Power plants using these technologies are described and their performance either utilizing a medium-Btu coal derived fuel supplied by pipeline from a large central coal gasification facility or integrated with a gasification facility for supplying medium-Btu fuel gas is assessed.

  19. Cooperative research program in coal liquefaction

    SciTech Connect

    Huffman, G.P.; Sendlein, L.V.A.

    1990-01-01

    Cooperative research in coal liquefaction is presented. Topics include: Sulfate-promoted metal oxides as direct coal liquefaction catalysts; low temperature depolymerization and liquefaction of premium US coal samples; construction of continuous flow-through gas reactor for liquefaction investigations; examination of ferric sulfide as a liquefaction catalyst; generic structural characterization and liquefaction research; spectroscopic studies of coal macerals depolymerization catalyzed by iron chloride; characterization of catalysts used in coal hydrogenation systems; coal structure/liquefaction yield correlation by means of advanced NMR techniques; mass spectrometry of coal derived liquids: determination of molecular weight distributions; catalyst cracking, hydrogenation and liquefaction of coals under milder conditions; ENDOR investigations of coal liquefaction under mild conditions; direct determination of hydroaromatic structures in coal and coal conversion products by catalytic dehydrogenation; surface characterization of APCSB coals by XPS; computation chemistry of model compounds and molecular fragments of relevance to coal liquefaction; chemical characterization and hydrogenation reactions of single coal particles; the role of hydrogen during liquefaction using donor and non-donor solvents; solvent sorption and FTIR studies on the effect of catalytic depolymerization reactions in coal; bioprocessing of coal; chemical routes to breaking bonds: new approaches to low-temperature liquefaction; an investigation into the reactivity of isotetralin and tetralin using molecular orbital calculations; coal liquefaction modification for enhanced reactivity; catalytic hydropyrolysis and energized extraction of coals; gallium catalyst in mild coal liquefaction -- potential of temperature microscope in coal liquefaction; evaluation of nitride catalysts for hydrotreatment and coal liquefaction; and improved catalysts for coal liquefaction and coprocessing.

  20. Measurement and modeling of advanced coal conversion processes, Volume III

    SciTech Connect

    Ghani, M.U.; Hobbs, M.L.; Hamblen, D.G.

    1993-08-01

    A generalized one-dimensional, heterogeneous, steady-state, fixed-bed model for coal gasification and combustion is presented. The model, FBED-1, is a design and analysis tool that can be used to simulate a variety of gasification, devolatilization, and combustion processes. The model considers separate gas and solid temperatures, axially variable solid and gas flow rates, variable bed void fraction, coal drying, devolatilization based on chemical functional group composition, depolymerization, vaporization and crosslinking, oxidation, and gasification of char, and partial equilibrium in the gas phase.

  1. Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications

    SciTech Connect

    Smit, Frank J; Schields, Gene L; Jha, Mehesh C; Moro, Nick

    1997-09-26

    The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel™ column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications.

  2. Evaluation of a sequential extraction process used for determining mercury binding mechanisms to coal combustion byproducts

    SciTech Connect

    James D. Noel; Pratim Biswas; Daniel E. Giammar

    2007-07-15

    This study evaluated the selectivity and effectiveness of a sequential extraction process used to determine mercury binding mechanisms to various materials that are present in coal combustion byproducts. A six-step sequential extraction process was applied to laboratory-synthesized materials with known mercury concentrations and binding mechanisms. These materials were calcite, hematite, goethite, and titanium dioxide. Fly ash from a full-scale coal-fired power plant was also investigated. The concentrations of mercury were measured using inductively coupled plasma (ICP) mass spectrometry, whereas the major elements were measured by ICP atomic emission spectrometry. The materials were characterized by X-ray powder diffraction and scanning electron microscopy with energy dispersive spectroscopy. The sequential extraction procedure provided information about the solid phases with which mercury was associated in the solid sample. The procedure effectively extracted mercury from the target phases. The procedure was generally selective in extracting mercury. However, some steps in the procedure extracted mercury from nontarget phases, and others resulted in mercury redistribution. Iron from hematite and goethite was only leached in the reducible and residual extraction steps. Some mercury associated with goethite was extracted in the ion exchangeable step, whereas mercury associated with hematite was extracted almost entirely in the residual step. Calcium in calcite and mercury associated with calcite were primarily removed in the acidsoluble extraction step. Titanium in titanium dioxide and mercury adsorbed onto titanium dioxide were extracted almost entirely in the residual step. 42 refs., 13 figs., 2 tabs.

  3. [Study on modes of occurrence of bromine in coals using sequential chemical extraction procedure].

    PubMed

    Peng, Bing-Xian; Wu, Dai-She; Li, Ping

    2011-07-01

    Modes of occurrence of bromine in eight coals from Sichuan and Chongqing were studied using inductively coupled plasma spectrometry and sequential chemical extraction. The results showed that the bromine mainly occur the water-soluble, ion exchangeable, carbonate, Fe-Mn oxides and organic fraction in these coals, which average total extraction rate was 88.2%. In bituminous coal and anthracite, the mean relative amount was 22.3% and 20.0% for organic bromine, 14.0% and 19.2% for the bromine of carbonate bound and almost equal for the bromine from water soluble and Fe-Mn oxidizes. The ion exchangeable bromine may be mainly adsorbed to organic matter in these coals. The relative amount of bromine in various modes of occurrence may not be very closely related to its sedimentary environment during the formation of coal. Bromine in coals from Sichuan and Chongqing should be paid more attention because its potential leachable rate was 36.62% - 86.80% and potential leachable content was 7.092- 20.10 microg/g.

  4. Chemical and toxicological effects of medicinal Baccharis trimera extract from coal burning area.

    PubMed

    Menezes, Ana Paula S; da Silva, Juliana; Fisher, Camila; da Silva, Fernanda R; Reyes, Juliana M; Picada, Jaqueline N; Ferraz, Alice G; Corrêa, Dione S; Premoli, Suziane M; Dias, Johnny F; de Souza, Claudia T; Ferraz, Alexandre de B F

    2016-03-01

    The entire process of power generation, extraction, processing and use of coal strongly impact water resources, soil, air quality and biota leads to changes in the fauna and flora. Pollutants generated by coal burning have been contaminating plants that grow in area impacted by airborne pollution with high metal contents. Baccharis trimera is popularly consumed as tea, and is widely developed in Candiota (Brazil), one of the most important coal burning regions of the Brazil. This study aims to investigate the phytochemical profile, in vivo genotoxic and mutagenic potential of extracts of B. trimera collected from an exposed region to pollutants generated by coal burning (Candiota City) and other unexposed region (Bagé City), using the Comet assay and micronucleus test in mice and the Salmonella/microsome short-term assay. The HPLC analyses indicated higher levels of flavonoids and phenolic acids for B. trimera aqueous extract from Bagé and absence of polycyclic aromatic hydrocarbons for both extracts. The presence of toxic elements such as cobalt, nickel and manganese was statistically superior in the extract from Candiota. For the Comet assay and micronucleus test, the mice were treated with Candiota and Bagé B. trimera aqueous extracts (500-2000 mg/kg). Significant genotoxicity was observed at higher doses treated with B. trimera aqueous extract from Candiota in liver and peripheral blood cells. Micronuclei were not observed but the results of the Salmonella/microsome short-term assay showed a significant increase in TA98 revertants for B. trimera aqueous extract from Candiota. The extract of B. trimera from Candiota bioacumulated higher levels of trace elements which were associated with the genotoxic effects detected in liver and peripheral blood cells.

  5. Chemical and toxicological effects of medicinal Baccharis trimera extract from coal burning area.

    PubMed

    Menezes, Ana Paula S; da Silva, Juliana; Fisher, Camila; da Silva, Fernanda R; Reyes, Juliana M; Picada, Jaqueline N; Ferraz, Alice G; Corrêa, Dione S; Premoli, Suziane M; Dias, Johnny F; de Souza, Claudia T; Ferraz, Alexandre de B F

    2016-03-01

    The entire process of power generation, extraction, processing and use of coal strongly impact water resources, soil, air quality and biota leads to changes in the fauna and flora. Pollutants generated by coal burning have been contaminating plants that grow in area impacted by airborne pollution with high metal contents. Baccharis trimera is popularly consumed as tea, and is widely developed in Candiota (Brazil), one of the most important coal burning regions of the Brazil. This study aims to investigate the phytochemical profile, in vivo genotoxic and mutagenic potential of extracts of B. trimera collected from an exposed region to pollutants generated by coal burning (Candiota City) and other unexposed region (Bagé City), using the Comet assay and micronucleus test in mice and the Salmonella/microsome short-term assay. The HPLC analyses indicated higher levels of flavonoids and phenolic acids for B. trimera aqueous extract from Bagé and absence of polycyclic aromatic hydrocarbons for both extracts. The presence of toxic elements such as cobalt, nickel and manganese was statistically superior in the extract from Candiota. For the Comet assay and micronucleus test, the mice were treated with Candiota and Bagé B. trimera aqueous extracts (500-2000 mg/kg). Significant genotoxicity was observed at higher doses treated with B. trimera aqueous extract from Candiota in liver and peripheral blood cells. Micronuclei were not observed but the results of the Salmonella/microsome short-term assay showed a significant increase in TA98 revertants for B. trimera aqueous extract from Candiota. The extract of B. trimera from Candiota bioacumulated higher levels of trace elements which were associated with the genotoxic effects detected in liver and peripheral blood cells. PMID:26741544

  6. Environmentally sound thermal energy extraction from coal and wastes using high temperature air combustion technology

    SciTech Connect

    Yoshikawa, Kunio

    1999-07-01

    High temperature air combustion is one of promising ways of burning relatively low BTU gas obtained from gasification of low grade coal or wastes. In this report, the author proposes a new power generation system coupled with high temperature air gasification of coal/wastes and high temperature air combustion of the syngas from coal/wastes. This system is realized by employing Multi-staged Enthalpy Extraction Technology (MEET). The basic idea of the MEET system is that coal or wastes are gasified with high temperature air of about 1,000 C, then the generated syngas is cooled in a heat recovery boiler to be cleaned-up in a gas cleanup system (desulfurization, desalinization and dust removal). Part of thermal energy contained in this cleaned-up syngas is used for high temperature air preheating, and the complete combustion of the fuel gas is done using also high temperature air for driving gas turbines or steam generation in a boiler.

  7. Advances in Ammonia Removal from Hot Coal Gas

    SciTech Connect

    Jothimurugesan, K.; Gangwal, S.K.

    1996-12-31

    Nitrogen occurs in coal in the form of tightly bound organic ring compounds, typically at levels of 1 to 2 wt%. During coal gasification, this fuel bound nitrogen is released principally as ammonia (NH{sub 3}). When hot coal gas is used to generate electricity in integrated gasification combined cycle (IGCC) power plants, NH{sub 3} is converted to nitrogen oxides (NO{sub x}) which are difficult to remove and are highly undesirable as atmospheric pollutants. Similarly, while the efficiency of integrated gasification molten carbonate fuel cell (IGFC) power plants is not affected by NH{sub 3}, NO{sub x} is generated during combustion of the anode exhaust gas. Thus NH{sub 3} must be removed from hot coal gas before it can be burned in a turbine or fuel cell. The objective of this study is to develop a successful combination of an NH{sub 3} decomposition catalyst with a zinc-based mixed-metal oxide sorbent so that the sorbent-catalyst activity remains stable for NH{sub 3} decomposition in addition to H{sub 2}S removal under cycle sulfidation-regeneration conditions in the temperature range of 500 to 750{degrees}C.

  8. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 262 with Black Thunder subbituminous coal: Technical progress report

    SciTech Connect

    Not Available

    1992-09-01

    This report presents the results of Run 262 performed at the Advanced Coal Liquefaction R&D Facility in Wilsonville, Alabama. The run started on July 10, 1991 and continued until September 30, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Black Thunder Mine subbituminous coal (Wyodak-Anderson seam from Wyoming Powder River Basin). A dispersed molybdenum catalyst was evaluated for its performance. The effect of the dispersed catalyst on eliminating solids buildup was also evaluated. Half volume reactors were used with supported Criterion 324 1/16`` catalyst in the second stage at a catalyst replacement rate of 3 lb/ton of MF coal. The hybrid dispersed plus supported catalyst system was tested for the effect of space velocity, second stage temperature, and molybdenum concentration. The supported catalyst was removed from the second stage for one test period to see the performance of slurry reactors. Iron oxide was used as slurry catalyst at a rate of 2 wt % MF coal throughout the run (dimethyl disulfide (DMDS) was used as the sulfiding agent). The close-coupled reactor unit was on-stream for 1271.2 hours for an on-stream factor of 89.8% and the ROSE-SR unit was on-feed for 1101.6 hours for an on-stream factor of 90.3% for the entire run.

  9. Advanced concepts in coal liquefaction: Optimization of reactor configuration in coal liquefaction. Final report

    SciTech Connect

    Pradhan, V.R.; Comolli, A.G.; Lee, L.K.

    1994-11-01

    The overall objective of this Project was to find the ways to effectively reduce the cost of coal liquids to about dollar 25 per barrel of crude oil equivalent. The work described herein is primarily concerned with the testing at the laboratory scale of three reactor configuration concepts, namely (1) a fixed-bed plug-flow reactor as a ``finishing reactor`` in coal liquefaction, (2) three-stage well-mixed reactors in series, and (3) interstage stream concentration/product separation. The three reactor configurations listed above were tested during this project using a 20 cc tubing microreactor, a fixed-bed plug flow reactor, and a two-stage modified Robinson-Mahoney reactor system. The reactor schemes were first evaluated based on theoretical modelling studies, then experimentally evaluated at the microautoclave level and laboratory scale continuous operations. The fixed-bed ``finishing reactor`` concept was evaluated in both the upflow and the downflow modes of operation using a partially converted coal-solvent slurry as feed. For most of the testing of concepts at the microautoclave level, simulated coal, recycle oil, and slurry feedstocks were either specially prepared (to represent a specific state of coal/resid conversion) and/or obtained from HRI`s other ongoing bench-scale and PDU scale coal liquefaction experiments. The three-stage continuous stirred tank reactors (CSTR) and interstage product stream separation/concentration concepts were tested using a simulated three-stage CSTR system by employing a laboratory-scale ebullated-bed system and a modified version of the HRI`s existing Robinson-Mahoney fixed catalyst basket reactor system. This testing was conducted as a fourteen day long continuous run, divided into four Conditions to allow for a comparison of the new three-stage CSTR and interstage product concentration concepts with a two-stage CSTR baseline configuration.

  10. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992

    SciTech Connect

    Not Available

    1992-12-31

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  11. Advanced coal conversion process demonstration. Technical progress report, April 1--June 30, 1996

    SciTech Connect

    1997-10-01

    This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high moisture, low rank coals to a high quality, low sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the coal is put through a deep bed stratifier cleaning process to separate the pyrite rich ash from the coal. The SynCoal process enhances low rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,500 to 9,000 Btu/lb, by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. The 45 ton per hour unit is located adjacent to a unit train load out facility at Western Energy Company`s Rosebud coal mine near Colstrip, Montana. The demonstration plant is sized at about one-tenth the projected throughput of a multiple processing train commercial facility. During this report period the primary focus has been to continue the operation of the demonstration facility. Production has been going to area power plants. Modifications and maintenance work was also performed this quarter.

  12. Extraction and desulfurization of chemically degraded coal with supercritical fluids. Final report, July 1, 1983-December 1984

    SciTech Connect

    Chen, J.W.; Muchmore, C.B.; Kent, A.C.

    1985-03-01

    This report describes the progress made in the research entitled ''Extraction and Desulfurization of Chemically Degraded Coal with Supercritical Fluids.'' The desulfurization of coal, employing ethanol or methanol as solvent under supercritical conditions, has demonstrated its ability to selectively remove sulfur from the coal matrix. The objectives of the research are these: (1) to obtain rate data for supercritical extraction and desulfurization of coal, and to determine the desulfurization selectivity ratio for various coals; (2) to study the effect of chemical pretreatment of coal on desulfurization potential; and (3) to determine the characteristics of the desulfurized solid char and to measure and evaluate the liquid and gaseous streams. The experimental investigations have been carried out in two reactor systems, a semicontinuous reactor and a batch reactor. Experimental data obtained have indicated the following achievements: (1) the extraction and desulfurization of coal with supercritical ethanol is first order in nature, and the activation energies for coal extracted and sulfur removed are 30.3 and 21.0 Kcal, respectively; (2) the desulfurization selectivity ratio is found to be between 2.96 to 4.38 for four Illinois coal samples studied; (3) the effect of KOH pretreatment indicates an improvement of supercritical desulfurization potential; and (4) the evalution of product streams reveals that supercritical desulfurization generates a high Btu gas and coal-derived liquid in addition to the desulfurized solid product. 2 references, 5 tables, 9 figures.

  13. Characterization of mutagenic coal fly ash and extracts.

    PubMed

    Griest, W H; Caton, J E; Rao, T K; Harmon, S H; Yeatts, L B; Henderson, G M

    1982-11-01

    Post-electrostatic precipitator (ESP) fly ash samples were collected from a coal-fired electric power generation plant under three modes of plant operation: normal operation, a low NOx-emission mode of combustion, and operation with the ESP shorted-out. Results of chemical and physical characterization of the ashes were compared with bacterial mutagenicity bioassay to determine parameters or compounds correlating with bioactivity. The general physical properties, ultimate composition, and trace elemental and radiochemical species determined did not correlate with the mutagenicity. Only the presence of aromatic hydrocarbons and chemically derivatizable polar organic compounds appeared to be associated with mutagenicity of the fly ash.

  14. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

    1992-06-01

    This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

  15. Chemical kinetics and transport processes in supercritical fluid extraction of coal. Final report, August 10, 1990--December 30, 1992

    SciTech Connect

    McCoy, B.J.; Smith, J.M.; Wang, M.; Zhang, C.J.

    1993-02-01

    The overall objective of this project was to study the supercritical fluid extraction of hydrocarbons from coal. Beyond the practical concern of deriving products from coal, the research has provided insights into the structure, properties, and reactivities of coal. Information on engineering fundamentals of coal thermolysis and extraction, including physical and chemical processes, is presented in this final report. To accomplish the goals of the project we developed continuous-flow experiments for fixed-bed samples of coal that allow two types of analysis of the extract: continuous spectrophotometric absorbance measurements of the lumped concentration of extract, and chromatographic determinations of molecular-weight distributions as a function of time. Thermolysis of coal yields a complex mixture of many extract products whose molecular-weight distribution (MWD) varies with time for continuous-flow, semibatch experiments. The flow reactor with a differential, fixed bed of coal particles contacted by supercritical t-butanol was employed to provide dynamic MWD data by means of HPLC gel permeation chromatography of the extract. The experimental results, time-dependent MWDs of extract molecules, were interpreted by a novel mathematical model based on continuous-mixture kinetics for thermal cleavage of chemical bonds in the coal network. The parameters for the MWDs of extractable groups in the coal and the rate constants for one- and two-fragment reaction are determined from the experimental data. The significant effect of temperature on the kinetics of the extraction was explained in terms of one- and two-fragment reactions in the coal.

  16. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1990--June 1991

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  17. Engineering development of advanced coal-fired low-emission boiler system

    SciTech Connect

    Not Available

    1993-02-26

    The Pittsburgh Energy Technology Center of the US Department of Energy (DOE) has contracted with Combustion Engineering, Inc. (ABB CE) to perform work on the Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems'' Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis. The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: NO[sub x] emissions not greater than one-third NSPS; SO[sub x] emissions not greater than one-third NSPS; and particulate emissions not greater than one-half NSPS. The specific secondary objectives are: Improved ash disposability and reduced waste generation; reduced air toxics emissions; increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a commercial generation unit.

  18. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    1998-09-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 pm) clean coal. Economical dewatering of an ultra-fine clean-coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from July 1 - September 30, 1997.

  19. Advanced coal conversion process demonstration. Technical progress report for the period July 1, 1995--September 30, 1995

    SciTech Connect

    1997-05-01

    This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.

  20. Effect of coal mine dust and clay extracts on the biological activity of the quartz surface.

    PubMed

    Stone, V; Jones, R; Rollo, K; Duffin, R; Donaldson, K; Brown, D M

    2004-04-01

    Modification of the quartz surface by aluminium salts and metallic iron have been shown to reduce the biological activity of quartz. This study aimed to investigate the ability of water soluble extracts of coal mine dust (CMD), low aluminium clays (hectorite and montmorillonite) and high aluminium clays (attapulgite and kaolin) to inhibit the reactivity of the quartz surface. DQ12 induced significant haemolysis of sheep erythrocytes in vitro and inflammation in vivo as indicated by increases in the total cell numbers, neutrophil cell numbers, MIP-2 protein and albumin content of bronchoalveolar lavage (BAL) fluid. Treatment of DQ12 with CMD extract prevented both haemolysis and inflammation. Extracts of the high aluminium clays (kaolin and attapulgite) prevented inhibition of DQ12 induced haemolysis, and the kaolin extract inhibited quartz driven inflammation. DQ12 induced haemolysis by coal mine dust and kaolin extract could be prevented by pre-treatment of the extracts with a cation chellator. Extracts of the low aluminium clays (montmorillonite and hectorite) did not prevent DQ12 induced haemolysis, although the hectorite extract did prevent inflammation. These results suggest that CMD, and clays both low and rich in aluminium, all contain soluble components (possibly cations) capable of masking the reactivity of the quartz surface. PMID:15093271

  1. Coal extraction by aprotic dipolar solvents. Final report. [Tetramethylurea, hexa-methylphosphoramide

    SciTech Connect

    Sears, J T

    1985-12-01

    The overall goals of this project were to examine the rate and amount of extraction of coals at low temperature by a class of solvents with a generic structure to include tetramethylurea (TMU) and hexa-methylphosphoramide (HMPA) and to examine the nature of the extracted coal chemicals. The class of solvents with similar action, however, can be classified as aprotic, base solvents or, somewhat more broadly, specific solvents. The action of solvents by this last classification was then examined to postulate a mechanism of attack. Experimental work was conducted to explain the specific solvent attack including (1) pure solvent extraction, (2) extraction in mixtures with otherwise inert solvents and inhibitors, and (3) extraction with simultaneous catalytic enhancement attempts including water-gas shift conversion. Thus nuclear magnetic resonance (NMR) and gas-chromatograph mass spectrometer (GC-MS) analysis of extract molecules and extraction with high-pressure CO in TMU (plus 2% H2O) was performed. Effects of solvent additives such as cumene and quinone of large amounts of inert solvents such as tetralin, liminone, or carbon disulfide on extraction were also determined. Results are discussed. 82 refs., 36 figs., 37 tabs.

  2. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction

    SciTech Connect

    Chou, M.I.M.

    1991-01-01

    A pre-combustion coal desulfurization process at 120{degree}C using perchloroethylene (PCE) to remove up to 70% of the organic sulfur has been developed by the Midwest Ore Processing Co. (MWOPC). However, this process has not yet proven to be as successful with Illinois coals as it has for Ohio and Indiana coals. The organic sulfur removal has been achieved only with highly oxidized Illinois coals containing high sulfatic sulfur. A logical explanation for this observation is vital to successful process optimization for the use of Illinois coals. In addition, the high levels of organic sulfur removals observed by the MWOPC may be due to certain errors involved in the ASTM data interpretation; this needs verification. For example, elemental sulfur extracted by the PCE may be derived from pyrite oxidation during coal pre-oxidation, but it may be interpreted as organic sulfur removed by the PCE using ASTM analysis. The goals of this research are: (1) to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization process reported by the MWOPC, (2) to verify the forms-of-sulfur determination using the ASTM method for the PCE process evaluation, and (3) to determine the suitability of Illinois coals for use in the PCE desulfurization process. This project involves the Illinois State Geological Survey (ISGS), Eastern Illinois University (EIU), the University of Illinois-Urbana/Champaign (UI-UC), and the University of Kentucky, Lexington (UK). This is the first year of a two-year project.

  3. Cooperative research program in coal liquefaction

    SciTech Connect

    Huffman, G.P.; Sendlein, L.V.A.

    1991-01-01

    This report is a coordinated effort of the Consortium for Fossil Fuel Liquefaction Science. The topics concerning coal liquefaction discussed are: sulfate promoted metal oxides as direct coal liquefaction catalysts; low temperature depolymerization and liquefaction of premium R.S. coal samples; construction of continuous flow-through gas reactor for liquefaction investigations; generic structural characterization and liquefaction research; macerals, model compounds and iron catalyst dispersion; coal structure/liquefaction yield correlation by means of advanced NMR techniques; GC/MS of model compound mixtures; catalytic cracking, hydrogenation and liquefaction of coals under milder conditions; ENDOR investigations of coal liquefaction under mild conditions; catalytic dehydrogenation of model compounds in relation to direct coal liquefaction; surface characterization of catalyst added coal samples; computational chemistry of model compounds and molecular fragments of relevance to coal liquefaction; chemical characterization and hydrogenation reactions of single coal particles; thermolytic cleavage of selected coal-related linkages at mild temperatures; solvent sorption and FTIR studies on the effect of catalytic depolymerization reactions in coal; bioprocessing of coal; chemical routes to breaking bonds; novel liquefaction concepts cyclic olefins: novel new donors for coal liquefaction; better hydrogen transfer in coal liquefaction; catalytic hydropyrolysis and energized extraction of coals; gallium catalyst in mild coal liquefaction; potential of temperature microscope in coal liquefaction; evaluation of nitride catalysts for hydrotreatment and coal liquefaction; coprocessing and coal liquefaction with novel catalysts.

  4. Assessment of Metal Media Filters for Advanced Coal-Based Power Generation Applications

    SciTech Connect

    Alvin, M.A.

    2002-09-19

    Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. This paper reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion conditions.

  5. 78 FR 49061 - Valuation of Federal Coal for Advance Royalty Purposes and Information Collection Applicable to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... Applicable to All Solid Minerals Leases; Proposed Rule #0;#0;Federal Register / Vol. 78, No. 155 / Monday... Purposes and Information Collection Applicable to All Solid Minerals Leases AGENCY: Office of Natural... solid minerals leases and also are necessary to implement the EPAct Federal coal advance...

  6. Evaluation of air toxic emissions from advanced and conventional coal-fired power plants

    SciTech Connect

    Chu, P.; Epstein, M.; Gould, L.; Botros, P.

    1995-12-31

    This paper evaluates the air toxics measurements at three advanced power systems and a base case conventional fossil fuel power plant. The four plants tested include a pressurized fluidized bed combustor, integrated gasification combined cycle, circulating fluidized bed combustor, and a conventional coal-fired plant.

  7. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly report, April 1--June 30, 1997

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-12-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). Accomplishments during the quarter are described on the following tasks and subtasks: Development of near-term applications (engineering development and dewatering studies); Engineering development of selective agglomeration (bench-scale testing and process scale-up); PDU and advanced column flotation module (coal selection and procurement and advanced flotation topical report); Selective agglomeration module (module operation and clean coal production with Hiawatha, Taggart, and Indiana 7 coals); Disposition of the PDU; and Project final report. Plans for next quarter are discussed and agglomeration results of the three tested coals are presented.

  8. The fate of alkali species in advanced coal conversion systems

    SciTech Connect

    Krishnan, G.N.; Wood, B.J.

    1991-11-01

    The fate of species during coal combustion and gasification was determined experimentally in a fluidized bed reactor. A molecular-beam sampling mags spectrometer was used to identify and measure the concentration of vapor phase sodium species in the high temperature environment. Concurrent collection and analysis of the ash established the distribution of sodium species between gas-entrained and residual ash fractions. Two coals, Beulah Zap lignite and Illinois No. 6 bituminous, were used under combustion and gasification conditions at atmospheric pressure. Steady-state bed temperatures were in the range 800--950[degree]C. An extensive calibration procedure ensured that the mass spectrometer was capable of detecting sodium-containing vapor species at concentrations as low as 50 ppb. In the temperature range 800[degree] to 950[degree]C, the concentrations of vapor phase sodium species (Na, Na[sub 2]O, NaCl, and Na[sub 2]SO[sub 4]) are less than 0.05 ppm under combustion conditions with excess air. However, under gasification conditions with Beulah Zap lignite, sodium vapor species are present at about 14 ppm at a temperature of 820[degree]. Of this amount, NaCl vapor constitutes about 5 ppm and the rest is very likely NAOH. Sodium in the form of NaCl in coal enhances the vaporization of sodium species during combustion. Vapor phase concentration of both NaCl and Na[sub 2]SO[sub 4] increased when NaCl was added to the Beulah Zap lignite. Ash particles account for nearly 100% of the sodium in the coal during combustion in the investigated temperature range. The fine fly-ash particles (<10 [mu]m) are enriched in sodium, mainly in the form of sodium sulfate. The amount of sodium species in this ash fraction may be as high as 30 wt % of the total sodium. Sodium in the coarse ash particle phase retained in the bed is mainly in amorphous forms.

  9. Advanced NMR approaches in the characterization of coal

    SciTech Connect

    Maciel, G.E.

    1992-01-01

    A considerable effort in this project during the past few months has been focussed on the development of [sup 1]H and [sup 13]C NMR imaging techniques to yield spatially-resolved chemical shift (structure) information on coal. In order to yield the chemical shift information, a solid-state NMR imaging technique must include magic-angle spinning, so rotating gradient capabilities are indicated. A [sup 13]C MAS imaging probe and a [sup 1]H MAS imaging probe and the circuitry necessary for rotating gradients have been designed and constructed. The [sup 1]H system has already produced promising preliminary results, which are briefly described in this report.

  10. Selective enrichment of phenols from coal liquefaction oil by solid phase extraction method

    SciTech Connect

    Tian, M.; Feng, J.

    2009-07-01

    This study focuses on the solid phase extraction method for the enrichment and separation of phenol from coal liquefaction oil. The phenols' separation efficiency was compared on different solid phase extraction (SPE) cartridges, and the effect of solvents with different polarity and solubility parameter on amino-bonded silica was compared for selection of optimal elution solution. The result showed that amino-bonded silica has the highest selectivity and best extraction capability due to two factors, weak anion exchange adsorption and polar attraction adsorption.

  11. ENGINEERING DEVELOPMENT OF ADVANCED PHYSICAL FINE COAL CLEANING FOR PREMIUM FUEL APPLICATIONS

    SciTech Connect

    none,

    1997-06-01

    Bechtel, together with Amax Research and Development Center (Amax R&D), has prepared this study which provides conceptual cost estimates for the production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two scenarios are presented, one using column flotation technology and the other the selective agglomeration to clean the coal to the required quality specifications. This study forms part of US Department of Energy program "Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications," (Contract No. DE-AC22- 92PC92208), under Task 11, Project Final Report. The primary objective of the Department of Energy program is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb ash/MBtu (860 grams ash/GJ) of HHV and preferably less than 1 lb ash/MBtu (430 grams ash/GJ). The advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover not less than 80 percent of the carbon content (heating value) in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs does not exceed $2.5 /MBtu ($ 2.37/GJ), including the mine mouth cost of the raw coal. A further objective of the program is to determine the distribution of a selected suite of eleven toxic trace elements between product CWF and the refuse stream of the cleaning processes. Laboratory, bench-scale and Process Development Unit (PDU) tests to evaluate advanced column flotation and selective agglomeration were completed earlier under this program with selected coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at Amax R

  12. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 261 with Illinois No. 6 Burning Star Mine coal

    SciTech Connect

    Not Available

    1992-09-01

    This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R & D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

  13. AN ADVANCED CONTROL SYSTEM FOR FINE COAL FLOTATION

    SciTech Connect

    G.H. Luttrell; G.T. Adel

    1999-01-11

    A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on-line analysis of tailings ash content. Then, based on an on-line estimate of incremental ash, the pulp level is adjusted using a model-based control algorithm to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the eleventh quarter of this project, Task 7 (Operation and Testing) was nearly completed through the efforts of J.A. Herbst and Associates, Virginia Tech, and Pittston Coal Company. As a result of this work, a model-based control system has now been installed which can predict incremental ash based on tailings ash content and general plant data, and adjust pulp level accordingly to maintain a target incremental ash. The system has gone through a shake-down period, training has been carried out for plant operators, and the bulk of the control logic testing has been completed with the results of these tests awaiting analysis under Task 8 (System Evaluation). The flotation model has been shown to predict incremental ash quite successfully, implying that this approach may provide the basis for a useful ''soft sensor'' for on-line incremental ash analysis.

  14. AN ADVANCED CONTROL SYSTEM FOR FINE COAL FLOTATION

    SciTech Connect

    1998-10-25

    A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on-line analysis of tailings ash content. Then, based on an on-line estimate of incremental ash, the pulp level is adjusted using a model-based control algorithm to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the tenth quarter of this project, Task 6 (Equipment Procurement and Installation) was completed through the efforts of J.A. Herbst and Associates, Virginia Tech, Pittston Coal Company, and FGR Automation. As a result of this work, a model-based control system is now in place which can predict incremental ash based on tailings ash content and general plant data, and adjust pulp level accordingly to maintain a target incremental ash. Testing of this control system is expected to be carried out during the next quarter, and the results of this testing will be reported in the Eleventh Quarterly report. In addition, calibration of the video-based ash analyzer was continued and an extensive set of calibration data were obtained showing that the plant is running remarkably well under manual control. This may be a result of increased attention being paid to froth flotation as a result of this project.

  15. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1990-01-01

    An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. This is being accomplished by utilization the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate. 31 figs., 22 tabs.

  16. The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect

    Not Available

    1990-05-01

    The investigation of various Two-Stage Liquefaction (TSL) process configurations was conducted at the Wilsonville Advanced Coal Liquefaction R D Facility between July 1982 and September 1986. The facility combines three process units. There are the liquefaction unit, either thermal (TLU) or catalytic, for the dissolution of coal, the Critical Solvent Deashing unit (CSD) for the separation of ash and undissolved coal, and a catalytic hydrogenation unit (HTR) for product upgrading and recycle process solvent replenishment. The various TSL process configurations were created by changing the process sequence of these three units and by recycling hydrotreated solvents between the units. This report presents a description of the TSL configurations investigated and an analysis of the operating and performance data from the period of study. Illinois No. 6 Burning Star Mine coal Wyodak Clovis Point Mine coal were processed. Cobalt-molybdenum and disposable iron-oxide catalysts were used to improve coal liquefaction reactions and nickel-molybdenum catalysts were used in the hydrotreater. 28 refs., 31 figs., 13 tabs.

  17. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect

    Dady B. Dadyburjor; Mark E. Heavner; Manoj Katakdaunde; Liviu Magean; J. Joshua Maybury; Alfred H. Stiller; Joseph M. Stoffa; John W. Zondlo

    2006-08-01

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, and porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, hydrotreatment of solvent was completed in preparation for pitch fabrication for graphite electrodes. Coal digestion has lagged but is expected to be complete by next quarter. Studies are reported on coal dissolution, pitch production, foam synthesis using physical blowing agents, and alternate coking techniques.

