Science.gov

Sample records for advanced collaborative environment

  1. Advanced engineering environment collaboration project.

    SciTech Connect

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

    2008-12-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

  2. Developing an Advanced Environment for Collaborative Computing

    NASA Technical Reports Server (NTRS)

    Becerra-Fernandez, Irma; Stewart, Helen; DelAlto, Martha; DelAlto, Martha; Knight, Chris

    1999-01-01

    Knowledge management in general tries to organize and make available important know-how, whenever and where ever is needed. Today, organizations rely on decision-makers to produce "mission critical" decisions that am based on inputs from multiple domains. The ideal decision-maker has a profound understanding of specific domains that influence the decision-making process coupled with the experience that allows them to act quickly and decisively on the information. In addition, learning companies benefit by not repeating costly mistakes, and by reducing time-to-market in Research & Development projects. Group-decision making tools can help companies make better decisions by capturing the knowledge from groups of experts. Furthermore, companies that capture their customers preferences can improve their customer service, which translates to larger profits. Therefore collaborative computing provides a common communication space, improves sharing of knowledge, provides a mechanism for real-time feedback on the tasks being performed, helps to optimize processes, and results in a centralized knowledge warehouse. This paper presents the research directions. of a project which seeks to augment an advanced collaborative web-based environment called Postdoc, with workflow capabilities. Postdoc is a "government-off-the-shelf" document management software developed at NASA-Ames Research Center (ARC).

  3. Secured Advanced Federated Environment (SAFE): A NASA Solution for Secure Cross-Organization Collaboration

    NASA Technical Reports Server (NTRS)

    Chow, Edward; Spence, Matthew Chew; Pell, Barney; Stewart, Helen; Korsmeyer, David; Liu, Joseph; Chang, Hsin-Ping; Viernes, Conan; Gogorth, Andre

    2003-01-01

    This paper discusses the challenges and security issues inherent in building complex cross-organizational collaborative projects and software systems within NASA. By applying the design principles of compartmentalization, organizational hierarchy and inter-organizational federation, the Secured Advanced Federated Environment (SAFE) is laying the foundation for a collaborative virtual infrastructure for the NASA community. A key element of SAFE is the Micro Security Domain (MSD) concept, which balances the need to collaborate and the need to enforce enterprise and local security rules. With the SAFE approach, security is an integral component of enterprise software and network design, not an afterthought.

  4. Temporality Matters: Advancing a Method for Analyzing Problem-Solving Processes in a Computer-Supported Collaborative Environment

    ERIC Educational Resources Information Center

    Kapur, Manu

    2011-01-01

    This paper argues for a need to develop methods for examining temporal patterns in computer-supported collaborative learning (CSCL) groups. It advances one such quantitative method--Lag-sequential Analysis (LsA)--and instantiates it in a study of problem-solving interactions of collaborative groups in an online, synchronous environment. LsA…

  5. Anthropology and Geosciences: Training and Collaboration Advancing Interdisciplinary Research of Human-environment Interaction

    NASA Astrophysics Data System (ADS)

    Brondizio, E.; Moran, E.

    2005-05-01

    Over the past thirteen years the Anthropological Center for Training and Research on Global Environmental Change (ACT) at Indiana University has pioneered the use of anthropological and environmental research approaches to address issues of land use change, and population-environment interaction, particularly in the Amazon. Our research and training objectives focus on how particular local populations manage resources and how those activities may be studied by integrating time-tested ethnographic methods, survey instruments, ecological field studies, and the spatial and temporal perspectives of remote sensing and Geographical Information Systems. The globalization of the environment crisis bears the risk of the research and training at universities being purely global or large scale in nature. This would fail to take into account the highly variable local causes of human activities or to discover sustainable solutions to the use, conservation, and restoration of human ecosystems. Our approach combines institutional and international collaboration, formal and hands-on laboratory and field activities developed within an interdisciplinary environment, but based on the strength of disciplinary programs. Over the past years, we have particularly emphasized collaboration between American and Brazilian scholars and students and intense work with local farmers and communities both during data collection and field research, as well as in returning data and results using different formats. In this paper, we address our experience, the challenges and advantages of theoretical and methodological development for students approaching interdisciplinary problems, innovations in linking levels of analysis, and new opportunities for international and collaborative training and research on human-environment interaction.

  6. Implementing Advanced Characteristics of X3D Collaborative Virtual Environments for Supporting e-Learning: The Case of EVE Platform

    ERIC Educational Resources Information Center

    Bouras, Christos; Triglianos, Vasileios; Tsiatsos, Thrasyvoulos

    2014-01-01

    Three dimensional Collaborative Virtual Environments are a powerful form of collaborative telecommunication applications, enabling the users to share a common three-dimensional space and interact with each other as well as with the environment surrounding them, in order to collaboratively solve problems or aid learning processes. Such an…

  7. Securing collaborative environments

    SciTech Connect

    Agarwal, Deborah; Jackson, Keith; Thompson, Mary

    2002-05-16

    The diverse set of organizations and software components involved in a typical collaboratory make providing a seamless security solution difficult. In addition, the users need support for a broad range of frequency and locations for access to the collaboratory. A collaboratory security solution needs to be robust enough to ensure that valid participants are not denied access because of its failure. There are many tools that can be applied to the task of securing collaborative environments and these include public key infrastructure, secure sockets layer, Kerberos, virtual and real private networks, grid security infrastructure, and username/password. A combination of these mechanisms can provide effective secure collaboration capabilities. In this paper, we discuss the requirements of typical collaboratories and some proposals for applying various security mechanisms to collaborative environments.

  8. Decomposable decoding and display structure for scalable media visualization over advanced collaborative environments

    NASA Astrophysics Data System (ADS)

    Kim, JaeYoun; Kim, JongWon

    2005-10-01

    In this paper, we propose a scalable visualization system to offer high-resolution visualization on multiparty collaborative environments. The proposed system treats with a coordination technique to employ large-scale high-resolution display system and to display multiple high-quality videos effectively on systems with limited resources. To handle these, the proposed system includes the distributed visualization application under generic structure to enable high-resolution video format, such as DV (digital video) and HDV (high definition video) streaming, and under decomposable decoding and display structure to assign the separated visualization task (decoding/display) to different system resources. The system is based on high-performance local area network and the high-performance network between decoding and display task is utilized as the system bus to transfer the decoded large pixel data. The main focus in this paper is the decoupling technique of decoding and display based on high-performance network to handle multiple high-resolution videos effectively. We explore the possibility of the proposed system by implementing a prototype and evaluating it over a high-performance network. Finally, the experiment results verify the improved scalable display system through the proposed structure.

  9. State Technologies Advancement Collaborative

    SciTech Connect

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5

  10. Incorporating Brokers within Collaboration Environments

    NASA Astrophysics Data System (ADS)

    Rajasekar, A.; Moore, R.; de Torcy, A.

    2013-12-01

    ONE information catalog, and the GeoBrain broker. Policies have been written that manage transfer of messages between an iRODS message queue and the Advanced Message Queuing Protocol. Examples of these brokering mechanisms will be presented. The DFC collaboration environment serves as the intermediary between community resources and compute grids, enabling reproducible data-driven research. It is possible to create an analysis workflow that retrieves data subsets from a remote server, assemble the required input files, automate the execution of the workflow, automatically track the provenance of the workflow, and share the input files, workflow, and output files. A collaborator can re-execute a shared workflow, compare results, change input files, and re-execute an analysis.

  11. Advances in Collaborative Filtering

    NASA Astrophysics Data System (ADS)

    Koren, Yehuda; Bell, Robert

    The collaborative filtering (CF) approach to recommenders has recently enjoyed much interest and progress. The fact that it played a central role within the recently completed Netflix competition has contributed to its popularity. This chapter surveys the recent progress in the field. Matrix factorization techniques, which became a first choice for implementing CF, are described together with recent innovations. We also describe several extensions that bring competitive accuracy into neighborhood methods, which used to dominate the field. The chapter demonstrates how to utilize temporal models and implicit feedback to extend models accuracy. In passing, we include detailed descriptions of some the central methods developed for tackling the challenge of the Netflix Prize competition.

  12. Designing Electronic Collaborative Learning Environments

    ERIC Educational Resources Information Center

    Kirschner, Paul; Strijbos, Jan-Willem; Kreijns, Karel; Beers, Pieter Jelle

    2004-01-01

    Electronic collaborative learning environments for learning and working are in vogue. Designers design them according to their own constructivist interpretations of what collaborative learning is and what it should achieve. Educators employ them with different educational approaches and in diverse situations to achieve different ends. Students use…

  13. Advanced Collaborative Emissions Study (ACES)

    SciTech Connect

    Greenbaum, Daniel; Costantini, Maria; Van Erp, Annemoon; Shaikh, Rashid; Bailey, Brent; Tennant, Chris; Khalek, Imad; Mauderly, Joe; McDonald, Jacob; Zielinska, Barbara; Bemis, Jeffrey; Storey, John; Hallberg, Lance; Clark, Nigel

    2013-12-31

    The objective of the Advanced Collaborative Emissions Study (ACES) was to determine before widespread commercial deployment whether or not the new, energy-efficient, heavy duty diesel engines (2007 and 2010 EPA Emissions Standards Compliant) may generate anticipated toxic emissions that could adversely affect the environment and human health. ACES was planned to take place in three phases. In Phase 1, extensive emissions characterization of four production-intent prototype engine and control systems designed to meet 2007 standards for nitrogen oxides (NOx) and particulate matter (PM) was conducted at an existing emissions characterization facility: Southwest Research Institute (SwRI). One of the tested engines was selected (at random, after careful comparison of results) for health testing in Phase 3. In Phase 2, extensive emission characterization of three production-intent prototype engine and control systems meeting the 2010 standards (including more advanced NOx controls to meet the more stringent 2010 NOx standards) was conducted at the same test facility. In Phase 3, one engine/aftertreatment system selected from Phase 1 was further characterized during health effects studies (at an existing inhalation toxicology laboratory: Lovelace Respiratory Research Institute, [LRRI]) to form the basis of the ACES safety assessment. The Department of Energy (DOE) award provided funding for emissions characterization in Phases 1 and 2 as well as exposure characterization in Phase 3. The main health analyses in Phase 3 were funded separately and are not reported here.

  14. HOUCOM framework for collaborative environments

    NASA Astrophysics Data System (ADS)

    Schiffner, Norbert; Ruehl, Christian

    1999-11-01

    The steadily increasing quality of hard- and software enables the development of more and more sophisticated groupware. However, modern distributed systems and distributed multimedia systems in particular challenge the abilities of groupware manufacturers, due to the complexity involved in the development of those systems. Frameworks for collaborative environments might provide a solution to these problems, helping to reduce complexity in groupware development by provision of suitable software components. This article will identify the demands and requirements of distributed (multimedia) systems and their human users that frameworks have to take into account. The article then introduces the HOUCOM framework for collaborative environments and sketches the employment of this framework in a sample scenario.

  15. Distributed and collaborative synthetic environments

    NASA Technical Reports Server (NTRS)

    Bajaj, Chandrajit L.; Bernardini, Fausto

    1995-01-01

    Fast graphics workstations and increased computing power, together with improved interface technologies, have created new and diverse possibilities for developing and interacting with synthetic environments. A synthetic environment system is generally characterized by input/output devices that constitute the interface between the human senses and the synthetic environment generated by the computer; and a computation system running a real-time simulation of the environment. A basic need of a synthetic environment system is that of giving the user a plausible reproduction of the visual aspect of the objects with which he is interacting. The goal of our Shastra research project is to provide a substrate of geometric data structures and algorithms which allow the distributed construction and modification of the environment, efficient querying of objects attributes, collaborative interaction with the environment, fast computation of collision detection and visibility information for efficient dynamic simulation and real-time scene display. In particular, we address the following issues: (1) A geometric framework for modeling and visualizing synthetic environments and interacting with them. We highlight the functions required for the geometric engine of a synthetic environment system. (2) A distribution and collaboration substrate that supports construction, modification, and interaction with synthetic environments on networked desktop machines.

  16. Managing the Collaborative Learning Environment.

    ERIC Educational Resources Information Center

    Wagner, June G.

    2002-01-01

    The feature story in this issue, "Managing the Collaborative Learning Environment," focuses on the growing emphasis on teamwork in the workplace. It discusses how the concept of empowering employees in the workplace is evolving and the benefits--faster decision making, lower costs and absenteeism, higher productivity and quality, and increased…

  17. Advanced engineering environment pilot project.

    SciTech Connect

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty

    2006-10-01

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solution to deploy the AEE across the NWC.

  18. Framework solutions for complete collaborative environments

    NASA Astrophysics Data System (ADS)

    Saunders, Vance M.; Maddox, Derek

    2000-06-01

    Collaboration of experts from different domains within an enterprise has always posed logistical and knowledge management challenges to managers and members of the collaboration. Scheduling meetings, arranging travel, getting data and information into the right hands at the right time all require time, money and energy that could be better spent on product development. Advances in information technology have made it easier to communicate to solve, or at least mitigate, some of these problems using e-mail, audio conferencing, and database management software, but a great detail of human intervention is still required to make these collaborations operate smoothly. Over the past ten years enterprises have come to require more than just total asset visibility and human communication capabilities. To design and field products better, faster and cheaper more human creativity and energy must be focused on the products and less on the operation of the collaboration. The collaborative environment solutions of the future must not only provide the communication and knowledge management that exist today, but also provide seamless access to resources and information, product and process modeling and the advanced decision support that results from the availability of necessary resources and information.

  19. A Virtual Mission Operations Center: Collaborative Environment

    NASA Technical Reports Server (NTRS)

    Medina, Barbara; Bussman, Marie; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    The Virtual Mission Operations Center - Collaborative Environment (VMOC-CE) intent is to have a central access point for all the resources used in a collaborative mission operations environment to assist mission operators in communicating on-site and off-site in the investigation and resolution of anomalies. It is a framework that as a minimum incorporates online chat, realtime file sharing and remote application sharing components in one central location. The use of a collaborative environment in mission operations opens up the possibilities for a central framework for other project members to access and interact with mission operations staff remotely. The goal of the Virtual Mission Operations Center (VMOC) Project is to identify, develop, and infuse technology to enable mission control by on-call personnel in geographically dispersed locations. In order to achieve this goal, the following capabilities are needed: Autonomous mission control systems Automated systems to contact on-call personnel Synthesis and presentation of mission control status and history information Desktop tools for data and situation analysis Secure mechanism for remote collaboration commanding Collaborative environment for remote cooperative work The VMOC-CE is a collaborative environment that facilitates remote cooperative work. It is an application instance of the Virtual System Design Environment (VSDE), developed by NASA Goddard Space Flight Center's (GSFC) Systems Engineering Services & Advanced Concepts (SESAC) Branch. The VSDE is a web-based portal that includes a knowledge repository and collaborative environment to serve science and engineering teams in product development. It is a "one stop shop" for product design, providing users real-time access to product development data, engineering and management tools, and relevant design specifications and resources through the Internet. The initial focus of the VSDE has been to serve teams working in the early portion of the system

  20. A Collaborative, Multidisciplinary Environment for Coastal Science

    NASA Astrophysics Data System (ADS)

    Graves, S. J.; Harper, S.; Maskey, M.; Twilley, R.; McAnally, B.

    2011-12-01

    The Northern Gulf Coastal Hazards Collaboratory (NG-CHC); a collaborative environment for the coastal hazards research community in Louisiana, Mississippi, and Alabama; is being developed to advance the science and engineering of coastal hazards across the tri-state region and address problems of major national importance, including engineering design, coastal system response, and risk management of coastal hazards. NG-CHC aims to accelerate the research process by providing cyberinfrastructure for simulating coastal hazards in a multidisciplinary environment, enhancing the linkages between modeling and observations and allowing researchers to find and share data and information. In addition to serving as a community portal, the extensible environment allows researchers to organize, discover, share and reuse information about data, models, tools and other resources; manage project activities; discuss results with collaborators; view publications, presentations and other documents; and track the history of project activities. The environment also provides an education and outreach area for increasing public knowledge and understanding, with project information, educational tools, and learning modules. Since communication is at the heart of science, these technologies provide researchers with easy mechanisms to share ideas, data, and findings. By enabling the close interaction among scientists and enhancing productivity with tools and services, the collaboration environment frees the researcher from the complexities of sharing and using information, allowing him to concentrate on science. This cyberinfrastructure can be applied in many domains to stimulate knowledge discovery and breakthroughs in a range of fields.

  1. Evaluation Framework for Collaborative Educational Virtual Environments

    ERIC Educational Resources Information Center

    Tsiatsos, Thrasyvoulos; Andreas, Konstantinidis; Pomportsis, Andreas

    2010-01-01

    In this paper we will focus on a specific category of Collaborative Virtual Environments that aims to support Collaborative Learning. We call these environments Collaborative Educational Virtual Environments. Our aim is to analyze the evaluation process through the study of relevant bibliography and by doing so reveal the existing research gap…

  2. Tools and collaborative environments for bioinformatics research

    PubMed Central

    Giugno, Rosalba; Pulvirenti, Alfredo

    2011-01-01

    Advanced research requires intensive interaction among a multitude of actors, often possessing different expertise and usually working at a distance from each other. The field of collaborative research aims to establish suitable models and technologies to properly support these interactions. In this article, we first present the reasons for an interest of Bioinformatics in this context by also suggesting some research domains that could benefit from collaborative research. We then review the principles and some of the most relevant applications of social networking, with a special attention to networks supporting scientific collaboration, by also highlighting some critical issues, such as identification of users and standardization of formats. We then introduce some systems for collaborative document creation, including wiki systems and tools for ontology development, and review some of the most interesting biological wikis. We also review the principles of Collaborative Development Environments for software and show some examples in Bioinformatics. Finally, we present the principles and some examples of Learning Management Systems. In conclusion, we try to devise some of the goals to be achieved in the short term for the exploitation of these technologies. PMID:21984743

  3. Collaborative virtual environments art exhibition

    NASA Astrophysics Data System (ADS)

    Dolinsky, Margaret; Anstey, Josephine; Pape, Dave E.; Aguilera, Julieta C.; Kostis, Helen-Nicole; Tsoupikova, Daria

    2005-03-01

    This panel presentation will exhibit artwork developed in CAVEs and discuss how art methodologies enhance the science of VR through collaboration, interaction and aesthetics. Artists and scientists work alongside one another to expand scientific research and artistic expression and are motivated by exhibiting collaborative virtual environments. Looking towards the arts, such as painting and sculpture, computer graphics captures a visual tradition. Virtual reality expands this tradition to not only what we face, but to what surrounds us and even what responds to our body and its gestures. Art making that once was isolated to the static frame and an optimal point of view is now out and about, in fully immersive mode within CAVEs. Art knowledge is a guide to how the aesthetics of 2D and 3D worlds affect, transform, and influence the social, intellectual and physical condition of the human body through attention to psychology, spiritual thinking, education, and cognition. The psychological interacts with the physical in the virtual in such a way that each facilitates, enhances and extends the other, culminating in a "go together" world. Attention to sharing art experience across high-speed networks introduces a dimension of liveliness and aliveness when we "become virtual" in real time with others.

