Sample records for advanced collaborative environment

  1. Implementing Advanced Characteristics of X3D Collaborative Virtual Environments for Supporting e-Learning: The Case of EVE Platform

    ERIC Educational Resources Information Center

    Bouras, Christos; Triglianos, Vasileios; Tsiatsos, Thrasyvoulos

    2014-01-01

    Three dimensional Collaborative Virtual Environments are a powerful form of collaborative telecommunication applications, enabling the users to share a common three-dimensional space and interact with each other as well as with the environment surrounding them, in order to collaboratively solve problems or aid learning processes. Such an…

  2. Collaboration in academic medicine: reflections on gender and advancement.

    PubMed

    Carr, Phyllis L; Pololi, Linda; Knight, Sharon; Conrad, Peter

    2009-10-01

    Collaboration in academic medicine is encouraged, yet no one has studied the environment in which faculty collaborate. The authors investigated how faculty experienced collaboration and the institutional atmosphere for collaboration. In 2007, as part of a qualitative study of faculty in five disparate U.S. medical schools, the authors interviewed 96 medical faculty at different career stages and in diverse specialties, with an oversampling of women, minorities, and generalists, regarding their perceptions and experiences of collaboration in academic medicine. Data analysis was inductive and driven by the grounded theory tradition. Female faculty expressed enthusiasm about the potential and process of collaboration; male faculty were more likely to focus on outcomes. Senior faculty experienced a more collaborative environment than early career faculty, who faced numerous barriers to collaboration: the hierarchy of medical academe, advancement criteria, and the lack of infrastructure supportive of collaboration. Research faculty appreciated shared ideas, knowledge, resources, and the increased productivity that could result from collaboration, but they were acutely aware that advancement requires an independent body of work, which was a major deterrent to collaboration among early career faculty. Academic medicine faculty have differing views on the impact and benefits of collaboration. Early career faculty face concerning obstacles to collaboration. Female faculty seemed more appreciative of the process of collaboration, which may be of importance for transitioning to a more collaborative academic environment. A reevaluation of effective benchmarks for promotion of faculty is warranted to address the often exclusive reliance on individualistic achievement.

  3. Louisiana: a model for advancing regional e-Research through cyberinfrastructure.

    PubMed

    Katz, Daniel S; Allen, Gabrielle; Cortez, Ricardo; Cruz-Neira, Carolina; Gottumukkala, Raju; Greenwood, Zeno D; Guice, Les; Jha, Shantenu; Kolluru, Ramesh; Kosar, Tevfik; Leger, Lonnie; Liu, Honggao; McMahon, Charlie; Nabrzyski, Jarek; Rodriguez-Milla, Bety; Seidel, Ed; Speyrer, Greg; Stubblefield, Michael; Voss, Brian; Whittenburg, Scott

    2009-06-28

    Louisiana researchers and universities are leading a concentrated, collaborative effort to advance statewide e-Research through a new cyberinfrastructure: computing systems, data storage systems, advanced instruments and data repositories, visualization environments and people, all linked together by software programs and high-performance networks. This effort has led to a set of interlinked projects that have started making a significant difference in the state, and has created an environment that encourages increased collaboration, leading to new e-Research. This paper describes the overall effort, the new projects and environment and the results to date.

  4. Louisiana: a model for advancing regional e-Research through cyberinfrastructure

    PubMed Central

    Katz, Daniel S.; Allen, Gabrielle; Cortez, Ricardo; Cruz-Neira, Carolina; Gottumukkala, Raju; Greenwood, Zeno D.; Guice, Les; Jha, Shantenu; Kolluru, Ramesh; Kosar, Tevfik; Leger, Lonnie; Liu, Honggao; McMahon, Charlie; Nabrzyski, Jarek; Rodriguez-Milla, Bety; Seidel, Ed; Speyrer, Greg; Stubblefield, Michael; Voss, Brian; Whittenburg, Scott

    2009-01-01

    Louisiana researchers and universities are leading a concentrated, collaborative effort to advance statewide e-Research through a new cyberinfrastructure: computing systems, data storage systems, advanced instruments and data repositories, visualization environments and people, all linked together by software programs and high-performance networks. This effort has led to a set of interlinked projects that have started making a significant difference in the state, and has created an environment that encourages increased collaboration, leading to new e-Research. This paper describes the overall effort, the new projects and environment and the results to date. PMID:19451102

  5. Secured Advanced Federated Environment (SAFE): A NASA Solution for Secure Cross-Organization Collaboration

    NASA Technical Reports Server (NTRS)

    Chow, Edward; Spence, Matthew Chew; Pell, Barney; Stewart, Helen; Korsmeyer, David; Liu, Joseph; Chang, Hsin-Ping; Viernes, Conan; Gogorth, Andre

    2003-01-01

    This paper discusses the challenges and security issues inherent in building complex cross-organizational collaborative projects and software systems within NASA. By applying the design principles of compartmentalization, organizational hierarchy and inter-organizational federation, the Secured Advanced Federated Environment (SAFE) is laying the foundation for a collaborative virtual infrastructure for the NASA community. A key element of SAFE is the Micro Security Domain (MSD) concept, which balances the need to collaborate and the need to enforce enterprise and local security rules. With the SAFE approach, security is an integral component of enterprise software and network design, not an afterthought.

  6. A Multi-Agent Question-Answering System for E-Learning and Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Alinaghi, Tannaz; Bahreininejad, Ardeshir

    2011-01-01

    The increasing advances of new Internet technologies in all application domains have changed life styles and interactions. E-learning and collaborative learning environment systems are originated through such changes and aim at providing facilities for people in different times and geographical locations to cooperate, collaborate, learn and work…

  7. Augmenting the access grid using augmented reality

    NASA Astrophysics Data System (ADS)

    Li, Ying

    2012-01-01

    The Access Grid (AG) targets an advanced collaboration environment, with which multi-party group of people from remote sites can collaborate over high-performance networks. However, current AG still employs VIC (Video Conferencing Tool) to offer only pure video for remote communication, while most AG users expect to collaboratively refer and manipulate the 3D geometric models of grid services' results in live videos of AG session. Augmented Reality (AR) technique can overcome the deficiencies with its characteristics of combining virtual and real, real-time interaction and 3D registration, so it is necessary for AG to utilize AR to better assist the advanced collaboration environment. This paper introduces an effort to augment the AG by adding support for AR capability, which is encapsulated in the node service infrastructure, named as Augmented Reality Service (ARS). The ARS can merge the 3D geometric models of grid services' results and real video scene of AG into one AR environment, and provide the opportunity for distributed AG users to interactively and collaboratively participate in the AR environment with better experience.

  8. Co-creation and Co-innovation in a Collaborative Networked Environment

    NASA Astrophysics Data System (ADS)

    Klen, Edmilson Rampazzo

    Leveraged by the advances in communication and information Technologies, producers and consumers are developing a new behavior. Together with the new emerging collaborative manifestations this behavior may directly impact the way products are developed. This powerful combination indicates that consumers will be involved in a very early stage in product development processes supporting even more the creation and innovation of products. This new way of collaboration gives rise to a new collaborative networked environment based on co-creation and co-innovation. This work will present some evolutionary steps that point to the development of this environment where prosumer communities and virtual organizations interact and collaborate.

  9. Instructional Design Issues in a Distributed Collaborative Engineering Design (CED) Instructional Environment

    ERIC Educational Resources Information Center

    Koszalka, Tiffany A.; Wu, Yiyan

    2010-01-01

    Changes in engineering practices have spawned changes in engineering education and prompted the use of distributed learning environments. A distributed collaborative engineering design (CED) course was designed to engage engineering students in learning about and solving engineering design problems. The CED incorporated an advanced interactive…

  10. ARTEMIS: a collaborative framework for health care.

    PubMed

    Reddy, R; Jagannathan, V; Srinivas, K; Karinthi, R; Reddy, S M; Gollapudy, C; Friedman, S

    1993-01-01

    Patient centered healthcare delivery is an inherently collaborative process. This involves a wide range of individuals and organizations with diverse perspectives: primary care physicians, hospital administrators, labs, clinics, and insurance. The key to cost reduction and quality improvement in health care is effective management of this collaborative process. The use of multi-media collaboration technology can facilitate timely delivery of patient care and reduce cost at the same time. During the last five years, the Concurrent Engineering Research Center (CERC), under the sponsorship of DARPA (Defense Advanced Research Projects Agency, recently renamed ARPA) developed a number of generic key subsystems of a comprehensive collaboration environment. These subsystems are intended to overcome the barriers that inhibit the collaborative process. Three subsystems developed under this program include: MONET (Meeting On the Net)--to provide consultation over a computer network, ISS (Information Sharing Server)--to provide access to multi-media information, and PCB (Project Coordination Board)--to better coordinate focussed activities. These systems have been integrated into an open environment to enable collaborative processes. This environment is being used to create a wide-area (geographically distributed) research testbed under DARPA sponsorship, ARTEMIS (Advance Research Testbed for Medical Informatics) to explore the collaborative health care processes. We believe this technology will play a key role in the current national thrust to reengineer the present health-care delivery system.

  11. Does the Medium Matter in Collaboration? Using Visually Supported Collaboration Technology in an Interior Design Studio

    ERIC Educational Resources Information Center

    Cho, Ji Young; Cho, Moon-Heum; Kozinets, Nadya

    2016-01-01

    With the recognition of the importance of collaboration in a design studio and the advancement of technology, increasing numbers of design students collaborate with others in a technology-mediated learning environment (TMLE); however, not all students have positive experiences in TMLEs. One possible reason for unsatisfactory collaboration…

  12. Advanced engineering environment pilot project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty

    2006-10-01

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solutionmore » to deploy the AEE across the NWC.« less

  13. Teachers as Designers of Collaborative Distance Learning.

    ERIC Educational Resources Information Center

    Spector, J. Michael

    There is an obvious growth in the use of distributed and online learning environments. There is some evidence to believe that collaborative learning environments can be effective, especially when using advanced technology to support learning in and about complex domains. There is also an extensive body of research literature in the areas of…

  14. Using Wiki to Teach Part-Time Adult Learners in a Blended Learning Environment

    ERIC Educational Resources Information Center

    Basar, Siti Mariam Muhammad Abdul; Yusop, Farrah Dina

    2014-01-01

    This exploratory study investigated the perceptions of 31 part-time adult learners who participated in an online collaborative writing experience. Situated in the context of a blended learning environment of an advanced English learning course, this study looked into learners' perceptions with respect to the benefits of collaborative writing using…

  15. Graduate Education to Facilitate Interdisciplinary Research Collaboration: Identifying Individual Competencies and Developmental Activities

    ERIC Educational Resources Information Center

    Holt, Valerie Ciocca

    2013-01-01

    Interdisciplinary research collaborations (IDRC) are considered essential for addressing the most complex global community problems concerning science, health, education, energy, the environment, and society. In spite of technological advances, supportive funding, and even researcher proclivity to collaborate, these complex interdisciplinary…

  16. Opportunities across Boundaries: Lessons from a Collaboratively Delivered Cross-Institution Master's Programme

    ERIC Educational Resources Information Center

    de Róiste, Mairéad; Breetzke, Gregory; Reitsma, Femke

    2015-01-01

    Advances in technology have created opportunities for collaborative multi-institution programme delivery which are increasingly attractive within a constrained financial environment. This paper details the development of a cross-institution collaboratively delivered masters and postgraduate diploma programme in Geographical Information Science in…

  17. Combining Collaborative Learning with Learning Management Systems in Teaching Programming Language

    ERIC Educational Resources Information Center

    Cavus, Nadire; Uzunboylu, Huseyin; Ibrahim, Dogan

    2006-01-01

    The development of collaborative studies in learning has led to a renewed interest in the field of web-based education. In this experimental study, a highly interactive and collaborative teaching environment was created using Moodle, a learning management system with two types of Collaborative Tools (CTs): Standard CT and Advanced CT to create a…

  18. ARTEMIS: a collaborative framework for health care.

    PubMed Central

    Reddy, R.; Jagannathan, V.; Srinivas, K.; Karinthi, R.; Reddy, S. M.; Gollapudy, C.; Friedman, S.

    1993-01-01

    Patient centered healthcare delivery is an inherently collaborative process. This involves a wide range of individuals and organizations with diverse perspectives: primary care physicians, hospital administrators, labs, clinics, and insurance. The key to cost reduction and quality improvement in health care is effective management of this collaborative process. The use of multi-media collaboration technology can facilitate timely delivery of patient care and reduce cost at the same time. During the last five years, the Concurrent Engineering Research Center (CERC), under the sponsorship of DARPA (Defense Advanced Research Projects Agency, recently renamed ARPA) developed a number of generic key subsystems of a comprehensive collaboration environment. These subsystems are intended to overcome the barriers that inhibit the collaborative process. Three subsystems developed under this program include: MONET (Meeting On the Net)--to provide consultation over a computer network, ISS (Information Sharing Server)--to provide access to multi-media information, and PCB (Project Coordination Board)--to better coordinate focussed activities. These systems have been integrated into an open environment to enable collaborative processes. This environment is being used to create a wide-area (geographically distributed) research testbed under DARPA sponsorship, ARTEMIS (Advance Research Testbed for Medical Informatics) to explore the collaborative health care processes. We believe this technology will play a key role in the current national thrust to reengineer the present health-care delivery system. PMID:8130536

  19. Brain Tumor Trials Collaborative | Center for Cancer Research

    Cancer.gov

    Brain Tumor Trials Collaborative In Pursuit of a Cure The mission of the BTTC is to develop and perform state-of-the-art clinical trials in a collaborative and collegial environment, advancing treatments for patients with brain tumors, merging good scientific method with concern for patient well-being and outcome.

  20. The Importance of Earth Observations and Data Collaboration within Environmental Intelligence Supporting Arctic Research

    NASA Technical Reports Server (NTRS)

    Casas, Joseph

    2017-01-01

    Within the IARPC Collaboration Team activities of 2016, Arctic in-situ and remote earth observations advanced topics such as :1) exploring the role for new and innovative autonomous observing technologies in the Arctic; 2) advancing catalytic national and international community based observing efforts in support of the National Strategy for the Arctic Region; and 3) enhancing the use of discovery tools for observing system collaboration such as the U.S. National Oceanic and Atmospheric Administration (NOAA) Arctic Environmental Response Management Application (ERMA) and the U.S. National Aeronautics and Space Administration (NASA) Arctic Collaborative Environment (ACE) project geo reference visualization decision support and exploitation internet based tools. Critical to the success of these earth observations for both in-situ and remote systems is the emerging of new and innovative data collection technologies and comprehensive modeling as well as enhanced communications and cyber infrastructure capabilities which effectively assimilate and dissemination many environmental intelligence products in a timely manner. The Arctic Collaborative Environment (ACE) project is well positioned to greatly enhance user capabilities for accessing, organizing, visualizing, sharing and producing collaborative knowledge for the Arctic.

  1. Virtual Collaborative Environments for System of Systems Engineering and Applications for ISAT

    NASA Technical Reports Server (NTRS)

    Dryer, David A.

    2002-01-01

    This paper describes an system of systems or metasystems approach and models developed to help prepare engineering organizations for distributed engineering environments. These changes in engineering enterprises include competition in increasingly global environments; new partnering opportunities caused by advances in information and communication technologies, and virtual collaboration issues associated with dispersed teams. To help address challenges and needs in this environment, a framework is proposed that can be customized and adapted for NASA to assist in improved engineering activities conducted in distributed, enhanced engineering environments. The approach is designed to prepare engineers for such distributed collaborative environments by learning and applying e-engineering methods and tools to a real-world engineering development scenario. The approach consists of two phases: an e-engineering basics phase and e-engineering application phase. The e-engineering basics phase addresses skills required for e-engineering. The e-engineering application phase applies these skills in a distributed collaborative environment to system development projects.

  2. Advanced Collaborative Environments Supporting Systems Integration and Design

    DTIC Science & Technology

    2003-03-01

    concurrently view a virtual system or product model while maintaining natural, human communication . These virtual systems operate within a computer-generated...These environments allow multiple individuals to concurrently view a virtual system or product model while simultaneously maintaining natural, human ... communication . As a result, TARDEC researchers and system developers are using this advanced high-end visualization technology to develop future

  3. Research on Intelligent Synthesis Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Lobeck, William E.

    2002-01-01

    Four research activities related to Intelligent Synthesis Environment (ISE) have been performed under this grant. The four activities are: 1) non-deterministic approaches that incorporate technologies such as intelligent software agents, visual simulations and other ISE technologies; 2) virtual labs that leverage modeling, simulation and information technologies to create an immersive, highly interactive virtual environment tailored to the needs of researchers and learners; 3) advanced learning modules that incorporate advanced instructional, user interface and intelligent agent technologies; and 4) assessment and continuous improvement of engineering team effectiveness in distributed collaborative environments.

  4. Research on Intelligent Synthesis Environments

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.; Loftin, R. Bowen

    2002-12-01

    Four research activities related to Intelligent Synthesis Environment (ISE) have been performed under this grant. The four activities are: 1) non-deterministic approaches that incorporate technologies such as intelligent software agents, visual simulations and other ISE technologies; 2) virtual labs that leverage modeling, simulation and information technologies to create an immersive, highly interactive virtual environment tailored to the needs of researchers and learners; 3) advanced learning modules that incorporate advanced instructional, user interface and intelligent agent technologies; and 4) assessment and continuous improvement of engineering team effectiveness in distributed collaborative environments.

  5. Teachers-Librarian Collaboration in Building the Curriculum for an IB World School: A Case Study

    ERIC Educational Resources Information Center

    Bhargava, Madhu

    2010-01-01

    Many schools are in the transition stage from passive learning environments into active ones. Teachers, librarians and administrators are forced to rethink the curriculum in terms of content and teaching methodology because of advancement of technology and competitions. The paper will demonstrate the need of collaborative work of…

  6. Advanced engineering environment collaboration project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.

    2008-12-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weaponsmore » project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.« less

  7. International Collaboration Activities in Different Geologic Disposal Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkholzer, Jens

    This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. Since 2012, in an effort coordinated by Lawrence Berkeley National Laboratory, UFD has advanced active collaboration with several international geologic disposal programs in Europe and Asia. Such collaboration allows the UFD Campaign to benefit from a deep knowledge base with regards to alternative repository environments developed over decades, and to utilize international investments in research facilities (such as underground research laboratories), saving millions of R&D dollars that have been and are being provided by other countries. To date, UFD’s Internationalmore » Disposal R&D Program has established formal collaboration agreements with five international initiatives and several international partners, and national lab scientists associated with UFD have conducted specific collaborative R&D activities that align well with its R&D priorities.« less

  8. Team Expo: A State-of-the-Art JSC Advanced Design Team

    NASA Technical Reports Server (NTRS)

    Tripathi, Abhishek

    2001-01-01

    In concert with the NASA-wide Intelligent Synthesis Environment Program, the Exploration Office at the Johnson Space Center has assembled an Advanced Design Team. The purpose of this team is two-fold. The first is to identify, use, and develop software applications, tools, and design processes that streamline and enhance a collaborative engineering environment. The second is to use this collaborative engineering environment to produce conceptual, system-level-of-detail designs in a relatively short turnaround time, using a standing team of systems and integration experts. This includes running rapid trade studies on varying mission architectures, as well as producing vehicle and/or subsystem designs. The standing core team is made up of experts from all of the relevant engineering divisions (e.g. Power, Thermal, Structures, etc.) as well as representatives from Risk and Safety, Mission Operations, and Crew Life Sciences among others. The Team works together during 2- hour sessions in the same specially enhanced room to ensure real-time integration/identification of cross-disciplinary issues and solutions. All subsystem designs are collectively reviewed and approved during these same sessions. In addition there is an Information sub-team that captures and formats all data and makes it accessible for use by the following day. The result is Team Expo: an Advanced Design Team that is leading the change from a philosophy of "over the fence" design to one of collaborative engineering that pushes the envelope to achieve the next-generation analysis and design environment.

  9. Current limitations into the application of virtual reality to mental health research.

    PubMed

    Huang, M P; Alessi, N E

    1998-01-01

    Virtual Reality (VR) environments have significant potential as a tool in mental health research, but are limited by technical factors and by mental health research factors. Technical difficulties include cost and complexity of virtual environment creation. Mental health research difficulties include current inadequacy of standards to specify needed details for virtual environment design. Technical difficulties are disappearing with technological advances, but the mental health research difficulties will take a concerted effort to overcome. Some of this effort will need to be directed at the formation of collaborative projects and standards for how such collaborations should proceed.

  10. Physical-Biological-Optics Model Development and Simulation for the Pacific Ocean and Monterey Bay, California

    DTIC Science & Technology

    2011-04-01

    advanced ROMS-CoSiNE-Optics model in a full three-dimensional environment. We collaborate with Dr. Curt Mobley at Sequoia Scientific to implement...projects. Besides working closely with the modeling group at the NRL and their BioSpace project, we are collaborating with Dr. Curtis Mobley of Sequoia

  11. Towards a Global Hub and a Network for Collaborative Advancing of Space Weather Predictive Capabilities.

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.; Heynderickz, D.; Grande, M.; Opgenoorth, H. J.

    2017-12-01

    The COSPAR/ILWS roadmap on space weather published in 2015 (Advances in Space Research, 2015: DOI: 10.1016/j.asr.2015.03.023) prioritizes steps to be taken to advance understanding of space environment phenomena and to improve space weather forecasting capabilities. General recommendations include development of a comprehensive space environment specification, assessment of the state of the field on a 5-yr basis, standardization of meta-data and product metrics. To facilitate progress towards roadmap goals there is a need for a global hub for collaborative space weather capabilities assessment and development that brings together research, engineering, operational, educational, and end-user communities. The COSPAR Panel on Space Weather is aiming to build upon past progress and to facilitate coordination of established and new international space weather research and development initiatives. Keys to the success include creating flexible, collaborative, inclusive environment and engaging motivated groups and individuals committed to active participation in international multi-disciplinary teams focused on topics addressing emerging needs and challenges in the rapidly growing field of space weather. Near term focus includes comprehensive assessment of the state of the field and establishing an internationally recognized process to quantify and track progress over time, development of a global network of distributed web-based resources and interconnected interactive services required for space weather research, analysis, forecasting and education.

  12. An Online Task-Based Language Learning Environment: Is It Better for Advanced- or Intermediate-Level Second Language Learners?

    ERIC Educational Resources Information Center

    Arslanyilmaz, Abdurrahman

    2012-01-01

    This study investigates the relationship of language proficiency to language production and negotiation of meaning that non-native speakers (NNSs) produced in an online task-based language learning (TBLL) environment. Fourteen NNS-NNS dyads collaboratively completed four communicative tasks, using an online TBLL environment specifically designed…

  13. Lost in Interaction in IMS Learning Design Runtime Environments

    ERIC Educational Resources Information Center

    Derntl, Michael; Neumann, Susanne; Oberhuemer, Petra

    2014-01-01

    Educators are exploiting the advantages of advanced web-based collaboration technologies and massive online interactions. Interactions between learners and human or nonhuman resources therefore play an increasingly important pedagogical role, and the way these interactions are expressed in the user interface of virtual learning environments is…

  14. Leadership by collaboration: Nursing's bold new vision for academic-practice partnerships.

    PubMed

    Sebastian, Juliann G; Breslin, Eileen T; Trautman, Deborah E; Cary, Ann H; Rosseter, Robert J; Vlahov, David

    In 2016 the American Association of Colleges of Nursing issued a report, Advancing Healthcare Transformation: A New Era for Academic Nursing that included recommendations for more fully integrating nursing education, research, and practice. The report calls for a paradigm shift in how nursing leaders in academia and practice work together and with other leaders in higher education and clinical practice. Only by doing so can we realize the full benefits of academic nursing in this new era in which integration and collaboration are essential to success. In this paper we: 1) examine how academic nursing can contribute to healthcare innovation across environments; 2) explore leadership skills for deans of nursing to advance the goals of academic nursing in collaboration with clinical nursing partners, other health professions and clinical service leaders, academic administrators, and community members; and, 3) consider how governance structures and policy initiatives can advance this work. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Employing a Structured Interface to Advance Primary Students' Communicative Competence in a Text-Based Computer Mediated Environment

    ERIC Educational Resources Information Center

    Chiu, Chiung-Hui; Wu, Chiu-Yi; Hsieh, Sheng-Jieh; Cheng, Hsiao-Wei; Huang, Chung-Kai

    2013-01-01

    This study investigated whether a structured communication interface fosters primary students' communicative competence in a synchronous typewritten computer-mediated collaborative learning environment. The structured interface provided a set of predetermined utterance patterns for elementary students to use or imitate to develop communicative…

  16. Collaborative visual analytics of radio surveys in the Big Data era

    NASA Astrophysics Data System (ADS)

    Vohl, Dany; Fluke, Christopher J.; Hassan, Amr H.; Barnes, David G.; Kilborn, Virginia A.

    2017-06-01

    Radio survey datasets comprise an increasing number of individual observations stored as sets of multidimensional data. In large survey projects, astronomers commonly face limitations regarding: 1) interactive visual analytics of sufficiently large subsets of data; 2) synchronous and asynchronous collaboration; and 3) documentation of the discovery workflow. To support collaborative data inquiry, we present encube, a large-scale comparative visual analytics framework. encube can utilise advanced visualization environments such as the CAVE2 (a hybrid 2D and 3D virtual reality environment powered with a 100 Tflop/s GPU-based supercomputer and 84 million pixels) for collaborative analysis of large subsets of data from radio surveys. It can also run on standard desktops, providing a capable visual analytics experience across the display ecology. encube is composed of four primary units enabling compute-intensive processing, advanced visualisation, dynamic interaction, parallel data query, along with data management. Its modularity will make it simple to incorporate astronomical analysis packages and Virtual Observatory capabilities developed within our community. We discuss how encube builds a bridge between high-end display systems (such as CAVE2) and the classical desktop, preserving all traces of the work completed on either platform - allowing the research process to continue wherever you are.

  17. Advanced Image Processing for NASA Applications

    NASA Technical Reports Server (NTRS)

    LeMoign, Jacqueline

    2007-01-01

    The future of space exploration will involve cooperating fleets of spacecraft or sensor webs geared towards coordinated and optimal observation of Earth Science phenomena. The main advantage of such systems is to utilize multiple viewing angles as well as multiple spatial and spectral resolutions of sensors carried on multiple spacecraft but acting collaboratively as a single system. Within this framework, our research focuses on all areas related to sensing in collaborative environments, which means systems utilizing intracommunicating spatially distributed sensor pods or crafts being deployed to monitor or explore different environments. This talk will describe the general concept of sensing in collaborative environments, will give a brief overview of several technologies developed at NASA Goddard Space Flight Center in this area, and then will concentrate on specific image processing research related to that domain, specifically image registration and image fusion.

  18. Informatics for the Modern Intensive Care Unit.

    PubMed

    Anderson, Diana C; Jackson, Ashley A; Halpern, Neil A

    Advanced informatics systems can help improve health care delivery and the environment of care for critically ill patients. However, identifying, testing, and deploying advanced informatics systems can be quite challenging. These processes often require involvement from a collaborative group of health care professionals of varied disciplines with knowledge of the complexities related to designing the modern and "smart" intensive care unit (ICU). In this article, we explore the connectivity environment within the ICU, middleware technologies to address a host of patient care initiatives, and the core informatics concepts necessary for both the design and implementation of advanced informatics systems.

  19. An Approach to Scoring Collaboration in Online Game Environments

    ERIC Educational Resources Information Center

    Scoular, Claire; Care, Esther; Awwal, Nafisa

    2017-01-01

    With technological advances, it is now possible to use games to capture information-rich behaviours that reveal processes by which players interact and solve problems. Recent problem-based games have been designed to assess and record detailed interactions between the problem solver and the game environment, and thereby capture salient solution…

  20. Museum Informatics and Collaborative Technologies: The Emerging Socio-Technological Dimension of Information Science in Museum Environments.

    ERIC Educational Resources Information Center

    Marty, Paul F.

    1999-01-01

    Examines the sociotechnological impact of introducing advanced information technology into the Spurlock Museum, a museum of world history and culture at the University of Illinois. Addresses implementation of such methodologies as computer-supported cooperative work and computer-mediated communication in the museum environment. Emphasizes the…

  1. Collaboration and Synergy among Government, Industry and Academia in M&S Domain: Turkey’s Approach

    DTIC Science & Technology

    2009-10-01

    Analysis, Decision Support System Design and Implementation, Simulation Output Analysis, Statistical Data Analysis, Virtual Reality , Artificial... virtual and constructive visual simulation systems as well as integrated advanced analytical models. Collaboration and Synergy among Government...simulation systems that are ready to use, credible, integrated with C4ISR systems.  Creating synthetic environments and/or virtual prototypes of concepts

  2. Collaborative Filtering for Expansion of Learner's Background Knowledge in Online Language Learning: Does "Top-Down" Processing Improve Vocabulary Proficiency?

    ERIC Educational Resources Information Center

    Yamada, Masanori; Kitamura, Satoshi; Matsukawa, Hideya; Misono, Tadashi; Kitani, Noriko; Yamauchi, Yuhei

    2014-01-01

    In recent years, collaborative filtering, a recommendation algorithm that incorporates a user's data such as interest, has received worldwide attention as an advanced learning support system. However, accurate recommendations along with a user's interest cannot be ideal as an effective learning environment. This study aims to develop and…

  3. A Collaborative Extensible User Environment for Simulation and Knowledge Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freedman, Vicky L.; Lansing, Carina S.; Porter, Ellen A.

    2015-06-01

    In scientific simulation, scientists use measured data to create numerical models, execute simulations and analyze results from advanced simulators executing on high performance computing platforms. This process usually requires a team of scientists collaborating on data collection, model creation and analysis, and on authorship of publications and data. This paper shows that scientific teams can benefit from a user environment called Akuna that permits subsurface scientists in disparate locations to collaborate on numerical modeling and analysis projects. The Akuna user environment is built on the Velo framework that provides both a rich client environment for conducting and analyzing simulations andmore » a Web environment for data sharing and annotation. Akuna is an extensible toolset that integrates with Velo, and is designed to support any type of simulator. This is achieved through data-driven user interface generation, use of a customizable knowledge management platform, and an extensible framework for simulation execution, monitoring and analysis. This paper describes how the customized Velo content management system and the Akuna toolset are used to integrate and enhance an effective collaborative research and application environment. The extensible architecture of Akuna is also described and demonstrates its usage for creation and execution of a 3D subsurface simulation.« less

  4. Advancing Diversity and Inclusion within the IceCube Collaboration: Lessons from an International Particle Astrophysics Research Collaboration

    NASA Astrophysics Data System (ADS)

    Knackert, J.

    2017-12-01

    The IceCube Collaboration is comprised of 300 scientists, engineers, students, and support staff at 48 institutions in 12 countries. IceCube recognizes the value of increased diversity within STEM fields and is committed to improving this situation both within the collaboration and more broadly. The process of establishing and maintaining a focus on diversity and inclusion within an international research collaboration has yielded many lessons and best practices relevant for broader STEM diversity efforts. Examples of events, training activities, and workshops to promote diversity both internally and within the broader STEM community will be provided. We will outline strategies to promote an environment of inclusivity and increase diversity in hiring within IceCube. We will describe collaborations with local networks and advocacy groups that have helped to guide our efforts and maximize their impact. We will also discuss methods for getting community members interested, informed, and invested, while helping them better understand the benefits associated with increased STEM diversity. This work has been informed by the American Association for the Advancement of Science's inaugural cohort of the Community Engagement Fellows Program. The author has made this submission on behalf of the IceCube Collaboration Diversity Task Force.

  5. Selecting Advanced Software Technology in Two Small Manufacturing Enterprises

    DTIC Science & Technology

    2004-05-01

    improving workflow to further reduce delivery times, enhance customer service, and obtain a competitive advantage . The company wanted help... environment , stakeholders’ needs, ecommerce , shop floor visualization, and collaboration capability. These statements are not significantly different...for the purpose of describing a software environment . This identification does not imply any recommendation or endorsement by NIST, the SEI, CMU, or

  6. Measuring the impacts of social media on advancing public transit : final report.

    DOT National Transportation Integrated Search

    2017-06-01

    This project is a collaboration between Portland State University (PSU) and the Center for Infrastructure Transportation & Environment (CITE) at Rensselaer Polytechnic Institute seeking to develop performance measures for assessing the impacts of soc...

  7. Tools and collaborative environments for bioinformatics research

    PubMed Central

    Giugno, Rosalba; Pulvirenti, Alfredo

    2011-01-01

    Advanced research requires intensive interaction among a multitude of actors, often possessing different expertise and usually working at a distance from each other. The field of collaborative research aims to establish suitable models and technologies to properly support these interactions. In this article, we first present the reasons for an interest of Bioinformatics in this context by also suggesting some research domains that could benefit from collaborative research. We then review the principles and some of the most relevant applications of social networking, with a special attention to networks supporting scientific collaboration, by also highlighting some critical issues, such as identification of users and standardization of formats. We then introduce some systems for collaborative document creation, including wiki systems and tools for ontology development, and review some of the most interesting biological wikis. We also review the principles of Collaborative Development Environments for software and show some examples in Bioinformatics. Finally, we present the principles and some examples of Learning Management Systems. In conclusion, we try to devise some of the goals to be achieved in the short term for the exploitation of these technologies. PMID:21984743

  8. Geospatial technology and the "exposome": new perspectives on addiction.

    PubMed

    Stahler, Gerald J; Mennis, Jeremy; Baron, David A

    2013-08-01

    Addiction represents one of the greatest public health problems facing the United States. Advances in addiction research have focused on the neurobiology of this disease. We discuss potential new breakthroughs in understanding the other side of gene-environment interactions-the environmental context or "exposome" of addiction. Such research has recently been made possible by advances in geospatial technologies together with new mobile and sensor computing platforms. These advances have fostered interdisciplinary collaborations focusing on the intersection of environment and behavior in addiction research. Although issues of privacy protection for study participants remain, these advances could potentially improve our understanding of initiation of drug use and relapse and help develop innovative technology-based interventions to improve treatment and continuing care services.

  9. Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Korte, John J.

    2003-01-01

    NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.

  10. Advancing Fire Weather Research via Interagency Collaboration: The NOAA/USFS MOU

    NASA Astrophysics Data System (ADS)

    Schranz, S.; Pouyat, R.

    2012-12-01

    In 2005, the Western Governors' Association (WGA) first articulated the need for closer collaboration between NOAA and the land management agencies to improve our services - and to ensure the best new technology and scientific advances are infused into fire weather information and services. NOAA has taken the WGA advice very seriously and, over the past few years, have followed up by polling users of our fire weather information. This was done both by our Office of the Federal Coordinator for Meteorology, and via an examination of internal and collaborative research activities as conducted by NOAA's Science Advisory Board. Through these processes, and given the tight budget environment, it's become clear we can't make needed progress alone. We need to call upon our joint expertise, along with the expertise of partners across the federal, state, academic, and research communities. This talk will outline the NOAA/USFS MOU signed in August, 2012 and the collaborative research already begun with the USFS and other partners.

  11. Collaborative learning in pre-clinical dental hygiene education.

    PubMed

    Mueller-Joseph, Laura J; Nappo-Dattoma, Luisa

    2013-04-01

    Dental hygiene education continues to move beyond mastery of content material and skill development to learning concepts that promote critical-thinking and problem-solving skills. The purpose of this research was to evaluate the effectiveness of collaborative learning and determine the growth in intellectual development of 54 first-year dental hygiene students. The control group used traditional pre-clinical teaching and the experimental group used collaborative pedagogy for instrument introduction. All students were subjected to a post-test evaluating their ability to apply the principles of instrumentation. Intellectual development was determined using pre- and post-tests based on the Perry Scheme of Intellectual Development. Student attitudes were assessed using daily Classroom Assessment Activities and an end-of-semester departmental course evaluation. Findings indicated no significant difference between collaborative learning and traditional learning in achieving pre-clinical competence as evidenced by the students' ability to apply the principles of instrumentation. Advancement in intellectual development did not differ significantly between groups. Value added benefits of a collaborative learning environment as identified by the evaluation of student attitudes included decreased student reliance on authority, recognition of peers as legitimate sources of learning and increased self-confidence. A significant difference in student responses to daily classroom assessments was evident on the 5 days a collaborative learning environment was employed. Dental hygiene students involved in a pre-clinical collaborative learning environment are more responsible for their own learning and tend to have a more positive attitude toward the subject matter. Future studies evaluating collaborative learning in clinical dental hygiene education need to investigate the cost/benefit ratio of the value added outcomes of collaborative learning.

  12. Authentic leaders creating healthy work environments for nursing practice.

    PubMed

    Shirey, Maria R

    2006-05-01

    Implementation of authentic leadership can affect not only the nursing workforce and the profession but the healthcare delivery system and society as a whole. Creating a healthy work environment for nursing practice is crucial to maintain an adequate nursing workforce; the stressful nature of the profession often leads to burnout, disability, and high absenteeism and ultimately contributes to the escalating shortage of nurses. Leaders play a pivotal role in retention of nurses by shaping the healthcare practice environment to produce quality outcomes for staff nurses and patients. Few guidelines are available, however, for creating and sustaining the critical elements of a healthy work environment. In 2005, the American Association of Critical-Care Nurses released a landmark publication specifying 6 standards (skilled communication, true collaboration, effective decision making, appropriate staffing, meaningful recognition, and authentic leadership) necessary to establish and sustain healthy work environments in healthcare. Authentic leadership was described as the "glue" needed to hold together a healthy work environment. Now, the roles and relationships of authentic leaders in the healthy work environment are clarified as follows: An expanded definition of authentic leadership and its attributes (eg, genuineness, trustworthiness, reliability, compassion, and believability) is presented. Mechanisms by which authentic leaders can create healthy work environments for practice (eg, engaging employees in the work environment to promote positive behaviors) are described. A practical guide on how to become an authentic leader is advanced. A research agenda to advance the study of authentic leadership in nursing practice through collaboration between nursing and business is proposed.

  13. A Virtual Mission Operations Center: Collaborative Environment

    NASA Technical Reports Server (NTRS)

    Medina, Barbara; Bussman, Marie; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    The Virtual Mission Operations Center - Collaborative Environment (VMOC-CE) intent is to have a central access point for all the resources used in a collaborative mission operations environment to assist mission operators in communicating on-site and off-site in the investigation and resolution of anomalies. It is a framework that as a minimum incorporates online chat, realtime file sharing and remote application sharing components in one central location. The use of a collaborative environment in mission operations opens up the possibilities for a central framework for other project members to access and interact with mission operations staff remotely. The goal of the Virtual Mission Operations Center (VMOC) Project is to identify, develop, and infuse technology to enable mission control by on-call personnel in geographically dispersed locations. In order to achieve this goal, the following capabilities are needed: Autonomous mission control systems Automated systems to contact on-call personnel Synthesis and presentation of mission control status and history information Desktop tools for data and situation analysis Secure mechanism for remote collaboration commanding Collaborative environment for remote cooperative work The VMOC-CE is a collaborative environment that facilitates remote cooperative work. It is an application instance of the Virtual System Design Environment (VSDE), developed by NASA Goddard Space Flight Center's (GSFC) Systems Engineering Services & Advanced Concepts (SESAC) Branch. The VSDE is a web-based portal that includes a knowledge repository and collaborative environment to serve science and engineering teams in product development. It is a "one stop shop" for product design, providing users real-time access to product development data, engineering and management tools, and relevant design specifications and resources through the Internet. The initial focus of the VSDE has been to serve teams working in the early portion of the system/product lifecycle - concept development, proposal preparation, and formulation. The VMOC-CE expands the application of the VSDE into the operations portion of the system lifecycle. It will enable meaningful and real-time collaboration regardless of the geographical distribution of project team members. Team members will be able to interact in satellite operations, specifically for resolving anomalies, through access to a desktop computer and the Internet. Mission Operations Management will be able to participate and monitor up to the minute status of anomalies or other mission operations issues. In this paper we present the VMOC-CE project, system capabilities, and technologies.

  14. Developing an Advanced Environment for Collaborative Computing

    NASA Technical Reports Server (NTRS)

    Becerra-Fernandez, Irma; Stewart, Helen; DelAlto, Martha; DelAlto, Martha; Knight, Chris

    1999-01-01

    Knowledge management in general tries to organize and make available important know-how, whenever and where ever is needed. Today, organizations rely on decision-makers to produce "mission critical" decisions that am based on inputs from multiple domains. The ideal decision-maker has a profound understanding of specific domains that influence the decision-making process coupled with the experience that allows them to act quickly and decisively on the information. In addition, learning companies benefit by not repeating costly mistakes, and by reducing time-to-market in Research & Development projects. Group-decision making tools can help companies make better decisions by capturing the knowledge from groups of experts. Furthermore, companies that capture their customers preferences can improve their customer service, which translates to larger profits. Therefore collaborative computing provides a common communication space, improves sharing of knowledge, provides a mechanism for real-time feedback on the tasks being performed, helps to optimize processes, and results in a centralized knowledge warehouse. This paper presents the research directions. of a project which seeks to augment an advanced collaborative web-based environment called Postdoc, with workflow capabilities. Postdoc is a "government-off-the-shelf" document management software developed at NASA-Ames Research Center (ARC).

  15. Collaboration space division in collaborative product development based on a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Qian, Xueming; Ma, Yanqiao; Feng, Huan

    2018-02-01

    The advance in the global environment, rapidly changing markets, and information technology has created a new stage for design. In such an environment, one strategy for success is the Collaborative Product Development (CPD). Organizing people effectively is the goal of Collaborative Product Development, and it solves the problem with certain foreseeability. The development group activities are influenced not only by the methods and decisions available, but also by correlation among personnel. Grouping the personnel according to their correlation intensity is defined as collaboration space division (CSD). Upon establishment of a correlation matrix (CM) of personnel and an analysis of the collaboration space, the genetic algorithm (GA) and minimum description length (MDL) principle may be used as tools in optimizing collaboration space. The MDL principle is used in setting up an object function, and the GA is used as a methodology. The algorithm encodes spatial information as a chromosome in binary. After repetitious crossover, mutation, selection and multiplication, a robust chromosome is found, which can be decoded into an optimal collaboration space. This new method can calculate the members in sub-spaces and individual groupings within the staff. Furthermore, the intersection of sub-spaces and public persons belonging to all sub-spaces can be determined simultaneously.

  16. Collaborative Paradigm of Preventive, Personalized, and Precision Medicine With Point-of-Care Technologies.

    PubMed

    Dhawan, Atam P

    2016-01-01

    Recent advances in biosensors, medical instrumentation, and information processing and communication technologies (ICT) have enabled significant improvements in healthcare. However, these technologies have been mainly applied in clinical environments, such as hospitals and healthcare facilities, under managed care by well-trained and specialized individuals. The global challenge of providing quality healthcare at affordable cost leads to the proposed paradigm of P reventive, Personalized, and Precision Medicine that requires a seamless use of technology and infrastructure support for patients and healthcare providers at point-of-care (POC) locations including homes, semi or pre-clinical facilities, and hospitals. The complexity of the global healthcare challenge necessitates strong collaborative interdisciplinary synergies involving all stakeholder groups including academia, federal research institutions, industry, regulatory agencies, and clinical communities. It is critical to evolve with collaborative efforts on the translation of research to technology development toward clinical validation and potential healthcare applications. This special issue is focused on technology innovation and translational research for POC applications with potential impact in improving global healthcare in the respective areas. Some of these papers were presented at the NIH-IEEE Strategic Conference on Healthcare Innovations and POC Technologies for Precision Medicine (HI-POCT) held at the NIH on November 9-10, 2015. The papers included in the Special Issue provide a spectrum of critical issues and collaborative resources on translational research of advanced POC devices and ICT into global healthcare environment.

  17. NETL - Supercomputing: NETL Simulation Based Engineering User Center (SBEUC)

    ScienceCinema

    None

    2018-02-07

    NETL's Simulation-Based Engineering User Center, or SBEUC, integrates one of the world's largest high-performance computers with an advanced visualization center. The SBEUC offers a collaborative environment among researchers at NETL sites and those working through the NETL-Regional University Alliance.

  18. NETL - Supercomputing: NETL Simulation Based Engineering User Center (SBEUC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-09-30

    NETL's Simulation-Based Engineering User Center, or SBEUC, integrates one of the world's largest high-performance computers with an advanced visualization center. The SBEUC offers a collaborative environment among researchers at NETL sites and those working through the NETL-Regional University Alliance.

  19. Next Generation Integrated Environment for Collaborative Work Across Internets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey B. Newman

    2009-02-24

    We are now well-advanced in our development, prototyping and deployment of a high performance next generation Integrated Environment for Collaborative Work. The system, aimed at using the capability of ESnet and Internet2 for rapid data exchange, is based on the Virtual Room Videoconferencing System (VRVS) developed by Caltech. The VRVS system has been chosen by the Internet2 Digital Video (I2-DV) Initiative as a preferred foundation for the development of advanced video, audio and multimedia collaborative applications by the Internet2 community. Today, the system supports high-end, broadcast-quality interactivity, while enabling a wide variety of clients (Mbone, H.323) to participate in themore » same conference by running different standard protocols in different contexts with different bandwidth connection limitations, has a fully Web-integrated user interface, developers and administrative APIs, a widely scalable video network topology based on both multicast domains and unicast tunnels, and demonstrated multiplatform support. This has led to its rapidly expanding production use for national and international scientific collaborations in more than 60 countries. We are also in the process of creating a 'testbed video network' and developing the necessary middleware to support a set of new and essential requirements for rapid data exchange, and a high level of interactivity in large-scale scientific collaborations. These include a set of tunable, scalable differentiated network services adapted to each of the data streams associated with a large number of collaborative sessions, policy-based and network state-based resource scheduling, authentication, and optional encryption to maintain confidentiality of inter-personal communications. High performance testbed video networks will be established in ESnet and Internet2 to test and tune the implementation, using a few target application-sets.« less

  20. Advanced Group Support Systems and Facilities

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    The document contains the proceedings of the Workshop on Advanced Group Support Systems and Facilities held at NASA Langley Research Center, Hampton, Virginia, July 19-20, 1999. The workshop was jointly sponsored by the University of Virginia Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry, and universities. The objectives of the workshop were to assess the status of advanced group support systems and to identify the potential of these systems for use in future collaborative distributed design and synthesis environments. The presentations covered the current status and effectiveness of different group support systems.

  1. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  2. Win-win-win: collaboration advances critical care practice.

    PubMed

    Spence, Deb; Fielding, Sandra

    2002-10-01

    Against a background of increasing interest in education post registration, New Zealand nurses are working to advance their professional practice. Because the acquisition of highly developed clinical capabilities requires a combination of nursing experience and education, collaboration between clinicians and nurse educators is essential. However, the accessibility of relevant educational opportunities has been an ongoing issue for nurses outside the country's main centres. Within the framework of a Master of Health Science, the postgraduate certificate (critical care nursing) developed between Auckland University of Technology and two regional health providers is one such example. Students enrol in science and knowledge papers concurrently then, in the second half of the course, are supported within their practice environment to acquire advanced clinical skills and to analyse, critique and develop practice within their specialty. This paper provides an overview of the structure and pr month, distance education course focused on developing the context of critical care nursing.

  3. School Violence, Role of the School Nurse in Prevention. Issue Brief

    ERIC Educational Resources Information Center

    Blout, JoAnn D.; Rose, Kathleen C.; Suessmann, Mary; Coleman, Kara; Selekman, Janice

    2012-01-01

    Registered professional school nurses (hereinafter referred to as school nurses) advance safe school environments by promoting the prevention and reduction of school violence. School nurses collaborate with school personnel, healthcare providers, parents, and community members to identify and implement evidence-based educational programs. The…

  4. Miles to go before we sleep: education, technology, and the changing paradigms in health information.

    PubMed

    Cleveland, Ana D

    2011-01-01

    This lecture discusses a philosophy of educating health information professionals in a rapidly changing health care and information environment. Education for health information professionals must be based upon a solid foundation of the changing paradigms and trends in health care and health information, as well as technological advances, to produce a well-prepared information workforce to meet the demands of health-related environments. Educational programs should begin with the core principles of library and information sciences and expand in interdisciplinary collaborations. A model of the health care environment is presented to serve as a framework for developing educational programs for health information professionals. Interdisciplinary and collaborative relationships-which merge health care, library and information sciences, and other information-related disciplines-should form the basis of education for health information professionals.

  5. Collaborative Paradigm of Preventive, Personalized, and Precision Medicine With Point-of-Care Technologies

    PubMed Central

    2016-01-01

    Recent advances in biosensors, medical instrumentation, and information processing and communication technologies (ICT) have enabled significant improvements in healthcare. However, these technologies have been mainly applied in clinical environments, such as hospitals and healthcare facilities, under managed care by well-trained and specialized individuals. The global challenge of providing quality healthcare at affordable cost leads to the proposed paradigm of P reventive, Personalized, and Precision Medicine that requires a seamless use of technology and infrastructure support for patients and healthcare providers at point-of-care (POC) locations including homes, semi or pre-clinical facilities, and hospitals. The complexity of the global healthcare challenge necessitates strong collaborative interdisciplinary synergies involving all stakeholder groups including academia, federal research institutions, industry, regulatory agencies, and clinical communities. It is critical to evolve with collaborative efforts on the translation of research to technology development toward clinical validation and potential healthcare applications. This special issue is focused on technology innovation and translational research for POC applications with potential impact in improving global healthcare in the respective areas. Some of these papers were presented at the NIH-IEEE Strategic Conference on Healthcare Innovations and POC Technologies for Precision Medicine (HI-POCT) held at the NIH on November 9–10, 2015. The papers included in the Special Issue provide a spectrum of critical issues and collaborative resources on translational research of advanced POC devices and ICT into global healthcare environment. PMID:28560119

  6. Realistic terrain visualization based on 3D virtual world technology

    NASA Astrophysics Data System (ADS)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2009-09-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  7. Realistic terrain visualization based on 3D virtual world technology

    NASA Astrophysics Data System (ADS)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2010-11-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  8. Recent Advances and Issues in Computers. Oryx Frontiers of Science Series.

    ERIC Educational Resources Information Center

    Gay, Martin K.

    Discussing recent issues in computer science, this book contains 11 chapters covering: (1) developments that have the potential for changing the way computers operate, including microprocessors, mass storage systems, and computing environments; (2) the national computational grid for high-bandwidth, high-speed collaboration among scientists, and…

  9. Internet2: Building and Deploying Advanced, Networked Applications.

    ERIC Educational Resources Information Center

    Hanss, Ted

    1997-01-01

    Internet2, a consortium effort of over 100 universities, is investing in upgrading campus and national computer network platforms for such applications as digital libraries, collaboration environments, tele-medicine, and distance-independent instruction. The project is described, issues the project intends to address are detailed, and ways in…

  10. Implementing Speed and Separation Monitoring in Collaborative Robot Workcells.

    PubMed

    Marvel, Jeremy A; Norcross, Rick

    2017-04-01

    We provide an overview and guidance for the Speed and Separation Monitoring methodology as presented in the International Organization of Standardization's technical specification 15066 on collaborative robot safety. Such functionality is provided by external, intelligent observer systems integrated into a robotic workcell. The SSM minimum protective distance function equation is discussed in detail, with consideration for the input values, implementation specifications, and performance expectations. We provide analytical analyses and test results of the current equation, discuss considerations for implementing SSM in human-occupied environments, and provide directions for technological advancements toward standardization.

  11. Implementing Speed and Separation Monitoring in Collaborative Robot Workcells

    PubMed Central

    Marvel, Jeremy A.; Norcross, Rick

    2016-01-01

    We provide an overview and guidance for the Speed and Separation Monitoring methodology as presented in the International Organization of Standardization's technical specification 15066 on collaborative robot safety. Such functionality is provided by external, intelligent observer systems integrated into a robotic workcell. The SSM minimum protective distance function equation is discussed in detail, with consideration for the input values, implementation specifications, and performance expectations. We provide analytical analyses and test results of the current equation, discuss considerations for implementing SSM in human-occupied environments, and provide directions for technological advancements toward standardization. PMID:27885312

  12. C3: A Collaborative Web Framework for NASA Earth Exchange

    NASA Astrophysics Data System (ADS)

    Foughty, E.; Fattarsi, C.; Hardoyo, C.; Kluck, D.; Wang, L.; Matthews, B.; Das, K.; Srivastava, A.; Votava, P.; Nemani, R. R.

    2010-12-01

    The NASA Earth Exchange (NEX) is a new collaboration platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing. NEX combines NASA advanced supercomputing resources, Earth system modeling, workflow management, NASA remote sensing data archives, and a collaborative communication platform to deliver a complete work environment in which users can explore and analyze large datasets, run modeling codes, collaborate on new or existing projects, and quickly share results among the Earth science communities. NEX is designed primarily for use by the NASA Earth science community to address scientific grand challenges. The NEX web portal component provides an on-line collaborative environment for sharing of Eearth science models, data, analysis tools and scientific results by researchers. In addition, the NEX portal also serves as a knowledge network that allows researchers to connect and collaborate based on the research they are involved in, specific geographic area of interest, field of study, etc. Features of the NEX web portal include: Member profiles, resource sharing (data sets, algorithms, models, publications), communication tools (commenting, messaging, social tagging), project tools (wikis, blogs) and more. The NEX web portal is built on the proven technologies and policies of DASHlink.arc.nasa.gov, (one of NASA's first science social media websites). The core component of the web portal is a C3 framework, which was built using Django and which is being deployed as a common framework for a number of collaborative sites throughout NASA.