  18. Advances in passive-remote and extractive Fourier transform infrared spectroscopic systems

    SciTech Connect

    Demirgian, J.C.; Hammer, C.; Hwang, E.; Mao, Zhuoxiong

    1993-10-01

    The Clean Air Act of 1990 requires the monitoring of air toxics including those from incinerator emissions. Continuous emission monitors (CEM) would demonstrate the safety of incinerators and address public concern about emissions of hazardous organic compounds. Fourier transform infrared (FTIR) spectroscopy can provide the technology for continuous emission monitoring of stacks. Stack effluent can be extracted and analyzed in less than one minute with conventional FTIR spectrometers. Passive-remote FTIR spectrometers can detect certain emission gases over 1 km away from a stack. The authors discuss advances in both extractive and passive-remote FTIR technology. Extractive systems are being tested with EPA protocols, which will soon replace periodic testing methods. Standard operating procedures for extractive systems are being developed and tested. Passive-remote FTIR spectrometers have the advantage of not requiring an extracted sample; however, they have less sensitivity. We have evaluated the ability of commercially available systems to detect fugitive plumes and to monitor carbon monoxide at a coal-fired power plant.

  19. Advances in passive-remote and extractive Fourier transform infrared systems

    SciTech Connect

    Demirgian, J.C.; Hammer, C.; Hwang, E.; Zhuoxiong Mao

    1993-07-01

    The Clean Air Act of 1990 requires the monitoring of air toxics including those from incinerator emissions. Continuous emission monitors (CEM) would demonstrate the safety of incinerators and address public concern about emissions of hazardous organic compounds. Fourier transform infrared (FTIR) spectroscopy can provide the technology for continuous emission monitoring of stacks. Stack effluent can be extracted and analyzed in under one minute with conventional FTIR spectrometers. Passive-remote FTIR spectrometers can detect certain emission gases over 1 km away from a stack. The authors will discuss advances in both extractive and passive-remote FTIR technology. Extractive systems are being tested with EPA protocols, which will soon replace periodic testing methods. Standard operating procedures for extractive systems are being developed and tested. Passive-remote FTIR spectrometers have the advantage of not requiring an extracted sample; however, they have less sensitivity. The authors have evaluated the ability of commercially available systems to detect fugitive plumes and to monitor carbon monoxide at a coal-fired power plant.

  20. Design manual for management of solid by-products from advanced coal technologies

    SciTech Connect

    1994-10-01

    Developing coal conversion technologies face major obstacles in byproduct management. This project has developed several management strategies based on field trials of small-scale landfills in an earlier phase of the project, as well as on published/unpublished sources detailing regulatory issues, current industry practice, and reuse opportunities. Field testing, which forms the basis for several of the disposal alternatives presented in this design manual, was limited to byproducts from Ca-based dry SO{sub 2} control technologies, circulating fluidized bed combustion ash, and bubbling bed fluidized bed combustion ash. Data on byproducts from other advanced coal technologies and on reuse opportunities are drawn from other sources (citations following Chapter 3). Field results from the 5 test cases examined under this project, together with results from other ongoing research, provide a basis for predictive modeling of long-term performance of some advanced coal byproducts on exposure to ambient environment. This manual is intended to provide a reference database and development plan for designing, permitting, and operating facilities where advanced coal technology byproducts are managed.

  1. An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies

    SciTech Connect

    Spencer, D.F.

    1997-12-31

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

  2. Microbial extraction of sulfur from model coal organosulfur compounds

    SciTech Connect

    Purdy, R.F.; Ward, B.; Lepo, J.E.

    1991-12-31

    Several hundred bacterial cultures isolated from a variety of natural sites were screened for their ability to desulfurize the model coal organosulfur compounds, dibenzothiophene (DBT) and DBT-sulfone. A sulfur-stress assay, in which DBT-sulfone was the only bioavailable source of sulfur, was used to screen and select for organisms that selectively desulfurized the organic-sulfur substrate. Only two new isolates, UMX9 and UMX3, and strain IGTS-8, a Rhodococcus rhodochrous provided by the Institute for Gas Technology (Chicago, USA.) as a reference culture, would grow on DBT or DBT-sulfone as a sole source of sulfur. Under sulfur-stress conditions, a desulfurized product identified as 2-hydroxybiphenyl (2-phenylphenol) was detected only for UMX9 and IGTS-8. Biodesulfurization activity for all three organisms occurred only for growing cultures, and was depressed by free sulfate, although more so for UMX3 and IGTS-8 than for UMX9. None of the three cultures exhibited good growth on DBT, DBT-sulfone, or 2-phenylphenol as sole sources of carbon. Taxonomic studies revealed UMX3 to be similar to IGTS-8, whereas UMX9 only exhibited Rhodococcus-like features. Comparative tests for carbohydrate utilization revealed that only UMX9 would grow on glucose, and that only IGTS-8 would grow on L-arabinose. Assays of biodesulfurization activity as a function of temperature or pH revealed further differences between UMX9 and UMX3/IGTS-8. Under optimized assay conditions for each organism, UMX9 exhibited up to 30% greater biodesulfurization activity than did IGTS-8 and UMX3, which were similar in activity.

  3. Extraction of potential pollutants from Ohio coal by synergistic use of supercritical fluids. Final report

    SciTech Connect

    Lee, S.

    1990-08-03

    A synergistic supercritical extraction process was developed and its feasibility demonstrated using a semi-batch extraction process unit. The process was found to be effective in selectively cleaning organic sulfur from Ohio coals. Optimal case involved a mixture of CO{sub 2}, H{sub 2}O, and CH{sub 3}OH, and the removal of organic sulfur ranged from 35 to 55%. Combined with pyrite and mineral matter removal by gravity, the resulting coals would have 20--30% increased heating values and SO{sub 2} emissions would be down to 1.2--1.5 pounds per million Btu, thus meeting compliance requirements. Estimated cleaning cost including pyrite removal is $25 to 45 per ton. The most important cost factor is the operation at high pressures.

  4. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, April--June 1993

    SciTech Connect

    Not Available

    1993-09-01

    Progress made in five areas of research is described briefly. The subtask in oil shale research is on oil shale process studies. For tar sand the subtask reported is on process development. Coal research includes the following subtasks: Coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes the following: Advanced process concepts; advanced mitigation concepts; oil and gas technology. Jointly sponsored research includes: Organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sup 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process;NMR analysis of samples from the ocean drilling program; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of Mowry formation shale from different sedimentary basins; solid-state NMR analysis of naturally and artificially matured kerogens; and development of effective method for the clean-up of natural gas.

  5. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Madhavi Nallani-Chakravartula; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2006-03-27

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

  6. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-06-08

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

  7. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-08-11

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the facility modifications for continuous hydrotreating, as well as developing improved protocols for producing synthetic pitches.

  8. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1993-02-12

    The Department of Energy (DOE) awarded a contract entitled Engineering Development of Advanced Physical Fine Coal Cleaning Technology - Froth Flotation'', to ICF Kaiser Engineers with the following team members, Ohio Coal Development Office, Babcock and Wilcox, Consolidation Coal Company, Eimco Process Equipment Company, Illinois State Geological Survey, Virginia Polytechnic Institute and State University, Process Technology, Inc. This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  9. Advanced coal-fueled gas turbine systems, Volume 1: Annual technical progress report

    SciTech Connect

    Not Available

    1988-07-01

    This is the first annual technical progress report for The Advanced Coal-Fueled Gas Turbine Systems Program. Two semi-annual technical progress reports were previously issued. This program was initially by the Department of Energy as an R D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular three-stage slagging combustor concept. Fuel-rich conditions inhibit NO/sub x/ formation from fuel nitrogen in the first stage; coal ash and sulfur is subsequently removed from the combustion gases by an impact separator in the second stage. Final oxidation of the fuel-rich gases and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage. 27 figs., 15 tabs.

  10. Advanced turbine design for coal-fueled engines

    SciTech Connect

    Wagner, J.H.; Johnson, B.V.

    1993-04-01

    The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

  11. High-yield hydrogen production by steam gasification of Hypercoal (ash-free coal extract) with potassium carbonate: comparison with raw coal

    SciTech Connect

    Jie Wang; Kinya Sakanishi; Ikuo Saito

    2005-10-01

    Steam gasification of the HyperCoals (ash-free coal extracts) with the physical addition of 5.8%-6.0% K{sub 2}CO{sub 3} was conducted at 1023 K on a thermogravimetric apparatus that was equipped with an on-line quadrupole mass spectrometer. The catalytic gasification of the HyperCoals demonstrated a much higher gasification rate than the catalytic gasification of the raw coals. Interactions of K{sub 2}CO{sub 3} with mineral matter in the raw coal formed water-insoluble potassium compounds, such as potassium aluminosilicates, and reduced the catalytic activity, whereas no such negative reactions occurred for the HyperCoals. The steam gasification of the HyperCoals with K{sub 2}CO{sub 3} was also determined to be favorable for the high-yield production of hydrogen. From these experimental results, the catalytic steam gasification of HyperCoal would potentially be a more efficient process for the production of hydrogen in the future. 30 refs., 6 figs., 2 tabs.

  12. Advanced coal liquefaction research: Technical progress report, October 1, 1986-December 31, 1986

    SciTech Connect

    Gall, W.; McIlvried, H.G. III

    1988-03-01

    This report describes studies made during the fourth quarter of 1986 using the revised microautoclave experimental technique. Studies were made of the effect of reaction time on conversion using Kemmerer coal. Results that, at least during the first 30 minutes, conversion is a monotonically increasing function of reaction time and temperature. A study was also made of the effect of temperature on conversion. In general, conversion increased with temperature. The reactivity of coal appears to be unaffected by exposure to Certigrav fluid, if the exposed coal is subjected to two acetone washings under a nitrogen blanket. Work was started on using SCR-II process solvent in place of tetralin. Results indicate that SRC-II process solvent is a satisfactory solvent donor for high reactivity, high ash bituminous coals, but slightly less effective for low ash, subbituminous coals. Some tests were made to examine the effect of operating the Soxlett extraction equipment at higher temperatures. In general, higher temperature operations gave product yields 2--4 wt% higher than the uninsulated columns. 2 refs., 8 figs., 39 tabs.

  13. Advanced coal-liquefaction research. Technical progress report, August 1, 1982-December 31, 1982

    SciTech Connect

    Not Available

    1983-07-01

    This report describes progress on the Advanced Coal-Liquefaction Project by the Gulf Research and Development Company's Merriam Laboratory. It was demonstrated that all oil products from the SRC II Processing of Powhatan No. 3 (Pittsburgh seam), Elkol-Sorensen or Belle Ayr coals boiling above 270/sup 0/C (518/sup 0/F) can be recycled to extinction. There was no loss in liquid yield, no increase in gas make and no significant change in hydrogen requirement. It has also been demonstrated that the net C/sub 5/-270/sup 0/C (518/sup 0/F) product is inactive in the Ames test and presumably poses substantially less threat than the conventional product as a potential carcinogen. The potential impact of coal cleaning and pyrite addition on liquefaction were determined with a high-reactivity Pittsburgh seam coal from the Ireland Mine. The results indicate that deep cleaning (to 6-8 wt % ash) by heavy media separation with add back of pyrite would give a better yield structure than the normal cleaning (to 12 wt % ash) envisioned for liquefaction plants. Screening of feedstocks for liquefaction processes was extended to the low-ash (5 wt % MF basis), subbituminous Elkol-Sorensen coal. Although the low ash content allowed increased recycle of bottoms product, the relatively low reactivity of the organic matrix resulted in a lower oil yield than with subbituminous Belle Ayr coal. A simulation of staged liquefaction was carried out by preparing filtrate in the SRC I mode and then studying the production of gas and distillate at lower temperature (420/sup 0/C, 788/sup 0/F) using a molybdenum emulsion catalyst. Distillate yields were low (29 wt %, based on MF coal) compared to single-stage, high temperature runs. Multiple-pass operations indicated no mechanistic barriers to high distillate yields although reaction rates were unacceptably low at the conditions employed in these preliminary experiments.

  14. Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1

    SciTech Connect

    Not Available

    1993-05-01

    This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

  15. Advanced coal liquefaction research. Quarterly technical progress report, January 1-March 31, 1983

    SciTech Connect

    Not Available

    1983-12-01

    This report describes progress on the Advanced Coal Liquefaction project by the Gulf Research and Development Company's Merriam Laboratory during the months of January through March 1983. The liquefaction behavior of Illinois No. 6 coal beneficiated in various ways was studied in both single-stage recycle (SRC II) and short contact time (SCT) modes of operation. The distillate yield increased as the iron level in the feed slurry increased in both modes of operation. In the SCT mode, the conversion increased at greater depths of cleaning. In the SRC II mode, the distillate yield and conversion were much higher with deep cleaning and add-back of pyrite than with conventional cleaning. Pyrite addition resulted in a significant increase in short contact time conversion of subbituminous Belle Ayr coal in both high and low quality solvents. Solvent quality itself, however, had little effect on conversion. With Loveridge coal, the hydrocarbon gas yield and conversion decreased as the residence time was reduced in the range of 3 to 8 minutes. The bottoms product was filterable only at residence times of 6 minutes or greater. Addition of a small amount of nickel to a molybdenum emulsion catalyst improved yields slightly with Belle Ayr coal in the SRC II mode. Higher levels of nickel resulted in the same oil yield as with none at all.

  16. Advanced coal-fueled industrial cogeneration gas turbine system: Hot End Simulation Rig

    SciTech Connect

    Galica, M.A.

    1994-02-01

    This Hot End Simulation Rig (HESR) was an integral part of the overall Solar/METC program chartered to prove the technical, economic, an environmental feasibility of a coal-fueled gas turbine, for cogeneration applications. The program was to culminate in a test of a Solar Centaur Type H engine system operated on coal slurry fuel throughput the engine design operating range. This particular activity was designed to verify the performance of the Centaur Type H engine hot section materials in a coal-fired environment varying the amounts of alkali, ash, and sulfur in the coal to assess the material corrosion. Success in the program was dependent upon the satisfactory resolution of several key issues. Included was the control of hot end corrosion and erosion, necessary to ensure adequate operating life. The Hot End Simulation Rig addressed this important issue by exposing currently used hot section turbine alloys, alternate alloys, and commercially available advanced protective coating systems to a representative coal-fueled environment at turbine inlet temperatures typical of Solar`s Centaur Type H. Turbine hot end components which would experience material degradation include the transition duct from the combustor outlet to the turbine inlet, the shroud, nozzles, and blades. A ceramic candle filter vessel was included in the system as the particulate removal device for the HESR. In addition to turbine material testing, the candle material was exposed and evaluated. Long-term testing was intended to sufficiently characterize the performance of these materials for the turbine.

  17. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal

    SciTech Connect

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

  18. Carbon formation and metal dusting in advanced coal gasification processes

    SciTech Connect

    DeVan, J.H.; Tortorelli, P.F.; Judkins, R.R.; Wright, I.G.

    1997-02-01

    The product gases generated by coal gasification systems contain high concentrations of CO and, characteristically, have relatively high carbon activities. Accordingly, carbon deposition and metal dusting can potentially degrade the operation of such gasifier systems. Therefore, the product gas compositions of eight representative gasifier systems were examined with respect to the carbon activity of the gases at temperatures ranging from 480 to 1,090 C. Phase stability calculations indicated that Fe{sub 3}C is stable only under very limited thermodynamic conditions and with certain kinetic assumptions and that FeO and Fe{sub 0.877}S tend to form instead of the carbide. As formation of Fe{sub 3}C is a necessary step in the metal dusting of steels, there are numerous gasifier environments where this type of carbon-related degradation will not occur, particularly under conditions associated with higher oxygen and sulfur activities. These calculations also indicated that the removal of H{sub 2}S by a hot-gas cleanup system may have less effect on the formation of Fe{sub 3}C in air-blown gasifier environments, where the iron oxide phase can exist and is unaffected by the removal of sulfur, than in oxygen-blown systems, where iron sulfide provides the only potential barrier to Fe{sub 3}C formation. Use of carbon- and/or low-alloy steels dictates that the process gas composition be such that Fe{sub 3}C cannot form if the potential for metal dusting is to be eliminated. Alternatively, process modifications could include the reintroduction of hydrogen sulfide, cooling the gas to perhaps as low as 400 C and/or steam injection. If higher-alloy steels are used, a hydrogen sulfide-free gas may be processed without concern about carbon deposition and metal dusting.

  19. An Advanced Control System for Fine Coal Floatation

    SciTech Connect

    Luttrell, G H; Adel, G T

    1998-06-01

    A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on-line analysis of ash content. Then, based on the economic and metallurgical performance of the circuit, variables such as collector dosage, frother dosage, and pulp level are adjusted using model-based control algorithms to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the eighth quarter of this project, the analysis of data collected during Task 2 (Sampling and Data Analysis) was completed, and significant progress was made on Task 3 (Model Building and Computer Simulation). Previously, a plant sampling campaign had been conducted at Pittston's Moss No. 3 preparation plant to provide data for the development of a mathematical process model and a model-based control system. During this campaign, a one-half factorial design experiment, blocked into low and high feed rates, was conducted to investigate the effects of collector, frother, and pulp level on model parameters. In addition, samples were collected during the transient period following each change in the manipulated variables to provide data for confirmation of the dynamic process simulator. A residence time distribution (RTD) test was also conducted to estimate the mean residence time. This is a critical piece of information since no feed flowrate measurement is available, and the mean residence time can be used to estimate the feed flowrate. Feed samples were taken at timed intervals and floated in a laboratory flotation cell to investigate the magnitude of feed property disturbances and their duration.

  20. An Advanced Control System For Fine Coal Flotation

    SciTech Connect

    G. H. Luttrell; G. T. Adel

    1998-08-25

    A model-based flotation control scheme is being implemented to achieve optimal performance in the handling and treatment of fine coal. The control scheme monitors flotation performance through on-line analysis of ash content. Then, based on the economic and metallurgical performance of the circuit, variables such as collector dosage, frother dosage, and pulp level are adjusted using model-based control algorithms to compensate for feed variations and other process disturbances. Recent developments in sensor technology are being applied for on-line determination of slurry ash content. During the ninth quarter of this project, Task 3 (Model Building and Computer Simulation) and Task 4 (Sensor Testing) were nearly completed, and Task 6 (Equipment Procurement and Installation) was initiated. Previously, data collected from the plant sampling campaign (Task 2) were used to construct a population balance model to describe the steady-state and dynamic behavior of the flotation circuit. The details of this model were presented in the Eighth Quarterly Technical Progress Report. During the past quarter, a flotation circuit simulator was designed and used to evaluate control strategies. As a result of this work, a model-based control strategy has been conceived which will allow manipulated variables to be adjusted in response to disturbances to achieve a target incremental ash value in the last cell of the bank. This will, in effect, maximize yield at an acceptable product quality. During this same period, a video-based ash analyzer was installed on the flotation tailings stream at the Moss No. 3 preparation plant. A preliminary calibration curve was established, and data are continuing to be collected in order to improve the calibration of the analyzer.

  1. Evaluation of a sequential extraction process used for determining mercury binding mechanisms to coal combustion byproducts.

    PubMed

    Noel, James D; Biswas, Pratim; Giammar, Daniel E

    2007-07-01

    Leaching of mercury from coal combustion byproducts is a concern because of the toxicity of mercury. Leachability of mercury can be assessed by using sequential extraction procedures. Sequential extraction procedures are commonly used to determine the speciation and mobility of trace metals in solid samples and are designed to differentiate among metals bound by different mechanisms and to different solid phases. This study evaluated the selectivity and effectiveness of a sequential extraction process used to determine mercury binding mechanisms to various materials. A six-step sequential extraction process was applied to laboratory-synthesized materials with known mercury concentrations and binding mechanisms. These materials were calcite, hematite, goethite, and titanium dioxide. Fly ash from a full-scale power plant was also investigated. The concentrations of mercury were measured using inductively coupled plasma (ICP) mass spectrometry, whereas the major elements were measured by ICP atomic emission spectrometry. The materials were characterized by X-ray powder diffraction and scanning electron microscopy with energy dispersive spectroscopy. The sequential extraction procedure provided information about the solid phases with which mercury was associated in the solid sample. The procedure effectively extracted mercury from the target phases. The procedure was generally selective in extracting mercury. However, some steps in the procedure extracted mercury from nontarget phases, and others resulted in mercury redistribution. Iron from hematite and goethite was only leached in the reducible and residual extraction steps. Some mercury associated with goethite was extracted in the ion exchangeable step, whereas mercury associated with hematite was extracted almost entirely in the residual step. Calcium in calcite and mercury associated with calcite were primarily removed in the acid-soluble extraction step. Titanium in titanium dioxide and mercury adsorbed onto

  2. Distribution of chlorine in coal

    SciTech Connect

    Zhao Fenghua; Ren Deyi; Zhang Shuangquan; Zhang Wang

    1998-12-31

    The current advance of study on chlorine in coal is reviewed. The concentrations of chlorine in 45 Chinese coal samples are determined on whole coal basis using instrumental neutron activation analysis (INAA). The sequential chemical extraction method is put forward to determine the occurrence modes of chlorine in coal. The research shows that Chinese coals are not chlorine-rich ones compared with those from other countries. In coal from Pingshuo Antaibao Opencast Mine, 46.70%--91.78% of chlorine is in a water-soluble state, 5.20%--48.38% of it is organic chlorine bonded to coal molecules, and only 4.92%--18.78% is an organic one in an ion-exchange state; the proportions of organic chlorine increase with the decrease in ash of coal.

  3. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1992-01-01

    In order to develop additional confidence in the conceptual design of the advanced froth flotation circuit, a 2-3 TPH Proof-of-Concept (POC) facility was necessary. During operation of this facility, the ICF KE team will demonstrate the ability of the conceptual flowsheets to meet the program goals of maximum pyritic sulfur reduction coupled with maximum energy recovery on three DOE specified coals. The POC circuit was designed to be integrated into the Ohio Coal Development's facility near Beverly, Ohio. OCDO's facility will provide the precleaning unit operations and ICF KE will add the advanced froth flotation circuitry. The work in this task will include the POC conceptual design, flowsheet development, equipment list, fabrication and construction drawings, procurement specifications and bid packages and a facilities.

  4. Forecast of long term coal supply and mining conditions: Model documentation and results

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A coal industry model was developed to support the Jet Propulsion Laboratory in its investigation of advanced underground coal extraction systems. The model documentation includes the programming for the coal mining cost models and an accompanying users' manual, and a guide to reading model output. The methodology used in assembling the transportation, demand, and coal reserve components of the model are also described. Results presented for 1986 and 2000, include projections of coal production patterns and marginal prices, differentiated by coal sulfur content.

  5. Advanced integrated solvent extraction and ion exchange systems

    SciTech Connect

    Horwitz, P.

    1996-10-01

    Advanced integrated solvent extraction (SX) and ion exchange (IX) systems are a series of novel SX and IX processes that extract and recover uranium and transuranics (TRUs) (neptunium, plutonium, americium) and fission products {sup 90}Sr, {sup 99}Tc, and {sup 137}Cs from acidic high-level liquid waste and that sorb and recover {sup 90}Sr, {sup 99}Tc, and {sup 137}Cs from alkaline supernatant high-level waste. Each system is based on the use of new selective liquid extractants or chromatographic materials. The purpose of the integrated SX and IX processes is to minimize the quantity of waste that must be vitrified and buried in a deep geologic repository by producing raffinates (from SX) and effluent streams (from IX) that will meet the specifications of Class A low-level waste.

  6. Aspects of the environmental geology of coal extraction in South Africa

    SciTech Connect

    Thamm, A.G.

    1996-12-31

    Existing areas of regulatory intervention in South Africa, related to coal extraction, are discard and stockpile burning (low level air pollution), acid rock drainage (water pollution) and landscape and mine rehabilitation. These impacts are managed in terms of the Minerals Act (No. 50 of 1991) and its subsequent amendments. Exploration and mining companies (at any scale or size) are required to prepare Environmental Management Programme Reports (EMPR) in terms of existing legislation. The submission and approval of an EMPR results in site-specific legal obligations for which the mining company must make pecuniary provision. Individual coal producers have led the mining industry in the establishment of trusts to fund such rehabilitation. River catchment areas in the Mpumalanga Province and in northern KwaZulu Natal have suffered serious water quality deterioration as a result of polluted water emanating from abandoned coal mines. The relatively small household coal sector has health impacts out of proportion with its size, with the attendant increases in health risk clearly documented. Economic geologists have been concerned with the proving of non-renewable resources and management and production of reserves once mining commences. Mining investment decisions are increasingly influenced by the necessity to rehabilitate mined out areas and manage environmental impact. Understanding potential cost, at the end of the mining project cycle is as significant as understanding the genesis or value of a deposit. Site specific examples of typical South African problems will be presented.

  7. Advanced coal liquefaction research. Technical progress report, January 1, 1983-December 31, 1983

    SciTech Connect

    Not Available

    1984-05-01

    The most significant work this year involved two methods of improving product quality which advanced the SRC II process far beyond that envisioned for the original demonstration plant. With both bituminous and subbituminous feedstocks, all distillate product boiling above 345/sup 0/C (653/sup 0/F) was recycled to extinction without loss of total oil yield or significant increase in hydrogen consumption. In a further refinement, all of the overhead from the high temperature, high pressure separator was passed through a vapor-phase hydrotreater. This resulted in a dramatic improvement in product quality. A proportional blend of distillate product contained less than 1 ppM of nitrogen. Total oil yield was similar to the low quality product produced in the conventional SRC II process. A large number of multiple-stage liquefaction experiments were carried out to better understand each step in the process. These included 3-stage operations; dissolution, hydrogenation and hydrocracking; and several variations of 2-stage processes. Variables investigated were temperature and residence time in each stage and both slurry and fixed-bed catalyst systems. The effect of residence time on conversion in single pass experiments was found to be quite different for the subbituminous Belle Ayr Mine and bituminous Illinois No. 6 coals studied. With bituminous coal, conversion to soluble material was quite high and the limit of conversion was approached in only a few minutes. With a subbituminous coal, however, conversion was much lower and the limit of conversion was approached much more slowly. In other work, the liquefaction of Illinois No. 6 coal beneficiated in various ways was studied in both SRC II and short contact time modes of operation. Additional short contact time experiments explored the effects of solvent quality and catalysts with Belle Ayr coal and the effects of residence time with Loveridge coal. 32 figures, 8 tables.

  8. The use of solvent extractions and solubility theory to discern hydrocarbon associations in coal, with application to the coal-supercritical CO2 system

    USGS Publications Warehouse

    Kolak, Jonathan J.; Burruss, Robert A.

    2014-01-01

    Samples of three high volatile bituminous coals were subjected to parallel sets of extractions involving solvents dichloromethane (DCM), carbon disulfide (CS2), and supercritical carbon dioxide (CO2) (40 °C, 100 bar) to study processes affecting coal–solvent interactions. Recoveries of perdeuterated surrogate compounds, n-hexadecane-d34 and four polycyclic aromatic hydrocarbons (PAHs), added as a spike prior to extraction, provided further insight into these processes. Soxhlet-DCM and Soxhlet-CS2 extractions yielded similar amounts of extractable organic matter (EOM) and distributions of individual hydrocarbons. Supercritical CO2 extractions (40 °C, 100 bar) yielded approximately an order of magnitude less EOM. Hydrocarbon distributions in supercritical CO2 extracts generally mimicked distributions from the other solvent extracts, albeit at lower concentrations. This disparity increased with increasing molecular weight of target hydrocarbons. Five- and six-ring ring PAHs generally were not detected and no asphaltenes were recovered in supercritical CO2 extractions conducted at 40 °C and 100 bar. Supercritical CO2 extraction at elevated temperature (115 °C) enhanced recovery of four-ring and five-ring PAHs, dibenzothiophene (DBT), and perdeuterated PAH surrogate compounds. These results are only partially explained through comparison with previous measurements of hydrocarbon solubility in supercritical CO2. Similarly, an evaluation of extraction results in conjunction with solubility theory (Hildebrand and Hansen solubility parameters) does not fully account for the hydrocarbon distributions observed among the solvent extracts. Coal composition (maceral content) did not appear to affect surrogate recovery during CS2 and DCM extractions but might affect supercritical CO2 extractions, which revealed substantive uptake (partitioning) of PAH surrogates into the coal samples. This uptake was greatest in the sample (IN-1) with the highest vitrinite content. These

  9. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect

    Elliot B. Kennel; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-04-13

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. Table 1 provides an overview of the major markets for carbon products. Current sources of materials for these processes generally rely on petroleum distillation products or coal tar distillates obtained as a byproduct of metcoke production facilities. In the former case, the American materials industry, just as the energy industry, is dependent upon foreign sources of petroleum. In the latter case, metcoke production is decreasing every year due to the combined difficulties associated with poor economics and a significant environmental burden. Thus, a significant need exists for an environmentally clean process which can used domestically obtained raw materials and which can still be very competitive economically.

  10. Sequential solvent extraction for the modes of occurrence of selenium in coals of different ranks from the Huaibei Coalfield, China

    USGS Publications Warehouse

    Zhang, Y.; Liu, Gaisheng; Chou, C.-L.; Wang, L.; Kang, Y.

    2007-01-01

    Forms of selenium in bituminous coal, anthracite, and cokeite (natural coke) from Huaibei Coalfield, Anhui, China, have been determined by sequential solvent extraction. The selenium content in bulk samples is 4.0, 2.4, and 2.0 ??g/g in bituminous coal, anthracite, and cokeite, respectively. The six forms of selenium determined by six-step solvent extraction are water-leachable, ion-exchangeable, organic matter-associated, carbonate-associated, silicate-associated, and sulfide-associated. The predominant forms of selenium in bituminous coal are organic matter-associated (39.0%), sulfide-associated (21.1%), and silicate bound (31.8%); these three forms account for 92% of the total. The organic matter bound-selenium decrease dramatically from bituminous coal (39.0%) to anthracite (11.6%) and to cokeite (0%), indicating that organic matter bound selenium is converted to other forms during metamorphism of the coal, most likely sulfide-form. The sulfide-associated form increased remarkably from bituminous coal (21.1%) to anthracite (50.4%) and cokeite (54.5%), indicating the formation of selenium sulfide, possibly in pyrite during the transformation of bituminous coal to anthracite and cokeite. The silicate-associated selenium in bituminous coal (31.8%) is much higher than that in anthracite (16.4%) and cokeite (15.8%), indicating that silicate-associated selenium is partly converted to sulfide during metamorphism. ?? 2007 Zhang et al; licensee BioMed Central Ltd.

  11. Sequential solvent extraction for the modes of occurrence of selenium in coals of different ranks from the Huaibei Coalfield, China.

    PubMed

    Zhang, Ying; Liu, Guijian; Chou, Chen-Lin; Wang, Lei; Kang, Yu

    2007-12-20

    Forms of selenium in bituminous coal, anthracite, and cokeite (natural coke) from Huaibei Coalfield, Anhui, China, have been determined by sequential solvent extraction. The selenium content in bulk samples is 4.0, 2.4, and 2.0 microg/g in bituminous coal, anthracite, and cokeite, respectively. The six forms of selenium determined by six-step solvent extraction are water-leachable, ion-exchangeable, organic matter-associated, carbonate-associated, silicate-associated, and sulfide-associated. The predominant forms of selenium in bituminous coal are organic matter-associated (39.0%), sulfide-associated (21.1%), and silicate bound (31.8%); these three forms account for 92% of the total. The organic matter bound-selenium decrease dramatically from bituminous coal (39.0%) to anthracite (11.6%) and to cokeite (0%), indicating that organic matter bound selenium is converted to other forms during metamorphism of the coal, most likely sulfide-form. The sulfide-associated form increased remarkably from bituminous coal (21.1%) to anthracite (50.4%) and cokeite (54.5%), indicating the formation of selenium sulfide, possibly in pyrite during the transformation of bituminous coal to anthracite and cokeite. The silicate-associated selenium in bituminous coal (31.8%) is much higher than that in anthracite (16.4%) and cokeite (15.8%), indicating that silicate-associated selenium is partly converted to sulfide during metamorphism.

  12. Sequential solvent extraction for the modes of occurrence of selenium in coals of different ranks from the Huaibei Coalfield, China.

    PubMed

    Zhang, Ying; Liu, Guijian; Chou, Chen-Lin; Wang, Lei; Kang, Yu

    2007-01-01

    Forms of selenium in bituminous coal, anthracite, and cokeite (natural coke) from Huaibei Coalfield, Anhui, China, have been determined by sequential solvent extraction. The selenium content in bulk samples is 4.0, 2.4, and 2.0 microg/g in bituminous coal, anthracite, and cokeite, respectively. The six forms of selenium determined by six-step solvent extraction are water-leachable, ion-exchangeable, organic matter-associated, carbonate-associated, silicate-associated, and sulfide-associated. The predominant forms of selenium in bituminous coal are organic matter-associated (39.0%), sulfide-associated (21.1%), and silicate bound (31.8%); these three forms account for 92% of the total. The organic matter bound-selenium decrease dramatically from bituminous coal (39.0%) to anthracite (11.6%) and to cokeite (0%), indicating that organic matter bound selenium is converted to other forms during metamorphism of the coal, most likely sulfide-form. The sulfide-associated form increased remarkably from bituminous coal (21.1%) to anthracite (50.4%) and cokeite (54.5%), indicating the formation of selenium sulfide, possibly in pyrite during the transformation of bituminous coal to anthracite and cokeite. The silicate-associated selenium in bituminous coal (31.8%) is much higher than that in anthracite (16.4%) and cokeite (15.8%), indicating that silicate-associated selenium is partly converted to sulfide during metamorphism. PMID:18093341

  13. Sequential solvent extraction for the modes of occurrence of selenium in coals of different ranks from the Huaibei Coalfield, China

    PubMed Central

    Zhang, Ying; Liu, Guijian; Chou, Chen-Lin; Wang, Lei; Kang, Yu

    2007-01-01

    Forms of selenium in bituminous coal, anthracite, and cokeite (natural coke) from Huaibei Coalfield, Anhui, China, have been determined by sequential solvent extraction. The selenium content in bulk samples is 4.0, 2.4, and 2.0 μg/g in bituminous coal, anthracite, and cokeite, respectively. The six forms of selenium determined by six-step solvent extraction are water-leachable, ion-exchangeable, organic matter-associated, carbonate-associated, silicate-associated, and sulfide-associated. The predominant forms of selenium in bituminous coal are organic matter-associated (39.0%), sulfide-associated (21.1%), and silicate bound (31.8%); these three forms account for 92% of the total. The organic matter bound-selenium decrease dramatically from bituminous coal (39.0%) to anthracite (11.6%) and to cokeite (0%), indicating that organic matter bound selenium is converted to other forms during metamorphism of the coal, most likely sulfide-form. The sulfide-associated form increased remarkably from bituminous coal (21.1%) to anthracite (50.4%) and cokeite (54.5%), indicating the formation of selenium sulfide, possibly in pyrite during the transformation of bituminous coal to anthracite and cokeite. The silicate-associated selenium in bituminous coal (31.8%) is much higher than that in anthracite (16.4%) and cokeite (15.8%), indicating that silicate-associated selenium is partly converted to sulfide during metamorphism. PMID:18093341

  14. Genotoxic Evaluation of Mikania laevigata Extract on DNA Damage Caused by Acute Coal Dust Exposure

    SciTech Connect

    Freitas, T.P.; Heuser, V.D.; Tavares, P.; Leffa, D.D.; da Silva, G.A.; Citadini-Zanette, V.; Romao, P.R.T.; Pinho, R.A.; Streck, E.L.; Andrade,V.M.