  4. The Joint Space Operations Center (JSpOC) Mission System (JMS) and the Advanced Research, Collaboration, and Application Development Environment (ARCADE)

    NASA Astrophysics Data System (ADS)

    Runco, A.; Echeverry, J.; Kim, R.; Sabol, C.; Zetocha, P.; Murray-Krezan, J.

    2014-09-01

    The JSpOC Mission System is a modern service-oriented architecture (SOA) infrastructure with increased process automation and improved tools to enhance Space Situational Awareness (SSA). The JMS program has already delivered Increment 1 in April 2013 as initial capability to operations. The programs current focus, Increment 2, will be completed by 2016 and replace the legacy Space Defense Operations Center (SPADOC) and Astrodynamics Support Workstation (ASW) capabilities. Post 2016, JMS Increment 3 will continue to provide additional SSA and C2 capabilities that will require development of new applications and procedures as well as the exploitation of new data sources with more agility. In 2012, the JMS Program Office entered into a partnership with AFRL/RD (Directed Energy) and AFRL/RV (Space Vehicles) to create the Advanced Research, Collaboration, and Application Development Environment (ARCADE). The purpose of the ARCADE is to: (1) serve as a centralized testbed for all research and development (R&D) activities related to JMS applications, including algorithm development, data source exposure, service orchestration, and software services, and provide developers reciprocal access to relevant tools and data to accelerate technology development, (2) allow the JMS program to communicate user capability priorities and requirements to developers, (3) provide the JMS program with access to state-of-the-art research, development, and computing capabilities, and (4) support market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. AFRL/RV and AFRL/RD have created development environments at both unclassified and classified levels that together allow developers to develop applications and work with data sources. The unclassified ARCADE utilizes the Maui high performance computing (HPC) Portal, and can be accessed using a CAC or Kerberos using Yubikey. This environment gives developers a sandbox

  5. Collaborative editing within the pervasive collaborative computing environment

    SciTech Connect

    Perry, Marcia; Agarwal, Deb

    2003-09-11

    Scientific collaborations are established for a wide variety of tasks for which several communication modes are necessary, including messaging, file-sharing, and collaborative editing. In this position paper, we describe our work on the Pervasive Collaborative Computing Environment (PCCE) which aims to facilitate scientific collaboration within widely distributed environments. The PCCE provides a persistent space in which collaborators can locate each other, exchange messages synchronously and asynchronously and archive conversations. Our current interest is in exploring research and development of shared editing systems with the goal of integrating this technology into the PCCE. We hope to inspire discussion of technology solutions for an integrated approach to synchronous and asynchronous communication and collaborative editing.

  6. The Joint Space Operations Center (JSpOC) Mission System (JMS) and the Advanced Research, Collaboration, and Application Development Environment (ARCADE)

    NASA Astrophysics Data System (ADS)

    Johnson, K.; Kim, R.; Echeverry, J.

    Energy) and AFRL/RV (Space Vehicles) to create the Advanced Research, Collaboration, and Application Development Environment (ARCADE). The ARCADE formalizes capability development processes that hitherto have been ad hoc, slow to address the evolving space threat environment, and not easily repeatable. Therefore, the purpose of the ARCADE is to: (1) serve as a centralized testbed for all research and development (R&D) activities related to JMS applications, including algorithm development, data source exposure, service orchestration, and software services, and provide developers reciprocal access to relevant tools and data to accelerate technology development, (2) allow the JMS program to communicate user capability priorities and requirements to developers, (3) facilitate collaboration among developers who otherwise would not collaborate due to organizational, policy, or geographical barriers, and (4) support market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. Over the last several years Scitor Corporation has provided systems engineering support to the JMS Increment 3 Program Office, and has worked with AFRL/RV and AFRL/RD to create a high performance computing environment and SOA at both unclassified and classified levels that together allow developers to develop applications in an environment similar to the version of JMS currently in use by the JSpOC operators. Currently the ARCADE is operational in an unclassified environment via the High Performance Computing Modernization Program (HPCMP) Portal on DREN. The ARCADE also exists on SECRET and TOP SECRET environments on multiple networks. This presentation will cover the following topics: (1) Scitors role in shaping the ARCADE into its current form, (2) ARCADEs value proposition for potential technology developers, and (3) ARCADEs value proposition for the Government. These topics will be discussed by way of several case studies: a JMS

  7. The Joint Space Operations Center (JSpOC) Mission System (JMS) and the Advanced Research, Collaboration, and Application Development Environment (ARCADE)

    NASA Astrophysics Data System (ADS)

    Johnson, K.; Kim, R.; Echeverry, J.

    Energy) and AFRL/RV (Space Vehicles) to create the Advanced Research, Collaboration, and Application Development Environment (ARCADE). The ARCADE formalizes capability development processes that hitherto have been ad hoc, slow to address the evolving space threat environment, and not easily repeatable. Therefore, the purpose of the ARCADE is to: (1) serve as a centralized testbed for all research and development (R&D) activities related to JMS applications, including algorithm development, data source exposure, service orchestration, and software services, and provide developers reciprocal access to relevant tools and data to accelerate technology development, (2) allow the JMS program to communicate user capability priorities and requirements to developers, (3) facilitate collaboration among developers who otherwise would not collaborate due to organizational, policy, or geographical barriers, and (4) support market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. Over the last several years Scitor Corporation has provided systems engineering support to the JMS Increment 3 Program Office, and has worked with AFRL/RV and AFRL/RD to create a high performance computing environment and SOA at both unclassified and classified levels that together allow developers to develop applications in an environment similar to the version of JMS currently in use by the JSpOC operators. Currently the ARCADE is operational in an unclassified environment via the High Performance Computing Modernization Program (HPCMP) Portal on DREN. The ARCADE also exists on SECRET and TOP SECRET environments on multiple networks. This presentation will cover the following topics: (1) Scitors role in shaping the ARCADE into its current form, (2) ARCADEs value proposition for potential technology developers, and (3) ARCADEs value proposition for the Government. These topics will be discussed by way of several case studies: a JMS

  8. Therapists and researchers: advancing collaboration.

    PubMed

    Garland, Ann F; Brookman-Frazee, Lauren

    2015-01-01

    Collaborative partnerships between community-based clinicians and academic researchers have the potential to improve the relevance, utility, and feasibility of research, as well as the effectiveness of practice. Collaborative partnership research from a variety of fields can inform the development and maintenance of effective partnerships. In this paper we present a conceptual model of research-community practice partnership derived from literature across disciplines and then illustrate application of this model to one case example. The case example is a multi-year partnership between an interdisciplinary group of community-based psychotherapists and a team of mental health researchers. This partnership was initiated to support federally funded research on community-based outpatient mental health care for children with disruptive behavior problems, but it has evolved to drive and support new intervention studies with different clinical foci. Lessons learned from this partnership process will be shared and interpreted in the context of the presented research-practice partnership model. PMID:24224554

  9. Understanding Children's Collaborative Interactions in Shared Environments.

    ERIC Educational Resources Information Center

    Scott, Stacey D.; Mandryk, R. L.; Inkpen, K. M.

    2003-01-01

    Explores how various collaborative settings affect elementary school children's interactions with each other and with technology. Describes the development of co-located groupware systems offering support for concurrent, multi-user interactions around a shared display, which offer a collaborative environment in which users share both the physical…

  10. Peer Interaction in Three Collaborative Learning Environments

    ERIC Educational Resources Information Center

    Staarman, Judith Kleine; Krol, Karen; Meijden, Henny van der

    2005-01-01

    The aim of the study was to gain insight into the occurrence of different types of peer interaction and particularly the types of interaction beneficial for learning in different collaborative learning environments. Based on theoretical notions related to collaborative learning and peer interaction, a coding scheme was developed to analyze the…

  11. Elearn: A Collaborative Educational Virtual Environment.

    ERIC Educational Resources Information Center

    Michailidou, Anna; Economides, Anastasios A.

    Virtual Learning Environments (VLEs) that support collaboration are one of the new technologies that have attracted great interest. VLEs are learning management software systems composed of computer-mediated communication software and online methods of delivering course material. This paper presents ELearn, a collaborative VLE for teaching…

  12. Collaborative computing environments for HEP

    NASA Astrophysics Data System (ADS)

    Bunn, Julian J.

    1998-05-01

    This paper describes the diverse software tools that facilitate the work of groups of people. The focus is on tools that exploit the Internet or intranets, and on those which appear to be useful to the HEP community. A brief history of Computer Supported Collaborative Work (CSCW) is presented, followed by a description of some CSCW tools that are currently available, and some which are used in HEP. Finally, predictions are made on what HEP might expect to be using in this domain in future years.

  13. International Collaboration Activities in Different Geologic Disposal Environments

    SciTech Connect

    Birkholzer, Jens

    2015-09-01

    This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. Since 2012, in an effort coordinated by Lawrence Berkeley National Laboratory, UFD has advanced active collaboration with several international geologic disposal programs in Europe and Asia. Such collaboration allows the UFD Campaign to benefit from a deep knowledge base with regards to alternative repository environments developed over decades, and to utilize international investments in research facilities (such as underground research laboratories), saving millions of R&D dollars that have been and are being provided by other countries. To date, UFD’s International Disposal R&D Program has established formal collaboration agreements with five international initiatives and several international partners, and national lab scientists associated with UFD have conducted specific collaborative R&D activities that align well with its R&D priorities.

  14. Collaborative environments for capability-based planning

    NASA Astrophysics Data System (ADS)

    McQuay, William K.

    2005-05-01

    Distributed collaboration is an emerging technology for the 21st century that will significantly change how business is conducted in the defense and commercial sectors. Collaboration involves two or more geographically dispersed entities working together to create a "product" by sharing and exchanging data, information, and knowledge. A product is defined broadly to include, for example, writing a report, creating software, designing hardware, or implementing robust systems engineering and capability planning processes in an organization. Collaborative environments provide the framework and integrate models, simulations, domain specific tools, and virtual test beds to facilitate collaboration between the multiple disciplines needed in the enterprise. The Air Force Research Laboratory (AFRL) is conducting a leading edge program in developing distributed collaborative technologies targeted to the Air Force's implementation of systems engineering for a simulation-aided acquisition and capability-based planning. The research is focusing on the open systems agent-based framework, product and process modeling, structural architecture, and the integration technologies - the glue to integrate the software components. In past four years, two live assessment events have been conducted to demonstrate the technology in support of research for the Air Force Agile Acquisition initiatives. The AFRL Collaborative Environment concept will foster a major cultural change in how the acquisition, training, and operational communities conduct business.

  15. OMOGENIA: A Semantically Driven Collaborative Environment

    NASA Astrophysics Data System (ADS)

    Liapis, Aggelos

    Ontology creation can be thought of as a social procedure. Indeed the concepts involved in general need to be elicited from communities of domain experts and end-users by teams of knowledge engineers. Many problems in ontology creation appear to resemble certain problems in software design, particularly with respect to the setup of collaborative systems. For instance, the resolution of conceptual conflicts between formalized ontologies is a major engineering problem as ontologies move into widespread use on the semantic web. Such conflict resolution often requires human collaboration and cannot be achieved by automated methods with the exception of simple cases. In this chapter we discuss research in the field of computer-supported cooperative work (CSCW) that focuses on classification and which throws light on ontology building. Furthermore, we present a semantically driven collaborative environment called OMOGENIA as a natural way to display and examine the structure of an evolving ontology in a collaborative setting.

  16. Managing consistency in collaborative design environments

    NASA Astrophysics Data System (ADS)

    Miao, Chunyan; Yang, Zhonghua; Goh, Angela; Sun, Chengzheng; Sattar, Abdul

    1999-08-01

    In today's global economy, there is a significant paradigm shift to collaborative engineering design environments. One of key issues in the collaborative setting is the consistency model, which governs how to coordinate the activities of collaborators to ensure that they do not make inconsistent changes or updates to the shared objects. In this paper, we present a new consistency model which requires that all update operations will be executed in the casual order (causality) and all participants have the same view on the operations on the shared objects (view synchrony). A simple multicast-based protocol to implement the consistency model is presented. By employing vector time and token mechanisms, the protocol brings the shared objects from one consistent state to another, thus providing collaborators with a consistent view of the shared objects. A CORBA-based on-going prototyping implementation is outlined. Some of the related work are also discussed.

  17. Enhancing Trust in SOA Based Collaborative Environments

    NASA Astrophysics Data System (ADS)

    Boursas, Latifa; Bourimi, Mohamed; Hommel, Wolfgang; Kesdogan, Dogan

    Considering trust and privacy requirements for online and collaborative distance learning environments, this paper discusses potential extensions of SOA based applications to simultaneously support authentication and authorization services, and offering mutual trust to both learners and service providers. This study shows that the security mechanisms integrated in the SOA platform can be effectively extended and correlated with a trust model.

  18. Distributed collaborative environments for predictive battlespace awareness

    NASA Astrophysics Data System (ADS)

    McQuay, William K.

    2003-09-01

    The past decade has produced significant changes in the conduct of military operations: asymmetric warfare, the reliance on dynamic coalitions, stringent rules of engagement, increased concern about collateral damage, and the need for sustained air operations. Mission commanders need to assimilate a tremendous amount of information, make quick-response decisions, and quantify the effects of those decisions in the face of uncertainty. Situational assessment is crucial in understanding the battlespace. Decision support tools in a distributed collaborative environment offer the capability of decomposing complex multitask processes and distributing them over a dynamic set of execution assets that include modeling, simulations, and analysis tools. Decision support technologies can semi-automate activities, such as analysis and planning, that have a reasonably well-defined process and provide machine-level interfaces to refine the myriad of information that the commander must fused. Collaborative environments provide the framework and integrate models, simulations, and domain specific decision support tools for the sharing and exchanging of data, information, knowledge, and actions. This paper describes ongoing AFRL research efforts in applying distributed collaborative environments to predictive battlespace awareness.

  19. Collaborative Work Environment for Operational Conjunction Assessment

    NASA Astrophysics Data System (ADS)

    Laporte, F.; Christy, S.

    Conjunction Messages (CM) provided by JSpOC are complete and valuable data to evaluate the level of risk of conjunctions, decide and choose avoidance actions. Nevertheless, conjunction assessment remains a difficult task which requires Middle Man between the CM provider (JSpOC) and Owner/Operators. Operational collision threat characterization is now an essential component of space mission operations. Most spacecraft operators have some sort of a process to evaluate and mitigate high-risk conjunction events. As the size of the space object catalog increases, satellite operators will be faced with more conjunction events to evaluate. Thus more sophisticated collision threat characterization and collision avoidance strategies must be implemented thought Middle Man entities. CAESAR (Conjunction Analysis and Evaluation Service, Alerts and Recommendations) is the French Middle Man. CAESAR relies on a collaborative work environment between all members of CAESAR team and its subscribers. For CAESAR, the collaborative work environment is based on JAC software and a dedicated secure webserver SpOD Space Operational Data. JAC software is not the Main Flight Dynamics (FD) software used by CAESAR team, but it is a light friendly CM dedicated software to be used on a laptop by on-call teams or support dialogue between Middle Man and FD teams. The dedicated secure webserver is a key element to share data and information between actors. This paper presents the main feedbacks from CAESAR team operational experience with regards to its collaborative work environment components: - JAC software which is not a classical Flight Dynamics software, its MMI is designed to be very quickly taken over (by teams not using it on daily basis) while also offering all the expertise levels required by the Middle Man team. JAC is used by CAESAR on-call team and all FD teams who subscribed to CAESAR. JAC is also distributed by CNES and therefore already used by some operational teams for Conjunction

  20. A Collaborative Extensible User Environment for Simulation and Knowledge Management

    SciTech Connect

    Freedman, Vicky L.; Lansing, Carina S.; Porter, Ellen A.; Schuchardt, Karen L.; Guillen, Zoe C.; Sivaramakrishnan, Chandrika; Gorton, Ian

    2015-06-01

    In scientific simulation, scientists use measured data to create numerical models, execute simulations and analyze results from advanced simulators executing on high performance computing platforms. This process usually requires a team of scientists collaborating on data collection, model creation and analysis, and on authorship of publications and data. This paper shows that scientific teams can benefit from a user environment called Akuna that permits subsurface scientists in disparate locations to collaborate on numerical modeling and analysis projects. The Akuna user environment is built on the Velo framework that provides both a rich client environment for conducting and analyzing simulations and a Web environment for data sharing and annotation. Akuna is an extensible toolset that integrates with Velo, and is designed to support any type of simulator. This is achieved through data-driven user interface generation, use of a customizable knowledge management platform, and an extensible framework for simulation execution, monitoring and analysis. This paper describes how the customized Velo content management system and the Akuna toolset are used to integrate and enhance an effective collaborative research and application environment. The extensible architecture of Akuna is also described and demonstrates its usage for creation and execution of a 3D subsurface simulation.

  1. Automated Knowledge Annotation for Dynamic Collaborative Environments

    SciTech Connect

    Cowell, Andrew J.; Gregory, Michelle L.; Marshall, Eric J.; McGrath, Liam R.

    2009-05-19

    This paper describes the Knowledge Encapsulation Framework (KEF), a suite of tools to enable automated knowledge annotation for modeling and simulation projects. This framework can be used to capture evidence (e.g., facts extracted from journal articles and government reports), discover new evidence (from similar peer-reviewed material as well as social media), enable discussions surrounding domain-specific topics and provide automatically generated semantic annotations for improved corpus investigation. The current KEF implementation is presented within a wiki environment, providing a simple but powerful collaborative space for team members to review, annotate, discuss and align evidence with their modeling frameworks.

  2. CCSDS - Advancing Spaceflight Technology for International Collaboration

    NASA Technical Reports Server (NTRS)

    Kearney, Mike; Kiely, Aaron; Yeh, Penshu; Gerner, Jean-Luc; Calzolari, Gian-Paolo; Gifford, Kevin; Merri, Mario; Weiss, Howard

    2010-01-01

    The Consultative Committee for Space Data Systems (CCSDS) has been developing data and communications standards since 1982, with the objective of providing interoperability for enabling international collaboration for spaceflight missions. As data and communications technology has advanced, CCSDS has progressed to capitalize on existing products when available and suitable for spaceflight, and to develop innovative new approaches when available products fail. The current scope of the CCSDS architecture spans the end-to-end data architecture of a spaceflight mission, with ongoing efforts to develop and standardize cutting-edge technology. This manuscript describes the overall architecture, the position of CCSDS in the standards and international mission community, and some CCSDS processes. It then highlights in detail several of the most interesting and critical technical areas in work right now, and how they support collaborative missions. Special topics include: Delay/Disruption Tolerant Networking (DTN), Asynchronous Message Service (AMS), Multispectral/Hyperspectral Data Compression (MHDC), Coding and Synchronization, Onboard Wireless, Spacecraft Monitor and Control, Navigation, Security, and Time Synchronization/Correlation. Broad international participation in development of CCSDS standards is encouraged.

  3. Russian collaborations on lasers and advanced optics

    SciTech Connect

    Munroe, J.; Cooper, D.; Koym, V.; Salesky, E.