  13. Appropriation from a Script Theory of Guidance Perspective: A Response to Pierre Tchounikine

    ERIC Educational Resources Information Center

    Stegmann, Karsten; Kollar, Ingo; Weinberger, Armin; Fischer, Frank

    2016-01-01

    In a recent paper, Pierre Tchounikine has suggested to advance the Script Theory of Guidance (SToG) by addressing the question how learners appropriate collaboration scripts presented to them in learning environments. Tchounikine's main criticism addresses SToG's "internal script configuration principle." This principle states that in…

  14. E-Learning in Engineering Education: Design of a Collaborative Advanced Remote Access Laboratory

    ERIC Educational Resources Information Center

    Chandra A. P., Jagadeesh; Samuel, R. D. Sudhaker

    2010-01-01

    Attaining excellence in technical education is a worthy challenge to any life goal. Distance learning opportunities make these goals easier to reach with added quality. Distance learning in engineering education is possible only through successful implementations of remote laboratories in a learning-by-doing environment. This paper presents one…

  15. Innovation Education Enabled through a Collaborative Virtual Reality Learning Environment

    ERIC Educational Resources Information Center

    Thorsteinsson, Gisli; Page, Tom; Lehtonen, Miika; Ha, Joong Gyu

    2006-01-01

    This article provides a descriptive account of the development of an approach to the support of design and technology education with 3D Virtual Reality (VR) technologies on an open and distance learning basis. This work promotes an understanding of the implications and possibilities of advanced virtual learning technologies in education for…

  16. Biology, politics, and the emerging science of human nature.

    PubMed

    Fowler, James H; Schreiber, Darren

    2008-11-07

    In the past 50 years, biologists have learned a tremendous amount about human brain function and its genetic basis. At the same time, political scientists have been intensively studying the effect of the social and institutional environment on mass political attitudes and behaviors. However, these separate fields of inquiry are subject to inherent limitations that may only be resolved through collaboration across disciplines. We describe recent advances and argue that biologists and political scientists must work together to advance a new science of human nature.

  17. Anthropology and Geosciences: Training and Collaboration Advancing Interdisciplinary Research of Human-environment Interaction

    NASA Astrophysics Data System (ADS)

    Brondizio, E.; Moran, E.

    2005-05-01

    Over the past thirteen years the Anthropological Center for Training and Research on Global Environmental Change (ACT) at Indiana University has pioneered the use of anthropological and environmental research approaches to address issues of land use change, and population-environment interaction, particularly in the Amazon. Our research and training objectives focus on how particular local populations manage resources and how those activities may be studied by integrating time-tested ethnographic methods, survey instruments, ecological field studies, and the spatial and temporal perspectives of remote sensing and Geographical Information Systems. The globalization of the environment crisis bears the risk of the research and training at universities being purely global or large scale in nature. This would fail to take into account the highly variable local causes of human activities or to discover sustainable solutions to the use, conservation, and restoration of human ecosystems. Our approach combines institutional and international collaboration, formal and hands-on laboratory and field activities developed within an interdisciplinary environment, but based on the strength of disciplinary programs. Over the past years, we have particularly emphasized collaboration between American and Brazilian scholars and students and intense work with local farmers and communities both during data collection and field research, as well as in returning data and results using different formats. In this paper, we address our experience, the challenges and advantages of theoretical and methodological development for students approaching interdisciplinary problems, innovations in linking levels of analysis, and new opportunities for international and collaborative training and research on human-environment interaction.

  18. Distributed Observer Network

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA s advanced visual simulations are essential for analyses associated with life cycle planning, design, training, testing, operations, and evaluation. Kennedy Space Center, in particular, uses simulations for ground services and space exploration planning in an effort to reduce risk and costs while improving safety and performance. However, it has been difficult to circulate and share the results of simulation tools among the field centers, and distance and travel expenses have made timely collaboration even harder. In response, NASA joined with Valador Inc. to develop the Distributed Observer Network (DON), a collaborative environment that leverages game technology to bring 3-D simulations to conventional desktop and laptop computers. DON enables teams of engineers working on design and operations to view and collaborate on 3-D representations of data generated by authoritative tools. DON takes models and telemetry from these sources and, using commercial game engine technology, displays the simulation results in a 3-D visual environment. Multiple widely dispersed users, working individually or in groups, can view and analyze simulation results on desktop and laptop computers in real time.

  19. Mars mission science operations facilities design

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Wales, Roxana; Powell, Mark W.; Backes, Paul G.; Steinke, Robert C.

    2002-01-01

    A variety of designs for Mars rover and lander science operations centers are discussed in this paper, beginning with a brief description of the Pathfinder science operations facility and its strengths and limitations. Particular attention is then paid to lessons learned in the design and use of operations facilities for a series of mission-like field tests of the FIDO prototype Mars rover. These lessons are then applied to a proposed science operations facilities design for the 2003 Mars Exploration Rover (MER) mission. Issues discussed include equipment selection, facilities layout, collaborative interfaces, scalability, and dual-purpose environments. The paper concludes with a discussion of advanced concepts for future mission operations centers, including collaborative immersive interfaces and distributed operations. This paper's intended audience includes operations facility and situation room designers and the users of these environments.

  20. Deformation and Damage Studies for Advanced Structural Materials

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Advancements made in understanding deformation and damage of advanced structural materials have enabled the development of new technologies including the attainment of a nationally significant NASA Level 1 Milestone and the provision of expertise to the Shuttle Return to Flight effort. During this collaborative agreement multiple theoretical and experimental research programs, facilitating safe durable high temperature structures using advanced materials, have been conceived, planned, executed. Over 26 publications, independent assessments of structures and materials in hostile environments, were published within this agreement. This attainment has been recognized by 2002 Space Flight Awareness Team Award, 2004 NASA Group Achievement Award and 2003 and 2004 OAI Service Awards. Accomplishments in the individual research efforts are described as follows.

  1. Development and promotion in translational medicine: perspectives from 2012 sino-american symposium on clinical and translational medicine

    PubMed Central

    2012-01-01

    Background Clinical translational medicine (CTM) is an emerging area comprising multidisciplinary research from basic science to medical applications and entails a close collaboration among hospital, academia and industry. Findings This Session focused discussing on new models for project development and promotion in translational medicine. The conference stimulated the scientific and commercial communication of project development between academies and companies, shared the advanced knowledge and expertise of clinical applications, and created the environment for collaborations. Conclusions Although strategic collaborations between corporate and academic institutions have resulted in a state of resurgence in the market, new cooperation models still need time to tell whether they will improve the translational medicine process. PMID:23369198

  2. Investigating the Limitations of Advanced Design Methods through Real World Application

    DTIC Science & Technology

    2016-03-31

    36 War Room Laptop Display ( MySQL , JMP 9 Pro, 64-bit Windows) Georgia Tech Secure Collaborative Visualization Environment ( MySQL , JMP 9 Pro...investigate expanding the EA for VC3ATS • Would like to consider both an expansion of the use of current Java -based BPM approach and other potential EA

  3. Collaboration The Key To: Defining Entry Level Competencies for Public Child Welfare Workers Serving Indian Communities.

    ERIC Educational Resources Information Center

    Gonzalez-Santin, Edwin; And Others

    The rural environment in which most Indian tribal human service personnel work impedes the access of paraprofessional staff to professional education programs that will enable them to expand their theoretical knowledge, enhance their practical skills, and advance their careers. Each day, child welfare workers encounter complex tasks that require…

  4. Integrated instrumentation & computation environment for GRACE

    NASA Astrophysics Data System (ADS)

    Dhekne, P. S.

    2002-03-01

    The project GRACE (Gamma Ray Astrophysics with Coordinated Experiments) aims at setting up a state of the art Gamma Ray Observatory at Mt. Abu, Rajasthan for undertaking comprehensive scientific exploration over a wide spectral window (10's keV - 100's TeV) from a single location through 4 coordinated experiments. The cumulative data collection rate of all the telescopes is expected to be about 1 GB/hr, necessitating innovations in the data management environment. As real-time data acquisition and control as well as off-line data processing, analysis and visualization environment of these systems is based on the us cutting edge and affordable technologies in the field of computers, communications and Internet. We propose to provide a single, unified environment by seamless integration of instrumentation and computations by taking advantage of the recent advancements in Web based technologies. This new environment will allow researchers better acces to facilities, improve resource utilization and enhance collaborations by having identical environments for online as well as offline usage of this facility from any location. We present here a proposed implementation strategy for a platform independent web-based system that supplements automated functions with video-guided interactive and collaborative remote viewing, remote control through virtual instrumentation console, remote acquisition of telescope data, data analysis, data visualization and active imaging system. This end-to-end web-based solution will enhance collaboration among researchers at the national and international level for undertaking scientific studies, using the telescope systems of the GRACE project.

  5. Collaborative Product Development in an R&D Environment

    NASA Technical Reports Server (NTRS)

    Davis, Jose M.; Keys, L. Ken; Chen, Injazz J.; Peterson, Paul L.

    2004-01-01

    Research and development (R&D) organizations are being required to be relevant, to be more application-oriented, and to be partners in the strategic management of the business while meeting the same challenges as the rest of the organization, namely: (1) reduced time to market; (2) reduced cost; (3) improved quality; (4) increased reliability; and (5) increased focus on customer needs. Recent advances in computer technology and the Internet have created a new paradigm of collaborative engineering or collaborative product development (CPD), from which new types of relationships among researchers and their partners have emerged. Research into the applicability and benefits of CPD in a low/no production, R&D, and/or government environment is limited. In addition, the supply chain management (SCM) aspects of these relationships have not been studied. This paper presents research conducted at the NASA Glenn Research Center (GRC) investigating the applicability of CPD and SCM in an R&D organization. The study concentrates on the management and implementation of space research activities at GRC. Results indicate that although the organization is engaged in collaborative relationships that incorporate aspects of SCM, a number of areas, such as development of trust and information sharing merit special attention.

  6. Incorporating Brokers within Collaboration Environments

    NASA Astrophysics Data System (ADS)

    Rajasekar, A.; Moore, R.; de Torcy, A.

    2013-12-01

    A collaboration environment, such as the integrated Rule Oriented Data System (iRODS - http://irods.diceresearch.org), provides interoperability mechanisms for accessing storage systems, authentication systems, messaging systems, information catalogs, networks, and policy engines from a wide variety of clients. The interoperability mechanisms function as brokers, translating actions requested by clients to the protocol required by a specific technology. The iRODS data grid is used to enable collaborative research within hydrology, seismology, earth science, climate, oceanography, plant biology, astronomy, physics, and genomics disciplines. Although each domain has unique resources, data formats, semantics, and protocols, the iRODS system provides a generic framework that is capable of managing collaborative research initiatives that span multiple disciplines. Each interoperability mechanism (broker) is linked to a name space that enables unified access across the heterogeneous systems. The collaboration environment provides not only support for brokers, but also support for virtualization of name spaces for users, files, collections, storage systems, metadata, and policies. The broker enables access to data or information in a remote system using the appropriate protocol, while the collaboration environment provides a uniform naming convention for accessing and manipulating each object. Within the NSF DataNet Federation Consortium project (http://www.datafed.org), three basic types of interoperability mechanisms have been identified and applied: 1) drivers for managing manipulation at the remote resource (such as data subsetting), 2) micro-services that execute the protocol required by the remote resource, and 3) policies for controlling the execution. For example, drivers have been written for manipulating NetCDF and HDF formatted files within THREDDS servers. Micro-services have been written that manage interactions with the CUAHSI data repository, the DataONE information catalog, and the GeoBrain broker. Policies have been written that manage transfer of messages between an iRODS message queue and the Advanced Message Queuing Protocol. Examples of these brokering mechanisms will be presented. The DFC collaboration environment serves as the intermediary between community resources and compute grids, enabling reproducible data-driven research. It is possible to create an analysis workflow that retrieves data subsets from a remote server, assemble the required input files, automate the execution of the workflow, automatically track the provenance of the workflow, and share the input files, workflow, and output files. A collaborator can re-execute a shared workflow, compare results, change input files, and re-execute an analysis.

  7. Architecture for an advanced biomedical collaboration domain for the European paediatric cancer research community (ABCD-4-E).

    PubMed

    Nitzlnader, Michael; Falgenhauer, Markus; Gossy, Christian; Schreier, Günter

    2015-01-01

    Today, progress in biomedical research often depends on large, interdisciplinary research projects and tailored information and communication technology (ICT) support. In the context of the European Network for Cancer Research in Children and Adolescents (ENCCA) project the exchange of data between data source (Source Domain) and data consumer (Consumer Domain) systems in a distributed computing environment needs to be facilitated. This work presents the requirements and the corresponding solution architecture of the Advanced Biomedical Collaboration Domain for Europe (ABCD-4-E). The proposed concept utilises public as well as private cloud systems, the Integrating the Healthcare Enterprise (IHE) framework and web-based applications to provide the core capabilities in accordance with privacy and security needs. The utility of crucial parts of the concept was evaluated by prototypic implementation. A discussion of the design indicates that the requirements of ENCCA are fully met. A whole system demonstration is currently being prepared to verify that ABCD-4-E has the potential to evolve into a domain-bridging collaboration platform in the future.

  8. An aeronautical mobile satellite experiment

    NASA Technical Reports Server (NTRS)

    Jedrey, T. C.; Dessouky, K. I.; Lay, N. E.

    1990-01-01

    The various activities and findings of a NASA/FAA/COMSAT/INMARSAT collaborative aeronautical mobile satellite experiment are detailed. The primary objective of the experiment was to demonstrate and evaluate an advanced digital mobile satellite terminal developed at the Jet Propulsion Laboratory under the NASA Mobile Satellite Program. The experiment was a significant milestone for NASA/JPL, since it was the first test of the mobile terminal in a true mobile satellite environment. The results were also of interest to the general mobile satellite community because of the advanced nature of the technologies employed in the terminal.

  9. Advancing LGBT Health at an Academic Medical Center: A Case Study.

    PubMed

    Yehia, Baligh R; Calder, Daniel; Flesch, Judd D; Hirsh, Rebecca L; Higginbotham, Eve; Tkacs, Nancy; Crawford, Beverley; Fishman, Neil

    2015-12-01

    Academic health centers are strategically positioned to impact the health of lesbian, gay, bisexual and transgender (LGBT) populations by advancing science, educating future generations of providers, and delivering integrated care that addresses the unique health needs of the LGBT community. This report describes the early experiences of the Penn Medicine Program for LGBT Health, highlighting the favorable environment that led to its creation, the mission and structure of the Program, strategic planning process used to set priorities and establish collaborations, and the reception and early successes of the Program.

  10. Mapping and Modeling Web Portal to Advance Global Monitoring and Climate Research

    NASA Astrophysics Data System (ADS)

    Chang, G.; Malhotra, S.; Bui, B.; Sadaqathulla, S.; Goodale, C. E.; Ramirez, P.; Kim, R. M.; Rodriguez, L.; Law, E.

    2011-12-01

    Today, the principal investigators of NASA Earth Science missions develop their own software to manipulate, visualize, and analyze the data collected from Earth, space, and airborne observation instruments. There is very little, if any, collaboration among these principal investigators due to the lack of collaborative tools, which would allow these scientists to share data and results. At NASA's Jet Propulsion Laboratory (JPL), under the Lunar Mapping and Modeling Project (LMMP), we have built a web portal that exposes a set of common services to users to allow search, visualization, subset, and download lunar science data. Users also have access to a set of tools that visualize, analyze and annotate the data. These services are developed according to industry standards for data access and manipulation, such REST and Open Geospatial Consortium (OGC) web services. As a result, users can access the datasets through custom written applications or off-the-shelf applications such as Google Earth. Even though it's currently used to store and process lunar data, this web portal infrastructure has been designed to support other solar system bodies such as asteroids and planets, including Earth. The infrastructure uses a combination of custom, commercial, and open-source software as well as off-the-shelf hardware and pay-by-use cloud computing services. The use of standardized web service interfaces facilitates platform and application-independent access to the services and data. For instance, we have software clients for the LMMP portal that provide a rich browsing and analysis experience from a variety of platforms including iOS and Android mobile platforms and large screen multi-touch displays with 3-D terrain viewing functions. The service-oriented architecture and design principles utilized in the implementation of the portal lends itself to be reusable and scalable and could naturally be extended to include a collaborative environment that enables scientists and principal investigators to share their research and analysis seamlessly. In addition, this extension will allow users to easily share their tools and data, and to enrich their mapping and analysis experiences. In this talk, we will describe the advanced data management and portal technologies used to power this collaborative environment. We will further illustrate how this environment can enable, enhance and advance global monitoring and climate research.

  11. Innovation in global collaborations: from student placement to mutually beneficial exchanges.

    PubMed

    Suarez-Balcazar, Yolanda; Hammel, Joy; Mayo, Liliana; Inwald, Stephanie; Sen, Supriya

    2013-06-01

    Five years ago, an academic department in the United States and the Ann Sullivan Center of Peru (CASP) initiated an international partnership to foster research collaborations and reciprocal consultation, and to create an advanced clinical placement for occupational therapy doctoral students. CASP is a globally recognized hub for community-based research, demonstration and training for people with disabilities (most of whom are from low-income families). CASP has provided occupational therapy students and faculty with a rich cultural environment in which to learn and collaborate as well as opportunities for developing research collaborations. The purpose of this manuscript is to discuss an innovative model of international collaboration highlighting specific areas of exchange and reciprocal learning. First, we will describe the collaboration and CASP's rich learning opportunities. Second, we will discuss a model of collaboration that includes three main phases: planning and preparation, developing and sustaining the partnership, and evaluating and celebrating outcomes and benefits. We illustrate the partnership with a case example and describe exchanges between CASP and a local community agency with whom faculty have collaborated for 20 years. Finally, we discuss implications of our innovative model towards developing and sustaining global partnerships. . Copyright © 2013 John Wiley & Sons, Ltd.

  12. Cognitive Task Analysis and Intelligent Computer-Based Training Systems: Lessons Learned from Coached Practice Environments in Air Force Avionics.

    ERIC Educational Resources Information Center

    Katz, Sandra N.; Hall, Ellen; Lesgold, Alan

    This paper describes some results of a collaborative effort between the University of Pittsburgh and the Air Force to develop advanced troubleshooting training for F-15 maintenance technicians. The focus is on the cognitive task methodology used in the development of three intelligent tutoring systems to inform their instructional content and…

  13. Sustainability-Related Publications Calendar Years 2015- 2016

    DTIC Science & Technology

    The Center for the Advancement of Sustainability Innovations (CASI) was established by the U.S. Army Engineer Research and Development Center (ERDC...and around the globe. CASI teams strive to measure sustainability innovations against the Triple Bottom Line of mission, environment, and community...CASI focuses on cost savings, innovation , collaborative solutions, and continuous learning which directly link sustainability to Army policy and guidance

  14. The Joint Space Operations Center Mission System and the Advanced Research, Collaboration, and Application Development Environment Status Update 2016

    NASA Astrophysics Data System (ADS)

    Murray-Krezan, Jeremy; Howard, Samantha; Sabol, Chris; Kim, Richard; Echeverry, Juan

    2016-05-01

    The Joint Space Operations Center (JSpOC) Mission System (JMS) is a service-oriented architecture (SOA) infrastructure with increased process automation and improved tools to enhance Space Situational Awareness (SSA) performed at the US-led JSpOC. The Advanced Research, Collaboration, and Application Development Environment (ARCADE) is a test-bed maintained and operated by the Air Force to (1) serve as a centralized test-bed for all research and development activities related to JMS applications, including algorithm development, data source exposure, service orchestration, and software services, and provide developers reciprocal access to relevant tools and data to accelerate technology development, (2) allow the JMS program to communicate user capability priorities and requirements to developers, (3) provide the JMS program with access to state-of-the-art research, development, and computing capabilities, and (4) support JMS Program Office-led market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. In this paper we will share with the international remote sensing community some of the recent JMS and ARCADE developments that may contribute to greater SSA at the JSpOC in the future, and share technical areas still in great need.

  15. Open Access to Research Articles and Data: Library Roles

    NASA Astrophysics Data System (ADS)

    Joseph, Heather

    2015-08-01

    Over the past decade, a handful of key developments have caused scholars and researchers to rethink not only the way they conduct their work, but also the way in which they communicate it to others. The advent of the Internet has provided unprecedented opportunities for immediate, cost effective global connectivity, opening up new possibilities for collaboration and communication. This has resulted in scholarship increasingly being conducted in the online environment, and a vast amount of new digital information being generated and made widely available to those interested in using it. Additionally, the Internet is a dynamic environment, with new channels for producing and sharing information in a myriad of formats emerging frequently.In higher education, the momentum of the burgeoning movement towards "open" sharing of information of all kinds continues to gain traction. In particular, advancements in the areas of opening up access to articles and reserch data are increasingly visible. In both of these areas, academic and research libraries are playing important, central roles in promoting the awareness of the potential costs and benefits of a more open research environment, as well as defining new roles for libraries in this digital environment.As this push for grater openness continues, these fronts are intersecting in interesting and potentially transformative ways. The Open Access and Open Data movements share fundamental philosophical commonalities that make collaboration a natural outcome. Both movements place a premium on reducing barriers to discovering and accessing pertinent digital information. Perhaps even more significantly, both explicitly recognize that enabling productive use of digital information is key to unlocking its full value. As a result of these shared priorities, there are a wide variety of common strategies that libraries can take to help advance research, presenting new opportunities for deeper collaboration to take place.This talk will explore what is happening in these "open" movements from both a practical and policy standpoint; how this might directly impact academia, the research community, and especially, libraries.

  16. Built environment assessment: Multidisciplinary perspectives.

    PubMed

    Glanz, Karen; Handy, Susan L; Henderson, Kathryn E; Slater, Sandy J; Davis, Erica L; Powell, Lisa M

    2016-12-01

    As obesity has become increasingly widespread, scientists seek better ways to assess and modify built and social environments to positively impact health. The applicable methods and concepts draw on multiple disciplines and require collaboration and cross-learning. This paper describes the results of an expert team׳s analysis of how key disciplinary perspectives contribute to environmental context-based assessment related to obesity, identifies gaps, and suggests opportunities to encourage effective advances in this arena. A team of experts representing diverse disciplines convened in 2013 to discuss the contributions of their respective disciplines to assessing built environments relevant to obesity prevention. The disciplines include urban planning, public health nutrition, exercise science, physical activity research, public health and epidemiology, behavioral and social sciences, and economics. Each expert identified key concepts and measures from their discipline, and applications to built environment assessment and action. A selective review of published literature and internet-based information was conducted in 2013 and 2014. The key points that are highlighted in this article were identified in 2014-2015 through discussion, debate and consensus-building among the team of experts. Results focus on the various disciplines׳ perspectives and tools, recommendations, progress and gaps. There has been significant progress in collaboration across key disciplines that contribute to studies of built environments and obesity, but important gaps remain. Using lessons from interprofessional education and team science, along with appreciation of and attention to other disciplines׳ contributions, can promote more effective cross-disciplinary collaboration in obesity prevention.

  17. Mobile collaborative medical display system.

    PubMed

    Park, Sanghun; Kim, Wontae; Ihm, Insung

    2008-03-01

    Because of recent advances in wireless communication technologies, the world of mobile computing is flourishing with a variety of applications. In this study, we present an integrated architecture for a personal digital assistant (PDA)-based mobile medical display system that supports collaborative work between remote users. We aim to develop a system that enables users in different regions to share a working environment for collaborative visualization with the potential for exploring huge medical datasets. Our system consists of three major components: mobile client, gateway, and parallel rendering server. The mobile client serves as a front end and enables users to choose the visualization and control parameters interactively and cooperatively. The gateway handles requests and responses between mobile clients and the rendering server for efficient communication. Through the gateway, it is possible to share working environments between users, allowing them to work together in computer supported cooperative work (CSCW) mode. Finally, the parallel rendering server is responsible for performing heavy visualization tasks. Our experience indicates that some features currently available to our mobile clients for collaborative scientific visualization are limited due to the poor performance of mobile devices and the low bandwidth of wireless connections. However, as mobile devices and wireless network systems are experiencing considerable elevation in their capabilities, we believe that our methodology will be utilized effectively in building quite responsive, useful mobile collaborative medical systems in the very near future.

  18. Collaboration and Perspectives on Identity Management and Access from two Geoscience Cyberinfrastructure Programs

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M. K.

    2016-12-01

    Increasingly, the conduct of science requires close international collaborations to share data, information, knowledge, expertise, and other resources. This is particularly true in the geosciences where the highly connected nature of the Earth system and the need to understand global environmental processes have heightened the importance of scientific partnerships. As geoscience studies become a team effort involving networked scientists and data providers, it is crucial that there is open and reliable access to earth system data of all types, software, tools, models, and other assets. That environment demands close attention to security-related matters, including the creation of trustworthy cyberinfrastructure to facilitate the efficient use of available resources and support the conduct of science. Unidata and EarthCube, both of which are NSF-funded and community-driven programs, recognize the importance of collaborations and the value of networked communities. Unidata, a cornerstone cyberinfrastructure facility for the geosciences, includes users in nearly 180 countries. The EarthCube initiative is aimed at transforming the conduct of geosciences research by creating a well-connected and facile environment for sharing data and in an open, transparent, and inclusive manner and to accelerate our ability to understand and predict the Earth system. We will present the Unidata and EarthCube community perspectives on the approaches to balancing an environment that promotes open and collaborative eScience with the needs for security and communication, including what works, what is needed, the challenges, and opportunities to advance science.

  19. User evaluation of an innovative digital reading room.

    PubMed

    Hugine, Akilah; Guerlain, Stephanie; Hedge, Alan

    2012-06-01

    Reading room design can have a major impact on radiologists' health, productivity, and accuracy in reading. Several factors must be taken into account in order to optimize the work environment for radiologists. Further, with the advancement in imaging technology, clinicians now have the ability to view and see digital exams without having to interact with radiologists. However, it is important to design components that encourage and enhance interactions between clinicians and radiologists to increase patient safety, and to combine physician and radiologist expertise. The present study evaluates alternative workstations in a real-world testbed space, using qualitative data (users' perspectives) to measure satisfaction with the lighting, ergonomics, furniture, collaborative spaces, and radiologist workstations. In addition, we consider the impact of the added collaboration components of the future reading room design, by utilizing user evaluation surveys to devise baseline satisfaction data regarding the innovative reading room environment.

  20. Video Clips for Youtube: Collaborative Video Creation as an Educational Concept for Knowledge Acquisition and Attitude Change Related to Obesity Stigmatization

    ERIC Educational Resources Information Center

    Zahn, Carmen; Schaeffeler, Norbert; Giel, Katrin Elisabeth; Wessel, Daniel; Thiel, Ansgar; Zipfel, Stephan; Hesse, Friedrich W.

    2014-01-01

    Mobile phones and advanced web-based video tools have pushed forward new paradigms for using video in education: Today, students can readily create and broadcast their own digital videos for others and create entirely new patterns of video-based information structures for modern online-communities and multimedia environments. This paradigm shift…

  1. Advancing Local e-Government through Town-Gown Collaboration in the Web 2.0 Environment: A Comparative Case Study of Six Small Municipalities in Pennsylvania

    ERIC Educational Resources Information Center

    Levy, Anna

    2015-01-01

    E-government is often defined as the public organization's use of information and communication technologies for the production and delivery of information and services. Since the early 1990s, e-government initiatives have been understood as a technological innovation mechanism aimed at reaching greater levels of efficiency, effectiveness, and…

  2. Advanced Value Chain Collaboration in Ghana's Cocoa Sector: An Entry Point for Integrated Landscape Approaches?

    PubMed

    Deans, Howard; Ros-Tonen, Mirjam A F; Derkyi, Mercy

    2017-04-15

    Value chain analyses have focused mainly on collaboration between chain actors, often neglecting collaboration "beyond the chain" with non-chain actors to tackle food security, poverty and sustainability issues in the landscapes in which these value chains are embedded. Comparing conventional and advanced value chain collaborations involving small-scale cocoa farmers in Ghana, this paper analyzes the merits of a more integrated approach toward value chain collaboration. It particularly asks whether advanced value chain collaboration targeting cocoa-producing areas potentially offers an entry point for implementing a landscape approach. The findings detail current chain actors and institutions and show how advanced value chain collaboration has a greater positive impact than conventional value chain collaboration on farmers' social, human and natural capital. The paper concludes that the integrated approach, focus on learning, and stable relationships with small-scale farmers inherent in advanced value chain collaboration makes it both more sustainable and effective at the local level than conventional approaches. However, its scope and the actors' jurisdictional powers and self-organization are too limited to be the sole tool in negotiating land use and trade-offs at the landscape level. To evolve as such would require certification beyond the farm level, partnering with other landscape stakeholders, and brokering by bridging organizations.

  3. An overview of the U.S. Army Research Laboratory's Sensor Information Testbed for Collaborative Research Environment (SITCORE) and Automated Online Data Repository (AODR) capabilities

    NASA Astrophysics Data System (ADS)

    Ward, Dennis W.; Bennett, Kelly W.

    2017-05-01

    The Sensor Information Testbed COllaberative Research Environment (SITCORE) and the Automated Online Data Repository (AODR) are significant enablers of the U.S. Army Research Laboratory (ARL)'s Open Campus Initiative and together create a highly-collaborative research laboratory and testbed environment focused on sensor data and information fusion. SITCORE creates a virtual research development environment allowing collaboration from other locations, including DoD, industry, academia, and collation facilities. SITCORE combined with AODR provides end-toend algorithm development, experimentation, demonstration, and validation. The AODR enterprise allows the U.S. Army Research Laboratory (ARL), as well as other government organizations, industry, and academia to store and disseminate multiple intelligence (Multi-INT) datasets collected at field exercises and demonstrations, and to facilitate research and development (R and D), and advancement of analytical tools and algorithms supporting the Intelligence, Surveillance, and Reconnaissance (ISR) community. The AODR provides a potential central repository for standards compliant datasets to serve as the "go-to" location for lessons-learned and reference products. Many of the AODR datasets have associated ground truth and other metadata which provides a rich and robust data suite for researchers to develop, test, and refine their algorithms. Researchers download the test data to their own environments using a sophisticated web interface. The AODR allows researchers to request copies of stored datasets and for the government to process the requests and approvals in an automated fashion. Access to the AODR requires two-factor authentication in the form of a Common Access Card (CAC) or External Certificate Authority (ECA)

  4. Innovative and responsible governance of nanotechnology for societal development

    NASA Astrophysics Data System (ADS)

    Roco, Mihail C.; Harthorn, Barbara; Guston, David; Shapira, Philip

    2011-09-01

    Governance of nanotechnology is essential for realizing economic growth and other societal benefits of the new technology, protecting public health and environment, and supporting global collaboration and progress. The article outlines governance principles and methods specific for this emerging field. Advances in the last 10 years, the current status and a vision for the next decade are presented based on an international study with input from over 35 countries.

  5. Analysis of Leading Edge and Trailing Edge Cover Glass Samples Before and After Treatment with Advanced Satellite Contamination Removal Techniques

    DTIC Science & Technology

    1993-04-01

    surface analysis, 40 contamination control, ANCC ( Aerogel Mesh Contamination Collector) iPRICECODE 17. SECURITY CLASSIFICATION 1 & SECURITY CLASSIFICATION...operational parameter space (temperature, vibration, radiation, vacuum and micrometorite environments). One embodiment of this device, the Aerogel Mesh...Lippey and Dan Demeo of Hughes Aircraft Corporation for their kind hospitality and research collaboration on the contamination removal phase of this work

  6. Collaborative volume visualization with applications to underwater acoustic signal processing

    NASA Astrophysics Data System (ADS)

    Jarvis, Susan; Shane, Richard T.

    2000-08-01

    Distributed collaborative visualization systems represent a technology whose time has come. Researchers at the Fraunhofer Center for Research in Computer Graphics have been working in the areas of collaborative environments and high-end visualization systems for several years. The medical application. TeleInVivo, is an example of a system which marries visualization and collaboration. With TeleInvivo, users can exchange and collaboratively interact with volumetric data sets in geographically distributed locations. Since examination of many physical phenomena produce data that are naturally volumetric, the visualization frameworks used by TeleInVivo have been extended for non-medical applications. The system can now be made compatible with almost any dataset that can be expressed in terms of magnitudes within a 3D grid. Coupled with advances in telecommunications, telecollaborative visualization is now possible virtually anywhere. Expert data quality assurance and analysis can occur remotely and interactively without having to send all the experts into the field. Building upon this point-to-point concept of collaborative visualization, one can envision a larger pooling of resources to form a large overview of a region of interest from contributions of numerous distributed members.

  7. Scalable Adaptive Graphics Environment (SAGE) Software for the Visualization of Large Data Sets on a Video Wall

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Srikishen, Jayanthi; Edwards, Rita; Cross, David; Welch, Jon; Smith, Matt

    2013-01-01

    The use of collaborative scientific visualization systems for the analysis, visualization, and sharing of "big data" available from new high resolution remote sensing satellite sensors or four-dimensional numerical model simulations is propelling the wider adoption of ultra-resolution tiled display walls interconnected by high speed networks. These systems require a globally connected and well-integrated operating environment that provides persistent visualization and collaboration services. This abstract and subsequent presentation describes a new collaborative visualization system installed for NASA's Shortterm Prediction Research and Transition (SPoRT) program at Marshall Space Flight Center and its use for Earth science applications. The system consists of a 3 x 4 array of 1920 x 1080 pixel thin bezel video monitors mounted on a wall in a scientific collaboration lab. The monitors are physically and virtually integrated into a 14' x 7' for video display. The display of scientific data on the video wall is controlled by a single Alienware Aurora PC with a 2nd Generation Intel Core 4.1 GHz processor, 32 GB memory, and an AMD Fire Pro W600 video card with 6 mini display port connections. Six mini display-to-dual DVI cables are used to connect the 12 individual video monitors. The open source Scalable Adaptive Graphics Environment (SAGE) windowing and media control framework, running on top of the Ubuntu 12 Linux operating system, allows several users to simultaneously control the display and storage of high resolution still and moving graphics in a variety of formats, on tiled display walls of any size. The Ubuntu operating system supports the open source Scalable Adaptive Graphics Environment (SAGE) software which provides a common environment, or framework, enabling its users to access, display and share a variety of data-intensive information. This information can be digital-cinema animations, high-resolution images, high-definition video-teleconferences, presentation slides, documents, spreadsheets or laptop screens. SAGE is cross-platform, community-driven, open-source visualization and collaboration middleware that utilizes shared national and international cyberinfrastructure for the advancement of scientific research and education.

  8. Scalable Adaptive Graphics Environment (SAGE) Software for the Visualization of Large Data Sets on a Video Wall

    NASA Astrophysics Data System (ADS)

    Jedlovec, G.; Srikishen, J.; Edwards, R.; Cross, D.; Welch, J. D.; Smith, M. R.

    2013-12-01

    The use of collaborative scientific visualization systems for the analysis, visualization, and sharing of 'big data' available from new high resolution remote sensing satellite sensors or four-dimensional numerical model simulations is propelling the wider adoption of ultra-resolution tiled display walls interconnected by high speed networks. These systems require a globally connected and well-integrated operating environment that provides persistent visualization and collaboration services. This abstract and subsequent presentation describes a new collaborative visualization system installed for NASA's Short-term Prediction Research and Transition (SPoRT) program at Marshall Space Flight Center and its use for Earth science applications. The system consists of a 3 x 4 array of 1920 x 1080 pixel thin bezel video monitors mounted on a wall in a scientific collaboration lab. The monitors are physically and virtually integrated into a 14' x 7' for video display. The display of scientific data on the video wall is controlled by a single Alienware Aurora PC with a 2nd Generation Intel Core 4.1 GHz processor, 32 GB memory, and an AMD Fire Pro W600 video card with 6 mini display port connections. Six mini display-to-dual DVI cables are used to connect the 12 individual video monitors. The open source Scalable Adaptive Graphics Environment (SAGE) windowing and media control framework, running on top of the Ubuntu 12 Linux operating system, allows several users to simultaneously control the display and storage of high resolution still and moving graphics in a variety of formats, on tiled display walls of any size. The Ubuntu operating system supports the open source Scalable Adaptive Graphics Environment (SAGE) software which provides a common environment, or framework, enabling its users to access, display and share a variety of data-intensive information. This information can be digital-cinema animations, high-resolution images, high-definition video-teleconferences, presentation slides, documents, spreadsheets or laptop screens. SAGE is cross-platform, community-driven, open-source visualization and collaboration middleware that utilizes shared national and international cyberinfrastructure for the advancement of scientific research and education.

  9. Telescience workstation

    NASA Technical Reports Server (NTRS)

    Brown, Robert L.; Doyle, Dee; Haines, Richard F.; Slocum, Michael

    1989-01-01

    As part of the Telescience Testbed Pilot Program, the Universities Space Research Association/ Research Institute for Advanced Computer Science (USRA/RIACS) proposed to support remote communication by providing a network of human/machine interfaces, computer resources, and experimental equipment which allows: remote science, collaboration, technical exchange, and multimedia communication. The telescience workstation is intended to provide a local computing environment for telescience. The purpose of the program are as follows: (1) to provide a suitable environment to integrate existing and new software for a telescience workstation; (2) to provide a suitable environment to develop new software in support of telescience activities; (3) to provide an interoperable environment so that a wide variety of workstations may be used in the telescience program; (4) to provide a supportive infrastructure and a common software base; and (5) to advance, apply, and evaluate the telescience technolgy base. A prototype telescience computing environment designed to bring practicing scientists in domains other than their computer science into a modern style of doing their computing was created and deployed. This environment, the Telescience Windowing Environment, Phase 1 (TeleWEn-1), met some, but not all of the goals stated above. The TeleWEn-1 provided a window-based workstation environment and a set of tools for text editing, document preparation, electronic mail, multimedia mail, raster manipulation, and system management.

  10. Benefits of Collaborative Writing for ESL Advanced Diploma Students in the Production of Reports

    ERIC Educational Resources Information Center

    Fong, Lin Siew

    2012-01-01

    This study analyzes the collaborative writing sessions of two groups of advanced diploma economics students with mixed proficiency. Although studies in collaborative writing usually highlight the mixed results of students' collaboration ranging from promoting peer learning to having unresolved conflict, the findings of this paper only provide the…

  11. CUAHSI Data Services: Tools and Cyberinfrastructure for Water Data Discovery, Research and Collaboration

    NASA Astrophysics Data System (ADS)

    Seul, M.; Brazil, L.; Castronova, A. M.

    2017-12-01

    CUAHSI Data Services: Tools and Cyberinfrastructure for Water Data Discovery, Research and CollaborationEnabling research surrounding interdisciplinary topics often requires a combination of finding, managing, and analyzing large data sets and models from multiple sources. This challenge has led the National Science Foundation to make strategic investments in developing community data tools and cyberinfrastructure that focus on water data, as it is central need for many of these research topics. CUAHSI (The Consortium of Universities for the Advancement of Hydrologic Science, Inc.) is a non-profit organization funded by the National Science Foundation to aid students, researchers, and educators in using and managing data and models to support research and education in the water sciences. This presentation will focus on open-source CUAHSI-supported tools that enable enhanced data discovery online using advanced searching capabilities and computational analysis run in virtual environments pre-designed for educators and scientists so they can focus their efforts on data analysis rather than IT set-up.

  12. Collaborative enterprise and virtual prototyping (CEVP): a product-centric approach to distributed simulation

    NASA Astrophysics Data System (ADS)

    Saunders, Vance M.

    1999-06-01

    The downsizing of the Department of Defense (DoD) and the associated reduction in budgets has re-emphasized the need for commonality, reuse, and standards with respect to the way DoD does business. DoD has implemented significant changes in how it buys weapon systems. The new emphasis is on concurrent engineering with Integrated Product and Process Development and collaboration with Integrated Product Teams. The new DoD vision includes Simulation Based Acquisition (SBA), a process supported by robust, collaborative use of simulation technology that is integrated across acquisition phases and programs. This paper discusses the Air Force Research Laboratory's efforts to use Modeling and Simulation (M&S) resources within a Collaborative Enterprise Environment to support SBA and other Collaborative Enterprise and Virtual Prototyping (CEVP) applications. The paper will discuss four technology areas: (1) a Processing Ontology that defines a hierarchically nested set of collaboration contexts needed to organize and support multi-disciplinary collaboration using M&S, (2) a partial taxonomy of intelligent agents needed to manage different M&S resource contributions to advancing the state of product development, (3) an agent- based process for interfacing disparate M&S resources into a CEVP framework, and (4) a Model-View-Control based approach to defining `a new way of doing business' for users of CEVP frameworks/systems.

  13. System Level Uncertainty Assessment for Collaborative RLV Design

    NASA Technical Reports Server (NTRS)

    Charania, A. C.; Bradford, John E.; Olds, John R.; Graham, Matthew

    2002-01-01

    A collaborative design process utilizing Probabilistic Data Assessment (PDA) is showcased. Given the limitation of financial resources by both the government and industry, strategic decision makers need more than just traditional point designs, they need to be aware of the likelihood of these future designs to meet their objectives. This uncertainty, an ever-present character in the design process, can be embraced through a probabilistic design environment. A conceptual design process is presented that encapsulates the major engineering disciplines for a Third Generation Reusable Launch Vehicle (RLV). Toolsets consist of aerospace industry standard tools in disciplines such as trajectory, propulsion, mass properties, cost, operations, safety, and economics. Variations of the design process are presented that use different fidelities of tools. The disciplinary engineering models are used in a collaborative engineering framework utilizing Phoenix Integration's ModelCenter and AnalysisServer environment. These tools allow the designer to join disparate models and simulations together in a unified environment wherein each discipline can interact with any other discipline. The design process also uses probabilistic methods to generate the system level output metrics of interest for a RLV conceptual design. The specific system being examined is the Advanced Concept Rocket Engine 92 (ACRE-92) RLV. Previous experience and knowledge (in terms of input uncertainty distributions from experts and modeling and simulation codes) can be coupled with Monte Carlo processes to best predict the chances of program success.

  14. Grid Computing and Collaboration Technology in Support of Fusion Energy Sciences

    NASA Astrophysics Data System (ADS)

    Schissel, D. P.

    2004-11-01

    The SciDAC Initiative is creating a computational grid designed to advance scientific understanding in fusion research by facilitating collaborations, enabling more effective integration of experiments, theory and modeling, and allowing more efficient use of experimental facilities. The philosophy is that data, codes, analysis routines, visualization tools, and communication tools should be thought of as easy to use network available services. Access to services is stressed rather than portability. Services share the same basic security infrastructure so that stakeholders can control their own resources and helps ensure fair use of resources. The collaborative control room is being developed using the open-source Access Grid software that enables secure group-to-group collaboration with capabilities beyond teleconferencing including application sharing and control. The ability to effectively integrate off-site scientists into a dynamic control room will be critical to the success of future international projects like ITER. Grid computing, the secure integration of computer systems over high-speed networks to provide on-demand access to data analysis capabilities and related functions, is being deployed as an alternative to traditional resource sharing among institutions. The first grid computational service deployed was the transport code TRANSP and included tools for run preparation, submission, monitoring and management. This approach saves user sites from the laborious effort of maintaining a complex code while at the same time reducing the burden on developers by avoiding the support of a large number of heterogeneous installations. This tutorial will present the philosophy behind an advanced collaborative environment, give specific examples, and discuss its usage beyond FES.

  15. Maturing Pump Technology for EVA Applications in a Collaborative Environment

    NASA Technical Reports Server (NTRS)

    Hodgson, Edward; Dionne, Steven; Gervais, Edward; Anchondo, Ian

    2012-01-01

    The transition from low earth orbit Extravehicular Activity (EVA) for construction and maintenance activities to planetary surface EVA on asteroids, moons, and, ultimately, Mars demands a new spacesuit system. NASA's development of that system has resulted in dramatically different pumping requirements from those in the current spacesuit system. Hamilton Sundstrand, Cascon, and NASA are collaborating to develop and mature a pump that will reliably meet those new requirements in space environments and within the design constraints imposed by spacesuit system integration. That collaboration, which began in the NASA purchase of a pump prototype for test evaluation, is now entering a new phase of development. A second generation pump reflecting the lessons learned in NASA's testing of the original prototype will be developed under Hamilton Sundstrand internal research funding and ultimately tested in an integrated Advanced Portable Life Support System (APLSS) in NASA laboratories at the Johnson Space Center. This partnership is providing benefit to both industry and NASA by supplying a custom component for EVA integrated testing at no cost to the government while providing test data for industry that would otherwise be difficult or impossible to duplicate in industry laboratories. This paper discusses the evolving collaborative process, component requirements and design development based on early NASA test experience, component stand alone test results, and near term plans for integrated testing at JSCs.

  16. Collaborating across services to advance evidence-based nursing practice.

    PubMed

    Kenny, Deborah J; Richard, Maggie L; Ceniceros, Xochitl; Blaize, Kelli

    2010-01-01

    Military medical treatment facilities offer a unique environment in which to develop a culture of evidence-based practice (EBP). Distinctive issues arise in the context of changed patient care demographics because of a war-injured population. These issues offer an opportunity to enhance the quality of care through the use and adaptation of research findings in this special nursing environment. In addition, the colocation of two military medical centers offers the prospect of collaborative efforts to create a regional culture for nursing EBP. The purposes of this study were to describe the processes of a collaborative project to train nurses in EBP and to share resources in developing and implementing evidence-based clinical nursing guidelines in two large military medical centers in the Northeastern United States and to discuss the collective efforts of nurse researchers, leadership, advanced practice nurses, and staff nurses in each hospital to facilitate the EBP process. A description of the organizational structure and the climate for EBP of each facility is provided followed by discussion of training efforts and the inculcation of an organizational culture for EBP. Contextual barriers and facilitators were encountered throughout the project. The two nurse researchers leading the projects were able to overcome the barriers and capitalize on opportunities to promote EBP. Three evidence-based clinical practice guidelines were developed at each facility and are currently in various stages of implementation. Despite the barriers, EBP continues to be at the forefront of military nursing practice in the U.S. National Capital Region. Clear communication and regular meetings were essential to the success of the collaborative project within and between the two military hospitals. Military-specific barriers to EBP included high team attrition and turnover because of the war mission and the usual high staff turnover at military hospitals. Military facilitators included a common mission of providing high-quality care for war-injured service members. Lessons learned from this project can be generalized to civilian facilities.

  17. Using Wikis as a Support and Assessment Tool in Collaborative Digital Game-Based Learning Environments

    ERIC Educational Resources Information Center

    Samur, Yavuz

    2011-01-01

    In computer-supported collaborative learning (CSCL) environments, there are many researches done on collaborative learning activities; however, in game-based learning environments, more research and literature on collaborative learning activities are required. Actually, both game-based learning environments and wikis enable us to use new chances…

  18. Robots for Astrobiology!

    NASA Technical Reports Server (NTRS)

    Boston, Penelope J.

    2016-01-01

    The search for life and its study is known as astrobiology. Conducting that search on other planets in our Solar System is a major goal of NASA and other space agencies, and a driving passion of the community of scientists and engineers around the world. We practice for that search in many ways, from exploring and studying extreme environments on Earth, to developing robots to go to other planets and help us look for any possible life that may be there or may have been there in the past. The unique challenges of space exploration make collaborations between robots and humans essential. The products of those collaborations will be novel and driven by the features of wholly new environments. For space and planetary environments that are intolerable for humans or where humans present an unacceptable risk to possible biologically sensitive sites, autonomous robots or telepresence offer excellent choices. The search for life signs on Mars fits within this category, especially in advance of human landed missions there, but also as assistants and tools once humans reach the Red Planet. For planetary destinations where we do not envision humans ever going in person, like bitterly cold icy moons, or ocean worlds with thick ice roofs that essentially make them planetary-sized ice caves, we will rely on robots alone to visit those environments for us and enable us to explore and understand any life that we may find there. Current generation robots are not quite ready for some of the tasks that we need them to do, so there are many opportunities for roboticists of the future to advance novel types of mobility, autonomy, and bio-inspired robotic designs to help us accomplish our astrobiological goals. We see an exciting partnership between robotics and astrobiology continually strengthening as we jointly pursue the quest to find extraterrestrial life.

  19. Computer Supported Collaborative Environment for Virtual Simulation of Radiation Treatment Planning

    DTIC Science & Technology

    2001-10-25

    prescription of a radiation dose, and the evaluation of the treatment plan. Conventional techniques make use of the treatment simulator, the main function of...apparent. At this point, the benefits from the employment of the VS in the RTP procedure are highlighted, since the “ virtualisation ” of the complete...practice the continuous advances in telecommunications, which have contributed vastly in the establishment of teleradiology networks [5][6], the

  20. Immersive virtual reality platform for medical training: a "killer-application".

    PubMed

    2000-01-01

    The Medical Readiness Trainer (MRT) integrates fully immersive Virtual Reality (VR), highly advanced medical simulation technologies, and medical data to enable unprecedented medical education and training. The flexibility offered by the MRT environment serves as a practical teaching tool today and in the near future the will serve as an ideal vehicle for facilitating the transition to the next level of medical practice, i.e., telepresence and next generation Internet-based collaborative learning.

  1. CROSS DRIVE: A Collaborative and Distributed Virtual Environment for Exploitation of Atmospherical and Geological Datasets of Mars

    NASA Astrophysics Data System (ADS)

    Cencetti, Michele

    2016-07-01

    European space exploration missions have produced huge data sets of potentially immense value for research as well as for planning and operating future missions. For instance, Mars Exploration programs comprise a series of missions with launches ranging from the past to beyond present, which are anticipated to produce exceptional volumes of data which provide prospects for research breakthroughs and advancing further activities in space. These collected data include a variety of information, such as imagery, topography, atmospheric, geochemical datasets and more, which has resulted in and still demands, databases, versatile visualisation tools and data reduction methods. Such rate of valuable data acquisition requires the scientists, researchers and computer scientists to coordinate their storage, processing and relevant tools to enable efficient data analysis. However, the current position is that expert teams from various disciplines, the databases and tools are fragmented, leaving little scope for unlocking its value through collaborative activities. The benefits of collaborative virtual environments have been implemented in various industrial fields allowing real-time multi-user collaborative work among people from different disciplines. Exploiting the benefits of advanced immersive virtual environments (IVE) has been recognized as an important interaction paradigm to facilitate future space exploration. The current work is mainly aimed towards the presentation of the preliminary results coming from the CROSS DRIVE project. This research received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 607177 and is mainly aimed towards the implementation of a distributed virtual workspace for collaborative scientific discovery, mission planning and operations. The purpose of the CROSS DRIVE project is to lay foundations of collaborative European workspaces for space science. It will demonstrate the feasibility and begin to standardize the integration of space datasets, simulators, analytical modules, remote scientific centers and experts to work together to conduct space science activities as well as support the planning and operations of space missions. The development of this collaborative workspace infrastructure will be focused through preparation of the ExoMars 2016 TGO and 2018 rover missions. Three use case scenarios with increasing levels of complexities has been considered to exercise the remote and Collaborative Workspace as it would happen during science mission design or real-time operations: rover landing site characterization; Mars atmospheric data analysis and comparison among datasets; rover target selection and motion planning during real-time operations. A brief overview of the traditional approaches used in the operations domains is provided in the first part of the paper, mainly focusing on the main drawbacks that arise during actual missions. Examples of design, execution and management of the operational activities are introduced in this section, highlighting the main issues and tools that are currently used. The current needs and the possible solutions are introduced in the following section, providing details on how CROSS DRIVE environment can be used to improve space operations. The developed prototype and the related approach are assessed to show the improvements that can be achieved with respect to data exchange and users' interactions. The project results are also intended to show how the same operational philosophy can be extended from robotic exploration to human-rated ones missions.

  2. ASC Tri-lab Co-design Level 2 Milestone Report 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornung, Rich; Jones, Holger; Keasler, Jeff

    2015-09-23

    In 2015, the three Department of Energy (DOE) National Laboratories that make up the Advanced Sci- enti c Computing (ASC) Program (Sandia, Lawrence Livermore, and Los Alamos) collaboratively explored performance portability programming environments in the context of several ASC co-design proxy applica- tions as part of a tri-lab L2 milestone executed by the co-design teams at each laboratory. The programming environments that were studied included Kokkos (developed at Sandia), RAJA (LLNL), and Legion (Stan- ford University). The proxy apps studied included: miniAero, LULESH, CoMD, Kripke, and SNAP. These programming models and proxy-apps are described herein. Each lab focused on amore » particular combination of abstractions and proxy apps, with the goal of assessing performance portability using those. Performance portability was determined by: a) the ability to run a single application source code on multiple advanced architectures, b) comparing runtime performance between \

  3. Intelligent platforms for disease assessment: novel approaches in functional echocardiography.

    PubMed

    Sengupta, Partho P

    2013-11-01

    Accelerating trends in the dynamic digital era (from 2004 onward) has resulted in the emergence of novel parametric imaging tools that allow easy and accurate extraction of quantitative information from cardiac images. This review principally attempts to heighten the awareness of newer emerging paradigms that may advance acquisition, visualization and interpretation of the large functional data sets obtained during cardiac ultrasound imaging. Incorporation of innovative cognitive software that allow advanced pattern recognition and disease forecasting will likely transform the human-machine interface and interpretation process to achieve a more efficient and effective work environment. Novel technologies for automation and big data analytics that are already active in other fields need to be rapidly adapted to the health care environment with new academic-industry collaborations to enrich and accelerate the delivery of newer decision making tools for enhancing patient care. Copyright © 2013. Published by Elsevier Inc.

  4. Machine Learning Technologies and Their Applications for Science and Engineering Domains Workshop -- Summary Report

    NASA Technical Reports Server (NTRS)

    Ambur, Manjula; Schwartz, Katherine G.; Mavris, Dimitri N.

    2016-01-01

    The fields of machine learning and big data analytics have made significant advances in recent years, which has created an environment where cross-fertilization of methods and collaborations can achieve previously unattainable outcomes. The Comprehensive Digital Transformation (CDT) Machine Learning and Big Data Analytics team planned a workshop at NASA Langley in August 2016 to unite leading experts the field of machine learning and NASA scientists and engineers. The primary goal for this workshop was to assess the state-of-the-art in this field, introduce these leading experts to the aerospace and science subject matter experts, and develop opportunities for collaboration. The workshop was held over a three day-period with lectures from 15 leading experts followed by significant interactive discussions. This report provides an overview of the 15 invited lectures and a summary of the key discussion topics that arose during both formal and informal discussion sections. Four key workshop themes were identified after the closure of the workshop and are also highlighted in the report. Furthermore, several workshop attendees provided their feedback on how they are already utilizing machine learning algorithms to advance their research, new methods they learned about during the workshop, and collaboration opportunities they identified during the workshop.