    2009-06-15

    We report data on the possible antigenotoxic activity of Mikania laevigata extract (MLE) after acute intratracheal instillation of coal dust using the comet assay in peripheral blood, bone marrow, and liver cells and the micronucleus test in peripheral blood of Wistar rats. The animals were pretreated for 2 weeks with saline solution (groups 1 and 2) or MLE (100 mg/kg) (groups 3 and 4). On day 15, the animals were anesthetized with ketamine (80 mg/kg) and xylazine (20 mg/kg), and gross mineral coal dust (3 mg/0.3 mL saline) (groups 2 and 4) or saline solution (0.3 mL) (groups 1 and 3) was administered directly in the lung by intratracheal administration. Fifteen days after coal dust or saline instillation, the animals were sacrificed, and the femur, liver, and peripheral blood were removed. The results showed a general increase in the DNA damage values at 8 hours for all treatment groups, probably related to surgical procedures that had stressed the animals. Also, liver cells from rats treated with coal dust, pretreated or not with MLE, showed statistically higher comet assay values compared to the control group at 14 days after exposure. These results could be expected because the liver metabolizes a variety of organic compounds to more polar by-products. On the other hand, the micronucleus assay results did not show significant differences among groups. Therefore, our data do not support the antimutagenic activity of M. laevigata as a modulator of DNA damage after acute coal dust instillation.

  15. Advanced coal liquefaction research. Technical progress report, January 1-April 30, 1984

    SciTech Connect

    Not Available

    1984-07-01

    The significant improvement in product quality reported last year for bituminous and subbituminous coals has been demonstrated with lignite. As discussed previously, use of a vapor-phase hydrotreater and recycle of all heavy distillate advances the SRC II process far beyond that envisioned for the original demonstration plant. As with the other coal ranks, all net distillate product from the lignite boils below 345/sup 0/C (653/sup 0/F) and has a nitrogen concentration on the order of 1 ppM. It was also confirmed that the Texas Big Brown lignite can be processed successfully in this mode without added catalyst. Both subbituminous Belle Ayr and bituminous Illinois No. 6 coals were processed in an integrated two-stage mode, without depressurization or solids separation between stages. Operation was relatively smooth with a fixed-bed second stage employing a high-void-volume (star-shaped) catalyst support, which was operated upflow. There was no evidence that H/sub 2/S addition improved yields with Belle Ayr coal and added pyrite or that H/sub 2/S could be used in place of pyrite to catalyze the reaction. 84 figures, 6 tables.

  16. Development of advanced capitalism: a case study of retired coal miners in southern West Virginia

    SciTech Connect

    Legeay, S.P.

    1980-01-01

    This dissertation develops a critical analysis of changes in American society during the last fifty years. It is focused in particular on the southern West Virginia coal fields, and examines the changes in class structure (specifically, coal miners), the labor process, the union, class consciousness, community and leisure. The study is grounded within a theoretical perspective that is dialectical. It is concerned with the interaction between specific social categories (such as the union) and the greater whole of capitalist development. It is centrally concerned with continuing a research orientation to which the Frankfurt School gave a powerful contribution: the development of advanced capitalism in the modern epoch. The study utilizes life-history interviews with retired coal miners, almost all of whom had experience with the exploitive company towns of an earlier time. Thus, techniques for the study of oral history are instrumental in developing an analysis of social developments, inasmuch as they provide data appropriate for an analysis of the transformation from early to late capitalism. Finally, this dissertation examines a problem central to dialectical theory, that of the relation between theory and praxis, by approaching the life histories as exemplifications of collective (i.e., social) experience. It integrates the biographical experience of individual miners with the theoretical dimensions of political economy in early and late capitalism. The current crisis in the coal fields is examined, with a view to possible transformation.

  17. Engineering development of advance physical fine coal cleaning for premium fuel applications

    SciTech Connect

    Jha, M.C.; Smit, F.J.; Shields, G.L.

    1995-11-01

    The objective of this project is to develop the engineering design base for prototype fine coal cleaning plants based on Advanced Column Flotation and Selective Agglomeration processes for premium fuel and near-term applications. Removal of toxic trace elements is also being investigated. The scope of the project includes laboratory research and bench-scale testing of each process on six coals followed by design, construction, and operation of a 2 tons/hour process development unit (PDU). Three coals will be cleaned in tonnage quantity and provided to DOE and its contractors for combustion evaluation. Amax R&D (now a subsidiary of Cyprus Amax Mineral Company) is the prime contractor. Entech Global is managing the project and performing most of the research and development work as an on-site subcontractor. Other participants in the project are Cyprus Amax Coal Company, Arcanum, Bechtel, TIC, University of Kentucky and Virginia Tech. Drs. Keller of Syracuse and Dooher of Adelphi University are consultants.

  18. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    SciTech Connect

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  19. Advanced solids NMR studies of coal structure and chemistry. Progress report, September 1, 1995--February 28, 1996

    SciTech Connect

    Zilm, K.W.

    1996-09-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. Our goals are twofold. First, we are interested in developing new methods that will enable us to measure important structural parameters in whole coals not directly accessible by other techniques. In parallel with these efforts we will apply these NMR methods in a study of the chemical differences between gas-sourcing and oil-sourcing coals. The NMR methods work will specifically focus on determination of the number and types of methylene groups, determination of the number and types of methine groups, identification of carbons adjacent to nitrogen and sites with exchangeable protons, and methods to more finely characterize the distribution of hydrogen in coals. We will also develop NMR methods for probing coal macropore structure using hyperpolarized {sup 129}Xe as a probe, and study the molecular dynamics of what appear to be mobile, CH{sub 2} rich, long chain hydrocarbons. The motivation for investigating these specific structural features of coals arises from their relevance to the chemical reactivity of some types of coals. The coals to be studied and contrasted include oil-prone coals from Australia and Indonesia, those comprising the Argonne Premium Coal Sample bank, and other relevant samples.

  20. Advanced physical coal cleaning to comply with potential air toxic regulations. Quarterly report, 1 March 1995--31 May 1995

    SciTech Connect

    Honaker, R.Q.; Paul, B.C.; Mohanty, M.K.; Wang, D.

    1995-12-31

    Studies have indicated that the potentially hazardous trace elements found in coal have a strong affinity for coal pyrite. Thus, by maximizing the rejection of pyrite, one can minimize the trace element content of a given coal while also reducing sulfur emissions. The pyrite in most Illinois Basin coals, however, is finely disseminated within the coal matrix. Therefore, to remove the pyrite using physical coal cleaning techniques, the pyrite must be liberated by grinding the coal to ultrafine particle sizes. Fortunately, the coals being fed to pulverized coal boilers (PCB) are already ground to a very fine size, i.e., 70% passing 200 mesh. Therefore, this research project will investigate the use of advanced fine coal cleaning technologies for cleaning PCB feed as a compliance strategy. Work in this quarter has focused on the processing of a run-of-mine coal sample collected from Amax Coal Company`s Delta Coal mine using column flotation and an enhanced gravity separator as separate units and in circuitry arrangements. The {minus}60 mesh run-of-mine sample having an ash content of about 22% was cleaned to 6% while achieving a very high energy recovery of about 87% and a sulfur rejection value of 53% in a single stage column flotation operation. Enhanced gravity treatment is believed to be providing excellent total sulfur rejection values, although with inferior ash rejection for the {minus}400 mesh size fraction. The circuitry arrangement with the Falcon concentrator as the primary cleaner followed by the Packed-Column resulted in an excellent ash rejection performance, which out performed the release analysis. Trace element analyses of the samples collected from these tests will be conducted during the next report period.

  1. Distribution of toxic elements in the products of the extraction of bitumens from coal and peat

    SciTech Connect

    S.I. Zherebtsov; M.Yu. Klimovich; A.I. Moiseev

    2008-06-15

    The effect of bitumen extraction conditions on the behavior of a number of toxic trace elements (V, Cr, Ni, Cu, Zn, As, Sb, and Pb) in solid fossil fuel samples was studied. It was found that the capacity of fossil fuels to concentrate trace elements can be monitored and the type of compound can be determined based on the dimensionless quantities of carbophilicity and concentration factors of the trace elements in coal and peat. The types of compounds in fossil fuels were found and graphically represented for the test trace elements.

  2. Performance of a high efficiency advanced coal combustor. Task 2, Pilot scale combustion tests: Final report

    SciTech Connect

    Toqan, M.A.; Paloposki, T.; Yu, T.; Teare, J.D.; Beer, J.M.

    1989-12-01

    Under contract from DOE-PETC, Combustion Engineering, Inc. undertook the lead-role in a multi-task R&D program aimed at development of a new burner system for coal-based fuels; the goal was that this burner system should be capable of being retrofitted in oil- or gas-fired industrial boilers, or usable in new units. In the first phase of this program a high efficiency advanced coal combustor was designed jointly by CE and MIT. Its burner is of the multiannular design with a fixed shrouded swirler in the center immediately surrounding the atomizer gun to provide the ``primary act,`` and three further annuli for the supply of the ``secondary air.`` The degree of rotation (swirl) in the secondary air is variable. The split of the combustion air into primary and secondary air flows serves the purpose of flame stabilization and combustion staging, the latter to reduce NO{sub x} formation.

  3. Advanced NMR approaches in the characterization of coal. Final technical report, September 1, 1990--August 31, 1993

    SciTech Connect

    Maciel, G.E.

    1993-09-30

    This project addressed two main goals and one much smaller one. The main goals were (1) to improve the significance, reliability and information content in high-resolution NMR (nuclear magnetic resonance) characterization of coal samples and (2) to develop chemically informative NMR imaging techniques for coal. The minor goal was to explore advanced features of dynamic nuclear polarization (DNP) as a technique for coal characterization; this included the development of two DNP probes and the examination of DNP characteristics of various carbonaceous samples, including coals. {sup 13}C NMR advances for coal depended on large-sample MAS devices, employing either cross-polarization (CP) or direct polarization (DP) approaches. CP and DP spin dynamics and their relationships to quantitation and spin counting were elucidated. {sup 1}H NMR studies, based on CRAMPS, dipolar dephasing and saturation with perdeuteropyridine, led to a {sup 1}H NMR-based elucidation of chemical functionality in coal. {sup 1}H and {sup 13}C NMR imaging techniques, based on magic-angle spinning and rotating magnetic field gradients, were developed for introducing chemical shift information (hence, chemical detail) into the spatial imaging of coal. The TREV multiple-pulse sequence was found to be useful in the {sup 1}H CRAMPS imaging of samples like coal.

  4. Coal Research

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Coal slurries are "clean" pulverized coal mixed with oil or water. Significant fuel savings can be realized when using coal slurries. Advanced Fuels Technology (AFT) utilized a COSMIC program, (Calculation of Complex Chemical Equilibrium Compositions), which provides specific capabilities for determining combustion products. The company has developed a cleaning process that removes much of the mineral sulphur and ash from the coals.

  5. Evaluating risks to wildlife from coal fly ash incorporating recent advances in metals and metalloids risk assessment.

    PubMed

    Meyer, Carolyn B; Schlekat, Tamar H; Walls, Suzanne J; Iannuzzi, Jacqueline; Souza, Marcy J

    2015-01-01

    Current scientific advances in metal and metalloid risk assessment were applied to evaluate risk to aquatic and riparian wildlife species potentially impacted by residual coal fly ash after cleanup of an unprecedented large ash release into an aquatic environment-the first assessment of its kind. Risk was evaluated using multiple lines of evidence (LOE), including 1) tissue-based risk assessment of inorganic concentrations in piscivorous and insectivorous bird eggs and raccoon organs, 2) deterministic and probabilistic diet-based risk estimates for 10 receptors species, 3) raccoon health metrics, and 4) tree swallow nest productivity measures. Innovative approaches included use of tissue-based toxicity reference values (TRVs), adjustment of bioavailability in the dietary uptake models (using sequential metal extractions in sediment), partitioning chemical species into uptake compartments (e.g., prey gut, nongut, sediment), incorporating uncertainty in both modeled dose and dietary TRVs, matching TRVs to chemical forms of constituents, and pairing these LOEs with reproductive success or health status of sensitive receptor species. The weight of evidence revealed that risk to wildlife from residual ash was low and that risk, though low, was most pronounced for insectivorous birds from exposure to Se and As. This information contributes to the debate surrounding coal combustion residue regulations prompted by this ash release. Because of the responsible party's proactive approach of applying state-of-the-art methods to assess risk using several LOEs that produced consistent results, and because of their inclusion of the regulating agencies in decisions at every step of the process, the risk assessment results were accepted, and an effective approach toward cleanup protective of the environment was quickly implemented. This study highlights the value of using multiple LOEs and the latest scientific advances to assist in timely decision making to obtain an effective

  6. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect

    Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-04-13

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. A process has been developed which results in high quality binder pitch suitable for use in graphite electrodes or carbon anodes. A detailed description of the protocol is given by Clendenin. Briefly, aromatic heavy oils are hydro-treated under mild conditions in order to increase their ability to dissolve coal. An example of an aromatic heavy oil is Koppers Carbon Black Base (CBB) oil. CBB oil has been found to be an effective solvent and acceptably low cost (i.e., significantly below the market price for binder pitch, or about $280 per ton at the time of this writing). It is also possible to use solvents derived from hydrotreated coal and avoid reliance on coke oven recovery products completely if so desired.

  7. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 1

    SciTech Connect

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume I contains papers presented at the following sessions: opening commentaries; changes in the market and technology drivers; advanced IGCC systems; advanced PFBC systems; advanced filter systems; desulfurization system; turbine systems; and poster session. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  8. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect

    Elliot B. Kennel; Quentin C. Berg; Stephen P. Carpenter; Dady Dadyburjor; Jason C. Hissam; Manoj Katakdaunde; Liviu Magean; Abha Saddawi; Alfred H. Stiller; John W. Zondlo

    2006-03-07

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of carbon electrodes for Direct Carbon Fuel Cells (DCFC), and on carbon foam composites used in ballistic armor, as well as the hydrotreatment of solvents used in the basic solvent extraction process. A major goal is the production of 1500 pounds of binder pitch, corresponding to about 3000 pounds of hydrotreated solvent.

  9. Antithyroid and goitrogenic effects of coal-water extracts from iodine-sufficient goiter areas.

    PubMed

    Gaitan, E; Cooksey, R C; Legan, J; Cruse, J M; Lindsay, R H; Hill, J

    1993-01-01

    Goiter in iodine-sufficient areas has been linked to water-borne goitrogens in watersheds and aquifers rich in coal and shale. In the present study, the potential antithyroid and goitrogenic effects of coal-water extracts (CWE) were investigated in vivo in rats after chronic and acute oral administration of CWE, and in vitro by a thyroid peroxidase (TPO) enzyme system. CWE was prepared by continuous extraction of ground (40 mesh) Appalachian coal with goitrogen-free water (GFW). Female Buffalo rats fed on Purina iodine-rich diet (12 micrograms I-/day/rat), were given ad lib CWE (50 mg/ml; approximately 20 mL/day/rat) or GFW (controls) for 2 months. At the end of the experiment, 125I 1 microCi, was injected i.p. and 4 h later the thyroid glands were removed, weighed, and analyzed histologically and for total 125I and 125I-labeled compounds. Rats on CWE had larger thyroid glands [7.2 +/- 0.3 mg/100 g (mean +/- SE) vs 5.0 +/- 0.5 controls; p < 0.005] with distinct histological changes of smaller thyroid follicles, some with columnar epithelium, and with more dense colloid than in controls, and had significant inhibition of the coupling mechanism for production of thyroid hormones [125MIT + DIT/125T3 + T4: 5.1 +/- 0.2 vs 3.9 +/- 0.1 controls, p < 0.005; and 125T3 + T4 (%): 10.6 +/- 0.3 vs 12.6 +/- 0.4 controls, p < 0.005]. Female Sprague-Dawley rats under the same conditions as Buffalo rats were given acutely by GI tube 2 mL of CWE (5 g/mL) or GFW (controls).(ABSTRACT TRUNCATED AT 250 WORDS)

  10. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect

    Elliot B. Kennel; R. Michael Bergen; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; W. Morgan Summers; John W. Zondlo

    2006-05-12

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, coking and composite fabrication continued using coal-derived samples. These samples were tested in direct carbon fuel cells. Methodology was refined for determining the aromatic character of hydro treated liquid, based on Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR). Tests at GrafTech International showed that binder pitches produced using the WVU solvent extraction protocol can result in acceptable graphite electrodes for use in arc furnaces. These tests were made at the pilot scale.

  11. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-06-01

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

  12. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-04-28

    This thirteenth quarterly report describes work done during the thirteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to a number of outside contacts.

  13. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-10

    This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

  14. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-01-01

    This seventeenth quarterly report describes work done during the seventeenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, submitting a manuscript and making and responding to one outside contact.

  15. Monolithic solid oxide fuel cell technology advancement for coal- based power generation. Quarterly report, December 1991

    SciTech Connect

    Not Available

    1992-01-15

    The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

  16. Monolithic solid oxide fuel cell technology advancement for coal- based power generation

    SciTech Connect

    Not Available

    1992-01-15

    The program is conducted by a team consisting of AiResearch Los Angeles Division of Allied-Signal Aerospace Company and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

  17. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-11

    This fifteenth quarterly report describes work done during the fifteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to several outside contacts.

  18. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-04-12

    This twelfth quarterly report describes work done during the twelfth three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to a number of outside contacts.

  19. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    SciTech Connect

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini; Wiles Elder

    1999-04-05

    This eleventh quarterly report describes work done during the eleventh three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to two outside contacts.

  20. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect

    Wang, X.H.; Leonard, J.W.; Parekh, B.K.; Jiang, C.L.

    1992-01-01

    This is the 9th quarterly technical progress report for the project entitled Pyrite surface characterization and control for advanced fine coal desulfurization technologies'', DE-FG22-90PC90295. The work presented in this report was performed from September 1, 1992 to November 31, 1992. The objective of the project is to conduct extensive fundamental studies on the surface chemistry of pyrite oxidation and flotation and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the surface oxidation of pyrite in various electrolytes was investigated. It has been demonstrated, for the first time, that borate, a pH buffer and electrolyte used by many previous investigators in studying sulfide mineral oxidation, actively participates in the surface oxidation of pyrite. In borate solutions, the surface oxidation of pyrite is tronly enhanced. The anodic oxidation potential of pyrite is lowered by more than 0.4 volts. The initial reaction of the borate enhanced pyrite oxidation can be described by:FeS[sub 2] + B(OH)[sub 4][sup =] ------> [S[sub 2]Fe-B(OH)[sub 4

  1. Recent advances in large-eddy simulation of spray and coal combustion

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.

    2013-07-01

    Large-eddy simulation (LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering. Spray and coal combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering, hence LES of spray and coal two-phase combustion is particularly important for engineering application. LES of two-phase combustion attracts more and more attention; since it can give the detailed instantaneous flow and flame structures and more exact statistical results than those given by the Reynolds averaged modeling (RANS modeling). One of the key problems in LES is to develop sub-grid scale (SGS) models, including SGS stress models and combustion models. Different investigators proposed or adopted various SGS models. In this paper the present author attempts to review the advances in studies on LES of spray and coal combustion, including the studies done by the present author and his colleagues. Different SGS models adopted by different investigators are described, some of their main results are summarized, and finally some research needs are discussed.

  2. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1991-01-01

    The design criteria for each unit operation have been developed based upon a number of variables. These variables, at this time, are based upon the best engineering design information available to industry. A number of assumptions utilized in the design criteria are uncertain. The uncertainties of inert atmospheres for grinding and flotation as well as pyrite depressants were answered by the Surface Control Project. It was determined that inerting was not required and no new'' reagents were presented that improved the flotation results. In addition, Tasks 5 and 6 results indicated the required reagent dosage for conventional flotation and advanced flotation. Task 5 results also indicated the need for a clean coal,thickener, the flocculent dosages for both the clean coal and refuse thickeners, and final dewatering requirements. The results from Tasks 5 and 6 and summarized in Task 7 indicate several uncertainties that require continuous long duration testing. The first is the possibility of producing a grab product for both the Pittsburgh and Illinois No. 6 coals in conventional flotation. Second what does long-term recirculation of clarified water do to the product quality The verification process and real data obtained from Tasks 5 and 6 greatly reduced the capital and operating costs for the process. This was anticipated and the test work indeed provided confirming data.

  3. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1991-01-01

    This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing, other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate. The conceptual flowsheet will be revised based on the results of the bench scale testing and areas will be identified that need further larger scale design data verification, to prove out the design.

  4. A convenient method for the quantitative determination of elemental sulfur in coal by HPLC analysis of perchloroethylene extracts

    USGS Publications Warehouse

    Buchanan, D.H.; Coombs, K.J.; Murphy, P.M.; Chaven, C.

    1993-01-01

    A convenient method for the quantitative determination of elemental sulfur in coal is described. Elemental sulfur is extracted from the coal with hot perchloroethylene (PCE) (tetrachloroethene, C2Cl4) and quantitatively determined by HPLC analysis on a C18 reverse-phase column using UV detection. Calibration solutions were prepared from sublimed sulfur. Results of quantitative HPLC analyses agreed with those of a chemical/spectroscopic analysis. The HPLC method was found to be linear over the concentration range of 6 ?? 10-4 to 2 ?? 10-2 g/L. The lower detection limit was 4 ?? 10-4 g/L, which for a coal sample of 20 g is equivalent to 0.0006% by weight of coal. Since elemental sulfur is known to react slowly with hydrocarbons at the temperature of boiling PCE, standard solutions of sulfur in PCE were heated with coals from the Argonne Premium Coal Sample program. Pseudo-first-order uptake of sulfur by the coals was observed over several weeks of heating. For the Illinois No. 6 premium coal, the rate constant for sulfur uptake was 9.7 ?? 10-7 s-1, too small for retrograde reactions between solubilized sulfur and coal to cause a significant loss in elemental sulfur isolated during the analytical extraction. No elemental sulfur was produced when the following pure compounds were heated to reflux in PCE for up to 1 week: benzyl sulfide, octyl sulfide, thiane, thiophene, benzothiophene, dibenzothiophene, sulfuric acid, or ferrous sulfate. A sluury of mineral pyrite in PCE contained elemental sulfur which increased in concentration with heating time. ?? 1993 American Chemical Society.

  5. Measurement and modeling of advanced coal conversion processes, Volume I, Part 1. Final report, September 1986--September 1993

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.

    1995-09-01

    The objective of this program was the development of a predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. The foundation to describe coal specific conversion behavior was AFR`s Functional Group and Devolatilization, Vaporization and Crosslinking (DVC) models, which had been previously developed. The combined FG-DVC model was integrated with BYU`s comprehensive two-dimensional reactor model for combustion and coal gasification, PCGC-2, and a one-dimensional model for fixed-bed gasifiers, FBED-1. Progress utilizing these models is described.

  6. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 1, October--December 1992

    SciTech Connect

    Smit, F.J.; Jha, M.C.

    1993-01-18

    This project is a step in the Department of Energy`s program to show that ultra-clean fuel can be produced from selected coals and that the fuel will be a cost-effective replacement for oil and natural gas now fueling boilers in this country. The replacement of premium fossil fuels with coal can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the ultra-clean coal. The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. A secondary objective is to develop the design base for near-term commercial integration of advanced fine coal cleaning technologies in new or existing coal preparation plants for economically and efficiently processing minus 28-mesh coal fines. A third objective is to determine the distribution of toxic trace elements between clean coal and refuse when applying the advance column flotation and selective agglomeration technologies. The project team consists of Amax Research & Development Center (Amax R&D), Amax Coal industries, Bechtel Corporation, Center for Applied Energy Research (CAER) at the University of Kentucky, and Arcanum Corporation.

  7. Embryotoxic and teratogenic effects of aqueous extracts of tar from a coal gasification electrostatic precipitator.

    PubMed

    Schultz, T W; Dumont, J N; Clark, B R; Buchanan, M V

    1982-01-01

    Aqueous extracts of tar from a coal gasification electrostatic precipitator were tested for its toxic and teratogenic potential in vitro on embryos of the amphibian Xenopus laevis. The 96-h LC50 and EC50 were determined to be 0.83% and 0.48%, respectively. The developmental stage of normal-appearing exposed embryos is not affected by increasing concentrations of the extract. Embryo growth, however, is significantly reduced at concentrations as low as 0.25%. Motility and pigmentation were effectively reduced relative to controls by extract concentrations of 0.5% and greater. Exposed embryos are shorter and stockier than controls. Malformations of head, eyes, viscera, and spine are common, and cartilage formation is abnormal. The epidermis is often hyperplastic, and large blisters occur over the somatic surface. The severity of abnormal development is directly related to the concentration of the toxicant to which the embryos are exposed. Chemical analysis shows that the aqueous extracts contain phenols, furans, monoaromatic and diaromatic hydrocarbons, and mono- and diazaarenes and/or monoaromatic amines.

  8. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    SciTech Connect

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri, John; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Liber, Pawel; Lopez-Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-03-30

    The purpose of this project was to evaluate the ability of advanced low rank coal gasification technology to cause a significant reduction in the COE for IGCC power plants with 90% carbon capture and sequestration compared with the COE for similarly configured IGCC plants using conventional low rank coal gasification technology. GE’s advanced low rank coal gasification technology uses the Posimetric Feed System, a new dry coal feed system based on GE’s proprietary Posimetric Feeder. In order to demonstrate the performance and economic benefits of the Posimetric Feeder in lowering the cost of low rank coal-fired IGCC power with carbon capture, two case studies were completed. In the Base Case, the gasifier was fed a dilute slurry of Montana Rosebud PRB coal using GE’s conventional slurry feed system. In the Advanced Technology Case, the slurry feed system was replaced with the Posimetric Feed system. The process configurations of both cases were kept the same, to the extent possible, in order to highlight the benefit of substituting the Posimetric Feed System for the slurry feed system.

  9. The Mulled Coal process: An advanced fine coal preparation technology used to improve the handling characteristics of fine wet coal products

    SciTech Connect

    Jamison, P.R.

    1996-12-31

    The Mulled Coal process is a simple low cost method of improving the handling characteristics of the fine wet coal. The process involves the addition of a specifically formulated reagent to fine wet coal by mixing the two together in a pug mill. The converted material (Mulled Coal) retains some of its original surface moisture, but it handles, stores and transports like dry coal. It does not cause any of the sticking, fouling, bridging and freezing problems normally associated with fine wet coal, and, unlike thermally dried fine coal, it will not rewet and it is not dusty. In the process, large (baseball size) loosely bound sticky masses of fine wet coal particles are broken down into granules which are fairly uniform in the 28 Mesh x 0 size range. Due to the unique combination of the mixing action of the pug mill, the surface chemistry of the fine coal particles and the properties of the reagent; the individual granules are tightly bound, and they become completely enveloped by a very thin film of reagent. The reagent envelope will allow moisture out in the vapor stage, but it will not allow moisture back into the agglomerated granule. The envelope also prevents individual granules from adhering to or freezing to one another. The end result is a fine coal product which is free flowing, which is not dusty, and which will not rewet.

  10. Measurement and modeling of advanced coal conversion processes. Twenty-seventh quarterly report, April 1, 1993--June 30, 1993

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S.

    1993-09-01

    Significant advances have been made at Brigham Young University (BYU) in comprehensive two-dimensional computer codes for mechanistic modeling of entrained-bed gasification and pulverized coal combustion. During the same time period, significant advances have been made at Advanced Fuel Research, Inc. (AFR) in the mechanisms and kinetics of coal pyrolysis and secondary reactions of pyrolysis products. This program presents a unique opportunity to merge the technology developed by each organization to provide detailed predictive capability for advanced coal characterization techniques in conjunction with comprehensive computer models to provide accurate process simulations. The program will streamline submodels existing or under development for coal pyrolysis chemistry, volatile secondary reactions, tar formation, soot formation, char reactivity, and SO{sub x}-NO{sub x} pollutant formation. Submodels for coal viscosity, agglomeration, tar/char secondary reactions, sulfur capture, and ash physics and chemistry will be developed or adapted. The submodels will first be incorporated into the BYU entrained-bed gasification code and subsequently, into a fixed-bed gasification code (to be selected and adapted). These codes will be validated by comparison with small scale laboratory and PDU-scale experiments. Progress is described.

  11. Field study of disposed wastes from advanced coal processes. Quarterly technical progress report: April--June 1993

    SciTech Connect

    Not Available

    1993-12-31

    The Department of Energy/Morgantown Energy Technology Center (DOE/METC) has initiated research on the disposal of solid wastes from advanced coal processes. The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Environmental Research Center (EERC) to design, construct, and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. There has been considerable research on the characteristics and laboratory leaching behavior of coal wastes -- a lesser amount on wastes from advanced coal processes. However, very little information exists on the field disposal behavior of these wastes. Information on field disposal behavior is needed (a) as input to predictive models being developed, (b) as input to the development of rule of thumb design guidelines for the disposal of these wastes, and (c) as evidence of the behavior of these wastes in the natural environment.

  12. Advanced physical coal cleaning to comply with potential air toxic regulations. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect

    Honaker, R.Q.; Paul, B.C.; Wang, D.

    1995-12-31

    Studies have indicated that the potentially hazardous trace elements found in coal have a strong affinity for coal pyrite. Thus, by maximizing the rejection of pyrite, one can minimize the trace element content of a given coal while also reducing sulfur emissions. The pyrite in most Illinois Basin coals, however, is finely disseminated within the coal matrix. Therefore, to remove the pyrite using physical coal cleaning techniques, the pyrite must be liberated by grinding the coal to ultrafine particle sizes. Fortunately, the coals being fed to pulverized coal boilers (PCB) are already ground to a very fine size, i.e., 70% passing 200 mesh. Therefore, this research project will investigate the use of advanced fine coal cleaning technologies for cleaning PCB feed as a compliance strategy. Work in this quarter has focused on the processing of a PCB feed sample collected from Central Illinois Power`s Newton Power Station using column flotation and an enhanced gravity separator as separate units and in a circuitry arrangement. The PCB feed sample having a low ash content of about 12% was further cleaned to 6% while achieving a very high energy recovery of about 90% in a single stage column flotation operation. Enhanced gravity treatment is believed to be providing excellent total sulfur rejection values, although with inferior ash rejection for the {minus}400 mesh size fraction. The circuitry arrangement with the Falcon concentrator as the primary cleaner followed by the Microcel column resulted in an excellent ash rejection performance, which out performed the release analysis. Trace element analyses of the samples collected from these tests will be conducted during the next report period.

  13. Proceedings of the coal-fired power systems 94: Advances in IGCC and PFBC review meeting. Volume 2

    SciTech Connect

    McDaniel, H.M.; Staubly, R.K.; Venkataraman, V.K.

    1994-06-01

    The Coal-Fired Power Systems 94 -- Advances in IGCC and PFBC Review Meeting was held June 21--23, 1994, at the Morgantown Energy Center (METC) in Morgantown, West Virginia. This Meeting was sponsored and hosted by METC, the Office of Fossil Energy, and the US Department of Energy (DOE). METC annually sponsors this conference for energy executives, engineers, scientists, and other interested parties to review the results of research and development projects; to discuss the status of advanced coal-fired power systems and future plans with the industrial contractors; and to discuss cooperative industrial-government research opportunities with METC`s in-house engineers and scientists. Presentations included industrial contractor and METC in-house technology developments related to the production of power via coal-fired Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) systems, the summary status of clean coal technologies, and developments and advancements in advanced technology subsystems, such as hot gas cleanup. A keynote speaker and other representatives from the electric power industry also gave their assessment of advanced power systems. This meeting contained 11 formal sessions and one poster session, and included 52 presentations and 24 poster presentations. Volume II contains papers presented at the following sessions: filter technology issues; hazardous air pollutants; sorbents and solid wastes; and membranes. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  14. Speciation of vanadium in coal mining, industrial, and agricultural soil samples using different extractants and heating systems.

    PubMed

    Khan, Sumaira; Kazi, Tasneem Gul; Afridi, Hassan Imran; Kolachi, Nida Fatima; Ullah, Naeem; Dev, Kapil

    2013-01-01

    A fast microwave-assisted extraction procedure was developed for the speciation of vanadium (V) species in soil samples collected from the vicinity of the Lakhra coal power plant (situated near a coal mining area) and industrial and agricultural areas. Soil samples were treated with two extracting reagents, (NH4)2HPO4 (0.2-1 M) and Na2CO3 (0.1-0.5 M), and heated by conventional and microwave methods for different time intervals to extract V+5 species. The V+4 and total V were extracted from filtration residue and the same subsamples of soil by treating with the acid mixture of HNO3-HCl-HClO4-H2SO4 (1:1:1:1, v/v/v/v). No significant difference between V+5 contents obtained by conventional heating and microwave-assisted extraction was observed (P = 0.485). The extraction efficiency of 0.6 M (NH4)2HPO4 for V+5 was lower (4-7%) than that obtained by 0.2 M Na2CO3 solution. The levels of V+5 were higher in soil samples collected from the vicinity of the Lakhra coal power plant and industrial areas, compared to those obtained from agricultural soil.

  15. Applications study of advanced power generation systems utilizing coal-derived fuels. Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    Robson, F. L.

    1981-03-01

    The technology status of phosphoric acid and molten carbon fuel cells, combined gas and steam turbine cycles, and magnetohydrodynamic energy conversion systems was assessed and the power performance of these systems when operating with medium-Btu fuel gas whether delivered by pipeline to the power plant or in an integrated mode in which the coal gasification process and power system are closely coupled as an overall power plant was evaluated. Commercially available combined-cycle gas turbine systems can reach projected required performance levels for advanced systems using currently available technology. The phosphoric acid fuel cell appears to be the next most likely candidate for commercialization. On pipeline delivery, the systems efficiency ranges from 40.9% for the phosphoric acid fuel cell to 63% for the molten carbonate fuel cell system. The efficiencies of the integrated power plants vary from approximately 39-40% for the combined cycle to 46-47% for the molden carbonate fuel cell systems. Conventional coal-fired steam stations with flue-gas desulfurization have only 33-35% efficiency.

  16. Applications study of advanced power generation systems utilizing coal-derived fuels. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1981-01-01

    The technology status of phosphoric acid and molten carbon fuel cells, combined gas and steam turbine cycles, and magnetohydrodynamic energy conversion systems was assessed and the power performance of these systems when operating with medium-Btu fuel gas whether delivered by pipeline to the power plant or in an integrated mode in which the coal gasification process and power system are closely coupled as an overall power plant was evaluated. Commercially available combined-cycle gas turbine systems can reach projected required performance levels for advanced systems using currently available technology. The phosphoric acid fuel cell appears to be the next most likely candidate for commercialization. On pipeline delivery, the systems efficiency ranges from 40.9% for the phosphoric acid fuel cell to 63% for the molten carbonate fuel cell system. The efficiencies of the integrated power plants vary from approximately 39-40% for the combined cycle to 46-47% for the molden carbonate fuel cell systems. Conventional coal-fired steam stations with flue-gas desulfurization have only 33-35% efficiency.

  17. Advanced coal liquefaction research. Quarterly technical progress report, April 1-June 30, 1983

    SciTech Connect

    Not Available

    1984-04-01

    Two methods of improving product quality were examined which advance the SRC II process far beyond that envisioned for the original demonstration plant. All distillate product boiling above 310/sup 0/C (590/sup 0/F) was recycled to extinction without loss of total oil yield or significant increase in hydrogen consumption. This product has substantially reduced potential for genetic damage and is more amenable to upgrading. In a further refinement, all of the overhead from the high temperature, high pressure separator was passed through a vapor-phase hydrotreater. This resulted in a dramatic improvement in product quality. A proportional blend of distillate product contained less than 1 ppM of nitrogen. Total oil yield was similar to the low quality product produced in the conventional SRC II process. Coal liquefaction was carried out in three stages to better understand how the variables affect dissolution, hydrogenation and hydrocracking steps. Short contact time dissolution of Illinois No. 6 coal was conducted with minimal hydrocarbon gas yield and hydrogen consumption and high conversion to toluene and pyridine soluble products. In the hydrogenation step, liquid yield increased as temperature was increased to 412/sup 0/C (774/sup 0/F) from 356/sup 0/C (673/sup 0/F). The hydrogen level in the products went through a maximum in the range of 380 to 400/sup 0/C (716 to 752/sup 0/F), however. Very little distillate was made in the subsequent hydrocracking step at a variety of conditions. 33 figures, 10 tables.