    1996-09-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. There are several technological areas where the Russians appear to be well ahead of the West. Russian work in lasers and advanced optics, high power nonlinear optics, and optical phase conjugation in particular, are some of these areas. The objective of this project is to establish collaboration with key Russian scientists in this area to analytically and experimentally validate the technologies and identify potential applications. This technology has the potential to solve very important military, civil, and commercial problems. The emphasis of this project is on civil and commercial applications, but the technologies have dual-use applications.

  4. Locating Elementary Teachers' Professional Communities in a Structured Collaboration Environment

    ERIC Educational Resources Information Center

    Chu, Szu Yang

    2016-01-01

    As teacher collaboration becomes an increasingly common goal in school organization, teachers' experiences and perspectives in a Structured Collaboration Environment remain under-examined. This qualitative case study explored how teachers participated in collaborative work, the outcomes of collaboration, and supports and obstacles to productive…

  5. MICE: a mouse imaging collaboration environment

    NASA Astrophysics Data System (ADS)

    Szymanski, Jacek; Flask, Chris; Wilson, David; Johnson, David; Muzic, Raymond F., Jr.; Zhang, Guo-Qiang

    2006-03-01

    With the ever-increasing complexity of science and engineering, many important research problems are being addressed by collaborative, multidisciplinary teams. We present a web-based collaborative environment for small animal imaging research, called the Mouse Imaging Collaboration Environment (MICE). MICE provides an effective and user-friendly tool for managing and sharing of the terabytes of high-resolution and high-dimension image data generated at small animal imaging core facilities. We describe the design of MICE and our experience in the implementation and deployment of a beta-version baseline-MICE. The baseline-MICE provides an integrated solution from image data acquisition to end-user access and long-term data storage at our UH/Case Small Animal Imaging Resource Center. As image data is acquired from scanners, it is pushed to the MICE server which automatically stores it in a directory structure according to its DICOM metadata. The directory structure reflects imaging modality, principle investigators, animal models, scanning dates and study details. Registered end-users access this imaging data through an authenticated web-interface. Thumbnail images are created by custom scripts running on the MICE server while data down-loading is achieved through standard web-browser ftp. MICE provides a security infrastructure that manages user roles, their access privileges such as read/write, and the right to modify the access privileges. Additional data security measures include a two server paradigm with the Web access server residing outside a network firewall to provide access through the Internet, and the imaging data server - a large RAID storage system supporting flexible backup policies - residing behind the protected firewall with a dedicated link to the Web access server. Direct network link to the RAID storage system outside the firewall other than this dedicated link is not permitted. Establishing the initial image directory structure and letting the

  6. A Collaborative Decision Environment for UAV Operations

    NASA Technical Reports Server (NTRS)

    D'Ortenzio, Matthew V.; Enomoto, Francis Y.; Johan, Sandra L.

    2005-01-01

    NASA is developing Intelligent Mission Management (IMM) technology for science missions employing long endurance unmanned aerial vehicles (UAV's). The IMM groundbased component is the Collaborative Decision Environment (CDE), a ground system that provides the Mission/Science team with situational awareness, collaboration, and decisionmaking tools. The CDE is used for pre-flight planning, mission monitoring, and visualization of acquired data. It integrates external data products used for planning and executing a mission, such as weather, satellite data products, and topographic maps by leveraging established and emerging Open Geospatial Consortium (OGC) standards to acquire external data products via the Internet, and an industry standard geographic information system (GIs) toolkit for visualization As a Science/Mission team may be geographically dispersed, the CDE is capable of providing access to remote users across wide area networks using Web Services technology. A prototype CDE is being developed for an instrument checkout flight on a manned aircraft in the fall of 2005, in preparation for a full deployment in support of the US Forest Service and NASA Ames Western States Fire Mission in 2006.

  7. A Multi-Agent Question-Answering System for E-Learning and Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Alinaghi, Tannaz; Bahreininejad, Ardeshir

    2011-01-01

    The increasing advances of new Internet technologies in all application domains have changed life styles and interactions. E-learning and collaborative learning environment systems are originated through such changes and aim at providing facilities for people in different times and geographical locations to cooperate, collaborate, learn and work…

  8. Next Generation Integrated Environment for Collaborative Work Across Internets

    SciTech Connect

    Harvey B. Newman

    2009-02-24

    We are now well-advanced in our development, prototyping and deployment of a high performance next generation Integrated Environment for Collaborative Work. The system, aimed at using the capability of ESnet and Internet2 for rapid data exchange, is based on the Virtual Room Videoconferencing System (VRVS) developed by Caltech. The VRVS system has been chosen by the Internet2 Digital Video (I2-DV) Initiative as a preferred foundation for the development of advanced video, audio and multimedia collaborative applications by the Internet2 community. Today, the system supports high-end, broadcast-quality interactivity, while enabling a wide variety of clients (Mbone, H.323) to participate in the same conference by running different standard protocols in different contexts with different bandwidth connection limitations, has a fully Web-integrated user interface, developers and administrative APIs, a widely scalable video network topology based on both multicast domains and unicast tunnels, and demonstrated multiplatform support. This has led to its rapidly expanding production use for national and international scientific collaborations in more than 60 countries. We are also in the process of creating a 'testbed video network' and developing the necessary middleware to support a set of new and essential requirements for rapid data exchange, and a high level of interactivity in large-scale scientific collaborations. These include a set of tunable, scalable differentiated network services adapted to each of the data streams associated with a large number of collaborative sessions, policy-based and network state-based resource scheduling, authentication, and optional encryption to maintain confidentiality of inter-personal communications. High performance testbed video networks will be established in ESnet and Internet2 to test and tune the implementation, using a few target application-sets.

  9. Study on Collaborative Object Manipulation in Virtual Environment

    NASA Astrophysics Data System (ADS)

    Mayangsari, Maria Niken; Yong-Moo, Kwon

    This paper presents comparative study on network collaboration performance in different immersion. Especially, the relationship between user collaboration performance and degree of immersion provided by the system is addressed and compared based on several experiments. The user tests on our system include several cases: 1) Comparison between non-haptics and haptics collaborative interaction over LAN, 2) Comparison between non-haptics and haptics collaborative interaction over Internet, and 3) Analysis of collaborative interaction between non-immersive and immersive display environments.

  10. A Virtual Mission Operations Center - Collaborative Environment

    NASA Technical Reports Server (NTRS)

    Medina, Barbara; Bussman, Marie

    2002-01-01

    Development of technologies that enable significant reductions in the cost of space mission operations is critical if constellations, formations, federations and sensor webs, are to be economically feasible. One approach to cost reduction is to infuse automation technologies into mission operations centers so that fewer personnel are needed for mission support. But missions are more culturally and politically adverse to the risks of automation. Reducing the mission risk associated with increased use of automation within a MOC is therefore of great importance. The belief that mission risk increases as more automation is used stems from the fact that there is inherently less direct human oversight to investigate and resolve anomalies in an unattended MOC. The Virtual Missions Operations Center - Collaborative Environment (VMOC-CE) project was launched to address this concern. The goal of the VMOC-CE project is to identify, develop, and infuse technology to enable mission operations between onsite operators and on-call personnel in geographically dispersed locations. VMOC-CE enables missions to more readily adopt automation because off-site operators and engineers can more easily identify, investigate, and resolve anomalies without having to be present in the MOC. The VMOC-CE intent is to have a single access point for all resources used in a collaborative mission operations environment. Team members will be able to interact during spacecraft operations, specifically for resolving anomalies, utilizing a desktop computer and the Internet. Mission operations management can use the VMOC-CE as a tool to participate in and monitor status of anomaly resolution or other mission operations issues. In this paper we present the VMOC-CE project, system capabilities and technologies, operations concept, and results of its pilot in support of the Earth Science Mission Operations System (ESMOS).

  11. Evaluation of Intelligent Grouping Based on Learners' Collaboration Competence Level in Online Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Muuro, Maina Elizaphan; Oboko, Robert; Wagacha, Waiganjo Peter

    2016-01-01

    In this paper we explore the impact of an intelligent grouping algorithm based on learners' collaborative competency when compared with (a) instructor based Grade Point Average (GPA) method level and (b) random method, on group outcomes and group collaboration problems in an online collaborative learning environment. An intelligent grouping…

  12. KP-Lab System: A Collaborative Environment for Design, Realization and Examination of Different Knowledge Practices

    NASA Astrophysics Data System (ADS)

    Paralič, Ján; Babič, František

    This paper presents a collaborative working and learning environment called KP-Lab System. It provides a complex and multifunctional application built on principles of semantic web, exploiting also some web2.0 approaches as Google Apps or mashups. This system offers virtual user environment with different, necessary and advanced features for collaborative learning or working knowledge intensive activities. This paper briefly presents the whole system with special emphasis on its semantic-based aspects and analytical tools.

  13. Collaborative Product Development in an R&D Environment

    NASA Technical Reports Server (NTRS)

    Davis, Jose M.; Keys, L. Ken; Chen, Injazz J.; Peterson, Paul L.

    2004-01-01

    Research and development (R&D) organizations are being required to be relevant, to be more application-oriented, and to be partners in the strategic management of the business while meeting the same challenges as the rest of the organization, namely: (1) reduced time to market; (2) reduced cost; (3) improved quality; (4) increased reliability; and (5) increased focus on customer needs. Recent advances in computer technology and the Internet have created a new paradigm of collaborative engineering or collaborative product development (CPD), from which new types of relationships among researchers and their partners have emerged. Research into the applicability and benefits of CPD in a low/no production, R&D, and/or government environment is limited. In addition, the supply chain management (SCM) aspects of these relationships have not been studied. This paper presents research conducted at the NASA Glenn Research Center (GRC) investigating the applicability of CPD and SCM in an R&D organization. The study concentrates on the management and implementation of space research activities at GRC. Results indicate that although the organization is engaged in collaborative relationships that incorporate aspects of SCM, a number of areas, such as development of trust and information sharing merit special attention.

  14. Maturing Pump Technology for EVA Applications in a Collaborative Environment

    NASA Technical Reports Server (NTRS)

    Hodgson, Edward; Dionne, Steven; Gervais, Edward; Anchondo, Ian

    2012-01-01

    The transition from low earth orbit Extravehicular Activity (EVA) for construction and maintenance activities to planetary surface EVA on asteroids, moons, and, ultimately, Mars demands a new spacesuit system. NASA's development of that system has resulted in dramatically different pumping requirements from those in the current spacesuit system. Hamilton Sundstrand, Cascon, and NASA are collaborating to develop and mature a pump that will reliably meet those new requirements in space environments and within the design constraints imposed by spacesuit system integration. That collaboration, which began in the NASA purchase of a pump prototype for test evaluation, is now entering a new phase of development. A second generation pump reflecting the lessons learned in NASA's testing of the original prototype will be developed under Hamilton Sundstrand internal research funding and ultimately tested in an integrated Advanced Portable Life Support System (APLSS) in NASA laboratories at the Johnson Space Center. This partnership is providing benefit to both industry and NASA by supplying a custom component for EVA integrated testing at no cost to the government while providing test data for industry that would otherwise be difficult or impossible to duplicate in industry laboratories. This paper discusses the evolving collaborative process, component requirements and design development based on early NASA test experience, component stand alone test results, and near term plans for integrated testing at JSCs.

  15. A Collaborative Research Environment for Heliophysics

    NASA Astrophysics Data System (ADS)

    Bentley, R. D.; Berghmans, D.; Csillaghy, A.

    2012-04-01

    Heliophysics is the study of the effect of the Sun on the Solar System; it is a relatively new science that combines the solar, heliospheric, geophysics and planetary communities. The subject is an example of the increasing desire to address science problems that span disciplinary boundaries and provides a good example of the issues involved. The communities that constitute heliophysics have grown up independently and there are differences in the way that their data are stored and used. Although a number of capabilities relevant to heliophysics have been established under auspices of various projects and organisations, the fact that they have not followed any underlying strategy is now inhibiting our ability to do this type of science. The Heliophysics Integrated Observatory (HELIO), a research infrastructure funded under Capacities programme of the EC's 7th Framework Programme (FP7), was designed around a service-oriented architecture with needed capabilities that support metadata curation and search, data location and retrieval, and data processing and storage being established as independent services. In addition, a number of virtual observatories have been established that address aspects of the overall problem of heliophysics within the NASA's Heliophysics Science Division. We examine the capabilities of these resources and look at where their strengths and weaknesses lie. We identify some of the steps that are needed to improve interoperability between the initiatives and consider how they could be brought together to form a Collaborative Research Environment for Heliophysics (CREH). The Coordination Action for the integration of Solar System Infrastructure and Science (CASSIS) has the objective of exploring ways to improve interoperability for all aspects of Solar System Science. CASSIS is funded under Capacities specific programme of the European Commission's Seventh Framework Programme (FP7) and grew out of the HELIO, Europlanet RI and SOTERIA projects; it

  16. Virtual laboratories: Collaborative environments and facilities-on-line

    SciTech Connect

    Thomas, C.E. Jr.; Cavallini, J.S.; Seweryniak, G.R.; Kitchens, T.A.; Hitchcock, D.A.; Scott, M.A.; Welch, L.C.; Aiken, R.J. |; Stevens, R.L.

    1995-07-01

    The Department of Energy (DOE) has major research laboratories in a number of locations in the US, typically co-located with large research instruments or research facilities valued at tens of millions to even billions of dollars. Present budget exigencies facing the entire nation are felt very deeply at DOE, just as elsewhere. Advances over the last few years in networking and computing technologies make virtual collaborative environments and conduct of experiments over the internetwork structure a possibility. The authors believe that development of these collaborative environments and facilities-on-line could lead to a ``virtual laboratory`` with tremendous potential for decreasing the costs of research and increasing the productivity of their capital investment in research facilities. The majority of these cost savings would be due to increased productivity of their research efforts, better utilization of resources and facilities, and avoiding duplication of expensive facilities. A vision of how this might all fit together and a discussion of the infrastructure necessary to enable these developments is presented.

  17. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  18. Developing collaborative environments - A Holistic software development methodology

    SciTech Connect

    PETERSEN,MARJORIE B.; MITCHINER,JOHN L.

    2000-03-08

    Sandia National Laboratories has been developing technologies to support person-to-person collaboration and the efforts of teams in the business and research communities. The technologies developed include knowledge-based design advisors, knowledge management systems, and streamlined manufacturing supply chains. These collaborative environments in which people can work together sharing information and knowledge have required a new approach to software development. The approach includes an emphasis on the requisite change in business practice that often inhibits user acceptance of collaborative technology. Leveraging the experience from this work, they have established a multidisciplinary approach for developing collaborative software environments. They call this approach ``A Holistic Software Development Methodology''.

  19. A new security model for collaborative environments

    SciTech Connect

    Agarwal, Deborah; Lorch, Markus; Thompson, Mary; Perry, Marcia

    2003-06-06

    Prevalent authentication and authorization models for distributed systems provide for the protection of computer systems and resources from unauthorized use. The rules and policies that drive the access decisions in such systems are typically configured up front and require trust establishment before the systems can be used. This approach does not work well for computer software that moderates human-to-human interaction. This work proposes a new model for trust establishment and management in computer systems supporting collaborative work. The model supports the dynamic addition of new users to a collaboration with very little initial trust placed into their identity and supports the incremental building of trust relationships through endorsements from established collaborators. It also recognizes the strength of a users authentication when making trust decisions. By mimicking the way humans build trust naturally the model can support a wide variety of usage scenarios. Its particular strength lies in the support for ad-hoc and dynamic collaborations and the ubiquitous access to a Computer Supported Collaboration Workspace (CSCW) system from locations with varying levels of trust and security.

  20. Automating Expertise in Collaborative Learning Environments

    ERIC Educational Resources Information Center

    LaVoie, Noelle; Streeter, Lynn; Lochbaum, Karen; Wroblewski, David; Boyce, Lisa; Krupnick, Charles; Psotka, Joseph

    2010-01-01

    We have developed a set of tools for improving online collaborative learning including an automated expert that monitors and moderates discussions, and additional tools to evaluate contributions, semantically search all posted comments, access a library of hundreds of digital books and provide reports to instructors. The technology behind these…

  1. Creating a Collaborative Environment. Using Culture, Training, and Infrastructure.

    ERIC Educational Resources Information Center

    Plugge, L. A.; Kirschner, P. A.; Beckers, J.

    2001-01-01

    Responses from 204 Dutch employees trained via web-based applications indicated that, if the goal is to increase collaborative work, training should take place in a collaborative environment. Organizational culture change and a supportive infrastructure are required. (Contains 20 references.) (SK)

  2. Online Teacher Development: Collaborating in a Virtual Learning Environment

    ERIC Educational Resources Information Center

    Ernest, Pauline; Guitert Catasús, Montse; Hampel, Regine; Heiser, Sarah; Hopkins, Joseph; Murphy, Linda; Stickler, Ursula

    2013-01-01

    Over recent years, educational institutions have been making increasing use of virtual environments to set up collaborative activities for learners. While it is recognized that teachers play an important role in facilitating learner collaboration online, they may not have the necessary skills to do so successfully. Thus, a small-scale professional…

  3. Communication Resource Use in a Networked Collaborative Design Environment.

    ERIC Educational Resources Information Center

    Gay, Geri; Lentini, Marc

    The purpose of this exploratory study was to examine student use of a prototype networked collaborative design environment to support or augment learning about engineering design. The theoretical framework is based primarily on Vygotsky's social construction of knowledge and the belief that collaboration and communication are critical components…

  4. Assessing a Collaborative Online Environment for Music Composition

    ERIC Educational Resources Information Center

    Biasutti, Michele

    2015-01-01

    The current pilot study tested the effectiveness of an e-learning environment built to enable students to compose music collaboratively. The participants interacted online by using synchronous and asynchronous resources to develop a project in which they composed a new music piece in collaboration. After the learning sessions, individual…

  5. A Framework for Collaborative Learning in Dynamic Group Environments

    ERIC Educational Resources Information Center

    Kanev, Kamen; Kimura, Shigeo; Orr, Thomas

    2009-01-01

    In this article, we propose a framework for Computer-Supported Collaborative Learning (CSCL) employing dynamic groups, where at different stages students work independently, interact with each other in pairs, and conduct joint work in larger groups with varying numbers of participants. A Dynamic Group Environment for Collaborative Learning…

  6. Virtual Collaborative Learning Environments for Music: Networked Drumsteps

    ERIC Educational Resources Information Center

    McCarthy, Conor; Bligh, James; Jennings, Kevin; Tangney, Brendan

    2005-01-01

    This paper focuses on a tool for meaningful, collaborative, interaction in a constructionist music composition environment. In particular, it describes the design and implementation of ''Networked DrumSteps'', an application that allows multiple users in different locations to collaborate in the process of music composition, but without the use of…

  7. Role Management in a Privacy-Enhanced Collaborative Environment

    ERIC Educational Resources Information Center

    Lorenz, Anja; Borcea-Pfitzmann, Katrin

    2010-01-01

    Purpose: Facing the dilemma between collaboration and privacy is a continual challenge for users. In this setting, the purpose of this paper is to discuss issues of a highly flexible role management integrated in a privacy-enhanced collaborative environment (PECE). Design/methodology/approach: The general framework was provided by former findings…

  8. Portal-based Knowledge Environment for Collaborative Science

    SciTech Connect

    Schuchardt, Karen L.; Pancerella, Carmen M.; Rahn, Larry; Didier, Brett T.; Kodeboyina, Deepti; Leahy, David; Myers, James D.; Oluwole, O.; Pitz, William; Ruscic, Branko; Song, Jing; Laszewski, Gregor V.; Yang, Christine

    2007-08-25

    The Knowledge Environment for Collaborative Science (KnECS) is an open source portal that integrates collaboration tools, data and metadata management, and scientific applications. We describe KnECS features, numerous science applications and their requirements, the benefits derived, and the integration approaches. Finally we discuss isues and challenges for the future.