  5. Advanced Environmental Barrier Coatings Development for Si-Based Ceramics

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, R. Sung; Robinson, Raymond C.; Lee, Kang N.; Bhatt, Ramakrishna T.; Miller, Robert A.

    2005-01-01

    Advanced environmental barrier coating concepts based on multi-component HfO2 (ZrO2) and modified mullite systems are developed for monolithic Si3N4 and SiC/SiC ceramic matrix composite (CMC) applications. Comprehensive testing approaches were established using the water vapor cyclic furnace, high pressure burner rig and laser heat flux steam rig to evaluate the coating water vapor stability, cyclic durability, radiation and erosion resistance under simulated engine environments. Test results demonstrated the feasibility and durability of the environmental barrier coating systems for 2700 to 3000 F monolithic Si3N4 and SiC/SiC CMC component applications. The high-temperature-capable environmental barrier coating systems are being further developed and optimized in collaboration with engine companies for advanced turbine engine applications.

  6. Force Feedback Joystick

    NASA Technical Reports Server (NTRS)

    1997-01-01

    I-FORCE, a computer peripheral from Immersion Corporation, was derived from virtual environment and human factors research at the Advanced Displays and Spatial Perception Laboratory at Ames Research Center in collaboration with Stanford University Center for Design Research. Entrepreneur Louis Rosenberg, a former Stanford researcher, now president of Immersion, collaborated with Dr. Bernard Adelstein at Ames on studies of perception in virtual reality. The result was an inexpensive way to incorporate motors and a sophisticated microprocessor into joysticks and other game controllers. These devices can emulate the feel of a car on the skid, a crashing plane, the bounce of a ball, compressed springs, or other physical phenomenon. The first products incorporating I-FORCE technology include CH- Products' line of FlightStick and CombatStick controllers.

  7. Preparing Academic Medical Centers for the Clinical Learning Environment Review: Alliance of Independent Academic Medical Centers National Initiative IV Outcomes and Evaluation

    PubMed Central

    Wehbe-Janek, Hania; Markova, Tsveti; Polis, Rachael L.; Peters, Marguerite; Liu, Yang

    2016-01-01

    Background: Driven by changes to improve quality in patient care and population health while reducing costs, evolvement of the health system calls for restructuring health professionals' education and aligning it with the healthcare delivery system. In response to these changes, the Accreditation Council for Graduate Medical Education's Clinical Learning Environment Review (CLER) encourages the integration of health system leadership, faculty, and residents in restructuring graduate medical education (GME). Innovative approaches to achieving this restructuring and the CLER objectives are essential. Methods: The Alliance of Independent Academic Medical Centers National Initiative (NI) IV provided a multiinstitutional learning collaborative focused on supporting GME redesign. From October 2013 through March 2015, participants conducted relevant projects, attended onsite meetings, and participated in teleconferences and webinars addressing the CLER areas. Participants shared best practices, resources, and experiences. We designed a pre/post descriptive study to examine outcomes. Results: Thirty-three institutions completed NI IV, and at its conclusion, the majority reported greater CLER readiness compared with baseline. Twenty-two (88.0%) institutions reported that NI IV had a great impact on advancing their efforts in the CLER area of their project focus, and 15 (62.5%) reported a great impact in other CLER focus areas. Opportunities to share progress with other teams and the national group meetings were reported to contribute to teams' success. Conclusion: The NI IV learning collaborative prepared institutions for CLER, suggesting successful integration of the clinical and educational enterprises. We propose that national learning collaboratives of GME-sponsoring health systems enable advancement of their education mission, leading ultimately to better healthcare outcomes. This learning model may be generalizable to newfound programs for academic medical centers. PMID:27303228

  8. Earth System Science Education for the 21st Century: Progress and Plans

    NASA Astrophysics Data System (ADS)

    Ruzek, M.; Johnson, D. R.; Wake, C.; Aron, J.

    2005-12-01

    Earth System Science Education for the 21st Century (ESSE 21) is a collaborative undergraduate/graduate Earth system science education program sponsored by NASA offering small grants to colleges and universities with special emphasis on including minority institutions to engage faculty and scientists in the development of Earth system science courses, curricula, degree programs and shared learning resources. The annual ESSE 21 meeting in Fairbanks in August, 2005 provided an opportunity for 70 undergraduate educators and scientists to share their best classroom learning resources through a series of short presentations, posters and skills workshops. This poster will highlight meeting results, advances in the development of ESS learning modules, and describe a community-led proposal to develop in the coming year a Design Guide for Undergraduate Earth system Science Education to be based upon the experience of the 63 NASA-supported ESSE teams over the past 15 years. As a living document on the Web, the Design Guide would utilize and share ESSE experiences that: - Advance understanding of the Earth as a system - Apply ESS to the Vision for Space Exploration - Create environments appropriate for teaching and learning ESS - Improve STEM literacy and broaden career paths - Transform institutional priorities and approaches to ESS - Embrace ESS within Minority Serving Institutions - Build collaborative interdisciplinary partnerships - Develop ESS learning resources and modules The Design Guide aims to be a synthesis of just how ESS has been and is being implemented in the college and university environment, listing items essential for undergraduate Earth system education that reflect the collective wisdom of the ESS education community. The Design Guide will focus the vision for ESS in the coming decades, define the challenges, and explore collaborative processes that utilize the next generation of information and communication technology.

  9. Using VoiceThread to Promote Collaborative Learning in On-Line Clinical Nurse Leader Courses.

    PubMed

    Fox, Ola H

    The movement to advance the clinical nurse leader (CNL) as an innovative new role for meeting higher health care quality standards continues with CNL programs offered on-line at colleges and universities nationwide. Collaborative learning activities offer the opportunity for CNL students to gain experience in working together in small groups to negotiate and solve care process problems. The challenge for nurse educators is to provide collaborative learning activities in an asynchronous learning environment that can be considered isolating by default. This article reports on the experiences of 17 CNL students who used VoiceThread, a cloud-based tool that allowed them to communicate asynchronously with one another through voice comments for collaboration and sharing knowledge. Participants identified benefits and drawbacks to using VoiceThread for collaboration as compared to text-based discussion boards. Students reported that the ability to hear the voice of their peers and the instructor helped them feel like they were in a classroom communicating with "real" instructor and peers. Students indicated a preference for on-line classes that used VoiceThread discussions to on-line classes that used only text-based discussion boards. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Distributed computing testbed for a remote experimental environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butner, D.N.; Casper, T.A.; Howard, B.C.

    1995-09-18

    Collaboration is increasing as physics research becomes concentrated on a few large, expensive facilities, particularly in magnetic fusion energy research, with national and international participation. These facilities are designed for steady state operation and interactive, real-time experimentation. We are developing tools to provide for the establishment of geographically distant centers for interactive operations; such centers would allow scientists to participate in experiments from their home institutions. A testbed is being developed for a Remote Experimental Environment (REE), a ``Collaboratory.`` The testbed will be used to evaluate the ability of a remotely located group of scientists to conduct research on themore » DIII-D Tokamak at General Atomics. The REE will serve as a testing environment for advanced control and collaboration concepts applicable to future experiments. Process-to-process communications over high speed wide area networks provide real-time synchronization and exchange of data among multiple computer networks, while the ability to conduct research is enhanced by adding audio/video communication capabilities. The Open Software Foundation`s Distributed Computing Environment is being used to test concepts in distributed control, security, naming, remote procedure calls and distributed file access using the Distributed File Services. We are exploring the technology and sociology of remotely participating in the operation of a large scale experimental facility.« less

  11. Putting more ‘modern’ in modern physics education: a Knowledge Building approach using student questions and ideas about the universe

    NASA Astrophysics Data System (ADS)

    Wagner, Glenn

    2017-03-01

    Student-generated questions and ideas about our universe are the start of a rich and highly motivating learning environment. Using their curiosity-driven questions and ideas, students form Knowledge Building groups or ‘communities’ where they plan, set goals, design questions for research, and assess the progress of their work, tasks that were once under the control of the teacher. With the understanding that all knowledge and ideas are treated as improvable, students work collaboratively at their level of competency to share their knowledge, ideas and understandings gained from authoritative sources and laboratory activities. Over time, students work collectively to improve the knowledge and ideas of others that result in advances in understanding that benefit not only the individual but the community as a whole. Learning outcomes reported in this paper demonstrate that a Knowledge Building environment applied to introductory cosmology produced similar gains in knowledge and understanding surrounding foundational concepts compared to teacher-centred learning environments. Aside from new knowledge and understanding, students develop important skills and competencies such as question-asking, idea development, communication, collaboration that are becoming ever more important for 21st century living and working. Finally, the process of planning and initiating a Knowledge Building environment that produced the results reported in this paper is outlined.

  12. Collaborative Visualization Project: shared-technology learning environments for science learning

    NASA Astrophysics Data System (ADS)

    Pea, Roy D.; Gomez, Louis M.

    1993-01-01

    Project-enhanced science learning (PESL) provides students with opportunities for `cognitive apprenticeships' in authentic scientific inquiry using computers for data-collection and analysis. Student teams work on projects with teacher guidance to develop and apply their understanding of science concepts and skills. We are applying advanced computing and communications technologies to augment and transform PESL at-a-distance (beyond the boundaries of the individual school), which is limited today to asynchronous, text-only networking and unsuitable for collaborative science learning involving shared access to multimedia resources such as data, graphs, tables, pictures, and audio-video communication. Our work creates user technology (a Collaborative Science Workbench providing PESL design support and shared synchronous document views, program, and data access; a Science Learning Resource Directory for easy access to resources including two-way video links to collaborators, mentors, museum exhibits, media-rich resources such as scientific visualization graphics), and refine enabling technologies (audiovisual and shared-data telephony, networking) for this PESL niche. We characterize participation scenarios for using these resources and we discuss national networked access to science education expertise.

  13. Collaborative Mission Design at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Gough, Kerry M.; Allen, B. Danette; Amundsen, Ruth M.

    2005-01-01

    NASA Langley Research Center (LaRC) has developed and tested two facilities dedicated to increasing efficiency in key mission design processes, including payload design, mission planning, and implementation plan development, among others. The Integrated Design Center (IDC) is a state-of-the-art concurrent design facility which allows scientists and spaceflight engineers to produce project designs and mission plans in a real-time collaborative environment, using industry-standard physics-based development tools and the latest communication technology. The Mission Simulation Lab (MiSL), a virtual reality (VR) facility focused on payload and project design, permits engineers to quickly translate their design and modeling output into enhanced three-dimensional models and then examine them in a realistic full-scale virtual environment. The authors were responsible for envisioning both facilities and turning those visions into fully operational mission design resources at LaRC with multiple advanced capabilities and applications. In addition, the authors have created a synergistic interface between these two facilities. This combined functionality is the Interactive Design and Simulation Center (IDSC), a meta-facility which offers project teams a powerful array of highly advanced tools, permitting them to rapidly produce project designs while maintaining the integrity of the input from every discipline expert on the project. The concept-to-flight mission support provided by IDSC has shown improved inter- and intra-team communication and a reduction in the resources required for proposal development, requirements definition, and design effort.

  14. Advancing Student Achievement through Labor-Management Collaboration (Denver, Colorado, February 15-16, 2011)

    ERIC Educational Resources Information Center

    US Department of Education, 2011

    2011-01-01

    This paper presents the highlights of a conference entitled "Advancing Student Achievement through Labor-Management Collaboration" held in Denver, Colorado last February 15-16, 2011. This first-of-its-kind conference on labor-management collaboration is a historic effort to transform the relationships among local superintendents, school…

  15. Biomedical informatics research network: building a national collaboratory to hasten the derivation of new understanding and treatment of disease.

    PubMed

    Grethe, Jeffrey S; Baru, Chaitan; Gupta, Amarnath; James, Mark; Ludaescher, Bertram; Martone, Maryann E; Papadopoulos, Philip M; Peltier, Steven T; Rajasekar, Arcot; Santini, Simone; Zaslavsky, Ilya N; Ellisman, Mark H

    2005-01-01

    Through support from the National Institutes of Health's National Center for Research Resources, the Biomedical Informatics Research Network (BIRN) is pioneering the use of advanced cyberinfrastructure for medical research. By synchronizing developments in advanced wide area networking, distributed computing, distributed database federation, and other emerging capabilities of e-science, the BIRN has created a collaborative environment that is paving the way for biomedical research and clinical information management. The BIRN Coordinating Center (BIRN-CC) is orchestrating the development and deployment of key infrastructure components for immediate and long-range support of biomedical and clinical research being pursued by domain scientists in three neuroimaging test beds.

  16. Open cyberGIS software for geospatial research and education in the big data era

    NASA Astrophysics Data System (ADS)

    Wang, Shaowen; Liu, Yan; Padmanabhan, Anand

    CyberGIS represents an interdisciplinary field combining advanced cyberinfrastructure, geographic information science and systems (GIS), spatial analysis and modeling, and a number of geospatial domains to improve research productivity and enable scientific breakthroughs. It has emerged as new-generation GIS that enable unprecedented advances in data-driven knowledge discovery, visualization and visual analytics, and collaborative problem solving and decision-making. This paper describes three open software strategies-open access, source, and integration-to serve various research and education purposes of diverse geospatial communities. These strategies have been implemented in a leading-edge cyberGIS software environment through three corresponding software modalities: CyberGIS Gateway, Toolkit, and Middleware, and achieved broad and significant impacts.

  17. The right view from the wrong location: depth perception in stereoscopic multi-user virtual environments.

    PubMed

    Pollock, Brice; Burton, Melissa; Kelly, Jonathan W; Gilbert, Stephen; Winer, Eliot

    2012-04-01

    Stereoscopic depth cues improve depth perception and increase immersion within virtual environments (VEs). However, improper display of these cues can distort perceived distances and directions. Consider a multi-user VE, where all users view identical stereoscopic images regardless of physical location. In this scenario, cues are typically customized for one "leader" equipped with a head-tracking device. This user stands at the center of projection (CoP) and all other users ("followers") view the scene from other locations and receive improper depth cues. This paper examines perceived depth distortion when viewing stereoscopic VEs from follower perspectives and the impact of these distortions on collaborative spatial judgments. Pairs of participants made collaborative depth judgments of virtual shapes viewed from the CoP or after displacement forward or backward. Forward and backward displacement caused perceived depth compression and expansion, respectively, with greater compression than expansion. Furthermore, distortion was less than predicted by a ray-intersection model of stereo geometry. Collaboration times were significantly longer when participants stood at different locations compared to the same location, and increased with greater perceived depth discrepancy between the two viewing locations. These findings advance our understanding of spatial distortions in multi-user VEs, and suggest a strategy for reducing distortion.

  18. Design and Evaluation of a Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Wang, Qiyun

    2009-01-01

    Collaboration becomes an essential competency in the current knowledge society. In this study, a collaborative learning environment was designed to facilitate students in group collaboration. Instructional support strategies of friendship and meaningful learning tasks were applied to promote collaboration. Scaffolding strategies such as writing…

  19. Locating Elementary Teachers' Professional Communities in a Structured Collaboration Environment

    ERIC Educational Resources Information Center

    Chu, Szu Yang

    2016-01-01

    As teacher collaboration becomes an increasingly common goal in school organization, teachers' experiences and perspectives in a Structured Collaboration Environment remain under-examined. This qualitative case study explored how teachers participated in collaborative work, the outcomes of collaboration, and supports and obstacles to productive…

  20. Case study: a health check-up for the corporate IT department.

    PubMed

    Clark, Frank; Kimmerly, William

    2004-01-01

    As advances such as the electronic charting, closed-loop medication safety, physician order entry, consumer portals, electronic collaboration, and wireless access become the norm, central IS organizations are finding it difficult to keep pace. This challenge is exacerbated by declining margins, severe cost pressures, increased regulation, and added public scrutiny. Is your centralized IS organization healthy enough to meet the challenges presented by today's complex, demanding, dynamic healthcare delivery environments? How do you know? What factors do you consider?

  1. Architectural Aspects of Grid Computing and its Global Prospects for E-Science Community

    NASA Astrophysics Data System (ADS)

    Ahmad, Mushtaq

    2008-05-01

    The paper reviews the imminent Architectural Aspects of Grid Computing for e-Science community for scientific research and business/commercial collaboration beyond physical boundaries. Grid Computing provides all the needed facilities; hardware, software, communication interfaces, high speed internet, safe authentication and secure environment for collaboration of research projects around the globe. It provides highly fast compute engine for those scientific and engineering research projects and business/commercial applications which are heavily compute intensive and/or require humongous amounts of data. It also makes possible the use of very advanced methodologies, simulation models, expert systems and treasure of knowledge available around the globe under the umbrella of knowledge sharing. Thus it makes possible one of the dreams of global village for the benefit of e-Science community across the globe.

  2. Evolution of the indoor biome.

    PubMed

    Martin, Laura J; Adams, Rachel I; Bateman, Ashley; Bik, Holly M; Hawks, John; Hird, Sarah M; Hughes, David; Kembel, Steven W; Kinney, Kerry; Kolokotronis, Sergios-Orestis; Levy, Gabriel; McClain, Craig; Meadow, James F; Medina, Raul F; Mhuireach, Gwynne; Moreau, Corrie S; Munshi-South, Jason; Nichols, Lauren M; Palmer, Clare; Popova, Laura; Schal, Coby; Täubel, Martin; Trautwein, Michelle; Ugalde, Juan A; Dunn, Robert R

    2015-04-01

    Few biologists have studied the evolutionary processes at work in indoor environments. Yet indoor environments comprise approximately 0.5% of ice-free land area--an area as large as the subtropical coniferous forest biome. Here we review the emerging subfield of 'indoor biome' studies. After defining the indoor biome and tracing its deep history, we discuss some of its evolutionary dimensions. We restrict our examples to the species found in human houses--a subset of the environments constituting the indoor biome--and offer preliminary hypotheses to advance the study of indoor evolution. Studies of the indoor biome are situated at the intersection of evolutionary ecology, anthropology, architecture, and human ecology and are well suited for citizen science projects, public outreach, and large-scale international collaborations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The Computing and Data Grid Approach: Infrastructure for Distributed Science Applications

    NASA Technical Reports Server (NTRS)

    Johnston, William E.

    2002-01-01

    With the advent of Grids - infrastructure for using and managing widely distributed computing and data resources in the science environment - there is now an opportunity to provide a standard, large-scale, computing, data, instrument, and collaboration environment for science that spans many different projects and provides the required infrastructure and services in a relatively uniform and supportable way. Grid technology has evolved over the past several years to provide the services and infrastructure needed for building 'virtual' systems and organizations. We argue that Grid technology provides an excellent basis for the creation of the integrated environments that can combine the resources needed to support the large- scale science projects located at multiple laboratories and universities. We present some science case studies that indicate that a paradigm shift in the process of science will come about as a result of Grids providing transparent and secure access to advanced and integrated information and technologies infrastructure: powerful computing systems, large-scale data archives, scientific instruments, and collaboration tools. These changes will be in the form of services that can be integrated with the user's work environment, and that enable uniform and highly capable access to these computers, data, and instruments, regardless of the location or exact nature of these resources. These services will integrate transient-use resources like computing systems, scientific instruments, and data caches (e.g., as they are needed to perform a simulation or analyze data from a single experiment); persistent-use resources. such as databases, data catalogues, and archives, and; collaborators, whose involvement will continue for the lifetime of a project or longer. While we largely address large-scale science in this paper, Grids, particularly when combined with Web Services, will address a broad spectrum of science scenarios. both large and small scale.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammigan, K.; Hurh, P.

    The Radiation Damage In Accelerator Target Environments (RaDIATE) collaboration was founded in 2012 and currently consists of over 50 participants and 11 institutions globally. Due to the increasing power of future proton accelerator sources in target facilities, there is a critical need to further understand the physical and thermo-mechanical radiation response of target facility materials. Thus, the primary objective of the RaDIATE collaboration is to draw on existing expertise in the nuclear materials and accelerator targets fields to generate new and useful materials data for application within the accelerator and fission/fusion communities. Current research activities of the collaboration include postmore » irradiation examination (PIE) of decommissioned components from existing beamlines such as the NuMI beryllium beam window and graphite NT-02 target material. PIE of these components includes advanced microstructural analyses (SEM/TEM, EBSD, EDS) and micro-mechanics technique such as nano-indentation, to help characterize any microstructural radiation damage incurred during operation. New irradiation campaigns of various candidate materials at both low and high energy beam facilities are also being pursued. Beryllium helium implantation studies at the University of Surrey as well as high energy proton irradiation of various materials at Brookhaven National Laboratory’s BLIP facility have been initiated. The program also extends to beam-induced thermal shock experiments using high intensity beam pulses at CERN’s HiRadMat facility, followed by advanced PIE activities to evaluate thermal shock resistance of the materials. Preliminary results from ongoing research activities, as well as the future plans of the RaDIATE collaboration R&D program will be discussed.« less

  5. Engaging academia to advance the science and practice of environmental public health tracking.

    PubMed

    Strosnider, Heather; Zhou, Ying; Balluz, Lina; Qualters, Judith

    2014-10-01

    Public health agencies at the federal, state, and local level are responsible for implementing actions and policies that address health problems related to environmental hazards. These actions and policies can be informed by integrating or linking data on health, exposure, hazards, and population. The mission of the Centers for Disease Control and Prevention׳s National Environmental Public Health Tracking Program (Tracking Program) is to provide information from a nationwide network of integrated health, environmental hazard, and exposure data that drives actions to improve the health of communities. The Tracking Program and federal, state, and local partners collect, integrate, analyze, and disseminate data and information to inform environmental public health actions. However, many challenges exist regarding the availability and quality of data, the application of appropriate methods and tools to link data, and the state of the science needed to link and analyze health and environmental data. The Tracking Program has collaborated with academia to address key challenges in these areas. The collaboration has improved our understanding of the uses and limitations of available data and methods, expanded the use of existing data and methods, and increased our knowledge about the connections between health and environment. Valuable working relationships have been forged in this process, and together we have identified opportunities and improvements for future collaborations to further advance the science and practice of environmental public health tracking. Published by Elsevier Inc.

  6. Genomics of Extinct and Endangered Species (2011 JGI User Meeting)

    ScienceCinema

    Shuster, Stephen

    2018-02-13

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Stephen Shuster of Penn State University gives a presentation on "Genomics of Extinct and Endangered Species" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.

  7. A Curriculum for the New Dental Practitioner: Preparing Dentists for a Prospective Oral Health Care Environment

    PubMed Central

    Polverini, Peter J.

    2012-01-01

    The emerging concept of prospective health care would shift the focus of health care from disease management to disease prevention and health management. Dentistry has a unique opportunity to embrace this model of prospective and collaborative care and focus on the management of oral health. Academic dentistry must better prepare future dentists to succeed in this new health care environment by providing them with the scientific and technical knowledge required to understand and assess risk and practice disease prevention. Dental schools must consider creating career pathways for enabling future graduates to assume important leadership roles that will advance a prospective oral health care system. PMID:22390456

  8. Exploring Learning through Audience Interaction in Virtual Reality Dome Theaters

    NASA Astrophysics Data System (ADS)

    Apostolellis, Panagiotis; Daradoumis, Thanasis

    Informal learning in public spaces like museums, science centers and planetariums is increasingly popular during the last years. Recent advancements in large-scale displays allowed contemporary technology-enhanced museums to get equipped with digital domes, some with real-time capabilities like Virtual Reality systems. By conducting extensive literature review we have come to the conclusion that little to no research has been carried out on the leaning outcomes that the combination of VR and audience interaction can provide in the immersive environments of dome theaters. Thus, we propose that audience collaboration in immersive virtual reality environments presents a promising approach to support effective learning in groups of school aged children.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, Rob

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Rob Knight of the University of Colorado gives a presentation on "Spatially and Temporally Resolvedmore » Studies of the Human Microbiome" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.« less

  10. International Collaboration on Offshore Wind Energy Under IEA Annex XXIII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musial, W.; Butterfield, S.; Lemming, J.

    This paper defines the purpose of IEA Annex XXIII, the International Collaboration on Offshore Wind Energy. This international collaboration through the International Energy Agency (IEA) is an efficient forum from which to advance the technical and environmental experiences collected from existing offshore wind energy projects, as well as the research necessary to advance future technology for deep-water wind energy technology.

  11. Collaborative Scheduling Using JMS in a Mixed Java and .NET Environment

    NASA Technical Reports Server (NTRS)

    Wang, Yeou-Fang; Wax, Allan; Lam, Ray; Baldwin, John; Borden, Chet

    2006-01-01

    A viewgraph presentation to demonstrate collaborative scheduling using Java Message Service (JMS) in a mixed Java and .Net environment is given. The topics include: 1) NASA Deep Space Network scheduling; 2) Collaborative scheduling concept; 3) Distributed computing environment; 4) Platform concerns in a distributed environment; 5) Messaging and data synchronization; and 6) The prototype.

  12. The Astrobiology Habitable Environments Database (AHED)

    NASA Astrophysics Data System (ADS)

    Lafuente, B.; Stone, N.; Downs, R. T.; Blake, D. F.; Bristow, T.; Fonda, M.; Pires, A.

    2015-12-01

    The Astrobiology Habitable Environments Database (AHED) is a central, high quality, long-term searchable repository for archiving and collaborative sharing of astrobiologically relevant data, including, morphological, textural and contextural images, chemical, biochemical, isotopic, sequencing, and mineralogical information. The aim of AHED is to foster long-term innovative research by supporting integration and analysis of diverse datasets in order to: 1) help understand and interpret planetary geology; 2) identify and characterize habitable environments and pre-biotic/biotic processes; 3) interpret returned data from present and past missions; 4) provide a citable database of NASA-funded published and unpublished data (after an agreed-upon embargo period). AHED uses the online open-source software "The Open Data Repository's Data Publisher" (ODR - http://www.opendatarepository.org) [1], which provides a user-friendly interface that research teams or individual scientists can use to design, populate and manage their own database according to the characteristics of their data and the need to share data with collaborators or the broader scientific community. This platform can be also used as a laboratory notebook. The database will have the capability to import and export in a variety of standard formats. Advanced graphics will be implemented including 3D graphing, multi-axis graphs, error bars, and similar scientific data functions together with advanced online tools for data analysis (e. g. the statistical package, R). A permissions system will be put in place so that as data are being actively collected and interpreted, they will remain proprietary. A citation system will allow research data to be used and appropriately referenced by other researchers after the data are made public. This project is supported by the Science-Enabling Research Activity (SERA) and NASA NNX11AP82A, Mars Science Laboratory Investigations. [1] Nate et al. (2015) AGU, submitted.

  13. Toward visual user interfaces supporting collaborative multimedia content management

    NASA Astrophysics Data System (ADS)

    Husein, Fathi; Leissler, Martin; Hemmje, Matthias

    2000-12-01

    Supporting collaborative multimedia content management activities, as e.g., image and video acquisition, exploration, and access dialogues between naive users and multi media information systems is a non-trivial task. Although a wide variety of experimental and prototypical multimedia storage technologies as well as corresponding indexing and retrieval engines are available, most of them lack appropriate support for collaborative end-user oriented user interface front ends. The development of advanced user adaptable interfaces is necessary for building collaborative multimedia information- space presentations based upon advanced tools for information browsing, searching, filtering, and brokering to be applied on potentially very large and highly dynamic multimedia collections with a large number of users and user groups. Therefore, the development of advanced and at the same time adaptable and collaborative computer graphical information presentation schemes that allow to easily apply adequate visual metaphors for defined target user stereotypes has to become a key focus within ongoing research activities trying to support collaborative information work with multimedia collections.

  14. The Joint Space Operations Center (JSpOC) Mission System (JMS) and the Advanced Research, Collaboration, and Application Development Environment (ARCADE)

    NASA Astrophysics Data System (ADS)

    Runco, A.; Echeverry, J.; Kim, R.; Sabol, C.; Zetocha, P.; Murray-Krezan, J.

    2014-09-01

    The JSpOC Mission System is a modern service-oriented architecture (SOA) infrastructure with increased process automation and improved tools to enhance Space Situational Awareness (SSA). The JMS program has already delivered Increment 1 in April 2013 as initial capability to operations. The programs current focus, Increment 2, will be completed by 2016 and replace the legacy Space Defense Operations Center (SPADOC) and Astrodynamics Support Workstation (ASW) capabilities. Post 2016, JMS Increment 3 will continue to provide additional SSA and C2 capabilities that will require development of new applications and procedures as well as the exploitation of new data sources with more agility. In 2012, the JMS Program Office entered into a partnership with AFRL/RD (Directed Energy) and AFRL/RV (Space Vehicles) to create the Advanced Research, Collaboration, and Application Development Environment (ARCADE). The purpose of the ARCADE is to: (1) serve as a centralized testbed for all research and development (R&D) activities related to JMS applications, including algorithm development, data source exposure, service orchestration, and software services, and provide developers reciprocal access to relevant tools and data to accelerate technology development, (2) allow the JMS program to communicate user capability priorities and requirements to developers, (3) provide the JMS program with access to state-of-the-art research, development, and computing capabilities, and (4) support market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. AFRL/RV and AFRL/RD have created development environments at both unclassified and classified levels that together allow developers to develop applications and work with data sources. The unclassified ARCADE utilizes the Maui high performance computing (HPC) Portal, and can be accessed using a CAC or Kerberos using Yubikey. This environment gives developers a sandbox environment to test and benchmark algorithms and services. The classified environments allow these new applications to be integrated with the JMS SOA and other data sources to help mature the capability to TRL 6.

  15. An American Clinical Training Program for Spanish Nutrition Support Pharmacists: A Three-Year Experience

    PubMed Central

    Dickerson, Roland N.; Martinez, Eva M.; Fraile, M. Carmen; Giménez, Josefina; Calvo, M. Victoria

    2015-01-01

    A clinical nutrition support pharmacist training program, in collaboration with the Spanish Foundation of Hospital Pharmacy, Spanish Society of Clinical Nutrition, Abbott Nutrition International, University of Tennessee, College of Pharmacy and Regional One Health, is described. Nutrition support pharmacists from Spain were selected to participate in a one-month training program with an experienced board-certified nutrition support pharmacist faculty member within an interdisciplinary nutrition support team environment in the U.S. Participants were expected to actively engage in an advanced clinical practice role with supervision. Clinical activities included daily intensive patient monitoring, physical assessment, critical evaluation of the patient and development of an appropriate treatment plan for patients receiving either enteral or parenteral nutrition therapy. Upon successful completion of the training program, participants were anticipated to incorporate these techniques into their current practice in Spain and to train other pharmacists to function in an advanced clinical role independently or within an interdisciplinary nutrition support team environment. PMID:28975899

  16. Virtual reality and robotics for stroke rehabilitation: where do we go from here?

    PubMed

    Wade, Eric; Winstein, Carolee J

    2011-01-01

    Promoting functional recovery after stroke requires collaborative and innovative approaches to neurorehabilitation research. Task-oriented training (TOT) approaches that include challenging, adaptable, and meaningful activities have led to successful outcomes in several large-scale multisite definitive trials. This, along with recent technological advances of virtual reality and robotics, provides a fertile environment for furthering clinical research in neurorehabilitation. Both virtual reality and robotics make use of multimodal sensory interfaces to affect human behavior. In the therapeutic setting, these systems can be used to quantitatively monitor, manipulate, and augment the users' interaction with their environment, with the goal of promoting functional recovery. This article describes recent advances in virtual reality and robotics and the synergy with best clinical practice. Additionally, we describe the promise shown for automated assessments and in-home activity-based interventions. Finally, we propose a broader approach to ensuring that technology-based assessment and intervention complement evidence-based practice and maintain a patient-centered perspective.

  17. Exploring Collaborative Learning Effect in Blended Learning Environments

    ERIC Educational Resources Information Center

    Sun, Z.; Liu, R.; Luo, L.; Wu, M.; Shi, C.

    2017-01-01

    The use of new technology encouraged exploration of the effectiveness and difference of collaborative learning in blended learning environments. This study investigated the social interactive network of students, level of knowledge building and perception level on usefulness in online and mobile collaborative learning environments in higher…

  18. Evaluation of Intelligent Grouping Based on Learners' Collaboration Competence Level in Online Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Muuro, Maina Elizaphan; Oboko, Robert; Wagacha, Waiganjo Peter

    2016-01-01

    In this paper we explore the impact of an intelligent grouping algorithm based on learners' collaborative competency when compared with (a) instructor based Grade Point Average (GPA) method level and (b) random method, on group outcomes and group collaboration problems in an online collaborative learning environment. An intelligent grouping…

  19. A multi-disciplinary approach to implementation science: the NIH-PEPFAR PMTCT implementation science alliance.

    PubMed

    Sturke, Rachel; Harmston, Christine; Simonds, R J; Mofenson, Lynne M; Siberry, George K; Watts, D Heather; McIntyre, James; Anand, Nalini; Guay, Laura; Castor, Delivette; Brouwers, Pim; Nagel, Joan D

    2014-11-01

    In resource-limited countries, interventions to prevent mother-to-child HIV transmission (PMTCT) have not yet realized their full potential health impact, illustrating the common gap between the scientific proof of an intervention's efficacy and effectiveness and its successful implementation at scale into routine health services. For PMTCT, this gap results, in part, from inadequate adaptation of PMTCT interventions to the realities of the implementation environment, including client and health care worker behaviors and preferences, health care policies and systems, and infrastructure and resource constraints. Elimination of mother-to-child HIV transmission can only be achieved through understanding of key implementation barriers and successful adaptation of scientifically proven interventions to the local environment. Central to such efforts is implementation science (IS), which aims to investigate and address major bottlenecks that impede effective implementation and to test new approaches to identifying, understanding, and overcoming barriers to the adoption, adaptation, integration, scale-up, and sustainability of evidence-based interventions. Advancing IS will require deliberate and strategic efforts to facilitate collaboration, communication, and relationship-building among researchers, implementers, and policy-makers. To speed the translation of effective PMTCT interventions into practice and advance IS more broadly, the US National Institutes of Health, in collaboration with the President's Emergency Plan for AIDS Relief launched the National Institutes of Health/President's Emergency Plan for AIDS Relief PMTCT IS Alliance, comprised of IS researchers, PMTCT program implementers, and policy-makers as an innovative platform for interaction and coordination.

  20. EO/IR scene generation open source initiative for real-time hardware-in-the-loop and all-digital simulation

    NASA Astrophysics Data System (ADS)

    Morris, Joseph W.; Lowry, Mac; Boren, Brett; Towers, James B.; Trimble, Darian E.; Bunfield, Dennis H.

    2011-06-01

    The US Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) and the Redstone Test Center (RTC) has formed the Scene Generation Development Center (SGDC) to support the Department of Defense (DoD) open source EO/IR Scene Generation initiative for real-time hardware-in-the-loop and all-digital simulation. Various branches of the DoD have invested significant resources in the development of advanced scene and target signature generation codes. The SGDC goal is to maintain unlimited government rights and controlled access to government open source scene generation and signature codes. In addition, the SGDC provides development support to a multi-service community of test and evaluation (T&E) users, developers, and integrators in a collaborative environment. The SGDC has leveraged the DoD Defense Information Systems Agency (DISA) ProjectForge (https://Project.Forge.mil) which provides a collaborative development and distribution environment for the DoD community. The SGDC will develop and maintain several codes for tactical and strategic simulation, such as the Joint Signature Image Generator (JSIG), the Multi-spectral Advanced Volumetric Real-time Imaging Compositor (MAVRIC), and Office of the Secretary of Defense (OSD) Test and Evaluation Science and Technology (T&E/S&T) thermal modeling and atmospherics packages, such as EOView, CHARM, and STAR. Other utility packages included are the ContinuumCore for real-time messaging and data management and IGStudio for run-time visualization and scenario generation.

  1. An Overview of the CERC ARTEMIS Project

    PubMed Central

    Jagannathan, V.; Reddy, Y. V.; Srinivas, K.; Karinthi, R.; Shank, R.; Reddy, S.; Almasi, G.; Davis, T.; Raman, R.; Qiu, S.; Friedman, S.; Merkin, B.; Kilkenny, M.

    1995-01-01

    The basic premise of this effort is that health care can be made more effective and affordable by applying modern computer technology to improve collaboration among diverse and distributed health care providers. Information sharing, communication, and coordination are basic elements of any collaborative endeavor. In the health care domain, collaboration is characterized by cooperative activities by health care providers to deliver total and real-time care for their patients. Communication between providers and managed access to distributed patient records should enable health care providers to make informed decisions about their patients in a timely manner. With an effective medical information infrastructure in place, a patient will be able to visit any health care provider with access to the network, and the provider will be able to use relevant information from even the last episode of care in the patient record. Such a patient-centered perspective is in keeping with the real mission of health care providers. Today, an easy-to-use, integrated health care network is not in place in any community, even though current technology makes such a network possible. Large health care systems have deployed partial and disparate systems that address different elements of collaboration. But these islands of automation have not been integrated to facilitate cooperation among health care providers in large communities or nationally. CERC and its team members at Valley Health Systems, Inc., St. Marys Hospital and Cabell Huntington Hospital form a consortium committed to improving collaboration among the diverse and distributed providers in the health care arena. As the first contract recipient of the multi-agency High Performance Computing and Communications (HPCC) Initiative, this team of computer system developers, practicing rural physicians, community care groups, health care researchers, and tertiary care providers are using research prototypes and commercial off-the-shelf technologies to develop an open collaboration environment for the health care domain. This environment is called ARTEMIS — Advanced Research TEstbed for Medical InformaticS. PMID:8563249

  2. Employing socially driven techniques for framing, contextualization, and collaboration in complex analytical threads

    NASA Astrophysics Data System (ADS)

    Wollocko, Arthur; Danczyk, Jennifer; Farry, Michael; Jenkins, Michael; Voshell, Martin

    2015-05-01

    The proliferation of sensor technologies continues to impact Intelligence Analysis (IA) work domains. Historical procurement focus on sensor platform development and acquisition has resulted in increasingly advanced collection systems; however, such systems often demonstrate classic data overload conditions by placing increased burdens on already overtaxed human operators and analysts. Support technologies and improved interfaces have begun to emerge to ease that burden, but these often focus on single modalities or sensor platforms rather than underlying operator and analyst support needs, resulting in systems that do not adequately leverage their natural human attentional competencies, unique skills, and training. One particular reason why emerging support tools often fail is due to the gap between military applications and their functions, and the functions and capabilities afforded by cutting edge technology employed daily by modern knowledge workers who are increasingly "digitally native." With the entry of Generation Y into these workplaces, "net generation" analysts, who are familiar with socially driven platforms that excel at giving users insight into large data sets while keeping cognitive burdens at a minimum, are creating opportunities for enhanced workflows. By using these ubiquitous platforms, net generation analysts have trained skills in discovering new information socially, tracking trends among affinity groups, and disseminating information. However, these functions are currently under-supported by existing tools. In this paper, we describe how socially driven techniques can be contextualized to frame complex analytical threads throughout the IA process. This paper focuses specifically on collaborative support technology development efforts for a team of operators and analysts. Our work focuses on under-supported functions in current working environments, and identifies opportunities to improve a team's ability to discover new information and disseminate insightful analytic findings. We describe our Cognitive Systems Engineering approach to developing a novel collaborative enterprise IA system that combines modern collaboration tools with familiar contemporary social technologies. Our current findings detail specific cognitive and collaborative work support functions that defined the design requirements for a prototype analyst collaborative support environment.

  3. Collaborative Engineering for Research and Development

    NASA Technical Reports Server (NTRS)

    Davis, Jose M.; Keys, L. Ken; Chen, Injazz J.

    2004-01-01

    Research and development (R&D) organizations are being required to be relevant, to be more application-oriented, and to be partners in the strategic management of the business while meeting the same challenges as the rest of the organization, namely: (1) reduced time to market; (2) reduced cost; (3) improved quality; (4) increased reliability; and (5) increased focus on customer needs. Recent advances in computer technology and the Internet have created a new paradigm of collaborative engineering or collaborative product development (CPD), from which new types of relationships among researchers and their partners have emerged. Research into the applicability and benefits of CPD in a low/no production, R&D, and/or government environment is limited. In addition, the supply chain management (SCM) aspects of these relationships have not been studied. This paper presents research conducted at the NASA Glenn Research Center (GRC) investigating the applicability of CPD and SCM in an R&D organization. The study concentrates on the management and implementation of space research activities at GRC. Results indicate that although the organization is engaged in collaborative relationships that incorporate aspects of SCM, a number of areas, such as development of trust and information sharing merit special attention.

  4. Collaboratively charting the gene-to-phenotype network of human congenital heart defects

    PubMed Central

    2010-01-01

    Background How to efficiently integrate the daily practice of molecular biologists, geneticists, and clinicians with the emerging computational strategies from systems biology is still much of an open question. Description We built on the recent advances in Wiki-based technologies to develop a collaborative knowledge base and gene prioritization portal aimed at mapping genes and genomic regions, and untangling their relations with corresponding human phenotypes, congenital heart defects (CHDs). This portal is not only an evolving community repository of current knowledge on the genetic basis of CHDs, but also a collaborative environment for the study of candidate genes potentially implicated in CHDs - in particular by integrating recent strategies for the statistical prioritization of candidate genes. It thus serves and connects the broad community that is facing CHDs, ranging from the pediatric cardiologist and clinical geneticist to the basic investigator of cardiogenesis. Conclusions This study describes the first specialized portal to collaboratively annotate and analyze gene-phenotype networks. Of broad interest to the biological community, we argue that such portals will play a significant role in systems biology studies of numerous complex biological processes. CHDWiki is accessible at http://www.esat.kuleuven.be/~bioiuser/chdwiki PMID:20193066

  5. Application of NASA's Advanced Life Support Technologies for Waste Treatment, Water Purification and Recycle, and Food Production in Polar Regions

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Lewis, Carol E.; Covington, M. Alan (Technical Monitor)

    1995-01-01

    NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, and the National Science Foundation (NSF). The focus is a major issue in the state of Alaska and other areas of the Circumpolar North, the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the environment. The project primarily provides treatment and reduction of waste, purification and recycling of water. and production of food. A testbed is being established to demonstrate the technologies which will enable safe, healthy, and autonomous function of remote communities and to establish the base for commercial development of the resulting technology into new industries. The challenge is to implement the technological capabilities in a manner compatible with the social and economic structures of the native communities, the state, and the commercial sector. Additional information is contained in the original extended abstract.

  6. A study on haptic collaborative game in shared virtual environment

    NASA Astrophysics Data System (ADS)

    Lu, Keke; Liu, Guanyang; Liu, Lingzhi

    2013-03-01

    A study on collaborative game in shared virtual environment with haptic feedback over computer networks is introduced in this paper. A collaborative task was used where the players located at remote sites and played the game together. The player can feel visual and haptic feedback in virtual environment compared to traditional networked multiplayer games. The experiment was desired in two conditions: visual feedback only and visual-haptic feedback. The goal of the experiment is to assess the impact of force feedback on collaborative task performance. Results indicate that haptic feedback is beneficial for performance enhancement for collaborative game in shared virtual environment. The outcomes of this research can have a powerful impact on the networked computer games.

  7. A collaborative molecular modeling environment using a virtual tunneling service.

    PubMed

    Lee, Jun; Kim, Jee-In; Kang, Lin-Woo

    2012-01-01

    Collaborative researches of three-dimensional molecular modeling can be limited by different time zones and locations. A networked virtual environment can be utilized to overcome the problem caused by the temporal and spatial differences. However, traditional approaches did not sufficiently consider integration of different computing environments, which were characterized by types of applications, roles of users, and so on. We propose a collaborative molecular modeling environment to integrate different molecule modeling systems using a virtual tunneling service. We integrated Co-Coot, which is a collaborative crystallographic object-oriented toolkit, with VRMMS, which is a virtual reality molecular modeling system, through a collaborative tunneling system. The proposed system showed reliable quantitative and qualitative results through pilot experiments.

  8. Advanced Opto-Electronics (LIDAR and Microsensor Development)

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern C. (Technical Monitor); Spangler, Lee H.

    2005-01-01

    Our overall intent in this aspect of the project were to establish a collaborative effort between several departments at Montana State University for developing advanced optoelectronic technology for advancing the state-of-the-art in optical remote sensing of the environment. Our particular focus was on development of small systems that can eventually be used in a wide variety of applications that might include ground-, air-, and space deployments, possibly in sensor networks. Specific objectives were to: 1) Build a field-deployable direct-detection lidar system for use in measurements of clouds, aerosols, fish, and vegetation; 2) Develop a breadboard prototype water vapor differential absorption lidar (DIAL) system based on highly stable, tunable diode laser technology developed previously at MSU. We accomplished both primary objectives of this project, in developing a field-deployable direct-detection lidar and a breadboard prototype of a water vapor DIAL system. Paper summarizes each of these accomplishments.

  9. Supporting Awareness for Augmenting Participation in Collaborative Learning.

    ERIC Educational Resources Information Center

    Ogata, Hiroaki; Yano, Yoneo

    This paper describes Coconuts (Concurrent Collaborative Learning Environment Supported by Awareness), a proposed module of Sharlok (Sharing, Linking and Looking-for Knowledge), an open-ended and collaborative learning environment that integrates a knowledge building tool with a collaborative interface tool. Coconuts was developed in order to…

  10. LP DAAC MEaSUREs Project Artifact Tracking Via the NASA Earthdata Collaboration Environment

    NASA Astrophysics Data System (ADS)

    Bennett, S. D.

    2015-12-01

    The Land Processes Distributed Active Archive Center (LP DAAC) is a NASA Earth Observing System (EOS) Data and Information System (EOSDIS) DAAC that supports selected EOS Community non-standard data products such as the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Database (GED), and also supports NASA Earth Science programs such as Making Earth System Data Records for Use in Research Environments (MEaSUREs) to contribute in providing long-term, consistent, and mature data products. As described in The LP DAAC Project Lifecycle Plan (Daucsavage, J.; Bennett, S., 2014), key elements within the Project Inception Phase fuse knowledge between NASA stakeholders, data producers, and NASA data providers. To support and deliver excellence for NASA data stewardship, and to accommodate long-tail data preservation with Community and MEaSUREs products, the LP DAAC is utilizing NASA's own Earthdata Collaboration Environment to bridge stakeholder communication divides. By leveraging a NASA supported platform, this poster describes how the Atlassian Confluence software combined with a NASA URS/Earthdata support can maintain each project's members, status, documentation, and artifact checklist. Furthermore, this solution provides a gateway for project communities to become familiar with NASA clients, as well as educating the project's NASA DAAC Scientists for NASA client distribution.

  11. Augmenting Sand Simulation Environments through Subdivision and Particle Refinement

    NASA Astrophysics Data System (ADS)

    Clothier, M.; Bailey, M.

    2012-12-01

    Recent advances in computer graphics and parallel processing hardware have provided disciplines with new methods to evaluate and visualize data. These advances have proven useful for earth and planetary scientists as many researchers are using this hardware to process large amounts of data for analysis. As such, this has provided opportunities for collaboration between computer graphics and the earth sciences. Through collaboration with the Oregon Space Grant and IGERT Ecosystem Informatics programs, we are investigating techniques for simulating the behavior of sand. We are also collaborating with the Jet Propulsion Laboratory's (JPL) DARTS Lab to exchange ideas and gain feedback on our research. The DARTS Lab specializes in simulation of planetary vehicles, such as the Mars rovers. Their simulations utilize a virtual "sand box" to test how a planetary vehicle responds to different environments. Our research builds upon this idea to create a sand simulation framework so that planetary environments, such as the harsh, sandy regions on Mars, are more fully realized. More specifically, we are focusing our research on the interaction between a planetary vehicle, such as a rover, and the sand beneath it, providing further insight into its performance. Unfortunately, this can be a computationally complex problem, especially if trying to represent the enormous quantities of sand particles interacting with each other. However, through the use of high-performance computing, we have developed a technique to subdivide areas of actively participating sand regions across a large landscape. Similar to a Level of Detail (LOD) technique, we only subdivide regions of a landscape where sand particles are actively participating with another object. While the sand is within this subdivision window and moves closer to the surface of the interacting object, the sand region subdivides into smaller regions until individual sand particles are left at the surface. As an example, let's say there is a planetary rover interacting with our sand simulation environment. Sand that is actively interacting with a rover wheel will be represented as individual particles whereas sand that is further under the surface will be represented by larger regions of sand. The result of this technique allows for many particles to be represented without the computational complexity. In developing this method, we have further generalized these subdivision regions into any volumetric area suitable for use in the simulation. This is a further improvement of our method as it allows for more compact subdivision sand regions. This helps to fine tune the simulation so that more emphasis can be placed on regions of actively participating sand. We feel that through the generalization of our technique, our research can provide other opportunities within the earth and planetary sciences. Through collaboration with our academic colleagues, we continue to refine our technique and look for other opportunities to utilize our research.

  12. The Application of Modeling and Simulation to the Behavioral Deficit of Autism

    NASA Technical Reports Server (NTRS)

    Anton, John J.

    2010-01-01

    This abstract describes a research effort to apply technological advances in virtual reality simulation and computer-based games to create behavioral modification programs for individuals with Autism Spectrum Disorder (ASD). The research investigates virtual social skills training within a 3D game environment to diminish the impact of ASD social impairments and to increase learning capacity for optimal intellectual capability. Individuals with autism will encounter prototypical social contexts via computer interface and will interact with 3D avatars with predefined roles within a game-like environment. Incremental learning objectives will combine to form a collaborative social environment. A secondary goal of the effort is to begin the research and development of virtual reality exercises aimed at triggering the release of neurotransmitters to promote critical aspects of synaptic maturation at an early age to change the course of the disease.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The LEDS Global Partnership (LEDS GP) strives to advance climate-resilient, low-emission development through catalyzing collaboration, information exchange, and action on the ground. The Government of Kenya is a key LEDS GP member and offers an inspiring example of how LEDS GP is having an impact globally. The 2012 LEDS Collaboration in Action workshop in London provided an interactive space for members to share experiences on cross-ministerial LEDS leadership and to learn about concrete development impacts of LEDS around the world. Inspired by these stories, the Kenya's Ministry of State for Planning, National Development and Vision 2030 (MPND) began to collaboratemore » closely with the Ministry of Environment and Mineral Resources to create strong links between climate change action and development in the country, culminating in the integration of Kenya's National Climate Change Action Plan and the country's Medium Term Development Plan.« less

  14. Project-focused activity and knowledge tracker: a unified data analysis, collaboration, and workflow tool for medicinal chemistry project teams.

    PubMed

    Brodney, Marian D; Brosius, Arthur D; Gregory, Tracy; Heck, Steven D; Klug-McLeod, Jacquelyn L; Poss, Christopher S

    2009-12-01

    Advances in the field of drug discovery have brought an explosion in the quantity of data available to medicinal chemists and other project team members. New strategies and systems are needed to help these scientists to efficiently gather, organize, analyze, annotate, and share data about potential new drug molecules of interest to their project teams. Herein we describe a suite of integrated services and end-user applications that facilitate these activities throughout the medicinal chemistry design cycle. The Automated Data Presentation (ADP) and Virtual Compound Profiler (VCP) processes automate the gathering, organization, and storage of real and virtual molecules, respectively, and associated data. The Project-Focused Activity and Knowledge Tracker (PFAKT) provides a unified data analysis and collaboration environment, enhancing decision-making, improving team communication, and increasing efficiency.

  15. Distributed Collaborative Homework Activities in a Problem-Based Usability Engineering Course

    ERIC Educational Resources Information Center

    Carroll, John M.; Jiang, Hao; Borge, Marcela

    2015-01-01

    Teams of students in an upper-division undergraduate Usability Engineering course used a collaborative environment to carry out a series of three distributed collaborative homework assignments. Assignments were case-based analyses structured using a jigsaw design; students were provided a collaborative software environment and introduced to a…

  16. Using Five Stage Model to Design of Collaborative Learning Environments in Second Life

    ERIC Educational Resources Information Center

    Orhan, Sevil; Karaman, M. Kemal

    2014-01-01

    Specifically Second Life (SL) among virtual worlds draws attention of researchers to form collaborative learning environments (Sutcliffe & Alrayes, 2012) since it could be used as a rich platform to simulate a real environment containing many collaborative learning characteristics and interaction tools within itself. Five Stage Model (FSM)…

  17. Simulating Sand Behavior through Terrain Subdivision and Particle Refinement

    NASA Astrophysics Data System (ADS)

    Clothier, M.

    2013-12-01

    Advances in computer graphics, GPUs, and parallel processing hardware have provided researchers with new methods to visualize scientific data. In fact, these advances have spurred new research opportunities between computer graphics and other disciplines, such as Earth sciences. Through collaboration, Earth and planetary scientists have benefited by using these advances in hardware technology to process large amounts of data for visualization and analysis. At Oregon State University, we are collaborating with the Oregon Space Grant and IGERT Ecosystem Informatics programs to investigate techniques for simulating the behavior of sand. In addition, we have also been collaborating with the Jet Propulsion Laboratory's DARTS Lab to exchange ideas on our research. The DARTS Lab specializes in the simulation of planetary vehicles, such as the Mars rovers. One aspect of their work is testing these vehicles in a virtual "sand box" to test their performance in different environments. Our research builds upon this idea to create a sand simulation framework to allow for more complex and diverse environments. As a basis for our framework, we have focused on planetary environments, such as the harsh, sandy regions on Mars. To evaluate our framework, we have used simulated planetary vehicles, such as a rover, to gain insight into the performance and interaction between the surface sand and the vehicle. Unfortunately, simulating the vast number of individual sand particles and their interaction with each other has been a computationally complex problem in the past. However, through the use of high-performance computing, we have developed a technique to subdivide physically active terrain regions across a large landscape. To achieve this, we only subdivide terrain regions where sand particles are actively participating with another object or force, such as a rover wheel. This is similar to a Level of Detail (LOD) technique, except that the density of subdivisions are determined by their proximity to the interacting object or force with the sand. To illustrate an example, as a rover wheel moves forward and approaches a particular sand region, that region will continue to subdivide until individual sand particles are represented. Conversely, if the rover wheel moves away, previously subdivided sand regions will recombine. Thus, individual sand particles are available when an interacting force is present but stored away if there is not. As such, this technique allows for many particles to be represented without the computational complexity. We have also further generalized these subdivision regions in our sand framework into any volumetric area suitable for use in the simulation. This allows for more compact subdivision regions and has fine-tuned our framework so that more emphasis can be placed on regions of actively participating sand. We feel that this increases the framework's usefulness across scientific applications and can provide for other research opportunities within the earth and planetary sciences. Through continued collaboration with our academic partners, we continue to build upon our sand simulation framework and look for other opportunities to utilize this research.