  18. Development of advanced NO[sub x] control concepts for coal-fired utility boilers

    SciTech Connect

    Evans, A.; Pont, J.N.; England, G.; Seeker, W.R.

    1993-03-04

    The complete CombiNO[sub x], process has now been demonstrated at a level that is believed to be representative of a full-scale boiler in terms of mixing capabilities. A summary of the results is displayedin Figure 5-1. While firing Illinois Coal on the Reburn Tower, Advanced Reburning was capable of reducing NO[sub x], by 83 percent. The injection of methanol oxidized 50--58 percent of the existing NO to N0[sub 2]. Assuming that 85 percent of the newly formed N0[sub 2] can be scrubbed in a liquor modified wet-limestone scrubber, the CombiNO[sub x], process has been shown capable of reducing NO[sub 2], by 90--91 percent in a large pilot-scale coal-fired furnace. There is still uncertainty regarding the fate of the N0[sub 2] formed with methanol injection. Tests should be conducted to determine whether the reconversion is thermodynamic or catalytic, and what steps can be taken (such as quench rate) to prevent it from happening.

  19. Update of progress for Phase II of B&W`s advanced coal-fired low-emission boiler system

    SciTech Connect

    McDonald, D.K.; Madden, D.A.; Rodgers, L.W.

    1995-11-01

    Over the past five years, advances in emission control techniques at reduced costs and auxiliary power requirements coupled with significant improvements in steam turbine and cycle design have significantly altered the governing criteria by which advanced technologies have been compared. With these advances, it is clear that pulverized coal technology will continue to be competitive in both cost and performance with other advanced technologies such as Integrated Gasification Combined Cycle (IGCC) or first generation Pressurized Fluidized Bed Combustion (PFBC) technologies for at least the next decade. In the early 1990`s it appeared that if IGCC and PFBC could achieve costs comparable to conventional pulverized coal plants, their significantly reduced NO{sub x} and SO{sub 2} emissions would make them more attractive. A comparison of current emission control capabilities shows that all three technologies can already achieve similarly low emissions levels.

  20. Engineereing development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 5, October--December 1993

    SciTech Connect

    Smit, F.J.; Jha, M.C.

    1994-02-18

    This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effective replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. The project has three major objectives: The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel for premium fuel applications. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. A secondary objective is to develop the design base for near-term application of these advanced fine coal cleaning technologies in new or existing coal preparation plants for efficiently processing minus 28-mesh coal fines and converting this to marketable products in current market economics. A third objective is to determine the removal of toxic trace elements from coal by advance column flotation and selective agglomeration technologies.

  1. Engineering development of advanced coal-fired low-emissions boiler systems. Quarterly report, April 1--June 30, 1997

    SciTech Connect

    1997-12-31

    This progress report is on the project by Babcock and Wilcox Company to develop an advanced coal-fired low-emissions boiler system. The topics of the report include project management, the NO{sub x} subsystem, the SO{sub 2}/particulate/air toxics/solid by-product subsystem, boiler subsystem, balance of plant subsystem, and controls and sensors subsystems.

  2. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    SciTech Connect

    Shen, Chen

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  3. Extraction Kickers and Modulators for the advanced Hydrodynamic Facility

    SciTech Connect

    Walstrom, P L; Cook, E G

    2001-06-12

    In order to exploit the full potential of the Advanced Hydrodynamic Facility (AHF) facility to produce a time sequence of proton transmission radiographs throughout the dynamic event, a kicker/modulator for extraction from the 50 GeV ring that is capable of generating a string of 25 pulse pairs at arbitrary times within a total time duration of 100 microseconds or more is desired. The full range of desired pulse-train requirements cannot be met with the commonly used pulse-forming cables or networks (PFNs) switched with thyratrons. The preferred modulator design approach at present is a transformer voltage-adder concept with primary-side pulses formed with MOSFET-switched capacitors. This modulator will be a scale-up of an existing modulator that has been developed by Lawrence Livermore National Laboratory for use in DARHT, an electron induction accelerator facility at Los Alamos National Laboratory. Before the voltage-adder concept can be adopted for use in AHF, a working prototype that meets the AHF requirements for the pulse voltage, current, rise and fall time, and total pulse number must be built and tested. Additional requirements for pulse-to-pulse flattop height variation and baseline shift must also be met. A development and testing plan for the voltage-adder kicker modulator for AHF is described.

  4. Development of Continuous Solvent Extraction Processes For Coal Derived Carbon Products

    SciTech Connect

    Elliot B. Kennel; Dady B. Dadyburjor; Gregory W. Hackett; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; Robert C. Svensson; John W. Zondlo

    2006-09-30

    In this reporting period, tonnage quantities of coal extract were produced but solid separation was not accomplished in a timely manner. It became clear that the originally selected filtration process would not be effective enough for a serious commercial process. Accordingly, centrifugation was investigated as a superior means for removing solids from the extract. Results show acceptable performance. Petrographic analysis of filtered solids was carried out by R and D Carbon Petrography under the auspices of Koppers and consultant Ken Krupinski. The general conclusion is that the material appears to be amenable to centrifugation. Filtered solids shows a substantial pitch component as well as some mesophase, resulting in increased viscosity. This is likely a contributing reason for the difficulty in filtering the material. Cost estimates were made for the hydotreatment and digestion reactors that would be needed for a 20,000 ton per year demonstration plants, with the aid of ChemTech Inc. The estimates show that the costs of scaling up the existing tank reactors are acceptable. However, a strong recommendation was made to consider pipe reactors, which are thought to be more cost effective and potentially higher performance in large scale systems. The alternate feedstocks for coke and carbon products were used to fabricate carbon electrodes as described in the last quarterly report. Gregory Hackett successfully defended his MS Thesis on the use of these electrodes in Direct Carbon Fuel Cell (DCFC), which is excerpted in Section 2.4 of this quarterly report.

  5. A systematic investigation into the extraction of aluminum from coal spoil through kaolinite

    SciTech Connect

    X.C. Qiao; P. Si; J.G. Yu

    2008-11-15

    This research has applied kaolin and active carbon (AC) to the investigation of the recovery of aluminium from coal spoil (CS). The kaolin, AC-containing kaolin mixture, and CS have been calcined at 500, 600, 700, 800, and 900{degree}C for 15, 30, 60, and 120 min. The transformation of kaolinite and aluminium extraction that occurred in each calcined sample have been characterized using XRD, TG, IR, and hydrochloric acid leaching methods. The dehydroxylation of kaolinite and the decomposition of metakaolin were influenced by thermal treatment temperature and time. The metakaolin had kept a portion of OH- in its structure until it was calcined at a temperature of 800{degree}C. Under 60 min treatment, new SiO{sub 2} phase was able to be formed at 500{degree}C, kaolinite was totally converted to metakaolin at 600{degree}C, and the SiO{sub 2} rejoined the reaction at 800{degree}C. The decompositions of CS were similar to those of kaolin mixture containing 20 wt % AC (MKC). The combustion of combustible matter accelerated the decomposition of kaolinite in the CS and MKC. Higher AC content led to lower aluminum extraction. The treatment at 600{degree}C was optimal for both CS and MKC. 28 refs., 7 figs., 3 tabs.

  6. Microwave assisted aqua regia extraction of thallium from sediment and coal fly ash samples and interference free determination by continuum source ETAAS after cloud point extraction.

    PubMed

    Meeravali, Noorbasha N; Madhavi, K; Kumar, Sunil Jai

    2013-01-30

    A simple cloud point extraction method is described for the separation and pre-concentration of thallium from the microwave assisted aqua regia extracts of sediment and coal fly ash samples. The method is based on the formation of extractable species of thallium and its interaction with hydrophobic solubilizing sites of Triton X-114 micelles in the presence of aqua regia and electrolyte NaCl. These interactions of micelles are used for extraction of thallium from a bulk aqueous phase into a small micelles-rich phase. The potential chloride interferences are eliminated effectively, which enabled interference free determination of thallium from aqua regia extracts using continuum source ETAAS. The parameters affecting the extraction process are optimized. Under the optimized conditions, pre-concentration factor and limit of detection are 40 and 0.2 ng g(-1), respectively. The recoveries are in the range of 95-102%. A characteristic mass, 13 pg was obtained. The accuracy of the method is verified by analyzing certified reference materials such as NIST 1633b coal fly ash, NIST 1944 marine sediment and GBW 07312 stream sediments. The results obtained are in good agreement with the certified values and method is also applied to real samples.

  7. Macromolecular structural changes in bituminous coals during extraction and solubilization. Quarterly technical progress report, 1 September 1981-1 December 1981

    SciTech Connect

    Peppas, N.A.

    1981-01-01

    Data are presented of the effect of coal pretreatment (extraction, flotation etc.) and porous structure on the apparent and effective swelling of several coals by four swelling agents. Analysis of the pore structure was achieved by mercury porosimetry and pyconometry. The effect of retained solvent in the pores is more prominent in the determination of the equilibrium coal volume fraction and the actual molecular weight between crosslinks, M/sub c/.

  8. The Coal-Seq III Consortium. Advancing the Science of CO2 Sequestration in Coal Seam and Gas Shale Reservoirs

    SciTech Connect

    Koperna, George

    2014-03-14

    The Coal-Seq consortium is a government-industry collaborative that was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO2 sequestration in deep, unmineable coal seams. The consortium’s objective aimed to advancing industry’s understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. Research from this collaborative effort was utilized to produce modules to enhance reservoir simulation and modeling capabilities to assess the technical and economic potential for CO2 storage and enhanced coalbed methane recovery in coal basins. Coal-Seq Phase 3 expands upon the learnings garnered from Phase 1 & 2, which has led to further investigation into refined model development related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins the extension of the work to gas shale reservoirs, and continued global technology exchange. The first research objective assesses changes in coal and shale properties with exposure to CO2 under field replicated conditions. Results indicate that no significant weakening occurs when coal and shale were exposed to CO2, therefore, there was no need to account for mechanical weakening of coal due to the injection of CO2 for modeling. The second major research objective evaluates cleat, Cp, and matrix, Cm, swelling/shrinkage compressibility under field replicated conditions. The experimental studies found that both Cp and Cm vary due to changes in reservoir pressure during injection and depletion under field replicated conditions. Using laboratory data from this study, a compressibility model was developed to predict the pore-volume compressibility, Cp, and the matrix compressibility, Cm, of coal and shale, which was applied to

  9. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Jiang, Chengliang; Raichur, A.M.

    1992-07-14

    The objective of this project is to conduct extensive studies on the surface reactivity and surface hydrophobicity of coal-pyrites using various surface characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The flotation characteristics of coal-pyrites under various conditions was studied and compared with ore-pyrite and coal to determine the causes of pyrite rejection difficulties in coal flotation. Both the native and induced floatabilities of pyrites were investigated. It was found that both coal- and ore-pyrites, ff prepared by dry-grinding, show little or no floatability in the absence of any chemical reagents. After ultrasonic pretreatment, ore-pyrite floats effectively in the acidic to neutral pH range. Kentucky No. 9 coal-pyrite (KYPY) shows significant flotation in the pH range 7--10. With ethyl xanthate as collector, ore-pyrite floats well up to pH = 10; while coal-pyrite reveals no flotation above pH = 6. For the first time, the effect of coal collector on the floatability of coal-pyrite has been studied. It was shown that in the presence of fuel oil--a widely used collector for promoting coal flotation, coal-pyrite, particularly for the fine sizes, shows good flotation below pH = 11, whereas ore-pyrite has no or little floatability. These studies demonstrate that one of the main causes of the coal-pyrite flotation in coal separation is the oil-induced floatability due to adsorption/attachment of oil droplets on the coal-pyrite surfaces, the native'' or self-induced'' floatability of pyrite is no as profound as the oil-induced flotation.

  10. The influence of extractable organic matter on vitrinite reflectance suppression: A survey of kerogen and coal types

    USGS Publications Warehouse

    Barker, C.E.; Lewan, M.D.; Pawlewicz, M.J.

    2007-01-01

    The vitrinite reflectance suppression literature shows that while bitumen impregnation of the vitrinite group is often invoked as a significant contributor to suppression, its existence is not often supported by petrological evidence. This study examines bitumen impregnation as a factor in vitrinite suppression by comparing the vitrinite reflectance of source rock and coal samples before and after solvent-extraction. Bitumen, often defined as organic matter soluble or extractable in certain organic solvents, should be removed by Soxhlet method solvent extraction using chloroform. Removing the extractable bitumen should restore the suppressed reflectance to its true higher value. However, the solvent extracted samples averaged 0.014% Rv less than that of the unextracted samples. We conclude from these results and from other published data that reflectance suppression by bitumen impregnation in the vitrinite maceral group, above the huminite stage of gelification, is seemingly a rare phenomenon and whose effect on suppressing vitrinite reflectance is typically negligible. ?? 2006.

  11. Determination of three phthalate esters in environmental samples by coal cinder extraction and cyclodextrin modified micellar electrokinetic chromatography.

    PubMed

    Sun, Hongli; Jiang, Feng; Chen, Lin; Zheng, Jing; Wu, Yiwei; Liu, Meilin

    2014-07-01

    A new micellar electrokinetic chromatography (MEKC) method using beta-cyclodextrin (ß-CD) as the electrophoresis additive has been developed for the simultaneous determination of dimethyl phthalate (DMP), diethyl phthalate (DEP) and di(2-ethylhexyl) phthalate (DEHP) in environmental samples. To improve the sensitivity of cyclodextrin-modified MEKC (CD-MEKC), a flow injection procedure using a microcolumn packed with coal cinder as the solid-phase extractant was also investigated for the preconcentration and separation of DMP, DEP and DEHP in environmental samples. Parameters affecting CD-MEKC separation and coal cinder flow injection solid-phase extraction were systematically researched. In the presence of the running buffer [5 mmol/L of borax, 5% (v/v) methanol and 25 mmol/L of sodium dodecyl sulfate at pH 9.5], the addition of 14 mmol/L ß-CD greatly improved the separation efficiency. The analytes were quantitatively adsorbed by coal cinders and readily desorbed quantitatively with 0.2 mL of 10% (v/v) methanol-10 mmol/L disodium hydrogen phosphate. Under the optimum conditions, the enrichment factor of coal cinder was 60, and the determination limits of DMP, DEP and DEHP were 3.07, 2.07 and 4.06 ng/mL, respectively. The presented procedure was successfully applied to determine DMP, DEP and DEHP in landfill leachate and water samples with satisfactory results. PMID:23794720

  12. Determination of three phthalate esters in environmental samples by coal cinder extraction and cyclodextrin modified micellar electrokinetic chromatography.

    PubMed

    Sun, Hongli; Jiang, Feng; Chen, Lin; Zheng, Jing; Wu, Yiwei; Liu, Meilin

    2014-07-01

    A new micellar electrokinetic chromatography (MEKC) method using beta-cyclodextrin (ß-CD) as the electrophoresis additive has been developed for the simultaneous determination of dimethyl phthalate (DMP), diethyl phthalate (DEP) and di(2-ethylhexyl) phthalate (DEHP) in environmental samples. To improve the sensitivity of cyclodextrin-modified MEKC (CD-MEKC), a flow injection procedure using a microcolumn packed with coal cinder as the solid-phase extractant was also investigated for the preconcentration and separation of DMP, DEP and DEHP in environmental samples. Parameters affecting CD-MEKC separation and coal cinder flow injection solid-phase extraction were systematically researched. In the presence of the running buffer [5 mmol/L of borax, 5% (v/v) methanol and 25 mmol/L of sodium dodecyl sulfate at pH 9.5], the addition of 14 mmol/L ß-CD greatly improved the separation efficiency. The analytes were quantitatively adsorbed by coal cinders and readily desorbed quantitatively with 0.2 mL of 10% (v/v) methanol-10 mmol/L disodium hydrogen phosphate. Under the optimum conditions, the enrichment factor of coal cinder was 60, and the determination limits of DMP, DEP and DEHP were 3.07, 2.07 and 4.06 ng/mL, respectively. The presented procedure was successfully applied to determine DMP, DEP and DEHP in landfill leachate and water samples with satisfactory results.

  13. Engineering development of advanced physical fine coal cleaning technologies - froth flotation. Quarterly technical progress report No. 23, April 1, 1994--June 30, 1994

    SciTech Connect

    1995-04-01

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  14. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 16, July 1, 1992--September 30, 1992

    SciTech Connect

    Not Available

    1992-12-31

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  15. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    SciTech Connect

    Smith, V.E.

    1994-05-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  16. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect

    Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-06-23

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. There are a number of parameters which are important for the production of acceptable cokes, including purity, structure, density, electrical resistivity, thermal conductivity etc. From the standpoint of a manufacturer of graphite electrodes such as GrafTech, one of the most important parameters is coefficient of thermal expansion (CTE). Because GrafTech material is usually fully graphitized (i.e., heat treated at 3100 C), very high purity is automatically achieved. The degree of graphitization controls properties such as CTE, electrical resistivity, thermal conductivity, and density. Thus it is usually possible to correlate these properties using a single parameter. CTE has proven to be a useful index for the quality of coke. Pure graphite actually has a slightly negative coefficient of thermal expansion, whereas more disordered carbon has a positive coefficient.

  17. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect

    Wang, X.H.; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, C.L.

    1992-01-01

    The objective of the project is to conduct extensive fundamental studies on the surface reactivity and surface hydrophobicity of coal-pyrites using various surface characterization techniques and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the influence of the impurity content, particularly coal/carbon content, on the electrochemical oxidation of pyrite surfaces was investigated. The studies demonstrate that the coal/carbon content in coal-pyrite has a determining effect on the surface reactivity of pyrite. The oxidation behavior of high carbon-content coal-pyrite is completely different from that of purer coal-pyrite and ore-pyrite. The effects of flotation gases on the flotation behavior of coal and the surface hydrophobicity of various coal-pyrite were investigated. It was found from the lab-scale column flotation studies that among the various gases studied (air, oxygen, argon, nitrogen and carbon dioxide), carbon dioxide produced the best results with a combustible recovery of 90% and ash-content of less than 9 percent. Finally, the surface energetic studies revealed that the surfaces of pyrites and coals produced by wet grinding is more heterogenous than that prepared by dry grinding.

  18. Recent advances in the use of synchrotron radiation for the analysis of coal combustion products

    SciTech Connect

    Manowitz, B.

    1995-11-01

    Two major coal combustion problems are the formation and build-up of slag deposits on heat transfer surfaces and the production and control of toxic species in coal combustion emissions. The use of synchrotron radiation for the analysis of coal combustion products can play a role in the better understanding of both these phenomena. An understanding of the chemical composition of such slags under boiler operating conditions and as a function of the mineral composition of various coals is one ultimate goal of this program. The principal constituents in the ash of many coals are the oxides of Si, Al, Fe, Ca, K, S, and Na. The analytical method required must be able to determine the functional forms of all these elements both in coal and in coal ash at elevated temperatures. One unique way of conducting these analyses is by x-ray spectroscopy.

  19. POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE

    SciTech Connect

    B.K. PAREKH; D. TAO; J.G. GROPPO

    1998-02-03

    The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the UKCAER will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean-coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high-sulfur and low-sulfur clean coal. The Mayflower Plant processes coals from five different seams, thus the dewatering studies results could be generalized for most of the bituminous coals.

  20. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, 2 June 1992--1 June 1993

    SciTech Connect

    LeCren, L.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1993-06-01

    This program was initiated in June of 1986 because advances in coal-fueled gas turbine technology over the previous few years, together with DOE-METC sponsored studies, served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine could ultimately be the preferred system in appropriate market application sectors. In early 1991 it became evident that a combination of low natural gas prices, stringent emission limits of the Clean Air Act and concerns for CO{sub 2} emissions made the direct coal-fueled gas turbine less attractive. In late 1991 it was decided not to complete this program as planned. The objective of the Solar/METC program was to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. Component development of the coal-fueled combustor island and cleanup system while not complete indicated that the planned engine test was feasible. Preliminary designs of the engine hardware and installation were partially completed. A successful conclusion to the program would have initiated a continuation of the commercialization plan through extended field demonstration runs. After notification of the intent not to complete the program a replan was carried out to finish the program in an orderly fashion within the framework of the contract. A contract modification added the first phase of the Advanced Turbine Study whose objective is to develop high efficiency, natural gas fueled gas turbine technology.

  1. Advanced direct coal liquefaction. Quarterly technical progress report No. 2, December 1983-February 1984

    SciTech Connect

    Paranjape, A.S.

    1984-04-30

    Five Bench-Scale coal liquefaction runs were completed with Wyoming subbituminous coal in a two-stage process scheme. In this process scheme, LDAR, the lighter fraction of ash-free resid, was fed to the catalytic stage prior to its recycle to the thermal stage, whereas DAR, the heavy fraction of the deashed resid, was directly recycled to the thermal stage without any intermediate processing step. The results indicate that increasing coal space rate in the dissolver resulted in lower coal conversion and reduced distillate yield in this process configuration. The coal conversions decreased from 92 wt% to 89 wt% (MAF coal) and the distillate yield was reduced from 50 wt% to less than 40 wt% (MAF coal), as the coal space velocity increased. Attempts to duplicate the yields of Run 32, at comparable process conditions in Runs 37 and 38, were unsuccessful. Several process parameters were investigated but failed to show why the yields of Run 32 could not be duplicated. Valuable process related information was gained as a result of process parameter studies completed during these runs. At comparable process conditions, coal conversions were lower by about 3 to 4 relative percent and were only in the 87 wt% (MAF coal) range. Similarly, the distillate yield was about 40 wt% (MAF coal) which is about 10 wt% lower than observed in Run 32. Although no exact cause for these results could be determined, it appeared that the H/C atomic ratio of the solvent and possibly the flow pattern (plug-flow versus back-mixed) could have affected the coal conversion and quantity of distillate product produced. A significant decrease in coal conversion of 4 to 5 wt% was observed when the disposable catalyst (iron oxide) was removed from the reaction mixture and therefore substantiates the need for a disposable catalyst in the liquefaction of Wyoming subbituminous coal.

  2. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 26, January 1, 1995--March 31, 1995

    SciTech Connect

    1995-07-01

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. This progress report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  3. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly progress report, July--September 1993

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1993-12-31

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The primary coal of this program, Black Thunder subbituminous coal, can be effectively beneficiated to about 3.5 wt % ash using aqueous sulfurous acid pretreatment. This treated coal can be further beneficiated to about 2 wt % ash using commercially available procedures. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated subbituminous coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent. The study of bottoms processing consists of combining the ASCOT process which consists of coupling solvent deasphalting with delayed coking to maximize the production of coal-derived liquids while rejecting solids within the coke drum. The asphalt production phase has been completed; representative product has been evaluated. The solvent system for the deasphalting process has been established. Two ASCOT tests produced overall liquid yields (63.3 wt % and 61.5 wt %) that exceeded the combined liquid yields from the vacuum tower and ROSE process.

  4. Development of an Advanced Deshaling Technology to Improve the Energy Efficiency of Coal Handling, Processing, and Utilization Operations

    SciTech Connect

    Rick Honaker; Gerald Luttrell

    2007-09-30

    The concept of using a dry, density-based separator to achieve efficient, near-face rock removal, commonly referred to as deshaling, was evaluated in several applications across the U.S.. Varying amounts of high-density rock exist in most run-of-mine feed. In the central Appalachian coalfields, a rock content exceeding 50% in the feed to a preparation plant is commonplace due to high amounts of out-of-seam dilution made necessary by extracting coal from thin seams. In the western U.S, an increase in out-of-seam dilution and environmental regulations associated with combustion emissions have resulted in a need to clean low rank coals and dry cleaning may be the only option. A 5 ton/hr mobile deshaling unit incorporating a density-based, air-table technology commercially known as the FGX Separator has been evaluated at mine sites located within the states of Utah, Wyoming, Texas, West Virginia, Virginia, Pennsylvania and Kentucky. The FGX technology utilizes table riffling principles with air as the medium. Air enters through the table and creates a fluidized bed of particles comprised of mostly fine, high density particles. The high density particle bed lifts the low-density coal particles to the top of the bed. The low-density coal moves toward the front of the table due to mass action and the downward slope of the table. The high-density particles settle through the fluidized particle bed and, upon making contact with the table, moves toward the back of the table with the assistance of table vibration. As a result, the low-density coal particles exit the front of the table closest to the feed whereas the high-density, high-ash content particles leave on the side and front of the table located at the farthest from the feed entry. At each test site, the run-of-mine feed was either directly fed to the FGX unit or pre-screened to remove the majority of the -6mm material. The surface moisture of the feed must be maintained below 9%. Pre-screening is required when the

  5. Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems

    SciTech Connect

    Wang, Anbo; Pickrell, Gary

    2012-03-31

    This report summarizes technical progress on the program Multiplexed Optical Fiber Sensors for Coal Fired Advanced Fossil Energy Systems funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed jointly by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering and the Department of Materials Science and Engineering at Virginia Tech. This three-year project started on October 1, 2008. In the project, a fiber optical sensing system based on intrinsic Fabry-Perot Interferometer (IFPI) was developed for strain and temperature measurements for Ultra Supercritical boiler condition assessment. Investigations were focused on sensor design, fabrication, attachment techniques and novel materials for high temperature and strain measurements. At the start of the project, the technical requirements for the sensing technology were determined together with our industrial partner Alstom Power. As is demonstrated in Chapter 4, all the technical requirements are successfully met. The success of the technology extended beyond laboratory test; its capability was further validated through the field test at DOE NETL, in which the sensors yielded distributed temperature mapping of a testing coupon installed in the turbine test rig. The measurement results agreed well with prior results generated with thermocouples. In this project, significant improvements were made to the IFPI sensor technology by splicing condition optimization, transmission loss reduction, sensor signal demodulation and sensor system design.

  6. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  7. Development of advanced NO sub x control concepts for coal-fired utility boilers

    SciTech Connect

    Evans, A.; Newhall, J.; England, G.; Seeker, W.R.

    1992-06-23

    CombiNO{sub x} is a NO{sub x} reduction process which incorporates three different NO{sub x} control technologies: reburning, selective non-catalytic reduction (SNCR), and methanol injection. Gas reburning is a widely used technology that has been proven to reduce NO{sub x} up to 60% on full-scale applications. The specific goals of the CombiNO{sub x} project are: 70% NO{sub x} reduction at 20% of the cost of selective catalytic reduction; NO{sub x} levels at the stack of 60 ppm for ozone non-attainment areas; Demonstrate coal reburning; Identify all undesirable by-products of the process and their controlling parameters; Demonstrate 95% N0{sub 2} removal in a wet scrubber. Before integrating all three of CombiNO{sub x}'s technologies into a combined process, it is imperative that the chemistry of each individual process is well understood. Pilot-scale SNCR tests and the corresponding computer modeling were studied in detail and discussed in the previous quarterly report. This quarterly report will present the results obtained during the pilot-scale advanced reburning tests performed on EER's Boiler Simulation Facility (BSF). Since methanol injection is a relatively new NO{sub x} control technology, laboratory-scale tests were performed to better understand the conditions at which methanol is most effective. The experimental set-up and results from these tests will be discussed.

  8. Hydrogeologic investigation of the Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect

    Gardner, F.G.; Kearl, P.M.; Mumby, M.E.; Rogers, S.

    1996-09-01

    This document describes the geology and hydrogeology at the former Advanced Coal Liquefaction Research and Development (ACLR&D) facility in Wilsonville, Alabama. The work was conducted by personnel from the Oak Ridge National Laboratory Grand Junction office (ORNL/GJ) for the U.S. Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC). Characterization information was requested by PETC to provide baseline environmental information for use in evaluating needs and in subsequent decision-making for further actions associated with the closeout of facility operations. The hydrogeologic conceptual model presented in this report provides significant insight regarding the potential for contaminant migration from the ACLR&D facility and may be useful during other characterization work in the region. The ACLR&D facility is no longer operational and has been dismantled. The site was characterized in three phases: the first two phases were an environmental assessment study and a sod sampling study (APCO 1991) and the third phase the hydraulic assessment. Currently, a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation (RI) to address the presence of contaminants on the site is underway and will be documented in an RI report. This technical memorandum addresses the hydrogeologic model only.

  9. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 6, January--March 1994

    SciTech Connect

    Smit, F.J.; Rowe, R.M.; Anast, K.R.; Jha, M.C.

    1994-05-06

    This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effectve replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States as well as for advanced combustars currently under development. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals fbr clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. This cost-share contract is a 51-month program which started on September 30, 1992. This report discusses the technical progress, made during the 6th quarter of the project from January 1 to March 31, 1994. The project has three major objectives: (1) The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel for premium fuel applications. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. (2) A secondary objective is to develop the design base for near-term application of these advanced fine coal cleaning technologies in new or existing coal preparation plants for efficiently processing minus 28-mesh coal fines and converting this to marketable products in current market economics. (3) A third objective is to determine the removal of toxic trace elements from coal by advance column flotation and selective agglomeration technologies.

  10. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    SciTech Connect

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  11. Development of an advanced process for drying fine coal in an inclined fluidized bed

    SciTech Connect

    Boysen, J.E.; Cha, C.Y.; Barbour, F.A.; Turner, T.F.; Kang, T.W.; Berggren, M.H.; Hogsett, R.F.; Jha, M.C.

    1990-02-01

    The objective of this research project was to demonstrate a technically feasible and economically viable process for drying and stabilizing high-moisture subbituminous coal. Controlled thermal drying of coal fines was achieved using the inclined fluidized-bed drying and stabilization process developed by the Western Research Institute. The project scope of work required completion of five tasks: (1) project planning, (2) characterization of two feed coals, (3) bench-scale inclined fluidized-bed drying studies, (4) product characterization and testing, and (5) technical and economic evaluation of the process. High moisture subbituminous coals from AMAX Eagle Butte mine located in the Powder River Basin of Wyoming and from Usibelli Coal Mine, Inc. in Healy, Alaska were tested in a 10-lb/hr bench-scale inclined fluidized-bed. Experimental results show that the dried coal contains less than 1.5% moisture and has a heating value over 11,500 Btu/lb. The coal fines entrainment can be kept below 15 wt % of the feed. The equilibrium moisture of dried coal was less than 50% of feed coal equilibrium moisture. 7 refs., 60 figs., 47 tabs.

  12. Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, January to April 1994

    SciTech Connect

    Not Available

    1994-06-01

    The Department of Energy/Morgantown Energy Technology Center (DOE/METC) has initiated research on the disposal solid processes. The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Environmental Research Center (EERC) to design, construct, and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. Information on field disposal behavior is needed (a) as input to predictive models being developed, (b) as input to the development of rule of thumb design guidelines for the disposal of these wastes, and (c) as evidence of the behavior of these wastes in the natural environment.This study is organized into four major Tasks. Task 1 and 2 were devoted to planning the Task 3 field study. Task 4 uses the results of the field testing to produce an Engineering Design Manual for the utilities and industrial users who manage wastes from advanced coal combustion technologies.

  13. Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, May--July 1989

    SciTech Connect

    1989-12-31

    The Department of Energy/Morgantown Energy Technology Center (DOE/METC) has initiated research on the disposal of solid wastes from advanced coal processes. The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Mineral Research Center (EMRC) to design, construct and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. The specific objectives for the reporting period were as follows: review fourth site candidates; obtain site access for the Freeman United site; select an ash supplier for the Illinois site and initiate subcontracts for on-site work; commence construction of the Freeman United test cell; and obtain waste for the Colorado Ute test site. Accomplishments under each task are discussed.

  14. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    SciTech Connect

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek; Chadwick, Ronald; Conchieri,; Dara, Satyadileep; Henson, Victor; Leininger, Tom; Liber, Pawel; Nakazono, Benito; Pan, Edward; Ramirez, Jennifer; Stevenson, John; Venkatraman, Vignesh

    2012-11-30

    This report describes the development of the design of an advanced dry feed system that was carried out under Task 4.0 of Cooperative Agreement DE-FE0007902 with the US DOE, “Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the use of Low- Rank Coal.” The resulting design will be used for the advanced technology IGCC case with 90% carbon capture for sequestration to be developed under Task 5.0 of the same agreement. The scope of work covered coal preparation and feeding up through the gasifier injector. Subcomponents have been broken down into feed preparation (including grinding and drying), low pressure conveyance, pressurization, high pressure conveyance, and injection. Pressurization of the coal feed is done using Posimetric1 Feeders sized for the application. In addition, a secondary feed system is described for preparing and feeding slag additive and recycle fines to the gasifier injector. This report includes information on the basis for the design, requirements for down selection of the key technologies used, the down selection methodology and the final, down selected design for the Posimetric Feed System, or PFS.

  15. Insights into the coal extractive solvent N-methyl-2-pyrrolidone + carbon disulfide

    SciTech Connect

    Santiago Aparicio; Mara J. Davila; Rafael Alcalde

    2009-03-15

    A wide set of experimental and computational tools were used to characterize the N-methyl-2-pyrrolidone (NMP) + carbon disulfide mixed solvent in the full composition range. The interest in this solvent rose from its very efficient use for coal extraction through a mechanism still not fully understood. Thermophysical properties at ambient pressure together with pressure-volume-temperature (PVT) behavior were measured with the objective of providing the required data for the industrial use of the mixed fluid and to get insight into the fluid structure at the molecular level. NMR, FTIR, and solvatochromic studies were performed together with microwave dielectric relaxation spectroscopy (DRS) measurements, thus providing more information on the fluid's structure and allowing one to relate the molecular level behavior with the measured macroscopic properties. Moreover, density functional theory (DFT) and classical molecular dynamics simulations (MD) were used to obtain a detailed picture of the intermolecular interactions within the fluid, at short and long ranges, and of other relevant features leading to the structure of the studied system. The whole study leads to a fluid's picture in which carbon disulfide hinders the development of NMP/NMP intermolecular dipolar interactions, thus increasing the monomer population. We should remark that some properties reported in this work are in remarkable disagreement with previously reported studies, the most important one being the positive excess molar volume in the whole pressure-temperature range studied, which contrasts with the negative values reported in the literature. Previously reported properties are hardly justified with a coherent molecular level picture, whereas the whole collection of properties reported in this work leads to a more reasonable fluid's structure. 56 refs., 17 figs., 2 tabs.

  16. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly progress report, July - September 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-10-01

    The advanced fine-coal cleaning techniques such as column flotation, recovers a low-ash ultra-fine size clean-coal product. However, economical dewatering of the clean coal product to less than 20 percent moisture using conventional technology is difficult. This research program objective is to evaluate a novel coal surface modification technique developed at the University of Kentucky Center for Applied Energy Research in conjunction with conventional and advanced dewatering technique at a pilot scale. The study which is in progress is being conducted at the Powell Mountain Coal Company`s Mayflower preparation plant located in St. Charles, VA. During this quarter laboratory dewatering studies were conducted using a 4-in diameter laboratory chemical centrifuge. The baseline data provided a filter cake with about 32% moisture. Addition of 0.3 kg/t of a cationic surfactant lowered the moisture to 29%. Addition of anionic and non-ionic surfactant was not effective in reducing the filter cake moisture content. In the pilot scale studies, a comparison was conducted between the high pressure and vacuum dewatering techniques. The base line data with high pressure and vacuum filtration provided filter cakes with 23.6% and 27.8% moisture, respectively. Addition of 20 g/t of cationic flocculent provided 21% filter cake moisture using the high pressure filter. A 15% moisture filter cake was obtained using 1.5 kg/t of non-ionic surfactant. Vacuum filter provided about 23% to 25% moisture product with additional reagents. The high pressure filter processed about 3 to 4 times more solids compared to vacuum filter.