  9. Learning to Collaborate: Designing Collaboration in a 3-D Game Environment

    ERIC Educational Resources Information Center

    Hamalainen, Raija; Manninen, Tony; Jarvela, Sanna; Hakkinen, Paivi

    2006-01-01

    To respond to learning needs, Computer-Supported Collaborative Learning (CSCL) must provide instructional support. The particular focus of this paper is on designing collaboration in a 3-D virtual game environment intended to make learning more effective by promoting student opportunities for interaction. The empirical experiment eScape, which…

  10. The Sociability of Computer-Supported Collaborative Learning Environments.

    ERIC Educational Resources Information Center

    Kreijins, Karel; Kirschner, Paul A.; Jochems, Wim

    2002-01-01

    Discusses computer-supported collaborative learning (CSCL) environments in asynchronous distributed learning groups and proposes an intelligent CSCL environment based upon a theoretical framework that suggests embedding certain properties in the environment to act as social contextual facilitators to initiate and sustain learners' social…

  11. Telearch - Integrated visual simulation environment for collaborative virtual archaeology.

    NASA Astrophysics Data System (ADS)

    Kurillo, Gregorij; Forte, Maurizio

    Archaeologists collect vast amounts of digital data around the world; however, they lack tools for integration and collaborative interaction to support reconstruction and interpretation process. TeleArch software is aimed to integrate different data sources and provide real-time interaction tools for remote collaboration of geographically distributed scholars inside a shared virtual environment. The framework also includes audio, 2D and 3D video streaming technology to facilitate remote presence of users. In this paper, we present several experimental case studies to demonstrate the integration and interaction with 3D models and geographical information system (GIS) data in this collaborative environment.

  12. A study on haptic collaborative game in shared virtual environment

    NASA Astrophysics Data System (ADS)

    Lu, Keke; Liu, Guanyang; Liu, Lingzhi

    2013-03-01

    A study on collaborative game in shared virtual environment with haptic feedback over computer networks is introduced in this paper. A collaborative task was used where the players located at remote sites and played the game together. The player can feel visual and haptic feedback in virtual environment compared to traditional networked multiplayer games. The experiment was desired in two conditions: visual feedback only and visual-haptic feedback. The goal of the experiment is to assess the impact of force feedback on collaborative task performance. Results indicate that haptic feedback is beneficial for performance enhancement for collaborative game in shared virtual environment. The outcomes of this research can have a powerful impact on the networked computer games.

  13. Supporting tactical intelligence using collaborative environments and social networking

    NASA Astrophysics Data System (ADS)

    Wollocko, Arthur B.; Farry, Michael P.; Stark, Robert F.

    2013-05-01

    Modern military environments place an increased emphasis on the collection and analysis of intelligence at the tactical level. The deployment of analytical tools at the tactical level helps support the Warfighter's need for rapid collection, analysis, and dissemination of intelligence. However, given the lack of experience and staffing at the tactical level, most of the available intelligence is not exploited. Tactical environments are staffed by a new generation of intelligence analysts who are well-versed in modern collaboration environments and social networking. An opportunity exists to enhance tactical intelligence analysis by exploiting these personnel strengths, but is dependent on appropriately designed information sharing technologies. Existing social information sharing technologies enable users to publish information quickly, but do not unite or organize information in a manner that effectively supports intelligence analysis. In this paper, we present an alternative approach to structuring and supporting tactical intelligence analysis that combines the benefits of existing concepts, and provide detail on a prototype system embodying that approach. Since this approach employs familiar collaboration support concepts from social media, it enables new-generation analysts to identify the decision-relevant data scattered among databases and the mental models of other personnel, increasing the timeliness of collaborative analysis. Also, the approach enables analysts to collaborate visually to associate heterogeneous and uncertain data within the intelligence analysis process, increasing the robustness of collaborative analyses. Utilizing this familiar dynamic collaboration environment, we hope to achieve a significant reduction of time and skill required to glean actionable intelligence in these challenging operational environments.

  14. Instructional Design Issues in a Distributed Collaborative Engineering Design (CED) Instructional Environment

    ERIC Educational Resources Information Center

    Koszalka, Tiffany A.; Wu, Yiyan

    2010-01-01

    Changes in engineering practices have spawned changes in engineering education and prompted the use of distributed learning environments. A distributed collaborative engineering design (CED) course was designed to engage engineering students in learning about and solving engineering design problems. The CED incorporated an advanced interactive…

  15. Framework for Building Collaborative Research Environment

    SciTech Connect

    Devarakonda, Ranjeet; Palanisamy, Giriprakash; San Gil, Inigo

    2014-10-25

    Wide range of expertise and technologies are the key to solving some global problems. Semantic web technology can revolutionize the nature of how scientific knowledge is produced and shared. The semantic web is all about enabling machine-machine readability instead of a routine human-human interaction. Carefully structured data, as in machine readable data is the key to enabling these interactions. Drupal is an example of one such toolset that can render all the functionalities of Semantic Web technology right out of the box. Drupal’s content management system automatically stores the data in a structured format enabling it to be machine. Within this paper, we will discuss how Drupal promotes collaboration in a research setting such as Oak Ridge National Laboratory (ORNL) and Long Term Ecological Research Center (LTER) and how it is effectively using the Semantic Web in achieving this.

  16. Framework for Building Collaborative Research Environment

    DOE PAGESBeta

    Devarakonda, Ranjeet; Palanisamy, Giriprakash; San Gil, Inigo

    2014-10-25

    Wide range of expertise and technologies are the key to solving some global problems. Semantic web technology can revolutionize the nature of how scientific knowledge is produced and shared. The semantic web is all about enabling machine-machine readability instead of a routine human-human interaction. Carefully structured data, as in machine readable data is the key to enabling these interactions. Drupal is an example of one such toolset that can render all the functionalities of Semantic Web technology right out of the box. Drupal’s content management system automatically stores the data in a structured format enabling it to be machine. Withinmore » this paper, we will discuss how Drupal promotes collaboration in a research setting such as Oak Ridge National Laboratory (ORNL) and Long Term Ecological Research Center (LTER) and how it is effectively using the Semantic Web in achieving this.« less

  17. Creating collaborative learning environments for transforming primary care practices now.

    PubMed

    Miller, William L; Cohen-Katz, Joanne

    2010-12-01

    The renewal of primary care waits just ahead. The patient-centered medical home (PCMH) movement and a refreshing breeze of collaboration signal its arrival with demonstration projects and pilots appearing across the country. An early message from this work suggests that the development of collaborative, cross-disciplinary teams may be essential for the success of the PCMH. Our focus in this article is on training existing health care professionals toward being thriving members of this transformed clinical care team in a relationship-centered PCMH. Our description of the optimal conditions for collaborative training begins with delineating three types of teams and how they relate to levels of collaboration. We then describe how to create a supportive, safe learning environment for this type of training, using a different model of professional socialization, and tools for building culture. Critical skills related to practice development and the cross-disciplinary collaborative processes are also included. Despite significant obstacles in readying current clinicians to be members of thriving collaborative teams, a few next steps toward implementing collaborative training programs for existing professionals are possible using competency-based and adult learning approaches. Grasping the long awaited arrival of collaborative primary health care will also require delivery system and payment reform. Until that happens, there is an abundance of work to be done envisioning new collaborative training programs and initiating a nation-wide effort to motivate and reeducate our colleagues. PMID:21299280

  18. Recent advances in distributed collaborative surveillance

    NASA Astrophysics Data System (ADS)

    Saptharishi, Mahesh; Bhat, K.; Diehl, Christopher P.; Oliver, C. S.; Savvides, Marios; Soto, Alvaro; Dolan, John M.; Khosla, Pradeep K.

    2000-07-01

    In Carnegie Mellon University's CyberScout project, we are developing mobile and stationary sentries capable of autonomous reconnaissance and surveillance. In this paper, we describe recent advances in the areas of efficient perception algorithms (detection, classification, and correspondence) and mission planning. In detection, we have achieved improved rejection of camera jitter and environmental variations (e.g., lighting, moving foliage) through multi-modal filtering, and we have implemented panoramic backgrounding through pseudo-real-time mosaicing. In classification, we present methods for discriminating between individual, groups of individuals, and vehicles, and between individuals with and without backpacks. In correspondence, we describe an accurate multi-hypothesis approach based on both motion and appearance. Finally, in mission planning, we describe mapbuilding using multiple sensory cues and a computationally efficient decentralized planner for multiple platforms.

  19. EVA: An Interactive Web-Based Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Sheremetov, Leonid; Arenas, Adolfo Guzman

    2002-01-01

    In this paper, a Web-based learning environment developed within the project called Virtual Learning Spaces (EVA, in Spanish) is described. The environment is composed of knowledge, collaboration, consulting and experimentation spaces as a collection of agents and conventional software components working over the knowledge domains. All user…

  20. EVA: Collaborative Distributed Learning Environment Based in Agents.

    ERIC Educational Resources Information Center

    Sheremetov, Leonid; Tellez, Rolando Quintero

    In this paper, a Web-based learning environment developed within the project called Virtual Learning Spaces (EVA, in Spanish) is presented. The environment is composed of knowledge, collaboration, consulting, experimentation, and personal spaces as a collection of agents and conventional software components working over the knowledge domains. All…

  1. Measuring Perceived Sociability of Computer-Supported Collaborative Learning Environments

    ERIC Educational Resources Information Center

    Kreijns, Karel; Kirschner, Paul A.; Jochems, Wim; van Buuren, Hans

    2007-01-01

    Most asynchronous computer-supported collaborative learning (CSCL) environments can be characterized as "functional" environments because they focus on functional, task-specific support, often disregarding explicit support for the social (emotional) aspects of learning in groups which are acknowledged by many educational researchers to be…

  2. EdMOO: One Approach to a Multimedia Collaborative Environment.

    ERIC Educational Resources Information Center

    Holkner, Bernard

    The nature of the multiuser object oriented (MOO) environment lends itself to flexible and rich interactive collaboration space providing interactive discussion, mail, mailing list, and news features to its virtual denizens. EdMOO (HREF1) was created in mid-1995 as an environment for teachers to experience the text based virtual reality…

  3. Learning in 3D Virtual Environments: Collaboration and Knowledge Spirals

    ERIC Educational Resources Information Center

    Burton, Brian G.; Martin, Barbara N.

    2010-01-01

    The purpose of this case study was to determine if learning occurred within a 3D virtual learning environment by determining if elements of collaboration and Nonaka and Takeuchi's (1995) knowledge spiral were present. A key portion of this research was the creation of a Virtual Learning Environment. This 3D VLE utilized the Torque Game Engine…

  4. Collaborative Learning Environments for Management Education.

    ERIC Educational Resources Information Center

    Seufert, Sabine; Seufert, Andreas

    Confronted with the pressure of a rapidly changing environment, organizations demand new skills and capabilities of future managers. These demands and the findings of learning theory necessitate a corresponding change in education of tomorrow's managers. Future management education requires a balance between the imparting of knowledge to the…

  5. Measuring Collaborative Consultation Practices in Natural Environments

    ERIC Educational Resources Information Center

    Basu, Semonti; Salisbury, Christine L.; Thorkildsen, Theresa A.

    2010-01-01

    This article describes the development of the "Triadic Intervention and Evaluation Rating Scale" (TIERS), a 33-item instrument designed to evaluate patterns of parent, service provider, and child interactions during early intervention sessions conducted in natural environments. Twenty-eight parent-provider-child triads were videotaped in home and…

  6. A Collaborative Model for Ubiquitous Learning Environments

    ERIC Educational Resources Information Center

    Barbosa, Jorge; Barbosa, Debora; Rabello, Solon

    2016-01-01

    Use of mobile devices and widespread adoption of wireless networks have enabled the emergence of Ubiquitous Computing. Application of this technology to improving education strategies gave rise to Ubiquitous e-Learning, also known as Ubiquitous Learning. There are several approaches to organizing ubiquitous learning environments, but most of them…

  7. Collaborative Learning in Advanced Supply Systems: The KLASS Pilot Project.

    ERIC Educational Resources Information Center

    Rhodes, Ed; Carter, Ruth

    2003-01-01

    The Knowledge and Learning in Advanced Supply Systems (KLASS) project developed collaborative learning networks of suppliers in the British automotive and aerospace industries. Methods included face-to-face and distance learning, work toward National Vocational Qualifications, and diagnostic workshops for senior managers on improving quality,…

  8. Cognitive Collaboration Found in Cardiac Physiology: Study in Classroom Environment.

    PubMed

    Ahonen, Lauri; Cowley, Benjamin; Torniainen, Jari; Ukkonen, Antti; Vihavainen, Arto; Puolamäki, Kai

    2016-01-01

    It is known that periods of intense social interaction result in shared patterns in collaborators' physiological signals. However, applied quantitative research on collaboration is hindered due to scarcity of objective metrics of teamwork effectiveness. Indeed, especially in the domain of productive, ecologically-valid activity such as programming, there is a lack of evidence for the most effective, affordable and reliable measures of collaboration quality. In this study we investigate synchrony in physiological signals between collaborating computer science students performing pair-programming exercises in a class room environment. We recorded electrocardiography over the course of a 60 minute programming session, using lightweight physiological sensors. We employ correlation of heart-rate variability features to study social psychophysiological compliance of the collaborating students. We found evident physiological compliance in collaborating dyads' heart-rate variability signals. Furthermore, dyads' self-reported workload was associated with the physiological compliance. Our results show viability of a novel approach to field measurement using lightweight devices in an uncontrolled environment, and suggest that self-reported collaboration quality can be assessed via physiological signals. PMID:27416036

  9. The Interpersonal Interaction in Computer Supported Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Song, Moxi; Liu, James N. K.

    2013-01-01

    In the contemporary society, the ability to work as part of a team and to coordinate the efforts of a team is becoming more important to the advancement of knowledge and the success of the employee in any job. The learning theory of constructivism indicates that, the success of collaborative learning depends on whether the interpersonal…

  10. Virtual Cities as a Collaborative Educational Environment

    NASA Astrophysics Data System (ADS)

    Müller, Daniel Nehme; de Oliveira, Otto Lopes Braitback; Remião, Joelma Adriana Abrão; Silveira, Paloma Dias; Martins, Márcio André Rodrigues; Axt, Margarete

    The CIVITAS (Virtual Cities with Technologies for Learning and Simulating) project presents a research, teaching and extension approach directed to the construction of cities imagined by students in the first years of elementary school, with an emphasis to the fourth grade. The teacher ventures on a deviation from the official curriculum proposed to reflect upon the invention of cities along with the children. Within this context, the game Città is introduced as an environment that allows the creation of digital real/virtual/imagined cities, and enables different forms of interaction among the students through networked computers. The cooperative situations, made possible by the access to the game, are tools for teachers and students to think about the information that operate as general rules and words of order with the invention of the city/knowledge.

  11. Supporting Scientific Analysis within Collaborative Problem Solving Environments

    NASA Technical Reports Server (NTRS)

    Watson, Velvin R.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    Collaborative problem solving environments for scientists should contain the analysis tools the scientists require in addition to the remote collaboration tools used for general communication. Unfortunately, most scientific analysis tools have been designed for a "stand-alone mode" and cannot be easily modified to work well in a collaborative environment. This paper addresses the questions, "What features are desired in a scientific analysis tool contained within a collaborative environment?", "What are the tool design criteria needed to provide these features?", and "What support is required from the architecture to support these design criteria?." First, the features of scientific analysis tools that are important for effective analysis in collaborative environments are listed. Next, several design criteria for developing analysis tools that will provide these features are presented. Then requirements for the architecture to support these design criteria are listed. Sonic proposed architectures for collaborative problem solving environments are reviewed and their capabilities to support the specified design criteria are discussed. A deficiency in the most popular architecture for remote application sharing, the ITU T. 120 architecture, prevents it from supporting highly interactive, dynamic, high resolution graphics. To illustrate that the specified design criteria can provide a highly effective analysis tool within a collaborative problem solving environment, a scientific analysis tool that contains the specified design criteria has been integrated into a collaborative environment and tested for effectiveness. The tests were conducted in collaborations between remote sites in the US and between remote sites on different continents. The tests showed that the tool (a tool for the visual analysis of computer simulations of physics) was highly effective for both synchronous and asynchronous collaborative analyses. The important features provided by the tool (and

  12. Cognitive Collaboration Found in Cardiac Physiology: Study in Classroom Environment

    PubMed Central

    Cowley, Benjamin; Torniainen, Jari; Ukkonen, Antti; Vihavainen, Arto; Puolamäki, Kai

    2016-01-01

    It is known that periods of intense social interaction result in shared patterns in collaborators’ physiological signals. However, applied quantitative research on collaboration is hindered due to scarcity of objective metrics of teamwork effectiveness. Indeed, especially in the domain of productive, ecologically-valid activity such as programming, there is a lack of evidence for the most effective, affordable and reliable measures of collaboration quality. In this study we investigate synchrony in physiological signals between collaborating computer science students performing pair-programming exercises in a class room environment. We recorded electrocardiography over the course of a 60 minute programming session, using lightweight physiological sensors. We employ correlation of heart-rate variability features to study social psychophysiological compliance of the collaborating students. We found evident physiological compliance in collaborating dyads’ heart-rate variability signals. Furthermore, dyads’ self-reported workload was associated with the physiological compliance. Our results show viability of a novel approach to field measurement using lightweight devices in an uncontrolled environment, and suggest that self-reported collaboration quality can be assessed via physiological signals. PMID:27416036

  13. Advanced Training Technologies and Learning Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    This document contains the proceedings of the Workshop on Advanced Training Technologies and Learning Environments held at NASA Langley Research Center, Hampton, Virginia, March 9-10, 1999. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objective of the workshop was to assess the status and effectiveness of different advanced training technologies and learning environments.

  14. Controlling QoS in a collaborative multimedia environment

    SciTech Connect

    Alfano, M.; Sigle, R.

    1996-12-31

    A collaborative multimedia environment allows users to work remotely on common projects by sharing applications (e.g., CAD tools, text editors, white boards) and simultaneously communicate audiovisually. Several dedicated applications (e.g., MBone tools) exist for transmitting video, audio and data between users. Due to the fact that they have been developed for the Internet which does not provide any Quality of Service (QoS) guarantee, these applications do not or only partially support specification of QoS requirements by the user. In addition, they all come with different user interfaces. In this paper we first discuss the problems that we experienced both at the host and network levels when executing a multimedia application and varying its resource requirements. We then present the architectural details of a collaborative multimedia environment (CME) that we have been developing in order to help a user to set up and control a collaborative multimedia session.