  18. Framing the Progress of Collaborative Teacher Education

    ERIC Educational Resources Information Center

    Griffin, Cynthia C.; Pugach, Marlene C.

    2007-01-01

    In this article, the authors advance 10 postulates describing what they believe to be true about collaboration in special education: (1) Collaboration in teacher education is possible; (2) Collaborative programs can be initiated from many departure points; (3) Collaboration requires real time for communication; (4) Supportive leadership is…

  19. Advanced Collaborative Emissions Study (ACES)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenbaum, Daniel; Costantini, Maria; Van Erp, Annemoon

    2013-12-31

    The objective of the Advanced Collaborative Emissions Study (ACES) was to determine before widespread commercial deployment whether or not the new, energy-efficient, heavy duty diesel engines (2007 and 2010 EPA Emissions Standards Compliant) may generate anticipated toxic emissions that could adversely affect the environment and human health. ACES was planned to take place in three phases. In Phase 1, extensive emissions characterization of four production-intent prototype engine and control systems designed to meet 2007 standards for nitrogen oxides (NOx) and particulate matter (PM) was conducted at an existing emissions characterization facility: Southwest Research Institute (SwRI). One of the tested enginesmore » was selected (at random, after careful comparison of results) for health testing in Phase 3. In Phase 2, extensive emission characterization of three production-intent prototype engine and control systems meeting the 2010 standards (including more advanced NOx controls to meet the more stringent 2010 NOx standards) was conducted at the same test facility. In Phase 3, one engine/aftertreatment system selected from Phase 1 was further characterized during health effects studies (at an existing inhalation toxicology laboratory: Lovelace Respiratory Research Institute, [LRRI]) to form the basis of the ACES safety assessment. The Department of Energy (DOE) award provided funding for emissions characterization in Phases 1 and 2 as well as exposure characterization in Phase 3. The main health analyses in Phase 3 were funded separately and are not reported here.« less

  20. TP Atlas: integration and dissemination of advances in Targeted Proteins Research Program (TPRP)-structural biology project phase II in Japan.

    PubMed

    Iwayanagi, Takao; Miyamoto, Sei; Konno, Takeshi; Mizutani, Hisashi; Hirai, Tomohiro; Shigemoto, Yasumasa; Gojobori, Takashi; Sugawara, Hideaki

    2012-09-01

    The Targeted Proteins Research Program (TPRP) promoted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan is the phase II of structural biology project (2007-2011) following the Protein 3000 Project (2002-2006) in Japan. While the phase I Protein 3000 Project put partial emphasis on the construction and maintenance of pipelines for structural analyses, the TPRP is dedicated to revealing the structures and functions of the targeted proteins that have great importance in both basic research and industrial applications. To pursue this objective, 35 Targeted Proteins (TP) Projects selected in the three areas of fundamental biology, medicine and pharmacology, and food and environment are tightly collaborated with 10 Advanced Technology (AT) Projects in the four fields of protein production, structural analyses, chemical library and screening, and information platform. Here, the outlines and achievements of the 35 TP Projects are summarized in the system named TP Atlas. Progress in the diversified areas is described in the modules of Graphical Summary, General Summary, Tabular Summary, and Structure Gallery of the TP Atlas in the standard and unified format. Advances in TP Projects owing to novel technologies stemmed from AT Projects and collaborative research among TP Projects are illustrated as a hallmark of the Program. The TP Atlas can be accessed at http://net.genes.nig.ac.jp/tpatlas/index_e.html .

  1. One Health – a strategy for resilience in a changing arctic

    PubMed Central

    Ruscio, Bruce A.; Brubaker, Michael; Glasser, Joshua; Hueston, Will; Hennessy, Thomas W.

    2015-01-01

    The circumpolar north is uniquely vulnerable to the health impacts of climate change. While international Arctic collaboration on health has enhanced partnerships and advanced the health of inhabitants, significant challenges lie ahead. One Health is an approach that considers the connections between the environment, plant, animal and human health. Understanding this is increasingly critical in assessing the impact of global climate change on the health of Arctic inhabitants. The effects of climate change are complex and difficult to predict with certainty. Health risks include changes in the distribution of infectious disease, expansion of zoonotic diseases and vectors, changing migration patterns, impacts on food security and changes in water availability and quality, among others. A regional network of diverse stakeholder and transdisciplinary specialists from circumpolar nations and Indigenous groups can advance the understanding of complex climate-driven health risks and provide community-based strategies for early identification, prevention and adaption of health risks in human, animals and environment. We propose a regional One Health approach for assessing interactions at the Arctic human–animal–environment interface to enhance the understanding of, and response to, the complexities of climate change on the health of the Arctic inhabitants. PMID:26333722

  2. A Collaborative Molecular Modeling Environment Using a Virtual Tunneling Service

    PubMed Central

    Lee, Jun; Kim, Jee-In; Kang, Lin-Woo

    2012-01-01

    Collaborative researches of three-dimensional molecular modeling can be limited by different time zones and locations. A networked virtual environment can be utilized to overcome the problem caused by the temporal and spatial differences. However, traditional approaches did not sufficiently consider integration of different computing environments, which were characterized by types of applications, roles of users, and so on. We propose a collaborative molecular modeling environment to integrate different molecule modeling systems using a virtual tunneling service. We integrated Co-Coot, which is a collaborative crystallographic object-oriented toolkit, with VRMMS, which is a virtual reality molecular modeling system, through a collaborative tunneling system. The proposed system showed reliable quantitative and qualitative results through pilot experiments. PMID:22927721

  3. A Proposed Framework for Collaborative Design in a Virtual Environment

    NASA Astrophysics Data System (ADS)

    Breland, Jason S.; Shiratuddin, Mohd Fairuz

    This paper describes a proposed framework for a collaborative design in a virtual environment. The framework consists of components that support a true collaborative design in a real-time 3D virtual environment. In support of the proposed framework, a prototype application is being developed. The authors envision the framework will have, but not limited to the following features: (1) real-time manipulation of 3D objects across the network, (2) support for multi-designer activities and information access, (3) co-existence within same virtual space, etc. This paper also discusses a proposed testing to determine the possible benefits of a collaborative design in a virtual environment over other forms of collaboration, and results from a pilot test.

  4. Study on Collaborative Object Manipulation in Virtual Environment

    NASA Astrophysics Data System (ADS)

    Mayangsari, Maria Niken; Yong-Moo, Kwon

    This paper presents comparative study on network collaboration performance in different immersion. Especially, the relationship between user collaboration performance and degree of immersion provided by the system is addressed and compared based on several experiments. The user tests on our system include several cases: 1) Comparison between non-haptics and haptics collaborative interaction over LAN, 2) Comparison between non-haptics and haptics collaborative interaction over Internet, and 3) Analysis of collaborative interaction between non-immersive and immersive display environments.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigoriev, Igor; Glass, N. Louise; Martin, Francis

    The U.S. Department of Energy (DOE) Joint Genome Institute (JGI) managed by Lawrence Berkeley National Laboratory, is the only user facility in the world devoted to problems of energy and environment. With over one million species, fungi—which include mushrooms—represent one of the largest under-explored branches of the Tree of Life. Together with its community of more than 1,000 scientific collaborators, JGI helping to unlock the secrets encoded in the genomes of fungi to advance a better understanding of the global carbon cycle and to develop new biotechnology products, next-generation biofuels, and medicines.

  6. CMC Research at NASA Glenn in 2017: Recent Progress and Plans

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2017-01-01

    As part of NASA's Aeronautics research mission, Glenn Research Center has developed advanced constituents for 2700F CMC turbine engine applications. In this presentation, fiber and matrix development and characterization for SiCSiC composites will be reviewed and resulting improvements in CMC durability and mechanical properties will be summarized. Progress toward the development and validation of models predicting the effects of the engine environment on durability of CMC and Environmental Barrier Coatings will be summarized and plans for research and collaborations in 2017 will be summarized.

  7. A Pilot Study: Facilitating Cross-Cultural Understanding with Project-Based Collaborative Learning in an Online Environment

    ERIC Educational Resources Information Center

    Shadiev, Rustam; Hwang, Wu-Yuin; Huang, Yueh-Min

    2015-01-01

    This study investigated three aspects: how project-based collaborative learning facilitates cross-cultural understanding; how students perceive project-based collaborative learning implementation in a collaborative cyber community (3C) online environment; and what types of communication among students are used. A qualitative case study approach…

  8. Effects of Collaborative Learning Styles on Performance of Students in a Ubiquitous Collaborative Mobile Learning Environment

    ERIC Educational Resources Information Center

    Fakomogbon, Michael Ayodele; Bolaji, Hameed Olalekan

    2017-01-01

    Collaborative learning is an approach employed by instructors to facilitate learning and improve learner's performance. Mobile learning can accommodate a variety of learning approaches. This study, therefore, investigated the effects of collaborative learning styles on performance of students in a mobile learning environment. The specific purposes…

  9. Genomics of Extinct and Endangered Species (2011 JGI User Meeting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shuster, Stephen

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Stephen Shuster of Penn State University gives a presentation on "Genomics of Extinct and Endangeredmore » Species" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.« less

  10. Building Communities: The Community Sequencing Program at JGI (2011 JGI User Meeting)

    ScienceCinema

    Bristow, Jim

    2018-01-22

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy Environment Meeting held March 22-24, 2011 in Walnut Creek, CA. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. DOE JGI Deputy Director Jim Bristow gives a presentation on the Community Sequencing Program at the 6th annual Genomics of Energy and Environment Meeting on March 23, 2011.

  11. ATLAS-plus: Multimedia Instruction in Embryology, Gross Anatomy, and Histology

    PubMed Central

    Chapman, CM; Miller, JG; Bush, LC; Bruenger, JA; Wysor, WJ; Meininger, ET; Wolf, FM; Fischer, TV; Beaudoin, AR; Burkel, WE; MacCallum, DK; Fisher, DL; Carlson, BM

    1992-01-01

    ATLAS-plus [Advanced Tools for Learning Anatomical Structure] is a multimedia program used to assist in the teaching of anatomy at the University of Michigan Medical School. ATLAS-plus contains three courses: Histology, Embryology, and Gross Anatomy. In addition to the three courses, a glossary containing terms from the three courses is available. All three courses and the glossary are accessible in the ATLAS-plus environment. The ATLAS-plus environment provides a consistent set of tools and options so that the user can navigate easily and intelligently in and between the various courses and modules in the ATLAS-plus world. The program is a collaboration between anatomy and cell biology faculty, medical students, graphic artists, systems analysts, and instructional designers. PMID:1482964

  12. Genomic Speciation and Adaptation in Aquilegia (2011 JGI User Meeting)

    ScienceCinema

    Hodges, Scott

    2018-02-14

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Scott Hodges of the University of California, Santa Barbara gives a presentation on Genomic Speciation and Adaptation in Aquilegia at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.

  13. The Gulf Oil Spill: Ecogenomics and Ecoresilience (Keynote - 2011 JGI User Meeting)

    ScienceCinema

    Hazen, Terry [LBNL

    2018-04-25

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Berkeley Lab microbial ecologist Terry Hazen delivers a keynote on "The Gulf Oil Spill: Ecogenomics and Ecoresilience" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011.

  14. Association Genetics of Populus trichocarpa or Resequencing in Populus: Towards Genome Wide Association Genetics (2011 JGI User Meeting)

    ScienceCinema

    Tuskan, Gerry

    2018-02-13

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gerry Tuskan of Oak Ridge National Laboratory on Resequencing in Populus: Towards Genome Wide Association Genetics at the 6th annual Genomics of Energy Environment Meeting on March 23, 2011.

  15. Designing Biological Systems for Sustainability and Programmed Environmental Interface (2011 JGI User Meeting)

    ScienceCinema

    Silver, Pamela

    2018-02-13

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Pam Silver of Harvard University gives a presentation on "Designing Biological Systems for Sustainability and Programmed Environmental Interface" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.

  16. Spatially and Temporally Resolved Studies of the Human Microbiome (2011 JGI User Meeting)

    ScienceCinema

    Knight, Rob

    2018-04-26

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Rob Knight of the University of Colorado gives a presentation on "Spatially and Temporally Resolved Studies of the Human Microbiome" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.

  17. CoLeMo: A Collaborative Learning Environment for UML Modelling

    ERIC Educational Resources Information Center

    Chen, Weiqin; Pedersen, Roger Heggernes; Pettersen, Oystein

    2006-01-01

    This paper presents the design, implementation, and evaluation of a distributed collaborative UML modelling environment, CoLeMo. CoLeMo is designed for students studying UML modelling. It can also be used as a platform for collaborative design of software. We conducted formative evaluations and a summative evaluation to improve the environment and…

  18. Navy Collaborative Integrated Information Technology Initiative

    DTIC Science & Technology

    2000-01-11

    investigating the development and application of collaborative multimedia conferencing software for education and other groupwork activities. We are extending...an alternative environment for place-based synchronous groupwork . The new environment is based on the same collaborative infrastructure as the...alternative environment for place- based synchronous groupwork . This information is being used as an initial user profile, requirements analysis

  19. Building Bridges: Leveraging Interdisciplinary Collaborations in the Development of Biomaterials to Meet Clinical Needs

    PubMed Central

    Fong, Eliza L.S.; Watson, Brendan M.; Kasper, F. Kurtis

    2013-01-01

    Our laboratory at Rice University has forged numerous collaborations with clinicians and basic scientists over the years to advance the development of novel biomaterials and modification of existing materials to meet clinical needs. This review highlights collaborative advances in biomaterials research from our laboratory in the areas of scaffold development, drug delivery and gene therapy, especially as related to applications in bone and cartilage tissue engineering. PMID:22821772

  20. Update on ORNL TRANSFORM Tool: Simulating Multi-Module Advanced Reactor with End-to-End I&C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Richard Edward; Fugate, David L.; Cetiner, Sacit M.

    2015-05-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the fourth year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled reactor) concepts, including the use of multiple coupled reactors at a single site. The focus of this report is the development of a steam generator and drum system model that includes the complex dynamics of typical steam drum systems, the development of instrumentation and controls for the steam generator with drum system model, and the development of multi-reactor module models that reflect the full power reactormore » innovative small module design concept. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor models; ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface technical area; and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the TRANSFORM tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the Advanced Reactors Technology program; (2) developing a library of baseline component modules that can be assembled into full plant models using available geometry, design, and thermal-hydraulic data; (3) defining modeling conventions for interconnecting component models; and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.« less

  1. ARL Collaborative Research Alliance Materials in Extreme Dynamic Environments (MEDE)

    DTIC Science & Technology

    2010-11-19

    Program Internal to the CRA Staff Rotation Lectures, Workshops, and Research Reviews Education Opportunities for Government Personnel Student ... Engagement with ARL Research Environment Industry Partnership + Collaboration Other Collaboration Opportunities High Performance Computing DoD

  2. Play Well With Others: Improvisational Theater and Collaboration in the Homeland Security Environment

    DTIC Science & Technology

    2013-09-01

    AND COLLABORATION IN THE HOMELAND SECURITY ENVIRONMENT 5. FUNDING NUMBERS 6. AUTHOR(S) Andrew J. Phelps 7. PERFORMING ORGANIZATION NAME(S) AND...ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S...collaboration is important, but we are not told how to collaborate. Improvisational theater, on the other hand, is built on collaboration among performers to

  3. Advanced situation awareness with localised environmental community observatories in the Future Internet

    NASA Astrophysics Data System (ADS)

    Sabeur, Z. A.; Denis, H.; Nativi, S.

    2012-04-01

    The phenomenal advances in information and communication technologies over the last decade have led to offering unprecedented connectivity with real potentials for "Smart living" between large segments of human populations around the world. In particular, Voluntary Groups(VGs) and individuals with interest in monitoring the state of their local environment can be connected through the internet and collaboratively generate important localised environmental observations. These could be considered as the Community Observatories(CO) of the Future Internet(FI). However, a set of FI enablers are needed to be deployed for these communities to become effective COs in the Future Internet. For example, these communities will require access to services for the intelligent processing of heterogeneous data and capture of advancend situation awarness about the environment. This important enablement will really unlock the communities true potential for participating in localised monitoring of the environment in addition to their contribution in the creation of business entreprise. Among the eight Usage Areas(UA) projects of the FP7 FI-PPP programme, the ENVIROFI Integrated Project focuses on the specifications of the Future Internet enablers of the Environment UA. The specifications are developed under multiple environmental domains in context of users needs for the development of mash-up applications in the Future Internet. It will enable users access to real-time, on-demand fused information with advanced situation awareness about the environment at localised scales. The mash-up applications shall get access to rich spatio-temporal information from structured fusion services which aggregate COs information with existing environmental monitoring stations data, established by research organisations and private entreprise. These applications are being developed in ENVIROFI for the atmospheric, marine and biodiversity domains, together with a potential to be extended to other domains and scenarios concerning smart and safe living in the Future Internet.

  4. Learning and Teaching in a Synchronous Collaborative Environment.

    ERIC Educational Resources Information Center

    Marjanovic, Olivera

    1999-01-01

    Describes a new synchronous collaborative environment that combines interactive learning and Group Support Systems for computer-mediated collaboration. Illustrates its potential to improve critical thinking, problem solving, and communication skills, and describes how teachers' roles are changed. (Author/LRW)

  5. The Self-Formation of Collaborative Groups in a Problem Based Learning Environment

    ERIC Educational Resources Information Center

    Raiyn, Jamal; Tilchin, Oleg

    2016-01-01

    The aim of this paper is to present "the three steps method" of the self-formation of collaborative groups in a problem-based learning environment. The self-formation of collaborative groups is based on sharing of accountability among students for solving instructional problems. The steps of the method are planning collaborative problem…

  6. Preservice Science Teachers' Collaborative Knowledge Building through Argumentation on Healthy Eating in a Computer Supported Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Namdar, Bahadir

    2017-01-01

    The purpose of this study was to investigate preservice science teachers' collaborative knowledge building through socioscientific argumentation on healthy eating in a multiple representation-rich computer supported collaborative learning (CSCL) environment. This study was conducted with a group of preservice science teachers (n = 18) enrolled in…

  7. Building successful coalitions for promoting advance care planning.

    PubMed

    Marchand, Lucille; Fowler, Kathryn J; Kokanovic, Obrad

    2006-01-01

    Advance care planning (ACP) has had few successful initiatives. This qualitative study explores the challenges and successes of an advance care planning coalition in Wisconsin called Life Planning 2000 using key informant interviews (n = 24) and grounded theory. Major themes included: commitment (the need for leadership, recruitment of key members, and funding); cohesiveness (disparate groups collaborating toward a common purpose), and outcomes (shift in paradigm from signing documents to process of advanced care planning, new-found collaborative relationships, and educational tool development). Coalitions need to define short-, intermediate-, and long-term goals that result in measurable outcomes and an evaluation process. Resources must be commensurate with goals. Strong leadership, paid staff adequate funding, and the collaboration of diverse groups working toward common goals are the basic requirements of a successful coalition.

  8. Progress in the development of advanced solar reflectors

    NASA Astrophysics Data System (ADS)

    Kennedy, C.; Jorgensen, G.

    1994-01-01

    Solar thermal technologies require large mirrors to provide concentrated sunlight for renewable power generation. Such materials must be inexpensive and maintain high specular reflectance for extended lifetimes in severe outdoor environments. Polymer reflectors are lighter than glass mirrors, offer greater system design flexibility, and have the potential for lower cost. During the past year, collaborative cost-shared research and development between the National Renewable Energy Laboratory (NREL) and industrial partners has identified candidate materials that perform better than the state-of-the-art commercial silvered-polymer reflectors in terms of corrosion degradation and resistance to delamination failure. Additional cooperative efforts will produce new alternative materials with reduced costs due to high speed production line capability. NREL welcomes continued and expanded interest and web coating industry involvement in developing advanced solar reflector materials.

  9. Essay: Robert H. Siemann As Leader of the Advanced Accelerator Research Department

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colby, Eric R.; Hogan, Mark J.; /SLAC

    Robert H. Siemann originally conceived of the Advanced Accelerator Research Department (AARD) as an academic, experimental group dedicated to probing the technical limitations of accelerators while providing excellent educational opportunities for young scientists. The early years of the Accelerator Research Department B, as it was then known, were dedicated to a wealth of mostly student-led experiments to examine the promise of advanced accelerator techniques. High-gradient techniques including millimeter-wave rf acceleration, beam-driven plasma acceleration, and direct laser acceleration were pursued, including tests of materials under rf pulsed heating and short-pulse laser radiation, to establish the ultimate limitations on gradient. As themore » department and program grew, so did the motivation to found an accelerator research center that brought experimentalists together in a test facility environment to conduct a broad range of experiments. The Final Focus Test Beam and later the Next Linear Collider Test Accelerator provided unique experimental facilities for AARD staff and collaborators to carry out advanced accelerator experiments. Throughout the evolution of this dynamic program, Bob maintained a department atmosphere and culture more reminiscent of a university research group than a national laboratory department. His exceptional ability to balance multiple roles as scientist, professor, and administrator enabled the creation and preservation of an environment that fostered technical innovation and scholarship.« less

  10. A hardware and software architecture to deal with multimodal and collaborative interactions in multiuser virtual reality environments

    NASA Astrophysics Data System (ADS)

    Martin, P.; Tseu, A.; Férey, N.; Touraine, D.; Bourdot, P.

    2014-02-01

    Most advanced immersive devices provide collaborative environment within several users have their distinct head-tracked stereoscopic point of view. Combining with common used interactive features such as voice and gesture recognition, 3D mouse, haptic feedback, and spatialized audio rendering, these environments should faithfully reproduce a real context. However, even if many studies have been carried out on multimodal systems, we are far to definitively solve the issue of multimodal fusion, which consists in merging multimodal events coming from users and devices, into interpretable commands performed by the application. Multimodality and collaboration was often studied separately, despite of the fact that these two aspects share interesting similarities. We discuss how we address this problem, thought the design and implementation of a supervisor that is able to deal with both multimodal fusion and collaborative aspects. The aim of this supervisor is to ensure the merge of user's input from virtual reality devices in order to control immersive multi-user applications. We deal with this problem according to a practical point of view, because the main requirements of this supervisor was defined according to a industrial task proposed by our automotive partner, that as to be performed with multimodal and collaborative interactions in a co-located multi-user environment. In this task, two co-located workers of a virtual assembly chain has to cooperate to insert a seat into the bodywork of a car, using haptic devices to feel collision and to manipulate objects, combining speech recognition and two hands gesture recognition as multimodal instructions. Besides the architectural aspect of this supervisor, we described how we ensure the modularity of our solution that could apply on different virtual reality platforms, interactive contexts and virtual contents. A virtual context observer included in this supervisor in was especially designed to be independent to the content of the virtual scene of targeted application, and is use to report high-level interactive and collaborative events. This context observer allows the supervisor to merge these interactive and collaborative events, but is also used to deal with new issues coming from our observation of two co-located users in an immersive device performing this assembly task. We highlight the fact that when speech recognition features are provided to the two users, it is required to automatically detect according to the interactive context, whether the vocal instructions must be translated into commands that have to be performed by the machine, or whether they take a part of the natural communication necessary for collaboration. Information coming from this context observer that indicates a user is looking at its collaborator, is important to detect if the user is talking to its partner. Moreover, as the users are physically co-localised and head-tracking is used to provide high fidelity stereoscopic rendering, and natural walking navigation in the virtual scene, we have to deals with collision and screen occlusion between the co-located users in the physical work space. Working area and focus of each user, computed and reported by the context observer is necessary to prevent or avoid these situations.

  11. Community Perspectives on Factors That Influence Collaboration in Public Health Research

    PubMed Central

    Pinto, Rogério M.

    2009-01-01

    Community collaboration in research may lead to better methods, results, and dissemination of interventions. Little systematic research has examined specific factors that influence community-based organizations (CBOs) to collaborate in public health research. There is an urgent need to advance knowledge on this topic so that together, researchers and CBOs can minimize barriers to collaboration. This study advances a CBO-focused characterization of collaboration in HIV-prevention research. By focusing on the perspectives of 20 key informants in 10 HIV-prevention CBOs, qualitative data revealed factors that influenced their collaborations in four domains: (a) Researchers’ Characteristics (expertise, availability), (b) Collaborative Research Characteristics (ought to improve services and CBO infrastructure); (c) Community Partner–Researcher Relationships (resolving social and professional issues); and (d) Barriers to HIV-Prevention Research Collaboration (cultural and social disconnect between CBO and academia). To reduce barriers, researchers ought to enhance motivators that facilitate collaboration. To use the advantages of community-based research, prevention scientists and policy makers ought to embrace CBOs’ characterization of what makes health research genuinely collaborative. PMID:19196863

  12. Collaborative Learning in Advanced Supply Systems: The KLASS Pilot Project.

    ERIC Educational Resources Information Center

    Rhodes, Ed; Carter, Ruth

    2003-01-01

    The Knowledge and Learning in Advanced Supply Systems (KLASS) project developed collaborative learning networks of suppliers in the British automotive and aerospace industries. Methods included face-to-face and distance learning, work toward National Vocational Qualifications, and diagnostic workshops for senior managers on improving quality,…

  13. Future Evolution of Virtual Worlds as Communication Environments

    NASA Astrophysics Data System (ADS)

    Prisco, Giulio

    Extensive experience creating locations and activities inside virtual worlds provides the basis for contemplating their future. Users of virtual worlds are diverse in their goals for these online environments; for example, immersionists want them to be alternative realities disconnected from real life, whereas augmentationists want them to be communication media supporting real-life activities. As the technology improves, the diversity of virtual worlds will increase along with their significance. Many will incorporate more advanced virtual reality, or serve as major media for long-distance collaboration, or become the venues for futurist social movements. Key issues are how people can create their own virtual worlds, travel across worlds, and experience a variety of multimedia immersive environments. This chapter concludes by noting the view among some computer scientists that future technologies will permit uploading human personalities to artificial intelligence avatars, thereby enhancing human beings and rendering the virtual worlds entirely real.

  14. If We Build It, We Will Come: A Model for Community-Led Change to Transform Neighborhood Conditions to Support Healthy Eating and Active Living

    PubMed Central

    Seeholzer, Eileen L.; Leon, Janeen B.; Chappelle, Sandra Byrd; Sehgal, Ashwini R.

    2015-01-01

    Neighborhoods affect health. In 3 adjoining inner-city Cleveland, Ohio, neighborhoods, residents have an average life expectancy 15 years less than that of a nearby suburb. To address this disparity, a local health funder created the 2010 to 2013 Francis H. Beam Community Health Fellowship to develop a strategic community engagement process to establish a Healthy Eating & Active Living (HEAL) culture and lifestyle in the neighborhoods. The fellow developed and advanced a model, engaging the community in establishing HEAL options and culture. Residents used the model to identify a shared vision for HEAL and collaborated with community partners to create and sustain innovative HEAL opportunities. This community-led, collaborative model produced high engagement levels (15% of targeted 12 000 residents) and tangible improvements in the neighborhood’s physical, resource, and social environments. PMID:25880943

  15. Waterborne Disease Case Investigation: Public Health Nursing Simulation.

    PubMed

    Alexander, Gina K; Canclini, Sharon B; Fripp, Jon; Fripp, William

    2017-01-01

    The lack of safe drinking water is a significant public health threat worldwide. Registered nurses assess the physical environment, including the quality of the water supply, and apply environmental health knowledge to reduce environmental exposures. The purpose of this research brief is to describe a waterborne disease simulation for students enrolled in a public health nursing (PHN) course. A total of 157 undergraduate students completed the simulation in teams, using the SBAR (Situation-Background-Assessment-Recommendation) reporting tool. Simulation evaluation consisted of content analysis of the SBAR tools and debriefing notes. Student teams completed the simulation and articulated the implications for PHN practice. Student teams discussed assessment findings and primarily recommended four nursing interventions: health teaching focused on water, sanitation, and hygiene; community organizing; collaboration; and advocacy to ensure a safe water supply. With advanced planning and collaboration with partners, waterborne disease simulation may enhance PHN education. [J Nurs Educ. 2017;56(1):39-42.]. Copyright 2017, SLACK Incorporated.

  16. Earth System Grid II (ESG): Turning Climate Model Datasets Into Community Resources

    NASA Astrophysics Data System (ADS)

    Williams, D.; Middleton, D.; Foster, I.; Nevedova, V.; Kesselman, C.; Chervenak, A.; Bharathi, S.; Drach, B.; Cinquni, L.; Brown, D.; Strand, G.; Fox, P.; Garcia, J.; Bernholdte, D.; Chanchio, K.; Pouchard, L.; Chen, M.; Shoshani, A.; Sim, A.

    2003-12-01

    High-resolution, long-duration simulations performed with advanced DOE SciDAC/NCAR climate models will produce tens of petabytes of output. To be useful, this output must be made available to global change impacts researchers nationwide, both at national laboratories and at universities, other research laboratories, and other institutions. To this end, we propose to create a new Earth System Grid, ESG-II - a virtual collaborative environment that links distributed centers, users, models, and data. ESG-II will provide scientists with virtual proximity to the distributed data and resources that they require to perform their research. The creation of this environment will significantly increase the scientific productivity of U.S. climate researchers by turning climate datasets into community resources. In creating ESG-II, we will integrate and extend a range of Grid and collaboratory technologies, including the DODS remote access protocols for environmental data, Globus Toolkit technologies for authentication, resource discovery, and resource access, and Data Grid technologies developed in other projects. We will develop new technologies for (1) creating and operating "filtering servers" capable of performing sophisticated analyses, and (2) delivering results to users. In so doing, we will simultaneously contribute to climate science and advance the state of the art in collaboratory technology. We expect our results to be useful to numerous other DOE projects. The three-year R&D program will be undertaken by a talented and experienced team of computer scientists at five laboratories (ANL, LBNL, LLNL, NCAR, ORNL) and one university (ISI), working in close collaboration with climate scientists at several sites.

  17. Stimulating Collaboration and Discussion in Online Learning Environments.

    ERIC Educational Resources Information Center

    Clark, Jim

    2001-01-01

    Discussion of the advantages of online learning environments (OLEs) for distance education focuses on the importance of collaboration and discussion to make the students feel more central to the learning process. Presents methods to stimulate collaboration and discussion in OLEs. (Author/LRW)

  18. Narratives of the Leadership Development of Adults Who Served as Summer Camp Staff in the Mennonite Setting: A Multiple Case Study

    ERIC Educational Resources Information Center

    Harrison, Jason

    2013-01-01

    Problem: Leaders today need a new set of knowledge and skills to be effective in collaborative environments. The focus of this study was to investigate how collaborative environments can contribute to leadership development. The purpose of this study was to describe how the collaborative environment of summer camp helped shape emerging adults as…

  19. Collaborative Scheduling Using JMS in a Mixed Java and .NET Environment

    NASA Technical Reports Server (NTRS)

    Wang, Yeou-Fang; Wax, Allan; Lam, Ray; Baldwin, John; Borden, Chet

    2006-01-01

    A collaborative framework/environment was proto-typed to prove the feasibility of scheduling space flight missions on NASA's Deep Space Network (DSN) in a distributed fashion. In this environment, effective collaboration relies on efficient communications among all flight mission and DSN scheduling users. There-fore, messaging becomes critical to timely event notification and data synchronization. In the prototype, a rapid messaging system using Java Message Service (JMS) in a mixed Java and .NET environment is established. This scheme allows both Java and .NET applications to communicate with each other for data synchronization and schedule negotiation. The JMS approach we used is based on a centralized messaging scheme. With proper use of a high speed messaging system, all users in this collaborative framework can communicate with each other to generate a schedule collaboratively to meet DSN and projects tracking needs.

  20. WE-FG-201-04: Cloud-Based Collaboration for Radiotherapy Clinical Trials, Research and Training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palta, J.

    Many low- and middle-income countries lack the resources and services to manage cancer, from screening and diagnosis to radiation therapy planning, treatment and quality assurance. The challenges in upgrading or introducing the needed services are enormous, and include severe shortages in equipment and trained staff. In this symposium, we will describe examples of technology and scientific research that have the potential to impact all these areas. These include: (1) the development of high-quality/low-cost colposcopes for cervical cancer screening, (2) the application of automated radiotherapy treatment planning to reduce staffing shortages, (3) the development of a novel radiotherapy treatment unit, andmore » (4) utilizing a cloud-based infrastructure to facilitate collaboration and QA. Learning Objectives: Understand some of the issues in cancer care in low- resource environments, including shortages in staff and equipment, and inadequate physical infrastructure for advanced radiotherapy. Understand the challenges in developing and deploying diagnostic and treatment devices and services for low-resource environments. Understand some of the emerging technological solutions for cancer management in LMICs. NCI; L. Court, NIH, Varian, Elekta; I. Feain, Ilana Feain is founder and CTO of Nano-X Pty Ltd.« less

  1. Collaborative communication: learning from advanced clinical practice patient consultations.

    PubMed

    Barratt, Julian

    2018-04-28

    Advanced nurse practitioners, and nurses aspiring to this role, are required to understand how to communicate effectively and on a collaborative basis with patients and carers during consultations, with the aim of enhancing patient outcomes such as improved patient satisfaction, ability to self-manage healthcare needs and adherence to care plans. This article explores collaborative communication in consultations and how best to achieve this, using the author's doctoral observational research based on the findings of a mixed methods observational study of communication in advanced clinical practice patient consultations. ©2018 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.

  2. A Community-Building Framework for Collaborative Research Coordination across the Education and Biology Research Disciplines.

    PubMed

    Pelaez, Nancy; Anderson, Trevor R; Gardner, Stephanie M; Yin, Yue; Abraham, Joel K; Bartlett, Edward L; Gormally, Cara; Hurney, Carol A; Long, Tammy M; Newman, Dina L; Sirum, Karen; Stevens, Michael T

    2018-06-01

    Since 2009, the U.S. National Science Foundation Directorate for Biological Sciences has funded Research Coordination Networks (RCN) aimed at collaborative efforts to improve participation, learning, and assessment in undergraduate biology education (UBE). RCN-UBE projects focus on coordination and communication among scientists and educators who are fostering improved and innovative approaches to biology education. When faculty members collaborate with the overarching goal of advancing undergraduate biology education, there is a need to optimize collaboration between participants in order to deeply integrate the knowledge across disciplinary boundaries. In this essay we propose a novel guiding framework for bringing colleagues together to advance knowledge and its integration across disciplines, the "Five 'C's' of Collaboration: Commitment, Collegiality, Communication, Consensus, and Continuity." This guiding framework for professional network practice is informed by both relevant literature and empirical evidence from community-building experience within the RCN-UBE Advancing Competencies in Experimentation-Biology (ACE-Bio) Network. The framework is presented with practical examples to illustrate how it might be used to enhance collaboration between new and existing participants in the ACE-Bio Network as well as within other interdisciplinary networks.

  3. Elearn: A Collaborative Educational Virtual Environment.

    ERIC Educational Resources Information Center

    Michailidou, Anna; Economides, Anastasios A.

    Virtual Learning Environments (VLEs) that support collaboration are one of the new technologies that have attracted great interest. VLEs are learning management software systems composed of computer-mediated communication software and online methods of delivering course material. This paper presents ELearn, a collaborative VLE for teaching…

  4. Advances in deep-sea biology: biodiversity, ecosystem functioning and conservation. An introduction and overview

    NASA Astrophysics Data System (ADS)

    Cunha, Marina R.; Hilário, Ana; Santos, Ricardo S.

    2017-03-01

    Once considered as monotonous and devoid of life, the deep sea was revealed during the last century as an environment with a plethora of life forms and extremely high species richness (Rex and Etter, 2010). Underwater vehicle developments allowed direct observations of the deep, disclosing unique habitats and diverse seascapes, and other technological advances enabled manipulative experimentation and unprecedented prospects to pursue novel research topics (Levin and Sibuet, 2012; Danovaro et al., 2014). Alongside, the growing human population greatly increased the pressure on deep-sea ecosystems and the services they provide (Ramirez-Llodra et al., 2011; Thurber et al., 2014; Levin et al., 2016). Societal changes further intensified worldwide competition for natural resources, extending the present footprint of impacts over most of the global ocean (Halpern et al., 2008). In this socio-economic context, and in tandem with cutting edge technological advances and an unclear legal framework to regulate access to natural resources (Boyes and Elliott, 2014), the deep sea has emerged as a new opportunity for industrial exploitation and novel economic activities. The expanding use of the deep sea prompted a rapid reply from deep-sea scientists that recommended "a move from a frontier mentality of exploitation and single-sector management to a precautionary system that balances use of living marine resources, energy, and minerals from the deep ocean with maintenance of a productive and healthy marine environment, while improving knowledge and collaboration" and proposed "three directions to advance deep-ocean stewardship: i) protection and mitigation, ii) research, and iii) collaborative governance" (Mengerink et al., 2014). The European Marine Board position paper 22 (Rogers et al., 2015) further examined the key societal and environmental drivers confronting the deep sea and the role of deep-sea research to deliver future knowledge needs for science and society; a clear and consistent message from consultation with wider stakeholders was the need for fundamental knowledge of deep-sea ecosystems. Enhanced deep-sea knowledge is crucial to establish baselines and assess long term impact of human activity on ecosystems and it is also instrumental to inform environmental impact assessments, strategic management plans, effective decision making, environmental regulation and ocean governance (Rogers et al., 2015).

  5. Supporting Dynamic Ad hoc Collaboration Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Deborah A.; Berket, Karlo

    2003-07-14

    Modern HENP experiments such as CMS and Atlas involve as many as 2000 collaborators around the world. Collaborations this large will be unable to meet often enough to support working closely together. Many of the tools currently available for collaboration focus on heavy-weight applications such as videoconferencing tools. While these are important, there is a more basic need for tools that support connecting physicists to work together on an ad hoc or continuous basis. Tools that support the day-to-day connectivity and underlying needs of a group of collaborators are important for providing light-weight, non-intrusive, and flexible ways to work collaboratively.more » Some example tools include messaging, file-sharing, and shared plot viewers. An important component of the environment is a scalable underlying communication framework. In this paper we will describe our current progress on building a dynamic and ad hoc collaboration environment and our vision for its evolution into a HENP collaboration environment.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environmentmore » and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.« less

  7. Earth System Grid II, Turning Climate Datasets into Community Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Don

    2006-08-01

    The Earth System Grid (ESG) II project, funded by the Department of Energy’s Scientific Discovery through Advanced Computing program, has transformed climate data into community resources. ESG II has accomplished this goal by creating a virtual collaborative environment that links climate centers and users around the world to models and data via a computing Grid, which is based on the Department of Energy’s supercomputing resources and the Internet. Our project’s success stems from partnerships between climate researchers and computer scientists to advance basic and applied research in the terrestrial, atmospheric, and oceanic sciences. By interfacing with other climate science projects,more » we have learned that commonly used methods to manage and remotely distribute data among related groups lack infrastructure and under-utilize existing technologies. Knowledge and expertise gained from ESG II have helped the climate community plan strategies to manage a rapidly growing data environment more effectively. Moreover, approaches and technologies developed under the ESG project have impacted datasimulation integration in other disciplines, such as astrophysics, molecular biology and materials science.« less

  8. 76 FR 32364 - Collaboration in Regulatory Science and Capacity To Advance Global Access to Safe Vaccines and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ...] Collaboration in Regulatory Science and Capacity To Advance Global Access to Safe Vaccines and Biologicals... and other biologicals that meet international standards. The goal of FDA's Center for Biologics... oversight of influenza and other vaccines and biologicals by supporting analysis, synthesis, and application...

  9. Advances in integrated system heath management system technologies : overview of NASA and industry collaborative activities

    NASA Technical Reports Server (NTRS)

    Dixit, Sunil; Brown, Steve; Fijany, Amir; Park, Han; Mackey, Ryan; James, Mark; Baroth, Ed

    2005-01-01

    This paper will describe recent advances in ISHM technologies made through collaboration between NASA and industry. In particular, the paper will focus on past, present, and future technology development and maturation efforts at the Jet Propulsion Laboratory (JPL) and its industry partner, Northrop Grumman lntegrated Systems (NGIS).

  10. Catalyzing action towards the sustainability of deltas: deltas as integrated socio-ecological systems and sentinels of regional and global change

    NASA Astrophysics Data System (ADS)

    Foufoula-Georgiou, E.; Tessler, Z. D.; Brondizio, E.; Overeem, I.; Renaud, F.; Sebesvari, Z.; Nicholls, R. J.; Anthony, E.

    2016-12-01

    Deltas are highly dynamic and productive environments: they are food baskets of the world, home to biodiverse and rich ecosystems, and they play a central role in food and water security. However, they are becoming increasingly vulnerable to risks arising from human activities, land subsidence, regional water management, global sea-level rise, and climate extremes. Our Belmont Forum DELTAS project (BF-DELTAS: Catalyzing actions towards delta sustainability) encompasses an international network of interdisciplinary research collaborators with focal areas in the Mekong, Ganges Brahmaputra, and the Amazon deltas. The project is organized around five main modules: (1) developing an analytical framework for assessing delta vulnerability and scenarios of change (Delta-SRES), (2) developing an open-acess, science-based integrative modeling framework for risk assessment and decision support (Delta-RADS), (3) developing tools to support quantitative mapping of the bio-physical and socio-economic environments of deltas and consolidate bio-physical and social data within shared data repositories (Delta-DAT), (4) developing Global Delta Vulnerability Indices (Delta-GDVI) that capture current and projected scenarios for major deltas around the world , and (5) collaborating with regional stakeholders to put the science, modeling, and data into action (Delta-ACT). In this talk, a research summary will be presented on three research domains around which significant collaborative work was developed: advancing biophysical classification of deltas, understanding deltas as coupled socio-ecological systems, and analyzing and informing social and environmental vulnerabilities in delta regions.

  11. Building a Propulsion Experiment Project Management Environment

    NASA Technical Reports Server (NTRS)

    Keiser, Ken; Tanner, Steve; Hatcher, Danny; Graves, Sara

    2004-01-01

    What do you get when you cross rocket scientists with computer geeks? It is an interactive, distributed computing web of tools and services providing a more productive environment for propulsion research and development. The Rocket Engine Advancement Program 2 (REAP2) project involves researchers at several institutions collaborating on propulsion experiments and modeling. In an effort to facilitate these collaborations among researchers at different locations and with different specializations, researchers at the Information Technology and Systems Center,' University of Alabama in Huntsville, are creating a prototype web-based interactive information system in support of propulsion research. This system, to be based on experience gained in creating similar systems for NASA Earth science field experiment campaigns such as the Convection and Moisture Experiments (CAMEX), will assist in the planning and analysis of model and experiment results across REAP2 participants. The initial version of the Propulsion Experiment Project Management Environment (PExPM) consists of a controlled-access web portal facilitating the drafting and sharing of working documents and publications. Interactive tools for building and searching an annotated bibliography of publications related to REAP2 research topics have been created to help organize and maintain the results of literature searches. Also work is underway, with some initial prototypes in place, for interactive project management tools allowing project managers to schedule experiment activities, track status and report on results. This paper describes current successes, plans, and expected challenges for this project.

  12. Advancing Learner Autonomy in TEFL via Collaborative Learning

    ERIC Educational Resources Information Center

    Jacobs, George M.; Shan, Tan Hui

    2015-01-01

    The present paper begins by situating learner autonomy and collaborative learning as part of a larger paradigm shift towards student-centred learning. Next are brief discussions of learner autonomy and how learner autonomy links with collaborative learning. In the main part of the paper, four central principles of collaborative learning are…

  13. Peer Collaboration: The Relation of Regulatory Behaviors to Learning with Hypermedia

    ERIC Educational Resources Information Center

    Winters, Fielding I.; Alexander, Patricia A.

    2011-01-01

    Peer collaboration is a pedagogical method currently used to facilitate learning in classrooms. Similarly, computer-learning environments (CLEs) are often used to promote student learning in science classrooms, in particular. However, students often have difficulty utilizing these environments effectively. Does peer collaboration help students…

  14. Genomic and Systems Biology Analyses of Social Behavior or Evolutionary Genomic Analyses of Insect Society: Eat, Drink, and Be Scary (2011 JGI User Meeting)

    ScienceCinema

    Robinson, Gene

    2018-02-05

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, CA. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gene Robinson of the University of Illinois on Genomic and Systems Biology Analyses of Social Behavior at the 6th Annual Genomics of Energy & Environment Meeting on March 23, 2011.

  15. The Turn-on of LCLS: the X-Ray Free Electron Laser at SLAC ( Keynote - 2011 JGI User Meeting)

    ScienceCinema

    Drell, Persis [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2018-06-15

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. SLAC National Laboratory Director Persis Drell gives a keynote talk on "The Turn-on of LCLS: the X-Ray Free-Electron Laser at SLAC" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011

  16. Regulatory Networks Controlling Plant Cold Acclimation or Low Temperature Regulatory Networks Controlling Cold Acclimation in Arabidopsis (2011 JGI User Meeting)

    ScienceCinema

    Thomashow, Mike

    2018-02-06

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Mike Thomashow of Michigan State University gives a presentation on on "Low Temperature Regulatory Networks Controlling Cold Acclimation in Arabidopsis" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011."

  17. Association Genetics of Populus trichocarpa or Resequencing in Populus: Towards Genome Wide Association Genetics (2011 JGI User Meeting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuskan, Gerry

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gerry Tuskan of Oak Ridge National Laboratory on Resequencing in Populus: Towards Genome Wide Association Geneticsmore » at the 6th annual Genomics of Energy Environment Meeting on March 23, 2011.« less

  18. Host Genetic Control of the Microbiome in Humans and Maize or Relating Host Genetic Variation to the Microbiome (2011 JGI User Meeting)

    ScienceCinema

    Ley, Ruth E. [Cornell Univ., Ithaca, NY (United States). Cornell Center for Comparative and Population Genomics, Dept. of Microbiology and Dept. of Molecular Biology and Genetics

    2018-06-27

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy and Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Ruth Ley of Cornell University gives a presentation on "Relating Host Genetic Variation to the Microbiome" at the 6th annual Genomics of Energy and Environment Meeting on March 23, 2011.

  19. VHub - Cyberinfrastructure for volcano eruption and hazards modeling and simulation

    NASA Astrophysics Data System (ADS)

    Valentine, G. A.; Jones, M. D.; Bursik, M. I.; Calder, E. S.; Gallo, S. M.; Connor, C.; Carn, S. A.; Rose, W. I.; Moore-Russo, D. A.; Renschler, C. S.; Pitman, B.; Sheridan, M. F.

    2009-12-01

    Volcanic risk is increasing as populations grow in active volcanic regions, and as national economies become increasingly intertwined. In addition to their significance to risk, volcanic eruption processes form a class of multiphase fluid dynamics with rich physics on many length and time scales. Risk significance, physics complexity, and the coupling of models to complex dynamic spatial datasets all demand the development of advanced computational techniques and interdisciplinary approaches to understand and forecast eruption dynamics. Innovative cyberinfrastructure is needed to enable global collaboration and novel scientific creativity, while simultaneously enabling computational thinking in real-world risk mitigation decisions - an environment where quality control, documentation, and traceability are key factors. Supported by NSF, we are developing a virtual organization, referred to as VHub, to address this need. Overarching goals of the VHub project are: Dissemination. Make advanced modeling and simulation capabilities and key data sets readily available to researchers, students, and practitioners around the world. Collaboration. Provide a mechanism for participants not only to be users but also co-developers of modeling capabilities, and contributors of experimental and observational data sets for use in modeling and simulation, in a collaborative environment that reaches far beyond local work groups. Comparison. Facilitate comparison between different models in order to provide the practitioners with guidance for choosing the "right" model, depending upon the intended use, and provide a platform for multi-model analysis of specific problems and incorporation into probabilistic assessments. Application. Greatly accelerate access and application of a wide range of modeling tools and related data sets to agencies around the world that are charged with hazard planning, mitigation, and response. Education. Provide resources that will promote the training of the next generation of volcanologists and hazards specialists such that modeling and simulation form part of a tripartite foundation of approaches, alongside observational data and experimentation. Adaptation. Conduct ongoing, rigorous self-assessment to study the impact of the virtual organization and promote continual adaptation to optimize its impact, as well as to understand emergent collective learning and collaborative patterns. VHub development is just beginning and we are very interested in input from the community and the addition of new partners to the effort. Current partners include A. Costa, A. Neri, W. Marzocchi, R.S.J. Sparks, S.J. Cronin, S. Takarada, Joan Marti, J.-C. Komorowski, T.H. Druitt, T. Koyaguchi, J.L. Macias, and S. Dartevelle.

  20. Supporting Scientific Analysis within Collaborative Problem Solving Environments

    NASA Technical Reports Server (NTRS)

    Watson, Velvin R.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    Collaborative problem solving environments for scientists should contain the analysis tools the scientists require in addition to the remote collaboration tools used for general communication. Unfortunately, most scientific analysis tools have been designed for a "stand-alone mode" and cannot be easily modified to work well in a collaborative environment. This paper addresses the questions, "What features are desired in a scientific analysis tool contained within a collaborative environment?", "What are the tool design criteria needed to provide these features?", and "What support is required from the architecture to support these design criteria?." First, the features of scientific analysis tools that are important for effective analysis in collaborative environments are listed. Next, several design criteria for developing analysis tools that will provide these features are presented. Then requirements for the architecture to support these design criteria are listed. Sonic proposed architectures for collaborative problem solving environments are reviewed and their capabilities to support the specified design criteria are discussed. A deficiency in the most popular architecture for remote application sharing, the ITU T. 120 architecture, prevents it from supporting highly interactive, dynamic, high resolution graphics. To illustrate that the specified design criteria can provide a highly effective analysis tool within a collaborative problem solving environment, a scientific analysis tool that contains the specified design criteria has been integrated into a collaborative environment and tested for effectiveness. The tests were conducted in collaborations between remote sites in the US and between remote sites on different continents. The tests showed that the tool (a tool for the visual analysis of computer simulations of physics) was highly effective for both synchronous and asynchronous collaborative analyses. The important features provided by the tool (and made possible by the specified design criteria) are: 1. The tool provides highly interactive, dynamic, high resolution, 3D graphics. 2. All remote scientists can view the same dynamic, high resolution, 3D scenes of the analysis as the analysis is being conducted. 3. The responsiveness of the tool is nearly identical to the responsiveness of the tool in a stand-alone mode. 4. The scientists can transfer control of the analysis between themselves. 5. Any analysis session or segment of an analysis session, whether done individually or collaboratively, can be recorded and posted on the Web for other scientists or students to download and play in either a collaborative or individual mode. 6. The scientist or student who downloaded the session can, individually or collaboratively, modify or extend the session with his/her own "what if" analysis of the data and post his/her version of the analysis back onto the Web. 7. The peak network bandwidth used in the collaborative sessions is only 1K bit/second even though the scientists at all sites are viewing high resolution (1280 x 1024 pixels), dynamic, 3D scenes of the analysis. The links between the specified design criteria and these performance features are presented.

  1. A collaborative interaction and visualization multi-modal environment for surgical planning.

    PubMed

    Foo, Jung Leng; Martinez-Escobar, Marisol; Peloquin, Catherine; Lobe, Thom; Winer, Eliot

    2009-01-01

    The proliferation of virtual reality visualization and interaction technologies has changed the way medical image data is analyzed and processed. This paper presents a multi-modal environment that combines a virtual reality application with a desktop application for collaborative surgical planning. Both visualization applications can function independently but can also be synced over a network connection for collaborative work. Any changes to either application is immediately synced and updated to the other. This is an efficient collaboration tool that allows multiple teams of doctors with only an internet connection to visualize and interact with the same patient data simultaneously. With this multi-modal environment framework, one team working in the VR environment and another team from a remote location working on a desktop machine can both collaborate in the examination and discussion for procedures such as diagnosis, surgical planning, teaching and tele-mentoring.

  2. Telearch - Integrated visual simulation environment for collaborative virtual archaeology.

    NASA Astrophysics Data System (ADS)

    Kurillo, Gregorij; Forte, Maurizio

    Archaeologists collect vast amounts of digital data around the world; however, they lack tools for integration and collaborative interaction to support reconstruction and interpretation process. TeleArch software is aimed to integrate different data sources and provide real-time interaction tools for remote collaboration of geographically distributed scholars inside a shared virtual environment. The framework also includes audio, 2D and 3D video streaming technology to facilitate remote presence of users. In this paper, we present several experimental case studies to demonstrate the integration and interaction with 3D models and geographical information system (GIS) data in this collaborative environment.

  3. Supporting tactical intelligence using collaborative environments and social networking

    NASA Astrophysics Data System (ADS)

    Wollocko, Arthur B.; Farry, Michael P.; Stark, Robert F.

    2013-05-01

    Modern military environments place an increased emphasis on the collection and analysis of intelligence at the tactical level. The deployment of analytical tools at the tactical level helps support the Warfighter's need for rapid collection, analysis, and dissemination of intelligence. However, given the lack of experience and staffing at the tactical level, most of the available intelligence is not exploited. Tactical environments are staffed by a new generation of intelligence analysts who are well-versed in modern collaboration environments and social networking. An opportunity exists to enhance tactical intelligence analysis by exploiting these personnel strengths, but is dependent on appropriately designed information sharing technologies. Existing social information sharing technologies enable users to publish information quickly, but do not unite or organize information in a manner that effectively supports intelligence analysis. In this paper, we present an alternative approach to structuring and supporting tactical intelligence analysis that combines the benefits of existing concepts, and provide detail on a prototype system embodying that approach. Since this approach employs familiar collaboration support concepts from social media, it enables new-generation analysts to identify the decision-relevant data scattered among databases and the mental models of other personnel, increasing the timeliness of collaborative analysis. Also, the approach enables analysts to collaborate visually to associate heterogeneous and uncertain data within the intelligence analysis process, increasing the robustness of collaborative analyses. Utilizing this familiar dynamic collaboration environment, we hope to achieve a significant reduction of time and skill required to glean actionable intelligence in these challenging operational environments.