  17. Design and fabrication of advanced materials from Illinois coal wastes. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect

    Malhotra, V.M.; Wright, M.A.

    1995-12-31

    The main goal of this project is to develop a bench-scale procedure to design and fabricate advanced brake and structural composite materials from Illinois coal combustion residues. During the first two quarters of the project, the thrust of the work directed towards characterizing the various coal combustion residues and FGD residue, i.e., scrubber sludge. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), differential thermal analysis (DTA), and transmission-Fourier transform infrared (FTIR) were conducted on PCC fly ash (Baldwin), FBC fly ash (ADK unit l-6), FBC fly ash (S.I. coal), FBC spent bed ash (ADM, unit l-6), bottom ash, and scrubber sludge (CWLP) residues to characterize their geometrical shapes, mineral phases, and thermal stability. Our spectroscopic results indicate that the scrubber sludge is mainly composed of a gypsum-like phase whose lattice structure is different from the lattice structure of conventional gypsum, and sludge does not contain hannebachite (CaSO{sub 3}.0.5H{sub 2}O) phase. Our attempts to fabricate brake frictional shoes, in the form of 1.25 inch disks, from PCC fly ash, FBC spent bed ash, scrubber sludge, coal char, iron particles, and coal tar were successful. Based on the experience gained and microscopic analyses, we have now upscaled our procedures to fabricate 2.5 inch diameter disk,- from coal combustion residues. This has been achieved. The SEM and Young`s modulus analyses of brake composites fabricated at 400 psi < Pressure < 2200 psi suggest pressure has a strong influence on the particle packing and the filling of interstices in our composites. Also, these results along with mechanical behavior of the fabricated disks lead us to believe that the combination of surface altered PCC fly ash and scrubber sludge particles, together ed ash particles are ideal for our composite materials.

  18. Electroextraction and electromembrane extraction: Advances in hyphenation to analytical techniques

    PubMed Central

    Oedit, Amar; Ramautar, Rawi; Hankemeier, Thomas

    2016-01-01

    Electroextraction (EE) and electromembrane extraction (EME) are sample preparation techniques that both require an electric field that is applied over a liquid‐liquid system, which enables the migration of charged analytes. Furthermore, both techniques are often used to pre‐concentrate analytes prior to analysis. In this review an overview is provided of the body of literature spanning April 2012–November 2015 concerning EE and EME, focused on hyphenation to analytical techniques. First, the theoretical aspects of concentration enhancement in EE and EME are discussed to explain extraction recovery and enrichment factor. Next, overviews are provided of the techniques based on their hyphenation to LC, GC, CE, and direct detection. These overviews cover the compounds and matrices, experimental aspects (i.e. donor volume, acceptor volume, extraction time, extraction voltage, and separation time) and the analytical aspects (i.e. limit of detection, enrichment factor, and extraction recovery). Techniques that were either hyphenated online to analytical techniques or show high potential with respect to online hyphenation are highlighted. Finally, the potential future directions of EE and EME are discussed. PMID:26864699

  19. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report 6, January--March 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-05-03

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1- March 31, 1996.

  20. Advanced technology applications for second and third generation coal gasification systems. Appendix

    NASA Technical Reports Server (NTRS)

    Bradford, R.; Hyde, J. D.; Mead, C. W.

    1980-01-01

    Sixteen coal conversion processes are described and their projected goals listed. Tables show the reactants used, products derived, typical operating data, and properties of the feed coal. A history of the development of each process is included along with a drawing of the chemical reactor used.

  1. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect

    Wang, Xiang-Huai.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof, are directed at identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  2. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, Chengliang.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof will lead to identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  3. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect

    Wang, Xiang-Huai.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surfaces reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of the pyrite rejection in coal flotation. The product as well as their structure, the mechanism and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc., are directed at identifying the cause and possible solutions of the pyrite rejection problems in coal cleaning.

  4. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 3, April--June 1993

    SciTech Connect

    Smit, F.J.; Hogsett, R.F.; Jha, M.C.

    1993-07-28

    This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effective replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. This cost-share contract is a 48-month program which started on September 30, 1992. This report discusses the technical progress made during the quarter from April 1 to June 30, 1993. The project has three major objectives: (1) the primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel for premium fuel applications. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. (2) a secondary objective is to develop the design base for near-term application of these advanced fine coal cleaning technologies in new or existing coal preparation plants for efficiently processing minus 28-mesh coal fines and converting this to marketable products in current market economics; and (3) a third objective is to determine the removal of toxic trace elements from coal by advance column flotation and selective agglomeration technologies.

  5. International perspectives on coal preparation

    SciTech Connect

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  6. Measurement and modeling of advanced coal conversion processes. Twenty-second quarterly report, January 2, 1992--March 31, 1992

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S.

    1992-12-01

    The objectives of this proposed study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. This report describes progress during twenty second quarter of the program. Specifically, the paper discusses progress in three task areas: (1) Submodel development and evaluation: coal to char chemistry submodel; fundamental high-pressure reaction rate data; secondary reaction of pyrolysis product and burnout submodels; ash physics and chemistry submodel; large particle submodels; large char particle oxidation at high pressures; and SO{sub x}-NO{sub x} submodel development and evaluation; (2) Comprehensive model development and evaluation: integration of advanced submodels into entrained-flow code, with evaluation and documentation; comprehensive fixed-bed modeling review, development evaluation and implementation; and generalized fuels feedstock submodel; and (3) Application of integrated codes: application of generalized pulverized coal comprehensive code and application of fixed-bed code.

  7. Advanced Extraction Methods for Actinide/Lanthanide Separations

    SciTech Connect

    Scott, M.J.

    2005-12-01

    The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form

  8. Advanced direct coal liquefaction concepts. Quarterly report, April 1, 1993--June 30, 1993

    SciTech Connect

    Berger, D.J.; Parker, R.J.; Simpson, P.L. |

    1993-11-01

    Construction and commissioning of the bench unit for operation of the first stage of the process was completed. Solubilization of Black Thunder coal using carbon monoxide and steam was successfully demonstrated in the counterflow reactor system. The results were comparable with those obtained in the autoclave with the exception that coal solubilization at the same nominal residence times was slightly lower. The bench unit has now been modified for two stage operation. The Wilsonville process derived solvent for Black Thunder coal (V-1074) was found to be essentially as stable as the previous solvent used in the autoclave runs (V-178 + 320) at reactor conditions. This solvent (V-1074) is, therefore, being used in the bench unit tests. Carbon monoxide may be replaced by synthesis gas for the coal solubilization step in the process. However, in autoclave tests, coal conversion was found to be dependent on the amount of carbon monoxide present in the synthesis gas. Coal conversions ranged from 88% for pure carbon monoxide to 67% for a 25:75 carbon monoxide/hydrogen mixture at equivalent conditions. Two stage liquefaction tests were completed in the autoclave using a disposable catalyst (FeS) and hydrogen in the second stage. Increased coal conversion, higher gas and oil and lower asphaltene and preasphaltene yields were observed as expected. However, no hydrogen consumption was observed in the second stage. Other conditions, in particular, alternate catalyst systems will be explored.

  9. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Munirathinam, M.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. Four high quality coal pyrite samples from the Illinois No. 6, Kentucky No. 9, Pittsburgh No. 8 and Upper Freeport coal seams, and several high purity mineral pyrite samples were acquired. Synthetic single pyrite crystals (5 mm in size) and microcrystalline pyrite particles (averaging 6 {mu}m in size) were carefully obtained. Surface hydrophobicities of coal- and ore-pyrites have been studied by contact angle titration and film flotation methods. The oxidation and reduction behavior of coal-pyrites, ore-pyrites and synthetic pyrite single crystals have been studied suing electrochemical methods, including cyclic voltammetry, rotating-disc electrode technique, open-circuit potential measurements and steady-polarization measurements. 7 refs., 14 figs.

  10. Soluble sulfur species extracted from coal by chemical leaching. [MS thesis; mineral and coal-derived pyrite; 114 references

    SciTech Connect

    Stephenson, M.D.

    1982-07-01

    The nature of the soluble sulfur-containing reaction products from the desulfurization of pyrite was studied. The rate of oxydesulfurization of the two varieties of pyrite was studied under the leaching conditions of the Ames process. Concentrations of soluble sulfur species were determined for oxydesulfurization using leach solutions of sodium carbonate, sodium bicarbonate, distilled water, and dilute sulfuric acid and for alkaline leaching without oxygen using sodium carbonate. Mineral grade pyrite was found to be much less reactive towards oxydesulfurization than coal-derived pyrite, although the mechanism of sulfur removal was apparently the same. The sulfur containing products of oxydesulfurization were found to be thiosulfate, sulfite, and sulfate for alkaline leach solutions, and elemental sulfur and sulfuric acid when neutral or acidic solutions were used. For the Ames process, thiosulfate was usually the major sulfur containing product, although oxidation to sulfite and sulfate was found to take place. Oxidation of thiosulfate did not occur with oxygen alone, but did occur in the presence of oxygen and partially reacted pyrite. Higher temperatures and higher oxygen partial pressures favored formation of sulfate at the expense of both thiosulfate and sulfite. With neutral and acidic leach solutions, sulfuric acid accounted for most of the sulfur, although measurable quantities of elemental sulfur were present.Higher oxygen partial pressures and higher temperatures favored the formation of sulfuric acid at the expense of elemental sulfur. Pyrite oxidized faster under alkaline conditions than under neutral or acidic conditions. Pyrite was also leached at high temperatures in a sodium carbonate solution in the absence of oxygen.

  11. Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale

    USGS Publications Warehouse

    Orem, William H.; Tatu, Calin A.; Varonka, Matthew S.; Lerch, Harry E.; Bates, Anne L.; Engle, Mark A.; Crosby, Lynn M.; McIntosh, Jennifer

    2014-01-01

    Organic substances in produced and formation water from coalbed methane (CBM) and gas shale plays from across the USA were examined in this study. Disposal of produced waters from gas extraction in coal and shale is an important environmental issue because of the large volumes of water involved and the variable quality of this water. Organic substances in produced water may be environmentally relevant as pollutants, but have been little studied. Results from five CBM plays and two gas shale plays (including the Marcellus Shale) show a myriad of organic chemicals present in the produced and formation water. Organic compound classes present in produced and formation water in CBM plays include: polycyclic aromatic hydrocarbons (PAHs), heterocyclic compounds, alkyl phenols, aromatic amines, alkyl aromatics (alkyl benzenes, alkyl biphenyls), long-chain fatty acids, and aliphatic hydrocarbons. Concentrations of individual compounds range from < 1 to 100 μg/L, but total PAHs (the dominant compound class for most CBM samples) range from 50 to 100 μg/L. Total dissolved organic carbon (TOC) in CBM produced water is generally in the 1–4 mg/L range. Excursions from this general pattern in produced waters from individual wells arise from contaminants introduced by production activities (oils, grease, adhesives, etc.). Organic substances in produced and formation water from gas shale unimpacted by production chemicals have a similar range of compound classes as CBM produced water, and TOC levels of about 8 mg/L. However, produced water from the Marcellus Shale using hydraulic fracturing has TOC levels as high as 5500 mg/L and a range of added organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at levels of 1000 s of μg/L for individual compounds. Levels of these hydraulic fracturing chemicals and TOC decrease rapidly over the first 20 days of water recovery and some level of residual organic contaminants remain up to 250 days after

  12. Advanced pulverized coal combustor for control of NO/sub x/ emissions. First quarterly report, September 24-December 24, 1980

    SciTech Connect

    Pam, R.; Chu, E. K.; Kelly, J. T.

    1981-01-30

    The first quarter results under the Advanced Pulverized Coal Combustor for Control of NO/sub x/ Emissions Program (DOE Contract DE-AC22-80PC30296) are reported. A preliminary gas phase reaction model for predicting fuel NO/sub x/ formation during combustion of methane fuel has been constructed. Predictions of NO/sub x/ formation under stirred reactor conditions agree with existing experimental data. Thermal NO/sub x/ and coal reaction data will be developed and verified during the next reporting period. Progress has been made in formulating the changes necessary to upgrade the Acurex PROF code for use as the comprehensive data analysis tool in this program. The radiation modeling and the incorporation of the needed modifications into the PROF code will occur during the next reporting period. The idealized combustor was designed, and requests for bids to fabricate the combustor were submitted. Combustor fabrication will be completed during the next reporting period.

  13. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Chou, M.I.M; Lytle, J.M.; Ruch, R.R.; Kruse, C.W.; Chaven, C.; Hackley, K.C.; Hughes, R.E.; Harvey, R.D.; Frost, J.K.; Buchanan, D.H.; Stucki, J.W.; Huffman, G.; Huggins, F.E.

    1992-09-01

    A pre-combustion coal desulfurization process at 120{degree}C using perchloroethylene (PCE) to remove up to 70% of the organic sulfur has been developed by the Midwest Ore Processing Co. (MWOPC). However, this process has not yet proven to be as successful with Illinois coals as it has for Ohio and Indiana coals. In addition, the high levels of organic sulfur removals observed by the MWOPC may be due to certain errors involved in the ASTM data interpretation; this needs verification. For example, elemental sulfur extracted by the PCE may be derived from pyrite oxidation during coal preoxidation, but it may be interpreted as organic sulfur removed by the PCE using ASTM analysis. The purposes of this research are to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization process reported by the MWOPC and to verify the forms-of-sulfur determination using the ASTM method for the PCE process evaluation.

  14. Coal combustion science

    SciTech Connect

    Hardesty, D.R.; Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

  15. Advances in solid-phase extraction disks for environmental chemistry

    USGS Publications Warehouse

    Thurman, E.M.; Snavely, K.

    2000-01-01

    The development of solid-phase extraction (SPE) for environmental chemistry has progressed significantly over the last decade to include a number of new sorbents and new approaches to SPE. One SPE approach in particular, the SPE disk, has greatly reduced or eliminated the use of chlorinated solvents for the analysis of trace organic compounds. This article discusses the use and applicability of various SPE disks, including micro-sized disks, prior to gas chromatography-mass spectrometry for the analysis of trace organic compounds in water. Copyright (C) 2000 Elsevier Science B.V.

  16. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 18, January 1, 1993--March 31, 1993

    SciTech Connect

    Not Available

    1993-07-01

    This task is the actual demonstration of the advanced froth flotation technology. All previous work has led to this task. ICF KE technicians and process engineers from the team will operate the plant over a 10 month period to demonstrate the capability of the technology to remove 85% of the pyritic sulfur from three different test coals while recovering at least 85% of the as-mined coal`s energy content. Six major subtasks have been included to better define the overall work scope for this task. The ICF KE team will test the Pittsburgh No. 8 seam, the Illinois No. 6 seam and the Upper Freeport seam; the team will operate the circuit in a continuous run; the team will analyze all samples generated in those runs and will develop a plan to store and dispose of the coal and refuse products. All laboratory data generated will be accessible to all team members and the DOE. The test program for the Pittsburgh No. 8 coal began during March 1, 1993. An arrangement has been made between ICF Kaiser Engineers (ICF KE) and American Electric Power (AEP), who is the host for the DOE POC facility. The arrangement calls for AEP to purchase the raw coal and use the clean coal generated by the DOE POC facility. This arrangement permits the processing of raw coal at a very minimal cost of purchasing the raw coal.

  17. Advanced direct coal liquefaction concepts. Quarterly report, January 1, 1993--March 31, 1993

    SciTech Connect

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    1993-07-01

    Five barrels of a Wilsonville process derived solvent (V-1074) from Black Thunder coal were obtained. This material boils within the preferred gas oil range, is more aromatic than previous solvents, and will therefore be used for the bench unit studies. Several repeat runs were performed in the autoclave to confirm the results of the matrix study. In addition, runs were carried out with different catalysts, with agglomerates and with the V-1074 solvent. The results of the autoclave runs were analyzed with respect to coal conversion, CO conversion, oil yield, hydrogen consumption and oxygen removal. It was concluded that the best operating conditions for the first stage operation was a temperature of at least 390{degrees}C, residence time of at least 30 minutes, cold CO pressure of at least 600 psig and potassium carbonate catalyst (2% wt on total feed). The data also indicated however, that the coal conversion goes through a maximum, and too high a severity leads to retrograde reaction and lower coal solubilization. The scope for increasing temperature and time is therefore limited. Petrographic examination of the THF insoluble resids from the autoclave program indicated a maximum coal conversion of about 90% for Black Thunder coal. The bench unit construction was also essentially completed and the bench unit program to be carded out in the next twelve months was defined.

  18. Geologic considerations in underground coal mining system design

    NASA Technical Reports Server (NTRS)

    Camilli, F. A.; Maynard, D. P.; Mangolds, A.; Harris, J.

    1981-01-01

    Geologic characteristics of coal resources which may impact new extraction technologies are identified and described to aid system designers and planners in their task of designing advanced coal extraction systems for the central Appalachian region. These geologic conditions are then organized into a matrix identified as the baseline mine concept. A sample region, eastern Kentucy is analyzed using both the developed baseline mine concept and the traditional geologic investigative approach.

  19. Toxicity of sediments potentially contaminated by coal mining and natural gas extraction to unionid mussels and commonly tested benthic invertebrates.

    PubMed

    Wang, Ning; Ingersoll, Christopher G; Kunz, James L; Brumbaugh, William G; Kane, Cindy M; Evans, R Brian; Alexander, Steven; Walker, Craig; Bakaletz, Steve

    2013-01-01

    Sediment toxicity tests were conducted to assess potential effects of contaminants associated with coal mining or natural gas extraction activities in the upper Tennessee River basin and eastern Cumberland River basin in the United States. Test species included two unionid mussels (rainbow mussel, Villosa iris, and wavy-rayed lampmussel, Lampsilis fasciola, 28-d exposures), and the commonly tested amphipod, Hyalella azteca (28-d exposure) and midge, Chironomus dilutus (10-d exposure). Sediments were collected from seven test sites with mussel communities classified as impacted and in proximity to coal mining or gas extraction activities, and from five reference sites with mussel communities classified as not impacted and no or limited coal mining or gas extraction activities. Additional samples were collected from six test sites potentially with high concentrations of polycyclic aromatic hydrocarbons (PAHs) and from a test site contaminated by a coal ash spill. Mean survival, length, or biomass of one or more test species was reduced in 10 of 14 test samples (71%) from impacted areas relative to the response of organisms in the five reference samples. A higher proportion of samples was classified as toxic to mussels (63% for rainbow mussels, 50% for wavy-rayed lampmussels) compared with amphipods (38%) or midge (38%). Concentrations of total recoverable metals and total PAHs in sediments did not exceed effects-based probable effect concentrations (PECs). However, the survival, length, or biomasses of the mussels were reduced significantly with increasing PEC quotients for metals and for total PAHs, or with increasing sum equilibrium-partitioning sediment benchmark toxic units for PAHs. The growth of the rainbow mussel also significantly decreased with increasing concentrations of a major anion (chloride) and major cations (calcium and magnesium) in sediment pore water. Results of the present study indicated that (1) the findings from laboratory tests were generally

  20. Toxicity of sediments potentially contaminated by coal mining and natural gas extraction to unionid mussels and commonly tested benthic invertebrates

    USGS Publications Warehouse

    Wang, Ning; Ingersoll, Christopher G.; Kunz, James L.; Brumbaugh, William G.; Kane, Cindy M.; Evans, R. Brian; Alexander, Steven; Walker, Craig; Bakaletz, Steve

    2013-01-01

    Sediment toxicity tests were conducted to assess potential effects of contaminants associated with coal mining or natural gas extraction activities in the upper Tennessee River basin and eastern Cumberland River basin in the United States. Test species included two unionid mussels (rainbow mussel, Villosa iris, and wavy-rayed lampmussel, Lampsilis fasciola, 28-d exposures), and the commonly tested amphipod, Hyalella azteca (28-d exposure) and midge, Chironomus dilutus (10-d exposure). Sediments were collected from seven test sites with mussel communities classified as impacted and in proximity to coal mining or gas extraction activities, and from five reference sites with mussel communities classified as not impacted and no or limited coal mining or gas extraction activities. Additional samples were collected from six test sites potentially with high concentrations of polycyclic aromatic hydrocarbons (PAHs) and from a test site contaminated by a coal ash spill. Mean survival, length, or biomass of one or more test species was reduced in 10 of 14 test samples (71%) from impacted areas relative to the response of organisms in the five reference samples. A higher proportion of samples was classified as toxic to mussels (63% for rainbow mussels, 50% for wavy-rayed lampmussels) compared with amphipods (38%) or midge (38%). Concentrations of total recoverable metals and total PAHs in sediments did not exceed effects-based probable effect concentrations (PECs). However, the survival, length, or biomasses of the mussels were reduced significantly with increasing PEC quotients for metals and for total PAHs, or with increasing sum equilibrium-partitioning sediment benchmark toxic units for PAHs. The growth of the rainbow mussel also significantly decreased with increasing concentrations of a major anion (chloride) and major cations (calcium and magnesium) in sediment pore water. Results of the present study indicated that (1) the findings from laboratory tests were generally

  1. Advanced Extraction of Spatial Information from High Resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Pour, T.; Burian, J.; Miřijovský, J.

    2016-06-01

    In this paper authors processed five satellite image of five different Middle-European cities taken by five different sensors. The aim of the paper was to find methods and approaches leading to evaluation and spatial data extraction from areas of interest. For this reason, data were firstly pre-processed using image fusion, mosaicking and segmentation processes. Results going into the next step were two polygon layers; first one representing single objects and the second one representing city blocks. In the second step, polygon layers were classified and exported into Esri shapefile format. Classification was partly hierarchical expert based and partly based on the tool SEaTH used for separability distinction and thresholding. Final results along with visual previews were attached to the original thesis. Results are evaluated visually and statistically in the last part of the paper. In the discussion author described difficulties of working with data of large size, taken by different sensors and different also thematically.

  2. Treatment of metal-laden hazardous wastes with advanced clean coal technology by-products. Quarterly report, May 1995--August 1995

    SciTech Connect

    1995-11-01

    This fourth quarterly report describes work done during the fourth three-month period of the University of Pittsburgh`s project on the {open_quotes}Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.{close_quote} Participating with the university on this project are Dravo Lime Company, Mill Service, Inc., and the Center for Hazardous Materials Research. This report describes the activities of the project team during the reporting period. The principal work has focussed upon the production of six sets of samples with high water content for solidification testing and the mixing of five dry samples for solidification testing by the Proctor method. Twenty-eight day compressive strengths are reported for five of the six sets of samples with high water content. The report also discusses completion of the format of the database and the inclusion in it of all data collected to date. Special reports presented during the quarter include the Continuation Application, a News Release, and modification to the Test Plan. Work is progressing on the NEPA report and the Topical Report. The activity on the project during the fourth quarter of Phase one, as presented in the following sections, has fallen into six major areas: (1) Completion of by-product evaluations, (2) Completion of analyses of six wastes, (3) Initiation of eleven solidification tests, (4) Continued extraction and extract analysis of solidified samples, (5) Development of the database, and (6) Production of reports.

  3. Advanced NMR approaches in the characterization of coal. [Quarterly] report No. 8

    SciTech Connect

    Maciel, G.E.

    1992-12-31

    The paper submitted earlier on the use of (bicyclo[3.2.1]4pyrrolidino-N-methyl-octan-8-one triflate) ({sup 13}CO-123) as a {sup 13}C intensity standard was accepted for publication. Subsequently, {sup 13}CO-321 was used in this manner for quantitative {sup 13}C CP-MAS NMR analysis (including spin counting) of Argonne Premium coals. The cross-polarization time constants, T{sub CH}, and the rotating-frame proton spin-lattice relaxation times, T{sub 1p}{sup H}, were determined for each major peak of each coal via a combination of variable contact-time and variable spin-lock (T{sub 1p}{sup H}) experiments. Two or three components of rotating-frame {sup 1}H relaxation decay and two or three components of T{sub CH} behavior were observed for each major {sup 13}C peak of each coal. These data were used to determine the number of carbon atoms detected in each coal; these values are in the range between 77% and 87% of the amount of carbon known to be in each coal from elemental analysis data, except for Pocahontas No. 3, for which only 50% of the carbon was detected. In an attempt to use {sup 1}H CRAMPS to elucidate chemical functionality in coal, pyridine-saturated samples of the Argonne Premium coals were examined in detail in terms of their {sup 1}H CRAMPS NMR spectra. These spectra were deconvoluted to yield relative concentrations for individual peaks.

  4. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 15, April--June 1996

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1996-07-25

    Goal is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Scope includes laboratory research and bench-scale testing on 6 coals to optimize these processes, followed by design/construction/operation of a 2-t/hr PDU. During this quarter, parametric testing of the 30-in. Microcel{trademark} flotation column at the Lady Dunn plant was completed and clean coal samples submitted for briquetting. A study of a novel hydrophobic dewatering process continued at Virginia Tech. Benefits of slurry PSD (particle size distribution) modification and pH adjustment were evaluated for the Taggart and Hiawatha coals; they were found to be small. Agglomeration bench-scale test results were positive, meeting product ash specifications. PDU Flotation Module operations continued; work was performed with Taggart coal to determine scaleup similitude between the 12-in. and 6-ft Microcel{trademark} columns. Construction of the PDU selective agglomeration module continued.

  5. Microstructural evolution in advanced boiler materials for ultra-supercritical coal power plants

    NASA Astrophysics Data System (ADS)

    Wu, Quanyan

    The goal of improving the efficiency of pulverized coal powerplants has been pursued for decades. The need for greater efficiency and reduced environmental impact is pushing utilities to ultra supercritical conditions (USC), i.e. steam temperatures approaching 760°C under a stress of 35 MPa. The long-term creep strength and environmental resistance requirements imposed by these conditions are clearly beyond the capacity of the currently used ferritic steels and other conventional alloys. As part of a large DOE-funded consortium, new and existing materials based on advanced austenitic stainless steels and nickel base superalloys are being evaluated for these very demanding applications. In the present work, the nickel base superalloys of Inconel 617, CCA617, Haynes 230 and Inconel 740, and austenitic alloys Super 304H and HR6W, were evaluated on their microstructural properties over elevated temperature ageing and creep rupture conditions. The materials were aged for different lengths of time at temperatures relevant to USC applications, i.e., in the range from 700 to 800°C. The precipitation behaviors, namely of the gamma', carbides and eta phase in some conditions in nickel base superalloys, carbides in Haynes 230, Cu-rich precipitates in Super 304H and Laves phase particles in HR6W, were studied in detail using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and related analytical techniques. Particular attention has been given on the structure, morphology and compositional distinctiveness of various phases (including gamma, gamma', carbides, secondary phase precipitates, and other types of particles) and their nature, dislocation structures and other types of defects. The results were presented and discussed in light of associated changes in microhardness in the cases of aged samples, and in close reference to mechanical testing (including tensile and creep rupture tests) wherever available. Several mechanical strengthening

  6. Advance chromatin extraction improves capture performance of protein A affinity chromatography.

    PubMed

    Nian, Rui; Zhang, Wei; Tan, Lihan; Lee, Jeremy; Bi, Xeuzhi; Yang, Yuansheng; Gan, Hui Theng; Gagnon, Pete

    2016-01-29

    Practical effects of advance chromatin removal on performance of protein A affinity chromatography were evaluated using a caprylic acid-allantoin-based extraction method. Lacking this treatment, the practice of increasing loading residence time to increase capacity was shown to increase host protein contamination of the eluted IgG. Advance chromatin extraction suspended that compromise. Protein A ligand leakage from columns loaded with chromatin-extracted harvest was half the level observed on protein A columns loaded with non-extracted harvest. Columns loaded with chromatin-extracted harvest were cleaned more effectively by 50-100mM NaOH than columns loaded with non-extracted harvest that were cleaned with 250-500mM NaOH. Two protein A media with IgG capacities in excess of 50g/L were loaded with chromatin-extracted harvest, washed with 2.0M NaCl before elution, and the eluted IgG fraction titrated to pH 5.5 before microfiltration. Host protein contamination in the filtrate was reduced to <1ppm, DNA to <1ppb, protein A leakage to 0.5ppm, and aggregates to 1.0%. Caprylic acid and allantoin were both reduced below 5ppm. Step recovery of IgG was 99.4%. Addition of a single polishing step reduced residual protein A beneath the level of detection and aggregates to <0.1%. Overall process recovery including chromatin extraction was 90%. PMID:26774119

  7. Study of the possibility of iron extraction from waste coal by magnetizing roasting

    NASA Astrophysics Data System (ADS)

    Volynkina, E. P.; Zorya, V. N.; Korovushkin, V. V.

    2016-09-01

    The efficiency of magnetizing roasting of waste coal in converting iron, contained in the mineral part, from weak-magnetic and non-magnetic minerals (siderite, pyrite, marcasite) into high-magnetic ones (magnetite, maghemite) is shown. Products of magnetizing roasting are used as raw material for the subsequent magnetic separation.

  8. Advanced direct coal liquefaction concepts. Quarterly report, October 1, 1993--December 31, 1993

    SciTech Connect

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    1993-12-31

    Six runs on the bench unit were successfully completed this quarter. The runs covered twenty five different operating conditions and yield periods, and involved 336 hours of operation. In the bench unit, increased temperature of first stage operation (410{degree}C) and direct addition of the powdered solid sodium aluminate to the feed as first stage catalyst improved both coal and carbon monoxide conversion. To achieve 90%+ overall coal conversion, temperatures of 430{degree}C+ were required in the second stage. Oil yields (pentane soluble liquid product) in excess of 65 wt % based on MAF Black Thunder coal, were achieved both with iron oxide/dimethyl disulfide and ammonium molybdate/carbon disulfide second stage catalysts. C{sub l}-C{sub 3} hydrogen gas yields were modest, generally 7-8 wt % on MAF coal, and overall hydrogen consumption (including first stage shift hydrogen) was in the order of 7-8 wt % on MAF coal. The ammonium molybdate catalyst system appeared to give slightly higher oil yields and hydrogen consumption, as was expected, but the differences may not be significant.

  9. World market: A survey of opportunities for advanced coal-fired systems

    SciTech Connect

    Holt, N.A.H.

    1995-06-01

    Although there is a wide range of forecasts for the future of World energy demand and consumption over the next 25 years, all forecasts show marked increases being required for all forms of fossil fuels even when optimistic projections are made for the future adoption of Nuclear and Renewable energy. It is also generally expected that coal usage will in this period experience its greatest growth (a doubling) in the Asia-Pacific region dominated demographically by China and India. In this paper, energy projections and the extent and nature of the coal reserves available worldwide are examined. While most coal technologies can handle a variety of feedstocks, there are often economic factors that will determine the preferred selection. The matching of technology to coal type and other factors is examined with particular reference to the Asia Pacific region. Oil usage is similarly forecast to experience a comparable growth in this region. Over 70% of the World`s oil reserves are heavy oils and refinery crudes are increasing in gravity and sulfur content. The clean coal technologies of gasification and fluid bed combustion can also use low value petroleum residuals as feedstocks. There is therefore a nearer term market opportunity to incorporate such technologies into cogeneration and coproduction schemes adjacent to refineries resulting in extremely efficient use of these resources.

  10. Advanced coal liquefaction research: Technical progress report, January 1, 1987-March 31, 1987

    SciTech Connect

    Gall, W.; McIlvried, H.G. III

    1987-05-01

    This report describes the work performed by Energy International during the first quarter of 1987. Most of this work involved using a larger microautoclave reactor. Studies were made of the effect of the size of the coal charge on conversion and product yield reproducibility using Powhatan No. 6 Mine and Illinois No. 6 coals. Good coal conversion and product yield reproducibility for duplicate runs were obtained after minor modifications were made to the product workup technique. The experimental program using 50/sup 0/F distillate fractions of process solvent obtained from the GR and DC P-99 SRC-II PDU has been completed. Initial results indicate that all six distillates are essentially equal as hydrogen donor solvents. A sample of Wilsonville SRC deashed oil was received and distilled into two distillate fractions: 650 to 850/sup 0/F. A 3 x 3 factorial design of experiments with replicates of the corner and center points (14 runs total) will be made with the 850 to 1005/sup 0/F distillate cut using Illinois No. 6 coal. EI will perform the coal liquefaction runs in its 105 ml microautoclave reactor. 2 refs., 6 figs., 24 tabs.

  11. POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE

    SciTech Connect

    X.H. Wang; J. Wiseman; D.J. Sung; D. McLean; William Peters; Jim Mullins; John Hugh; G. Evans; Vince Hamilton; Kenneth Robinette; Tim Krim; Michael Fleet

    1999-08-01

    Dewatering of ultra-fine (minus 150 {micro}m) coal slurry to less than 20% moisture is difficult using the conventional dewatering techniques. The main objective of the project was to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions and surfactants in combination for the dewatering of ultra-fine clean-coal slurries using various dewatering techniques on a proof-of-concept (POC) scale of 0.5 to 2 tons per hour. The addition of conventional reagents and the application of coal surface modification technique were evaluated using vacuum filtration, hyperbaric (pressure) filtration, ceramic plate filtration and screen-bowl centrifuge techniques. The laboratory and pilot-scale dewatering studies were conducted using the fine-size, clean-coal slurry produced in the column flotation circuit at the Powell Mountain Coal Company, St. Charles, VA. The pilot-scale studies were conducted at the Mayflower preparation plant in St. Charles, VA. The program consisted of nine tasks, namely, Task 1--Project Work Planning, Task 2--Laboratory Testing, Task 3--Engineering Design, Task 4--Procurement and Fabrication, Task 5--Installation and Shakedown, Task 6--System Operation, Task 7--Process Evaluation, Task 8--Equipment Removal, and Task 9--Reporting.

  12. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 16, July--September, 1996

    SciTech Connect

    Shields, G.L.; Moro, N.; Smit, F.J.; Jha, M.C.

    1996-10-30

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. 28 refs., 13 figs., 19 tabs.

  13. Engineering Development of Advanced Physical Fine Coal Cleaning Technologies: Froth flotation. Quarterly technical progress report No. 21, October 1, 1993--December 31, 1993

    SciTech Connect

    Not Available

    1993-12-31

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing, other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate.

  14. Advanced technology applications for second and third general coal gasification systems

    NASA Technical Reports Server (NTRS)

    Bradford, R.; Hyde, J. D.; Mead, C. W.

    1980-01-01

    The historical background of coal conversion is reviewed and the programmatic status (operational, construction, design, proposed) of coal gasification processes is tabulated for both commercial and demonstration projects as well as for large and small pilot plants. Both second and third generation processes typically operate at higher temperatures and pressures than first generation methods. Much of the equipment that has been tested has failed. The most difficult problems are in process control. The mechanics of three-phase flow are not fully understood. Companies participating in coal conversion projects are ordering duplicates of failure prone units. No real solutions to any of the significant problems in technology development have been developed in recent years.

  15. Advanced NMR-based techniques for pore structure analysis of coal

    SciTech Connect

    Smith, D.M.