  15. Collaborative Design in a Networked Multimedia Environment: Emerging Communication Patterns.

    ERIC Educational Resources Information Center

    Gay, Geri; Grosz-Ngate, Maria

    1994-01-01

    Describes a study that investigated the activities of engineering students working on a collaborative design project in a distributed multimedia environment. Topics discussed include learning as a social process; face-to-face and video communication; problem-solving techniques; use of interactive media; the construction of knowledge; and group…

  16. Students' Groupwork Management in Online Collaborative Learning Environments

    ERIC Educational Resources Information Center

    Xu, Jianzhong; Du, Jianxia; Fan, Xitao

    2015-01-01

    The present study investigates empirical models of groupwork management in online collaborative learning environments, based on the data from 298 students (86 groups) in United States. Data revealed that, at the group level, groupwork management was positively associated with feedback and help seeking. Data further revealed that, at the individual…

  17. Collaborative Virtual Environment Technology for People with Autism

    ERIC Educational Resources Information Center

    Moore, David; Cheng, Yufang; McGrath, Paul; Powell, Norman J.

    2005-01-01

    Collaborative virtual environments (CVEs) hold great potential for people with autism. An exploratory empirical study was conducted to determine if children and youth with autism could understand basic emotions as represented by a humanoid avatar. Thirty-four participants (ages 7.8-16 years) reported to have autism interacted with a software…

  18. Educational Visualizations in 3D Collaborative Virtual Environments: A Methodology

    ERIC Educational Resources Information Center

    Fominykh, Mikhail; Prasolova-Forland, Ekaterina

    2012-01-01

    Purpose: Collaborative virtual environments (CVEs) have become increasingly popular in educational settings and the role of 3D content is becoming more and more important. Still, there are many challenges in this area, such as lack of empirical studies that provide design for educational activities in 3D CVEs and lack of norms of how to support…

  19. VisSearch: A Collaborative Web Searching Environment

    ERIC Educational Resources Information Center

    Lee, Young-Jin

    2005-01-01

    VisSearch is a collaborative Web searching environment intended for sharing Web search results among people with similar interests, such as college students taking the same course. It facilitates students' Web searches by visualizing various Web searching processes. It also collects the visualized Web search results and applies an association rule…

  20. Instructionist versus Constructionist Web-Based Collaborative Learning Environments.

    ERIC Educational Resources Information Center

    Sherman, Greg

    This study investigated the effects of instructionist (navigational, functional) versus constructionist (adaptive) World Wide Web (WWW) site environments on collaboration, achievement, attitudes, and perceived level of learner controls reported by students after working in cooperative dyads within the different types of Web-based learning…

  1. Collaboration in Research and Engineering for Advanced Technology.

    SciTech Connect

    Vrieling, P. Douglas

    2016-01-01

    SNL/CA proposes the Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) facility to support customer-driven national security mission requirements while demonstrating a fiscally responsible approach to cost-control. SNL/CA realizes that due to the current backlog of capital projects in NNSA that following the normal Line Item process to procure capital funding is unlikely and therefore SNL/CA will be looking at all options including Alternative Financing.

  2. Advancing Nursing Research in Hospitals Through Collaboration, Empowerment, and Mentoring.

    PubMed

    Berger, Jill; Polivka, Barbara

    2015-12-01

    Meeting the Magnet Recognition Program® requirements for integrating research into practice can be daunting, particularly for nonacademic hospitals. The authors describe 1 healthcare system's approach to advancing nursing research in 5 hospitals through collaboration with a local university school of nursing and development of an infrastructure to support, empower, and mentor clinical nurses in the conduct of research. Outcomes include completed research, presentations, publications, practice change, and professional development. PMID:26565639

  3. Distributed collaborative environments for virtual capability-based planning

    NASA Astrophysics Data System (ADS)

    McQuay, William K.

    2003-09-01

    Distributed collaboration is an emerging technology that will significantly change how decisions are made in the 21st century. Collaboration involves two or more geographically dispersed individuals working together to share and exchange data, information, knowledge, and actions. The marriage of information, collaboration, and simulation technologies provides the decision maker with a collaborative virtual environment for planning and decision support. This paper reviews research that is focusing on the applying open standards agent-based framework with integrated modeling and simulation to a new Air Force initiative in capability-based planning and the ability to implement it in a distributed virtual environment. Virtual Capability Planning effort will provide decision-quality knowledge for Air Force resource allocation and investment planning including examining proposed capabilities and cost of alternative approaches, the impact of technologies, identification of primary risk drivers, and creation of executable acquisition strategies. The transformed Air Force business processes are enabled by iterative use of constructive and virtual modeling, simulation, and analysis together with information technology. These tools are applied collaboratively via a technical framework by all the affected stakeholders - warfighter, laboratory, product center, logistics center, test center, and primary contractor.

  4. Network-based collaborative research environment LDRD final report

    SciTech Connect

    Davies, B.R.; McDonald, M.J.

    1997-09-01

    The Virtual Collaborative Environment (VCE) and Distributed Collaborative Workbench (DCW) are new technologies that make it possible for diverse users to synthesize and share mechatronic, sensor, and information resources. Using these technologies, university researchers, manufacturers, design firms, and others can directly access and reconfigure systems located throughout the world. The architecture for implementing VCE and DCW has been developed based on the proposed National Information Infrastructure or Information Highway and a tool kit of Sandia-developed software. Further enhancements to the VCE and DCW technologies will facilitate access to other mechatronic resources. This report describes characteristics of VCE and DCW and also includes background information about the evolution of these technologies.

  5. Holding fast: the experience of collaboration in a competitive environment.

    PubMed

    Fear, Heather; Barnett, Pauline

    2003-03-01

    Collaboration is one of the cornerstones of health promotion, with the literature indicating a range of circumstances under which it can either succeed or be undermined. In New Zealand in the 1990s, a market structure for health made collaboration of all kinds exceptionally difficult. This paper traces the efforts of a group of nutrition agencies (Agencies for Nutrition Action) to defy the popular wisdom and persist with collaborative efforts. The agencies were unsuccessful in their attempts to develop joint campaigns, but were very successful in advocacy and intersectoral action that did not threaten the position of individual agencies in the competitive environment. It is possible that the collaboration could have been more effective if agencies had been willing to surrender some autonomy and commit themselves to supporting a more independent new organization. However, this would have compromised not only their individual integrity but also their commitment to a relationship of equals. In 'holding fast' to a belief in health promotion, the ANA resisted being coopted by a now discredited market system, and emerged with its integrity and that of its participating agencies intact. ANA is now well positioned to work within an emerging policy environment that is more supportive of health promotion. PMID:12571087

  6. A virtual environment for medical radiation collaborative learning.

    PubMed

    Bridge, Pete; Trapp, Jamie V; Kastanis, Lazaros; Pack, Darren; Parker, Jacqui C

    2015-06-01

    A software-based environment was developed to provide practical training in medical radiation principles and safety. The Virtual Radiation Laboratory application allowed students to conduct virtual experiments using simulated diagnostic and radiotherapy X-ray generators. The experiments were designed to teach students about the inverse square law, half value layer and radiation protection measures and utilised genuine clinical and experimental data. Evaluation of the application was conducted in order to ascertain the impact of the software on students' understanding, satisfaction and collaborative learning skills and also to determine potential further improvements to the software and guidelines for its continued use. Feedback was gathered via an anonymous online survey consisting of a mixture of Likert-style questions and short answer open questions. Student feedback was highly positive with 80 % of students reporting increased understanding of radiation protection principles. Furthermore 72 % enjoyed using the software and 87 % of students felt that the project facilitated collaboration within small groups. The main themes arising in the qualitative feedback comments related to efficiency and effectiveness of teaching, safety of environment, collaboration and realism. Staff and students both report gains in efficiency and effectiveness associated with the virtual experiments. In addition students particularly value the visualisation of "invisible" physical principles and increased opportunity for experimentation and collaborative problem-based learning. Similar ventures will benefit from adopting an approach that allows for individual experimentation while visualizing challenging concepts. PMID:25999124

  7. Information Infrastructure, Information Environments, and Long-Term Collaboration

    NASA Astrophysics Data System (ADS)

    Baker, K. S.; Pennington, D. D.

    2009-12-01

    Information infrastructure that supports collaborative science is a complex system of people, organizational arrangements, and tools that require co-management. Contemporary studies are exploring how to establish and characterize effective collaborative information environments. Collaboration depends on the flow of information across the human and technical system components through mechanisms that create linkages, both conceptual and technical. This transcends the need for requirements solicitation and usability studies, highlighting synergistic interactions between humans and technology that can lead to emergence of group level cognitive properties. We consider the ramifications of placing priority on establishing new metaphors and new types of learning environments located near-to-data-origin for the field sciences. In addition to changes in terms of participant engagement, there are implications in terms of innovative contributions to the design of information systems and data exchange. While data integration occurs in the minds of individual participants, it may be facilitated by collaborative thinking and community infrastructure. Existing learning frameworks - from Maslow’s hierarchy of needs to organizational learning - require modification and extension if effective approaches to decentralized information management and systems design are to emerge. Case studies relating to data integration include ecological community projects: development of cross-disciplinary conceptual maps and of a community unit registry.

  8. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Astrophysics Data System (ADS)

    Monell, Donald W.; Piland, William M.

    2000-07-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  9. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Piland, William M.

    1999-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  10. Aerospace Systems Design in NASA's Collaborative Engineering Environment

    NASA Technical Reports Server (NTRS)

    Monell, Donald W.; Piland, William M.

    2000-01-01

    Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operation). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographical distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative

  11. Advanced Instrumentation for Extreme Environments

    SciTech Connect

    Melin, Alexander M; Kisner, Roger; Fugate, David L

    2013-01-01

    The Department of Energy (DOE) Office of Nuclear Energy (NE) is pursuing embedded instrumentation and controls (I&C) technology for next generation nuclear power generation applications. Embedded systems encompass a wide range of configurations and technologies; we define embedding in this instance as the integration of the sensors and the control system design into the component design using a systems engineering process. Embedded I&C systems are often an essential part of developing new capabilities, improving reliability, enhancing performance, and reducing operational costs. The new intrinsically safe, more efficient, and cost effective reactor technologies (Next Generation Nuclear Plant and Small Modular Reactors) require the development and application of new I&C technologies. These new designs raise extreme environmental challenges such as high temperatures (over 700 C) and material compatibility (e.g., molten salts). The desired reliability and functionality requires measurements in these extreme conditions including high radiation environments which were not previously monitored in real time. The DOE/NE Nuclear Energy Enabling Technologies (NEET) program currently has several projects investigating I&C technologies necessary to make these reactor designs realizable. The project described in this paper has the specific goal of investigating embedded I&C with the following objectives: 1.Explore and quantify the potential gains from embedded I&C improved reliability, increased performance, and reduced cost 2.Identify practical control, sensing, and measurement techniques for the extreme environments found in high-temperature reactors 3.Design and fabricate a functional prototype high-temperature cooling pump for molten salts represents target demonstration of improved performance, reliability, and widespread usage There are many engineering challenges in the design of a high-temperature liquid salt cooling pump. The pump and motor are in direct contact with

  12. Virtual Collaborative Simulation Environment for Integrated Product and Process Development

    NASA Technical Reports Server (NTRS)

    Gulli, Michael A.

    1997-01-01

    Deneb Robotics is a leader in the development of commercially available, leading edge three- dimensional simulation software tools for virtual prototyping,, simulation-based design, manufacturing process simulation, and factory floor simulation and training applications. Deneb has developed and commercially released a preliminary Virtual Collaborative Engineering (VCE) capability for Integrated Product and Process Development (IPPD). This capability allows distributed, real-time visualization and evaluation of design concepts, manufacturing processes, and total factory and enterprises in one seamless simulation environment.

  13. Collaborative virtual reality environments for computational science and design.

    SciTech Connect

    Papka, M. E.

    1998-02-17

    The authors are developing a networked, multi-user, virtual-reality-based collaborative environment coupled to one or more petaFLOPs computers, enabling the interactive simulation of 10{sup 9} atom systems. The purpose of this work is to explore the requirements for this coupling. Through the design, development, and testing of such systems, they hope to gain knowledge that allows computational scientists to discover and analyze their results more quickly and in a more intuitive manner.

  14. Collaborative Advanced Gas Turbine Program: Phase 1. Final report

    SciTech Connect

    Hollenbacher, R.; Kesser, K.; Beishon, D.

    1994-12-01

    The Collaborative Advanced Gas Turbine (CAGT) Program is an advanced gas turbine research and development program whose goal is to accelerate the commercial availability, to within the turn of the century, of high efficiency aeroderivative gas turbines for electric power generating applications. In the first project phase, research was conducted to prove or disprove the research hypothesis that advanced aeroderivative gas turbine systems can provide a promising technology alternative, offering high efficiency and good environmental performance characteristics in modular sizes, for utility applications. This $5 million, Phase 1 research effort reflects the collaborative efforts of a broad and international coalition of industries and organizations, both public and private, that have pooled their resources to assist in this research. Included in this coalition are: electric and gas utilities, the Electric Power Research Institute, the Gas Research Institute and the principal aircraft engine manufacturers. Additionally, the US Department of Energy (DOE) and the California Energy Commission have interacted with the CAGT on both technical and executive levels as observers and sources of funding. The three aircraft engine manufacturer-led research teams participating in this research include: Rolls-Royce, Inc., and Bechtel; the Turbo Power and Marine Division of United Technologies and Fluor Daniel; and General Electric Power Generation, Stewart and Stevenson, and Bechtel. Each team has investigated advanced electric power generating systems based on their high-thrust (60,000 to 100,000 pounds) aircraft engines. The ultimate goal of the CAGT program is that the community of stakeholders in the growing market for natural-gas-fueled, electric power generation can collectively provide the right combination of market-pull and technology-push to substantially accelerate the commercialization of advanced, high efficiency aeroderivative technologies.

  15. Distributed collaborative decision support environments for predictive awareness

    NASA Astrophysics Data System (ADS)

    McQuay, William K.; Stilman, Boris; Yakhnis, Vlad

    2005-05-01

    The past decade has produced significant changes in the conduct of military operations: asymmetric warfare, the reliance on dynamic coalitions, stringent rules of engagement, increased concern about collateral damage, and the need for sustained air operations. Mission commanders need to assimilate a tremendous amount of information, rapidly assess the enemy"s course of action (eCOA) or possible actions and promulgate their own course of action (COA) - a need for predictive awareness. Decision support tools in a distributed collaborative environment offer the capability of decomposing complex multitask processes and distributing them over a dynamic set of execution assets that include modeling, simulations, and analysis tools. Revolutionary new approaches to strategy generation and assessment such as Linguistic Geometry (LG) permit the rapid development of COA vs. enemy COA (eCOA). LG tools automatically generate and permit the operators to take advantage of winning strategies and tactics for mission planning and execution in near real-time. LG is predictive and employs deep "look-ahead" from the current state and provides a realistic, reactive model of adversary reasoning and behavior. Collaborative environments provide the framework and integrate models, simulations, and domain specific decision support tools for the sharing and exchanging of data, information, knowledge, and actions. This paper describes ongoing research efforts in applying distributed collaborative environments to decision support for predictive mission awareness.

  16. Virtual Collaborative Environments for System of Systems Engineering and Applications for ISAT

    NASA Technical Reports Server (NTRS)

    Dryer, David A.

    2002-01-01

    This paper describes an system of systems or metasystems approach and models developed to help prepare engineering organizations for distributed engineering environments. These changes in engineering enterprises include competition in increasingly global environments; new partnering opportunities caused by advances in information and communication technologies, and virtual collaboration issues associated with dispersed teams. To help address challenges and needs in this environment, a framework is proposed that can be customized and adapted for NASA to assist in improved engineering activities conducted in distributed, enhanced engineering environments. The approach is designed to prepare engineers for such distributed collaborative environments by learning and applying e-engineering methods and tools to a real-world engineering development scenario. The approach consists of two phases: an e-engineering basics phase and e-engineering application phase. The e-engineering basics phase addresses skills required for e-engineering. The e-engineering application phase applies these skills in a distributed collaborative environment to system development projects.

  17. VRML and Collaborative Environments: New Tools for Networked Visualization

    NASA Astrophysics Data System (ADS)

    Crutcher, R. M.; Plante, R. L.; Rajlich, P.

    We present two new applications that engage the network as a tool for astronomical research and/or education. The first is a VRML server which allows users over the Web to interactively create three-dimensional visualizations of FITS images contained in the NCSA Astronomy Digital Image Library (ADIL). The server's Web interface allows users to select images from the ADIL, fill in processing parameters, and create renderings featuring isosurfaces, slices, contours, and annotations; the often extensive computations are carried out on an NCSA SGI supercomputer server without the user having an individual account on the system. The user can then download the 3D visualizations as VRML files, which may be rotated and manipulated locally on virtually any class of computer. The second application is the ADILBrowser, a part of the NCSA Horizon Image Data Browser Java package. ADILBrowser allows a group of participants to browse images from the ADIL within a collaborative session. The collaborative environment is provided by the NCSA Habanero package which includes text and audio chat tools and a white board. The ADILBrowser is just an example of a collaborative tool that can be built with the Horizon and Habanero packages. The classes provided by these packages can be assembled to create custom collaborative applications that visualize data either from local disk or from anywhere on the network.

  18. Advanced Engineering Environments for Space Transportation System Development

    NASA Technical Reports Server (NTRS)

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  19. Security in Distributed Collaborative Environments: Limitations and Solutions

    NASA Astrophysics Data System (ADS)

    Saadi, Rachid; Pierson, Jean-Marc; Brunie, Lionel

    The main goal of establishing collaboration between heterogeneous environment is to create such as Pervasive context which provide nomadic users with ubiquitous access to digital information and surrounding resources. However, the constraints of mobility and heterogeneity arise a number of crucial issues related to security, especially authentication access control and privacy. First of all, in this chapter we explore the trust paradigm, specially the transitive capability to enable a trust peer to peer collaboration. In this manner, when each organization sets its own security policy to recognize (authenticate) users members of a trusted community and provide them a local access (access control), the trust transitivity between peers will allows users to gain a broad, larger and controlled access inside the pervasive environment. Next, we study the problem of user's privacy. In fact in pervasive and ubiquitous environments, nomadic users gather and exchange certificates or credential which providing them rights to access by transitivity unknown and trusted environments. These signed documents embeds increasing number of attribute that require to be filtered according to such contextual situation. In this chapter, we propose a new morph signature enabling each certificate owner to preserve his privacy by discloses or blinds some sensitive attributes according to faced situation.