  4. Synchronous Collaboration Competencies in Web-Conferencing Environments--Their Impact on the Learning Process

    ERIC Educational Resources Information Center

    Bower, Matt

    2011-01-01

    Based on a three-semester design-based research study examining learning and teaching in a web-conferencing environment, this article identifies types of synchronous collaboration competencies and reveals their influence on learning processes. Four levels of online collaborative competencies were observed--operational, interactional, managerial,…

  5. Monitoring Collaborative Activities in Computer Supported Collaborative Learning

    ERIC Educational Resources Information Center

    Persico, Donatella; Pozzi, Francesca; Sarti, Luigi

    2010-01-01

    Monitoring the learning process in computer supported collaborative learning (CSCL) environments is a key element for supporting the efficacy of tutor actions. This article proposes an approach for analysing learning processes in a CSCL environment to support tutors in their monitoring tasks. The approach entails tracking the interactions within…

  6. Peer Interaction in Three Collaborative Learning Environments

    ERIC Educational Resources Information Center

    Staarman, Judith Kleine; Krol, Karen; Meijden, Henny van der

    2005-01-01

    The aim of the study was to gain insight into the occurrence of different types of peer interaction and particularly the types of interaction beneficial for learning in different collaborative learning environments. Based on theoretical notions related to collaborative learning and peer interaction, a coding scheme was developed to analyze the…

  7. Communication Resource Use in a Networked Collaborative Design Environment.

    ERIC Educational Resources Information Center

    Gay, Geri; Lentini, Marc

    The purpose of this exploratory study was to examine student use of a prototype networked collaborative design environment to support or augment learning about engineering design. The theoretical framework is based primarily on Vygotsky's social construction of knowledge and the belief that collaboration and communication are critical components…

  8. Role Management in a Privacy-Enhanced Collaborative Environment

    ERIC Educational Resources Information Center

    Lorenz, Anja; Borcea-Pfitzmann, Katrin

    2010-01-01

    Purpose: Facing the dilemma between collaboration and privacy is a continual challenge for users. In this setting, the purpose of this paper is to discuss issues of a highly flexible role management integrated in a privacy-enhanced collaborative environment (PECE). Design/methodology/approach: The general framework was provided by former findings…

  9. Assessing a Collaborative Online Environment for Music Composition

    ERIC Educational Resources Information Center

    Biasutti, Michele

    2015-01-01

    The current pilot study tested the effectiveness of an e-learning environment built to enable students to compose music collaboratively. The participants interacted online by using synchronous and asynchronous resources to develop a project in which they composed a new music piece in collaboration. After the learning sessions, individual…

  10. Software Engineering and Swarm-Based Systems

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Sterritt, Roy; Pena, Joaquin; Rouff, Christopher A.

    2006-01-01

    We discuss two software engineering aspects in the development of complex swarm-based systems. NASA researchers have been investigating various possible concept missions that would greatly advance future space exploration capabilities. The concept mission that we have focused on exploits the principles of autonomic computing as well as being based on the use of intelligent swarms, whereby a (potentially large) number of similar spacecraft collaborate to achieve mission goals. The intent is that such systems not only can be sent to explore remote and harsh environments but also are endowed with greater degrees of protection and longevity to achieve mission goals.

  11. Becoming a Coach in Developmental Adaptive Sailing: A Lifelong Learning Perspective.

    PubMed

    Duarte, Tiago; Culver, Diane M

    2014-10-02

    Life-story methodology and innovative methods were used to explore the process of becoming a developmental adaptive sailing coach. Jarvis's (2009) lifelong learning theory framed the thematic analysis. The findings revealed that the coach, Jenny, was exposed from a young age to collaborative environments. Social interactions with others such as mentors, colleagues, and athletes made major contributions to her coaching knowledge. As Jenny was exposed to a mixture of challenges and learning situations, she advanced from recreational para-swimming instructor to developmental adaptive sailing coach. The conclusions inform future research in disability sport coaching, coach education, and applied sport psychology.

  12. School violence, role of the school nurse in prevention: position statement.

    PubMed

    2014-05-01

    It is the position of the National Association of School Nurses (NASN) that registered professional school nurses (hereinafter referred to as school nurses) advance safe school environments by promoting the prevention and reduction of school violence. School nurses collaborate with school personnel, health care providers, parents, and community members to identify and implement evidence-based educational programs promoting violence prevention. The curriculum used should improve students' communication, behavior management, and conflict resolution skills. School nurses assess and refer at-risk students in need of evaluation and treatment for symptoms of aggression and victimization.

  13. Observing tutorial dialogues collaboratively: insights about human tutoring effectiveness from vicarious learning.

    PubMed

    Chi, Michelene T H; Roy, Marguerite; Hausmann, Robert G M

    2008-03-01

    The goals of this study are to evaluate a relatively novel learning environment, as well as to seek greater understanding of why human tutoring is so effective. This alternative learning environment consists of pairs of students collaboratively observing a videotape of another student being tutored. Comparing this collaboratively observing environment to four other instructional methods-one-on-one human tutoring, observing tutoring individually, collaborating without observing, and studying alone-the results showed that students learned to solve physics problems just as effectively from observing tutoring collaboratively as the tutees who were being tutored individually. We explain the effectiveness of this learning environment by postulating that such a situation encourages learners to become active and constructive observers through interactions with a peer. In essence, collaboratively observing combines the benefit of tutoring with the benefit of collaborating. The learning outcomes of the tutees and the collaborative observers, along with the tutoring dialogues, were used to further evaluate three hypotheses explaining why human tutoring is an effective learning method. Detailed analyses of the protocols at several grain sizes suggest that tutoring is effective when tutees are independently or jointly constructing knowledge: with the tutor, but not when the tutor independently conveys knowledge. 2008 Cognitive Science Society, Inc.

  14. How challenges in auditory fMRI led to general advancements for the field.

    PubMed

    Talavage, Thomas M; Hall, Deborah A

    2012-08-15

    In the early years of fMRI research, the auditory neuroscience community sought to expand its knowledge of the underlying physiology of hearing, while also seeking to come to grips with the inherent acoustic disadvantages of working in the fMRI environment. Early collaborative efforts between prominent auditory research laboratories and prominent fMRI centers led to development of a number of key technical advances that have subsequently been widely used to elucidate principles of auditory neurophysiology. Perhaps the key imaging advance was the simultaneous and parallel development of strategies to use pulse sequences in which the volume acquisitions were "clustered," providing gaps in which stimuli could be presented without direct masking. Such sequences have become widespread in fMRI studies using auditory stimuli and also in a range of translational research domains. This review presents the parallel stories of the people and the auditory neurophysiology research that led to these sequences. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Recent GRC Aerospace Technologies Applicable to Terrestrial Energy Systems

    NASA Technical Reports Server (NTRS)

    Kankam, David; Lyons, Valerie J.; Hoberecht, Mark A.; Tacina, Robert R.; Hepp, Aloysius F.

    2000-01-01

    This paper is an overview of a wide range of recent aerospace technologies under development at the NASA Glenn Research Center, in collaboration with other NASA centers, government agencies, industry and academia. The focused areas are space solar power, advanced power management and distribution systems, Stirling cycle conversion systems, fuel cells, advanced thin film photovoltaics and batteries, and combustion technologies. The aerospace-related objectives of the technologies are generation of space power, development of cost-effective and reliable, high performance power systems, cryogenic applications, energy storage, and reduction in gas-turbine emissions, with attendant clean jet engines. The terrestrial energy applications of the technologies include augmentation of bulk power in ground power distribution systems, and generation of residential, commercial and remote power, as well as promotion of pollution-free environment via reduction in combustion emissions.

  16. Collaboratives for Wildlife-Wind Turbine Interaction Research: Fostering Multistakeholder Involvement (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, K.

    This poster highlights the various wildlife-wind collaboratives (specific to wildlife-wind turbine interaction research) that currently exist. Examples of collaboratives are included along with contact information, objectives, benefits, and ways to advance the knowledge base.

  17. The Role of Collaboration and Feedback in Advancing Student Learning in Media Literacy and Video Production

    ERIC Educational Resources Information Center

    Casinghino, Carl

    2015-01-01

    Teaching advanced video production is an art that requires great sensitivity to the process of providing feedback that helps students to learn and grow. Some students experience difficulty in developing narrative sequences or cause-and-effect strings of motion picture sequences. But when students learn to work collaboratively through the revision…

  18. International Nursing: Constructing an Advanced Practice Registered Nurse Practice Model in the UAE: Using Innovation to Address Cultural Implications and Challenges in an International Enterprise.

    PubMed

    Behrens, Sue A

    Despite utilization of the advanced practice registered nurse (APRN) in the United States health care system, there is little information about the introduction, utilization, and challenges of the APRN role globally, especially in the Middle East. This article will look at how one hospital in the United Arab Emirates introduced the APRN role to a health care environment of a country where it has not been recognized historically. Cultural challenges and barriers for the implementation of the role include regulatory, societal, and institutional. Innovation and collaboration are necessary to address these challenges and barriers and to pave the way for a successful advanced practice model pilot, as well as for the future use of the role. Innovation is also one of the key performance indicators for the country's health care. However, the idea of advanced practice is a new concept that has been outside the mainstream health care practice for the United Arab Emirates. To help with the implementation, a road map was developed to outline the steps necessary to provide a safe practice environment. The plan included aligning with the ministry of health nursing and midwifery council, as well as the Health Authority of Abu Dhabi, to help them learn more about the US model of advanced practice, along with benefits, and outcomes of the role. Developing the role of the APRN will benefit the future state of the health care infrastructure for not only the United Arab Emirates but throughout the Middle East.

  19. Investigating Factors That Influence Students' Management of Study Environment in Online Collaborative Groupwork

    ERIC Educational Resources Information Center

    Du, Jianxia; Xu, Jianzhong; Fan, Xitao

    2015-01-01

    The present study examines empirical models of students' management of the learning environment in the context of online collaborative groupwork. Such environment management is an important component of students' overall self-regulated learning strategy for effective learning. Student- and group-level predictors for study environment management in…

  20. Group Modeling in Social Learning Environments

    ERIC Educational Resources Information Center

    Stankov, Slavomir; Glavinic, Vlado; Krpan, Divna

    2012-01-01

    Students' collaboration while learning could provide better learning environments. Collaboration assumes social interactions which occur in student groups. Social theories emphasize positive influence of such interactions on learning. In order to create an appropriate learning environment that enables social interactions, it is important to…

  1. Capacity Building for Sustainable Seismological Networks in the Americas: A Pan-American Advanced Studies Institute on New Frontiers in Seismological Research

    NASA Astrophysics Data System (ADS)

    Cabello, O. A.; Meltzer, A.; Sandvol, E. A.; Yepes, H.; Ruiz, M. C.; Barrientos, S. E.; Willemann, R. J.

    2011-12-01

    During July 2011, a Pan-American Advanced Studies Institute, "New Frontiers in Seismological Research: Sustainable Networks, Earthquake Source Parameters, and Earth Structure" was conducted in Quito Ecuador with participants from the US, Central, and South America, and the Caribbean at early stages in their scientific careers. This advanced studies institute was imparted by fifteen volunteer senior faculty and investigators from the U.S. and the Americas. The curriculum addressed the importance of developing and maintaining modern seismological observatories, reviewed the principles of sustainable network operations, and explored recent advances in the analysis of seismological data in support of basic research, education, and hazard mitigation. An additional goal was to develop future international research collaborations. The Institute engaged graduate students, post-doctoral students, and new faculty from across the Americas in an interactive collaborative learning environment including modules on double-difference earthquake location and tomography, regional centroid-moment tensors, and event-based and ambient noise surface wave dispersion and tomography. Under the faculty guidance, participants started promising research projects about surface wave tomography in southeastern Brazil, near the Chilean triple junction, in central Chilean Andes, at the Peru-Chile border, within Peru, at a volcano in Ecuador, in the Caribbean Sea region, and near the Mendocino triple junction. Other participants started projects about moment tensors of earthquakes in or near Brazil, Chile and Argentina, Costa Rica, Ecuador, Puerto Rico, western Mexico, and northern Mexico. In order to track the progress of the participants and measure the overall effectiveness of the Institute a reunion is planned where the PASI alumni will present the result of their research that was initiated in Quito

  2. Comparison of 1:1 and 1:m CSCL Environment for Collaborative Concept Mapping

    ERIC Educational Resources Information Center

    Lin, C.-P.; Wong, L.-H.; Shao, Y.-J.

    2012-01-01

    This paper reports an investigation into the effects of collaborative concept mapping in a digital learning environment, in terms of students' overall learning gains, knowledge retention, quality of student artefacts (the collaboratively created concept maps), interactive patterns, and learning perceptions. Sixty-four 12-year-old students from two…

  3. Online Teacher Development: Collaborating in a Virtual Learning Environment

    ERIC Educational Resources Information Center

    Ernest, Pauline; Guitert Catasús, Montse; Hampel, Regine; Heiser, Sarah; Hopkins, Joseph; Murphy, Linda; Stickler, Ursula

    2013-01-01

    Over recent years, educational institutions have been making increasing use of virtual environments to set up collaborative activities for learners. While it is recognized that teachers play an important role in facilitating learner collaboration online, they may not have the necessary skills to do so successfully. Thus, a small-scale professional…

  4. Seamless online science workflow development and collaboration using IDL and the ENVI Services Engine

    NASA Astrophysics Data System (ADS)

    Harris, A. T.; Ramachandran, R.; Maskey, M.

    2013-12-01

    The Exelis-developed IDL and ENVI software are ubiquitous tools in Earth science research environments. The IDL Workbench is used by the Earth science community for programming custom data analysis and visualization modules. ENVI is a software solution for processing and analyzing geospatial imagery that combines support for multiple Earth observation scientific data types (optical, thermal, multi-spectral, hyperspectral, SAR, LiDAR) with advanced image processing and analysis algorithms. The ENVI & IDL Services Engine (ESE) is an Earth science data processing engine that allows researchers to use open standards to rapidly create, publish and deploy advanced Earth science data analytics within any existing enterprise infrastructure. Although powerful in many ways, the tools lack collaborative features out-of-box. Thus, as part of the NASA funded project, Collaborative Workbench to Accelerate Science Algorithm Development, researchers at the University of Alabama in Huntsville and Exelis have developed plugins that allow seamless research collaboration from within IDL workbench. Such additional features within IDL workbench are possible because IDL workbench is built using the Eclipse Rich Client Platform (RCP). RCP applications allow custom plugins to be dropped in for extended functionalities. Specific functionalities of the plugins include creating complex workflows based on IDL application source code, submitting workflows to be executed by ESE in the cloud, and sharing and cloning of workflows among collaborators. All these functionalities are available to scientists without leaving their IDL workbench. Because ESE can interoperate with any middleware, scientific programmers can readily string together IDL processing tasks (or tasks written in other languages like C++, Java or Python) to create complex workflows for deployment within their current enterprise architecture (e.g. ArcGIS Server, GeoServer, Apache ODE or SciFlo from JPL). Using the collaborative IDL Workbench, coupled with ESE for execution in the cloud, asynchronous workflows could be executed in batch mode on large data in the cloud. We envision that a scientist will initially develop a scientific workflow locally on a small set of data. Once tested, the scientist will deploy the workflow to the cloud for execution. Depending on the results, the scientist may share the workflow and results, allowing them to be stored in a community catalog and instantly loaded into the IDL Workbench of other scientists. Thereupon, scientists can clone and modify or execute the workflow with different input parameters. The Collaborative Workbench will provide a platform for collaboration in the cloud, helping Earth scientists solve big-data problems in the Earth and planetary sciences.

  5. The management of advanced practitioner preparation: a work-based challenge.

    PubMed

    Livesley, Joan; Waters, Karen; Tarbuck, Paul

    2009-07-01

    This paper explores the collaborative development of a Master's level advanced practice programme in the context of the radical reform and remodelling of the UK's National Health Service. Some of the educational, managerial and practice challenges are discussed. Changes to education and training in response to key strategic reviews undertaken by the Greater Manchester Strategic Health Authority (North West of England) established a need to develop nurses and allied health care practitioners to advanced practitioner level. This paper considers how employers, commissioners and educationalists worked together to produce a Master's level programme to prepare nurses and other health care practitioners for sustainable advanced practice roles. Developing innovative and effective curricula to meet the needs of post graduate students from varied backgrounds preparing to practice in different contexts with different client groups is challenging. However, the development of individual learning pathways and work-based learning ensures that the student's work and intended advanced practice role remains at the centre of their learning. Analysis of each student's knowledge and skill deficits alongside an analysis of the organization's readiness to support them as qualified advanced practitioners (APs) is instrumental in ensuring that organizations are ready to support practitioners in new roles. Work-based learning and collaboration between students, employers and higher education institutions can be used to enable managers and students to unravel the network of factors which affect advanced practice in health and social care. Additionally, collaborative working can help to create opportunities to develop strategies that will facilitate change. Implications for nursing management Sustainable change concerned with the introduction of advanced practitioner roles present a real challenge for managers at a strategic and operational level. Commissioning flexible, collaborative and service-led educational programmes can assist in ensuring that change is sustainable and produce practitioners who are fit for practice, purpose and award.

  6. A general framework for a collaborative water quality knowledge and information network.

    PubMed

    Dalcanale, Fernanda; Fontane, Darrell; Csapo, Jorge

    2011-03-01

    Increasing knowledge about the environment has brought about a better understanding of the complexity of the issues, and more information publicly available has resulted into a steady shift from centralized decision making to increasing levels of participatory processes. The management of that information, in turn, is becoming more complex. One of the ways to deal with the complexity is the development of tools that would allow all players, including managers, researchers, educators, stakeholders and the civil society, to be able to contribute to the information system, in any level they are inclined to do so. In this project, a search for the available technology for collaboration, methods of community filtering, and community-based review was performed and the possible implementation of these tools to create a general framework for a collaborative "Water Quality Knowledge and Information Network" was evaluated. The main goals of the network are to advance water quality education and knowledge; encourage distribution and access to data; provide networking opportunities; allow public perceptions and concerns to be collected; promote exchange of ideas; and, give general, open, and free access to information. A reference implementation was made available online and received positive feedback from the community, which also suggested some possible improvements.

  7. Getting published: reflections of a collaborative writing group.

    PubMed

    Ness, Valerie; Duffy, Kathleen; McCallum, Jacqueline; Price, Lesley

    2014-01-01

    Writing for publication, in the nursing profession, is considered essential for the development of the profession and individual career advancement. In education there is also the increasing pressure to produce University research output. To develop a collaborative writing group to develop and write articles relating to our teaching practice. The idea of forming a writing group was discussed at a module team meeting where five academics expressed an interest. The process of forming the group involved an initial meeting to discuss and agree to the aims, interests, expertise and areas of responsibility for each member. Regular meetings are held and each member takes on responsibility for an aspect of work towards completing the articles. Three articles and one editorial have been published and another is under peer review. We have endeavoured to develop and maintain a theme, this being supporting nursing students' development with an emphasis on an aspect of their decision making skills. Also, importantly, we have created a supportive environment and friendships. The demands made upon the nurse educator to be clinically, educationally and research active can be difficult to meet. Collaborative writing groups may be one way to fulfil the scholarly activity element. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. A General Framework for a Collaborative Water Quality Knowledge and Information Network

    NASA Astrophysics Data System (ADS)

    Dalcanale, Fernanda; Fontane, Darrell; Csapo, Jorge

    2011-03-01

    Increasing knowledge about the environment has brought about a better understanding of the complexity of the issues, and more information publicly available has resulted into a steady shift from centralized decision making to increasing levels of participatory processes. The management of that information, in turn, is becoming more complex. One of the ways to deal with the complexity is the development of tools that would allow all players, including managers, researchers, educators, stakeholders and the civil society, to be able to contribute to the information system, in any level they are inclined to do so. In this project, a search for the available technology for collaboration, methods of community filtering, and community-based review was performed and the possible implementation of these tools to create a general framework for a collaborative "Water Quality Knowledge and Information Network" was evaluated. The main goals of the network are to advance water quality education and knowledge; encourage distribution and access to data; provide networking opportunities; allow public perceptions and concerns to be collected; promote exchange of ideas; and, give general, open, and free access to information. A reference implementation was made available online and received positive feedback from the community, which also suggested some possible improvements.

  9. Advances in Collaborative Evaluation

    ERIC Educational Resources Information Center

    Rodriguez-Campos, Liliana

    2012-01-01

    Collaborative evaluation is an approach that offers, among others, many advantages in terms of access to information, quality of information gathered, opportunities for creative problem-solving, and receptivity to findings. In the last decade, collaborative evaluation has grown in popularity along with similar participatory, empowerment, and…

  10. ImageJS: Personalized, participated, pervasive, and reproducible image bioinformatics in the web browser

    PubMed Central

    Almeida, Jonas S.; Iriabho, Egiebade E.; Gorrepati, Vijaya L.; Wilkinson, Sean R.; Grüneberg, Alexander; Robbins, David E.; Hackney, James R.

    2012-01-01

    Background: Image bioinformatics infrastructure typically relies on a combination of server-side high-performance computing and client desktop applications tailored for graphic rendering. On the server side, matrix manipulation environments are often used as the back-end where deployment of specialized analytical workflows takes place. However, neither the server-side nor the client-side desktop solution, by themselves or combined, is conducive to the emergence of open, collaborative, computational ecosystems for image analysis that are both self-sustained and user driven. Materials and Methods: ImageJS was developed as a browser-based webApp, untethered from a server-side backend, by making use of recent advances in the modern web browser such as a very efficient compiler, high-end graphical rendering capabilities, and I/O tailored for code migration. Results: Multiple versioned code hosting services were used to develop distinct ImageJS modules to illustrate its amenability to collaborative deployment without compromise of reproducibility or provenance. The illustrative examples include modules for image segmentation, feature extraction, and filtering. The deployment of image analysis by code migration is in sharp contrast with the more conventional, heavier, and less safe reliance on data transfer. Accordingly, code and data are loaded into the browser by exactly the same script tag loading mechanism, which offers a number of interesting applications that would be hard to attain with more conventional platforms, such as NIH's popular ImageJ application. Conclusions: The modern web browser was found to be advantageous for image bioinformatics in both the research and clinical environments. This conclusion reflects advantages in deployment scalability and analysis reproducibility, as well as the critical ability to deliver advanced computational statistical procedures machines where access to sensitive data is controlled, that is, without local “download and installation”. PMID:22934238

  11. ImageJS: Personalized, participated, pervasive, and reproducible image bioinformatics in the web browser.

    PubMed

    Almeida, Jonas S; Iriabho, Egiebade E; Gorrepati, Vijaya L; Wilkinson, Sean R; Grüneberg, Alexander; Robbins, David E; Hackney, James R

    2012-01-01

    Image bioinformatics infrastructure typically relies on a combination of server-side high-performance computing and client desktop applications tailored for graphic rendering. On the server side, matrix manipulation environments are often used as the back-end where deployment of specialized analytical workflows takes place. However, neither the server-side nor the client-side desktop solution, by themselves or combined, is conducive to the emergence of open, collaborative, computational ecosystems for image analysis that are both self-sustained and user driven. ImageJS was developed as a browser-based webApp, untethered from a server-side backend, by making use of recent advances in the modern web browser such as a very efficient compiler, high-end graphical rendering capabilities, and I/O tailored for code migration. Multiple versioned code hosting services were used to develop distinct ImageJS modules to illustrate its amenability to collaborative deployment without compromise of reproducibility or provenance. The illustrative examples include modules for image segmentation, feature extraction, and filtering. The deployment of image analysis by code migration is in sharp contrast with the more conventional, heavier, and less safe reliance on data transfer. Accordingly, code and data are loaded into the browser by exactly the same script tag loading mechanism, which offers a number of interesting applications that would be hard to attain with more conventional platforms, such as NIH's popular ImageJ application. The modern web browser was found to be advantageous for image bioinformatics in both the research and clinical environments. This conclusion reflects advantages in deployment scalability and analysis reproducibility, as well as the critical ability to deliver advanced computational statistical procedures machines where access to sensitive data is controlled, that is, without local "download and installation".

  12. SciServer: An Online Collaborative Environment for Big Data in Research and Education

    NASA Astrophysics Data System (ADS)

    Raddick, Jordan; Souter, Barbara; Lemson, Gerard; Taghizadeh-Popp, Manuchehr

    2017-01-01

    For the past year, SciServer Compute (http://compute.sciserver.org) has offered access to big data resources running within server-side Docker containers. Compute has allowed thousands of researchers to bring advanced analysis to big datasets like the Sloan Digital Sky Survey and others, while keeping the analysis close to the data for better performance and easier read/write access. SciServer Compute is just one part of the SciServer system being developed at Johns Hopkins University, which provides an easy-to-use collaborative research environment for astronomy and many other sciences.SciServer enables these collaborative research strategies using Jupyter notebooks, in which users can write their own Python and R scripts and execute them on the same server as the data. We have written special-purpose libraries for querying, reading, and writing data. Intermediate results can be stored in large scratch space (hundreds of TBs) and analyzed directly from within Python or R with state-of-the-art visualization and machine learning libraries. Users can store science-ready results in their permanent allocation on SciDrive, a Dropbox-like system for sharing and publishing files.SciServer Compute’s virtual research environment has grown with the addition of task management and access control functions, allowing collaborators to share both data and analysis scripts securely across the world. These features also open up new possibilities for education, allowing instructors to share datasets with students and students to write analysis scripts to share with their instructors. We are leveraging these features into a new system called “SciServer Courseware,” which will allow instructors to share assignments with their students, allowing students to engage with big data in new ways.SciServer has also expanded to include more datasets beyond the Sloan Digital Sky Survey. A part of that growth has been the addition of the SkyQuery component, which allows for simple, fast cross-matching between very large astronomical datasets.Demos, documentation, and more information about all these resources can be found at www.sciserver.org.

  13. User-Centered Iterative Design of a Collaborative Virtual Environment

    DTIC Science & Technology

    2001-03-01

    cognitive task analysis methods to study land navigators. This study was intended to validate the use of user-centered design methodologies for the design of...have explored the cognitive aspects of collaborative human way finding and design for collaborative virtual environments. Further investigation of design paradigms should include cognitive task analysis and behavioral task analysis.

  14. Collaborative Learning Processes in an Asynchronous Environment: An Analysis through Discourse and Social Networks

    ERIC Educational Resources Information Center

    Tirado, Ramon; Aguaded, Ignacio; Hernando, Angel

    2011-01-01

    This article analyses an experience in collaborative learning in an asynchronous writing environment through discussion forums on a WebCt platform of the University of Huelva's virtual campus, and was part of an innovative teaching project in 2007-08. The main objectives are to describe the processes of collaborative knowledge construction and the…

  15. Detecting and Understanding the Impact of Cognitive and Interpersonal Conflict in Computer Supported Collaborative Learning Environments

    ERIC Educational Resources Information Center

    Prata, David Nadler; Baker, Ryan S. J. d.; Costa, Evandro d. B.; Rose, Carolyn P.; Cui, Yue; de Carvalho, Adriana M. J. B.

    2009-01-01

    This paper presents a model which can automatically detect a variety of student speech acts as students collaborate within a computer supported collaborative learning environment. In addition, an analysis is presented which gives substantial insight as to how students' learning is associated with students' speech acts, knowledge that will…

  16. A Web-Based Educational Setting Supporting Individualized Learning, Collaborative Learning and Assessment

    ERIC Educational Resources Information Center

    Gogoulou, Agoritsa; Gouli, Evangelia; Grigoriadou, Maria; Samarakou, Maria; Chinou, Dionisia

    2007-01-01

    In this paper, we present a web-based educational setting, referred to as SCALE (Supporting Collaboration and Adaptation in a Learning Environment), which aims to serve learning and assessment. SCALE enables learners to (i) work on individual and collaborative activities proposed by the environment with respect to learners' knowledge level, (ii)…

  17. Intelligent Assistance for Teachers in Collaborative E-Learning Environments

    ERIC Educational Resources Information Center

    Casamayor, Agustin; Amandi, Analia; Campo, Marcelo

    2009-01-01

    Collaborative learning environments provide a set of tools for students acting in groups to interact and accomplish an assigned task. In this kind of systems, students are free to express and communicate with each other, which usually lead to collaboration and communication problems that may require the intervention of a teacher. In this article,…

  18. Teachers' Attitudes to and Beliefs about Web-Based Collaborative Learning Environments in the Context of an International Implementation

    ERIC Educational Resources Information Center

    Kollias, V.; Mamalougos, N.; Vamvakoussi, X.; Lakkala, M.; Vosniadou, S.

    2005-01-01

    Fifty-six teachers, from four European countries, were interviewed to ascertain their attitudes to and beliefs about the Collaborative Learning Environments (CLEs) which were designed under the Innovative Technologies for Collaborative Learning Project. Their responses were analysed using categories based on a model from cultural-historical…

  19. Mapping the Growing Discipline of Dissemination and Implementation Science in Health

    PubMed Central

    Norton, Wynne E.; Lungeanu, Alina; Chambers, David A.; Contractor, Noshir

    2017-01-01

    Background The field of dissemination and implementation (D&I) research in health has grown considerably in the past decade. Despite the potential for advancing the science, limited research has focused on mapping the field. Methods We administered an online survey to individuals in the D&I field to assess participants’ demographics and expertise, as well as engagement with journals and conferences, publications, and grants. A combined roster–nomination method was used to collect data on participants’ advice networks and collaboration networks; participants’ motivations for choosing collaborators was also assessed. Frequency and descriptive statistics were used to characterize the overall sample; network metrics were used to characterize both networks. Among a sub-sample of respondents who were researchers, regression analyses identified predictors of two metrics of academic performance (i.e., publications and funded grants). Results A total of 421 individuals completed the survey, representing a 30.75% response rate of eligible individuals. Most participants were White (n = 343), female (n = 284, 67.4%), and identified as a researcher (n = 340, 81%). Both the advice and the collaboration networks displayed characteristics of a small world network. The most important motivations for selecting collaborators were aligned with advancing the science (i.e., prior collaborators, strong reputation, and good collaborators) rather than relying on human proclivities for homophily, proximity, and friendship. Among a sub-sample of 295 researchers, expertise (individual predictor), status (advice network), and connectedness (collaboration network) were significant predictors of both metrics of academic performance. Conclusions Network-based interventions can enhance collaboration and productivity; future research is needed to leverage these data to advance the field. PMID:29249842

  20. Mapping the Growing Discipline of Dissemination and Implementation Science in Health.

    PubMed

    Norton, Wynne E; Lungeanu, Alina; Chambers, David A; Contractor, Noshir

    2017-09-01

    The field of dissemination and implementation (D&I) research in health has grown considerably in the past decade. Despite the potential for advancing the science, limited research has focused on mapping the field. We administered an online survey to individuals in the D&I field to assess participants' demographics and expertise, as well as engagement with journals and conferences, publications, and grants. A combined roster-nomination method was used to collect data on participants' advice networks and collaboration networks; participants' motivations for choosing collaborators was also assessed. Frequency and descriptive statistics were used to characterize the overall sample; network metrics were used to characterize both networks. Among a sub-sample of respondents who were researchers, regression analyses identified predictors of two metrics of academic performance (i.e., publications and funded grants). A total of 421 individuals completed the survey, representing a 30.75% response rate of eligible individuals. Most participants were White (n = 343), female (n = 284, 67.4%), and identified as a researcher (n = 340, 81%). Both the advice and the collaboration networks displayed characteristics of a small world network. The most important motivations for selecting collaborators were aligned with advancing the science (i.e., prior collaborators, strong reputation, and good collaborators) rather than relying on human proclivities for homophily, proximity, and friendship. Among a sub-sample of 295 researchers, expertise (individual predictor), status (advice network), and connectedness (collaboration network) were significant predictors of both metrics of academic performance. Network-based interventions can enhance collaboration and productivity; future research is needed to leverage these data to advance the field.

  1. Wikis and Collaborative Learning in Higher Education

    ERIC Educational Resources Information Center

    Zheng, Binbin; Niiya, Melissa; Warschauer, Mark

    2015-01-01

    While collaborative learning and collaborative writing can be of great value to student learning, the implementation of a technology-supported collaborative learning environment is a challenge. With their built-in features for supporting collaborative writing and social communication, wikis are a promising platform for collaborative learning;…

  2. Distributed interactive virtual environments for collaborative experiential learning and training independent of distance over Internet2.

    PubMed

    Alverson, Dale C; Saiki, Stanley M; Jacobs, Joshua; Saland, Linda; Keep, Marcus F; Norenberg, Jeffrey; Baker, Rex; Nakatsu, Curtis; Kalishman, Summers; Lindberg, Marlene; Wax, Diane; Mowafi, Moad; Summers, Kenneth L; Holten, James R; Greenfield, John A; Aalseth, Edward; Nickles, David; Sherstyuk, Andrei; Haines, Karen; Caudell, Thomas P

    2004-01-01

    Medical knowledge and skills essential for tomorrow's healthcare professionals continue to change faster than ever before creating new demands in medical education. Project TOUCH (Telehealth Outreach for Unified Community Health) has been developing methods to enhance learning by coupling innovations in medical education with advanced technology in high performance computing and next generation Internet2 embedded in virtual reality environments (VRE), artificial intelligence and experiential active learning. Simulations have been used in education and training to allow learners to make mistakes safely in lieu of real-life situations, learn from those mistakes and ultimately improve performance by subsequent avoidance of those mistakes. Distributed virtual interactive environments are used over distance to enable learning and participation in dynamic, problem-based, clinical, artificial intelligence rules-based, virtual simulations. The virtual reality patient is programmed to dynamically change over time and respond to the manipulations by the learner. Participants are fully immersed within the VRE platform using a head-mounted display and tracker system. Navigation, locomotion and handling of objects are accomplished using a joy-wand. Distribution is managed via the Internet2 Access Grid using point-to-point or multi-casting connectivity through which the participants can interact. Medical students in Hawaii and New Mexico (NM) participated collaboratively in problem solving and managing of a simulated patient with a closed head injury in VRE; dividing tasks, handing off objects, and functioning as a team. Students stated that opportunities to make mistakes and repeat actions in the VRE were extremely helpful in learning specific principles. VRE created higher performance expectations and some anxiety among VRE users. VRE orientation was adequate but students needed time to adapt and practice in order to improve efficiency. This was also demonstrated successfully between Western Australia and UNM. We successfully demonstrated the ability to fully immerse participants in a distributed virtual environment independent of distance for collaborative team interaction in medical simulation designed for education and training. The ability to make mistakes in a safe environment is well received by students and has a positive impact on their understanding, as well as memory of the principles involved in correcting those mistakes. Bringing people together as virtual teams for interactive experiential learning and collaborative training, independent of distance, provides a platform for distributed "just-in-time" training, performance assessment and credentialing. Further validation is necessary to determine the potential value of the distributed VRE in knowledge transfer, improved future performance and should entail training participants to competence in using these tools.

  3. The collaboration of general practitioners and nurses in primary care: a comparative analysis of concepts and practices in Slovenia and Spain.

    PubMed

    Hämel, Kerstin; Vössing, Carina

    2017-09-01

    Aim A comparative analysis of concepts and practices of GP-nurse collaborations in primary health centres in Slovenia and Spain. Cross-professional collaboration is considered a key element for providing high-quality comprehensive care by combining the expertise of various professions. In many countries, nurses are also being given new and more extensive responsibilities. Implemented concepts of collaborative care need to be analysed within the context of care concepts, organisational structures, and effective collaboration. Background review of primary care concepts (literature analysis, expert interviews), and evaluation of collaboration in 'best practice' health centres in certain regions of Slovenia and Spain. Qualitative content analysis of expert interviews, presentations, observations, and group discussions with professionals and health centre managers. Findings In Slovenian health centres, the collaboration between GPs and nurses has been strongly shaped by their organisation in separate care units and predominantly case-oriented functions. Conventional power structures between professions hinder effective collaboration. The introduction of a new cross-professional primary care concept has integrated advanced practice nurses into general practice. Conventional hierarchies still exist, but a shared vision of preventive care is gradually strengthening attitudes towards team-oriented care. Formal regulations or incentives for teamwork have yet to be implemented. In Spain, health centres were established along with a team-based care concept that encompasses close physician-nurse collaboration and an autonomous role for nurses in the care process. Nurses collaborate with GPs on more equal terms with conflicts centring on professional disagreements. Team development structures and financial incentives for team achievements have been implemented, encouraging teams to generate their own strategies to improve teamwork. Clearly defined structures, shared visions of care and team development are important for implementing and maintaining a good collaboration. Central prerequisites are advanced nursing education and greater acceptance of advanced nursing practice.

  4. Host Genetic Control of the Microbiome in Humans and Maise or Relating Host Genetic Variation to the Microbiome (2011 JGI User Meeting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ley, Ruth

    2011-03-23

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Ruth Ley of Cornell University gives a presentation on "Relating Host Genetic Variation to themore » Microbiome" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.« less

  5. Genetically modified plants for tactical systems applications

    NASA Astrophysics Data System (ADS)

    Stewart, C. Neal, Jr.

    2002-08-01

    Plants are ubiquitous in the environment and have the ability to respond to their environment physiologically and through altered gene expression profiles (they cannot walk away). In addition, plant genetic transformation techniques and genomic information in plants are becoming increasingly advanced. We have been performing research to express the jellyfish green fluorescent protein (GFP) in plants. GFP emits green light when excited by blue or UV light. In addition, my group and collaborators have developed methods to detect GFP in plants by contact instruments and at a standoff. There are several tactical uses for this technology. Some obvious applications are using plants as sentinels for detecting biological and chemical warfare agents or their derivatives from a remote platform, as well as detecting explosives. Another tactical application is covert monitoring using individual plants. Different methods to detect GFP in transgenic plants will be discussed.

  6. Genomic and Systems Biology Analyses of Social Behavior or Evolutionary Genomic Analyses of Insect Society: Eat, Drink, and Be Scary (2011 JGI User Meeting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Gene

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, CA. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gene Robinson of the University of Illinois on Genomic and Systems Biology Analyses of Socialmore » Behavior at the 6th Annual Genomics of Energy & Environment Meeting on March 23, 2011.« less

  7. Comparative Metagenomics of Gut and Ocean: Identification of Microbial Marker Genes for Complex Environmental Properties (2011 JGI User Meeting)

    ScienceCinema

    Bork, Peer

    2018-02-14

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Peer Bork of the European Molecular Biology Laboratory on Comparative Metagenomics of Gut and Ocean: Identification of Microbial Marker Genes for Complex Environmental Properties at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.

  8. Using sustainability as a collaboration magnet to encourage multi-sector collaborations for health.

    PubMed

    Khayatzadeh-Mahani, Akram; Labonté, Ronald; Ruckert, Arne; de Leeuw, Evelyne

    2017-03-01

    The World Health Organization Commission on Social Determinants of Health (SDH) places great emphasis on the role of multi-sector collaboration in addressing SDH. Despite this emphasis on this need, there is surprisingly little evidence for this to advance health equity goals. One way to encourage more successful multi-sector collaborations is anchoring SDH discourse around 'sustainability', subordinating within it the ethical and empirical importance of 'levelling up'. Sustainability, in contrast to health equity, has recently proved to be an effective collaboration magnet. The recent adoption of the Sustainable Development Goals (SDGs) provides an opportunity for novel ways of ideationally re-framing SDH discussions through the notion of sustainability. The 2030 Agenda for the SDGs calls for greater policy coherence across sectors to advance on the goals and targets. The expectation is that diverse sectors are more likely and willing to collaborate with each other around the SDGs, the core idea of which is 'sustainability'.

  9. Evaluation and development of potentially better practices for improving family-centered care in neonatal intensive care units.

    PubMed

    Saunders, Roger P; Abraham, Marie R; Crosby, Mary Jo; Thomas, Karen; Edwards, William H

    2003-04-01

    Technological and scientific advances have progressively decreased neonatal morbidity and mortality. Less attention has been given to meeting the psychosocial needs of the infant and family than on meeting the infant's physical needs. Parents' participation in making decisions and caring for their child has often been limited. Environments designed for efficient technological care may not be optimal for nurturing the growth and development of sick neonates or their families. Eleven centers collaborating on quality improvement tried to make the care of families better by focusing on understanding and improving family-centered care. Through internal process analysis, review of the evidence, collaborative learning, and benchmarking site visits to centers of excellence in family-centered care, a list of potentially better practices was developed. Choice of which practices to implement and methods of implementation were center specific. Improvement goals were in 3 areas: parent-reported outcomes, staff beliefs and practices, and clinical outcomes in length of stay and feeding practices. Measurement tools for the first 2 areas were developed and pilots were conducted. Length of stay and feeding outcomes were not different before the collaboration (1998) and at the formal end of the collaboration (2000). Prospective parent-reported outcomes are being collected, and the staff beliefs and practices questionnaire will be repeated in all centers to determine the impact of the project in those areas.

  10. Co-Regulation of Learning in Computer-Supported Collaborative Learning Environments: A Discussion

    ERIC Educational Resources Information Center

    Chan, Carol K. K.

    2012-01-01

    This discussion paper for this special issue examines co-regulation of learning in computer-supported collaborative learning (CSCL) environments extending research on self-regulated learning in computer-based environments. The discussion employs a socio-cognitive perspective focusing on social and collective views of learning to examine how…

  11. EVA: Collaborative Distributed Learning Environment Based in Agents.

    ERIC Educational Resources Information Center

    Sheremetov, Leonid; Tellez, Rolando Quintero

    In this paper, a Web-based learning environment developed within the project called Virtual Learning Spaces (EVA, in Spanish) is presented. The environment is composed of knowledge, collaboration, consulting, experimentation, and personal spaces as a collection of agents and conventional software components working over the knowledge domains. All…

  12. EVA: An Interactive Web-Based Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Sheremetov, Leonid; Arenas, Adolfo Guzman

    2002-01-01

    In this paper, a Web-based learning environment developed within the project called Virtual Learning Spaces (EVA, in Spanish) is described. The environment is composed of knowledge, collaboration, consulting and experimentation spaces as a collection of agents and conventional software components working over the knowledge domains. All user…

  13. The Joint Space Operations Center (JSpOC) Mission System (JMS) and the Advanced Research, Collaboration, and Application Development Environment (ARCADE)

    NASA Astrophysics Data System (ADS)

    Johnson, K.; Kim, R.; Echeverry, J.

    The Joint Space Operations Center (JSpOC) is a command and control center focused on executing the Space Control mission of the Joint Functional Component Command for Space (JFCC-SPACE) to ensure freedom of action of United States (US) space assets, while preventing adversary use of space against the US. To accomplish this, the JSpOC tasks a network of space surveillance sensors to collect Space Situational Awareness (SSA) data on resident space objects (RSOs) in near earth and deep space orbits. SSA involves the ingestion of data sources and use of algorithms and tools to build, maintain, and disseminate situational awareness of RSOs in space. On the heels of emergent and complex threats to space assets, the JSpOC's capabilities are limited by legacy systems and CONOPs. The JSpOC Mission System (JMS) aims to consolidate SSA efforts across US agencies, international partners, and commercial partners. The JMS program is intended to deliver a modern service-oriented architecture (SOA) based infrastructure with increased process automation and improved tools to remove the current barriers to JSpOC operations. JMS has been partitioned into several developmental increments. Increment 1, completed and operational in early 2013, and Increment 2, which is expected to be completed in 2016, will replace the legacy Space Defense Operations Center (SPADOC) and Astrodynamics Support Workstation (ASW) capabilities. In 2017 JMS Increment 3 will continue to provide additional SSA and C2 capabilities that will require development of new applications and procedures as well as the exploitation of new data sources. Most importantly, Increment 3 is uniquely postured to evolve the JSpOC into the centralized and authoritative source for all Space Control applications by using its SOA to aggregate information and capabilities from across the community. To achieve this goal, Scitor Corporation has supported the JMS Program Office as it has entered into a partnership with AFRL/RD (Directed Energy) and AFRL/RV (Space Vehicles) to create the Advanced Research, Collaboration, and Application Development Environment (ARCADE). The ARCADE formalizes capability development processes that hitherto have been ad hoc, slow to address the evolving space threat environment, and not easily repeatable. Therefore, the purpose of the ARCADE is to: (1) serve as a centralized testbed for all research and development (R&D) activities related to JMS applications, including algorithm development, data source exposure, service orchestration, and software services, and provide developers reciprocal access to relevant tools and data to accelerate technology development, (2) allow the JMS program to communicate user capability priorities and requirements to developers, (3) facilitate collaboration among developers who otherwise would not collaborate due to organizational, policy, or geographical barriers, and (4) support market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. Over the last several years Scitor Corporation has provided systems engineering support to the JMS Increment 3 Program Office, and has worked with AFRL/RV and AFRL/RD to create a high performance computing environment and SOA at both unclassified and classified levels that together allow developers to develop applications in an environment similar to the version of JMS currently in use by the JSpOC operators. Currently the ARCADE is operational in an unclassified environment via the High Performance Computing Modernization Program (HPCMP) Portal on DREN. The ARCADE also exists on SECRET and TOP SECRET environments on multiple networks. This presentation will cover the following topics: (1) Scitors role in shaping the ARCADE into its current form, (2) ARCADEs value proposition for potential technology developers, and (3) ARCADEs value proposition for the Government. These topics will be discussed by way of several case studies: a JMS Prototype activity, integration of the Search and Determine Integrated Environment (SADIE) system into the ARCADE, and developer challenge opportunities using the ARCADE. The contents of this presentation will be UNCLASSIFIED.

  14. The Role of the Constructivist Learning Theory and Collaborative Learning Environment on Wiki Classroom, and the Relationship between Them

    ERIC Educational Resources Information Center

    Alzahrani, Ibraheem; Woollard, John

    2013-01-01

    This paper seeks to discover the relationship between both the social constructivist learning theory and the collaborative learning environment. This relationship can be identified by giving an example of the learning environment. Due to wiki characteristics, Wiki technology is one of the most famous learning environments that can show the…

  15. The Effect of Online Collaboration on Adolescent Sense of Community in Eighth-Grade Physical Science

    NASA Astrophysics Data System (ADS)

    Wendt, Jillian L.; Rockinson-Szapkiw, Amanda J.

    2015-10-01

    Using a quasi-experimental, nonequivalent pretest/posttest control group design, the researchers examined the effects of online collaborative learning on eighth-grade student's sense of community in a physical science class. For a 9-week period, students in the control group participated in collaborative activities in a face-to-face learning environment, whereas students in the experimental group participated in online collaborative activities using the Edmodo educational platform in a hybrid learning environment. Students completed the Classroom Community Scale survey as a pretest and posttest. Results indicated that the students who participated in the face-to-face classroom had higher overall sense of community and learning community than students who participated in collaborative activities in the online environment. Results and implications are discussed and suggestions for future research are provided.

  16. The Implementation and Effects of the Literacy Design Collaborative (LDC): Early Findings in Sixth-Grade Advanced Reading Courses. CRESST Report 846

    ERIC Educational Resources Information Center

    Herman, Joan L.; Epstein, Scott; Leon, Seth; Dai, Yunyun; La Torre Matrundola, Deborah; Reber, Sarah; Choi, Kilchan

    2015-01-01

    The Bill and Melinda Gates Foundation invested in the Literacy Design Collaborative (LDC) as one strategy to support teachers' and students' transition to the Common Core State Standards (CCSS) in English language arts. This report provides an early look at the implementation of LDC in sixth-grade Advanced Reading classes in a large Florida…

  17. Using Social Networking Environments to Support Collaborative Learning in a Chinese University Class: Interaction Pattern and Influencing Factors

    ERIC Educational Resources Information Center

    Lu, Jie; Churchill, Daniel

    2014-01-01

    This paper reports a study that investigated the social interaction pattern of collaborative learning and the factors affecting the effectiveness of collaborative learning in a social networking environment (SNE). A class of 55 undergraduate students enrolled in an elective course at a Chinese university was recruited for the study. The…

  18. Cognitive Collaboration Found in Cardiac Physiology: Study in Classroom Environment

    PubMed Central

    Cowley, Benjamin; Torniainen, Jari; Ukkonen, Antti; Vihavainen, Arto; Puolamäki, Kai

    2016-01-01

    It is known that periods of intense social interaction result in shared patterns in collaborators’ physiological signals. However, applied quantitative research on collaboration is hindered due to scarcity of objective metrics of teamwork effectiveness. Indeed, especially in the domain of productive, ecologically-valid activity such as programming, there is a lack of evidence for the most effective, affordable and reliable measures of collaboration quality. In this study we investigate synchrony in physiological signals between collaborating computer science students performing pair-programming exercises in a class room environment. We recorded electrocardiography over the course of a 60 minute programming session, using lightweight physiological sensors. We employ correlation of heart-rate variability features to study social psychophysiological compliance of the collaborating students. We found evident physiological compliance in collaborating dyads’ heart-rate variability signals. Furthermore, dyads’ self-reported workload was associated with the physiological compliance. Our results show viability of a novel approach to field measurement using lightweight devices in an uncontrolled environment, and suggest that self-reported collaboration quality can be assessed via physiological signals. PMID:27416036

  19. Solar synthesis of advanced materials: A solar industrial program initiative

    NASA Astrophysics Data System (ADS)

    Lewandowski, A.

    1992-06-01

    This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000 C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).

  20. Science Partnerships Enabling Rapid Response: Designing a Strategy for Improving Scientific Collaboration during Crisis Response

    NASA Astrophysics Data System (ADS)

    Mease, L.; Gibbs, T.; Adiseshan, T.

    2014-12-01

    The 2010 Deepwater Horizon disaster required unprecedented engagement and collaboration with scientists from multiple disciplines across government, academia, and industry. Although this spurred the rapid advancement of valuable new scientific knowledge and tools, it also exposed weaknesses in the system of information dissemination and exchange among the scientists from those three sectors. Limited government communication with the broader scientific community complicated the rapid mobilization of the scientific community to assist with spill response, evaluation of impact, and public perceptions of the crisis. The lessons and new laws produced from prior spills such as Exxon Valdez were helpful, but ultimately did not lead to the actions necessary to prepare a suitable infrastructure that would support collaboration with non-governmental scientists. As oil demand pushes drilling into increasingly extreme environments, addressing the challenge of effective, science-based disaster response is an imperative. Our study employs a user-centered design process to 1) understand the obstacles to and opportunity spaces for effective scientific collaboration during environmental crises such as large oil spills, 2) identify possible tools and strategies to enable rapid information exchange between government responders and non-governmental scientists from multiple relevant disciplines, and 3) build a network of key influencers to secure sufficient buy-in for scaled implementation of appropriate tools and strategies. Our methods include user ethnography, complex system mapping, individual and system behavioral analysis, and large-scale system design to identify and prototype a solution to this crisis collaboration challenge. In this talk, we will present out insights gleaned from existing analogs of successful scientific collaboration during crises and our initial findings from the 60 targeted interviews we conducted that highlight key collaboration challenges that government agencies, academic research institutions, and industry scientists face during oil spill crises. We will also present a synthesis of leverage points in the system that may amplify the impact of an improved collaboration strategy among scientific stakeholders.

  1. Above the cloud computing orbital services distributed data model

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2014-05-01

    Technology miniaturization and system architecture advancements have created an opportunity to significantly lower the cost of many types of space missions by sharing capabilities between multiple spacecraft. Historically, most spacecraft have been atomic entities that (aside from their communications with and tasking by ground controllers) operate in isolation. Several notable example exist; however, these are purpose-designed systems that collaborate to perform a single goal. The above the cloud computing (ATCC) concept aims to create ad-hoc collaboration between service provider and consumer craft. Consumer craft can procure processing, data transmission, storage, imaging and other capabilities from provider craft. Because of onboard storage limitations, communications link capability limitations and limited windows of communication, data relevant to or required for various operations may span multiple craft. This paper presents a model for the identification, storage and accessing of this data. This model includes appropriate identification features for this highly distributed environment. It also deals with business model constraints such as data ownership, retention and the rights of the storing craft to access, resell, transmit or discard the data in its possession. The model ensures data integrity and confidentiality (to the extent applicable to a given data item), deals with unique constraints of the orbital environment and tags data with business model (contractual) obligation data.

  2. Development of the Virginia Tech Department of Geosciences MEDL-CMC

    NASA Astrophysics Data System (ADS)

    Glesener, G. B.

    2016-12-01

    In 2015 the Virginia Tech Department of Geosciences took a leading role in increasing the level of support for Geoscience instructors by investing in the development of the Geosciences Modeling and Educational Demonstrations Laboratory Curriculum Materials Center (MEDL-CMC). The MEDL-CMC is an innovative curriculum materials center designed to foster new collaborative teaching and learning environments by providing hands-on physical models combined with education technology for instructors and outreach coordinators. The mission of the MEDL-CMC is to provide advanced curriculum material resources for the purpose of increasing and sustaining high impact instructional capacity in STEM education for both formal and informal learning environments. This presentation describes the development methods being used to implement the MEDL-CMC. Major development methods include: (1) adopting a project management system to support collaborations with stakeholders, (2) using a diversified funding approach to achieve financial sustainability and the ability to evolve with the educational needs of the community, and (3) establishing a broad collection of systems-based physical analog models and data collection tools to support integrated sciences such as the geosciences. Discussion will focus on how these methods are used for achieving organizational capacity in the MEDL-CMC and on their intended role in reducing instructor workload in planning both classroom activities and research grant broader impacts.