    1991-01-01

    One of the main problems in coal utilization is the inability to properly characterize its complex pore structure. We propose to investigate the dependence of the common NMR parameters such as chemical shifts and relaxation times of several different nuclei and compounds on the pore structure of model microporous solids, carbons, and coals. In particular, we will study the interaction between several small molecules ({sup 129}Xe, {sup 3}He, {sup 2}H{sub 2}, {sup 14}N{sub 2}, {sup 14}NH{sub 3}, {sup 15}N{sub 2}, {sup 13}CH{sub 4}, {sup 13}CO{sub 2}) and the pore surfaces in coals. These molecules have been selected for their chemical and physical properties.

  16. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL FIRED PROCESSES

    SciTech Connect

    Leon Glicksman; Hesham Younis; Richard Hing-Fung Tan; Michel Louge; Elizabeth Griffith; Vincent Bricout

    1998-04-30

    Pressurized fluidization is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal combustor at high inlet gas velocity to increase the flow of reactants, at an elevated pressure to raise the overall efficiency of the process. Unfortunately, commercialization of large pressurized fluidized beds is inhibited by uncertainties in scaling up units from the current pilot plant levels. In this context, our objective is to conduct a study of the fluid dynamics and solid capture of a large pressurized coal-fired unit. The idea is to employ dimensional similitude to simulate in a cold laboratory model the flow in a Pressurized Circulating Fluid Bed ''Pyrolyzer,'' which is part of a High Performance Power System (HIPPS) developed by Foster Wheeler Development Corporation (FWDC) under the DOE's Combustion 2000 program.

  17. Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development

    SciTech Connect

    Stephenson, M.

    1994-03-01

    Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

  18. Advanced NMR-based techniques for pore structure analysis of coal

    SciTech Connect

    Smith, D.M.

    1992-01-01

    One of the main problems in coal utilization is the inability to properly characterize its complex pore structure. Coals typically have micro/ultra-micro pores but they also exhibit meso and macroporosity. Conventional pore size techniques (adsorption/condensation, mercury porosimetry) are limited because of this broad pore size range, microporosity, reactive nature of coal, samples must be completely dried, and network/percolation effects. Small angle scattering is limited because it probes both open and closed pores. Although one would not expect any single technique to provide a satisfactory description of a coal's structure, it is apparent that better techniques are necessary. We believe that measurement of the NMR parameters of various gas phase and adsorbed phase NMR active probes can provide the resolution to this problem. We will investigate the dependence of the common NMR parameters such as chemical shifts and relaxation times of several different nuclei and compounds on the pore structure of model microporous solids, carbons, and coals. In particular, we will study the interaction between several small molecules and the pore surfaces in coals. These molecules have been selected for their chemical and physical properties. A special NMR probe will be constructed which will allow the concurrent measurement of NMR properties and adsorption uptake at a variety of temperatures. All samples will be subjected to a suite of conventional'' pore structure analyses. These include nitrogen adsorption at 77 K with BET analysis, CO[sub 2] and CH[sub 4] adsorption at 273 K with D-R (Dubinin-Radushkevich) analysis, helium pycnometry, and small angle X-ray scattering as well as gas diffusion measurements.

  19. An Advanced Control System for Fine Coal Flotation. Sixth quarter, technical progress report, July 1-September 30, 1997

    SciTech Connect

    Adel, G.T.; Luttrell, G.H.

    1997-10-27

    Over the past thirty years, process control has spread from the chemical industry into the fields of mineral and coal processing. Today, process control computers, combined with improved instrumentation, are capable of effective control in many modem flotation circuits. Unfortunately, the classical methods used in most control strategies have severe limitations when used in froth flotation. For example, the nonlinear nature of the flotation process can cause single-input, single-output lines to battle each other in attempts to achieve a given objective. Other problems experienced in classical control schemes include noisy signals from sensors and the inability to measure certain process variables. For example, factors related to ore type or water chemistry, such as liberation, froth stability, and floatability, cannot be measured by conventional means. The purpose of this project is to demonstrate an advanced control system for fine coal flotation. The demonstration is being carried out at an existing coal preparation plant by a team consisting of Virginia Polytechnic Institute and State University (VPI&SU) as the prime contractor and J.A. Herbst and Associates as a subcontractor. The objectives of this work are: (1) to identify through sampling, analysis, and simulation those variables which can be manipulated to maintain grades, recoveries, and throughput rates at levels set by management; (2) to develop and implement a model-based computer control strategy that continuously adjusts those variables to maximize revenue subject to various metallurgical, economic, and environmental constraints; and (3) to employ a video-based optical analyzer for on-line analysis of ash content in fine coal slurries.

  20. Effects of Mikania glomerata Spreng. and Mikania laevigata Schultz Bip. ex Baker (Asteraceae) extracts on pulmonary inflammation and oxidative stress caused by acute coal dust exposure

    SciTech Connect

    Freitas, T.P.; Silveira, P.C.; Rocha, L.G.; Rezin, G.T.; Rocha, J.; Citadini-Zanette, V.; Romao, P.T.; Dal-Pizzol, F.; Pinho, R.A.; Andrade, V.M.; Streck, E.L.

    2008-12-15

    Several studies have reported biological effects of Mikania glomerata and Mikania laevigata, used in Brazilian folk medicine for respiratory diseases. Pneumoconiosis is characterized by pulmonary inflammation caused by coal dust exposure. In this work, we evaluated the effect of pretreatment with M. glomerata and M. laevigata extracts (MGE and MLE, respectively) (100 mg/kg, s.c.) on inflammatory and oxidative stress parameters in lung of rats subjected to a single coal dust intratracheal instillation. Rats were pretreated for 2 weeks with saline solution, MGE, or MLE. On day 15, the animals were anesthetized, and gross mineral coal dust or saline solutions were administered directly in the lung by intratracheal instillation. Fifteen days after coal dust instillation, the animals were killed. Bronchoalveolar lavage (BAL) was obtained; total cell count and lactate dehydrogenase (LDH) activity were determined. In the lung, myeloperoxidase activity, thiobarbituric acid-reactive substances (TBARS) level, and protein carbonyl and sulfhydryl contents were evaluated. In BAL of treated animals, we verified an increased total cell count and LDH activity. MGE and MLE prevented the increase in cell count, but only MLE prevented the increase in LDH. Myeloperoxidase and TBARS levels were not affected, protein carbonylation was increased, and the protein thiol levels were decreased by acute coal dust intratracheal administration. The findings also suggest that both extracts present an important protective effect on the oxidation of thiol groups. Moreover, pretreatment with MGE and MLE also diminished lung inflammatory infiltration induced by coal dust, as assessed by histopathologic analyses.

  1. Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, November 1991--January 1992

    SciTech Connect

    Not Available

    1992-08-01

    The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Environmental Research Center (EERC) to design, construct, and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. Accomplishments for this past quarter are as follows: The 9th quarterly measurements at the Colorado site took place in December, 1991. Permeability and neutron absorption moisture content measurements were made and on site data was collected from the data logger; The 9th quarterly sampling at the Ohio site took place in November 1991. Permeability and moisture content measurements were made, and water samples were collected from the wells and lysimeters; The second quarterly core and water samples from the first Illinois test case were collected in mid November, and field data were collected from the data logger; Chemical analysis of all core and water samples continued; all chemical analyses except for some tests on Illinois second quarter cores are now complete.

  2. Advanced NMR-based techniques for pore structure analysis of coal

    SciTech Connect

    Smith, D.M.

    1992-01-01

    One of the main problems in coal utilization is the inability to properly characterize its complex pore structure. Coals typically have micro/ultra-micro pores but they also exhibit meso and macroporosity. Conventional pore size techniques (adsorption/condensation, mercury porosimetry) are limited because of this broad pore size range, microporosity, reactive nature of coal, samples must be completely dried, and network/percolation effects. Small angle scattering is limited because it probes both open and closed pores. Although one would not expect any single technique to provide a satisfactory description of a coal's structure, it is apparent that better techniques are necessary. We believe that measurement of the NMR parameters of various gas phase and adsorbed phase NMR active probes can provide the resolution to this problem. We now have two suites of well-characterized microporous materials including oxides (zeolites and silica gel) and activated carbons from our industrial partner, Air Products in Allentown, PA. Our current work may be divided into three areas: small-angle X-ray scattering (SAXS), adsorption, and NMR.

  3. Advanced technology for ancillary coal cleaning operations. Technical progress report, January 1988--March 1988

    SciTech Connect

    Not Available

    1994-09-01

    The work under contract number DE-AC22-87PC97881 is devoted to experimental research and development to investigate the feasibility of novel ancillary coal-cleaning technologies that offer a potential for reduced capital and operating costs. The ancilliary operations that are specifically addressed in this work include pulse enhanced drying, fines reconstitution by extrusion, and hydraulic wave comminution.

  4. Advanced coal liquefaction research. Quarterly technical progress report, July 1, 1983-September 30, 1983

    SciTech Connect

    1984-04-01

    Work this quarter focused on staged liquefaction. The effect of residence time on conversion in single pass experiments was found to be quite different for the subbituminous Belle Ayr Mine and bituminous Illinois No. 6 coals studied. With bituminous coal, conversion to soluble material is quite high and the limit of conversion is approached in only a few minutes. With a subbituminous coal, however, conversion is much lower and the limit of conversion is approached much more slowly. Short contact time (SCT) dissolution of Belle Ayr coal was studied as a possible first stage in a two-stage process. Conversion, hydrocarbon gas yield and hydrogen consumption were increased as residence time or temperature were increased. Conversion was also significantly increased by partial slurry recycle. Pyrite was found to be the most effective slurry catalyst for increasing conversion, followed by ammonium molybdate emulsion and finally nickel-molybdenum on alumina. Illinois No. 6 coal was liquefied in two stages. Conditions in the first stage dissolution were varied to determine the effect on upgradability in the second stage. An SCT (6 minute) coal dissolution stage is preferred over one at 30 minutes because hydrocarbon gas yield was much lower while overall oil yields for the combined dissolution and upgrading stages were nearly the same. Use of a NiMo/Al/sub 2/O/sub 3/ catalyst in a trickle-bed second stage resulted in a higher oil yield and lower product heteroatom content than use of the same catalyst in the slurry phase. The total oil yield was lower with a pyrite slurry catalyst than with a NiMo/Al/sub 2/O/sub 3/ slurry catalyst. With Belle Ayr coal and added pyrite, there was no change in total oil yield, conversion or product quality brought about by adding an 8-minute first stage at 450/sup 0/C (842/sup 0/F) to a 2-hour second stage operated at 420/sup 0/C (788/sup 0/F). 39 figures, 12 tables.

  5. POC-scale testing of an advanced fine coal dewatering equipment/technique: Quarterly technical progress report No. 9, October 1996--December 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1997-01-21

    The advanced fine-coal cleaning techniques such as column flotation, recovers a low-ash ultra-fine size clean-coal product. However, economical dewatering of the clean coal product to less than 20 percent moisture using conventional technology is difficult. This research program objective is to evaluate a novel coal surface modification technique developed at the University of Kentucky Center for Applied Energy Research in conjunction with conventional and advanced dewatering technique at a pilot scale at the Powell Mountain Coal Company`s Mayflower preparation plant located in St. Charles, VA. During this quarter in the laboratory dewatering studies were conducted using copper and aluminum ions showed that for the low sulfur clean coal slurry addition of 0.1 Kg/t of copper ions was effective in lowering the filter cake moisture from 29 percent to 26.3 percent. Addition of 0.3 Kg/t of aluminum ions provided filter cake with 28 percent moisture. For the high sulfur clean coal slurry 0.5 Kg/t of copper and 0.1 Kg/t of aluminum ions reduced cake moisture from 30.5 percent to 28 percent respectively. Combined addition of anionic (10 g/t) and cationic (10 g/t) flocculants was effective in providing a filter cake with 29.8 percent moisture. Addition of flocculants was not effective in centrifuge dewatering. In pilot scale screen bowl centrifuge dewatering studies it was found that the clean coal slurry feed rate of 30 gpm was optimum to the centrifuge, which provided 65 percent solids capture. Addition of anionic or cationic flocculants was not effective in lowering of filter cake moisture, which remained close to 30 percent for both clean coal slurries.

  6. Advanced direct coal liquefaction concepts. Quarterly report, October 1, 1992--December 31, 1992

    SciTech Connect

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    1992-12-31

    During the first quarter of FY 1993, the Project proceeded close to the Project Plan. The analysis of the feed material has been completed as far as possible. Some unplanned distillation was needed to correct the boiling range of the Black Thunder solvent used during the autoclave tests. Additional distillation will be required if the same solvent is to be used for the bench unit tests. A decision on this is still outstanding. The solvent to be used with Illinois No. 6 coal has not yet been defined. As a result, the procurement of the feed and the feed analysis is somewhat behind schedule. Agglomeration tests with Black Thunder coal indicates that small agglomerates can be formed. However, the ash removal is quite low (about 10%), which is not surprising in view of the low ash content of the coal. The first series of autoclave tests with Black Thunder coal was completed as planned. Also, additional runs are in progress as repeats of previous runs or at different operating conditions based on the data obtained so far. The results are promising indicating that almost complete solubilization (close to 90%) of Black Thunder coal can be achieved in a CO/H{sub 2}O environment at our anticipated process conditions. The design of the bench unit has been completed. In contrast to the originally planned modifications, the bench unit is now designed based on a computerized control and data acquisition system. All major items of equipment have been received, and prefabrication of assemblies and control panels is proceeding on schedule. Despite a slight delay in the erection of the structural steel, it is anticipated that the bench unit will be operational at the beginning of April 1993.

  7. Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications: Task 9 - Selective agglomeration Module Testing and Evaluation.

    SciTech Connect

    Moro, N.` Jha, M.C.

    1997-09-29

    The primary goal of this project was the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing of both processes on six coals to optimize the processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report summarizes the findings of all the selective agglomeration (SA) test work performed with emphasis on the results of the PDU SA Module testing. Two light hydrocarbons, heptane and pentane, were tested as agglomerants in the laboratory research program which investigated two reactor design concepts: a conventional two-stage agglomeration circuit and a unitized reactor that combined the high- and low-shear operations in one vessel. The results were used to design and build a 25 lb/hr bench-scale unit with two-stage agglomeration. The unit also included a steam stripping and condensation circuit for recovery and recycle of heptane. It was tested on six coals to determine the optimum grind and other process conditions that resulted in the recovery of about 99% of the energy while producing low ash (1-2 lb/MBtu) products. The fineness of the grind was the most important variable with the D80 (80% passing size) varying in the 12 to 68 micron range. All the clean coals could be formulated into coal-water-slurry-fuels with acceptable properties. The bench-scale results were used for the conceptual and detailed design of the PDU SA Module which was integrated with the existing grinding and dewatering circuits. The PDU was operated for about 9 months. During the first three months, the shakedown testing was performed to fine tune the operation and control of various equipment. This was followed by parametric testing, optimization/confirmatory testing, and finally a

  8. Advanced coal technology by-products: Long-term results from landfill test cells and their implications for reuse or disposal applications

    SciTech Connect

    Weinberg, A.; Harness, J.L.

    1994-06-01

    New air pollution regulations under the 1991 Clean Air Act and other legislation are motivating continued development and implementation, of cleaner, more efficient processes for converting coal to electrical power. These clean coal processes produce solid by-products which differ in important respects from conventional pulverized coal combustion ash. Clean coal by-products` contain both residual sorbent and captured SO{sub 2} control products, as well as the mineral component of the coal. The Department of Energy/Morgantown Energy Technology Center has contracted Radian Corporation to construct and monitor landfill test cells with a several different advanced coal combustion by-products at three locations around the US; data from these sites provide a unique picture of the long-term field behavior of clean coal combustion by-products. The field testing sites were located in western Colorado, northern Ohio, and central Illinois. Fluidized bed combustion and lime injection residues are characterized by high lime and calcium sulfate contents` contributed by reacted and unreacted sorbent materials, and produce an leachate, when wetted. Compared with conventional coal fly ash, the clean coal technology ashes have been noted for potential difficulties when wetted, including corrosivity, heat generation, cementation, and swelling on hydration. On the other hand, the high lime content and chemical reactivity of clean coal residues offer potential benefits in reuse as a cementitious material.The results of three years of data collection suggest a fairly consistent pattern of behavior for the calcium-based dry sorbent systems involved in the project, despite differences in the initial of the by-products, differences in the methods of placement, and differences in climate at the test sites.

  9. Unsubstituted polyaromatic hydrocarbons (PAH's) in extracts of coal fly ash from the fly ash test cell in Montour, Pennsylvania

    SciTech Connect

    Applequist, M.D.

    1989-01-01

    Isotope Dilution Mass Spectrometry (IDMS) was used to identify and to quantify trace amounts of selected, unsubstituted polyaromatic hydrocarbons (PAH's) present in extracts of coal fly ash from the solid waste disposal test cell at Montour, Pennsylvania. Isotope dilution experiments using deuterated analogs of polyaromatic hydrocarbons demonstrated that the concentrations of benzo(a)pyrene and anthracene were lower than 1 ng/g of fly ash. Isotope dilution experiments demonstrated that benzo(a)pyrene could be detected at concentrations as high as 1 ng/g when an isotopic carrier was used at a concentration of 125 ng/g in the analytical method. Maximum concentrations of fluorene, fluoranthene, pyrene and chrysene were conservatively estimated to be 3 ng/g of fly ash, using a 95 percent confidence interval based on analytical precision of {+-}1 ng/g of fly ash. Concentrations of phenanthrene were found to range from 6 to 38 ng/g of fly ash with a mean concentration of 14 ng/g of fly ash. Two sources of phenanthrene were speculated: incomplete combustion of phenanthrene in the coal furnace and addition of phenanthrene to the fly ash after collection by electrostatic precipitators.

  10. Research on quantitative extraction of desertification integrating multisource remote sensing data in large opencast coal mine area

    NASA Astrophysics Data System (ADS)

    Wang, Guangjun; Fu, Meichen

    2009-10-01

    Large opencast coal mine area is a complex region which consists of mining area, grassland, farmland, roads, residents and other landscapes, together with the typical characteristics of desertification, agro-pastoral transitional zone, mineral development area and other ecologically fragile areas. As a man-caused disturbance, mining plays an important role in desertification development in this area. The quantitative extraction of desertification integrating multi-source remote sensing data in large opencast coal mine area was studied in this paper. First, the remote sensing data from SPOT 5 and TM were fused to one image based on IHS transformation and Wavelet analysis, then the BP neural network algorithm were used to fusion image to get desertification classification information. The Global Positioning System (GPS) technique was also used to perform verification during the data process. The results of our studies indicate that the severe desertification is always distributing in shape of triangle around the mining land, which has much spatial correlation with the mining land. So the desertification management should be carried out in mining land, the neighbor region of the mining land should not be neglected.

  11. Extraction, separation and analysis of high sulfur coal. Technical progress report No. 11, January 1, 1990--March 21, 1990

    SciTech Connect

    Olesik, S.V.

    1990-04-02

    In summary, significant bond cleavage was found only for thiophenol under the supercritical conditions studied. Less than 5% yield was found for the observed reaction products for all the other organosulfur compounds. The hydrogen sulfur bond in thiophenol is clearly the weakest of those studied and therefore it is the easiest to rupture. Also a general trend was observed the solvolysis reaction products such as ethylthiobenzene were the products initially formed at lower temperatures. But with higher temperatures the reaction product were those typically produced from the bimolecular association of free-radicals, such as phenylsulfide for the thiophenol sample. This type of reaction would be expected in pyrolysis reactions. Bimolecular reactions between organosulfur compounds would not be expected when the reaction is occurring at the surface of the solid coal matrix. The probability of the extracted organosulfur radicals having such bimolecular reactions is quite low. However, the reactions that are observed from the interaction of supercritical ethanol and the model coal compounds are not ones that show obvious indications of desulfurization of the compound.

  12. An Effective Method to Detect Volatile Intermediates Generated in the Bioconversion of Coal to Methane by Gas Chromatography-Mass Spectrometry after In-Situ Extraction Using Headspace Solid-Phase Micro-Extraction under Strict Anaerobic Conditions

    PubMed Central

    Liu, Jianmin; Wang, Baoyu; Tai, Chao; Wu, Li; Zhao, Han; Guan, Jiadong; Chen, Linyong

    2016-01-01

    Bioconversion of coal to methane has gained increased attention in recent decades because of its economic and environmental advantages. However, the mechanism of this process is difficult to study in depth, partly because of difficulties associated with the analysis of intermediates generated in coal bioconversion. In this investigation, we report on an effective method to analyze volatile intermediates generated in the bioconversion of coal under strict anaerobic conditions. We conduct in-situ extraction of intermediates using headspace solid-phase micro-extraction followed by detection by gas chromatography-mass spectrometry. Bioconversion simulation equipment was modified and combined with a solid-phase micro-extraction device. In-situ extraction could be achieved by using the combined units, to avoid a breakdown in anaerobic conditions and to maintain the experiment continuity. More than 30 intermediates were identified qualitatively in the conversion process, and the variation in trends of some typical intermediates has been discussed. Volatile organic acids (C2–C7) were chosen for a quantitative study of the intermediates because of their importance during coal bioconversion to methane. Fiber coating, extraction time, and solution acidity were optimized in the solid-phase micro-extraction procedure. The pressure was enhanced during the bioconversion process to investigate the influence of headspace pressure on analyte extraction. The detection limits of the method ranged from 0.0006 to 0.02 mmol/L for the volatile organic acids and the relative standard deviations were between 4.6% and 11.5%. The volatile organic acids (C2–C7) generated in the bioconversion process were 0.01–1.15 mmol/L with a recovery range from 80% to 105%. The developed method is useful for further in-depth research on the bioconversion of coal to methane. PMID:27695055

  13. Development of advanced, dry, SO{sub x}/NO{sub x} emission control technologies for high-sulfur coal. Final report, April 1, 1993--December 31, 1994

    SciTech Connect

    Amrhein, G.T.

    1994-12-23

    Dry Scrubbing is a common commercial process that has been limited to low- and medium-sulfur coal applications because high-sulfur coal requires more reagent than can be efficiently injected into the process. Babcock & Wilcox has made several advances that extend dry scrubbing technologies to higher sulfur coals by allowing deposit-free operation at low scrubber exit temperatures. This not only increases the amount of reagent that can be injected into the scrubber, but also increases SO{sub 2} removal efficiency and sorbent utilization. The objectives of this project were to demonstrate, at pilot scale, that advanced, dry-scrubbing-based technologies can attain the performance levels specified by the 1990 Clean Air Act Amendments for SO{sub 2} and NO{sub x} emissions while burning high-sulfur coal, and that these technologies are economically competitive with wet scrubber systems. The use of these technologies by utilities in and around Ohio, on new or retrofit applications, will ensure the future of markets for high-sulfur coal by creating cost effective options to coal switching.

  14. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 25, October 1, 1994--December 31, 1994

    SciTech Connect

    1994-12-31

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. This progress report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  15. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction. Final technical report, 1 September, 1992--31 August, 1993

    SciTech Connect

    Chou, M.I.M.; Lytle, J.M.; Ruch, R.R.; Kruse, C.W.; Chaven, C.; Hackley, K.C.; Hughes, R.E.; Harvey, R.D.; Frost, J.K.; Buchanan, D.H.; Stucki, J.W.; Huffman, G.P.; Huggins, F.E.

    1993-12-31

    The Midwest Ore Processing Co. (MWOPC) has reported a precombustion coal desulfurization process using perchloroethylene (PCE) at 120 C to remove up to 70% of the organic sulfur. The purposes of this research were to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization and to verify the ASTM forms-of-sulfur determination for evaluation of the process. An additional goal was to develop a dechlorination procedure to remove excess PCE from the PCE-treated coal. A laboratory scale operation of the MWOPC PCE desulfurization process was demonstrated, and a dechlorination procedure to remove excess PCE from the PCE-treated coal was developed. The authors have determined that PCE desulfurization removed mainly elemental sulfur from coal. The higher the level of coal oxidization, the larger the amount of elemental sulfur that is removed by PCE extraction. The increased elemental sulfur during short-term preoxidation is found to be pH dependent and is attributed to coal pyrite oxidation under acidic (pH < 2) conditions. The non-ASTM sulfur analyses confirmed the hypothesis that the elemental sulfur produced by oxidation of pyrite complicates the interpretation of analytical data for PCE process evaluations when only the ASTM forms-of-sulfur is used. When the ASTM method is used alone, the elemental sulfur removed during PCE desulfurization is counted as organic sulfur. A study using model compounds suggests that mild preoxidation treatment of coal described by MWOPC for removal of organic sulfur does not produce enough oxidized organic sulfur to account for the amounts of sulfur removal reported. Furthermore, when oxidation of coal-like organosulfur compounds does occur, the products are inconsistent with production of elemental sulfur, the product reported by MWOPC. Overall, it is demonstrated that the PCE process is not suitable for organic sulfur removal.

  16. Engineering design and analysis of advanced physical fine coal cleaning technologies. Final report

    SciTech Connect

    1994-08-01

    This report describes the gravity separation equipment models available in the Coal Cleaning Simulator developed by Aspen Technology, Inc. This flowsheet simulator was developed in collaboration with ICF Kaiser Engineers, a subcontractor to Aspen Technology, Inc., and CQ Inc., a subcontractor to ICF Kaiser Engineers. The algorithms and FORTRAN programs for modeling gravity separation, which include calculations for predicting process performance, and calculations for equipment sizing and costing, were developed by ICF Kaiser Engineers. Aspen Technology integrated these and other models into the ASPEN PLUS system to provide a simulator specifically tailored for modeling coal cleaning plants. ICF Kaiser Engineers also provided basic documentation for these models; Aspen Technology, Inc. has incorporated the information into this topical report. The report documents both the use and the design bases for the models, and provides to the user a good understanding of their range of applicability and limitations.

  17. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1993-02-12

    Work completed produced the criteria for additional engineering analysis, computation and detailed experimental benchscale testing for areas of uncertainty. The engineering analysis, computation, bench-scale testing and component development was formulated to produce necessary design information to define a commercially operating system. In order to produce the required information by means of bench-scale testing and component development, a uniform coal sample was procured. After agreement with DOE, a selected sample of coal from those previously listed was secured. The test plan was developed in two parts. The first part listed procedures for engineering and computational analyses of those deficiencies previously identified that could be solved without bench scale testing. Likewise, the second part prepared procedures for bench-scale testing and component development for those deficiencies previously identified in Task 3.

  18. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report No. 5, October--December, 1995

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.

    1996-02-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74{mu}m) clean coal. Economical dewatering of an ultrafine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the the University of Kentucky Center for Applied Energy Research will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high sulfur and low sulfur clean coal. Accomplishments for the past quarter are described.

  19. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1991--June 1992

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

    1992-06-01

    This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump & Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

  20. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    SciTech Connect

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  1. Effect of conventional and advanced coal conversion by-products on the pulmonary system

    SciTech Connect

    Aranyi, C.; Bradof, J.

    1981-04-01

    To evaluate the environmental impact of different energy technologies, fly ash samples collected from a coal-fired and from an oil-fired electric power plant were used in aerosol inhalation exposures of mice. The effects of multiple 3-h exposures to the fly ash particles at 2 and 1 mg/cu m aerosol mass concentration and <0.5 micrometer MMAD were evaluated in male and female mice by examining the changes in their pulmonary free cells, in their susceptibility to streptococcus infection, and in the bactericidal activity in their lungs to inhaled Klebsiella pneumoniae. Generally, no consistent differences could be discovered in the effects of the exposures between the two sexes. However, in a combined evaluation of both sexes, more and greater significant changes relative to controls were observed in the experimental parameters after inhalation of the oil power plant fly ash than after exposure to the coal fly ash. Thus, the overall results of the study indicate that the pulmonary defense system of mice was more adversely affected by the oil-fired power plant fly ash, a true stack emission effluent, than by the coal fly ash collected by electrostatic precipitator, an in-plant control device.

  2. Effect of ultrasound energy on the zeolitization of chemical extracts from fused coal fly ash.

    PubMed

    Bukhari, Syed Salman; Rohani, Sohrab; Kazemian, Hossein

    2016-01-01

    This paper investigates the effects of ultrasound (UTS) energy at different temperatures on the zeolitization of aluminosilicate constituents of coal fly ash. UTS energy irradiated directly into the reaction mixture utilizing a probe immersed into the reaction mixture, unlike previously reported works that have used UTS baths. Controlled synthesis was also conducted at constant stirring and at the same temperatures using conventional heating. The precursor reaction solution was obtained by first fusing the coal fly ash with sodium hydroxide at 550°C followed by dissolution in water and filtration. The synthesized samples were characterized by XRF, XRD, SEM and TGA. The crystallinity of crystals produced with UTS assisted conversion compared to conventional conversion at 85°C was twice as high. UTS energy also reduced the induction time from 60 min to 40 min and from 80 min to 60 min for reaction temperatures of 95°C and 85°C, respectively. Prolonging the UTS irradiation at 95°C resulted in the conversion of zeolite-A crystals to hydroxysodalite, which is a more stable zeolitic phase. It was found that at 85°C coupled with ultrasound energy produced the best crystalline structure with a pure single phase of zeolite-A. It has been shown that crystallization using UTS energy can produce zeolitic crystals at lower temperatures and within 1h, dramatically cutting the synthesis time of zeolite. PMID:26384882

  3. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    SciTech Connect

    Elliot Kennel; Chong Chen; Dady Dadyburjor; Mark Heavner; Manoj Katakdaunde; Liviu Magean; James Mayberry; Alfred Stiller; Joseph Stoffa; Christopher Yurchick; John Zondlo

    2009-12-31

    This NETL sponsored effort seeks to develop continuous technologies for the production of carbon products, which may be thought of as the heavier products currently produced from refining of crude petroleum and coal tars obtained from metallurgical grade coke ovens. This effort took binder grade pitch, produced from liquefaction of West Virginia bituminous grade coal, all the way to commercial demonstration in a state of the art arc furnace. Other products, such as crude oil, anode grade coke and metallurgical grade coke were demonstrated successfully at the bench scale. The technology developed herein diverged from the previous state of the art in direct liquefaction (also referred to as the Bergius process), in two major respects. First, direct liquefaction was accomplished with less than a percent of hydrogen per unit mass of product, or about 3 pound per barrel or less. By contrast, other variants of the Bergius process require the use of 15 pounds or more of hydrogen per barrel, resulting in an inherent materials cost. Second, the conventional Bergius process requires high pressure, in the range of 1500 psig to 3000 psig. The WVU process variant has been carried out at pressures below 400 psig, a significant difference. Thanks mainly to DOE sponsorship, the WVU process has been licensed to a Canadian Company, Quantex Energy Inc, with a commercial demonstration unit plant scheduled to be erected in 2011.

  4. Effect of ultrasound energy on the zeolitization of chemical extracts from fused coal fly ash.

    PubMed

    Bukhari, Syed Salman; Rohani, Sohrab; Kazemian, Hossein

    2016-01-01

    This paper investigates the effects of ultrasound (UTS) energy at different temperatures on the zeolitization of aluminosilicate constituents of coal fly ash. UTS energy irradiated directly into the reaction mixture utilizing a probe immersed into the reaction mixture, unlike previously reported works that have used UTS baths. Controlled synthesis was also conducted at constant stirring and at the same temperatures using conventional heating. The precursor reaction solution was obtained by first fusing the coal fly ash with sodium hydroxide at 550°C followed by dissolution in water and filtration. The synthesized samples were characterized by XRF, XRD, SEM and TGA. The crystallinity of crystals produced with UTS assisted conversion compared to conventional conversion at 85°C was twice as high. UTS energy also reduced the induction time from 60 min to 40 min and from 80 min to 60 min for reaction temperatures of 95°C and 85°C, respectively. Prolonging the UTS irradiation at 95°C resulted in the conversion of zeolite-A crystals to hydroxysodalite, which is a more stable zeolitic phase. It was found that at 85°C coupled with ultrasound energy produced the best crystalline structure with a pure single phase of zeolite-A. It has been shown that crystallization using UTS energy can produce zeolitic crystals at lower temperatures and within 1h, dramatically cutting the synthesis time of zeolite.

  5. Engineering development of advanced coal-fired low-emission boiler system. Technical progress report No. 1, August--December 1992

    SciTech Connect

    Not Available

    1993-02-26

    The Pittsburgh Energy Technology Center of the US Department of Energy (DOE) has contracted with Combustion Engineering, Inc. (ABB CE) to perform work on the ``Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems`` Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis. The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: NO{sub x} emissions not greater than one-third NSPS; SO{sub x} emissions not greater than one-third NSPS; and particulate emissions not greater than one-half NSPS. The specific secondary objectives are: Improved ash disposability and reduced waste generation; reduced air toxics emissions; increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a commercial generation unit.

  6. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report, April 1996--June 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-07-31

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. The cost sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from April 1 - June 30, 1996.

  7. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect

    Sorge, J.N.; Larrimore, C.L.; Slatsky, M.D.; Menzies, W.R.; Smouse, S.M.; Stallings, J.W.

    1997-12-31

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The primary objectives of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advanced digital control/optimization phase of the project.

  8. Modelling and assessment of advanced processes for integrated environmental control of coal-fired power plants. Technical progress report

    SciTech Connect

    Barrett, J.G.; Bloyd, C.N.; McMichael, F.C.; Rubin, E.S.

    1984-07-01

    The key objective of this research is the development of a computer based model for the assessment of integrated environmental control (IEC) systems for conventional and advanced coal fired power plant designs. Efforts during the period April 1-June 30, 1984 focused on, (1) testing of a preliminary integrated model linking pre-combustion and post-combustion control options for conventional plants; (2) documentation of the analytical models of existing control technology options; (3) development and preliminary testing of a second model design for the propagation and analysis of uncertainty; and (4) development of new analytical models needed for IEC assessments. Activities and accomplishments in each of these areas are described. 4 references, 13 figures, 4 tables.

  9. [Engineering development of advanced coal-fired low-emission boiler systems]. Technical progress report, October--December 1995

    SciTech Connect

    Wesnor, J.D.; Bakke, E.; Bender, D.J.; Kaminski, R.S.

    1995-12-31

    The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emisssion boiler systems. The primary objectives are: NO{sub x} emissions, lb/million Btu; SO{sub 2} emissions, lb/million Btu; particulate emissions, lb/million Btu; and net plant efficiency, not less than 42%. The secondary objectives are: improved ash disposability; reduced waste generation; and reduced air toxics emissions. Accomplishments to date are summarized for the following tasks: task 1, project planning and management; task 7, component development and optimization; task 8, preliminary POC test facility design; task 9, subsystem test design and plan; task 10, subsystem test unit construction; and task 11, subsystem test operation and evaluation.

  10. Short-Term Oxidation Studies on Nicrofer- 6025HT in Air at Elevated Temperatures for Advanced Coal Based Power Plants

    SciTech Connect

    Joshi, Vineet V.; Meier, Alan; Darsell, Jens T.; Nachimuthu, Ponnusamy; Bowden, Mark E.; Weil, K. Scott

    2013-04-01

    Several advanced air separation unit (ASU) designs being considered for use in coal gasification rely on the use of solid state mixed ionic and electronic conductors. Nicrofer-6025HT, a nickel-based alloy, has been identified as a potential manifold material to transport the hot gases into the ASUs. In the current study, isothermal oxidation tests were conducted on Nicrofer-6025HT in the temperature range of 700–900 °C for up to 24 h. The evolution of oxide scale was evaluated using SEM, XRD, and XPS. The composite surface oxide layer that formed consisted of an outer chromia-rich scale and an inner alumina scale. For the longer times at the higher temperatures evaluated, a NiCr2O4 spinel phase was located at the interface between the alumina and chromia. Based on the experimental results a four-step oxidation model was proposed.