  20. Using Wikis as a Support and Assessment Tool in Collaborative Digital Game-Based Learning Environments

    ERIC Educational Resources Information Center

    Samur, Yavuz

    2011-01-01

    In computer-supported collaborative learning (CSCL) environments, there are many researches done on collaborative learning activities; however, in game-based learning environments, more research and literature on collaborative learning activities are required. Actually, both game-based learning environments and wikis enable us to use new chances…

  1. Consultation virtual collaborative environment for 3D medicine.

    PubMed

    Krsek, Premysl; Spanel, Michal; Svub, Miroslav; Stancl, Vít; Siler, Ondrej; Sára, Vítezslav

    2008-01-01

    This article focuses on the problems of consultation virtual collaborative environment, which is designed to support 3D medical applications. This system allows loading CT/MR data from PACS system, segmentation and 3D models of tissues. It allows distant 3D consultations of the data between technicians and surgeons. System is designed as three-layer client-server architecture. Communication between clients and server is done via HTTP/HTTPS protocol. Results and tests have confirmed, that today's standard network latency and dataflow do not affect the usability of our system. PMID:19162770

  2. Ubiquitous Mobile Knowledge Construction in Collaborative Learning Environments

    PubMed Central

    Baloian, Nelson; Zurita, Gustavo

    2012-01-01

    Knowledge management is a critical activity for any organization. It has been said to be a differentiating factor and an important source of competitiveness if this knowledge is constructed and shared among its members, thus creating a learning organization. Knowledge construction is critical for any collaborative organizational learning environment. Nowadays workers must perform knowledge creation tasks while in motion, not just in static physical locations; therefore it is also required that knowledge construction activities be performed in ubiquitous scenarios, and supported by mobile and pervasive computational systems. These knowledge creation systems should help people in or outside organizations convert their tacit knowledge into explicit knowledge, thus supporting the knowledge construction process. Therefore in our understanding, we consider highly relevant that undergraduate university students learn about the knowledge construction process supported by mobile and ubiquitous computing. This has been a little explored issue in this field. This paper presents the design, implementation, and an evaluation of a system called MCKC for Mobile Collaborative Knowledge Construction, supporting collaborative face-to-face tacit knowledge construction and sharing in ubiquitous scenarios. The MCKC system can be used by undergraduate students to learn how to construct knowledge, allowing them anytime and anywhere to create, make explicit and share their knowledge with their co-learners, using visual metaphors, gestures and sketches to implement the human-computer interface of mobile devices (PDAs). PMID:22969333

  3. Ubiquitous mobile knowledge construction in collaborative learning environments.

    PubMed

    Baloian, Nelson; Zurita, Gustavo

    2012-01-01

    Knowledge management is a critical activity for any organization. It has been said to be a differentiating factor and an important source of competitiveness if this knowledge is constructed and shared among its members, thus creating a learning organization. Knowledge construction is critical for any collaborative organizational learning environment. Nowadays workers must perform knowledge creation tasks while in motion, not just in static physical locations; therefore it is also required that knowledge construction activities be performed in ubiquitous scenarios, and supported by mobile and pervasive computational systems. These knowledge creation systems should help people in or outside organizations convert their tacit knowledge into explicit knowledge, thus supporting the knowledge construction process. Therefore in our understanding, we consider highly relevant that undergraduate university students learn about the knowledge construction process supported by mobile and ubiquitous computing. This has been a little explored issue in this field. This paper presents the design, implementation, and an evaluation of a system called MCKC for Mobile Collaborative Knowledge Construction, supporting collaborative face-to-face tacit knowledge construction and sharing in ubiquitous scenarios. The MCKC system can be used by undergraduate students to learn how to construct knowledge, allowing them anytime and anywhere to create, make explicit and share their knowledge with their co-learners, using visual metaphors, gestures and sketches to implement the human-computer interface of mobile devices (PDAs). PMID:22969333

  4. Advances in Space Environment Research - Volume I

    NASA Astrophysics Data System (ADS)

    Chian, A. C.-L.

    2003-10-01

    Advances in Space Environment Research - Volume I contains the proceedings of two international workshops, the World Space Environment Forum (WSEF2002) and the High Performance Computing in Space Environment Research (HPC2002), organized by the World Institute for Space Environment Research (WISER) from 22 July to 2 August 2002 in Adelaide, Australia. The articles in this volume review the state-of-the-art of the theoretical, computational and observational studies of the physical processes of Sun-Earth connections and Space Environment. They cover six topical areas: Sun/Heliosphere, Magnetosphere/Bow Shock, Ionosphere/Atmosphere, Space Weather/Space Climate, Space Plasma Physics/Astrophysics, and Complex/Intelligent Systems. The authors are leading space physicists from 20 countries/regions, representing the WISER international network of research and training centers of excellence dedicated to promote cooperation in cutting-edge space environment research and training of first-rate space scientists, and to link nations for the peaceful use of the space environment. This volume is useful for space physicists, astrophysicists and plasma physicists; and can be adopted as a reference book for advanced undergraduate and postgraduate students. Link: http://www.wkap.nl/prod/b/1-4020-1278-0

  5. Exploring Cultural Heritage Resources in a 3d Collaborative Environment

    NASA Astrophysics Data System (ADS)

    Respaldiza, A.; Wachowicz, M.; Vázquez Hoehne, A.

    2012-06-01

    Cultural heritage is a complex and diverse concept, which brings together a wide domain of information. Resources linked to a cultural heritage site may consist of physical artefacts, books, works of art, pictures, historical maps, aerial photographs, archaeological surveys and 3D models. Moreover, all these resources are listed and described by a set of a variety of metadata specifications that allow their online search and consultation on the most basic characteristics of them. Some examples include Norma ISO 19115, Dublin Core, AAT, CDWA, CCO, DACS, MARC, MoReq, MODS, MuseumDat, TGN, SPECTRUM, VRA Core and Z39.50. Gateways are in place to fit in these metadata standards into those used in a SDI (ISO 19115 or INSPIRE), but substantial work still remains to be done for the complete incorporation of cultural heritage information. Therefore, the aim of this paper is to demonstrate how the complexity of cultural heritage resources can be dealt with by a visual exploration of their metadata within a 3D collaborative environment. The 3D collaborative environments are promising tools that represent the new frontier of our capacity of learning, understanding, communicating and transmitting culture.

  6. Video annotations of Mexican nature in a collaborative environment

    NASA Astrophysics Data System (ADS)

    Oropesa Morales, Lester Arturo; Montoya Obeso, Abraham; Hernández García, Rosaura; Cocolán Almeda, Sara Ivonne; García Vázquez, Mireya Saraí; Benois-Pineau, Jenny; Zamudio Fuentes, Luis Miguel; Martinez Nuño, Jesús A.; Ramírez Acosta, Alejandro Alvaro

    2015-09-01

    Multimedia content production and storage in repositories are now an increasingly widespread practice. Indexing concepts for search in multimedia libraries are very useful for users of the repositories. However the search tools of content-based retrieval and automatic video tagging, still do not have great consistency. Regardless of how these systems are implemented, it is of vital importance to possess lots of videos that have concepts tagged with ground truth (training and testing sets). This paper describes a novel methodology to make complex annotations on video resources through ELAN software. The concepts are annotated and related to Mexican nature in a High Level Features (HLF) from development set of TRECVID 2014 in a collaborative environment. Based on this set, each nature concept observed is tagged on each video shot using concepts of the TRECVid 2014 dataset. We also propose new concepts, -like tropical settings, urban scenes, actions, events, weather, places for name a few. We also propose specific concepts that best describe video content of Mexican culture. We have been careful to get the database tagged with concepts of nature and ground truth. It is evident that a collaborative environment is more suitable for annotation of concepts related to ground truth and nature. As a result a Mexican nature database was built. It also is the basis for testing and training sets to automatically classify new multimedia content of Mexican nature.

  7. Triagency collaboration for the advancement of climate change education

    NASA Astrophysics Data System (ADS)

    Wilson, Carolyn E.; Chambers, Lin H.; Schoedinger, Sarah

    2011-06-01

    Second Annual NASA, NOAA, and NSF Climate Change Education Principal Investigators Meeting; Fairfax, Virginia, 28 February to 2 March 2011; In 2009 the Obama administration identified climate change research and education as a presidential priority. Embracing the spirit of the America COMPETES Act, which encourages coordination of federal science, technology, engineering, and mathematics (STEM) education activities and programs, NASA, the National Oceanic and Atmospheric Administration (NOAA), and the National Science Foundation (NSF) have been working together to increase funding opportunities for projects focused on global climate literacy and education in formal and informal learning environments and have fostered collaborations among awardees that create a strong national network for effectively presenting climate science to diverse audiences.

  8. Rasch Measurement of Collaborative Problem Solving in an Online Environment.

    PubMed

    Harding, Susan-Marie E; Griffin, Patrick E

    2016-01-01

    This paper describes an approach to the assessment of human to human collaborative problem solving using a set of online interactive tasks completed by student dyads. Within the dyad, roles were nominated as either A or B and students selected their own roles. The question as to whether role selection affected individual student performance measures is addressed. Process stream data was captured from 3402 students in six countries who explored the problem space by clicking, dragging the mouse, moving the cursor and collaborating with their partner through a chat box window. Process stream data were explored to identify behavioural indicators that represented elements of a conceptual framework. These indicative behaviours were coded into a series of dichotomous items. These items represented actions and chats performed by students. The frequency of occurrence was used as a proxy measure of item difficulty. Then given a measure of item difficulty, student ability could be estimated using the difficulty estimates of the range of items demonstrated by the student. The Rasch simple logistic model was used to review the indicators to identify those that were consistent with the assumptions of the model and were invariant across national samples, language, curriculum and age of the student. The data were analysed using a one and two dimension, one parameter model. Rasch separation reliability, fit to the model, distribution of students and items on the underpinning construct, estimates for each country and the effect of role differences are reported. This study provides evidence that collaborative problem solving can be assessed in an online environment involving human to human interaction using behavioural indicators shown to have a consistent relationship between the estimate of student ability, and the probability of demonstrating the behaviour. PMID:26784377

  9. Benefits of Collaborative Writing for ESL Advanced Diploma Students in the Production of Reports

    ERIC Educational Resources Information Center

    Fong, Lin Siew

    2012-01-01

    This study analyzes the collaborative writing sessions of two groups of advanced diploma economics students with mixed proficiency. Although studies in collaborative writing usually highlight the mixed results of students' collaboration ranging from promoting peer learning to having unresolved conflict, the findings of this paper only provide the…

  10. Advanced concurrent-engineering environment. Final report

    SciTech Connect

    Jortner, J.N.; Friesen, J.A.

    1997-07-01

    Sandia demonstrated large-scale visualization in a conference room environment. Project focused in the installation of hardware for visualization and display, and the integration of software tools for design and animation of 3-dimensional parts. Using a high-end visualization server, 3-dimensional modeling and animation software, and leading edge World Wide Web technology, an advanced concurrent engineering environment was simulated where a design team was able to work collectively, rather than as solely disjoint individual efforts. Finally, a successful animation of a Sandia part was demonstrated, and a computer video generated. This video is now accessible on a Sandia internal web server.

  11. Advanced concurrent engineering environment final report

    SciTech Connect

    Jortner, J.N.; Friesen, J.A.; Schwegel, J.

    1997-08-01

    Sandia demonstrated large-scale visualization in a conference room environment. Project focused on the installation of hardware for visualization and display, and the integration of software tools for design and animation of 3-dimensional parts. Using a high-end visualization server, 3-dimensional modeling and animation software, and leading edge World Wide Web technology, and advanced concurrent engineering environment was simulated where a design team was able to work collectively, rather than as solely disjoint individual efforts. Finally, a successful animation of a Sandia part was demonstrated, and a computer video generated. This video is now accessible on a Sandia internal web server.

  12. Management accounting for advanced technological environments.

    PubMed

    Kaplan, R S

    1989-08-25

    Management accounting systems designed decades ago no longer provide timely, relevant information for companies in today's highly competitive environment. New operational control and performance measurement systems are recognizing the importance of direct measurement of quality, manufacturing lead times, flexibility, and customer responsiveness, as well as more accurate measures of the actual costs of consumed resources. Activity-based cost systems can assign the costs of indirect and support resources to the specific products and activities that benefit from these resources. Both operational control and activity-based systems represent new opportunities for improved managerial information in complex, technologically advanced environments. PMID:17773356

  13. Value Production in a Collaborative Environment. Sociophysical Studies of Wikipedia

    NASA Astrophysics Data System (ADS)

    Yasseri, Taha; Kertész, János

    2013-05-01

    We review some recent endeavors and add some new results to characterize and understand underlying mechanisms in Wikipedia (WP), the paradigmatic example of collaborative value production. We analyzed the statistics of editorial activity in different languages and observed typical circadian and weekly patterns, which enabled us to estimate the geographical origins of contributions to WPs in languages spoken in several time zones. Using a recently introduced measure we showed that the editorial activities have intrinsic dependencies in the burstiness of events. A comparison of the English and Simple English WPs revealed important aspects of language complexity and showed how peer cooperation solved the task of enhancing readability. One of our focus issues was characterizing the conflicts or edit wars in WPs, which helped us to automatically filter out controversial pages. When studying the temporal evolution of the controversiality of such pages we identified typical patterns and classified conflicts accordingly. Our quantitative analysis provides the basis of modeling conflicts and their resolution in collaborative environments and contribute to the understanding of this issue, which becomes increasingly important with the development of information communication technology.

  14. A Knowledge Portal and Collaboration Environment for the Earth Sciences

    NASA Astrophysics Data System (ADS)

    D'Agnese, F. A.

    2008-12-01

    Earth Knowledge is developing a web-based 'Knowledge Portal and Collaboration Environment' that will serve as the information-technology-based foundation of a modular Internet-based Earth-Systems Monitoring, Analysis, and Management Tool. This 'Knowledge Portal' is essentially a 'mash- up' of web-based and client-based tools and services that support on-line collaboration, community discussion, and broad public dissemination of earth and environmental science information in a wide-area distributed network. In contrast to specialized knowledge-management or geographic-information systems developed for long- term and incremental scientific analysis, this system will exploit familiar software tools using industry standard protocols, formats, and APIs to discover, process, fuse, and visualize existing environmental datasets using Google Earth and Google Maps. An early form of these tools and services is being used by Earth Knowledge to facilitate the investigations and conversations of scientists, resource managers, and citizen-stakeholders addressing water resource sustainability issues in the Great Basin region of the desert southwestern United States. These ongoing projects will serve as use cases for the further development of this information-technology infrastructure. This 'Knowledge Portal' will accelerate the deployment of Earth- system data and information into an operational knowledge management system that may be used by decision-makers concerned with stewardship of water resources in the American Desert Southwest.

  15. Building Collaborative Environments for Successful Middle Level School Restructuring.

    ERIC Educational Resources Information Center

    Clark, Donald C.; Clark, Sally N.

    1996-01-01

    Leadership plays an important role in middle-school community members' collaborative efforts. Principals, by valuing and recognizing contributions of each teacher, staff member, student, and parent, give high visibility to the collaborative process. Principals also bolster collaboration by providing necessary support systems and helping…

  16. Interaction Forms in Successful Collaborative Learning in Virtual Learning Environments

    ERIC Educational Resources Information Center

    Vuopala, Essi; Hyvönen, Pirkko; Järvelä, Sanna

    2016-01-01

    Despite the numerous studies on social interaction in collaborative learning, little is known about interaction forms in successful computer-supported collaborative learning situations. The purpose of this study was to explore and understand student interaction in successful collaborative learning during a university course which was mediated by…

  17. Scientific Visualization for Atmospheric Data Analysis in Collaborative Virtual Environments

    NASA Astrophysics Data System (ADS)

    Engelke, Wito; Flatken, Markus; Garcia, Arturo S.; Bar, Christian; Gerndt, Andreas

    2016-04-01

    1 INTRODUCTION The three year European research project CROSS DRIVE (Collaborative Rover Operations and Planetary Science Analysis System based on Distributed Remote and Interactive Virtual Environments) started in January 2014. The research and development within this project is motivated by three use case studies: landing site characterization, atmospheric science and rover target selection [1]. Currently the implementation for the second use case is in its final phase [2]. Here, the requirements were generated based on the domain experts input and lead to development and integration of appropriate methods for visualization and analysis of atmospheric data. The methods range from volume rendering, interactive slicing, iso-surface techniques to interactive probing. All visualization methods are integrated in DLR's Terrain Rendering application. With this, the high resolution surface data visualization can be enriched with additional methods appropriate for atmospheric data sets. This results in an integrated virtual environment where the scientist has the possibility to interactively explore his data sets directly within the correct context. The data sets include volumetric data of the martian atmosphere, precomputed two dimensional maps and vertical profiles. In most cases the surface data as well as the atmospheric data has global coverage and is of time dependent nature. Furthermore, all interaction is synchronized between different connected application instances, allowing for collaborative sessions between distant experts. 2 VISUALIZATION TECHNIQUES Also the application is currently used for visualization of data sets related to Mars the techniques can be used for other data sets as well. Currently the prototype is capable of handling 2 and 2.5D surface data as well as 4D atmospheric data. Specifically, the surface data is presented using an LoD approach which is based on the HEALPix tessellation of a sphere [3, 4, 5] and can handle data sets in the order of

  18. Collaborative Scheduling Using JMS in a Mixed Java and .NET Environment

    NASA Technical Reports Server (NTRS)

    Wang, Yeou-Fang; Wax, Allan; Lam, Ray; Baldwin, John; Borden, Chet

    2006-01-01

    A viewgraph presentation to demonstrate collaborative scheduling using Java Message Service (JMS) in a mixed Java and .Net environment is given. The topics include: 1) NASA Deep Space Network scheduling; 2) Collaborative scheduling concept; 3) Distributed computing environment; 4) Platform concerns in a distributed environment; 5) Messaging and data synchronization; and 6) The prototype.

  19. A Collaborative Decision Environment to Support UAV Wildfire Monitoring Missions

    NASA Astrophysics Data System (ADS)

    Frost, C. R.; Enomoto, F. Y.; D'Ortenzio, M. V.; Nguyen, Q. B.

    2006-12-01

    NASA developed the Collaborative Decision Environment (CDE), the ground-based component of its Intelligent Mission Management (IMM) technology for science missions employing long endurance unmanned aerial vehicles (UAVs). The CDE was used to support science mission planning and decision-making for a NASA- and U.S. Forest Service-sponsored mission to monitor wildfires in the western United States using a multi- spectral imager flown onboard the General Atomics Altair UAV in summer of 2006. The CDE is a ground-based system that provides the mission/science team with situational awareness, collaboration, and decision tools. The CDE is used for pre-flight planning, mission monitoring, and visualization of acquired data. It integrates external data products used for planning and executing a mission, such as weather, large wildfire locations, satellite-derived fire detection data, temporarily restricted airspace, and satellite imagery. While a prototype CDE was developed as a Java-based client/server application in 2004-2005, the team investigated the use of Google Earth to take advantage of its 3-D visualization capabilities, friendly user interface, and enhanced graphics performance. External data is acquired via the Internet by leveraging established and emerging Open Geospatial Consortium (OGC) standards and is re-formatted into the Keyhole Markup Language (KML) specification used by Google Earth. Aircraft flight position and sensor data products are relayed from the instrument ground station to CDE servers where they are made available to users. An instant messaging chat server is used to facilitate real-time communication between remote users. This paper will present an overview of the CDE system architecture, and discuss how science user input was crucial to shaping and developing the system. Examples from the UAV mission will be used to illustrate the presentation. Plans for future development work to improve mission operations, such as integration with

  20. Advancing Fire Weather Research via Interagency Collaboration: The NOAA/USFS MOU

    NASA Astrophysics Data System (ADS)

    Schranz, S.; Pouyat, R.