  3. Cross-standard user description in mobile, medical oriented virtual collaborative environments

    NASA Astrophysics Data System (ADS)

    Ganji, Rama Rao; Mitrea, Mihai; Joveski, Bojan; Chammem, Afef

    2015-03-01

    By combining four different open standards belonging to the ISO/IEC JTC1/SC29 WG11 (a.k.a. MPEG) and W3C, this paper advances an architecture for mobile, medical oriented virtual collaborative environments. The various users are represented according to MPEG-UD (MPEG User Description) while the security issues are dealt with by deploying the WebID principles. On the server side, irrespective of their elementary types (text, image, video, 3D, …), the medical data are aggregated into hierarchical, interactive multimedia scenes which are alternatively represented into MPEG-4 BiFS or HTML5 standards. This way, each type of content can be optimally encoded according to its particular constraints (semantic, medical practice, network conditions, etc.). The mobile device should ensure only the displaying of the content (inside an MPEG player or an HTML5 browser) and the capturing of the user interaction. The overall architecture is implemented and tested under the framework of the MEDUSA European project, in partnership with medical institutions. The testbed considers a server emulated by a PC and heterogeneous user devices (tablets, smartphones, laptops) running under iOS, Android and Windows operating systems. The connection between the users and the server is alternatively ensured by WiFi and 3G/4G networks.

  4. Analyzing Team Based Engineering Design Process in Computer Supported Collaborative Learning

    ERIC Educational Resources Information Center

    Lee, Dong-Kuk; Lee, Eun-Sang

    2016-01-01

    The engineering design process has been largely implemented in a collaborative project format. Recently, technological advancement has helped collaborative problem solving processes such as engineering design to have efficient implementation using computers or online technology. In this study, we investigated college students' interaction and…

  5. Multi-Disciplinary Analysis for Future Launch Systems Using NASA's Advanced Engineering Environment (AEE)

    NASA Technical Reports Server (NTRS)

    Monell, D.; Mathias, D.; Reuther, J.; Garn, M.

    2003-01-01

    A new engineering environment constructed for the purposes of analyzing and designing Reusable Launch Vehicles (RLVs) is presented. The new environment has been developed to allow NASA to perform independent analysis and design of emerging RLV architectures and technologies. The new Advanced Engineering Environment (AEE) is both collaborative and distributed. It facilitates integration of the analyses by both vehicle performance disciplines and life-cycle disciplines. Current performance disciplines supported include: weights and sizing, aerodynamics, trajectories, propulsion, structural loads, and CAD-based geometries. Current life-cycle disciplines supported include: DDT&E cost, production costs, operations costs, flight rates, safety and reliability, and system economics. Involving six NASA centers (ARC, LaRC, MSFC, KSC, GRC and JSC), AEE has been tailored to serve as a web-accessed agency-wide source for all of NASA's future launch vehicle systems engineering functions. Thus, it is configured to facilitate (a) data management, (b) automated tool/process integration and execution, and (c) data visualization and presentation. The core components of the integrated framework are a customized PTC Windchill product data management server, a set of RLV analysis and design tools integrated using Phoenix Integration's Model Center, and an XML-based data capture and transfer protocol. The AEE system has seen production use during the Initial Architecture and Technology Review for the NASA 2nd Generation RLV program, and it continues to undergo development and enhancements in support of its current main customer, the NASA Next Generation Launch Technology (NGLT) program.

  6. Concurrent engineering research center

    NASA Technical Reports Server (NTRS)

    Callahan, John R.

    1995-01-01

    The projects undertaken by The Concurrent Engineering Research Center (CERC) at West Virginia University are reported and summarized. CERC's participation in the Department of Defense's Defense Advanced Research Project relating to technology needed to improve the product development process is described, particularly in the area of advanced weapon systems. The efforts committed to improving collaboration among the diverse and distributed health care providers are reported, along with the research activities for NASA in Independent Software Verification and Validation. CERC also takes part in the electronic respirator certification initiated by The National Institute for Occupational Safety and Health, as well as in the efforts to find a solution to the problem of producing environment-friendly end-products for product developers worldwide. The 3M Fiber Metal Matrix Composite Model Factory Program is discussed. CERC technologies, facilities,and personnel-related issues are described, along with its library and technical services and recent publications.

  7. Proteopedia: Exciting Advances in the 3D Encyclopedia of Biomolecular Structure

    NASA Astrophysics Data System (ADS)

    Prilusky, Jaime; Hodis, Eran; Sussman, Joel L.

    Proteopedia is a collaborative, 3D web-encyclopedia of protein, nucleic acid and other structures. Proteopedia ( http://www.proteopedia.org ) presents 3D biomolecule structures in a broadly accessible manner to a diverse scientific audience through easy-to-use molecular visualization tools integrated into a wiki environment that anyone with a user account can edit. We describe recent advances in the web resource in the areas of content and software. In terms of content, we describe a large growth in user-added content as well as improvements in automatically-generated content for all PDB entry pages in the resource. In terms of software, we describe new features ranging from the capability to create pages hidden from public view to the capability to export pages for offline viewing. New software features also include an improved file-handling system and availability of biological assemblies of protein structures alongside their asymmetric units.

  8. Emerging technologies in education and training: applications for the laboratory animal science community.

    PubMed

    Ketelhut, Diane Jass; Niemi, Steven M

    2007-01-01

    This article examines several new and exciting communication technologies. Many of the technologies were developed by the entertainment industry; however, other industries are adopting and modifying them for their own needs. These new technologies allow people to collaborate across distance and time and to learn in simulated work contexts. The article explores the potential utility of these technologies for advancing laboratory animal care and use through better education and training. Descriptions include emerging technologies such as augmented reality and multi-user virtual environments, which offer new approaches with different capabilities. Augmented reality interfaces, characterized by the use of handheld computers to infuse the virtual world into the real one, result in deeply immersive simulations. In these simulations, users can access virtual resources and communicate with real and virtual participants. Multi-user virtual environments enable multiple participants to simultaneously access computer-based three-dimensional virtual spaces, called "worlds," and to interact with digital tools. They allow for authentic experiences that promote collaboration, mentoring, and communication. Because individuals may learn or train differently, it is advantageous to combine the capabilities of these technologies and applications with more traditional methods to increase the number of students who are served by using current methods alone. The use of these technologies in animal care and use programs can create detailed training and education environments that allow students to learn the procedures more effectively, teachers to assess their progress more objectively, and researchers to gain insights into animal care.

  9. Integrating Behavioral Health and Primary Care: Consulting, Coordinating and Collaborating Among Professionals.

    PubMed

    Cohen, Deborah J; Davis, Melinda; Balasubramanian, Bijal A; Gunn, Rose; Hall, Jennifer; deGruy, Frank V; Peek, C J; Green, Larry A; Stange, Kurt C; Pallares, Carla; Levy, Sheldon; Pollack, David; Miller, Benjamin F

    2015-01-01

    This paper sought to describe how clinicians from different backgrounds interact to deliver integrated behavioral and primary health care, and the contextual factors that shape such interactions. This was a comparative case study in which a multidisciplinary team used an immersion-crystallization approach to analyze data from observations of practice operations, interviews with practice members, and implementation diaries. The observed practices were drawn from 2 studies: Advancing Care Together, a demonstration project of 11 practices located in Colorado; and the Integration Workforce Study, consisting of 8 practices located across the United States. Primary care and behavioral health clinicians used 3 interpersonal strategies to work together in integrated settings: consulting, coordinating, and collaborating (3Cs). Consulting occurred when clinicians sought advice, validated care plans, or corroborated perceptions of a patient's needs with another professional. Coordinating involved 2 professionals working in a parallel or in a back-and-forth fashion to achieve a common patient care goal, while delivering care separately. Collaborating involved 2 or more professionals interacting in real time to discuss a patient's presenting symptoms, describe their views on treatment, and jointly develop a care plan. Collaborative behavior emerged when a patient's care or situation was complex or novel. We identified contextual factors shaping use of the 3Cs, including: time to plan patient care, staffing, employing brief therapeutic approaches, proximity of clinical team members, and electronic health record documenting behavior. Primary care and behavioral health clinicians, through their interactions, consult, coordinate, and collaborate with each other to solve patients' problems. Organizations can create integrated care environments that support these collaborations and health professions training programs should equip clinicians to execute all 3Cs routinely in practice. © Copyright 2015 by the American Board of Family Medicine.

  10. The center for plant and microbial complex carbohydrates at the University of Georgia Complex Carbohydrate Research Center. Five-year report, September 15, 1987--December 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albersheim, Peter; Darvill, Alan

    1992-05-01

    The Complex Carbohydrate Research Center (CCRC) is the home of ten independent but complementary interdisciplinary research groups led by nine regular faculty and one adjunct faculty. The research of these groups represents a broad spectrum of interests, and they are involved in about 90 collaborations with their CCRC and UGA colleagues and with scientists at other institutions and companies in the US, Canada, Europe, Israel, and Japan. The hallmark of the CCRC is the collaborative, interactive environment encouraged by its directors, faculty and tong-term staff. Newcomers to the CCRC or short-term members soon learn that everyone benefits from this process.more » The team-oriented approach in carbohydrate science translates into the day-today generous giving of one's time and expertise to the work of others, whether it be in sharing specialized instrumentation, participating in the design of experiments and interpretalon of data, providing service to scientists outside the CCRC, or joining collaborative projects. The CCRC is founded on the principle that the cross-fertilization of ideas and know-how leads to the synergistic advancement of science. This report contains a series of appendices that document the extent and breadth of the Plant and Microbial Carbohydrate Center's contributions to collaborative research and education. Several collaborative research projects that have received postdoctoral research associate support from the Grant are highlighted, as these projects are particularly illustrative of the wide-ranging collaborations that have evolved as a result of this Grant and the quality of the science that the Grant enables.« less

  11. Advancing Capabilities for Understanding the Earth System Through Intelligent Systems, the NSF Perspective

    NASA Astrophysics Data System (ADS)

    Gil, Y.; Zanzerkia, E. E.; Munoz-Avila, H.

    2015-12-01

    The National Science Foundation (NSF) Directorate for Geosciences (GEO) and Directorate for Computer and Information Science (CISE) acknowledge the significant scientific challenges required to understand the fundamental processes of the Earth system, within the atmospheric and geospace, Earth, ocean and polar sciences, and across those boundaries. A broad view of the opportunities and directions for GEO are described in the report "Dynamic Earth: GEO imperative and Frontiers 2015-2020." Many of the aspects of geosciences research, highlighted both in this document and other community grand challenges, pose novel problems for researchers in intelligent systems. Geosciences research will require solutions for data-intensive science, advanced computational capabilities, and transformative concepts for visualizing, using, analyzing and understanding geo phenomena and data. Opportunities for the scientific community to engage in addressing these challenges are available and being developed through NSF's portfolio of investments and activities. The NSF-wide initiative, Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21), looks to accelerate research and education through new capabilities in data, computation, software and other aspects of cyberinfrastructure. EarthCube, a joint program between GEO and the Advanced Cyberinfrastructure Division, aims to create a well-connected and facile environment to share data and knowledge in an open, transparent, and inclusive manner, thus accelerating our ability to understand and predict the Earth system. EarthCube's mission opens an opportunity for collaborative research on novel information systems enhancing and supporting geosciences research efforts. NSF encourages true, collaborative partnerships between scientists in computer sciences and the geosciences to meet these challenges.

  12. Development of a Dynamically Configurable,Object-Oriented Framework for Distributed, Multi-modal Computational Aerospace Systems Simulation

    NASA Technical Reports Server (NTRS)

    Afjeh, Abdollah A.; Reed, John A.

    2003-01-01

    This research is aimed at developing a neiv and advanced simulation framework that will significantly improve the overall efficiency of aerospace systems design and development. This objective will be accomplished through an innovative integration of object-oriented and Web-based technologies ivith both new and proven simulation methodologies. The basic approach involves Ihree major areas of research: Aerospace system and component representation using a hierarchical object-oriented component model which enables the use of multimodels and enforces component interoperability. Collaborative software environment that streamlines the process of developing, sharing and integrating aerospace design and analysis models. . Development of a distributed infrastructure which enables Web-based exchange of models to simplify the collaborative design process, and to support computationally intensive aerospace design and analysis processes. Research for the first year dealt with the design of the basic architecture and supporting infrastructure, an initial implementation of that design, and a demonstration of its application to an example aircraft engine system simulation.

  13. The evolution of the international system of radiological protection: stakeholder views from the 1st and 2nd NEA/ICRP fora.

    PubMed

    Lazo, Ted

    2003-12-01

    The Nuclear Energy Agency's (NEA's) Committee on Radiological Protection and Public Health (CRPPH) has collaborated closely with the ICRP in its efforts to develop new recommendations for radiological protection at the start of the 21st century. As part of this effort, the NEA organised, in collaboration with the ICRP, two fora to discuss the radiological protection of the environment (Taormina, February 2002) and the future policy for radiological protection (Lanzarote, April 2003). Both these meetings were attended by a broad representation of stakeholders. The CRPPH and other stakeholders universally appreciated the opportunity to speak directly with the ICRP on these important subjects. This report summarises the main conclusions made during these two meetings to advance the deliberations of the ICRP to create a new set of recommendations responsive to stakeholder needs, firmly rooted in science, and that can be implemented in a timely, efficient and cost-effective manner.

  14. Collective intelligence for translational medicine: Crowdsourcing insights and innovation from an interdisciplinary biomedical research community.

    PubMed

    Budge, Eleanor Jane; Tsoti, Sandra Maria; Howgate, Daniel James; Sivakumar, Shivan; Jalali, Morteza

    2015-01-01

    Translational medicine bridges the gap between discoveries in biomedical science and their safe and effective clinical application. Despite the gross opportunity afforded by modern research for unparalleled advances in this field, the process of translation remains protracted. Efforts to expedite science translation have included the facilitation of interdisciplinary collaboration within both academic and clinical environments in order to generate integrated working platforms fuelling the sharing of knowledge, expertise, and tools to align biomedical research with clinical need. However, barriers to scientific translation remain, and further progress is urgently required. Collective intelligence and crowdsourcing applications offer the potential for global online networks, allowing connection and collaboration between a wide variety of fields. This would drive the alignment of biomedical science with biotechnology, clinical need, and patient experience, in order to deliver evidence-based innovation which can revolutionize medical care worldwide. Here we discuss the critical steps towards implementing collective intelligence in translational medicine using the experience of those in other fields of science and public health.

  15. Evaluation of Advanced Access in the National Primary Care Collaborative

    PubMed Central

    Pickin, Mark; O'Cathain, Alicia; Sampson, Fiona C; Dixon, Simon

    2004-01-01

    Background: An aim of the National Primary Care Collaborative is to improve quality and access for patients in primary care using principles of Advanced Access. Aims: To determine whether Advanced Access led to improved availability of appointments with general practitioners (GPs) and to examine GPs' views of the process. Design: Observational study. Setting: Four hundred and sixty-two general practices in England participating in four waves of the collaborative during 2000 and 2001. Method: Regression analysis of the collaborative's monthly data on the availability of GP appointments for the 352 practices in waves 1–3, and a postal survey of lead GPs in all four waves. The main outcome measures were the change in mean time to the third available appointment with GPs, and the proportion of GPs thinking it worthwhile participating in the collaborative. Results: The time to the third available appointment improved from a mean of 3.6 to 1.9 days, difference = 1.7 days, 95% confidence interval (CI) = 1.4 to 2.0 days. It improved in two-thirds of practices (66% [219/331]), remained the same in 16% (53/331), and worsened in 18% (59/331). The majority of GPs in all four waves, 83% (308/371, 95% CI = 79 to 87), felt that it was worthwhile participating in the collaborative, although one in 12 practices would not recommend it. One-fifth of GPs cited a lack of resources as a constraint, and some expressed concerns about the trade-off between immediate access and continuity of care. Conclusion: Advanced Access helped practices to improve availability of GP appointments, and was well received by the majority of practices. PMID:15113514

  16. Building integrated business environments: analysing open-source ESB

    NASA Astrophysics Data System (ADS)

    Martínez-Carreras, M. A.; García Jimenez, F. J.; Gómez Skarmeta, A. F.

    2015-05-01

    Integration and interoperability are two concepts that have gained significant prominence in the business field, providing tools which enable enterprise application integration (EAI). In this sense, enterprise service bus (ESB) has played a crucial role as the underpinning technology for creating integrated environments in which companies may connect all their legacy-applications. However, the potential of these technologies remains unknown and some important features are not used to develop suitable business environments. The aim of this paper is to describe and detail the elements for building the next generation of integrated business environments (IBE) and to analyse the features of ESBs as the core of this infrastructure. For this purpose, we evaluate how well-known open-source ESB products fulfil these needs. Moreover, we introduce a scenario in which the collaborative system 'Alfresco' is integrated in the business infrastructure. Finally, we provide a comparison of the different open-source ESBs available for IBE requirements. According to this study, Fuse ESB provides the best results, considering features such as support for a wide variety of standards and specifications, documentation and implementation, security, advanced business trends, ease of integration and performance.

  17. Understanding Social OER Environments--A Quantitative Study on Factors Influencing the Motivation to Share and Collaborate

    ERIC Educational Resources Information Center

    Pirkkalainen, Henri; Jokinen, Jussi P. P.; Pawlowski, Jan M.

    2014-01-01

    Social software environments are increasingly used for open education: teachers and learners share and collaborate in these environments. While there are various possibilities for the inclusion of such social functionalities for OER, many organizational, individual and technological challenges can hinder the motivation of teachers to share and…

  18. Mathematical Language Development and Talk Types in Computer Supported Collaborative Learning Environments

    ERIC Educational Resources Information Center

    Symons, Duncan; Pierce, Robyn

    2015-01-01

    In this study we examine the use of cumulative and exploratory talk types in a year 5 computer supported collaborative learning environment. The focus for students in this environment was to participate in mathematical problem solving, with the intention of developing the proficiencies of problem solving and reasoning. Findings suggest that…

  19. Learning with Collaborative Inquiry: A Science Learning Environment for Secondary Students

    ERIC Educational Resources Information Center

    Sun, Daner; Looi, Chee-Kit; Xie, Wenting

    2017-01-01

    When inquiry-based learning is designed for a collaborative context, the interactions that arise in the learning environment can become fairly complex. While the learning effectiveness of such learning environments has been reported in the literature, there have been fewer studies on the students' learning processes. To address this, the article…

  20. EdMOO: One Approach to a Multimedia Collaborative Environment.

    ERIC Educational Resources Information Center

    Holkner, Bernard

    The nature of the multiuser object oriented (MOO) environment lends itself to flexible and rich interactive collaboration space providing interactive discussion, mail, mailing list, and news features to its virtual denizens. EdMOO (HREF1) was created in mid-1995 as an environment for teachers to experience the text based virtual reality…

  1. Development and Testing of the Collaboration in the Clinical Learning Environment (CCLE) Tool

    ERIC Educational Resources Information Center

    Hooven, Katie J.

    2016-01-01

    The purpose of this study was to develop and psychometrically test the Collaboration in the Clinical Learning Environment (CCLE) Tool. The researcher acknowledged two distinct populations that required input into this particular tool development: staff nurses who work on floors that are considered clinical learning environments for students, and…

  2. Sleep medicine is coming of age in military medicine : Report from the Military Health System Research Symposium (2017) in Kissimmee, Florida.

    PubMed

    Eliasson, Arn H; Lettieri, Christopher; Netzer, Nikolaus

    2018-05-01

    In August 2017, the US Military Health System held its sixth annual Research Symposium for medical researchers from the US Army, Navy, Air Force, and Public Health Service. The symposium provides a collaborative environment for academia, industry, and military researchers who address advancement in areas of Combat Casualty Care, Military Operational Medicine, Clinical and Rehabilitative Medicine, and Military Infectious Diseases. This year, Sleep Medicine received substantial attention with presentations scattered throughout the program, poster presentations as well as a scheduled breakout session with podium presentations. A brief description of the breakout session follows.

  3. Harnessing the Flow of Data from Fungi at JGI

    ScienceCinema

    Grigoriev, Igor; Glass, N. Louise; Martin, Francis; Turgeon, Gillian; Spatafora, Joey; Berka, Randy

    2018-06-12

    The U.S. Department of Energy (DOE) Joint Genome Institute (JGI) managed by Lawrence Berkeley National Laboratory, is the only user facility in the world devoted to problems of energy and environment. With over one million species, fungi—which include mushrooms—represent one of the largest under-explored branches of the Tree of Life. Together with its community of more than 1,000 scientific collaborators, JGI helping to unlock the secrets encoded in the genomes of fungi to advance a better understanding of the global carbon cycle and to develop new biotechnology products, next-generation biofuels, and medicines.

  4. Becoming a Coach in Developmental Adaptive Sailing: A Lifelong Learning Perspective

    PubMed Central

    Duarte, Tiago; Culver, Diane M.

    2014-01-01

    Life-story methodology and innovative methods were used to explore the process of becoming a developmental adaptive sailing coach. Jarvis's (2009) lifelong learning theory framed the thematic analysis. The findings revealed that the coach, Jenny, was exposed from a young age to collaborative environments. Social interactions with others such as mentors, colleagues, and athletes made major contributions to her coaching knowledge. As Jenny was exposed to a mixture of challenges and learning situations, she advanced from recreational para-swimming instructor to developmental adaptive sailing coach. The conclusions inform future research in disability sport coaching, coach education, and applied sport psychology. PMID:25210408

  5. Improving the Aircraft Design Process Using Web-Based Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.; Follen, Gregory J. (Technical Monitor)

    2000-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and multifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  6. Improving the Aircraft Design Process Using Web-based Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.

    2003-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and muitifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  7. Virtual collaboration in the online educational setting: a concept analysis.

    PubMed

    Breen, Henny

    2013-01-01

    This study was designed to explore the concept of virtual collaboration within the context of an online learning environment in an academic setting. Rodgers' method of evolutionary concept analysis was used to provide a contextual view of the concept to identify attributes, antecedents, and consequences of virtual collaboration. Commonly used terms to describe virtual collaboration are collaborative and cooperative learning, group work, group interaction, group learning, and teamwork. A constructivist pedagogy, group-based process with a shared purpose, support, and web-based technology is required for virtual collaboration to take place. Consequences of virtual collaboration are higher order thinking and learning to work with others. A comprehensive definition of virtual collaboration is offered as an outcome of this analysis. Clarification of virtual collaboration prior to using it as a pedagogical tool in the online learning environment will enhance nursing education with the changes in nursing curriculum being implemented today. Further research is recommended to describe the developmental stages of the collaborative process among nursing students in online education and how virtual collaboration facilitates collaboration in practice. © 2013 Wiley Periodicals, Inc.

  8. Collaborating and sharing data in epilepsy research.

    PubMed

    Wagenaar, Joost B; Worrell, Gregory A; Ives, Zachary; Dümpelmann, Matthias; Matthias, Dümpelmann; Litt, Brian; Schulze-Bonhage, Andreas

    2015-06-01

    Technological advances are dramatically advancing translational research in Epilepsy. Neurophysiology, imaging, and metadata are now recorded digitally in most centers, enabling quantitative analysis. Basic and translational research opportunities to use these data are exploding, but academic and funding cultures prevent this potential from being realized. Research on epileptogenic networks, antiepileptic devices, and biomarkers could progress rapidly if collaborative efforts to digest this "big neuro data" could be organized. Higher temporal and spatial resolution data are driving the need for novel multidimensional visualization and analysis tools. Crowd-sourced science, the same that drives innovation in computer science, could easily be mobilized for these tasks, were it not for competition for funding, attribution, and lack of standard data formats and platforms. As these efforts mature, there is a great opportunity to advance Epilepsy research through data sharing and increase collaboration between the international research community.

  9. Collaborative Learning: Cognitive and Computational Approaches. Advances in Learning and Instruction Series.

    ERIC Educational Resources Information Center

    Dillenbourg, Pierre, Ed.

    Intended to illustrate the benefits of collaboration between scientists from psychology and computer science, namely machine learning, this book contains the following chapters, most of which are co-authored by scholars from both sides: (1) "Introduction: What Do You Mean by 'Collaborative Learning'?" (Pierre Dillenbourg); (2)…

  10. Interprofessional Practice and Education in Health Care: Their Relevance to School Psychology

    ERIC Educational Resources Information Center

    Margison, Judith A.; Shore, Bruce M.

    2009-01-01

    Calls for increased collaborative practices in school psychology parallel similar advances in the realm of health care. This article overviews the concepts associated with collaborative practice in school psychology and in health care (e.g., interaction, teamwork, and collaboration) and discusses how the literature emerging from interprofessional…

  11. NASA Human Health and Performance Center: Open Innovation Successes and Collaborative Projects

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2014-01-01

    In May 2007, what was then the Space Life Sciences Directorate published the 2007 Space Life Sciences Strategy for Human Space Exploration, which resulted in the development and implementation of new business models and significant advances in external collaboration over the next five years. The strategy was updated on the basis of these accomplishments and reissued as the NASA Human Health and Performance Strategy in 2012, and continues to drive new approaches to innovation for the directorate. This short paper describes the open innovation successes and collaborative projects developed over this timeframe, including the efforts of the NASA Human Health and Performance Center (NHHPC), which was established to advance human health and performance innovations for spaceflight and societal benefit via collaboration in new markets.

  12. Team Collaboration Software

    NASA Technical Reports Server (NTRS)

    Wang, Yeou-Fang; Schrock, Mitchell; Baldwin, John R.; Borden, Charles S.

    2010-01-01

    The Ground Resource Allocation and Planning Environment (GRAPE 1.0) is a Web-based, collaborative team environment based on the Microsoft SharePoint platform, which provides Deep Space Network (DSN) resource planners tools and services for sharing information and performing analysis.

  13. Collaboration with the United Kingdom on Air Quality Research

    EPA Pesticide Factsheets

    To initiate research collaboration among the United States Environmental Protection Agency (EPA), the Unitd Kingdom's (UK) Department for Environment, Food and Rural Affairs (Defra), and the Environment Agency for England and Wales (EA) on exposure science

  14. Next-generation phenomics for the Tree of Life.

    PubMed

    Burleigh, J Gordon; Alphonse, Kenzley; Alverson, Andrew J; Bik, Holly M; Blank, Carrine; Cirranello, Andrea L; Cui, Hong; Daly, Marymegan; Dietterich, Thomas G; Gasparich, Gail; Irvine, Jed; Julius, Matthew; Kaufman, Seth; Law, Edith; Liu, Jing; Moore, Lisa; O'Leary, Maureen A; Passarotti, Maria; Ranade, Sonali; Simmons, Nancy B; Stevenson, Dennis W; Thacker, Robert W; Theriot, Edward C; Todorovic, Sinisa; Velazco, Paúl M; Walls, Ramona L; Wolfe, Joanna M; Yu, Mengjie

    2013-06-26

    The phenotype represents a critical interface between the genome and the environment in which organisms live and evolve. Phenotypic characters also are a rich source of biodiversity data for tree building, and they enable scientists to reconstruct the evolutionary history of organisms, including most fossil taxa, for which genetic data are unavailable. Therefore, phenotypic data are necessary for building a comprehensive Tree of Life. In contrast to recent advances in molecular sequencing, which has become faster and cheaper through recent technological advances, phenotypic data collection remains often prohibitively slow and expensive. The next-generation phenomics project is a collaborative, multidisciplinary effort to leverage advances in image analysis, crowdsourcing, and natural language processing to develop and implement novel approaches for discovering and scoring the phenome, the collection of phentotypic characters for a species. This research represents a new approach to data collection that has the potential to transform phylogenetics research and to enable rapid advances in constructing the Tree of Life. Our goal is to assemble large phenomic datasets built using new methods and to provide the public and scientific community with tools for phenomic data assembly that will enable rapid and automated study of phenotypes across the Tree of Life.

  15. A workout for virtual bodybuilders (design issues for embodiment in multi-actor virtual environments)

    NASA Technical Reports Server (NTRS)

    Benford, Steve; Bowers, John; Fahlen, Lennart E.; Greenhalgh, Chris; Snowdon, Dave

    1994-01-01

    This paper explores the issue of user embodiment within collaborative virtual environments. By user embodiment we mean the provision of users with appropriate body images so as to represent them to others and also to themselves. By collaborative virtual environments we mean multi-user virtual reality systems which support cooperative work (although we argue that the results of our exploration may also be applied to other kinds of collaborative systems). The main part of the paper identifies a list of embodiment design issues including: presence, location, identity, activity, availability, history of activity, viewpoint, action point, gesture, facial expression, voluntary versus involuntary expression, degree of presence, reflecting capabilities, manipulating the user's view of others, representation across multiple media, autonomous and distributed body parts, truthfulness and efficiency. Following this, we show how these issues are reflected in our own DIVE and MASSIVE prototype collaborative virtual environments.

  16. A Social Contract for University-Industry Collaboration: A Case of Project-Based Learning Environment

    NASA Astrophysics Data System (ADS)

    Vartiainen, Tero

    This study determines a social contract for a form of university-industry collaboration to a project-based learning environment in close collaboration with industry. The author's previous studies on moral conflicts in a project-based learning (PjBL) environment and his 5-year engagement in the PjBL environment are used as background knowledge, and John Rawls' veil of ignorance is used as a method in the contract formulation. Fair and impartial treatment of actors is strived for with the contract which constitutes of sets of obligations for each party, students, clients, and university (instructors) in the chosen project course. With the contract fair and impartial treatment of actors is strived for and the most dilemmatic moral conflicts are tried to be avoided. The forming of the social contract is evaluated, and implications for research and collaborations in practice are offered.

  17. Application description and policy model in collaborative environment for sharing of information on epidemiological and clinical research data sets.

    PubMed

    de Carvalho, Elias César Araujo; Batilana, Adelia Portero; Simkins, Julie; Martins, Henrique; Shah, Jatin; Rajgor, Dimple; Shah, Anand; Rockart, Scott; Pietrobon, Ricardo

    2010-02-19

    Sharing of epidemiological and clinical data sets among researchers is poor at best, in detriment of science and community at large. The purpose of this paper is therefore to (1) describe a novel Web application designed to share information on study data sets focusing on epidemiological clinical research in a collaborative environment and (2) create a policy model placing this collaborative environment into the current scientific social context. The Database of Databases application was developed based on feedback from epidemiologists and clinical researchers requiring a Web-based platform that would allow for sharing of information about epidemiological and clinical study data sets in a collaborative environment. This platform should ensure that researchers can modify the information. A Model-based predictions of number of publications and funding resulting from combinations of different policy implementation strategies (for metadata and data sharing) were generated using System Dynamics modeling. The application allows researchers to easily upload information about clinical study data sets, which is searchable and modifiable by other users in a wiki environment. All modifications are filtered by the database principal investigator in order to maintain quality control. The application has been extensively tested and currently contains 130 clinical study data sets from the United States, Australia, China and Singapore. Model results indicated that any policy implementation would be better than the current strategy, that metadata sharing is better than data-sharing, and that combined policies achieve the best results in terms of publications. Based on our empirical observations and resulting model, the social network environment surrounding the application can assist epidemiologists and clinical researchers contribute and search for metadata in a collaborative environment, thus potentially facilitating collaboration efforts among research communities distributed around the globe.

  18. Toward a Global Community of Scholars. The Special Partnership between the Carnegie Foundation for the Advancement of Teaching and China's National Center for Education Development Research, 1988-1997.

    ERIC Educational Resources Information Center

    Ch'i, Hsi-sheng

    This volume traces the history of a collaboration between the Carnegie Foundation for the Advancement of Teaching and China's National Center for Education Development Research. The collaboration, which began in 1988, was initiated to conduct a comparative study of education in the two countries through information exchanges and seminars.…

  19. Supporting Distance Learners for Collaborative Problem Solving.

    ERIC Educational Resources Information Center

    Verdejo, M. F.; Barros, B.; Abad, M. T.

    This paper describes a computer-supported environment designed to facilitate distance learning through collaborative problem-solving. The goal is to encourage distance learning students to work together, in order to promote both learning of collaboration and learning through collaboration. Collaboration is defined as working together on a common…

  20. Social-ecological network analysis of scale mismatches in estuary watershed restoration.

    PubMed

    Sayles, Jesse S; Baggio, Jacopo A

    2017-03-07

    Resource management boundaries seldom align with environmental systems, which can lead to social and ecological problems. Mapping and analyzing how resource management organizations in different areas collaborate can provide vital information to help overcome such misalignment. Few quantitative approaches exist, however, to analyze social collaborations alongside environmental patterns, especially among local and regional organizations (i.e., in multilevel governance settings). This paper develops and applies such an approach using social-ecological network analysis (SENA), which considers relationships among and between social and ecological units. The framework and methods are shown using an estuary restoration case from Puget Sound, United States. Collaboration patterns and quality are analyzed among local and regional organizations working in hydrologically connected areas. These patterns are correlated with restoration practitioners' assessments of the productivity of their collaborations to inform network theories for natural resource governance. The SENA is also combined with existing ecological data to jointly consider social and ecological restoration concerns. Results show potentially problematic areas in nearshore environments, where collaboration networks measured by density (percentage of possible network connections) and productivity are weakest. Many areas also have high centralization (a few nodes hold the network together), making network cohesion dependent on key organizations. Although centralization and productivity are inversely related, no clear relationship between density and productivity is observed. This research can help practitioners to identify where governance capacity needs strengthening and jointly consider social and ecological concerns. It advances SENA by developing a multilevel approach to assess social-ecological (or social-environmental) misalignments, also known as scale mismatches.

  1. Social–ecological network analysis of scale mismatches in estuary watershed restoration

    PubMed Central

    Sayles, Jesse S.

    2017-01-01

    Resource management boundaries seldom align with environmental systems, which can lead to social and ecological problems. Mapping and analyzing how resource management organizations in different areas collaborate can provide vital information to help overcome such misalignment. Few quantitative approaches exist, however, to analyze social collaborations alongside environmental patterns, especially among local and regional organizations (i.e., in multilevel governance settings). This paper develops and applies such an approach using social–ecological network analysis (SENA), which considers relationships among and between social and ecological units. The framework and methods are shown using an estuary restoration case from Puget Sound, United States. Collaboration patterns and quality are analyzed among local and regional organizations working in hydrologically connected areas. These patterns are correlated with restoration practitioners’ assessments of the productivity of their collaborations to inform network theories for natural resource governance. The SENA is also combined with existing ecological data to jointly consider social and ecological restoration concerns. Results show potentially problematic areas in nearshore environments, where collaboration networks measured by density (percentage of possible network connections) and productivity are weakest. Many areas also have high centralization (a few nodes hold the network together), making network cohesion dependent on key organizations. Although centralization and productivity are inversely related, no clear relationship between density and productivity is observed. This research can help practitioners to identify where governance capacity needs strengthening and jointly consider social and ecological concerns. It advances SENA by developing a multilevel approach to assess social–ecological (or social–environmental) misalignments, also known as scale mismatches. PMID:28223529

  2. Active living collaboratives in the United States: understanding characteristics, activities, and achievement of environmental and policy change.

    PubMed

    Litt, Jill S; Reed, Hannah L; Tabak, Rachel G; Zieff, Susan G; Eyler, Amy A; Lyn, Rodney; Goins, Karin Valentine; Gustat, Jeanette; Tompkins, Nancy O'Hara

    2013-01-01

    Changing the built environment to promote active lifestyles requires collaboration among diverse sectors. Multisectoral collaborative groups in the United States promote active lifestyles through environmental and policy changes. The objective of this study was to examine the characteristics of these collaborative groups and the extent to which they have achieved change. We identified, recruited, and interviewed the coordinators of active living collaborative groups in the United States. We used descriptive statistics to characterize groups by composition, stakeholder engagement, and the extent of environmental and policy change in 8 strategic areas. Fifty-nine groups from 22 states participated in the study. Most groups had a diverse set of partners and used a range of activities to advance their agendas. Most groups achieved some form of environmental or policy change. On average, groups reported working on 5 strategy areas; parks and recreation (86%) and Safe Routes to School (85%) were named most frequently. More than half of groups reported their environmental initiatives as either in progress or completed. Groups reported the most success in changing policy for public plazas, street improvements, streetscaping, and parks, open space, and recreation. Complete Streets policy and zoning ordinances were the most frequently cited policy types. Engaging in media activities and the policy-making process in addition to engaging stakeholders appear to influence success in achieving change. Although many groups successfully worked on parks and recreation improvements, opportunities remain in other areas, including transit and infill and redevelopment. Additional time and resources may be critical to realizing these types of changes.

  3. Active Living Collaboratives in the United States: Understanding Characteristics, Activities, and Achievement of Environmental and Policy Change

    PubMed Central

    Reed, Hannah L.; Tabak, Rachel G.; Zieff, Susan G.; Eyler, Amy A.; Lyn, Rodney; Goins, Karin Valentine; Gustat, Jeanette; Tompkins, Nancy O’Hara

    2013-01-01

    Introduction Changing the built environment to promote active lifestyles requires collaboration among diverse sectors. Multisectoral collaborative groups in the United States promote active lifestyles through environmental and policy changes. The objective of this study was to examine the characteristics of these collaborative groups and the extent to which they have achieved change. Methods We identified, recruited, and interviewed the coordinators of active living collaborative groups in the United States. We used descriptive statistics to characterize groups by composition, stakeholder engagement, and the extent of environmental and policy change in 8 strategic areas. Results Fifty-nine groups from 22 states participated in the study. Most groups had a diverse set of partners and used a range of activities to advance their agendas. Most groups achieved some form of environmental or policy change. On average, groups reported working on 5 strategy areas; parks and recreation (86%) and Safe Routes to School (85%) were named most frequently. More than half of groups reported their environmental initiatives as either in progress or completed. Groups reported the most success in changing policy for public plazas, street improvements, streetscaping, and parks, open space, and recreation. Complete Streets policy and zoning ordinances were the most frequently cited policy types. Engaging in media activities and the policy-making process in addition to engaging stakeholders appear to influence success in achieving change. Conclusion Although many groups successfully worked on parks and recreation improvements, opportunities remain in other areas, including transit and infill and redevelopment. Additional time and resources may be critical to realizing these types of changes. PMID:23391295

  4. A collaborative smartphone sensing platform for detecting and tracking hostile drones

    NASA Astrophysics Data System (ADS)

    Boddhu, Sanjay K.; McCartney, Matt; Ceccopieri, Oliver; Williams, Robert L.

    2013-05-01

    In recent years, not only United States Armed Services but other Law-enforcement agencies have shown increasing interest in employing drones for various surveillance and reconnaissance purposes. Further, recent advancements in autonomous drone control and navigation technology have tremendously increased the geographic extent of dronebased missions beyond the conventional line-of-sight coverage. Without any sophisticated requirement on data links to control them remotely (human-in-loop), drones are proving to be a reliable and effective means of securing personnel and soldiers operating in hostile environments. However, this autonomous breed of drones can potentially prove to be a significant threat when acquired by antisocial groups who wish to target property and life in urban settlements. To further escalate the issue, the standard detection techniques like RADARs, RF data link signature scanners, etc..., prove futile as the drones are smaller in size to evade successful detection by a RADAR based system in urban environment and being autonomous, have the capability of operating without a traceable active data link (RF). Hence, towards investigating possible practical solutions for the issue, the research team at AFRL's Tec^Edge Labs under SATE and YATE programs has developed a highly scalable, geographically distributable and easily deployable smartphone-based collaborative platform that can aid in detecting and tracking unidentified hostile drones. In its current state, this collaborative platform built on the paradigm of "Human-as-Sensors", consists primarily of an intelligent Smartphone application that leverages appropriate sensors on the device to capture a drone's attributes (flight direction, orientation, shape, color, etc..,) with real-time collaboration capabilities through a highly composable sensor cloud and an intelligent processing module (based on a Probabilistic model) that can estimate and predict the possible flight path of a hostile drone based on multiple (geographically distributed) observation data points. This developed collaborative sensing platform has been field tested and proven to be effective in providing real-time alerting mechanism for the personnel in the field to avert or subdue the potential damages caused by the detected hostile drones.

  5. International Collaboration on Spent Fuel Disposition in Crystalline Media: FY17 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifeng; Hadgu, Teklu; Kainina, Elena

    Active participation in international R&D is crucial for achieving the Spent Fuel Waste Science & Technology (SFWST) long-term goals of conducting “experiments to fill data needs and confirm advanced modeling approaches” and of having a “robust modeling and experimental basis for evaluation of multiple disposal system options” (by 2020). DOE’s Office of Nuclear Energy (NE) has developed a strategic plan to advance cooperation with international partners. The international collaboration on the evaluation of crystalline disposal media at Sandia National Laboratories (SNL) in FY17 focused on the collaboration through the Development of Coupled Models and their Validation against Experiments (DECOVALEX-2019) project.more » The DECOVALEX project is an international research and model comparison collaboration, initiated in 1992, for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems. SNL has been participating in three tasks of the DECOVALEX project: Task A. Modeling gas injection experiments (ENGINEER), Task C. Modeling groundwater recovery experiment in tunnel (GREET), and Task F. Fluid inclusion and movement in the tight rock (FINITO).« less

  6. Dementia and Robotics: People with Advancing Dementia and Their Carers Driving an Exploration into an Engineering Solution to Maintaining Safe Exercise Regimes.

    PubMed

    Cooper, Carol; Penders, Jacques; Procter, Paula M

    2016-01-01

    The merging of the human world and the information technology world is advancing at a pace, even for those with dementia there are many useful smart 'phone applications including reminders, family pictures display, GPS functions and video communications. This paper will report upon initial collaborative work developing a robotic solution to engaging individuals with advancing dementia in safe exercise regimes. The research team has been driven by the needs of people with advancing dementia and their carers through a focus group methodology, the format, discussions and outcomes of these groups will be reported. The plans for the next stage of the research will be outlined including the continuing collaboration with advancing dementia and their carers.

  7. Supporting Effective Collaboration: Using a Rearview Mirror to Look Forward

    ERIC Educational Resources Information Center

    McManus, Margaret M.; Aiken, Robert M.

    2016-01-01

    Our original research, to design and develop an Intelligent Collaborative Learning System (ICLS), yielded the creation of a Group Leader Tutor software system which utilizes a Collaborative Skills Network to monitor students working collaboratively in a networked environment. The Collaborative Skills Network was a conceptualization of…

  8. Students' Views about the Problem Based Collaborative Learning Environment Supported by Dynamic Web Technologies

    ERIC Educational Resources Information Center

    Ünal, Erhan; Çakir, Hasan

    2017-01-01

    The purpose of this study was to design a problem based collaborative learning environment supported by dynamic web technologies and to examine students' views about this learning environment. The study was designed as a qualitative research. Some 36 students who took an Object Oriented Programming I-II course at the department of computer…

  9. Learning in 3D Virtual Environments: Collaboration and Knowledge Spirals

    ERIC Educational Resources Information Center

    Burton, Brian G.; Martin, Barbara N.

    2010-01-01

    The purpose of this case study was to determine if learning occurred within a 3D virtual learning environment by determining if elements of collaboration and Nonaka and Takeuchi's (1995) knowledge spiral were present. A key portion of this research was the creation of a Virtual Learning Environment. This 3D VLE utilized the Torque Game Engine…

  10. The CompreHensive collaborativE Framework (CHEF)

    NASA Astrophysics Data System (ADS)

    Knoop, P. A.; Hardin, J.; Killeen, T.; Middleton, D.

    2002-12-01

    Data integration, publication, and archiving have become important considerations in most fields of science as experiments and models increase in complexity, and the collaborations necessary to conduct the research grow broader. The development of well thought out strategies and standards for such data handling, however, only goes part way in supporting the scientific process. A primary driving force for such efforts is the need of scientists to access and work with data in a timely, reasonable, and often collaborative fashion. Internet-based collaborative environments are one way to help complete this picture, linking scientists to the data they seek and to one another (e.g., Towards a Robust, Agile, and Comprehensive Information Infrastructure for the Geosciences: A Strategic Plan For High Performance Simulation, NCAR, 2000, http://www.ncar.ucar.edu/Director/plan.pdf). The CompreHensive collaborativE Framework (CHEF, http://chefproject.org) is a generic, extensible, web-based, open-source environment for collaboration. CHEF's goal is to provide the basic building blocks from which a community can assemble a collaborative environment that fits their needs. The design of CHEF has been influenced by our experience developing the Space Physics and Aeronomy Research Collaboratory (SPARC, http://www.si.umich.edu/SPARC), which provides integrated access to a wide variety of heterogeneous data sources, including community-standardized data bases. The design has also been heavily influenced by our involvement with an effort to extract and codify the broad underlying technical and social elements that lead to successful collaboratories (http://www.scienceofcollaboratories.org). A collaborative environment is in itself also not the complete answer to data handling, rather, it provides a facilitating environment in which community efforts to integrate, publish, archive, and share data using standard formats and practices can be taken advantage of by the end-users, the scientists. We present examples of how CHEF and its predecessors are utilized in a wide variety of scientific communities, including engineering, chemistry, and the geosciences. In particular, we focus on CHEF's utilization by the earthquake engineering community, whose Network for Earthquake Engineering Simulation (NEES, http://www.nees.org) involves a community effort to develop data standards and practices. In this context NEES is using CHEF as the "integration" environment in which to place the "tools" that bring together scientists and data; this includes data browsers, meta-data search engines, real-time and archival data viewers, etc. By developing these tools within the CHEF framework and exposing the community-developed data standards to the framework, they automatically gain the features, functionality, and capabilities offered by the collaborative environment. We also explore how a collaborative environment, in conjunction with community developed standards and practices for data integration, publishing, and archiving, could benefit the ocean science community.

  11. Data handling and visualization for NASA's science programs

    NASA Technical Reports Server (NTRS)

    Bredekamp, Joseph H. (Editor)

    1995-01-01

    Advanced information systems capabilities are essential to conducting NASA's scientific research mission. Access to these capabilities is no longer a luxury for a select few within the science community, but rather an absolute necessity for carrying out scientific investigations. The dependence on high performance computing and networking, as well as ready and expedient access to science data, metadata, and analysis tools is the fundamental underpinning for the entire research endeavor. At the same time, advances in the whole range of information technologies continues on an almost explosive growth path, reaching beyond the research community to affect the population as a whole. Capitalizing on and exploiting these advances are critical to the continued success of space science investigations. NASA must remain abreast of developments in the field and strike an appropriate balance between being a smart buyer and a direct investor in the technology which serves its unique requirements. Another key theme deals with the need for the space and computer science communities to collaborate as partners to more fully realize the potential of information technology in the space science research environment.

  12. Advances in Intelligence Research: What Should be Expected in the XXI Century (Questions & Answers).

    PubMed

    Colom, Roberto

    2016-12-06

    Here I briefly delineate my view about the main question of this International Seminar, namely, what should we expecting from the XXI Century regarding the advancements in intelligence research. This view can be summarized as 'The Brain Connection' (TBC), meaning that neuroscience will be of paramount relevance for increasing our current knowledge related to the key question: why are some people smarter than others? We need answers to the issue of what happens in our brains when the genotype and the environment are integrated. The scientific community has devoted great research efforts, ranging from observable behavior to hidden genetics, but we are still far from having a clear general picture of what it means to be more or less intelligent. After the discussion held with the panel of experts participating in the seminar, it is concluded that advancements will be more solid and safe increasing the collaboration of scientists with shared research interests worldwide. Paralleling current sophisticated analyses of how the brain computes, nowadays science may embrace a network approach.

  13. The GLOBAL Learning and Observations to Benefit the Environment (GLOBE) Collaboration System. Building a robust international collaboration environment for teachers, scientists and students.

    NASA Astrophysics Data System (ADS)

    Overoye, D.; Lewis, C.

    2016-12-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) Program is a worldwide hands-on, primary and secondary school-based science and education program founded on Earth Day 1995. Implemented in 117 countries, GLOBE promotes the teaching and learning of science, supporting students, teachers and scientists worldwide to collaborate with each other on inquiry-based investigations of the Earth system. As an international platform supporting a large number and variety of stakeholders, the GLOBE Data Information System (DIS) was re-built with the goal of providing users the support needed to foster and develop collaboration between teachers, students and scientists while supporting the collection and visualization of over 50 different earth science investigations (protocols). There have been many challenges to consider as we have worked to prototype and build various tools to support collaboration across the GLOBE community - language, security, time zones, user roles and the Child Online Protection Act (COPA) to name a few. During the last 3 years the re-built DIS has been in operation we have supported user to user collaboration, school to school collaboration, project/campaign to user collaboration and scientist to scientist collaboration. We have built search tools to facilitate finding collaboration partners. The tools and direction continue to evolve based on feedback, evolving needs and changes in technology. With this paper we discuss our approach for dealing with some of the collaboration challenges, review tools built to encourage and support collaboration, and analyze which tools have been successful and which have not. We will review new ideas for collaboration in the GLOBE community that are guiding upcoming development.

  14. Leveraging Community to Promote Diversity and Inclusion within the IceCube Collaboration

    NASA Astrophysics Data System (ADS)

    Knackert, J.

    2017-12-01

    The IceCube Collaboration is an international research collaboration working to advance the field of particle astrophysics. It is comprised of more than 300 scientists, engineers, students, and support staff at 48 institutions in 12 countries. IceCube recognizes the value of increased diversity within STEM fields and is committed to improving this situation both within the collaboration and more broadly. The collaboration has dedicated a community manager to help coordinate and promote these efforts and has established a diversity task force as an internal resource and advising body. Here we will discuss how existing community structure was utilized to establish and maintain a focus on diversity within the collaboration. We will discuss methods for getting community members interested, informed, and invested, while helping them better understand the benefits associated with increased STEM diversity. We will also highlight the advantages of building a team of advocates within a community and the impact these individuals can have both internally and beyond. This work has been informed by the American Association for the Advancement of Science's inaugural cohort of the Community Engagement Fellows Program. The author has made the submission on behalf of the IceCube Collaboration Diversity Task Force.

  15. Proposing a Wiki-Based Technique for Collaborative Essay Writing (Propuesta de un modelo pedagógico para la escritura colaborativa de ensayos en un entorno virtual wiki)

    ERIC Educational Resources Information Center

    Ortiz Navarrete, Mabel; Ferreira Cabrera, Anita

    2014-01-01

    This paper aims at proposing a technique for students learning English as a foreign language when they collaboratively write an argumentative essay in a wiki environment. A wiki environment and collaborative work play an important role within the academic writing task. Nevertheless, an appropriate and systematic work assignment is required in…

  16. Finnish upper secondary students' collaborative processes in learning statistics in a CSCL environment

    NASA Astrophysics Data System (ADS)

    Kaleva Oikarinen, Juho; Järvelä, Sanna; Kaasila, Raimo

    2014-04-01

    This design-based research project focuses on documenting statistical learning among 16-17-year-old Finnish upper secondary school students (N = 78) in a computer-supported collaborative learning (CSCL) environment. One novel value of this study is in reporting the shift from teacher-led mathematical teaching to autonomous small-group learning in statistics. The main aim of this study is to examine how student collaboration occurs in learning statistics in a CSCL environment. The data include material from videotaped classroom observations and the researcher's notes. In this paper, the inter-subjective phenomena of students' interactions in a CSCL environment are analysed by using a contact summary sheet (CSS). The development of the multi-dimensional coding procedure of the CSS instrument is presented. Aptly selected video episodes were transcribed and coded in terms of conversational acts, which were divided into non-task-related and task-related categories to depict students' levels of collaboration. The results show that collaborative learning (CL) can facilitate cohesion and responsibility and reduce students' feelings of detachment in our classless, periodic school system. The interactive .pdf material and collaboration in small groups enable statistical learning. It is concluded that CSCL is one possible method of promoting statistical teaching. CL using interactive materials seems to foster and facilitate statistical learning processes.

  17. TIMSS Advanced 2008 Assessment Frameworks

    ERIC Educational Resources Information Center

    Garden, Robert A.; Lie, Svein; Robitaille, David F.; Angell, Carl; Martin, Michael O.; Mullis, Ina V.S.; Foy, Pierre; Arora, Alka

    2006-01-01

    Developing the Trends in International Mathematics and Science Study (TIMSS) Advanced 2008 Assessment Frameworks was a collaborative venture involving mathematics and physics experts from around the world. The document contains two frameworks for implementing TIMSS Advanced 2008--one for advanced mathematics and one for physics. It also contains…

  18. A new InterRidge Working Group : Biogeochemical Interactions at Deep-sea Vents

    NASA Astrophysics Data System (ADS)

    Le Bris, N.; Boetius, A.; Tivey, M. K.; Luther, G. W.; German, C. R.; Wenzhoefer, F.; Charlou, J.; Seyfried, W. E.; Fortin, D.; Ferris, G.; Takai, K.; Baross, J. A.

    2004-12-01

    A new Working Group on `Biogeochemical Interactions at deep-sea vents' has been created at the initiative of the InterRidge programme. This interdisciplinary group comprises experts in chemistry, geochemistry, biogeochemistry, and microbial ecology addressing questions of biogeochemical interactions in different MOR and BAB environments. The past decade has raised major issues concerning the interactions between biotic and abiotic compartments of deep-sea hydrothermal environments and the role they play in the microbial turnover of C, S, N, Fe, fluxes from the geosphere to hydrosphere, the formation of biominerals, the functioning of vent ecosystems and life in extreme environments, the deep-biosphere, and the origin of life. Recent multidisciplinary studies have provided some new insights to these issues. Results of some of these studies will be presented here. They point out the variability and complexity of geobiological systems at vents in space and time and highlight the need for interactions across the fields of chemistry, geochemistry, biogeochemistry, and microbial ecology of hydrothermal environments. Limitation for advances in these fields include the availability of seafloor observation/experimentation time, and of underwater instrumentation allowing quantitative, in situ measurements of chemical and biological fluxes, as well as physical and chemical sensing and sampling along small scale gradients and repeated observation of study sites. The aim of this new Working Group is to strengthen the scientific exchange among chemists, geochemists, biogeochemists and microbial ecologists to favor collaboration in field studies including intercomparison of methods and planning of integrated experiments. The Biogeochemical Interactions working group will also foster development of underwater instrumentation for in situ biogeochemical measurements and microscale sampling, and promote exchange and collaboration with students and scientists of neighboring disciplines, particularly with vent biologists, ecologists and geologists .

  19. Advancing health system integration through supply chain improvement.

    PubMed

    Rosser, Mike

    2006-01-01

    Collaboration is a key element to success in the provision of sustainable and integrated healthcare services. Among the many initiatives undertaken to improve service quality and reduce costs, collaboration among hospitals in Ontario has been difficult to achieve; however, voluntary collaboration is vital to achieving transformation of the magnitude envisioned by system leaders.