  11. Coal liquefaction process streams characterization and evaluation. Characterization of coal-derived materials by field desorption mass spectrometry, two-dimensional nuclear magnetic resonance, supercritical fluid extraction, and supercritical fluid chromatography/mass spectrometry

    SciTech Connect

    Campbell, J.A.; Linehan, J.C.; Robins, W.H.

    1992-07-01

    Under contract from the DOE , and in association with CONSOL Inc., Battelle, Pacific Northwest Laboratory (PNL) evaluated four principal and several complementary techniques for the analysis of non-distillable direct coal liquefaction materials in support of process development. Field desorption mass spectrometry (FDMS) and nuclear magnetic resonance (NMR) spectroscopic methods were examined for potential usefulness as techniques to elucidate the chemical structure of residual (nondistillable) direct coal liquefaction derived materials. Supercritical fluid extraction (SFE) and supercritical fluid chromatography/mass spectrometry (SFC/MS) were evaluated for effectiveness in compound-class separation and identification of residual materials. Liquid chromatography (including microcolumn) separation techniques, gas chromatography/mass spectrometry (GC/MS), mass spectrometry/mass spectrometry (MS/MS), and GC/Fourier transform infrared (FTIR) spectroscopy methods were applied to supercritical fluid extracts. The full report authored by the PNL researchers is presented here. The following assessment briefly highlights the major findings of the project, and evaluates the potential of the methods for application to coal liquefaction materials. These results will be incorporated by CONSOL into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of CONSOL`s contract.

  12. Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference

    SciTech Connect

    Geiling, D.W.

    1993-08-01

    The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

  13. Advanced technological components enhance the performance of coal and oil gasification plants

    SciTech Connect

    Keller, H.J.; Buxel, M.; Kaiser, V.; Jass, K.H.; Liu, C.; Hanke, H.; Poloszyk, K.

    1997-12-31

    The gasification of coal has been carried out on an industrial scale for a long time. During the past two decades, gasification processes of the so-called second generation were developed to produce synthesis gas or fuel gas from solid and viscous feedstocks at an elevated pressure. These processes offer a wide variety of applications. The preferred feedstocks are coal of different types and heavy hydrocarbons including heavy fuel oil and heavy residues from oil refining as well as natural bitumen. The main components of the crude gas are CO and H{sub 2} in a molar ratio between 1 and 2, depending on the type of feedstock and the gasification principle applied. In downstream facilities, the crude gas is conditioned so as to meet the requirements of the final products: pure hydrogen, the group of synthesis products and fuel gas for power and heat generation, preferably by the combined cycle principle (IGCC). The second-generation gasification processes have furnished proof of their technical feasibility, but have to compete against alternative gas generation technologies such as steam reforming using natural gas as the feedstock. In view of this situation, operational aspects such as plant reliability, efficient energy utilization and optimum reduction of emission levels are gaining increasing importance. Based on practical experience, several key components have been developed, continuously improved and optimized for coal and oil gasification units, with the result of a very positive plant performance. The technical background and the results of this development work will be explained in more detail. Process configuration and special process elements of the Texaco Gasification process are described.

  14. The fate of alkali species in advanced coal conversion systems. Final report

    SciTech Connect

    Krishnan, G.N.; Wood, B.J.

    1991-11-01

    The fate of species during coal combustion and gasification was determined experimentally in a fluidized bed reactor. A molecular-beam sampling mags spectrometer was used to identify and measure the concentration of vapor phase sodium species in the high temperature environment. Concurrent collection and analysis of the ash established the distribution of sodium species between gas-entrained and residual ash fractions. Two coals, Beulah Zap lignite and Illinois No. 6 bituminous, were used under combustion and gasification conditions at atmospheric pressure. Steady-state bed temperatures were in the range 800--950{degree}C. An extensive calibration procedure ensured that the mass spectrometer was capable of detecting sodium-containing vapor species at concentrations as low as 50 ppb. In the temperature range 800{degree} to 950{degree}C, the concentrations of vapor phase sodium species (Na, Na{sub 2}O, NaCl, and Na{sub 2}SO{sub 4}) are less than 0.05 ppm under combustion conditions with excess air. However, under gasification conditions with Beulah Zap lignite, sodium vapor species are present at about 14 ppm at a temperature of 820{degree}. Of this amount, NaCl vapor constitutes about 5 ppm and the rest is very likely NAOH. Sodium in the form of NaCl in coal enhances the vaporization of sodium species during combustion. Vapor phase concentration of both NaCl and Na{sub 2}SO{sub 4} increased when NaCl was added to the Beulah Zap lignite. Ash particles account for nearly 100% of the sodium in the coal during combustion in the investigated temperature range. The fine fly-ash particles (<10 {mu}m) are enriched in sodium, mainly in the form of sodium sulfate. The amount of sodium species in this ash fraction may be as high as 30 wt % of the total sodium. Sodium in the coarse ash particle phase retained in the bed is mainly in amorphous forms.

  15. Development of advanced NO sub x control concepts for coal-fired utility boilers

    SciTech Connect

    Newhall, J.; England, G.; Seeker, W.R.

    1992-01-16

    Hybrid technologies for reduction of NO{sub x} emissions from coal fired utility boilers may offer greater levels of NO{sub x} control than the sum of the individual technologies, leading to more cost effective emissions control strategies. CombiNO{sub x} is an integration of modified reburning, promoted selective non-catalytic reduction (SNCR) and methanol injection to reduce NO{sub x} emissions from coal fired flue gas. The first two steps, modified reburning and promoted SNCR are linked. It was shown previously that oxidation of CO in the presence of a SNCR agent enhances the NO reduction performance. Less reburning than is typically done is required to generate the optimum amount of CO to promote the SNCR agent. If the reburn fuel is natural gas this may result in a significant cost savings over typical reburning. Injection of methanol into the flue gas has been shown at laboratory scale to convert NO to NO{sub 2} which may subsequently be removed in a wet scrubber. The overall objective of this program is to demonstrate the effectiveness of the CombiNOx process at a large enough scale and over a sufficiently broad range of conditions to provide all of the information needed to conduct a full-scale demonstration in a coal fired utility boiler. The specific technical goals of this program are: 70% NO{sub x} reduction at 20% of the cost of selective catalytic reduction; NO{sub x} levels at the stack of 60 ppm for ozone non-attainment areas; demonstrate coal reburning; identify all undesirable by-products of the process and their controlling parameters; demonstrate 95% NO{sub 2} removal in a wet scrubber. During this reporting period, experimental work was initiated at both the laboratory and pilot scale in the Fundamental Studies phase of the program. The laboratory scale work focused on determining whether or not the NO{sub 2} formed by the methanol injection step can be removed in an SO{sub 2} scrubber.

  16. Advanced NMR approaches in the characterization of coal. [Quarterly] report No. 9

    SciTech Connect

    Maciel, G.E.

    1992-12-31

    A considerable effort in this project during the past few months has been focussed on the development of {sup 1}H and {sup 13}C NMR imaging techniques to yield spatially-resolved chemical shift (structure) information on coal. In order to yield the chemical shift information, a solid-state NMR imaging technique must include magic-angle spinning, so rotating gradient capabilities are indicated. A {sup 13}C MAS imaging probe and a {sup 1}H MAS imaging probe and the circuitry necessary for rotating gradients have been designed and constructed. The {sup 1}H system has already produced promising preliminary results, which are briefly described in this report.

  17. Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction. Technical report, September 1, 1991--November 30, 1991

    SciTech Connect

    Chou, M.I.M.

    1991-12-31

    A pre-combustion coal desulfurization process at 120{degree}C using perchloroethylene (PCE) to remove up to 70% of the organic sulfur has been developed by the Midwest Ore Processing Co. (MWOPC). However, this process has not yet proven to be as successful with Illinois coals as it has for Ohio and Indiana coals. The organic sulfur removal has been achieved only with highly oxidized Illinois coals containing high sulfatic sulfur. A logical explanation for this observation is vital to successful process optimization for the use of Illinois coals. In addition, the high levels of organic sulfur removals observed by the MWOPC may be due to certain errors involved in the ASTM data interpretation; this needs verification. For example, elemental sulfur extracted by the PCE may be derived from pyrite oxidation during coal pre-oxidation, but it may be interpreted as organic sulfur removed by the PCE using ASTM analysis. The goals of this research are: (1) to independently confirm and possibly to improve the organic sulfur removal from Illinois coals with the PCE desulfurization process reported by the MWOPC, (2) to verify the forms-of-sulfur determination using the ASTM method for the PCE process evaluation, and (3) to determine the suitability of Illinois coals for use in the PCE desulfurization process. This project involves the Illinois State Geological Survey (ISGS), Eastern Illinois University (EIU), the University of Illinois-Urbana/Champaign (UI-UC), and the University of Kentucky, Lexington (UK). This is the first year of a two-year project.

  18. Advances in measurements and simulation of gas-particle flows and coal combustion in burners/combustors

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.

    2009-02-01

    Innovative coal combustors were developed, and measurement and simulation of gas-particle flows and coal combustion in such combustors were done in the Department of Engineering Mechanics, Tsinghua University. LDV/PDPA measurements are made to understand the behavior of turbulent gas-particle flows in coal combustors. Coal combustion test was done for the non-slagging cyclone coal combustor. The full two-fluid model developed by the present author was used to simulate turbulent gas-particle flows, coal combustion and NOx formation. It is found by measurements and simulation that the optimum design can give large-size recirculation zones for improving the combustion performance for all the combustors. The combustion test shows that the nonslagging coal combustor can burn 3-5mm coal particles with good combustion efficiency and low NO emission. Simulation in comparison with experiments indicates that the swirl number can significantly affect the NO formation in the swirl coal combustor.

  19. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL-FIRED POWER PROCESSES

    SciTech Connect

    Leon R. Glicksman; Michael Louge; Hesham F. Younis; Richard Tan; Mathew Hyre; Mark Torpey

    2003-11-24

    This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor an agency thereof, nor any of the their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, A combined-cycle High Performance Power System (HIPPS) capable of overall cycle efficiencies approaching 50% has been proposed and designed by Foster Wheeler Development Corporation (FWDC). A pyrolyzer in the first stage of the HIPPS process converts a coal feedstock into fuel gas and char at an elevated pressure of 1.4 Map. (206 psia) and elevated temperature of 930 C (1700 F). The generated char serves as the feedstock for a Pulverized Coal (PC) boiler operating at atmospheric pressure, and the fuel gas is directly fired in a gas turbine. The hydrodynamic behavior of the pyrolyzer strongly influences the quality of both the fuel gas and the generated char, the energy split between the gas turbine and the steam turbine, and hence the overall efficiency of the system. By utilizing a simplified set of scaling parameters (Glicksman et al.,1993), a 4/7th labscale cold model of the pyrolyzer operating at ambient temperature and pressure was constructed and tested. The scaling parameters matched include solid to gas density ratio, Froude number, length to diameter ratio; dimensionless superficial gas velocity and solid recycle rate, particle sphericity and particle size distribution (PSD).

  20. COAL SLAGGING AND REACTIVITY TESTING

    SciTech Connect

    Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb

    2003-10-01

    Union Fenosa's La Robla I Power Station is a 270-MW Foster Wheeler arch-fired system. The unit is located at the mine that provides a portion of the semianthracitic coal. The remaining coals used are from South Africa, Russia, Australia, and China. The challenges at the La Robla I Station stem from the various fuels used, the characteristics of which differ from the design coal. The University of North Dakota Energy & Environmental Research Center (EERC) and the Lehigh University Energy Research Center (LUERC) undertook a program to assess problematic slagging and unburned carbon issues occurring at the plant. Full-scale combustion tests were performed under baseline conditions, with elevated oxygen level and with redistribution of air during a site visit at the plant. During these tests, operating information, observations and temperature measurements, and coal, slag deposit, and fly ash samples were obtained to assess slagging and unburned carbon. The slagging in almost all cases appeared due to elevated temperatures rather than fuel chemistry. The most severe slagging occurred when the temperature at the sampling port was in excess of 1500 C, with problematic slagging where first-observed temperatures exceeded 1350 C. The presence of anorthite crystals in the bulk of the deposits analyzed indicates that the temperatures were in excess of 1350 C, consistent with temperature measurements during the sampling period. Elevated temperatures and ''hot spots'' are probably the result of poor mill performance, and a poor distribution of the coal from the mills to the specific burners causes elevated temperatures in the regions where the slag samples were extracted. A contributing cause appeared to be poor combustion air mixing and heating, resulting in oxygen stratification and increased temperatures in certain areas. Air preheater plugging was observed and reduces the temperature of the air in the windbox, which leads to poor combustion conditions, resulting in unburned

  1. Automatic extraction of initial moving object based on advanced feature and video analysis

    NASA Astrophysics Data System (ADS)

    Liu, Mao-Ying; Dai, Qiong-Hai; Liu, Xiao-Dong; Er, Gui-Hua

    2005-07-01

    Traditionally, video segmentation usually extracts object using low-level features such as color, texture, edge, motion, and optical flow. This paper originally proposes that the connectivity of object motion is an advanced feature of video moving object because it can reflect semantic meanings of object to some extent. And it can be fully represented on cumulated difference image which is the combination of a certain number of interframe difference images. Based on this principle, a novel system is designed to extract initial moving object automatically. The system includes 3 key innovations: 1) System is applied on cumulated difference image which can make object more prominent than background noise. Object extraction is based on the connectivity of object motion and it can guarantee the integrity of the extracted object while eliminate big background regions which cannot be removed by conventional change detection methods, for example, intense-noise regions and shadow regions that are not connected tightly to object. 2) Video sequence analysis is performed ahead of video segmentation. Proper object extraction methods are adopted according to the characteristics of background noise and object motion. 3) The adaptive threshold is automatically determined on cumulated difference image after acute noises is removed. The threshold determined here is more reasonable. And with it, most noise can be eliminated while small-motion regions of object are preserved. Results show that this system can extract object in different kinds of sequences automatically, promptly and properly. Thus, this system is very suitable for real time video applications.

  2. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 2, January--March 1993

    SciTech Connect

    Smit, F.J.; Jha, M.C.

    1993-04-26

    The main purpose of this project is engineering development of advanced column flotation and selective agglomeration technologies for cleaning coal. Development of these technologies is an important step in the Department of Energy program to show that ultra-clean fuel can be produced from selected United States coals and that this fuel will be a cost-effective replacement for a portion of the premium fuels (oil and natural gas) burned by electric utility and industrial boilers in this country. Capturing a relatively small fraction of the total utility and industrial oil-fired boiler fuel market would have a significant impact on domestic coal production and reduce national dependence on petroleum fuels. Significant potential export markets also exist in Europe and the Pacific Rim for cost-effective premium fuels prepared from ultra-clean coal. The replacement of premium fossil fuels with coal can only be realized if retrofit costs, and boiler derating are kept to a minimum. Also, retrofit boiler emissions must be compatible with national goals for clean air. These concerns establish the specifications for the ash and sulfur levels and combustion properties of ultra-clean coal discussed below. The cost-shared contract effort is for 48 months beginning September 30, 1992, and ending September 30, 1996. This report discusses the technical progress made during the second 3 months of the project, January 1 to March 31, 1993.

  3. [Advances in researches on hyperspectral remote sensing forestry information-extracting technology].

    PubMed

    Wu, Jian; Peng, Dao-Li

    2011-09-01

    The hyperspectral remote sensing technology has become one of the leading technologies in forestry remote sensing domain. In the present review paper, the advances in researches on hyperspectral remote sensing technology in forestry information extraction both at home and abroad were reviewed, and the five main research aspects including the hyperspectral classification and recognition of forest tree species, the hyperspectral inversion and extraction of forest ecological physical parameters, the hyperspectral monitoring and diagnosis of forest nutrient element, the forest crown density information extraction and the hyperspectral monitoring of forest disasters were summarized. The unresolved problems of hyperspectral technology in the forestry remote sensing applications were pointed out and the possible ways to solve these problems were expounded. Finally, the application prospect of hyperspectral remote sensing technology in forestry was analyzed.

  4. Studies of in-situ calcium-based sorbents in advanced pressurized coal conversion systems

    SciTech Connect

    Katta, S.; Shires, P.J.; O'Donnell, J.J.

    1992-01-01

    The overall objective of the project is to obtain experimental data on the reactions of calcium-based sorbents in gasification systems and to evaluate or develop kinetic models applicable to the commercial design of such systems. Both air-blown coal gasification systems and second generation fluid bed combustion systems (partial gasification) will be investigated, as well as subsequent stabilization of the solid wastes (calcium sulfide/ash) produced. More specifically, the objectives are to: Develop data on kinetics of in-situ desulfurization reactions; study the effect of calcium on the kinetics of carbon conversion rate; study kinetics of oxidation of CaS to CaSO[sup 4]; Develop and identify viable techniques to stabilize CaS; and, carry out further development work on most promising method and determine its commercial economics.

  5. Studies of in-situ calcium-based sorbents in advanced pressurized coal conversion systems

    SciTech Connect

    Katta, S.; Shires, P.J.; O`Donnell, J.J.

    1992-11-01

    The overall objective of the project is to obtain experimental data on the reactions of calcium-based sorbents in gasification systems and to evaluate or develop kinetic models applicable to the commercial design of such systems. Both air-blown coal gasification systems and second generation fluid bed combustion systems (partial gasification) will be investigated, as well as subsequent stabilization of the solid wastes (calcium sulfide/ash) produced. More specifically, the objectives are to: Develop data on kinetics of in-situ desulfurization reactions; study the effect of calcium on the kinetics of carbon conversion rate; study kinetics of oxidation of CaS to CaSO{sup 4}; Develop and identify viable techniques to stabilize CaS; and, carry out further development work on most promising method and determine its commercial economics.

  6. Development of advanced NO sub x control concepts for coal-fired utility boilers

    SciTech Connect

    Evans, A.; Newhall, J.; England, G.; Seeker, W.R.

    1992-05-27

    CombiNO{sub x} is an integration of three technologies: modified reburning, promoted selective noncatalytic reduction (SNCR) and methanol injection. These technologies are combined to achieve high levels of NO{sub x}, emission reduction from coal fired power plants equipped with SO{sub 2} scrubbers. The first two steps, modified reburning and promoted SNCR are linked. It has been shown that, performance of the SNCR agent is dependent upon local oxidation of CO. Reburning is used to generate the optimum amount of CO to promote the SNCR agent, although lower levels of reburning are needed than are traditionally applied in the reburning process. If the reburn fuel is natural gas, the combination of reburning and SNCR may result in a significant cost savings over conventional reburning. The third step, injection of methanol into the flue gas, is used to convert NO to NO{sub 2} which may subsequently be removed in a wet scrubber.

  7. RESIDUES FROM COAL CONVERSION AND UTILIZATION: ADVANCED MINERALOGICAL CHARACTERIZATION AND DISPOSED BYPRODUCT DIAGENESIS

    SciTech Connect

    Gregory J. McCarthy; Dean G. Grier

    1998-09-01

    The goals of the project are two-fold: (1) to upgrade semi-quantitative X-ray diffraction (QXRD) methods presently used in analyzing complex coal combustion by-product (CCB) systems, with the quantitative Rietveld method, and (2) to apply this method to a set of by-product materials that have been disposed or utilized for a long period (5 years or more) in contact with the natural environment, to further study the nature of CCB diagenesis. The project is organized into three tasks to accomplish these two goals: (1) thorough characterization of a set of previously analyzed disposed by-product materials, (2) development of a set of CCB-specific protocols for Rietveld QXRD, and (3) characterization of an additional set of disposed CCB materials, including application of the protocols for Rietveld QXRD developed in Task 2.

  8. Advanced NMR-based techniques for pore structure analysis of coal. Final project report

    SciTech Connect

    Smith, D.M.; Hua, D.W.

    1996-02-01

    During the 3 year term of the project, new methods have been developed for characterizing the pore structure of porous materials such as coals, carbons, and amorphous silica gels. In general, these techniques revolve around; (1) combining multiple techniques such as small-angle x-ray scattering (SAXS) and adsorption of contrast-matched adsorbates or {sup 129}Xe NMR and thermoporometry (the change in freezing point with pore size), (2) combining adsorption isotherms over several pressure ranges to obtain a more complete description of pore filling, or (3) applying NMR ({sup 129}Xe, {sup 14}N{sub 2}, {sup 15}N{sub 2}) techniques with well-defined porous solids with pores in the large micropore size range (>1 nm).

  9. Development of advanced NO[sub x] control concepts for coal-fired utility boiler

    SciTech Connect

    Evans, A.; Pont, J.N.; England, G.; Seeker, W.R.

    1993-02-11

    Hybrid technologies for the reduction of NO[sub x] emissions from coal-fired utility boilers have shown the potential to offer greater levels of NO[sub x] control than the sum of the individual technologies, leading to more cost effective emissions control strategies. Energy and Environmental Research Corporation (EER) has developed a hybrid NO[sub x] control strategy involving two proprietary concepts which has the potential to meet the US Department of Energy's NO[sub x] reduction goal at a significant reduction in cost compared to existing technology. The process has been named CombiNO[sub x]. CombiNO[sub x] is an integration of three technologies: modified reburning, promoted selective noncatalytic reduction (SNCR) and methanol injection. These technologies are combined to achieve high levels of NO[sub x] emission reduction from coal-fired power plants equipped with S0[sub x] scrubbers. The first two steps, modified reburning and promoted SNCR are linked. It has been shown that performance of the SNCR agent is dependent upon local oxidation of CO. Reburning is used to generate the optimum amount of CO to promote the SNCR agent. Approximately 10 percent reburning is required, this represents half of that required for conventional reburning. If the reburn fuel is natural gas, the combination of reburning and SNCR may result in a significant cost savings over conventional reburning. The third step, injection of methanol into the flue gas, is used to oxidize NO to N0[sub 2] which may subsequently be removed in a wet scrubber. Pilot-scale tests performed at EER's 1 MMBtu/hr Boiler Simulation Facility (BSF) have demonstrated NO[sub x] reductions up to 92%. The program's next phase entails process scale-up to a 10 MMBtu/hr furnace also located at EER's Santa Anna test site.

  10. Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 4, July--September 1993

    SciTech Connect

    Not Available

    1993-12-29

    The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emission boiler systems. The specified primary objectives are: NOx emissions not greater than one-third NSPS; SOx emissions not greater than one-third NSPS; and particulate emissions not greater than one-half NSPS. The specific secondary objectives are: improved ash disposability and reduced waste generation; reduced air toxics emissions; and increased generating efficiency. The final deliverables are a design data base that will allow future coal-fired power plants to meet the stated objectives and a preliminary design of a commercial generation unit.

  11. Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Final report, September 1989--March 1994

    SciTech Connect

    Not Available

    1994-05-01

    This project has successfully advanced the technology for MSOFCs for coal-based power generation. Major advances include: tape-calendering processing technology, leading to 3X improved performance at 1000 C; stack materials formulations and designs with sufficiently close thermal expansion match for no stack damage after repeated thermal cycling in air; electrically conducting bonding with excellent structural robustness; and sealants that form good mechanical seals for forming manifold structures. A stack testing facility was built for high-spower MSOFC stacks. Comprehensive models were developed for fuel cell performance and for analyzing structural stresses in multicell stacks and electrical resistance of various stack configurations. Mechanical and chemical compatibility properties of fuel cell components were measured; they show that the baseline Ca-, Co-doped interconnect expands and weakens in hydrogen fuel. This and the failure to develop adequate sealants were the reason for performance shortfalls in large stacks. Small (1-in. footprint) two-cell stacks were fabricated which achieved good performance (average area-specific-resistance 1.0 ohm-cm{sup 2} per cell); however, larger stacks had stress-induced structural defects causing poor performance.

  12. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, October--December 1992

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1992-12-31

    The evaluation of various catalyst pre or pyrene coal conversion continued. Higher coal conversions were observed for the S0{sub 2}-treated coal than the raw coal, regardless of catalyst type. Coal conversions were highest for Molyvan-L, molybdenum naphthenate, and nickel octoate. A technique to measure the effect of coal swelling and catalyst impregnation upon coal liquefaction has been developed, and experimentation is under way. Reactivity tests have been performed using S0{sub 2}-treated and untreated swelled Black Thunder Coal. Thermal reactions with swelled coals yielded much less coal conversion and pyrene conversion than did the swelled coal reactions with Molyvan-L. The study of bottoms processing consists of coupling solvent deasphalting with delayed coking to maximize the production of coal-derived liquids while rejecting solids within the coke drum. The batch deasphalting screening tests have been completed. While n-butane/pentane solvent blends initially appeared best, pentane alone at 380{degree}F provided an oil yield (63.6 wt%) that was desired for subsequent tests. The production of asphalt for the transport tests is underway. The target deasphalted oil yields are 40, 50 and 60 wt% of feed. This would produce asphalt with ash levels ranging from 20 to 30 wt% with which to run the transport tests.

  13. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report No. 7, April 1993--June 1993

    SciTech Connect

    Curtis, C.W.; Chander, S.; Gutterman, C.

    1994-09-01

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. In addition, a synergistic effect has been demonstrated, in which solvent blends are more effective for coal swelling than the pure solvents alone. Therefore, it will be necessary to use only low levels of swelling agents and yet promote the impregnation of catalyst precursors. The rate of the impregnation of catalyst precursors into swollen coal increases greatly as the effectiveness of the solvent to swell the coal increases. This effect is also demonstrated by improved catalyst precursor impregnation with increased contact temperature. Laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent.

  14. Environmental externalities: An ASEAN application to coal-based power generation. Extract

    SciTech Connect

    Szpunar, C.B.; Gillette, J.L.

    1992-06-01

    Significant benefits to human health that result from emissions control programs may justify the costs of pollution control policies. Many scientists, economists, risk analysts, and policymakers believe that comparisons of the benefits with the costs of pollution control demonstrate that the US stationary source, air emissions control program is justified. This justification is based upon pronounced benefits to human health, especially from controlling suspended particulates and sulfur compounds. Market decisions are usually made on the basis of a consideration of traditional costs such as capital, operating and maintenance, fuel costs, and fixed charges. Social costs, which could be significant, are not incorporated explicitly into such decisions. These social costs could result in a net reduction in the welfare of individuals, and of society as a whole. Because these social costs and their effects are not represented in the price of energy, individual have no way to explicitly value them; hence, they remain unaccounted for in market decisions. By accounting for external costs, the selection of energy sources and production of energy products can lead to and equilibrium, where the total cost of energy and energy products, together with resulting social costs, can be brought to an economic minimum. The concept of an air emissions control program is of interest to the ASEAN countries (Brunei, Indonesia, Malaysia, the Philippines, Singapore, and Thailand) and their governments, especially if such a program could be justified in cost-benefit terms and shown to be directly applicable to ASEAN conditions. It is the intent of the effort described herein to demonstrate that technical options are available to control emissions from coal-based, electric power plants and that that costs of these options may be justified in cost-benefit terms.

  15. Advanced CO{sub 2} Capture Technology for Low Rank Coal IGCC System

    SciTech Connect

    Alptekin, Gokhan

    2013-09-30

    The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO{sub 2} scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO{sub 2} emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on SelexolTM technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO{sub 2} above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in The overall objective of the project is to demonstrate the technical and economic viability of a new Integrated Gasification Combined Cycle (IGCC) power plant designed to efficiently process low rank coals. The plant uses an integrated CO{sub 2} scrubber/Water Gas Shift (WGS) catalyst to capture over90 percent capture of the CO{sub 2} emissions, while providing a significantly lower cost of electricity (COE) than a similar plant with conventional cold gas cleanup system based on SelexolTM technology and 90 percent carbon capture. TDA’s system uses a high temperature physical adsorbent capable of removing CO{sub 2} above the dew point of the synthesis gas and a commercial WGS catalyst that can effectively convert CO in bituminous coal the net plant efficiency is about 2.4 percentage points higher than an Integrated Gasification Combined Cycle (IGCC) plant equipped with SelexolTM to capture CO{sub 2}. We also previously completed two successful field demonstrations: one at the National Carbon Capture Center (Southern- Wilsonville, AL) in 2011, and a second demonstration in fall of 2012 at the Wabash River IGCC plant (Terra Haute, IN). In this project, we first optimized the sorbent to catalyst ratio used in the combined WGS and CO{sub 2} capture

  16. Development of significantly improved catalysts for coal liquefaction and upgrading of coal extracts. Quarterly progress report No. 4, July 1-September 30, 1982

    SciTech Connect

    Sinha, V.T.; Kutzenco, P.D.; Preston, W.J.; Brinen, J.S.; Graham, S.W.; Butensky, M.; Muchnick, T.L.; Hyman, D.

    1982-01-01

    Cold flow ebullation tests to determine the ranges of operability of bead catalysts continued. Data reported show the effects of higher catalyst density, wider particle size distributions, and higher fluid viscosity on ebullation of bead catalysts. A relation for determining limiting diameters in a liquid-solid fluidized bed was developed. Correlation of the three-phase data is being investigated. The CSTR Catalyst Aging Test Unit is described. The system operates under computer control. High pressure hydrogen and coal slurry are fed continuously to a one-liter stirred autoclave. High pressure nitrogen for inerting and flush oil are used in the event of an interlock shutdown. The product is passed to a 3-gallon collection vessel or to a smaller sampling vessel during material balance periods. The gas disentrains from the mixture and is scrubbed. Analytical techniques to be used in the course of the catalyst testing program were evaluated. H-COAL PDU products and SRC-II Heavy distillate were analyzed. Standard deviations for many of the procedures were determined. Specific methods are summarized. Development of surface analytical techniques to study coal liquefaction catalysts focused on used Amocat 1A catalysts from coal run 10 at the H-COAL Pilot Plant. Preliminary results of analysis by ESCA and x-ray microprobe are given.

  17. ADVANCED MULTI-PRODUCT COAL UTILIZATION BY-PRODUCT PROCESSING PLANT

    SciTech Connect

    Robert Jewell; Thomas Robl; John Groppo

    2005-03-01

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. The ash produced by the plant was found to be highly variable as the plant consumes high and low sulfur bituminous coal, in Units 1 and 2 and a mixture of subbituminous and bituminous coal in Units 3 and 4. The ash produced reflected this consisting of an iron-rich ({approx}24%, Fe{sub 2}O{sub 3}), aluminum rich ({approx}29% Al{sub 2}O{sub 3}) and high calcium (6%-7%, CaO) ash, respectively. The LOI of the ash typically was in the range of 5.5% to 6.5%, but individual samples ranged from 1% to almost 9%. The lower pond at Ghent is a substantial body, covering more than 100 acres, with a volume that exceeds 200 million cubic feet. The sedimentation, stratigraphy and resource assessment of the in place ash was investigated with vibracoring and three-dimensional, computer-modeling techniques. Thirteen cores to depths reaching nearly 40 feet, were retrieved, logged in the field and transported to the lab for a series of analyses for particle size, loss on ignition, petrography, x-ray diffraction, and x-ray fluorescence. Collected data were processed using ArcViewGIS, Rockware, and Microsoft Excel to create three-dimensional, layered iso-grade maps, as well as stratigraphic columns and profiles, and reserve estimations. The ash in the pond was projected to exceed 7 million tons and contain over 1.5 million tons of coarse carbon, and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. The size, quality and consistency of the ponded material suggests that it is the better feedstock for the beneficiation plant.

  18. Assessment of advanced coal-gasification processes. [AVCO high throughput gasification in process; Bell High Mass Flux process; CS-R process; and Exxon Gasification process

    SciTech Connect

    McCarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-06-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process, Bell Single - Stage High Mass Flux (HMF) Process, Cities Service/Rockwell (CS/R) Hydrogasification Process, and the Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic fluidbed reactor producing all of the raw product methane in the gasifier.

  19. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 15, April 1, 1992--June 30, 1992

    SciTech Connect

    Not Available

    1993-02-12

    The Department of Energy (DOE) awarded a contract entitled ``Engineering Development of Advanced Physical Fine Coal Cleaning Technology - Froth Flotation``, to ICF Kaiser Engineers with the following team members, Ohio Coal Development Office, Babcock and Wilcox, Consolidation Coal Company, Eimco Process Equipment Company, Illinois State Geological Survey, Virginia Polytechnic Institute and State University, Process Technology, Inc. This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.

  20. Upgraded Coal Interest Group

    SciTech Connect

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  1. Geologic considerations in underground coal mining system design

    SciTech Connect

    Camilli, F.A.; Maynard, D.P.; Mangolds, A.; Harris, J.

    1981-10-01

    Geologic characteristics of coal resources which may impact new extraction technologies are identified and described to aid system designers and planners in their task of designing advanced coal extraction systems for the central Appalachian region. These geologic conditions are then organized into a matrix identified as the baseline mine concept. A sample region, eastern Kentucky, is next analyzed, using both the new baseline mine concept and traditional geologic investigative approach. The baseline mine concept presented is intended as a framework, providing a consistent basis for further analyses to be subsequently conducted in other geographic regions. The baseline mine concept is intended as a tool to give system designers a more realistic feel of the mine environment and will hopefully lead to acceptable alternatives for advanced coal extraction system.

  2. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 1, Final technical report, October 1, 1991--September 30, 1994

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1994-12-31

    The overall objective of this project was to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrated coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. Heterofunctional solvents were the most effective in swelling coals. Also solvent blends such as isopropanol/water were more effective than pure solvents alone. Impregnating slurry catalysts simultaneously during coal swelling showed that better uptake was achieved with nonswelling solvent and higher impregnation temperature. Some enhancement in initial coal conversion was seen liquefying SO{sub 2}-treated Black Thunder coal with slurry catalysts, and also when hydrogen donor liquefaction solvents were used. Noncatalytic reactions showed no benefit from SO{sub 2} treatment. Coupling coal swelling and SO{sub 2} treatment with slurry catalysts was also not beneficial, although high conversion was seen with continuous operation and long residence time, however, similar high conversion was observed with untreated coal. SO{sub 2} treatment is not economically attractive unless it provides about 17% increase in coal reactivity. In most cases, the best results were obtained when the coal was untreated and the slurry catalyst was added directly into the reactor. Foster Wheeler`s ASCOT process had better average liquid yields than either Wilsonville`s vacuum tower/ROSE combination or delayed coking process. This liquid product also had good quality.

  3. Comparison of the mechanisms of microwave roasting and conventional roasting and of their effects on vanadium extraction from stone coal

    NASA Astrophysics Data System (ADS)

    Yuan, Yi-zhong; Zhang, Yi-min; Liu, Tao; Chen, Tie-jun

    2015-05-01

    Experiments comparing microwave blank roasting and conventional blank roasting for typical vanadium-bearing stone coal from Hubei Province in central China, in which vanadium is present in muscovite, were conducted to investigate the effects of roasting temperature, roasting time, H2SO4 concentration, and leaching time on vanadium extraction. The results show that the vanadium leaching efficiency is 84% when the sample is roasted at 800°C for 30 min by microwave irradiation and the H2SO4 concentration, liquid/solid ratio, leaching temperature, and leaching time are set as 20vol%, 1.5:1 mL·g-1, 95°C, and 8 h, respectively. However, the vanadium leaching efficiency achieved for the sample subjected to conventional roasting at 900°C for 60 min is just 71% under the same leaching conditions. Scanning electron microscopy (SEM) analysis shows that the microwave roasted samples contain more cracks and that the particles are more porous compared to the conventionally roasted samples. According to the results of X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) analyses, neither of these roasting methods could completely destroy the mica lattice structure under the experimental conditions; however, both methods deformed the muscovite structure and facilitated the leaching process. Comparing with conventional roasting, microwave roasting causes a greater deformation of the mineral structure at a lower temperature for a shorter roasting time.