    2012-12-01

    In 2005, the Western Governors' Association (WGA) first articulated the need for closer collaboration between NOAA and the land management agencies to improve our services - and to ensure the best new technology and scientific advances are infused into fire weather information and services. NOAA has taken the WGA advice very seriously and, over the past few years, have followed up by polling users of our fire weather information. This was done both by our Office of the Federal Coordinator for Meteorology, and via an examination of internal and collaborative research activities as conducted by NOAA's Science Advisory Board. Through these processes, and given the tight budget environment, it's become clear we can't make needed progress alone. We need to call upon our joint expertise, along with the expertise of partners across the federal, state, academic, and research communities. This talk will outline the NOAA/USFS MOU signed in August, 2012 and the collaborative research already begun with the USFS and other partners.

  1. The STEMWiki Hyperlibrary: A Collaborative Multidisciplinary Textbook Environment

    NASA Astrophysics Data System (ADS)

    Halpern, J. B.

    2015-12-01

    The STEMWiki Hyperlibrary Project is a collaborative effort directed by Prof. Delmar Larsen of UC Davis to replace printed textbooks with a no-fee, high quality, on line textbook environment for STEM courses and informal education. Instructors can build textbooks for their students by linking modules in the Hyperlibrary, write their own texts or use those built by others. The flexibility of the Hyperlibrary allows instructors to address the needs of diverse students in all types of institutions. At present over 4 million people per month visit the site, which makes it a primary global source of STEM educational material. The seed was the ChemWiki, which is the most developed, but there is also a GeoWiki that is being used for courses on Structural Geology, Sediments and Strata and Oceanography at UC Davis as well as including core components on geochemistry, geophysics, mineralogy, oceanography, paleobiology, paleoenvironments, petrology and plate tectonics. In addition to using and contributing to the GeoWiki, AGU members can participate in the other STEMWikis by writing (or editing) core components that involve geophysical topics and make use of the core components in the other areas for their teaching. The GeoWiki can be accessed at http://geowiki.ucdavis.edu/

  2. A Web-Based Development Environment for Collaborative Data Analysis

    NASA Astrophysics Data System (ADS)

    Erdmann, M.; Fischer, R.; Glaser, C.; Klingebiel, D.; Komm, M.; Müller, G.; Rieger, M.; Steggemann, J.; Urban, M.; Winchen, T.

    2014-06-01

    Visual Physics Analysis (VISPA) is a web-based development environment addressing high energy and astroparticle physics. It covers the entire analysis spectrum from the design and validation phase to the execution of analyses and the visualization of results. VISPA provides a graphical steering of the analysis flow, which consists of self-written, re-usable Python and C++ modules for more demanding tasks. All common operating systems are supported since a standard internet browser is the only software requirement for users. Even access via mobile and touch-compatible devices is possible. In this contribution, we present the most recent developments of our web application concerning technical, state-of-the-art approaches as well as practical experiences. One of the key features is the use of workspaces, i.e. user-configurable connections to remote machines supplying resources and local file access. Thereby, workspaces enable the management of data, computing resources (e.g. remote clusters or computing grids), and additional software either centralized or individually. We further report on the results of an application with more than 100 third-year students using VISPA for their regular particle physics exercises during the winter term 2012/13. Besides the ambition to support and simplify the development cycle of physics analyses, new use cases such as fast, location-independent status queries, the validation of results, and the ability to share analyses within worldwide collaborations with a single click become conceivable.

  3. Cognitive Aspects of Collaboration in 3d Virtual Environments

    NASA Astrophysics Data System (ADS)

    Juřík, V.; Herman, L.; Kubíček, P.; Stachoň, Z.; Šašinka, Č.

    2016-06-01

    Human-computer interaction has entered the 3D era. The most important models representing spatial information — maps — are transferred into 3D versions regarding the specific content to be displayed. Virtual worlds (VW) become promising area of interest because of possibility to dynamically modify content and multi-user cooperation when solving tasks regardless to physical presence. They can be used for sharing and elaborating information via virtual images or avatars. Attractiveness of VWs is emphasized also by possibility to measure operators' actions and complex strategies. Collaboration in 3D environments is the crucial issue in many areas where the visualizations are important for the group cooperation. Within the specific 3D user interface the operators' ability to manipulate the displayed content is explored regarding such phenomena as situation awareness, cognitive workload and human error. For such purpose, the VWs offer a great number of tools for measuring the operators' responses as recording virtual movement or spots of interest in the visual field. Study focuses on the methodological issues of measuring the usability of 3D VWs and comparing them with the existing principles of 2D maps. We explore operators' strategies to reach and interpret information regarding the specific type of visualization and different level of immersion.

  4. EU-China Environment Research: Enhancing collaboration through SPRING

    NASA Astrophysics Data System (ADS)

    Bray, Michaela; Han, Dawei

    2013-04-01

    There are huge challenges in both known and potential environmental problems in China and EU. Local geographical and climate conditions vary significantly across the two regions. For example the distribution of water resources is spatially and temporally uneven and often leads to water shortages in some areas, and flooding in others. In addition there is a sharp drop in mineral, oil and gas resources, as well as an increase in the living standard, which is a challenge for sustainable development. China's economy is still growing fast, placing an increased burden on the environment. The EU's economy is more developed with a rich experience in dealing with environmental problems in a fast growing economy. Therefore, it is mutually beneficial for the two sides to collaborate in environmental research. The FP7 funded SPRING project is intended to facilitate better EU-China environmental research cooperation and to create a long-term environment vision with clearly identifiable pathways for the two partners to work together. The project team is composed of five EU partners and five Chinese partners with expertise in water, soil, air, climate change and biodiversity. The project runs from March 2010-Feburary 2013. SPRING has taken a multi-level approach to achieving this, developing foresight and road-mapping studies to manage long term aims and facilitate increased cooperation and exchange for researchers, policy and decision makers and funding bodies. The outcomes of the project include detailed technology survey, success scenario analysis and EU-Horizon research road map with a focus on the research needs between EU and China in the next twenty years.

  5. Creating Effective Collaborative Learning Groups in an Online Environment

    ERIC Educational Resources Information Center

    Brindley, Jane E.; Walti, Christine; Blaschke, Lisa M.

    2009-01-01

    Collaborative learning in an online classroom can take the form of discussion among the whole class or within smaller groups. This paper addresses the latter, examining first whether assessment makes a difference to the level of learner participation and then considering other factors involved in creating effective collaborative learning groups.…

  6. Fixed Group and Opportunistic Collaboration in a CSCL Environment

    ERIC Educational Resources Information Center

    Siqin, Tuya; van Aalst, Jan; Chu, Samuel Kai Wah

    2015-01-01

    This study investigated synchronous discourses involving student collaboration in fixed groups during an introductory research methods course's first 8-week phase, and opportunistic collaboration during its second 8-week phase. Twenty-seven Chinese undergraduates participated in online discourse on Knowledge Forum as part of the course. A…

  7. Predicting Student Performance in a Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Olsen, Jennifer K.; Aleven, Vincent; Rummel, Nikol

    2015-01-01

    Student models for adaptive systems may not model collaborative learning optimally. Past research has either focused on modeling individual learning or for collaboration, has focused on group dynamics or group processes without predicting learning. In the current paper, we adjust the Additive Factors Model (AFM), a standard logistic regression…

  8. Coopetition in Education: Collaborating in a Competitive Environment

    ERIC Educational Resources Information Center

    Muijs, Daniel; Rumyantseva, Nataliya

    2014-01-01

    While educational theory has often seen collaboration and competition as incompatible, there is increasing evidence that collaboration persists in educational markets characterized by competition. In this paper, we use the theoretical lens of "coopetition", a relationship between organizations involving competition in some segments and…

  9. Authoring Tools for Collaborative Intelligent Tutoring System Environments

    ERIC Educational Resources Information Center

    Olsen, Jennifer K.; Belenky, Daniel M.; Aleven, Vincent; Rummel, Nikol; Sewall, Jonathan; Ringenberg, Michael

    2014-01-01

    Authoring tools have been shown to decrease the amount of time and resources needed for the development of Intelligent Tutoring Systems (ITSs). Although collaborative learning has been shown to be beneficial to learning, most of the current authoring tools do not support the development of collaborative ITSs. In this paper, we discuss an extension…

  10. Collaborative Tasks in Wiki-Based Environment in EFL Learning

    ERIC Educational Resources Information Center

    Zou, Bin; Wang, Dongshuo; Xing, Minjie

    2016-01-01

    Wikis provide users with opportunities to post and edit messages to collaborate in the language learning process. Many studies have offered findings to show positive impact of Wiki-based language learning for learners. This paper explores the effect of collaborative task in error correction for English as a Foreign Language learning in an online…

  11. Using Five Stage Model to Design of Collaborative Learning Environments in Second Life

    ERIC Educational Resources Information Center

    Orhan, Sevil; Karaman, M. Kemal

    2014-01-01

    Specifically Second Life (SL) among virtual worlds draws attention of researchers to form collaborative learning environments (Sutcliffe & Alrayes, 2012) since it could be used as a rich platform to simulate a real environment containing many collaborative learning characteristics and interaction tools within itself. Five Stage Model (FSM)…

  12. CoLeMo: A Collaborative Learning Environment for UML Modelling

    ERIC Educational Resources Information Center

    Chen, Weiqin; Pedersen, Roger Heggernes; Pettersen, Oystein

    2006-01-01

    This paper presents the design, implementation, and evaluation of a distributed collaborative UML modelling environment, CoLeMo. CoLeMo is designed for students studying UML modelling. It can also be used as a platform for collaborative design of software. We conducted formative evaluations and a summative evaluation to improve the environment and…

  13. Scientific Visualization for Atmospheric Data Analysis in Collaborative Virtual Environments

    NASA Astrophysics Data System (ADS)

    Engelke, Wito; Flatken, Markus; Garcia, Arturo S.; Bar, Christian; Gerndt, Andreas

    2016-04-01

    1 INTRODUCTION The three year European research project CROSS DRIVE (Collaborative Rover Operations and Planetary Science Analysis System based on Distributed Remote and Interactive Virtual Environments) started in January 2014. The research and development within this project is motivated by three use case studies: landing site characterization, atmospheric science and rover target selection [1]. Currently the implementation for the second use case is in its final phase [2]. Here, the requirements were generated based on the domain experts input and lead to development and integration of appropriate methods for visualization and analysis of atmospheric data. The methods range from volume rendering, interactive slicing, iso-surface techniques to interactive probing. All visualization methods are integrated in DLR's Terrain Rendering application. With this, the high resolution surface data visualization can be enriched with additional methods appropriate for atmospheric data sets. This results in an integrated virtual environment where the scientist has the possibility to interactively explore his data sets directly within the correct context. The data sets include volumetric data of the martian atmosphere, precomputed two dimensional maps and vertical profiles. In most cases the surface data as well as the atmospheric data has global coverage and is of time dependent nature. Furthermore, all interaction is synchronized between different connected application instances, allowing for collaborative sessions between distant experts. 2 VISUALIZATION TECHNIQUES Also the application is currently used for visualization of data sets related to Mars the techniques can be used for other data sets as well. Currently the prototype is capable of handling 2 and 2.5D surface data as well as 4D atmospheric data. Specifically, the surface data is presented using an LoD approach which is based on the HEALPix tessellation of a sphere [3, 4, 5] and can handle data sets in the order of

  14. Constructivist and Collaborative Learning in a Wireless Environment.

    ERIC Educational Resources Information Center

    Sotillo, Susana M.

    2002-01-01

    Describes an initiative that enabled applied linguistics' students to collaborate on academic writing assignments outside the classroom using a network of wireless laptops to facilitate flexible meeting times and locations. (Author/VWL)

  15. Advancing Collaboration through Hydrologic Data and Model Sharing

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D. P.; Goodall, J. L.; Band, L. E.; Merwade, V.; Couch, A.; Hooper, R. P.; Maidment, D. R.; Dash, P. K.; Stealey, M.; Yi, H.; Gan, T.; Castronova, A. M.; Miles, B.; Li, Z.; Morsy, M. M.

    2015-12-01

    HydroShare is an online, collaborative system for open sharing of hydrologic data, analytical tools, and models. It supports the sharing of and collaboration around "resources" which are defined primarily by standardized metadata, content data models for each resource type, and an overarching resource data model based on the Open Archives Initiative's Object Reuse and Exchange (OAI-ORE) standard and a hierarchical file packaging system called "BagIt". HydroShare expands the data sharing capability of the CUAHSI Hydrologic Information System by broadening the classes of data accommodated to include geospatial and multidimensional space-time datasets commonly used in hydrology. HydroShare also includes new capability for sharing models, model components, and analytical tools and will take advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. It also supports web services and server/cloud based computation operating on resources for the execution of hydrologic models and analysis and visualization of hydrologic data. HydroShare uses iRODS as a network file system for underlying storage of datasets and models. Collaboration is enabled by casting datasets and models as "social objects". Social functions include both private and public sharing, formation of collaborative groups of users, and value-added annotation of shared datasets and models. The HydroShare web interface and social media functions were developed using the Django web application framework coupled to iRODS. Data visualization and analysis is supported through the Tethys Platform web GIS software stack. Links to external systems are supported by RESTful web service interfaces to HydroShare's content. This presentation will introduce the HydroShare functionality developed to date and describe ongoing development of functionality to support collaboration and integration of data and models.

  16. THE CAVES PROJECT — Collaborative Analysis Versioning Environment System, THE CODESH PROJECT — COllaborative DEvelopment SHell

    NASA Astrophysics Data System (ADS)

    Bourilkov, Dimitri

    A key feature of collaboration in science and software development is to have a log of what and how is being done - for private use and reuse and for sharing selected parts with collaborators, which most often today are distributed geographically on an ever larger scale. Even better if this log is automatic, created on the fly while a scientist or software developer is working in a habitual way, without the need for extra efforts. The CAVES and CODESH projects address this problem in a novel way, building on the concepts of virtual state and virtual transition to provide an automatic persistent logbook for sessions of data analysis or software development in a collaborating group. A repository of sessions can be configured dynamically to record and make available the knowledge accumulated in the course of a scientific or software endeavor. Access can be controlled to define logbooks of private sessions and sessions shared within or between collaborating groups.

  17. Advanced Flip Chips in Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2010-01-01

    material and the silicon die or chip, and also the underfill materials. Advanced packaging interconnects technology such as flip-chip interconnect test boards have been subjected to various extreme temperature ranges that cover military specifications and extreme Mars and asteroid environments. The eventual goal of each process step and the entire process is to produce components with 100 percent interconnect and satisfy the reliability requirements. Underfill materials, in general, may possibly meet demanding end use requirements such as low warpage, low stress, fine pitch, high reliability, and high adhesion.

  18. A collaborative medical case authoring environment based on the UMLS.

    PubMed

    Suebnukarn, Siriwan; Haddawy, Peter; Rhienmora, Phattanapon

    2008-04-01

    In this paper, we present a novel collaborative authoring tool that was designed to allow medical teachers to formalize and visualize their knowledge for medical intelligent tutoring systems. Our goal is to increase the efficiency and effectiveness in creating the domain model representing the problem solution--often referred to as the bottleneck in developing intelligent tutoring systems. We incorporate the Unified Medical Language System (UMLS) knowledge base to assist the authors in creating the problem solution collaboratively via a videoconferencing platform. The system consists of a shared workspace gathering information visualization and tools necessary for collaborative problem-solving tasks. We found that the authoring tool can be used to effectively elicit the knowledge structure of the domain model. This was achieved in hours compared to months for the conventional paper-based approach. PMID:17920337

  19. Requirements Development for the NASA Advanced Engineering Environment (AEE)

    NASA Technical Reports Server (NTRS)

    Rogers, Eric; Hale, Joseph P.; Zook, Keith; Gowda, Sanjay; Salas, Andrea O.

    2003-01-01

    The requirements development process for the Advanced Engineering Environment (AEE) is presented. This environment has been developed to allow NASA to perform independent analysis and design of space transportation architectures and technologies. Given the highly collaborative and distributed nature of AEE, a variety of organizations are involved in the development, operations and management of the system. Furthermore, there are additional organizations involved representing external customers and stakeholders. Thorough coordination and effective communication is essential to translate desired expectations of the system into requirements. Functional, verifiable requirements for this (and indeed any) system are necessary to fulfill several roles. Requirements serve as a contractual tool, configuration management tool, and as an engineering tool, sometimes simultaneously. The role of requirements as an engineering tool is particularly important because a stable set of requirements for a system provides a common framework of system scope and characterization among team members. Furthermore, the requirements provide the basis for checking completion of system elements and form the basis for system verification. Requirements are at the core of systems engineering. The AEE Project has undertaken a thorough process to translate the desires and expectations of external customers and stakeholders into functional system-level requirements that are captured with sufficient rigor to allow development planning, resource allocation and system-level design, development, implementation and verification. These requirements are maintained in an integrated, relational database that provides traceability to governing Program requirements and also to verification methods and subsystem-level requirements.

  20. Group Awareness in Computer-Supported Collaborative Learning Environments

    ERIC Educational Resources Information Center

    Ghadirian, Hajar; Ayub, Ahmad Fauzi Mohd; Silong, Abu Daud; Bakar, Kamariah Binti Abu; Hosseinzadeh, Maryam

    2016-01-01

    It is commonly discussed that a key challenge for online collaboration is to promote group awareness. Although this challenge has gained intensified consideration by scholars, scarce attempt has been devoted into development of a reasonable hypothetical comprehension of what group awareness really is and how it can be studied empirically. This…

  1. Collaboration: Paradigm of the Digital Cultural Content Environment

    ERIC Educational Resources Information Center

    Salsich, Anne Cuyler

    2006-01-01

    Government grant-funding agencies have spawned an explosion of images from historical collections on the Internet. They have encouraged collaborative projects in which institutions share resources for capital-intensive digitization projects. These Web "exhibits" are neither publications nor exhibits in the traditional sense, most often without…

  2. The Collaborative School: A Work Environment for Effective Instruction.

    ERIC Educational Resources Information Center

    Smith, Stuart C.; Scott, James J.

    The benefits of a collaborative work setting--including such practices as mutual help, exchange of ideas, joint planning, and participative decision-making--have been consistently confirmed by studies of effective schools and successful businesses. However, teacher isolation remains the norm. Drawing on recent research and educators' firsthand…

  3. Multi-User Virtual Environments Fostering Collaboration in Formal Education

    ERIC Educational Resources Information Center

    Di Blas, Nicoletta; Paolini, Paolo

    2014-01-01

    This paper is about how serious games based on MUVEs in formal education can foster collaboration. More specifically, it is about a large case-study with four different programs which took place from 2002 to 2009 and involved more than 9,000 students, aged between 12 and 18, from various nations (18 European countries, Israel and the USA). These…

  4. Collaboration

    ERIC Educational Resources Information Center

    King, Michelle L.

    2010-01-01

    This article explores collaboration between library media educators and regular classroom teachers. The article focuses on the context of the issue, positions on the issue, the impact of collaboration, and how to implement effective collaboration into the school system. Various books and professional journals are used to support conclusions…

  5. Synchronous Collaboration Competencies in Web-Conferencing Environments--Their Impact on the Learning Process

    ERIC Educational Resources Information Center

    Bower, Matt

    2011-01-01

    Based on a three-semester design-based research study examining learning and teaching in a web-conferencing environment, this article identifies types of synchronous collaboration competencies and reveals their influence on learning processes. Four levels of online collaborative competencies were observed--operational, interactional, managerial,…

  6. Detecting and Understanding the Impact of Cognitive and Interpersonal Conflict in Computer Supported Collaborative Learning Environments

    ERIC Educational Resources Information Center

    Prata, David Nadler; Baker, Ryan S. J. d.; Costa, Evandro d. B.; Rose, Carolyn P.; Cui, Yue; de Carvalho, Adriana M. J. B.