  20. Leading the Ongoing Development of Collaborative Data Practices: Advancing a Schema for Diagnosis and Intervention

    ERIC Educational Resources Information Center

    Cosner, Shelby

    2012-01-01

    Research suggests that school leaders play an important role in cultivating and developing collaborative data practices by teachers. Although diagnosis and intervention are critical facets of leaders' work to support collaborative data practice development, this work remains poorly understood. Missing from data-use literature is more explicit and…

  1. Teaching with Technology: Applications of Collaborative Online Learning Units to Improve 21st Century Skills for All

    ERIC Educational Resources Information Center

    Terrazas-Arellanes, Fatima E.; Strycker, Lisa A.; Walden, Emily D.; Gallard, Alejandro

    2017-01-01

    Inquiry-based learning methods, coupled with advanced technology, hold promise for closing the science literacy gap for English learners (ELs) and students with learning difficulties (SWLDs). Project ESCOLAR (Etext Supports for Collaborative Online Learning and Academic Reading) created collaborative online learning units for middle school science…

  2. The Impact of an Online Collaborative Learning Program on Students' Attitude towards Technology

    ERIC Educational Resources Information Center

    Magen-Nagar, Noga; Shonfeld, Miri

    2018-01-01

    This quantitative research examined the contribution of an Online Collaborative Learning (OCL) program on attitudes towards technology in terms of technological anxiety, self-confidence and technology orientation among M.Ed. students. The advanced online collaborative program was implemented at two teacher training colleges in Israel for a period…

  3. Malignant tumors of the liver in children.

    PubMed

    Aronson, Daniel C; Meyers, Rebecka L

    2016-10-01

    This article aims to give an overview of pediatric liver tumors; in particular of the two most frequently occurring groups of hepatoblastomas and hepatocellular carcinomas. Focus lays on achievements gained through worldwide collaboration. We present recent advances in insight, treatment results, and future questions to be asked. Increasing international collaboration between the four major Pediatric Liver Tumor Study Groups (SIOPEL/GPOH, COG, and JPLT) may serve as a paradigm to approach rare tumors. This international effort has been catalyzed by the Children's Hepatic tumor International Collaboration (CHIC) formation of a large collaborative database. Interrogation of this database has led to a new universal risk stratification system for hepatoblastoma using PRETEXT/POSTTEXT staging as a backbone. Pathologists in this international collaboration have established a new histopathological consensus classification for pediatric liver tumors. Concomitantly there have been advances in chemotherapy options, an increased role of liver transplantation for unresectable tumors, and a web portal system developed at www.siopel.org for international education, consultation, and collaboration. These achievements will be further tested and validated in the upcoming Paediatric Hepatic International Tumour Trial (PHITT). Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Team-Based Development of Medical Devices: An Engineering–Business Collaborative

    PubMed Central

    Eberhardt, Alan W.; Johnson, Ophelia L.; Kirkland, William B.; Dobbs, Joel H.; Moradi, Lee G.

    2016-01-01

    There is a global shift in the teaching methodology of science and engineering toward multidisciplinary, team-based processes. To meet the demands of an evolving technical industry and lead the way in engineering education, innovative curricula are essential. This paper describes the development of multidisciplinary, team-based learning environments in undergraduate and graduate engineering curricula focused on medical device design. In these programs, students actively collaborate with clinicians, professional engineers, business professionals, and their peers to develop innovative solutions to real-world problems. In the undergraduate senior capstone courses, teams of biomedical engineering (BME) and business students have produced and delivered numerous functional prototypes to satisfied clients. Pursuit of commercialization of devices has led to intellectual property (IP) disclosures and patents. Assessments have indicated high levels of success in attainment of student learning outcomes and student satisfaction with their undergraduate design experience. To advance these projects toward commercialization and further promote innovative team-based learning, a Master of Engineering (MEng) in Design and Commercialization was recently launched. The MEng facilitates teams of graduate students in engineering, life sciences, and business who engage in innovation-commercialization (IC) projects and coursework that take innovative ideas through research and development (R&D) to create marketable devices. The activities are structured with students working together as a “virtual company,” with targeted outcomes of commercialization (license agreements and new start-ups), competitive job placement, and/or career advancement. PMID:26902869

  5. Global faculty development: lessons learned from the Foundation for Advancement of International Medical Education and Research (FAIMER) initiatives.

    PubMed

    Burdick, William P

    2014-08-01

    Foundation for Advancement of International Medical Education and Research (FAIMER) faculty development programs have operated since 2001 and are designed to overcome many of the challenges inherent in global health collaborations, including alignment with local needs, avoiding persistent dependency, and development of trust. FAIMER fellowship programs, developed for midcareer faculty members in all health professions from around the world, share goals of strengthening knowledge and skills in education leadership, education methods, and project management and evaluation. Building community is another explicit goal that allows participants to support and learn from each other.The author recommends several practices for successful international collaborations based on 13 years of experience with FAIMER fellowships. These include using authentic education projects to maintain alignment with local needs and apply newly acquired knowledge and skills, teaching leadership across cultures with careful communication and adaptation of concepts to local environments, cultivating a strong field of health professions education to promote diffusion of ideas and advocate for policy change, intentionally promoting field development and leadership to reduce dependency, giving generously of time and resources, learning from others as much as teaching others, and recognizing that effective partnerships revolve around personal relationships to build trust. These strategies have enabled the FAIMER fellowship programs to stay aligned with local needs, reduce dependency, and maintain trust.

  6. Team-Based Development of Medical Devices: An Engineering-Business Collaborative.

    PubMed

    Eberhardt, Alan W; Johnson, Ophelia L; Kirkland, William B; Dobbs, Joel H; Moradi, Lee G

    2016-07-01

    There is a global shift in the teaching methodology of science and engineering toward multidisciplinary, team-based processes. To meet the demands of an evolving technical industry and lead the way in engineering education, innovative curricula are essential. This paper describes the development of multidisciplinary, team-based learning environments in undergraduate and graduate engineering curricula focused on medical device design. In these programs, students actively collaborate with clinicians, professional engineers, business professionals, and their peers to develop innovative solutions to real-world problems. In the undergraduate senior capstone courses, teams of biomedical engineering (BME) and business students have produced and delivered numerous functional prototypes to satisfied clients. Pursuit of commercialization of devices has led to intellectual property (IP) disclosures and patents. Assessments have indicated high levels of success in attainment of student learning outcomes and student satisfaction with their undergraduate design experience. To advance these projects toward commercialization and further promote innovative team-based learning, a Master of Engineering (MEng) in Design and Commercialization was recently launched. The MEng facilitates teams of graduate students in engineering, life sciences, and business who engage in innovation-commercialization (IC) projects and coursework that take innovative ideas through research and development (R&D) to create marketable devices. The activities are structured with students working together as a "virtual company," with targeted outcomes of commercialization (license agreements and new start-ups), competitive job placement, and/or career advancement.

  7. ABrIL - Advanced Brain Imaging Lab : a cloud based computation environment for cooperative neuroimaging projects.

    PubMed

    Neves Tafula, Sérgio M; Moreira da Silva, Nádia; Rozanski, Verena E; Silva Cunha, João Paulo

    2014-01-01

    Neuroscience is an increasingly multidisciplinary and highly cooperative field where neuroimaging plays an important role. Neuroimaging rapid evolution is demanding for a growing number of computing resources and skills that need to be put in place at every lab. Typically each group tries to setup their own servers and workstations to support their neuroimaging needs, having to learn from Operating System management to specific neuroscience software tools details before any results can be obtained from each setup. This setup and learning process is replicated in every lab, even if a strong collaboration among several groups is going on. In this paper we present a new cloud service model - Brain Imaging Application as a Service (BiAaaS) - and one of its implementation - Advanced Brain Imaging Lab (ABrIL) - in the form of an ubiquitous virtual desktop remote infrastructure that offers a set of neuroimaging computational services in an interactive neuroscientist-friendly graphical user interface (GUI). This remote desktop has been used for several multi-institution cooperative projects with different neuroscience objectives that already achieved important results, such as the contribution to a high impact paper published in the January issue of the Neuroimage journal. The ABrIL system has shown its applicability in several neuroscience projects with a relatively low-cost, promoting truly collaborative actions and speeding up project results and their clinical applicability.

  8. Virtual reality in Latin American clinical psychology and the VREPAR project. Virtual Reality Environments for Psycho-Neuro-physiological Assessment and Rehabilitation.

    PubMed

    Silva, Mauro Rubens

    2002-10-01

    Starting with the excellent collective work done by the European Community (EC)-funded Virtual Reality Environments for Psycho-Neuro-physiological Assessment and Rehabilitation (VREPAR) projects, I try to indicate some possible pathways that would allow a better integration of this advanced technology into the reality of Latin American psychology. I myself use analyses that I did in my master's degree in the PUCSP-Catholic University in São Paulo, Brazil. I also include a brief description of the CD-ROM Clinical Psychology Uses of Virtual Reality (CPUVR) that accompanies my thesis. I point out the importance of collaboration between psychology and other disciplines, including computer science. I explain the method that I used to work with digital information, important for the formation of a critical mass of people thinking in Portuguese and Spanish to accelerate a technological jump.

  9. Glacial seismology.

    PubMed

    Aster, R C; Winberry, J P

    2017-12-01

    Seismic source and wave propagation studies contribute to understanding structure, transport, fracture mechanics, mass balance, and other processes within glaciers and surrounding environments. Glaciogenic seismic waves readily couple with the bulk Earth, and can be recorded by seismographs deployed at local to global ranges. Although the fracturing, ablating, melting, and/or highly irregular environment of active glaciers can be highly unstable and hazardous, informative seismic measurements can commonly be made at stable proximal ice or rock sites. Seismology also contributes more broadly to emerging studies of elastic and gravity wave coupling between the atmosphere, oceans, solid Earth, and cryosphere, and recent scientific and technical advances have produced glaciological/seismological collaborations across a broad range of scales and processes. This importantly includes improved insight into the responses of cryospheric systems to changing climate and other environmental conditions. Here, we review relevant fundamental physics and glaciology, and provide a broad review of the current state of glacial seismology and its rapidly evolving future directions.

  10. Pipelining in a changing competitive environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, E.G.; Wishart, D.M.

    1996-12-31

    The changing competitive environment for the pipeline industry presents a broad spectrum of new challenges and opportunities: international cooperation; globalization of opportunities, organizations and competition; and integrated systems approach to system configuration, financing, contracting strategy, materials sourcing, and operations; cutting edge and emerging technologies; adherence to high standards of environmental protection; an emphasis on safety; innovative approaches to project financing; and advances in technology and programs to maintain the long term, cost effective integrity of operating pipeline systems. These challenges and opportunities are partially a result of the increasingly competitive nature of pipeline development and the public`s intolerance to incidentsmore » of pipeline failure. A creative systems approach to these challenges is often the key to the project moving ahead. This usually encompasses collaboration among users of the pipeline, pipeline owners and operators, international engineering and construction companies, equipment and materials suppliers, in-country engineers and constructors, international lending agencies and financial institutions.« less

  11. Glacial seismology

    NASA Astrophysics Data System (ADS)

    Aster, R. C.; Winberry, J. P.

    2017-12-01

    Seismic source and wave propagation studies contribute to understanding structure, transport, fracture mechanics, mass balance, and other processes within glaciers and surrounding environments. Glaciogenic seismic waves readily couple with the bulk Earth, and can be recorded by seismographs deployed at local to global ranges. Although the fracturing, ablating, melting, and/or highly irregular environment of active glaciers can be highly unstable and hazardous, informative seismic measurements can commonly be made at stable proximal ice or rock sites. Seismology also contributes more broadly to emerging studies of elastic and gravity wave coupling between the atmosphere, oceans, solid Earth, and cryosphere, and recent scientific and technical advances have produced glaciological/seismological collaborations across a broad range of scales and processes. This importantly includes improved insight into the responses of cryospheric systems to changing climate and other environmental conditions. Here, we review relevant fundamental physics and glaciology, and provide a broad review of the current state of glacial seismology and its rapidly evolving future directions.

  12. Collaboration in Research and Engineering for Advanced Technology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vrieling, P. Douglas

    SNL/CA proposes the Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) facility to support customer-driven national security mission requirements while demonstrating a fiscally responsible approach to cost-control. SNL/CA realizes that due to the current backlog of capital projects in NNSA that following the normal Line Item process to procure capital funding is unlikely and therefore SNL/CA will be looking at all options including Alternative Financing.

  13. Status of the Short-Pulse X-ray Project at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nassiri, A; Berenc, T G; Borland, M

    2012-07-01

    The Advanced Photon Source Upgrade (APS-U) Project at Argonne will include generation of short-pulse x-rays based on Zholents deflecting cavity scheme. We have chosen superconducting (SC) cavities in order to have a continuous train of crabbed bunches and flexibility of operating modes. In collaboration with Jefferson Laboratory, we are prototyping and testing a number of single-cell deflecting cavities and associated auxiliary systems with promising initial results. In collaboration with Lawrence Berkeley National Laboratory, we are working to develop state-of-the-art timing, synchronization, and differential rf phase stability systems that are required for SPX. Collaboration with Advanced Computations Department at Stanford Linearmore » Accelerator Center is looking into simulations of complex, multi-cavity geometries with lower- and higher-order modes waveguide dampers using ACE3P. This contribution provides the current R&D status of the SPX project.« less

  14. 34 CFR 350.12 - What are the general requirements for an Advanced Rehabilitation Research Training Project?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... multidisciplinary, and emphasizes scientific methodology, and may involve collaboration among institutions. (3... guidance, and opportunities for scientific collaboration with qualified researchers at the host university...

  15. 34 CFR 350.12 - What are the general requirements for an Advanced Rehabilitation Research Training Project?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... multidisciplinary, and emphasizes scientific methodology, and may involve collaboration among institutions. (3... guidance, and opportunities for scientific collaboration with qualified researchers at the host university...

  16. Distributed collaborative environments for virtual capability-based planning

    NASA Astrophysics Data System (ADS)

    McQuay, William K.

    2003-09-01

    Distributed collaboration is an emerging technology that will significantly change how decisions are made in the 21st century. Collaboration involves two or more geographically dispersed individuals working together to share and exchange data, information, knowledge, and actions. The marriage of information, collaboration, and simulation technologies provides the decision maker with a collaborative virtual environment for planning and decision support. This paper reviews research that is focusing on the applying open standards agent-based framework with integrated modeling and simulation to a new Air Force initiative in capability-based planning and the ability to implement it in a distributed virtual environment. Virtual Capability Planning effort will provide decision-quality knowledge for Air Force resource allocation and investment planning including examining proposed capabilities and cost of alternative approaches, the impact of technologies, identification of primary risk drivers, and creation of executable acquisition strategies. The transformed Air Force business processes are enabled by iterative use of constructive and virtual modeling, simulation, and analysis together with information technology. These tools are applied collaboratively via a technical framework by all the affected stakeholders - warfighter, laboratory, product center, logistics center, test center, and primary contractor.

  17. Formalizing and Promoting Collaboration in 3D Virtual Environments - A Blueprint for the Creation of Group Interaction Patterns

    NASA Astrophysics Data System (ADS)

    Schmeil, Andreas; Eppler, Martin J.

    Despite the fact that virtual worlds and other types of multi-user 3D collaboration spaces have long been subjects of research and of application experiences, it still remains unclear how to best benefit from meeting with colleagues and peers in a virtual environment with the aim of working together. Making use of the potential of virtual embodiment, i.e. being immersed in a space as a personal avatar, allows for innovative new forms of collaboration. In this paper, we present a framework that serves as a systematic formalization of collaboration elements in virtual environments. The framework is based on the semiotic distinctions among pragmatic, semantic and syntactic perspectives. It serves as a blueprint to guide users in designing, implementing, and executing virtual collaboration patterns tailored to their needs. We present two team and two community collaboration pattern examples as a result of the application of the framework: Virtual Meeting, Virtual Design Studio, Spatial Group Configuration, and Virtual Knowledge Fair. In conclusion, we also point out future research directions for this emerging domain.

  18. Application of a Novel Collaboration Engineering Method for Learning Design: A Case Study

    ERIC Educational Resources Information Center

    Cheng, Xusen; Li, Yuanyuan; Sun, Jianshan; Huang, Jianqing

    2016-01-01

    Collaborative case studies and computer-supported collaborative learning (CSCL) play an important role in the modern education environment. A number of researchers have given significant attention to learning design in order to improve the satisfaction of collaborative learning. Although collaboration engineering (CE) is a mature method widely…

  19. Use of an Interculturally Enriched Collaboration Script in Computer-Supported Collaborative Learning in Higher Education

    ERIC Educational Resources Information Center

    Popov, Vitaliy; Biemans, Harm J. A.; Kuznetsov, Andrei N.; Mulder, Martin

    2014-01-01

    In this exploratory study, the authors introduced an interculturally enriched collaboration script (IECS) for working in culturally diverse groups within a computer-supported collaborative learning (CSCL) environment and then assessed student online collaborative behaviour, learning performance and experiences. The question was if and how these…

  20. Online Collaboration and Cooperation: The Recurring Importance of Evidence, Rationale and Viability

    ERIC Educational Resources Information Center

    Hammond, Michael

    2017-01-01

    This paper investigates collaboration in teaching and learning and draws out implications for the promotion of collaboration within online environments. It is divided into four sections. First the case for collaboration, including specifically cooperative approaches, is explored. This case revolves around the impact of collaboration on the quality…

  1. A Data Mining Approach to Reveal Representative Collaboration Indicators in Open Collaboration Frameworks

    ERIC Educational Resources Information Center

    Anaya, Antonio R.; Boticario, Jesus G.

    2009-01-01

    Data mining methods are successful in educational environments to discover new knowledge or learner skills or features. Unfortunately, they have not been used in depth with collaboration. We have developed a scalable data mining method, whose objective is to infer information on the collaboration during the collaboration process in a…

  2. Comparative study on collaborative interaction in non-immersive and immersive systems

    NASA Astrophysics Data System (ADS)

    Shahab, Qonita M.; Kwon, Yong-Moo; Ko, Heedong; Mayangsari, Maria N.; Yamasaki, Shoko; Nishino, Hiroaki

    2007-09-01

    This research studies the Virtual Reality simulation for collaborative interaction so that different people from different places can interact with one object concurrently. Our focus is the real-time handling of inputs from multiple users, where object's behavior is determined by the combination of the multiple inputs. Issues addressed in this research are: 1) The effects of using haptics on a collaborative interaction, 2) The possibilities of collaboration between users from different environments. We conducted user tests on our system in several cases: 1) Comparison between non-haptics and haptics collaborative interaction over LAN, 2) Comparison between non-haptics and haptics collaborative interaction over Internet, and 3) Analysis of collaborative interaction between non-immersive and immersive display environments. The case studies are the interaction of users in two cases: collaborative authoring of a 3D model by two users, and collaborative haptic interaction by multiple users. In Virtual Dollhouse, users can observe physics law while constructing a dollhouse using existing building blocks, under gravity effects. In Virtual Stretcher, multiple users can collaborate on moving a stretcher together while feeling each other's haptic motions.

  3. The influence of empowerment, authentic leadership, and professional practice environments on nurses' perceived interprofessional collaboration.

    PubMed

    Regan, Sandra; Laschinger, Heather K S; Wong, Carol A

    2016-01-01

    The aim of this study was to examine the influence of structural empowerment, authentic leadership and professional nursing practice environments on experienced nurses' perceptions of interprofessional collaboration. Enhanced interprofessional collaboration (IPC) is seen as one means of transforming the health-care system and addressing concerns about shortages of health-care workers. Organizational supports and resources are suggested as key to promoting IPC. A predictive non-experimental design was used to test the effects of structural empowerment, authentic leadership and professional nursing practice environments on perceived interprofessional collaboration. A random sample of experienced registered nurses (n = 220) in Ontario, Canada completed a mailed questionnaire. Hierarchical multiple regression analysis was used. Higher perceived structural empowerment, authentic leadership, and professional practice environments explained 45% of the variance in perceived IPC (Adj. R² = 0.452, F = 59.40, P < 0.001). Results suggest that structural empowerment, authentic leadership and a professional nursing practice environment may enhance IPC. Nurse leaders who ensure access to resources such as knowledge of IPC, embody authenticity and build trust among nurses, and support the presence of a professional nursing practice environment can contribute to enhanced IPC. © 2015 John Wiley & Sons Ltd.

  4. The viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames

    NASA Technical Reports Server (NTRS)

    Clipson, Colin

    1994-01-01

    This paper will review and summarize research initiatives conducted between 1987 and 1992 at NASA Ames Research Center by a research team from the University of Michigan Architecture Research Laboratory. These research initiatives, funded by a NASA grant NAG2-635, examined the viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames in California. Collaborative Research Environments are envisioned as a way of enhancing the work of NASA research teams, optimizing the use of shared resources, and providing superior environments for housing research activities. The Integrated Simulation Project at NASA, Ames Human Performance Research Laboratory is one of the current realizations of this initiative.

  5. Searching for the stochastic gravitational-wave background in Advanced LIGO's first observing run

    NASA Astrophysics Data System (ADS)

    Meyers, Patrick

    2017-01-01

    One of the most exciting prospects of gravitational-wave astrophysics and cosmology is the measurement of the stochastic gravitational-wave background. In this talk, we discuss the most recent searches for a stochastic background with Advanced LIGO--the first performed with advanced interferometric detectors. We search for an isotropic as well as an anisotropic background, and perform a directed search for persistent gravitational waves in three promising directions. Additionally, with the accumulation of more Advanced LIGO data and the anticipated addition of Advanced Virgo to the network in 2017, we can also start to consider what the recent gravitational-wave detections--GW150914 and GW151226--tell us about when we can expect a detection of the stochastic background from binary black hole coalescences. For the LIGO Scientific Collaboration and the Virgo Collaboration.

  6. Application of NASA's Advanced Life Support Technologies in Polar Regions

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    1997-01-01

    The problems of obtaining adequate pure drinking water and disposing of liquid and solid waste in the U.S Arctic, a region where virtually all water is frozen solid for much of the year, has led to unsanitary solutions. Sanitation and a safe water supply are particularly problems in rural villages. These villages are without running water and use plastic buckets for toilets. The outbreak of diseases is believed to be partially attributable to exposure to human waste and lack of sanitation. Villages with the most frequent outbreaks of disease are those in which running water is difficult to obtain. Waste is emptied into open lagoons, rivers, or onto the sea coast. It does not degrade rapidly and in addition to affecting human health, can be harmful to the fragile ecology of the Arctic and the indigenous wildlife and fish populations. Current practices for waste management and sanitation pose serious human hazards as well as threaten the environment. NASA's unique knowledge of water/wastewater treatment systems for extreme environments, identified in the Congressional Office of Technology Assessment report entitled An Alaskan Challenge: Native Villagt Sanitation, may offer practical solutions addressing the issues of safe drinking water and effective sanitation practices in rural villages. NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving the NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, Ilisagvik College in Barrow and the National Science Foundation (NSF). The focus is a major issue in the State of Alaska and other areas of the Circumpolar North; the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the environment. As advanced technologies are transferred to the commercial sector the ALSEE project Offers the potential for development of new industries in Alaska to supply the products to support remote communities of the globe.

  7. Collaborative Genomics Study Advances Precision Oncology

    Cancer.gov

    A collaborative study conducted by two Office of Cancer Genomics (OCG) initiatives highlights the importance of integrating structural and functional genomics programs to improve cancer therapies, and more specifically, contribute to precision oncology treatments for children.

  8. Collaborative proposal on resilience : definitions, measurement, tools and research opportunities.

    DOT National Transportation Integrated Search

    2016-08-01

    Rutgers University Center for Advanced Infrastructure and Transportation (CAIT), in collaboration : with research partners within the University Transportation Center (UTC) consortium, seeks to identify : knowledge gaps and chart future R&D direction...

  9. Datathons and Software to Promote Reproducible Research.

    PubMed

    Celi, Leo Anthony; Lokhandwala, Sharukh; Montgomery, Robert; Moses, Christopher; Naumann, Tristan; Pollard, Tom; Spitz, Daniel; Stretch, Robert

    2016-08-24

    Datathons facilitate collaboration between clinicians, statisticians, and data scientists in order to answer important clinical questions. Previous datathons have resulted in numerous publications of interest to the critical care community and serve as a viable model for interdisciplinary collaboration. We report on an open-source software called Chatto that was created by members of our group, in the context of the second international Critical Care Datathon, held in September 2015. Datathon participants formed teams to discuss potential research questions and the methods required to address them. They were provided with the Chatto suite of tools to facilitate their teamwork. Each multidisciplinary team spent the next 2 days with clinicians working alongside data scientists to write code, extract and analyze data, and reformulate their queries in real time as needed. All projects were then presented on the last day of the datathon to a panel of judges that consisted of clinicians and scientists. Use of Chatto was particularly effective in the datathon setting, enabling teams to reduce the time spent configuring their research environments to just a few minutes-a process that would normally take hours to days. Chatto continued to serve as a useful research tool after the conclusion of the datathon. This suite of tools fulfills two purposes: (1) facilitation of interdisciplinary teamwork through archiving and version control of datasets, analytical code, and team discussions, and (2) advancement of research reproducibility by functioning postpublication as an online environment in which independent investigators can rerun or modify analyses with relative ease. With the introduction of Chatto, we hope to solve a variety of challenges presented by collaborative data mining projects while improving research reproducibility.

  10. Online Collaborative Learning: Theory and Practice

    ERIC Educational Resources Information Center

    Roberts, Tim, Ed.

    2004-01-01

    "Online Collaborative Learning: Theory and Practice" provides a resource for researchers and practitioners in the area of online collaborative learning (also known as CSCL, computer-supported collaborative learning), particularly those working within a tertiary education environment. It includes articles of relevance to those interested in both…

  11. LDC and MDC Strategies Help Schools Prepare Students for Careers, Advanced Training and Further Study. Best Practices Newsletter

    ERIC Educational Resources Information Center

    Southern Regional Education Board (SREB), 2014

    2014-01-01

    The Literacy Design Collaborative (LDC) and the Mathematics Design Collaborative (MDC) are strategies designed to improve how teachers teach and students learn. The designs encourage teacher collaboration and creativity and offer flexible frameworks for building lessons in all disciplines. Their purpose is to engage students to read challenging…

  12. The Institute for Advanced Composites Manufacturing Innovation | Wind |

    Science.gov Websites

    NREL The Institute for Advanced Composites Manufacturing Innovation The Institute for Advanced Composites Manufacturing Innovation Building on its 30-year history of collaboration with major wind turbine of the Institute for Advanced Composites Manufacturing Innovation (IACMI). Photo of a crowd of people

  13. Advancing the Interdisciplinary Collaborative Health Team Model: Applying Democratic Professionalism, Implementation Science, and Therapeutic Alliance to Enact Social Justice Practice.

    PubMed

    Murphy, Nancy

    2015-01-01

    This essay reframes the interdisciplinary collaborative health team model by proposing the application of 3 foundational pillars-democratic professionalism, implementation science, and therapeutic alliance to advance this practice. The aim was to address challenges to the model, enhance their functional capacity, and explicate and enact social justice practices to affect individual health outcomes while simultaneously addressing health inequities. The pillars are described and examples from the author's dissertation research illustrate how the pillars were used to bring about action. Related theories, models, and frameworks that have negotiation, capacity building, collaboration, and knowledge/task/power sharing as central concepts are presented under each of the pillars.

  14. Advancing the Science of Community-Level Interventions

    PubMed Central

    Beehler, Sarah; Deutsch, Charles; Green, Lawrence W.; Hawe, Penelope; McLeroy, Kenneth; Miller, Robin Lin; Rapkin, Bruce D.; Schensul, Jean J.; Schulz, Amy J.; Trimble, Joseph E.

    2011-01-01

    Community interventions are complex social processes that need to move beyond single interventions and outcomes at individual levels of short-term change. A scientific paradigm is emerging that supports collaborative, multilevel, culturally situated community interventions aimed at creating sustainable community-level impact. This paradigm is rooted in a deep history of ecological and collaborative thinking across public health, psychology, anthropology, and other fields of social science. The new paradigm makes a number of primary assertions that affect conceptualization of health issues, intervention design, and intervention evaluation. To elaborate the paradigm and advance the science of community intervention, we offer suggestions for promoting a scientific agenda, developing collaborations among professionals and communities, and examining the culture of science. PMID:21680923

  15. Advanced wireless mobile collaborative sensing network for tactical and strategic missions

    NASA Astrophysics Data System (ADS)

    Xu, Hao

    2017-05-01

    In this paper, an advanced wireless mobile collaborative sensing network will be developed. Through properly combining wireless sensor network, emerging mobile robots and multi-antenna sensing/communication techniques, we could demonstrate superiority of developed sensing network. To be concrete, heterogeneous mobile robots including unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) are equipped with multi-model sensors and wireless transceiver antennas. Through real-time collaborative formation control, multiple mobile robots can team the best formation that can provide most accurate sensing results. Also, formatting multiple mobile robots can also construct a multiple-input multiple-output (MIMO) communication system that can provide a reliable and high performance communication network.

  16. Collaborative PLM - The Next Generation AKA Cars on Mars

    NASA Technical Reports Server (NTRS)

    Soderstrom, Tom; Stefanini, Mike

    2007-01-01

    In this slide presentation the importance of collaboration in developing the next systems for space exploration is stressed. The mechanism of this collaboration are reviewed, and particular emphasis is given to our planned exploration of Mars and how this will require a great deal of collaboration. A system architecture for this collaboration is shown and the diagram for the collaborative environment is conceptualized.

  17. Context Aware Ubiquitous Learning Environments for Peer-to-Peer Collaborative Learning

    ERIC Educational Resources Information Center

    Yang, Stephen J. H.

    2006-01-01

    A ubiquitous learning environment provides an interoperable, pervasive, and seamless learning architecture to connect, integrate, and share three major dimensions of learning resources: learning collaborators, learning contents, and learning services. Ubiquitous learning is characterized by providing intuitive ways for identifying right learning…

  18. Perfecting scientists’ collaboration and problem-solving skills in the virtual team environment

    USDA-ARS?s Scientific Manuscript database

    Perfecting Scientists’ Collaboration and Problem-Solving Skills in the Virtual Team Environment Numerous factors have contributed to the proliferation of conducting work in virtual teams at the domestic, national, and global levels: innovations in technology, critical developments in software, co-lo...

  19. Work disability negotiations: supervisors' view of work disability and collaboration with occupational health services.

    PubMed

    Lappalainen, Liisa; Liira, Juha; Lamminpää, Anne; Rokkanen, Tanja

    2018-03-28

    To introduce the Finnish practice of collaboration aiming to enhance work participation, to ask supervisors about its reasons and usefulness, to study supervisors' needs when they face work disability, and to compare the experiences of supervisors whose profiles differ. An online questionnaire based on the Finnish practice of collaboration between supervisor and occupational health services (OHS) went to supervisors in six public and private organizations. A total of 254 supervisors responded, of whom, 133 (52%) had collaborated in work disability negotiations, representing a wide variety with differing professional profiles. In their role of managing work disability, supervisors appeared to benefit from three factors: an explicit company disability management (DM) policy, supervisors' training in DM, and collaboration with OHS. Reasons for work disability negotiations were long or repeated sick-leaves and reduced work performance. Expectations for occupational health consultations focused on finding vocational solutions and on obtaining information. Supervisors assessed the outcomes of collaboration as both vocational and medical. Supervisors with differing professional profiles prioritized slightly different aspects in collaboration. Collaboration with OHS is an important option for supervisors to enhance work modifications and the work participation of employees with work disability. Implications for Rehabilitation Work disability negotiation between supervisor, employee, and occupational health services (OHS) is an effective method to enhance work participation. Collaboration with occupational health can advance work modifications and also lead to medical procedures to improve work performance. Supervisor training, companies' explicit disability management policy, and collaboration with OHSs all advance employee's work participation. Collaboration with OHSs may serve as training for supervisors in their responsibility to support work participation.

  20. Internet-based distributed collaborative environment for engineering education and design

    NASA Astrophysics Data System (ADS)

    Sun, Qiuli

    2001-07-01

    This research investigates the use of the Internet for engineering education, design, and analysis through the presentation of a Virtual City environment. The main focus of this research was to provide an infrastructure for engineering education, test the concept of distributed collaborative design and analysis, develop and implement the Virtual City environment, and assess the environment's effectiveness in the real world. A three-tier architecture was adopted in the development of the prototype, which contains an online database server, a Web server as well as multi-user servers, and client browsers. The environment is composed of five components, a 3D virtual world, multiple Internet-based multimedia modules, an online database, a collaborative geometric modeling module, and a collaborative analysis module. The environment was designed using multiple Intenet-based technologies, such as Shockwave, Java, Java 3D, VRML, Perl, ASP, SQL, and a database. These various technologies together formed the basis of the environment and were programmed to communicate smoothly with each other. Three assessments were conducted over a period of three semesters. The Virtual City is open to the public at www.vcity.ou.edu. The online database was designed to manage the changeable data related to the environment. The virtual world was used to implement 3D visualization and tie the multimedia modules together. Students are allowed to build segments of the 3D virtual world upon completion of appropriate undergraduate courses in civil engineering. The end result is a complete virtual world that contains designs from all of their coursework and is viewable on the Internet. The environment is a content-rich educational system, which can be used to teach multiple engineering topics with the help of 3D visualization, animations, and simulations. The concept of collaborative design and analysis using the Internet was investigated and implemented. Geographically dispersed users can build the same geometric model simultaneously over the Internet and communicate with each other through a chat room. They can also conduct finite element analysis collaboratively on the same object over the Internet. They can mesh the same object, apply and edit the same boundary conditions and forces, obtain the same analysis results, and then discuss the results through the Internet.

  1. Protecting genomic data analytics in the cloud: state of the art and opportunities.

    PubMed

    Tang, Haixu; Jiang, Xiaoqian; Wang, Xiaofeng; Wang, Shuang; Sofia, Heidi; Fox, Dov; Lauter, Kristin; Malin, Bradley; Telenti, Amalio; Xiong, Li; Ohno-Machado, Lucila

    2016-10-13

    The outsourcing of genomic data into public cloud computing settings raises concerns over privacy and security. Significant advancements in secure computation methods have emerged over the past several years, but such techniques need to be rigorously evaluated for their ability to support the analysis of human genomic data in an efficient and cost-effective manner. With respect to public cloud environments, there are concerns about the inadvertent exposure of human genomic data to unauthorized users. In analyses involving multiple institutions, there is additional concern about data being used beyond agreed research scope and being prcoessed in untrused computational environments, which may not satisfy institutional policies. To systematically investigate these issues, the NIH-funded National Center for Biomedical Computing iDASH (integrating Data for Analysis, 'anonymization' and SHaring) hosted the second Critical Assessment of Data Privacy and Protection competition to assess the capacity of cryptographic technologies for protecting computation over human genomes in the cloud and promoting cross-institutional collaboration. Data scientists were challenged to design and engineer practical algorithms for secure outsourcing of genome computation tasks in working software, whereby analyses are performed only on encrypted data. They were also challenged to develop approaches to enable secure collaboration on data from genomic studies generated by multiple organizations (e.g., medical centers) to jointly compute aggregate statistics without sharing individual-level records. The results of the competition indicated that secure computation techniques can enable comparative analysis of human genomes, but greater efficiency (in terms of compute time and memory utilization) are needed before they are sufficiently practical for real world environments.

  2. Culture-Aware Collaborative Learning

    ERIC Educational Resources Information Center

    Economides, Anastasios A.

    2008-01-01

    Purpose: In a collaborative learning environment there will be many learners with diverse cultures. These learners should be supported to communicate and collaborate among themselves. The variety of the communication and collaboration tools and modes available to each learner would depend on his/her personal cultural background. The purpose of…

  3. Distributed and collaborative synthetic environments

    NASA Technical Reports Server (NTRS)

    Bajaj, Chandrajit L.; Bernardini, Fausto

    1995-01-01

    Fast graphics workstations and increased computing power, together with improved interface technologies, have created new and diverse possibilities for developing and interacting with synthetic environments. A synthetic environment system is generally characterized by input/output devices that constitute the interface between the human senses and the synthetic environment generated by the computer; and a computation system running a real-time simulation of the environment. A basic need of a synthetic environment system is that of giving the user a plausible reproduction of the visual aspect of the objects with which he is interacting. The goal of our Shastra research project is to provide a substrate of geometric data structures and algorithms which allow the distributed construction and modification of the environment, efficient querying of objects attributes, collaborative interaction with the environment, fast computation of collision detection and visibility information for efficient dynamic simulation and real-time scene display. In particular, we address the following issues: (1) A geometric framework for modeling and visualizing synthetic environments and interacting with them. We highlight the functions required for the geometric engine of a synthetic environment system. (2) A distribution and collaboration substrate that supports construction, modification, and interaction with synthetic environments on networked desktop machines.

  4. Nutrition research to affect food and a healthy lifespan12

    PubMed Central

    Ohlhorst, Sarah D.; Russell, Robert; Bier, Dennis; Klurfeld, David M.; Li, Zhaoping; Mein, Jonathan R.; Milner, John; Ross, A. Catharine; Stover, Patrick; Konopka, Emily

    2013-01-01

    Proper nutrition offers one of the most effective and least costly ways to decrease the burden of many diseases and their associated risk factors, including obesity. Nutrition research holds the key to increasing our understanding of the causes of obesity and its related comorbidities and thus holds promise to markedly influence global health and economies. After outreach to 75 thought leaders, the American Society for Nutrition (ASN) convened a Working Group to identify the nutrition research needs whose advancement will have the greatest projected impact on the future health and well-being of global populations. ASN’s Nutrition Research Needs focus on the following high priority areas: 1) variability in individual responses to diet and foods; 2) healthy growth, development, and reproduction; 3) health maintenance; 4) medical management; 5) nutrition-related behaviors; and 6) food supply/environment. ASN hopes the Nutrition Research Needs will prompt collaboration among scientists across all disciplines to advance this challenging research agenda given the high potential for translation and impact on public health. Furthermore, ASN hopes the findings from the Nutrition Research Needs will stimulate the development and adoption of new and innovative strategies that can be applied toward the prevention and treatment of nutrition-related diseases. The multidisciplinary nature of nutrition research requires stakeholders with differing areas of expertise to collaborate on multifaceted approaches to establish the evidence-based nutrition guidance and policies that will lead to better health for the global population. In addition to the identified research needs, ASN also identified 5 tools that are critical to the advancement of the Nutrition Research Needs: 1) omics, 2) bioinformatics, 3) databases, 4) biomarkers, and 5) cost-effectiveness analysis. PMID:24038264

  5. cFE/CFS (Core Flight Executive/Core Flight System)

    NASA Technical Reports Server (NTRS)

    Wildermann, Charles P.

    2008-01-01

    This viewgraph presentation describes in detail the requirements and goals of the Core Flight Executive (cFE) and the Core Flight System (CFS). The Core Flight Software System is a mission independent, platform-independent, Flight Software (FSW) environment integrating a reusable core flight executive (cFE). The CFS goals include: 1) Reduce time to deploy high quality flight software; 2) Reduce project schedule and cost uncertainty; 3) Directly facilitate formalized software reuse; 4) Enable collaboration across organizations; 5) Simplify sustaining engineering (AKA. FSW maintenance); 6) Scale from small instruments to System of Systems; 7) Platform for advanced concepts and prototyping; and 7) Common standards and tools across the branch and NASA wide.

  6. Examining elite Parasport athletes with sport involvement and sports equipment.

    PubMed

    Hambrick, Marion E; Hums, Mary A; Bower, Glenna G; Wolff, Eli A

    2015-01-01

    Elite athletes require the most advanced sports equipment to maintain their competitive edge, but manufacturers cannot always satisfy these athletes' specific equipment needs. Sport involvement can influence sports-equipment selections and is described as the process by which individuals rely on attitudes and belief systems to make sports-related consumption decisions. This study involved semistructured interviews with 5 elite Parasport athletes to identify and analyze the role of sport involvement in their selection of sports equipment. The results revealed that the athletes identified product limitations, created a collaborative environment, and promoted a culture of innovation to develop new sports products and address existing limitations. Theoretical and practical implications are discussed.

  7. InSilico DB genomic datasets hub: an efficient starting point for analyzing genome-wide studies in GenePattern, Integrative Genomics Viewer, and R/Bioconductor.

    PubMed

    Coletta, Alain; Molter, Colin; Duqué, Robin; Steenhoff, David; Taminau, Jonatan; de Schaetzen, Virginie; Meganck, Stijn; Lazar, Cosmin; Venet, David; Detours, Vincent; Nowé, Ann; Bersini, Hugues; Weiss Solís, David Y

    2012-11-18

    Genomics datasets are increasingly useful for gaining biomedical insights, with adoption in the clinic underway. However, multiple hurdles related to data management stand in the way of their efficient large-scale utilization. The solution proposed is a web-based data storage hub. Having clear focus, flexibility and adaptability, InSilico DB seamlessly connects genomics dataset repositories to state-of-the-art and free GUI and command-line data analysis tools. The InSilico DB platform is a powerful collaborative environment, with advanced capabilities for biocuration, dataset sharing, and dataset subsetting and combination. InSilico DB is available from https://insilicodb.org.

  8. Black Male Mental Health and the Black Church: Advancing a Collaborative Partnership and Research Agenda.

    PubMed

    Robinson, Michael A; Jones-Eversley, Sharon; Moore, Sharon E; Ravenell, Joseph; Adedoyin, A Christson

    2018-06-01

    This article explores the role the Black Church could play in facilitating spiritually sensitive, culturally relevant and gender-specific services to address the mental health and well-being of Black males. The help-seeking behaviors of Black men are examined as the authors offer two theories: the body, mind, spirit, environment, social, transcendent, and health, illness, men, and masculinities that may assist the Black Church in functioning as an effective support networks for healthy Black male mental health. Next, the authors discuss implications for practice, research, and education, and lastly, eight recommendations for Black Church leadership, social workers, and mental health professionals are also discussed.

  9. The use of collaboration in personal outcomes.

    PubMed

    Callaghan, Leonard

    2006-01-01

    As part of its restructuring and commitment to collaboration and advances in healthcare, the author's organisation has recently adopted personal outcomes to ensure that services are aligned to meet patient needs more effectively. The purpose of this paper is to evaluate this advancement in healthcare in the light of recent research findings, changing policies and the author's own understanding. DESIGN/METHDODOLOGY/APPROACH: The paper introduces the concept of collaboration as a means of achieving personal outcomes. In addition, the paper puts forward suggestions as to how the nurse can foster interdisciplinary/multidisciplinary teamwork, utilising the core concepts of the advanced nurse practitioner, namely transformational leadership, in support of this. While success stories of personal outcomes abound much of it anecdotal based. Therefore, the need to initiate research in this area is of paramount importance as the latter would be helpful in examining meaningful quality outcomes. Reform in structure, finance and policy will also be necessary, as these are vital ingredients to the success of personal outcomes. Despite the overlapping conflict of Irish government policy, the extra finance announced in the 2005 Budget can only serve to assist organisations in achieving accreditation through initiatives like personal outcomes. Central to the success of personal outcomes, is to engage in collaborative practice by way of fostering interdisciplinary/multidisciplinary team working. Further study of the impact on patient outcomes of collaboration is warranted. The paper examines organisational, professional and interpersonal challenges.

  10. Space ALIVE!: A Multimedia-Enhanced Collaborative Learning Environment.

    ERIC Educational Resources Information Center

    Looi, Chee-Kit; Ang, D.

    2000-01-01

    Discusses online text-based collaborative learning environments such as Multi-User Dimensions (MUDs) and Object-Oriented MUDs (MOOs) and describes a multimedia-enhanced, Web-based MOO (WOO) called SpaceALIVE! that was the subject of a pilot project with Singapore secondary school students. (Contains 15 references.) (LRW)

  11. Managing the Collaborative Learning Environment.

    ERIC Educational Resources Information Center

    Wagner, June G.

    2002-01-01

    The feature story in this issue, "Managing the Collaborative Learning Environment," focuses on the growing emphasis on teamwork in the workplace. It discusses how the concept of empowering employees in the workplace is evolving and the benefits--faster decision making, lower costs and absenteeism, higher productivity and quality, and…

  12. Handbook of Research on Collaborative Teaching Practice in Virtual Learning Environments

    ERIC Educational Resources Information Center

    Panconesi, Gianni, Ed.; Guida, Maria, Ed.

    2017-01-01

    Modern technology has enhanced many aspects of life, including classroom education. By offering virtual learning experiences, educational systems can become more efficient and effective at teaching the student population. The "Handbook of Research on Collaborative Teaching Practice in Virtual Learning Environments" highlights program…

  13. Knowledge Organization through Multiple Representations in a Computer-Supported Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Namdar, Bahadir; Shen, Ji

    2018-01-01

    Computer-supported collaborative learning (CSCL) environments provide learners with multiple representational tools for storing, sharing, and constructing knowledge. However, little is known about how learners organize knowledge through multiple representations about complex socioscientific issues. Therefore, the purpose of this study was to…

  14. Collaborative environments for capability-based planning

    NASA Astrophysics Data System (ADS)

    McQuay, William K.

    2005-05-01

    Distributed collaboration is an emerging technology for the 21st century that will significantly change how business is conducted in the defense and commercial sectors. Collaboration involves two or more geographically dispersed entities working together to create a "product" by sharing and exchanging data, information, and knowledge. A product is defined broadly to include, for example, writing a report, creating software, designing hardware, or implementing robust systems engineering and capability planning processes in an organization. Collaborative environments provide the framework and integrate models, simulations, domain specific tools, and virtual test beds to facilitate collaboration between the multiple disciplines needed in the enterprise. The Air Force Research Laboratory (AFRL) is conducting a leading edge program in developing distributed collaborative technologies targeted to the Air Force's implementation of systems engineering for a simulation-aided acquisition and capability-based planning. The research is focusing on the open systems agent-based framework, product and process modeling, structural architecture, and the integration technologies - the glue to integrate the software components. In past four years, two live assessment events have been conducted to demonstrate the technology in support of research for the Air Force Agile Acquisition initiatives. The AFRL Collaborative Environment concept will foster a major cultural change in how the acquisition, training, and operational communities conduct business.

  15. Educating registered nursing and healthcare assistant students in community-based supportive care of older adults: A mixed methods study.

    PubMed

    Pesut, Barbara; McLean, Tammy; Reimer-Kirkham, Sheryl; Hartrick-Doane, Gweneth; Hutchings, Deanna; Russell, Lara B

    2015-09-01

    Collaborative education that prepares nursing and healthcare assistant students in supportive care for older adults living at home with advanced chronic illness is an important innovation to prepare the nursing workforce to meet the needs of this growing population. To explore whether a collaborative educational intervention could develop registered nursing and healthcare assistant students' capabilities in supportive care while enhancing care of clients with advanced chronic illness in the community. Mixed method study design. A rural college in Canada. Twenty-one registered nursing and 21 healthcare assistant students completed the collaborative workshop. Eight registered nursing students and 13 healthcare assistant students completed an innovative clinical experience with fifteen clients living with advanced chronic illness. Pre and post-test measures of self-perceived competence and knowledge in supportive care were collected at three time points. Semi-structured interviews were conducted to evaluate the innovative clinical placement. Application of Friedman's test indicated statistically significant changes on all self-perceived competence scores for RN and HCA students with two exceptions: the ethical and legal as well as personal and professional issues domains for HCA students. Application of Friedman's test to self-perceived knowledge scores showed statistically significant changes in all but one domain (interprofessional collaboration and communication) for RN students and all but three domains for HCA students (spiritual needs, ethical and legal issues, and inter-professional collaboration and communication). Not all gains were sustained until T-3. The innovative community placement was evaluated positively by clients and students. Collaborative education for nursing and healthcare assistant students can enhance self-perceived knowledge and competence in supportive care of adults with advanced chronic illness. An innovative clinical experience can maximize reciprocal learning while providing nursing services to a population that is not receiving home-based care. Copyright © 2015. Published by Elsevier Ltd.

  16. Evaluation of a Research Experiences for Undergraduates Program in ChE Indicates Benefit from a Collaborative Model

    ERIC Educational Resources Information Center

    Follmer, D. Jake; Gomez, Esther; Zappe, Sarah; Kumar, Manish

    2017-01-01

    This study examined how a collaborative research environment in a structured research experience impacts undergraduate student outcomes. Students demonstrated significant gains in research skills and provided positive appraisals of their collaborative experiences. Emphasis on collaboration among students in an undergraduate research program…

  17. Developing a Biostatistical Collaboration Course in a Health Science Research Methodology Program

    ERIC Educational Resources Information Center

    Thabane, Lehana; Walter, Stephen D.; Hanna, Steven; Goldsmith, Charles H.; Pullenayegum, Eleanor

    2008-01-01

    Effective statistical collaboration in a multidisciplinary health research environment requires skills not taught in the usual statistics courses. Graduates often learn such collaborative skills through trial and error. In this paper, we discuss the development of a biostatistical collaboration course aimed at graduate students in a Health…

  18. Students Assessing Their Own Collaborative Knowledge Building

    ERIC Educational Resources Information Center

    Lee, Eddy Y. C.; Chan, Carol K. K.; van Aalst, Jan

    2006-01-01

    We describe the design of a knowledge-building environment and examine the role of knowledge-building portfolios in characterizing and scaffolding collaborative inquiry. Our goal is to examine collaborative knowledge building in the context of exploring the alignment of learning, collaboration, and assessment in computer forums. The key design…

  19. Interaction Forms in Successful Collaborative Learning in Virtual Learning Environments

    ERIC Educational Resources Information Center

    Vuopala, Essi; Hyvönen, Pirkko; Järvelä, Sanna

    2016-01-01

    Despite the numerous studies on social interaction in collaborative learning, little is known about interaction forms in successful computer-supported collaborative learning situations. The purpose of this study was to explore and understand student interaction in successful collaborative learning during a university course which was mediated by…

  20. Designing and Deploying 3D Collaborative Games in Education

    ERIC Educational Resources Information Center

    Mavridis, Apostolos; Tsiatsos, Thrasyvoulos; Terzidou, Theodouli

    2016-01-01

    This paper focuses on methodologies of serious games deployment and evaluation. Particularly, this study will present a specific category of serious games that are based on Collaborative Virtual Environments and they aim to support Collaborative Learning. We call these serious games Collaborative Virtual Educational Games (CVEG). The paper aims to…

  1. Advanced Education Business Plan 2005-2008

    ERIC Educational Resources Information Center

    Alberta Advanced Education, 2005

    2005-01-01

    In collaboration with learning providers, the advanced education system, industry, communities, government agencies and non-governmental organizations, Advanced Education strives to create accessible, affordable and quality learning opportunities that are responsive to the ongoing learning needs of Albertans. The Ministry's 2005-08 Business Plan…

  2. Analyzing Collaborative Learning Processes Automatically: Exploiting the Advances of Computational Linguistics in Computer-Supported Collaborative Learning

    ERIC Educational Resources Information Center

    Rose, Carolyn; Wang, Yi-Chia; Cui, Yue; Arguello, Jaime; Stegmann, Karsten; Weinberger, Armin; Fischer, Frank

    2008-01-01

    In this article we describe the emerging area of text classification research focused on the problem of collaborative learning process analysis both from a broad perspective and more specifically in terms of a publicly available tool set called TagHelper tools. Analyzing the variety of pedagogically valuable facets of learners' interactions is a…

  3. Affordances of Web 2.0 Technologies for Collaborative Advanced Writing in a Foreign Language

    ERIC Educational Resources Information Center

    Strobl. Carola

    2014-01-01

    Can online collaboration yield a positive effect on academic writing in a foreign language? If so, what exactly is the added value, compared to individual writing, and (how) does it translate to better output? These are the central questions addressed in this paper. L2 writing research has long highlighted the benefits of collaboration in terms of…

  4. The Development of Chinese Education in Malaysia, 1952-1975: Political Collaboration between the Malaysian Chinese Association and the Chinese Educationists

    ERIC Educational Resources Information Center

    Tan, Yao Sua; Teoh, Hooi See

    2015-01-01

    This paper examines the development of Chinese education in Malaysia from 1952 to 1975, focusing on the political collaboration between the Malaysian Chinese Association (MCA) and the Chinese educationists to advance the cause of Chinese education instead of the usual macro policy analysis. This collaboration was compounded by the different stand…

  5. Canadian advanced life support capacities and future directions

    NASA Astrophysics Data System (ADS)

    Bamsey, M.; Graham, T.; Stasiak, M.; Berinstain, A.; Scott, A.; Vuk, T. Rondeau; Dixon, M.

    2009-07-01

    Canada began research on space-relevant biological life support systems in the early 1990s. Since that time Canadian capabilities have grown tremendously, placing Canada among the emerging leaders in biological life support systems. The rapid growth of Canadian expertise has been the result of several factors including a large and technically sophisticated greenhouse sector which successfully operates under challenging climatic conditions, well planned technology transfer strategies between the academic and industrial sectors, and a strong emphasis on international research collaborations. Recent activities such as Canada's contribution of the Higher Plant Compartment of the European Space Agency's MELiSSA Pilot Plant and the remote operation of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic continue to demonstrate Canadian capabilities with direct applicability to advanced life support systems. There is also a significant latent potential within Canadian institutions and organizations with respect to directly applicable advanced life support technologies. These directly applicable research interests include such areas as horticultural management strategies (for candidate crops), growth media, food processing, water management, atmosphere management, energy management, waste management, imaging, environment sensors, thermal control, lighting systems, robotics, command and data handling, communications systems, structures, in-situ resource utilization, space analogues and mission operations. With this background and in collaboration with the Canadian aerospace industry sector, a roadmap for future life support contributions is presented here. This roadmap targets an objective of at least 50% food closure by 2050 (providing greater closure in oxygen, water recycling and carbon dioxide uptake). The Canadian advanced life support community has chosen to focus on lunar surface infrastructure and not low Earth orbit or transit systems (i.e. microgravity applications). To advance the technical readiness for the proposed lunar missions, including a lunar plant growth lander, lunar "salad machine" (i.e. small scale plant production unit) and a full scale lunar plant production system, a suite of terrestrial developments and analogue systems are proposed. As has been successfully demonstrated by past Canadian advanced life support activities, terrestrial technology transfer and the development of highly qualified personnel will serve as key outputs for Canadian advanced life support system research programs. This approach is designed to serve the Canadian greenhouse industry by developing compliance measures for mitigating environmental impact, reducing labour and energy costs as well as improving Canadian food security, safety and benefit northern/remote communities.