  4. Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems

    SciTech Connect

    Not Available

    1990-12-01

    The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

  5. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    SciTech Connect

    Not Available

    1992-01-01

    The construction of the DOE POC at the OCDO facility continued through this entire quarter. By the end of the quarter approximately 90% of all of the construction had been completed. All equipment has beeninstalled, checked for mechanical and installation and operated from a local pushbutton. During this quarter a review of items to be completed for start-up was compiled. This information was then presented to the construction subcontractors and agreement was concluded that all items will be completed and operational for processing coal by February 1, 1993. There are still several items that were not on site for installation during this quarter. These items are the flocculant controls supplied by Westec Engineering, Inc., and the discharge valve for the hyperbaric filter supplied by KHD. Neither of these items will prevent start-up. The flocculants can be manually controlled and provisions are all ready provided to bypass the hyperbaric filter to the Sharpels high-G centrifuge. Both of these items are scheduled for delivery in mid-January.

  6. Assessment of instrumentation needs for advanced coal power plant applications: Final report

    SciTech Connect

    Nelson, E.T.; Fischer, W.H.; Lipka, J.V.; Rutkowski, M.D.; Zaharchuk, R.

    1987-10-01

    The purpose of this study was to identify contaminants, identify instrumentation needs, assess available instrumentation and identify instruments that should be developed for controlling and monitoring gas streams encountered in the following power plants: Integrated Gasification Combined Cycle, Pressurized Fluidized Bed Combustion, and Gasification Molten Carbonate Fuel Cell. Emphasis was placed on hot gas cleanup system gas stream analysis, and included process control, research and environmental monitoring needs. Commercial process analyzers, typical of those currently used for process control purposes, were reviewed for the purpose of indicating commercial status. No instrument selection guidelines were found which were capable of replacing user interaction with the process analyzer vendors. This study leads to the following conclusions: available process analyzers for coal-derived gas cleanup applications satisfy current power system process control and regulatory requirements, but they are troublesome to maintain; commercial gas conditioning systems and in situ analyzers continue to be unavailable for hot gas cleanup applications; many research-oriented gas stream characterization and toxicity assessment needs can not be met by commercially available process analyzers; and greater emphasis should be placed on instrumentation and control system planning for future power plant applications. Analyzers for specific compounds are not recommended other than those needed for current process control purposes. Instead, some generally useful on-line laser-based and inductively coupled plasma methods are recommended for further development because of their potential for use in present hot gas cleanup research and future optimization, component protection and regulation compliance activities. 48 refs., 21 figs., 26 tabs.

  7. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 13, October--December, 1995

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1996-01-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2-t/hr process development unit. During Quarter 13 (October--December 1995), testing of the GranuFlow dewatering process indicated a 3--4% reduction in cake moisture for screen-bowl and solid-bowl centrifuge products. The Orimulsion additions were also found to reduce the potential dustiness of the fine coal, as well as improve solids recovery in the screen-bowl centrifuge. Based on these results, Lady Dunn management now plans to use a screen bowl centrifuge to dewater their Microcel{trademark} column froth product. Subtask 3.3 testing, investigating a novel Hydrophobic Dewatering process (HD), continued this quarter. Continuing Subtask 6.4 work, investigating coal-water-slurry formulation, indicated that selective agglomeration products can be formulated into slurries with lower viscosities than advanced flotation products. Subtask 6.5 agglomeration bench-scale testing results indicate that a very fine grind is required to meet the 2 lb ash/MBtu product specification for the Winifrede coal, while the Hiawatha coal requires a grind in the 100- to 150-mesh topsize range. Detailed design work remaining involves the preparation and issuing of the final task report. Utilizing this detailed design, a construction bid package was prepared and submitted to three Colorado based contractors for quotes as part of Task 9.

  8. In-plant testing of a novel coal cleaning circuit using advanced technologies. Final technical report, September 1, 1995--August 31, 1996

    SciTech Connect

    Honaker, R.Q.; Reed, S.; Mohanty, M.K.

    1997-05-01

    A circuit comprised of advanced fine coal cleaning technologies was evaluated in an operating preparation plant to determine circuit performance and to compare the performance with current technologies used to treat -16 mesh fine coal. The circuit integrated a Floatex hydrosizer, a Falcon enhanced gravity concentrator and a Jameson flotation cell. A Packed-Column was used to provide additional reductions in the pyritic sulfur and ash contents by treatment of the Floatex-Falcon-Jameson circuit product. For a low sulfur Illinois No. 5 coal, the pyritic sulfur content was reduced from 0.67% to 0.34% at a combustible recovery of 93.2%. The ash content was decreased from 27.6% to 5.84%, which equates to an organic efficiency of 95% according to gravity-based washability data. The separation performance achieved on a high sulfur Illinois No. 5 coal resulted in the rejection of 72.7% of the pyritic sulfur and 82.3% of the ash-forming material at a recovery of 8 1 %. Subsequent pulverization of the cleaned product and retreatment in a Falcon concentrator and Packed-Column resulted in overall circuit ash and pyritic sulfur rejections of 89% and 93%, respectively, which yielded a pyritic sulfur content reduction from 2.43% to 0.30%. This separation reduced the sulfur dioxide emission rating of an Illinois No. 5 coal from 6.21 to 1.75 lbs SO{sub 2}/MBTU, which is Phase I compliance coal. A comparison of the results obtained from the Floatex-Falcon-Jameson circuit with those of the existing circuit revealed that the novel fine coal circuit provides 10% to 20% improvement in mass yield to the concentrate while rejecting greater amounts of ash and pyritic sulfur.

  9. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report 11, April--June, 1995

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1995-07-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design, and construction of a 2-t/hr process development unit (PDU). The PDU will then be operated to generate 200 tons of each of three project coals, by each process. During Quarter 11 (April--June, 1995), work continued on the Subtask 3.2 in-plant testing of the Microcel{trademark} flotation column at the Lady Dunn Preparation Plant with the installation and calibration of a refurbished 30-inch diameter column. The evaluation of toxic trace element data for column flotation samples continued, with preliminary analysis indicating that reasonably good mass balances were achieved for most elements, and that significant reductions in the concentration of many elements were observed from raw coal, to flotation feed, to flotation product samples. Significant progress was made on Subtask 6.5 selective agglomeration bench-scale testing. Data from this work indicates that project ash specifications can be met for all coals evaluated, and that the bulk of the bridging liquid (heptane) can be removed from the product for recycle to the process. The detailed design of the 2 t/hr selective agglomeration module progressed this quarter with the completion of several revisions of both the process flow, and the process piping and instrument diagrams. Procurement of coal for PDU operation began with the purchase of 800 tons of Taggart coal. Construction of the 2 t/hr PDU continued through this reporting quarter and is currently approximately 60% complete.

  10. Computational methods to extract meaning from text and advance theories of human cognition.

    PubMed

    McNamara, Danielle S

    2011-01-01

    Over the past two decades, researchers have made great advances in the area of computational methods for extracting meaning from text. This research has to a large extent been spurred by the development of latent semantic analysis (LSA), a method for extracting and representing the meaning of words using statistical computations applied to large corpora of text. Since the advent of LSA, researchers have developed and tested alternative statistical methods designed to detect and analyze meaning in text corpora. This research exemplifies how statistical models of semantics play an important role in our understanding of cognition and contribute to the field of cognitive science. Importantly, these models afford large-scale representations of human knowledge and allow researchers to explore various questions regarding knowledge, discourse processing, text comprehension, and language. This topic includes the latest progress by the leading researchers in the endeavor to go beyond LSA.

  11. Computational methods to extract meaning from text and advance theories of human cognition.

    PubMed

    McNamara, Danielle S

    2011-01-01

    Over the past two decades, researchers have made great advances in the area of computational methods for extracting meaning from text. This research has to a large extent been spurred by the development of latent semantic analysis (LSA), a method for extracting and representing the meaning of words using statistical computations applied to large corpora of text. Since the advent of LSA, researchers have developed and tested alternative statistical methods designed to detect and analyze meaning in text corpora. This research exemplifies how statistical models of semantics play an important role in our understanding of cognition and contribute to the field of cognitive science. Importantly, these models afford large-scale representations of human knowledge and allow researchers to explore various questions regarding knowledge, discourse processing, text comprehension, and language. This topic includes the latest progress by the leading researchers in the endeavor to go beyond LSA. PMID:25164173

  12. Advanced treatment of biologically pretreated coal gasification wastewater by a novel heterogeneous Fenton oxidation process.

    PubMed

    Zhuang, Haifeng; Han, Hongjun; Ma, Wencheng; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2015-07-01

    Sewage sludge from a biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl2 as activation agent, which was used as a support for ferric oxides to form a catalyst (FeOx/SBAC) by a simple impregnation method. The new material was then used to improve the performance of Fenton oxidation of real biologically pretreated coal gasification wastewater (CGW). The results indicated that the prepared FeOx/SBAC significantly enhanced the pollutant removal performance in the Fenton process, so that the treated wastewater was more biodegradable and less toxic. The best performance was obtained over a wide pH range from 2 to 7, temperature 30°C, 15 mg/L of H2O2 and 1g/L of catalyst, and the treated effluent concentrations of COD, total phenols, BOD5 and TOC all met the discharge limits in China. Meanwhile, on the basis of significant inhibition by a radical scavenger in the heterogeneous Fenton process as well as the evolution of FT-IR spectra of pollutant-saturated FeOx/BAC with and without H2O2, it was deduced that the catalytic activity was responsible for generating hydroxyl radicals, and a possible reaction pathway and interface mechanism were proposed. Moreover, FeOx/SBAC showed superior stability over five successive oxidation runs. Thus, heterogeneous Fenton oxidation of biologically pretreated CGW by FeOx/SBAC, with the advantages of being economical, efficient and sustainable, holds promise for engineering application.

  13. Advanced coal liquefaction. Quarterly report, January 1, 1994--March 31, 1994

    SciTech Connect

    1995-03-01

    This project investigated the use of ceramic membranes to improve liquefaction processes to meet both economical and environmental requirements. The separation of model compounds with a series of modified membranes were complete for Yr. I. The experimental system is presently under modification for performing the catalytic membrane reaction. In this quarter, the authors summarized the Yr.I experimental result as quarterly to satisfy the contractual reporting requirement. A series of 1{double_prime} and 10{double_prime} long membranes were modified through the CVD method to reduce the pore size. These tubes were characterized by He and N{sub 2} permeation as well as He/SF{sub 6} separation. The He and N{sub 2} permeances decreased with reducing pore size and porosity. The coronene and compound No. 11 mixture separation were performed in 10-inch long membranes. The model compound chosen for the catalytic membrane reaction was NBBM (naphthyl-bibenzyl-methane). The hydrogenolysis of this compound will generate toluene which can be selectively removed by the modified membrane. The NBBM/toluene separation was performed in 1{double_prime} long modified membranes. The GC calibration of NBBM, coronene, compound No. 11 and toluene were established and gave good accurate analysis. The results were accurate and reproducible using wide board capillary column with appropriate GC conditions. The coal-liquid separation through microporous ceramic membranes could be described by an ultrafiltration model. Two transport phenomenons, molecular diffusion and convection, were the most important mechanisms. The hindrance factors were necessary of these mechanisms to evaluate the separation performance of membrane and to design the catalytic membrane reactor. The hindrance factors can be calculated from that rejection and permeate flux based on the simplified Niemi-Palosaari method.

  14. Intelligent Control via Wireless Sensor Networks for Advanced Coal Combustion Systems

    SciTech Connect

    Aman Behal; Sunil Kumar; Goodarz Ahmadi

    2007-08-05

    Numerical Modeling of Solid Gas Flow, System Identification for purposes of modeling and control, and Wireless Sensor and Actor Network design were pursued as part of this project. Time series input-output data was obtained from NETL's Morgantown CFB facility courtesy of Dr. Lawrence Shadle. It was run through a nonlinear kernel estimator and nonparametric models were obtained for the system. Linear and first-order nonlinear kernels were then utilized to obtain a state-space description of the system. Neural networks were trained that performed better at capturing the plant dynamics. It is possible to use these networks to find a plant model and the inversion of this model can be used to control the system. These models allow one to compare with physics based models whose parameters can then be determined by comparing them against the available data based model. On a parallel track, Dr. Kumar designed an energy-efficient and reliable transport protocol for wireless sensor and actor networks, where the sensors could be different types of wireless sensors used in CFB based coal combustion systems and actors are more powerful wireless nodes to set up a communication network while avoiding the data congestion. Dr. Ahmadi's group studied gas solid flow in a duct. It was seen that particle concentration clearly shows a preferential distribution. The particles strongly interact with the turbulence eddies and are concentrated in narrow bands that are evolving with time. It is believed that observed preferential concentration is due to the fact that these particles are flung out of eddies by centrifugal force.

  15. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, January--March 1993

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1993-09-01

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The primary coal of this program, Black Thunder subbituminous coal, can be effectively beneficiated to about 4 wt% ash using aqueous sulfurous acid pretreatment. This treated coal can be further beneficiated to about 2 wt% ash using commercially available procedures. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. In addition, a synergistic effect has been demonstrated, in which solvent blends are more effective for coal swelling than the pure solvents alone. Therefore, it will be necessary to use only low levels of swelling agents and yet promote the impregnation of catalyst precursors. The rate of the impregnation of catalyst precursors into swollen coal increases greatly as the effectiveness of the solvent to swell the coal increases.

  16. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, July--September 1992

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1992-12-31

    The experimental study of coal swelling ratios have been determined with a wide variety of solvents. Only marginal levels of coal swelling were observed for the hydrocarbon solvents, but high levels were found with solvents having heteroatom functionality. Blends were superior to pure solvents. The activity of various catalyst precursors for pyrene hydrogenation and coal conversion was measured. Higher coal conversions were observed for the S0{sub 2}-treated coal than the raw coal, regardless of catalyst type. Coal conversions were highest for Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively. Bottoms processing consists of a combination of the ASCOT process coupling solvent deasphalting with delayed coking. Initial results indicate that a blend of butane and pentane used near the critical temperature of butane is the best solvent blend for producing a yield/temperature relationship of proper sensitivity and yet retaining an asphalt phase of reasonable viscosity. The literature concerning coal swelling, both alone and in combination with coal liquefaction, and the use of dispersed or unsupported catalysts in coal liquefaction has been updated.

  17. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 14, January 1, 1992--March 31, 1992

    SciTech Connect

    Not Available

    1992-12-31

    In order to develop additional confidence in the conceptual design of the advanced froth flotation circuit, a 2-3 TPH Proof-of-Concept (POC) facility was necessary. During operation of this facility, the ICF KE team will demonstrate the ability of the conceptual flowsheets to meet the program goals of maximum pyritic sulfur reduction coupled with maximum energy recovery on three DOE specified coals. The POC circuit was designed to be integrated into the Ohio Coal Development`s facility near Beverly, Ohio. OCDO`s facility will provide the precleaning unit operations and ICF KE will add the advanced froth flotation circuitry. The work in this task will include the POC conceptual design, flowsheet development, equipment list, fabrication and construction drawings, procurement specifications and bid packages and a facilities.

  18. Engineering development of advanced coal-fired low-emission boiler systems. Quarterly technical progress report No. 17, October 1, 1996--December 31, 1996

    SciTech Connect

    Regan, J.W.; Bender, D.J.; Clark, J.P.; Wesnor, J.D.

    1997-01-01

    This report describes the work performed between October 1 and December 31, 1996 by the ABB team on U.S. Department of Energy project ``Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems`` (LEBS), which is part of the DOE`s Combustion 2000 Program. The overall objective of the LEBS Project is to dramatically improve environmental performance of future coal-fired power plants without adversely impacting efficiency or the cost of electricity. Near-term technologies, i.e., advanced technologies that are partially developed, will be used to reduce NO{sub x} and SO{sub 2} emission to one-sixth current NSPS limits and particulates to one- third current NSPS limits.

  19. Clean coal technologies market potential

    SciTech Connect

    Drazga, B.

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  20. An analysis of markets for small-scale, advanced coal-combustion technology in Spain, Italy, and Turkey

    SciTech Connect

    Placet, M.; Gerry, P.A.; Kenski, D.M.; Kern, D.M.; Nehring, J.L.; Szpunar, C.B.

    1989-09-01

    This report discusses the examination of potential overseas markets for using small-scale, US-developed, advanced coal-combustion technologies (ACTs). In previous work, member countries of the Organization for Economic Cooperation and Development (OECD) were rated on their potential for using ACTs through a comprehensive screening methodology. The three most promising OECD markets were found to be Spain, Italy, and Turkey. This report provides in-depth analyses of these three selected countries. First, it addresses changes in the European Community with particular reference to the 1992 restructuring and its potential effect on the energy situation in Europe, specifically in the three subject countries. It presents individual country studies that examine demographics, economics, building infrastructures, and energy-related factors. Potential niches for ACTs are explored for each country through regional analyses. Marketing channels, strategies, and the trading environments in each country are also discussed. The information gathered indicates that Turkey is a most promising market, Spain is a fairly promising market, and Italy appears to be a somewhat limited market for US ACTs. 76 refs., 16 figs., 14 tabs.

  1. Advanced turbine design for coal-fueled engines. Topical report, Task 1.6, Task 1.7

    SciTech Connect

    Bornstein, N.S.

    1992-07-17

    The objective of this task is to perform a technical assessment of turbine blading for advanced second generation PFBC conditions, identify specific problems/issues, and recommend an approach for solving any problems identified. A literature search was conducted, problems associated with hot corrosion defined and limited experiments performed. Sulfidation corrosion occurs in industrial, marine and aircraft gas turbine engines and is due to the presence of condensed alkali (sodium) sulfates. The principle source of the alkali in industrial, marine and aircraft gas turbine engines is sea salt crystals. The principle source of the sulfur is not the liquid fuels, but the same ocean born crystals. Moreover deposition of the corrosive salt occurs primarily by a non-equilibrium process. Sodium will be present in the cleaned combusted gases that enter the PFBC turbine. Although equilibrium condensation is not favored, deposition via impaction is probable. Marine gas turbines operate in sodium chloride rich environments without experiencing the accelerated attack noted in coal fired boilers where condensed chlorides contact metallic surfaces. The sulfates of calcium and magnesium are the products of the reactions used to control sulfur. Based upon industrial gas turbine experience and laboratory tests, calcium and magnesium sulfates are, at temperatures up to 1500{degrees}F (815{degrees}C), relatively innocuous salts. In this study it is found that at 1650{degrees}F (900{degrees}C) and above, calcium sulfate becomes an aggressive corrodent.

  2. An advanced anaerobic biofilter with effluent recirculation for phenol removal and methane production in treatment of coal gasification wastewater.

    PubMed

    Li, Yajie; Tabassum, Salma; Zhang, Zhenjia

    2016-09-01

    An advanced anaerobic biofilter (AF) was introduced for the treatment of coal gasification wastewater (CGW), and effluent recirculation was adopted to enhance phenol removal and methane production. The results indicated that AF was reliable in treating diluted CGW, while its efficiency and stability were seriously reduced when directly treating raw CGW. However, its performance could be greatly enhanced by effluent recirculation. Under optimal effluent recirculation of 0.5 to the influent, concentrations of chemical oxygen demand (COD) and total phenol in the effluent could reach as low as 234.0 and 14.2mg/L, respectively. Also, the rate of methane production reached 169.0mLCH4/L/day. Though CGW seemed to restrain the growth of anaerobic microorganisms, especially methanogens, the inhibition was temporary and reversible, and anaerobic bacteria presented strong tolerance. The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater (GW). However, the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication. By analysis using the Haldane model, it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters, but only suitable effluent recirculation could result in high methanogenic activity. PMID:27593269

  3. Optical fiber evanescent wave adsorption sensors for high-temperature gas sensing in advanced coal-fired power plants

    SciTech Connect

    Buric, M.; Ohodnicky, P.; Duy, J.

    2012-01-01

    Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.

  4. An advanced anaerobic biofilter with effluent recirculation for phenol removal and methane production in treatment of coal gasification wastewater.

    PubMed

    Li, Yajie; Tabassum, Salma; Zhang, Zhenjia

    2016-09-01

    An advanced anaerobic biofilter (AF) was introduced for the treatment of coal gasification wastewater (CGW), and effluent recirculation was adopted to enhance phenol removal and methane production. The results indicated that AF was reliable in treating diluted CGW, while its efficiency and stability were seriously reduced when directly treating raw CGW. However, its performance could be greatly enhanced by effluent recirculation. Under optimal effluent recirculation of 0.5 to the influent, concentrations of chemical oxygen demand (COD) and total phenol in the effluent could reach as low as 234.0 and 14.2mg/L, respectively. Also, the rate of methane production reached 169.0mLCH4/L/day. Though CGW seemed to restrain the growth of anaerobic microorganisms, especially methanogens, the inhibition was temporary and reversible, and anaerobic bacteria presented strong tolerance. The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater (GW). However, the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication. By analysis using the Haldane model, it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters, but only suitable effluent recirculation could result in high methanogenic activity.

  5. Engineering development of advanced coal-fired low-emission boiler systems. Technical progress report No. 15, April 15 1996--June 1996

    SciTech Connect

    1996-08-19

    The Pittsburgh Energy Technology center of the US Department of Energy (DOE) has contracted with Combustion Engineering; Inc. (ABB CE) to perform work on the {open_quotes}Engineering Development of Advanced Coal-Fired Low-Emission Boiler Systems{close_quote} Project and has authorized ABB CE to complete Phase I on a cost-reimbursable basis and Phases II and III on a cost-share basis.

  6. Engineering development of advanced coal-fired low-emissions boiler systems. Fourth quarterly report, 1996

    SciTech Connect

    1997-02-01

    The goal of the NO{sub x} Subsystem is to achieve continuous operation of the Low Emissions Boiler System (LEBS) at NO{sub x} emissions at or below 0. 20 lb/MBtu through combustion techniques only, with a further target of 0.1 lb NO{sub x}/MBtu using supplementary advanced flue gas cleanup technologies if necessary. These goals places practical constraints that must be considered on the NO{sub x} Subsystem design. Not only must the boiler be designed to achieve time temperature mixing histories that minimize NO{sub x}, but it must also be designed to operate that way throughout its working lifetime. Therefore, NO{sub x} minimization strategies must be integrated into the control systems for every boiler component from the pulverizers to the stack. Furthermore, these goals must be met without increases in carbon loss and CO emissions from the levels achieved with current low-NO{sub x} combustion systems. Therefore, the NO{sub x} Subsystem requires not only sound mechanical designs of burners, furnace surface, and staging air/fuel injectors, but also sensors and software to allow control of their operation. Through engineering analysis, experimental testing, and numerical modeling in Phase 2, an advanced low NO{sub x} control system is being developed. The progress of these activities is presented in this report.

  7. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, April--June 1992

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  8. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993

    SciTech Connect

    Smith, V.E.

    1994-09-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  9. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    SciTech Connect

    Thomas Robl; John Groppo

    2009-06-30

    The overall objective of this project is to design, construct, and operate an ash beneficiation facility that will generate several products from coal combustion ash stored in a utility ash pond. The site selected is LG&E's Ghent Station located in Carroll County, Kentucky. The specific site under consideration is the lower ash pond at Ghent, a closed landfill encompassing over 100 acres. Coring activities revealed that the pond contains over 7 million tons of ash, including over 1.5 million tons of coarse carbon and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. These potential products are primarily concentrated in the lower end of the pond adjacent to the outlet. A representative bulk sample was excavated for conducting laboratory-scale process testing while a composite 150 ton sample was also excavated for demonstration-scale testing at the Ghent site. A mobile demonstration plant with a design feed rate of 2.5 tph was constructed and hauled to the Ghent site to evaluate unit processes (i.e. primary classification, froth flotation, spiral concentration, secondary classification, etc.) on a continuous basis to determine appropriate scale-up data. Unit processes were configured into four different flowsheets and operated at a feed rate of 2.5 tph to verify continuous operating performance and generate bulk (1 to 2 tons) products for product testing. Cementitious products were evaluated for performance in mortar and concrete as well as cement manufacture process addition. All relevant data from the four flowsheets was compiled to compare product yields and quality while preliminary flowsheet designs were generated to determine throughputs, equipment size specifications and capital cost summaries. A detailed market study was completed to evaluate the potential markets for cementitious products. Results of the study revealed that the Ghent local fly ash market is currently oversupplied by more than 500,000 tpy and distant markets (i.e. Florida

  10. RESIDUES FROM COAL CONVERSION AND UTILIZATION: ADVANCED MINERALOGICAL CHARACTERIZATION AND DISPOSED BYPRODUCT DIAGENESIS

    SciTech Connect

    Gregory J. McCarthy; Dean G. Grier

    2001-01-01

    Prior to the initiation of this study, understanding of the long-term behavior of environmentally-exposed Coal Combustion By-Products (CCBs) was lacking in (among others) two primary areas addressed in this work. First, no method had been successfully applied to achieve full quantitative analysis of the partitioning of chemical constituents into reactive or passive crystalline or noncrystalline compounds. Rather, only semi-quantitative methods were available, with large associated errors. Second, our understanding of the long-term behavior of various CCBs in contact with the natural environment was based on a relatively limited set of study materials. This study addressed these areas with two objectives, producing (1) a set of protocols for fully quantitative phase analysis using the Rietveld Quantitative X-ray Diffraction (RQXRD) method and (2) greater understanding of the hydrologic and geochemical nature of the long-term behavior of disposed and utilized CCBs. The RQXRD technique was initially tested using (1) mixtures of National Institute of Standards and Technology (NIST) crystalline standards, and (2) mixtures of synthetic reagents simulating various CCBs, to determine accuracy and precision of the method, and to determine the most favorable protocols to follow in order to efficiently quantify multi-phase mixtures. Four sets of borehole samples of disposed or utilized CCBs were retrieved and analyzed by RQXRD according to the protocols developed under the first objective. The first set of samples, from a Class F ash settling pond in Kentucky disposed for up to 20 years, showed little mineralogical alteration, as expected. The second set of samples, from an embankment in Indiana containing a mixture of chain-grate (stoker) furnace ash and fluidized bed combustion (FBC) residues, showed formation of the mineral thaumasite, as observed in previously studied exposed FBC materials. Two high-calcium CCBs studied, including a dry-process flue gas desulfurization

  11. Ameliorating Effect of Akebia quinata Fruit Extracts on Skin Aging Induced by Advanced Glycation End Products

    PubMed Central

    Shin, Seoungwoo; Son, Dahee; Kim, Minkyung; Lee, Seungjun; Roh, Kyung-Baeg; Ryu, Dehun; Lee, Jongsung; Jung, Eunsun; Park, Deokhoon

    2015-01-01

    The accumulation of free radicals and advanced glycation end products (AGEs) in the skin plays a very important role in skin aging. Both are known to interact with each other. Therefore, natural compounds or extracts that possess both antioxidant and antiglycation activities might have great antiageing potential. Akebia quinata fruit extract (AQFE) has been used to treat urinary tract inflammatory disease in traditional Korean and Chinese medicines. In the present study, AQFE was demonstrated to possess antioxidant and antiglycation activity. AQFE protects human dermal fibroblasts (HDFs) from oxidative stress and inhibits cellular senescence induced by oxidative stress. We also found that AQFE inhibits glycation reaction between BSA and glucose. The antiglycation activity of AQFE was dose-dependent. In addition, the antiglycation activity of AQFE was confirmed in a human skin explant model. AQFE reduced CML expression and stimulated fibrillin-1 expression in comparison to the methyglyoxal treatment. In addition, the possibility of the extract as an anti-skin aging agent has also been clinically validated. Our analysis of the crow’s feet wrinkle showed that there was a decrease in the depth of deep furrows in RI treated with AQFE cream over an eight-week period. The overall results suggest that AQFE may work as an anti-skin aging agent by preventing oxidative stress and other complications associated with AGEs formation. PMID:26569300

  12. Ameliorating Effect of Akebia quinata Fruit Extracts on Skin Aging Induced by Advanced Glycation End Products.

    PubMed

    Shin, Seoungwoo; Son, Dahee; Kim, Minkyung; Lee, Seungjun; Roh, Kyung-Baeg; Ryu, Dehun; Lee, Jongsung; Jung, Eunsun; Park, Deokhoon

    2015-11-12

    The accumulation of free radicals and advanced glycation end products (AGEs) in the skin plays a very important role in skin aging. Both are known to interact with each other. Therefore, natural compounds or extracts that possess both antioxidant and antiglycation activities might have great antiageing potential. Akebia quinata fruit extract (AQFE) has been used to treat urinary tract inflammatory disease in traditional Korean and Chinese medicines. In the present study, AQFE was demonstrated to possess antioxidant and antiglycation activity. AQFE protects human dermal fibroblasts (HDFs) from oxidative stress and inhibits cellular senescence induced by oxidative stress. We also found that AQFE inhibits glycation reaction between BSA and glucose. The antiglycation activity of AQFE was dose-dependent. In addition, the antiglycation activity of AQFE was confirmed in a human skin explant model. AQFE reduced CML expression and stimulated fibrillin-1 expression in comparison to the methyglyoxal treatment. In addition, the possibility of the extract as an anti-skin aging agent has also been clinically validated. Our analysis of the crow's feet wrinkle showed that there was a decrease in the depth of deep furrows in RI treated with AQFE cream over an eight-week period. The overall results suggest that AQFE may work as an anti-skin aging agent by preventing oxidative stress and other complications associated with AGEs formation.

  13. Advanced analytical techniques for the extraction and characterization of plant-derived essential oils by gas chromatography with mass spectrometry.

    PubMed

    Waseem, Rabia; Low, Kah Hin

    2015-02-01

    In recent years, essential oils have received a growing interest because of the positive health effects of their novel characteristics such as antibacterial, antifungal, and antioxidant activities. For the extraction of plant-derived essential oils, there is the need of advanced analytical techniques and innovative methodologies. An exhaustive study of hydrodistillation, supercritical fluid extraction, ultrasound- and microwave-assisted extraction, solid-phase microextraction, pressurized liquid extraction, pressurized hot water extraction, liquid-liquid extraction, liquid-phase microextraction, matrix solid-phase dispersion, and gas chromatography (one- and two-dimensional) hyphenated with mass spectrometry for the extraction through various plant species and analysis of essential oils has been provided in this review. Essential oils are composed of mainly terpenes and terpenoids with low-molecular-weight aromatic and aliphatic constituents that are particularly important for public health.

  14. Measurement and modeling of advanced coal conversion processes. 19th quarterly report, April 1, 1991--June 30, 1991

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S.

    1991-09-25

    The objectives of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. (VC)

  15. Characteristics of Pyrolytic Topping in Fluidized Bed for Different Volatile Coals

    NASA Astrophysics Data System (ADS)

    Xiong, R.; Dong, L.; Xu, G. W.

    Coal is generally combusted or gasified directly to destroy completely the chemical structures, such as aromatic rings containing in volatile coals including bituminite and lignite. Coal topping refers to a process that extracts chemicals with aromatic rings from such volatile coals in advance of combustion or gasification and thereby takes advantage of the value of coal as a kind of chemical structure resource. CFB boiler is the coal utilization facility that can be easily retrofitted to implement coal topping. A critical issue for performing coal topping is the choice of the pyrolytic reactor that can be different types. The present study concerns fluidized bed reactor that has rarely been tested for use in coal topping. Two different types of coals, one being Xiaolongtan (XLT) lignite and the other Shanxi (SX) bituminous, were tested to clarify the yield and composition of pyrolysis liquid and gas under conditions simulating actual operations. The results showed that XLT lignite coals had the maximum tar yield in 823-873K and SX bituminite realized its highest tar yield in 873-923K. Overall, lignite produced lower tar yield than bituminous coal. The pyrolysis gas from lignite coals contained more CO and CO2 and less CH4, H2 and C2+C3 (C2H4, C2H6, C3H6, C3H8) components comparing to that from bituminous coal. TG-FTIR analysis of tars demonstrated that for different coals there are different amounts of typical chemical species. Using coal ash of CFB boiler, instead of quartz sand, as the fluidized particles decreased the yields of both tar and gas for all the tested coals. Besides, pyrolysis in a reaction atmosphere simulating the pyrolysis gas (instead of N2) resulted also in higher production of pyrolysis liquid.

  16. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly progress report No. 10, January--March 1995

    SciTech Connect

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1995-04-27

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and benchscale testing on six coals to optimize these processes, followed by design, and construction of a 2-t/hr process development unit (PDU). The PDU will then be operated to generate 200 ton lots of each of three project coals, by each process. The project began in October, 1992 and is scheduled for completion by June, 1997. During Quarter 10 (January--March, 1995), preliminary work continued for the Subtask 3.2 in-plant testing of the Microcel{trademark} flotation column at the Lady Dunn Preparation Plant. Towards this end, laboratory flotation testing and refurbishing of the column have been started. The final version of the Subtask 4.2 Advanced Flotation Process Optimization Research topical report was issued, as was a draft version of the Subtask 4.3 report discussing the formulation of coal-water slurry fuels (CWF) from advanced flotation products. A number of product samples from Subtask 4.4 testing were sent to both Combustion Engineering and Penn State for combustion testing. The evaluation of toxic trace element analyses of column flotation products also continued. The detailed design of the 2 t/hr PDU was essentially completed with the approval of various process flow, plant layout, electrical, and vendor equipment drawings. The final version of the Subtask 6.5 -- Selective Agglomeration Bench-Scale Design and Test Plan Report was issued during this reporting quarter. Design and construction of this 25 lb/hr selective agglomeration test unit was completed and preliminary testing started. Construction of the 2 t/hr PDU began following the selection of TIC. The Industrial Company as the construction subcontractor.

  17. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. First annual report, September 1, 1990--August 30, 1991

    SciTech Connect

    Wang, Xiang-Huai

    1991-12-31

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof, are directed at identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  18. Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks

    SciTech Connect

    Karmis, Michael; Luttrell, Gerald; Ripepi, Nino; Bratton, Robert; Dohm, Erich

    2014-09-30

    The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderless coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NOx, CO2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.

  19. US Department of Energy`s high-temperature and high-pressure particulate cleanup for advanced coal-based power systems

    SciTech Connect

    Dennis, R.A.

    1997-05-01

    The availability of reliable, low-cost electricity is a cornerstone for the United States` ability to compete in the world market. The Department of Energy (DOE) projects the total consumption of electricity in the US to rise from 2.7 trillion kilowatt-hours in 1990 to 3.5 trillion in 2010. Although energy sources are diversifying, fossil fuel still produces 90 percent of the nation`s energy. Coal is our most abundant fossil fuel resource and the source of 56 percent of our electricity. It has been the fuel of choice because of its availability and low cost. A new generation of high-efficiency power systems has made it possible to continue the use of coal while still protecting the environment. Such power systems greatly reduce the pollutants associated with cola-fired plants built before the 1970s. To realize this high efficiency and superior environmental performance, advanced coal-based power systems will require gas stream cleanup under high-temperature and high-pressure (HTHP) process conditions. Presented in this paper are the HTHP particulate capture requirements for the Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized-Bed Combustion (PFBC) power systems, the HTHP particulate cleanup systems being implemented in the PFBC and IGCC Clean Coal Technology (CCT) Projects, and the currently available particulate capture performance results.

  20. Field study of disposed solid wastes from advanced coal processes. Annual technical progress report, October 1991--September 1992

    SciTech Connect

    Not Available

    1992-12-31

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute`s fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison`s limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United`s mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.