  6. Collaborative Accounting Problem Solving via Group Support Systems in a Face-to-Face versus Distant Learning Environment.

    ERIC Educational Resources Information Center

    Burke, Jacqueline A.

    2001-01-01

    Accounting students (n=128) used either face-to-face or distant Group support systems to complete collaborative tasks. Participation and social presence perceptions were significantly higher face to face. Task difficulty did not affect participation in either environment. (Contains 54 references.) (JOW)

  7. Widget, Widget on the Wall, Am I Performing Well at All?

    ERIC Educational Resources Information Center

    Scheffel, Maren; Drachsler, Hendrik; de Kraker, Joop

    2017-01-01

    In collaborative learning environments, students work together on assignments in virtual teams and depend on each other's contribution to achieve their learning objectives. The online learning environment, however, may not only facilitate but also hamper group communication, coordination, and collaboration. Group awareness widgets that visualize…

  8. Use of FirstClass as a Collaborative Learning Environment.

    ERIC Educational Resources Information Center

    Persico, Donatella; Manca, Stefania

    2000-01-01

    Describes the use of SoftArc Intranet FirstClass, a collaborative learning environment that uses computer conferencing, and discusses pros and cons of choosing this system for running online courses from a distance. Presents case studies from Italy and presents viewpoints of students, tutors, designers and administrators. (Author/LRW)

  9. VisSearch: A Collaborative Web Searching Environment

    ERIC Educational Resources Information Center

    Lee, Young-Jin

    2005-01-01

    VisSearch is a collaborative Web searching environment intended for sharing Web search results among people with similar interests, such as college students taking the same course. It facilitates students' Web searches by visualizing various Web searching processes. It also collects the visualized Web search results and applies an association rule…

  10. Use of Communication Resources in a Networked Collaborative Design Environment.

    ERIC Educational Resources Information Center

    Gay, Geri; Lentini, Marc

    1995-01-01

    Examines student use of a prototype networked collaborative design environment to support or augment learning about engineering design. Finds that students use the channels for a variety of activities to increase depth of communication, increase breadth of communication, and overcome technical difficulty. Suggests that students need multiple…

  11. Integrating Collaborative and Decentralized Models to Support Ubiquitous Learning

    ERIC Educational Resources Information Center

    Barbosa, Jorge Luis Victória; Barbosa, Débora Nice Ferrari; Rigo, Sandro José; de Oliveira, Jezer Machado; Rabello, Solon Andrade, Jr.

    2014-01-01

    The application of ubiquitous technologies in the improvement of education strategies is called Ubiquitous Learning. This article proposes the integration between two models dedicated to support ubiquitous learning environments, called Global and CoolEdu. CoolEdu is a generic collaboration model for decentralized environments. Global is an…

  12. Social and Collaborative Interactions for Educational Content Enrichment in ULEs

    ERIC Educational Resources Information Center

    Araújo, Rafael D.; Brant-Ribeiro, Taffarel; Mendonça, Igor E. S.; Mendes, Miller M.; Dorça, Fabiano A.; Cattelan, Renan G.

    2017-01-01

    This article presents a social and collaborative model for content enrichment in Ubiquitous Learning Environments. Designed as a loosely coupled software architecture, the proposed model was implemented and integrated into the Classroom eXperience, a multimedia capture platform for educational environments. After automatically recording a lecture…

  13. Students' Groupwork Management in Online Collaborative Learning Environments

    ERIC Educational Resources Information Center

    Xu, Jianzhong; Du, Jianxia; Fan, Xitao

    2015-01-01

    The present study investigates empirical models of groupwork management in online collaborative learning environments, based on the data from 298 students (86 groups) in United States. Data revealed that, at the group level, groupwork management was positively associated with feedback and help seeking. Data further revealed that, at the individual…

  14. Using Visualization to Motivate Student Participation in Collaborative Online Learning Environments

    ERIC Educational Resources Information Center

    Jin, Sung-Hee

    2017-01-01

    Online participation in collaborative online learning environments is instrumental in motivating students to learn and promoting their learning satisfaction, but there has been little research on the technical supports for motivating students' online participation. The purpose of this study was to develop a visualization tool to motivate learners…

  15. InnoTube: A Video-Based Connection Tool Supporting Collaborative Innovation

    ERIC Educational Resources Information Center

    Angehrn, Albert A.; Luccini, Angelo Marco; Maxwell, Katrina

    2009-01-01

    Innovation is a key driver of organizational renewal and success. However, providing the right environment for innovative ideas to emerge and develop is not easy. This is further complicated by the fact that the professional environment is increasingly virtual as globally dispersed organizational and inter-organizational teams collaborate on…

  16. Changes in Teachers' Beliefs and Practices in Technology-Rich Classrooms.

    ERIC Educational Resources Information Center

    Dwyer, David C.; And Others

    1991-01-01

    The Apple Classrooms of Tomorrow (ACOT) project is a flexible consortium of researchers, educators, students, and parents who have worked collaboratively to create and study innovative learning environments since 1985. ACOT classrooms are true multimedia environments where students move from competitive work patterns toward collaborative ones. (10…

  17. Collaborative Virtual Environment Technology for People with Autism

    ERIC Educational Resources Information Center

    Moore, David; Cheng, Yufang; McGrath, Paul; Powell, Norman J.

    2005-01-01

    Collaborative virtual environments (CVEs) hold great potential for people with autism. An exploratory empirical study was conducted to determine if children and youth with autism could understand basic emotions as represented by a humanoid avatar. Thirty-four participants (ages 7.8-16 years) reported to have autism interacted with a software…

  18. Balancing entrepreneurship and business practices for e-collaboration: responsible information sharing in academic research.

    PubMed

    Porter, Mark W; Porter, Mark William; Milley, David; Oliveti, Kristyn; Ladd, Allen; O'Hara, Ryan J; Desai, Bimal R; White, Peter S

    2008-11-06

    Flexible, highly accessible collaboration tools can inherently conflict with controls placed on information sharing by offices charged with privacy protection, compliance, and maintenance of the general business environment. Our implementation of a commercial enterprise wiki within the academic research environment addresses concerns of all involved through the development of a robust user training program, a suite of software customizations that enhance security elements, a robust auditing program, allowance for inter-institutional wiki collaboration, and wiki-specific governance.

  19. Securing Resources in Collaborative Environments: A Peer-to-peerApproach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berket, Karlo; Essiari, Abdelilah; Thompson, Mary R.

    2005-09-19

    We have developed a security model that facilitates control of resources by autonomous peers who act on behalf of collaborating users. This model allows a gradual build-up of trust. It enables secure interactions among users that do not necessarily know each other and allows them to build trust over the course of their collaboration. This paper describes various aspects of our security model and describes an architecture that implements this model to provide security in pure peer-to-peer environments.

  20. An Assessment of the U.S. Army Tank Automotive Research, Development and Engineering Center’s Utilization of the Processes, and Availability of Tools and Physical Environments that Promote Innovation

    DTIC Science & Technology

    2014-04-02

    workspaces Proximity H13 : TARDEC associates do not sit near other associates with different functional expertise Objective The objective of...Physical Environment Collaborative Workspace H12: TARDEC does not have available innovation best practice collaborative workspaces Proximity H13 ...does not have available innovation best practice collaborative workspaces Proximity H13 : TARDEC associates do not sit near other associates with

  1. Preliminary Framework for Human-Automation Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oxstrand, Johanna Helene; Le Blanc, Katya Lee; Spielman, Zachary Alexander

    The Department of Energy’s Advanced Reactor Technologies Program sponsors research, development and deployment activities through its Next Generation Nuclear Plant, Advanced Reactor Concepts, and Advanced Small Modular Reactor (aSMR) Programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear energy technologies. The Human Automation Collaboration (HAC) Research Project is located under the aSMR Program, which identifies developing advanced instrumentation and controls and human-machine interfaces as one of four key research areas. It is expected that the new nuclear power plant designs will employ technology significantly more advanced than the analog systems in the existing reactor fleetmore » as well as utilizing automation to a greater extent. Moving towards more advanced technology and more automation does not necessary imply more efficient and safer operation of the plant. Instead, a number of concerns about how these technologies will affect human performance and the overall safety of the plant need to be addressed. More specifically, it is important to investigate how the operator and the automation work as a team to ensure effective and safe plant operation, also known as the human-automation collaboration (HAC). The focus of the HAC research is to understand how various characteristics of automation (such as its reliability, processes, and modes) effect an operator’s use and awareness of plant conditions. In other words, the research team investigates how to best design the collaboration between the operators and the automated systems in a manner that has the greatest positive impact on overall plant performance and reliability. This report addresses the Department of Energy milestone M4AT-15IN2302054, Complete Preliminary Framework for Human-Automation Collaboration, by discussing the two phased development of a preliminary HAC framework. The framework developed in the first phase was used as the basis for selecting topics to be investigated in more detail. The results and insights gained from the in-depth studies conducted during the second phase were used to revise the framework. This report describes the basis for the framework developed in phase 1, the changes made to the framework in phase 2, and the basis for the changes. Additional research needs are identified and presented in the last section of the report.« less

  2. Vroom: designing an augmented environment for remote collaboration in digital cinema production

    NASA Astrophysics Data System (ADS)

    Margolis, Todd; Cornish, Tracy

    2013-03-01

    As media technologies become increasingly affordable, compact and inherently networked, new generations of telecollaborative platforms continue to arise which integrate these new affordances. Virtual reality has been primarily concerned with creating simulations of environments that can transport participants to real or imagined spaces that replace the "real world". Meanwhile Augmented Reality systems have evolved to interleave objects from Virtual Reality environments into the physical landscape. Perhaps now there is a new class of systems that reverse this precept to enhance dynamic media landscapes and immersive physical display environments to enable intuitive data exploration through collaboration. Vroom (Virtual Room) is a next-generation reconfigurable tiled display environment in development at the California Institute for Telecommunications and Information Technology (Calit2) at the University of California, San Diego. Vroom enables freely scalable digital collaboratories, connecting distributed, high-resolution visualization resources for collaborative work in the sciences, engineering and the arts. Vroom transforms a physical space into an immersive media environment with large format interactive display surfaces, video teleconferencing and spatialized audio built on a highspeed optical network backbone. Vroom enables group collaboration for local and remote participants to share knowledge and experiences. Possible applications include: remote learning, command and control, storyboarding, post-production editorial review, high resolution video playback, 3D visualization, screencasting and image, video and multimedia file sharing. To support these various scenarios, Vroom features support for multiple user interfaces (optical tracking, touch UI, gesture interface, etc.), support for directional and spatialized audio, giga-pixel image interactivity, 4K video streaming, 3D visualization and telematic production. This paper explains the design process that has been utilized to make Vroom an accessible and intuitive immersive environment for remote collaboration specifically for digital cinema production.

  3. Responding to health care reform by addressing the institute of medicine report on the future of nursing.

    PubMed

    Ellerbe, Suellyn; Regen, Debra

    2012-01-01

    The current health care environment has heightened the importance of achieving positive patient outcomes and excellent customer satisfaction. To remain competitive, health care organizations must adapt quickly to changing regulatory requirements, quality improvement initiatives, and customer expectations. To ensure nursing practice at the Saint Clare's Health System in Northwest New Jersey is at the forefront of leading change, the nursing staff has embraced the Institute of Medicine report The Future of Nursing: Leading Change. The empowered nursing team has applied Benner's Novice to Expert model and McCauley's Careful Nursing Theory as the foundation for nursing practice. The ability to apply evidence-based nursing research and cultivate professional development at the bedside has resulted in retention of expert nurses at the bedside. Engaging the nursing team has resulted in increased patient satisfaction and improved clinical outcomes. Advanced practice nurses play an important role to mentor the nursing staff and promote an interdisciplinary, collaborative relationship between all health care disciplines and community support programs. Nurses are recognized for their accomplishments and encouraged to obtain specialty certification, advanced degrees, and earn state and national recognition through professional organizations. The professional nurses at the Saint Clare's Health System are prepared to work in whatever environment the new normal creates.

  4. Science Teacher Education in the Twenty-First Century: a Pedagogical Framework for Technology-Integrated Social Constructivism

    NASA Astrophysics Data System (ADS)

    Barak, Miri

    2017-04-01

    Changes in our global world have shifted the skill demands from acquisition of structured knowledge to mastery of skills, often referred to as twenty-first century competencies. Given these changes, a sequential explanatory mixed methods study was undertaken to (a) examine predominant instructional methods and technologies used by teacher educators, (b) identify attributes for learning and teaching in the twenty-first century, and (c) develop a pedagogical framework for promoting meaningful usage of advanced technologies. Quantitative and qualitative data were collected via an online survey, personal interviews, and written reflections with science teacher educators and student teachers. Findings indicated that teacher educators do not provide sufficient models for the promotion of reform-based practice via web 2.0 environments, such as Wikis, blogs, social networks, or other cloud technologies. Findings also indicated four attributes for teaching and learning in the twenty-first century: (a) adapting to frequent changes and uncertain situations, (b) collaborating and communicating in decentralized environments, (c) generating data and managing information, and (d) releasing control by encouraging exploration. Guided by social constructivist paradigms and twenty-first century teaching attributes, this study suggests a pedagogical framework for fostering meaningful usage of advanced technologies in science teacher education courses.

  5. OPUS One: An Intelligent Adaptive Learning Environment Using Artificial Intelligence Support

    NASA Astrophysics Data System (ADS)

    Pedrazzoli, Attilio

    2010-06-01

    AI based Tutoring and Learning Path Adaptation are well known concepts in e-Learning scenarios today and increasingly applied in modern learning environments. In order to gain more flexibility and to enhance existing e-learning platforms, the OPUS One LMS Extension package will enable a generic Intelligent Tutored Adaptive Learning Environment, based on a holistic Multidimensional Instructional Design Model (PENTHA ID Model), allowing AI based tutoring and adaptation functionality to existing Web-based e-learning systems. Relying on "real time" adapted profiles, it allows content- / course authors to apply a dynamic course design, supporting tutored, collaborative sessions and activities, as suggested by modern pedagogy. The concept presented combines a personalized level of surveillance, learning activity- and learning path adaptation suggestions to ensure the students learning motivation and learning success. The OPUS One concept allows to implement an advanced tutoring approach combining "expert based" e-tutoring with the more "personal" human tutoring function. It supplies the "Human Tutor" with precise, extended course activity data and "adaptation" suggestions based on predefined subject matter rules. The concept architecture is modular allowing a personalized platform configuration.

  6. Natural environments, nature relatedness and the ecological theater: connecting satellites and sequencing to shinrin-yoku.

    PubMed

    Craig, Jeffrey M; Logan, Alan C; Prescott, Susan L

    2016-01-13

    Recent advances in research concerning the public health value of natural environments have been remarkable. The growing interest in this topic (often housed under terms such as green and/or blue space) has been occurring in parallel with the microbiome revolution and an increased use of remote sensing technology in public health. In the context of biodiversity loss, rapid urbanization, and alarming rates of global non-communicable diseases (many associated with chronic, low-grade inflammation), discussions of natural vis-a-vis built environments are not merely fodder for intellectual curiosity. Here, we argue for increased interdisciplinary collaboration with the aim of better understanding the mechanisms-including aerobiological and epigenetic-that might help explain some of the noted positive health outcomes. It is our contention that some of these mechanisms are related to ecodiversity (i.e., the sum of biodiversity and geodiversity, including biotic and abiotic constituents). We also encourage researchers to more closely examine individual nature relatedness and how it might influence many outcomes that are at the interface of lifestyle habits and contact with ecodiversity.

  7. Requirements Development for the NASA Advanced Engineering Environment (AEE)

    NASA Technical Reports Server (NTRS)

    Rogers, Eric; Hale, Joseph P.; Zook, Keith; Gowda, Sanjay; Salas, Andrea O.

    2003-01-01

    The requirements development process for the Advanced Engineering Environment (AEE) is presented. This environment has been developed to allow NASA to perform independent analysis and design of space transportation architectures and technologies. Given the highly collaborative and distributed nature of AEE, a variety of organizations are involved in the development, operations and management of the system. Furthermore, there are additional organizations involved representing external customers and stakeholders. Thorough coordination and effective communication is essential to translate desired expectations of the system into requirements. Functional, verifiable requirements for this (and indeed any) system are necessary to fulfill several roles. Requirements serve as a contractual tool, configuration management tool, and as an engineering tool, sometimes simultaneously. The role of requirements as an engineering tool is particularly important because a stable set of requirements for a system provides a common framework of system scope and characterization among team members. Furthermore, the requirements provide the basis for checking completion of system elements and form the basis for system verification. Requirements are at the core of systems engineering. The AEE Project has undertaken a thorough process to translate the desires and expectations of external customers and stakeholders into functional system-level requirements that are captured with sufficient rigor to allow development planning, resource allocation and system-level design, development, implementation and verification. These requirements are maintained in an integrated, relational database that provides traceability to governing Program requirements and also to verification methods and subsystem-level requirements.

  8. Interactive modelling with stakeholders in two cases in flood management

    NASA Astrophysics Data System (ADS)

    Leskens, Johannes; Brugnach, Marcela

    2013-04-01

    New policies on flood management called Multi-Level Safety (MLS), demand for an integral and collaborative approach. The goal of MLS is to minimize flood risks by a coherent package of protection measures, crisis management and flood resilience measures. To achieve this, various stakeholders, such as water boards, municipalities and provinces, have to collaborate in composing these measures. Besides the many advances this integral and collaborative approach gives, the decision-making environment becomes also more complex. Participants have to consider more criteria than they used to do and have to take a wide network of participants into account, all with specific perspectives, cultures and preferences. In response, sophisticated models are developed to support decision-makers in grasping this complexity. These models provide predictions of flood events and offer the opportunity to test the effectiveness of various measures under different criteria. Recent model advances in computation speed and model flexibility allow stakeholders to directly interact with a hydrological hydraulic model during meetings. Besides a better understanding of the decision content, these interactive models are supposed to support the incorporation of stakeholder knowledge in modelling and to support mutual understanding of different perspectives of stakeholders To explore the support of interactive modelling in integral and collaborate policies, such as MLS, we tested a prototype of an interactive flood model (3Di) with respect to a conventional model (Sobek) in two cases. The two cases included the designing of flood protection measures in Amsterdam and a flood event exercise in Delft. These case studies yielded two main results. First, we observed that in the exploration phase of a decision-making process, stakeholders participated actively in interactive modelling sessions. This increased the technical understanding of complex problems and the insight in the effectiveness of various integral measures. Second, when measures became more concrete, the model played a minor role, as stakeholders were still bounded to goals, responsibilities and budgets of their own organization. Model results in this phase are mainly used in a political way to maximize the goals of particular organizations.

  9. Controlling QoS in a collaborative multimedia environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfano, M.; Sigle, R.

    1996-12-31

    A collaborative multimedia environment allows users to work remotely on common projects by sharing applications (e.g., CAD tools, text editors, white boards) and simultaneously communicate audiovisually. Several dedicated applications (e.g., MBone tools) exist for transmitting video, audio and data between users. Due to the fact that they have been developed for the Internet which does not provide any Quality of Service (QoS) guarantee, these applications do not or only partially support specification of QoS requirements by the user. In addition, they all come with different user interfaces. In this paper we first discuss the problems that we experienced both atmore » the host and network levels when executing a multimedia application and varying its resource requirements. We then present the architectural details of a collaborative multimedia environment (CME) that we have been developing in order to help a user to set up and control a collaborative multimedia session.« less

  10. Open core control software for surgical robots.

    PubMed

    Arata, Jumpei; Kozuka, Hiroaki; Kim, Hyung Wook; Takesue, Naoyuki; Vladimirov, B; Sakaguchi, Masamichi; Tokuda, Junichi; Hata, Nobuhiko; Chinzei, Kiyoyuki; Fujimoto, Hideo

    2010-05-01

    In these days, patients and doctors in operation room are surrounded by many medical devices as resulting from recent advancement of medical technology. However, these cutting-edge medical devices are working independently and not collaborating with each other, even though the collaborations between these devices such as navigation systems and medical imaging devices are becoming very important for accomplishing complex surgical tasks (such as a tumor removal procedure while checking the tumor location in neurosurgery). On the other hand, several surgical robots have been commercialized, and are becoming common. However, these surgical robots are not open for collaborations with external medical devices in these days. A cutting-edge "intelligent surgical robot" will be possible in collaborating with surgical robots, various kinds of sensors, navigation system and so on. On the other hand, most of the academic software developments for surgical robots are "home-made" in their research institutions and not open to the public. Therefore, open source control software for surgical robots can be beneficial in this field. From these perspectives, we developed Open Core Control software for surgical robots to overcome these challenges. In general, control softwares have hardware dependencies based on actuators, sensors and various kinds of internal devices. Therefore, these control softwares cannot be used on different types of robots without modifications. However, the structure of the Open Core Control software can be reused for various types of robots by abstracting hardware dependent parts. In addition, network connectivity is crucial for collaboration between advanced medical devices. The OpenIGTLink is adopted in Interface class which plays a role to communicate with external medical devices. At the same time, it is essential to maintain the stable operation within the asynchronous data transactions through network. In the Open Core Control software, several techniques for this purpose were introduced. Virtual fixture is well known technique as a "force guide" for supporting operators to perform precise manipulation by using a master-slave robot. The virtual fixture for precise and safety surgery was implemented on the system to demonstrate an idea of high-level collaboration between a surgical robot and a navigation system. The extension of virtual fixture is not a part of the Open Core Control system, however, the function such as virtual fixture cannot be realized without a tight collaboration between cutting-edge medical devices. By using the virtual fixture, operators can pre-define an accessible area on the navigation system, and the area information can be transferred to the robot. In this manner, the surgical console generates the reflection force when the operator tries to get out from the pre-defined accessible area during surgery. The Open Core Control software was implemented on a surgical master-slave robot and stable operation was observed in a motion test. The tip of the surgical robot was displayed on a navigation system by connecting the surgical robot with a 3D position sensor through the OpenIGTLink. The accessible area was pre-defined before the operation, and the virtual fixture was displayed as a "force guide" on the surgical console. In addition, the system showed stable performance in a duration test with network disturbance. In this paper, a design of the Open Core Control software for surgical robots and the implementation of virtual fixture were described. The Open Core Control software was implemented on a surgical robot system and showed stable performance in high-level collaboration works. The Open Core Control software is developed to be a widely used platform of surgical robots. Safety issues are essential for control software of these complex medical devices. It is important to follow the global specifications such as a FDA requirement "General Principles of Software Validation" or IEC62304. For following these regulations, it is important to develop a self-test environment. Therefore, a test environment is now under development to test various interference in operation room such as a noise of electric knife by considering safety and test environment regulations such as ISO13849 and IEC60508. The Open Core Control software is currently being developed software in open-source manner and available on the Internet. A communization of software interface is becoming a major trend in this field. Based on this perspective, the Open Core Control software can be expected to bring contributions in this field.

  11. Overview of the Advanced High Frequency Branch

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  12. Evaluation of the Benefits Attributable to Automotive Lighweight Materials Program Research and Development Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.

    The purpose of this project is to identify and test methods appropriate for estimating the benefits attributable to research and development (R and D) projects funded by the Automotive Lightweight Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The program focuses on the development and validation of advanced lightweight materials technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The work supports the goals of the Partnership for a New Generation of Vehicles (PNGV). Up to thirty percentmore » of the improvement required to meet the PNGV goal of tripling vehicle fuel economy and much of its cost, safety, and recyclability goal depend on the lightweight materials. Funded projects range from basic materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers.« less

  13. Co-creation of a pedagogical space to support qualitative inquiry: An advanced qualitative collective.

    PubMed

    Abboud, Sarah; Kim, Su Kyung; Jacoby, Sara; Mooney-Doyle, Kim; Waite, Terease; Froh, Elizabeth; Sefcik, Justine S; Kim, Hyejin; Sowicz, Timothy Joseph; Kelly, Terri-Ann; Kagan, Sarah

    2017-03-01

    Situated in a research-intensive School of Nursing, the Advanced Qualitative Collective (AQC) provides an innovative educational forum for the study of qualitative research by doctoral and postdoctoral scholars. This long-standing collective is guided by a faculty facilitator using a collaborative co-learning approach to address individual and group needs, from the conception of research projects through dissemination of completed qualitative research. This article describes the dynamics of the AQC and the ways a co-created pedagogical entity supports professional development among its diverse members. The informal, participatory style, and dynamic content used by the AQC resists a course structure typical of doctoral education in health sciences, and promotes engagement and self-direction. The AQC provides opportunities for members to examine theoretical frameworks and methodologies rarely addressed within a positivism-dominant learning environment while simultaneously serving as an alternative exemplar for the pedagogy of research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Operational Philosophy for the Advanced Test Reactor National Scientific User Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Benson; J. Cole; J. Jackson

    2013-02-01

    In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groupsmore » conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.« less

  15. A coated-wire ion-selective electrode for ionic calcium measurements

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Arnaud, Sara; Madou, Marc; Joseph, Jose; Jina, Arvind

    1991-01-01

    A coated-wire ion-selective electrode for measuring ionic calcium was developed, in collaboration with Teknektron Sensor Development Corporation (TSDC). This coated wire electrode sensor makes use of advanced, ion-responsive polyvinyl chloride (PVC) membrane technology, whereby the electroactive agent is incorporated into a polymeric film. The technology greatly simplifies conventional ion-selective electrode measurement technology, and is envisioned to be used for real-time measurement of physiological and environment ionic constituents, initially calcium. A primary target biomedical application is the real-time measurement of urinary and blood calcium changes during extended exposure to microgravity, during prolonged hospital or fracture immobilization, and for osteoporosis research. Potential advanced life support applications include monitoring of calcium and other ions, heavy metals, and related parameters in closed-loop water processing and management systems. This technology provides a much simplified ionic calcium measurement capability, suitable for both automated in-vitro, in-vivo, and in-situ measurement applications, which should be of great interest to the medical, scientific, chemical, and space life sciences communities.

  16. Identification and Management of Human Trafficking Victims in the Emergency Department.

    PubMed

    Hachey, Lisa M; Phillippi, Julia C

    Health care practitioners serve an important role in identification and assistance of human trafficking victims. Advanced practice registered nurses, including certified nurse midwives, clinical nurse specialists, and nurse practitioners, are in a unique position to interact with persons trafficked and seen in the clinical setting, yet they require knowledge to identify the signs of human trafficking. Lack of training and education has been identified as a barrier for health care professionals to recognize human trafficking victims and implement needed health care services (; ). Barriers to identification and management include gap in knowledge about the process to screen for trafficking, to assist victims, and to make referrals. A patient-centered, trauma-informed approach can provide a safe environment to sensitively screen patients for human trafficking. Advanced practice registered nurses should be able to assess for trafficking indicators, collaborate with multidisciplinary service providers, and ensure understanding and availability of federal, state, and local resources to manage the care of victims of trafficking.

  17. MISSE-X: An ISS External Platform for Space Environmental Studies in the Post-Shuttle Era

    NASA Technical Reports Server (NTRS)

    Thibeault, Sheila A.; Cooke, Stuart A.; Ashe, Melissa P.; Saucillo, Rudolph J.; Murphy, Douglas G.; deGroh, Kim K.; Jaworske, Donald A.; Nguyen, Quang-Viet

    2011-01-01

    Materials International Space Station Experiment-X (MISSE-X) is a proposed International Space Station (ISS) external platform for space environmental studies designed to advance the technology readiness of materials and devices critical for future space exploration. The MISSE-X platform will expand ISS utilization by providing experimenters with unprecedented low-cost space access and return on investment (ROI). As a follow-on to the highly successful MISSE series of ISS experiments, MISSE-X will provide advances over the original MISSE configurations including incorporation of plug-and-play experiments that will minimize return mass requirements in the post-Shuttle era, improved active sensing and monitoring of the ISS external environment for better characterization of environmental effects, and expansion of the MISSE-X user community through incorporation of new, customer-desired capabilities. MISSE-X will also foster interest in science, technology, engineering, and math (STEM) in primary and secondary schools through student collaboration and participation.1,2

  18. Building multi-country collaboration on watershed ...

    EPA Pesticide Factsheets

    Community-based watershed resilience programs that bridge public health and environmental outcomes often require cross-boundary, multi-country collaboration. The CRESSIDA project, led by the Regional Environmental Center for Central and Eastern Europe (REC) and supported by the US Environmental Protection Agency (EPA), forwards a resilience-focused approach for Western Balkan communities in the Drini and Drina river watersheds with the goal of safeguarding public health and the environment. The initial phases of this project give a contextualized example of how to advance resilience-driven environmental health goals in Western Balkan communities, and experience within the region has garnered several theme areas that require focus in order to promote a holistic watershed management program. In this paper, using CRESSIDA as a case study, we show (1) how watershed projects designed with resilience-driven environmental health goals can work in context, (2) provide data surrounding contextualized problems with resilience and suggest tools and strategies for the implementation of projects to address these problems, and (3) explore how cross-boundary foci are central to the success of these approaches in watersheds that comprise several countries. Published in the journal, Reviews on Environmental Health.

  19. Task-Related and Social Regulation during Online Collaborative Learning

    ERIC Educational Resources Information Center

    Janssen, Jeroen; Erkens, Gijsbert; Kirschner, Paul A.; Kanselaar, Gellof

    2012-01-01

    This study investigated how students collaborate in a CSCL environment and how this collaboration affects group performance. To answer these questions, the collaborative process of 101 groups of secondary education students when working on a historical inquiry task was analyzed. Our analyses show that group members devote most of their efforts to…

  20. Applying Adaptive Swarm Intelligence Technology with Structuration in Web-Based Collaborative Learning

    ERIC Educational Resources Information Center

    Huang, Yueh-Min; Liu, Chien-Hung

    2009-01-01

    One of the key challenges in the promotion of web-based learning is the development of effective collaborative learning environments. We posit that the structuration process strongly influences the effectiveness of technology used in web-based collaborative learning activities. In this paper, we propose an ant swarm collaborative learning (ASCL)…

  1. On Enhancing On-Line Collaboration Using Fuzzy Logic Modeling

    ERIC Educational Resources Information Center

    Hadjileontiadou, Sofia J.; Nikolaidou, Georgia N.; Hadjileontiadis, Leontios J.; Balafoutas, George N.

    2004-01-01

    Web-based collaboration calls for professional skills and competences to the benefit of the quality of the collaboration and its output. Within this framework, educational virtual environments may provide a means for training upon these skills and in particular the collaborative ones. On the basis of the existing technological means such training…

  2. Collaborative Approaches to Deepen Student Learning: Information Literacy, Curriculum Design, and Student Learning Workshops

    ERIC Educational Resources Information Center

    Hurvitz, Tate; Benvau, Roxane; Parry, Megan

    2015-01-01

    Creating a collaborative environment across student services and instruction is often more challenging than it may first seem. Although effective collaboration is context specific, keeping student learning at the center of the work is a powerful element in successful collaborations. Grossmont College's first year experience program has attempted…

  3. Using a Game Environment to Foster Collaborative Learning: A Design-Based Study

    ERIC Educational Resources Information Center

    Hamalainen, Raija

    2011-01-01

    Designing collaborative three-dimensional learning games for vocational learning may be one way to respond to the needs of working life. The theoretical vantage points of collaborative learning for game development and the "design-based research" methodology are described; these have been used to support collaborative learning in the…

  4. Literature-Based Scientific Learning: A Collaboration Model

    ERIC Educational Resources Information Center

    Elrod, Susan L.; Somerville, Mary M.

    2007-01-01

    Amidst exponential growth of knowledge, student insights into the knowledge creation practices of the scientific community can be furthered by science faculty collaborations with university librarians. The Literature-Based Scientific Learning model advances undergraduates' disciplinary mastery and information literacy through experience with…

  5. Apoc Social: A Mobile Interactive and Social Learning Platform for Collaborative Solving of Advanced Problems in Organic Chemistry.

    PubMed

    Sievertsen, Niels; Carreira, Erick M

    2018-02-01

    Mobile devices such as smartphones are carried in the pockets of university students around the globe and are increasingly cheap to come by. These portable devices have evolved into powerful and interconnected handheld computers, which, among other applications, can be used as advanced learning tools and providers of targeted, curated content. Herein, we describe Apoc Social (Advanced Problems in Organic Chemistry Social), a mobile application that assists both learning and teaching college-level organic chemistry both in the classroom and on the go. With more than 750 chemistry exercises available, Apoc Social facilitates collaborative learning through discussion boards and fosters enthusiasm for complex organic chemistry.

  6. Collaborative project-based learning: an integrative science and technological education project

    NASA Astrophysics Data System (ADS)

    Baser, Derya; Ozden, M. Yasar; Karaarslan, Hasan

    2017-04-01

    Background: Blending collaborative learning and project-based learning (PBL) based on Wolff (2003) design categories, students interacted in a learning environment where they developed their technology integration practices as well as their technological and collaborative skills.

  7. Understanding Collaboration Environments to Support Green Infrastructure Construction

    DOT National Transportation Integrated Search

    2011-12-01

    Close collaboration among stakeholders has long been recognized as an important factor of a successful project. In todays climate of a heightened focus on sustainability, collaboration needs to be taken to a new level in the design and constructio...

  8. Using Collaborative Engineering to Inform Collaboration Engineering

    NASA Technical Reports Server (NTRS)

    Cooper, Lynne P.

    2012-01-01

    Collaboration is a critical competency for modern organizations as they struggle to compete in an increasingly complex, global environment. A large body of research on collaboration in the workplace focuses both on teams, investigating how groups use teamwork to perform their task work, and on the use of information systems to support team processes ("collaboration engineering"). This research essay presents collaboration from an engineering perspective ("collaborative engineering"). It uses examples from professional and student engineering teams to illustrate key differences in collaborative versus collaboration engineering and investigates how challenges in the former can inform opportunities for the latter.

  9. Unconscious Bias - The Focus of the University of Arizona's NSF ADVANCE Award

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.; Tolbert, L. P.; Vaillancourt, A. M.; Leahey, E. E.; Rodrigues, H. A.

    2011-12-01

    The University of Arizona ADVANCE program focuses on unconscious bias and ways to minimize its negative impact on the academy. Unconscious bias involves social stereotypes about certain groups of people that individuals form outside their own consciousness. Overwhelming scientific evidence supports that unconscious bias pervasively influences hiring, evaluation, selection of leaders, and even daily interactions. UA ADVANCE has a three-tiered strategy for improving the representation and advancement of women faculty in STEM departments that includes: 1) fostering the scientific and leadership careers of women; 2) promoting responsibility for gender equity among faculty and administrators; and 3) developing management software useful for promoting more equitable decision-making. This strategy has brought together a diverse array of faculty, staff, and faculty administrators working toward a common goal of promoting faculty diversity and the equitable treatment of faculty. Among the most effective aspects of our programming and products have been: 1) department head and search committee trainings; 2) monthly career discussion series events, and; 3) a salary modeling tool for department heads and deans. One key to the success of these efforts has been collaborations with campus partners, including the Office of the Associate Provost for Faculty Affairs, the Office of the Special Advisor to the President for Diversity and Inclusion, and the Division of Human Resources. A second key has been a commitment to the use of research-based material and tools, presented by respected colleagues, in small workshop-style settings that foster discussion. This has enabled us to extend our reach to more STEM departments and secure broader support in creating a more equitable environment for women faculty. Nearing the close of our grant period, our efforts are now concentrated on institutionalizing success. UA ADVANCE needs continued support from an increasingly tasked administration in a transitional environment where the University is in the middle of national searches for both president and provost. In addition to unknown new leadership, there is an ongoing hiring freeze, additional budget cuts are anticipated, and more institutional reorganization is likely. An added challenge has been the difficulty of assessing true impact beyond participation, even with professional assessment. Fortunately, the UA ADVANCE team has worked in a challenging environment for much of its award period, and remains fundamentally optimistic about efforts to reduce the negative effects of unconscious bias in hiring, evaluating, and rewarding a diverse faculty.

  10. Towards a Framework for Creative Online Collaboration: A Research on Challenges and Context

    ERIC Educational Resources Information Center

    Stockleben, Björn; Thayne, Martyn; Jäminki, Seija; Haukijärvi, Ilkka; Mavengere, Nicholas Blessing; Demirbilek, Muhammet; Ruohonen, Mikko

    2017-01-01

    The OnCreate project was initiated by ten universities with expertise in collaborative work in online-based learning environments and explores the specific challenges of implementing university courses in creative disciplines in such an environment. The first research phase comprises a literature search on creativity and its contextual factors in…

  11. Collaboration Modality, Cognitive Load, and Science Inquiry Learning in Virtual Inquiry Environments

    ERIC Educational Resources Information Center

    Erlandson, Benjamin E.; Nelson, Brian C.; Savenye, Wilhelmina C.

    2010-01-01

    Educational multi-user virtual environments (MUVEs) have been shown to be effective platforms for situated science inquiry curricula. While researchers find MUVEs to be supportive of collaborative scientific inquiry processes, the complex mix of multi-modal messages present in MUVEs can lead to cognitive overload, with learners unable to…

  12. Can a Hypermedia Cooperative e-Learning Environment Stimulate Constructive Collaboration?

    ERIC Educational Resources Information Center

    Pragnell, Mary Victoria; Roselli, Teresa; Rossano, Veronica

    2006-01-01

    The growing use of the Internet in learning environments has led to new models being created addressing specific learning domains, as well as more general educational goals. In particular, in recent years considerable attention has been paid to collaborative learning supported by technology, because this mode can enhance peer interaction and group…

  13. Scientific and Policy Statements on Environmental Agents Associated with Neurodevelopmental Disorders

    ERIC Educational Resources Information Center

    Gilbert, Steven G.; Miller, Elise; Martin, Joyce; Abulafia, Laura

    2010-01-01

    Damage to the brain or nervous system at an early developmental stage creates lifelong challenges for the individual. To examine one source of harm to the developing nervous system, the Collaborative on Health and the Environment's (CHE) Learning and Developmental Disabilities Initiative (LDDI) (Collaborative on Health and the Environment, 2009)…

  14. Effects of Online Mentoring in Computer-Supported Collaborative Learning Environments: Mentor Presence and Cognitive Engagement

    ERIC Educational Resources Information Center

    Dorner, Helga

    2012-01-01

    This study examines online mentor roles and effects with the online mentoring process in computer-supported collaborative learning environments in communities of in-service teachers. Interest in the online mentors' activity encompassed their participation in the online interactions, the influence of their activity on participants' patterns of…

  15. Scripting for Construction of a Transactive Memory System in Multidisciplinary CSCL Environments

    ERIC Educational Resources Information Center

    Noroozi, Omid; Biemans, Harm J. A.; Weinberger, Armin; Mulder, Martin; Chizari, Mohammad

    2013-01-01

    Establishing a Transactive Memory System (TMS) is essential for groups of learners, when they are multidisciplinary and collaborate online. Environments for Computer-Supported Collaborative Learning (CSCL) could be designed to facilitate the TMS. This study investigates how various aspects of a TMS (i.e., specialization, coordination, and trust)…

  16. Designing Collaborative Learning Environments Mediated by Computer Conferencing: Issues and Challenges in the Asian Socio-Cultural Context.

    ERIC Educational Resources Information Center

    Gunawardena, Charlotte N.

    1998-01-01

    Explores issues related to the design of collaborative-learning environments mediated by computer conferencing from the perspective of challenges faced in the sociocultural context of the Indian sub-continent. Examines the impact of online features on social cohesiveness, group dynamics, interaction, communication anxiety, and participation.…

  17. Examining the Effect of Problem Type in a Synchronous Computer-Supported Collaborative Learning (CSCL) Environment

    ERIC Educational Resources Information Center

    Kapur, Manu; Kinzer, Charles K.

    2007-01-01

    This study investigated the effect of well- vs. ill-structured problem types on: (a) group interactional activity, (b) evolution of group participation inequities, (c) group discussion quality, and (d) group performance in a synchronous, computer-supported collaborative learning (CSCL) environment. Participants were 60 11th-grade science students…

  18. Online Collaborative Learning in a Project-Based Learning Environment in Taiwan: A Case Study on Undergraduate Students' Perspectives

    ERIC Educational Resources Information Center

    Zhang, Ke; Peng, Shiang Wuu; Hung, Jui-long

    2009-01-01

    This case study investigated undergraduate students' first experience in online collaborative learning in a project-based learning (PBL) environment in Taiwan. Data were collected through interviews of 48 students, instructor's field notes, researchers' online observations, students' online discourse, and group artifacts. The findings revealed…

  19. Collaborative Learning and Knowledge-Construction through a Knowledge-Based WWW Authoring Tool.

    ERIC Educational Resources Information Center

    Haugsjaa, Erik

    This paper outlines hurdles to using the World Wide Web for learning, specifically in a collaborative knowledge-construction environment. Theoretical solutions based directly on existing Web environments, as well as on research and system prototypes in the areas of Intelligent Tutoring Systems (ITS) and ITS authoring systems, are suggested. Topics…

  20. Coral-View: A Network-Based Design Environment for Collaborative Learning

    ERIC Educational Resources Information Center

    Sun, Chuen-Tsai; Lin, Sunny S. J.

    2004-01-01

    The vast majority of complex engineering tasks in today's business world are completed using a team-oriented approach. Therefore, teaching collaborative skills to university students can be viewed as a practical means of enhancing their employability. With these goals in mind, the authors developed a network environment that helps Taiwanese…

  1. Graduate Students' Knowledge Construction and Attitudes toward Online Synchronous Videoconferencing Collaborative Learning Environments

    ERIC Educational Resources Information Center

    Akarasriworn, Chatchada; Ku, Heng-Yu

    2013-01-01

    This study investigated 28 graduate students' knowledge construction and attitudes toward online synchronous videoconferencing collaborative learning environments. These students took an online course, self-selected 3 or 4 group members to form groups, and worked on projects across 16 weeks. Each group utilized Elluminate "Live!" for the…

  2. Pattern of Non-Task Interactions in Asynchronous Computer-Supported Collaborative Learning Courses

    ERIC Educational Resources Information Center

    Abedin, Babak; Daneshgar, Farhad; D'Ambra, John

    2014-01-01

    Despite the importance of the non-task interactions in computer-supported collaborative learning (CSCL) environments as emphasized in the literature, few studies have investigated online behavior of people in the CSCL environments. This paper studies the pattern of non-task interactions among postgraduate students in an Australian university. The…

  3. The Brink of Change: Gender in Technology-Rich Collaborative Learning Environments

    ERIC Educational Resources Information Center

    Goldstein, Jessica; Puntambeka, Sadhana

    2004-01-01

    This study was designed to contribute to a small but growing body of knowledge on the influence of gender in technology-rich collaborative learning environments. The study examined middle school students attitudes towards using computers and working in groups during scientific inquiry. Students attitudes towards technology and group work were…

  4. Collaborative Blended Learning Writing Environment: Effects on EFL Students' Writing Apprehension and Writing Performance

    ERIC Educational Resources Information Center

    Challob, Ala'a Ismael; Bakar, Nadzrah Abu; Latif, Hafizah

    2016-01-01

    This study examined the effects of collaborative blended learning writing environment on students' writing apprehension and writing performance as perceived by a selected group of EFL students enrolled in one of the international schools in Malaysia. Qualitative case study method was employed using semi-structured interview, learning diaries and…

  5. Evaluation of social interaction, task management, and trust among dental hygiene students in a collaborative learning environment.

    PubMed

    Saylor, Catherine D; Keselyak, Nancy T; Simmer-Beck, Melanie; Tira, Daniel

    2011-02-01

    The purpose of this study was to evaluate the impact of collaborative learning on the development of social interaction, task management, and trust in dental hygiene students. These three traits were assessed with the Teamwork Assessment Scale in two different learning environments (traditional lecture/lab and collaborative learning environment). A convenience sample of fifty-six entry-level dental hygiene students taking an introductory/preclinic course at two metropolitan area dental hygiene programs provided comparable experimental and control groups. Factor scores were computed for the three traits, and comparisons were conducted using the Ryan-Einot-Gabriel-Welsh multiple comparison procedure among specific cell comparisons generated from a two-factor repeated measures ANOVA. The results indicate that the collaborative learning environment influenced dental hygiene students positively regarding the traits of social interaction, task management, and trust. However, comparing dental hygiene students to undergraduate students overall indicates that dental hygiene students already possess somewhat higher levels of these traits. Future studies on active learning strategies should examine factors such as student achievement and explore other possible active learning methodologies.

  6. Distributed collaborative environments for predictive battlespace awareness

    NASA Astrophysics Data System (ADS)

    McQuay, William K.

    2003-09-01

    The past decade has produced significant changes in the conduct of military operations: asymmetric warfare, the reliance on dynamic coalitions, stringent rules of engagement, increased concern about collateral damage, and the need for sustained air operations. Mission commanders need to assimilate a tremendous amount of information, make quick-response decisions, and quantify the effects of those decisions in the face of uncertainty. Situational assessment is crucial in understanding the battlespace. Decision support tools in a distributed collaborative environment offer the capability of decomposing complex multitask processes and distributing them over a dynamic set of execution assets that include modeling, simulations, and analysis tools. Decision support technologies can semi-automate activities, such as analysis and planning, that have a reasonably well-defined process and provide machine-level interfaces to refine the myriad of information that the commander must fused. Collaborative environments provide the framework and integrate models, simulations, and domain specific decision support tools for the sharing and exchanging of data, information, knowledge, and actions. This paper describes ongoing AFRL research efforts in applying distributed collaborative environments to predictive battlespace awareness.

  7. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Piland, William M.

    1999-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.

  8. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Piland, William M.

    2000-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operation). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographical distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across Agency.

  9. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Astrophysics Data System (ADS)

    Monell, Donald W.; Piland, William M.

    2000-07-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.

  10. Competencies for optimal practice in integrated environments: examining attributes of a consensus interprofessional practice document from the licensed integrative health disciplines.

    PubMed

    Goldblatt, Elizabeth; Wiles, Michael; Schwartz, Jan; Weeks, John

    2013-01-01

    The Academic Consortium for Complementary and Alternative Health Care (ACCAHC) is committed to advancing human health through the advancement and integration of the complementary and alternative medicine (CAM) professions within the American healthcare system. This will involve the maturation and integration of the licensed CAM professions into conventional healthcare delivery, and in turn, it will involve the development of competency in integrative healthcare and interprofessional education within the CAM professions. In 2010, ACCAHC resolved to identify the competencies necessary for this transformation, and in the process, discovered a parallel process of competency development within conventional healthcare, the Interprofessional Education Collaborative (IPEC), representing the six major conventional healthcare professions. The ACCAHC competency document, its development, and its similarity to the IPEC document are discussed. The ACCAHC competency document identified two domains of competence that were not present in the IPEC document: evidence-informed practice and institutional healthcare practices. These two domains of competency are discussed with respect to their significance in both CAM and conventional healthcare practices. ACCAHC's goal is to foster collaboration among its member professions and with conventional healthcare professions, and to use these competency documents to improve and optimize healthcare delivery, practices, and outcomes in America. It is hoped that ACCAHC's competency document will catalyze interaction with IPEC leading to the adoption of a single shared competency document that will meet the needs of all healthcare providers and educators. © 2013 Elsevier Inc. All rights reserved.

  11. Organizational collaborative capacity in fighting pandemic crises: a literature review from the public management perspective.

    PubMed

    Lai, Allen Y

    2012-01-01

    Collaborative capacity serves for organizations as the capacity to collaborate with other network players. Organizational capacity matters as collaboration outcomes usually go beyond single-shot implementation efforts or a single-minded focus on either the vertical dimension of program or the horizontal component. This review article explores organizational collaborative capacities from the perspective of public management, in particular, network theory. By applying the 5 attributes of network theory-interdependence, membership, resources, information, and learning-to the explanation of collaborative capacity in fighting pandemic crises, I argue in some ways organizational collaborative capacity is very much like an organization in its own right. Studying collaborative capacity in the battle against pandemics facilitate our understanding of multisectoral collaboration in technical, political, and institutional dimensions, and greatly advances the richness of capacity vocabulary in pandemic response and preparedness.

  12. Multi-UAV Collaborative Sensor Management for UAV Team Survivability

    DTIC Science & Technology

    2006-08-01

    Multi-UAV Collaborative Sensor Management for UAV Team Survivability Craig Stoneking, Phil DiBona , and Adria Hughes Lockheed Martin Advanced...Command, Aviation Applied Technology Directorate. REFERENCES [1] DiBona , P., Belov, N., Pawlowski, A. (2006). “Plan-Driven Fusion: Shaping the

  13. School Librarians: The Forgotten Partners

    ERIC Educational Resources Information Center

    Canter, Lora Lee Smith; Voytecki, Karen; Zambone, Alana; Jones, Jami

    2011-01-01

    Collaboration between special and general educators is not only essential; the 2004 Individuals With Disabilities Education Improvement Act (IDEA, 2004) mandates this collaboration. Special educators must forge partnerships with general educators to create inclusive school environments for all students. Although collaboration between these…

  14. 2011-2012 Dryden Center Innovation Fund End of the Year Report: Altitude-Compensating Rocket Nozzles

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Bui, Trong T.

    2012-01-01

    This report highlights one of the many successful projects at the NASA Dryden Flight Research Center that was approved for FY12 funding under the Center Innovation Fund. This project was focused on advancing the technology readiness level of one specific type of altitude-compensating nozzle: the dual-bell rocket nozzle. When considering a rocket's performance over its entire integrated trajectory, the dual-bell nozzle has been predicted to achieve a higher total impulse over the conventional bell nozzle, which is expected to result in a greater capability of payload mass to low-Earth orbit. Although the dual-bell rocket nozzle has been thoroughly studied for several decades, this nozzle has still not been adequately tested in a relevant flight-like environment. This report provides highlights and top-level details on the FY12 feasibility effort to advance this promising technology through flight test, a collaborative effort which leverages NASA Marshall's dual-bell nozzle research and development with Dryden's expertise in propulsion-focused flight testing. To accomplish this goal, the NASA F-15B is proposed as the testbed for the initial flight-test campaign to advance this greatly needed capability.

  15. The STTI Practice-Academe Innovative Collaboration Award: honoring innovation, partnership, and excellence.

    PubMed

    Kirschling, Jane Marie; Erickson, Jeanette Ives

    2010-09-01

    To describe the benefits and barriers associated with practice-academe partnerships and introduce Sigma Theta Tau International's (STTI's) Practice-Academe Innovative Collaboration Award and the 2009 award recipients. In 2008, STTI created the CNO-Dean Advisory Council and charged it with reviewing the state of practice-academe collaborations and developing strategies for optimizing how chief nursing officers (CNOs) and deans work together to advance the profession and discipline of nursing. The Council, in turn, developed the Practice-Academe Innovative Collaboration Award to encourage collaboration across sectors, recognize innovative collaborative efforts, and spotlight best practices. A call for award submissions resulted in 24 applications from around the globe. An award winner and seven initiatives receiving honorable mentions were selected. The winning initiatives reflect innovative academe-service partnerships that advance evidence-based practice, nursing education, nursing research, and patient care. The proposals were distinguished by their collaborators' shared vision and unity of purpose, ability to leverage strengths and resources, and willingness to recognize opportunities and take risks. By partnering with one another, nurses in academe and in service settings can directly impact nursing education and practice, often effecting changes and achieving outcomes that are more extensive and powerful than could be achieved by working alone. The award-winning initiatives represent best practices for bridging the practice-academe divide and can serve as guides for nurse leaders in both settings.

  16. The Effect of Dynamic Web Technologies on Student Academic Achievement in Problem-Based Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Korucu, Agâh Tugrul; Cakir, Hasan

    2018-01-01

    Some of the 21st century proficiencies expected from people are determined as collaborative working and problem solving. One way to gain these proficiencies is by using collaborative problem solving based on social constructivism theory. Collaborative problem solving is one of the methods allowing for social constructivism in the class. In…

  17. Comparison of Collaboration and Performance in Groups of Learners Assembled Randomly or Based on Learners' Topic Preferences

    ERIC Educational Resources Information Center

    Cela, Karina L.; Sicilia, Miguel Ángel; Sánchez, Salvador

    2015-01-01

    Teachers and instructional designers frequently incorporate collaborative learning approaches into their e-learning environments. A key factor of collaborative learning that may affect learner outcomes is whether the collaborative groups are assigned project topics randomly or based on a shared interest in the topic. This is a particularly…

  18. Bridging the Gap between Students and Computers: Supporting Activity Awareness for Network Collaborative Learning with GSM Network

    ERIC Educational Resources Information Center

    Liu, C.-C.; Tao, S.-Y.; Nee, J.-N.

    2008-01-01

    The internet has been widely used to promote collaborative learning among students. However, students do not always have access to the system, leading to doubt in the interaction among the students, and reducing the effectiveness of collaborative learning, since the web-based collaborative learning environment relies entirely on the availability…

  19. The Effects of Different Computer-Supported Collaboration Scripts on Students' Learning Processes and Outcome in a Simulation-Based Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Wieland, Kristina

    2010-01-01

    Students benefit from collaborative learning activities, but they do not automatically reach desired learning outcomes when working together (Fischer, Kollar, Mandl, & Haake, 2007; King, 2007). Learners need instructional support to increase the quality of collaborative processes and individual learning outcomes. The core challenge is to find…

  20. 53rd Annual Fuze Conference - Next Generation Fuzing - Maximum Advantage for the Warfighter

    DTIC Science & Technology

    2009-05-21

    Time Engineering AB 3:00 pm BREAK 3:20 pm Advances In Thermal Batteries For Fuzing David E. Harney, Advanced Thermal Batteries , Inc...Currently teaming and collaborating with Advanced Thermal Batteries • and Omnitek Partners to develop an improved thermal battery. • Current

Top