    2009-01-01

    This paper presents a model which can automatically detect a variety of student speech acts as students collaborate within a computer supported collaborative learning environment. In addition, an analysis is presented which gives substantial insight as to how students' learning is associated with students' speech acts, knowledge that will…

  7. Strategies for Collaborative Writing and Phases of Knowledge Construction in CSCL Environments

    ERIC Educational Resources Information Center

    Onrubia, Javier; Engel, Anna

    2009-01-01

    Within the framework of research that describes the processes of collaborative knowledge construction in computer-supported collaborative learning (CSCL) environments, the present work has three objectives: (i) the identification of the strategies of six small groups of university students for the elaboration of written products in a CSCL…

  8. Comparison of 1:1 and 1:m CSCL Environment for Collaborative Concept Mapping

    ERIC Educational Resources Information Center

    Lin, C.-P.; Wong, L.-H.; Shao, Y.-J.

    2012-01-01

    This paper reports an investigation into the effects of collaborative concept mapping in a digital learning environment, in terms of students' overall learning gains, knowledge retention, quality of student artefacts (the collaboratively created concept maps), interactive patterns, and learning perceptions. Sixty-four 12-year-old students from two…

  9. Collaborative Learning Processes in an Asynchronous Environment: An Analysis through Discourse and Social Networks

    ERIC Educational Resources Information Center

    Tirado, Ramon; Aguaded, Ignacio; Hernando, Angel

    2011-01-01

    This article analyses an experience in collaborative learning in an asynchronous writing environment through discussion forums on a WebCt platform of the University of Huelva's virtual campus, and was part of an innovative teaching project in 2007-08. The main objectives are to describe the processes of collaborative knowledge construction and the…

  10. Using Pictures as a Vehicle to Personalize the Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Mackie, Brian; Gutierrez, Charletta F.

    2005-01-01

    Business organizations are increasingly adopting collaboration tools to increase communication within the firm. CAMS is a home-grown online collaborative environment which makes heavy use of participant's pictures. Participants, both faculty and students, were asked questions about the benefits and usefulness of pictures in the CAMS collaborative…

  11. Collaborative Group Engagement in a Computer-Supported Inquiry Learning Environment

    ERIC Educational Resources Information Center

    Sinha, Suparna; Rogat, Toni Kempler; Adams-Wiggins, Karlyn R.; Hmelo-Silver, Cindy E.

    2015-01-01

    Computer-supported collaborative learning environments provide opportunities for students to collaborate in inquiry-based practices to solve authentic problems, using technological tools as a resource. However, we have limited understanding of the quality of engagement fostered in these contexts, in part due to the narrowness of engagement…

  12. Collaborative Argumentation and Cognitive Elaboration in a Computer-Supported Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Stegmann, Karsten; Wecker, Christof; Weinberger, Armin; Fischer, Frank

    2012-01-01

    This study explores the relation between argumentation in online discussions, cognitive elaboration, and individual knowledge acquisition. In a one-factorial experimental design with 48 participants we investigated the effect of an argumentative computer-supported collaboration script (with vs. without) on the formal quality of argumentation,…

  13. Integrating multiple HD video services over tiled display for advanced multi-party collaboration

    NASA Astrophysics Data System (ADS)

    Han, Sangwoo; Kim, Jaeyoun; Choi, Kiho; Kim, JongWon

    2006-10-01

    Multi-party collaborative environments based on AG (Access Grid) are extensively utilized for distance learning, e-science, and other distributed global collaboration events. In such environments, A/V media services play an important role in providing QoE (quality of experience) to participants in collaboration sessions. In this paper, in order to support high-quality user experience in the aspect of video services, we design an integration architecture to combine high-quality video services and a high-resolution tiled display service. In detail, the proposed architecture incorporates video services for DV (digital video) and HDV (high-definition digital video) streaming with a display service to provide methods for decomposable decoding/display for a tiled display system. By implementing the proposed architecture on top of AG, we verify that high-quality collaboration among a couple of collaboration sites can be realized over a multicast-enabled network testbed with improved media quality experience.

  14. Comparing Notes: Collaborative Networks, Breeding Environments, and Organized Crime

    NASA Astrophysics Data System (ADS)

    Hernández, Alejandro

    Collaborative network theory can be useful in refining current understanding of criminal networks and aid in understanding their evolution. Drug trafficking organizations that operate in the region directly north of Colombia’s Valle del Cauca department and the “collection agencies” that operate in the Colombian city of Cali have abandoned hierarchical organizational structures and have become networked-based entities. Through the exposition of Camarinha-Matos and Afsarmanesh’s business networking ideas, this chapter examines the similarities and differences between the application of collaborative networks in licit enterprises, such as small and medium enterprises in Europe, and how the networks might be used by illicit criminal enterprises in Colombia.

  15. Investigating Factors That Influence Students' Management of Study Environment in Online Collaborative Groupwork

    ERIC Educational Resources Information Center

    Du, Jianxia; Xu, Jianzhong; Fan, Xitao

    2015-01-01

    The present study examines empirical models of students' management of the learning environment in the context of online collaborative groupwork. Such environment management is an important component of students' overall self-regulated learning strategy for effective learning. Student- and group-level predictors for study environment management in…

  16. Application development environment for advanced digital workstations

    NASA Astrophysics Data System (ADS)

    Valentino, Daniel J.; Harreld, Michael R.; Liu, Brent J.; Brown, Matthew S.; Huang, Lu J.

    1998-06-01

    One remaining barrier to the clinical acceptance of electronic imaging and information systems is the difficulty in providing intuitive access to the information needed for a specific clinical task (such as reaching a diagnosis or tracking clinical progress). The purpose of this research was to create a development environment that enables the design and implementation of advanced digital imaging workstations. We used formal data and process modeling to identify the diagnostic and quantitative data that radiologists use and the tasks that they typically perform to make clinical decisions. We studied a diverse range of radiology applications, including diagnostic neuroradiology in an academic medical center, pediatric radiology in a children's hospital, screening mammography in a breast cancer center, and thoracic radiology consultation for an oncology clinic. We used object- oriented analysis to develop software toolkits that enable a programmer to rapidly implement applications that closely match clinical tasks. The toolkits support browsing patient information, integrating patient images and reports, manipulating images, and making quantitative measurements on images. Collectively, we refer to these toolkits as the UCLA Digital ViewBox toolkit (ViewBox/Tk). We used the ViewBox/Tk to rapidly prototype and develop a number of diverse medical imaging applications. Our task-based toolkit approach enabled rapid and iterative prototyping of workstations that matched clinical tasks. The toolkit functionality and performance provided a 'hands-on' feeling for manipulating images, and for accessing textual information and reports. The toolkits directly support a new concept for protocol based-reading of diagnostic studies. The design supports the implementation of network-based application services (e.g., prefetching, workflow management, and post-processing) that will facilitate the development of future clinical applications.

  17. Advanced human-machine interface for collaborative building control

    DOEpatents

    Zheng, Xianjun S.; Song, Zhen; Chen, Yanzi; Zhang, Shaopeng; Lu, Yan

    2015-08-11

    A system for collaborative energy management and control in a building, including an energy management controller, one or more occupant HMIs that supports two-way communication between building occupants and a facility manager, and between building occupants and the energy management controller, and a facility manager HMI that supports two-way communication between the facility manager and the building occupants, and between the facility manager and the energy management controller, in which the occupant HMI allows building occupants to provide temperature preferences to the facility manager and the energy management controller, and the facility manager HMI allows the facility manager to configure an energy policy for the building as a set of rules and to view occupants' aggregated temperature preferences, and the energy management controller determines an optimum temperature range that resolves conflicting occupant temperature preferences and occupant temperature preferences that conflict with the facility manager's energy policy for the building.

  18. Collaborative Scheduling Using JMS in a Mixed Java and .NET Environment

    NASA Technical Reports Server (NTRS)

    Wang, Yeou-Fang; Wax, Allan; Lam, Ray; Baldwin, John; Borden, Chet

    2006-01-01

    A collaborative framework/environment was proto-typed to prove the feasibility of scheduling space flight missions on NASA's Deep Space Network (DSN) in a distributed fashion. In this environment, effective collaboration relies on efficient communications among all flight mission and DSN scheduling users. There-fore, messaging becomes critical to timely event notification and data synchronization. In the prototype, a rapid messaging system using Java Message Service (JMS) in a mixed Java and .NET environment is established. This scheme allows both Java and .NET applications to communicate with each other for data synchronization and schedule negotiation. The JMS approach we used is based on a centralized messaging scheme. With proper use of a high speed messaging system, all users in this collaborative framework can communicate with each other to generate a schedule collaboratively to meet DSN and projects tracking needs.

  19. LP DAAC MEaSUREs Project Artifact Tracking Via the NASA Earthdata Collaboration Environment

    NASA Astrophysics Data System (ADS)

    Bennett, S. D.

    2015-12-01

    The Land Processes Distributed Active Archive Center (LP DAAC) is a NASA Earth Observing System (EOS) Data and Information System (EOSDIS) DAAC that supports selected EOS Community non-standard data products such as the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Database (GED), and also supports NASA Earth Science programs such as Making Earth System Data Records for Use in Research Environments (MEaSUREs) to contribute in providing long-term, consistent, and mature data products. As described in The LP DAAC Project Lifecycle Plan (Daucsavage, J.; Bennett, S., 2014), key elements within the Project Inception Phase fuse knowledge between NASA stakeholders, data producers, and NASA data providers. To support and deliver excellence for NASA data stewardship, and to accommodate long-tail data preservation with Community and MEaSUREs products, the LP DAAC is utilizing NASA's own Earthdata Collaboration Environment to bridge stakeholder communication divides. By leveraging a NASA supported platform, this poster describes how the Atlassian Confluence software combined with a NASA URS/Earthdata support can maintain each project's members, status, documentation, and artifact checklist. Furthermore, this solution provides a gateway for project communities to become familiar with NASA clients, as well as educating the project's NASA DAAC Scientists for NASA client distribution.

  20. Collaborate!

    ERIC Educational Resources Information Center

    Villano, Matt

    2007-01-01

    This article explores different approaches that facilitate online collaboration. The newest efforts in collaboration revolve around wikis. These websites allow visitors to add, remove, edit, and change content directly online. Another fairly affordable approach involves open source, a programming language that is, in many ways, collaborative…

  1. Client-side Medical Image Colorization in a Collaborative Environment.

    PubMed

    Virag, Ioan; Stoicu-Tivadar, Lăcrămioara; Crişan-Vida, Mihaela

    2015-01-01

    The paper presents an application related to collaborative medicine using a browser based medical visualization system with focus on the medical image colorization process and the underlying open source web development technologies involved. Browser based systems allow physicians to share medical data with their remotely located counterparts or medical students, assisting them during patient diagnosis, treatment monitoring, surgery planning or for educational purposes. This approach brings forth the advantage of ubiquity. The system can be accessed from a any device, in order to process the images, assuring the independence towards having a specific proprietary operating system. The current work starts with processing of DICOM (Digital Imaging and Communications in Medicine) files and ends with the rendering of the resulting bitmap images on a HTML5 (fifth revision of the HyperText Markup Language) canvas element. The application improves the image visualization emphasizing different tissue densities. PMID:25991287

  2. CoSLAM: collaborative visual SLAM in dynamic environments.

    PubMed

    Zou, Danping; Tan, Ping

    2013-02-01

    This paper studies the problem of vision-based simultaneous localization and mapping (SLAM) in dynamic environments with multiple cameras. These cameras move independently and can be mounted on different platforms. All cameras work together to build a global map, including 3D positions of static background points and trajectories of moving foreground points. We introduce intercamera pose estimation and intercamera mapping to deal with dynamic objects in the localization and mapping process. To further enhance the system robustness, we maintain the position uncertainty of each map point. To facilitate intercamera operations, we cluster cameras into groups according to their view overlap, and manage the split and merge of camera groups in real time. Experimental results demonstrate that our system can work robustly in highly dynamic environments and produce more accurate results in static environments. PMID:22547430

  3. Computer Networks as Instructional and Collaborative Distance Learning Environments.

    ERIC Educational Resources Information Center

    Schrum, Lynne; Lamb, Theodore A.

    1997-01-01

    Reports on the early stages of a project at the U.S. Air Force Academy, in which the instructional applications of a networked classroom laboratory, an intranet, and the Internet are explored as well as the effectiveness and efficiency of groupware and computer networks as instructional environments. Presents the results of the first pilot tests.…

  4. Inflicted traumatic brain injury: advances in evaluation and collaborative diagnosis.

    PubMed

    Glick, Jill C; Staley, Kelley

    2007-01-01

    The determination that a traumatic brain injury is not accidental requires data collection from multiple domains: historical, clinical, laboratory, radiographic, environmental and psychosocial. These essential, yet disparate, types of information must be synthesized in a collaborative and interdisciplinary process to formulate a medical opinion with regard to the cause of an injury, and the final opinion has tremendous consequences for children and families. Medically directed child protection teams have emerged as the standard of care in many children's hospitals and child abuse pediatrics is now a recognized medical subspecialty with board certification available in the next several years. Not only do the child and family benefit from this coordinated effort, but there are also great benefits for the members of the child protection team: more clearly defined responsibilities, redirected focus on treatment for the surgeon, and increased confidence that the opinion is based upon consensus and current scientific knowledge. By this process and its division of labor, the child abuse pediatrician assumes responsibility for ensuring that a final medical opinion is arrived at, and then advocates for appropriate disposition for the child. The child abuse pediatrician is responsible for establishing institutional standards for family evaluation, collecting all necessary medical data and directing a consensus-based decision making process that is based upon current medical knowledge, medical literature and experience. The child abuse pediatrician also assumes the role of primary communication conduit for investigational agencies and the courts. The neurosurgeon is a key member of the child protection team and relies on the team to obtain necessary historical information to address consistency of the mechanism with the sustained injuries and has an integral role in determining the team's final opinion. An interdisciplinary response to inflicted traumatic brain injury is the

  5. UNEDF: Advanced Scientific Computing Collaboration Transforms the Low-Energy Nuclear Many-Body Problem

    SciTech Connect

    Nam, H.; Stoitsov, M.; Nazarewicz, W.; Bulgac, A.; Hagen, G.; Kortelainen, M.; Maris, P.; Pei, J. C.; Roche, K. J.; Schunck, N.; Thompson, I.; Vary, J. P.; Wild, S. M.

    2012-12-20

    The demands of cutting-edge science are driving the need for larger and faster computing resources. With the rapidly growing scale of computing systems and the prospect of technologically disruptive architectures to meet these needs, scientists face the challenge of effectively using complex computational resources to advance scientific discovery. Multi-disciplinary collaborating networks of researchers with diverse scientific backgrounds are needed to address these complex challenges. The UNEDF SciDAC collaboration of nuclear theorists, applied mathematicians, and computer scientists is developing a comprehensive description of nuclei and their reactions that delivers maximum predictive power with quantified uncertainties. This paper describes UNEDF and identifies attributes that classify it as a successful computational collaboration. Finally, we illustrate significant milestones accomplished by UNEDF through integrative solutions using the most reliable theoretical approaches, most advanced algorithms, and leadership-class computational resources.

  6. The Role of Collaboration and Feedback in Advancing Student Learning in Media Literacy and Video Production

    ERIC Educational Resources Information Center

    Casinghino, Carl

    2015-01-01

    Teaching advanced video production is an art that requires great sensitivity to the process of providing feedback that helps students to learn and grow. Some students experience difficulty in developing narrative sequences or cause-and-effect strings of motion picture sequences. But when students learn to work collaboratively through the revision…

  7. Advances in integrated system heath management system technologies : overview of NASA and industry collaborative activities

    NASA Technical Reports Server (NTRS)

    Dixit, Sunil; Brown, Steve; Fijany, Amir; Park, Han; Mackey, Ryan; James, Mark; Baroth, Ed

    2005-01-01

    This paper will describe recent advances in ISHM technologies made through collaboration between NASA and industry. In particular, the paper will focus on past, present, and future technology development and maturation efforts at the Jet Propulsion Laboratory (JPL) and its industry partner, Northrop Grumman lntegrated Systems (NGIS).

  8. Trajectories of collaborative scientific conceptual change: Middle school students learning about ecosystems in a CSCL environment

    NASA Astrophysics Data System (ADS)

    Liu, Lei

    The dissertation aims to achieve two goals. First, it attempts to establish a new theoretical framework---the collaborative scientific conceptual change model, which explicitly attends to social factor and epistemic practices of science, to understand conceptual change. Second, it report the findings of a classroom study to investigate how to apply this theoretical framework to examine the trajectories of collaborative scientific conceptual change in a CSCL environment and provide pedagogical implications. Two simulations were designed to help students make connections between the macroscopic substances and the aperceptual microscopic entities and underlying processes. The reported study was focused on analyzing the aggregated data from all participants and the video and audio data from twenty focal groups' collaborative activities and the process of their conceptual development in two classroom settings. Mixed quantitative and qualitative analyses were applied to analyze the video/audio data. The results found that, overall participants showed significant improvements from pretest to posttest on system understanding. Group and teacher effect as well as group variability were detected in both students' posttest performance and their collaborative activities, and variability emerged in group interaction. Multiple data analyses found that attributes of collaborative discourse and epistemic practices made a difference in student learning. Generating warranted claims in discourse as well as the predicting, coordinating theory-evidence, and modifying knowledge in epistemic practices had an impact on student's conceptual understanding. However, modifying knowledge was found negatively related to students' learning effect. The case studies show how groups differed in using the computer tools as a medium to conduct collaborative discourse and epistemic practices. Only with certain combination of discourse features and epistemic practices can the group interaction lead to

  9. Securing Resources in Collaborative Environments: A Peer-to-peerApproach

    SciTech Connect

    Berket, Karlo; Essiari, Abdelilah; Thompson, Mary R.

    2005-09-19

    We have developed a security model that facilitates control of resources by autonomous peers who act on behalf of collaborating users. This model allows a gradual build-up of trust. It enables secure interactions among users that do not necessarily know each other and allows them to build trust over the course of their collaboration. This paper describes various aspects of our security model and describes an architecture that implements this model to provide security in pure peer-to-peer environments.

  10. ARENA - A Collaborative Immersive Environment for Virtual Fieldwork

    NASA Astrophysics Data System (ADS)

    Kwasnitschka, T.

    2012-12-01

    Whenever a geoscientific study area is not readily accessible, as is the case on the deep seafloor, it is difficult to apply traditional but effective methods of fieldwork, which often require physical presence of the observer. The Artificial Research Environment for Networked Analysis (ARENA), developed at GEOMAR | Helmholtz Centre for Ocean Research Kiel within the Cluster of Excellence "The Future Ocean", provides a backend solution to robotic research on the seafloor by means of an immersive simulation environment for marine research: A hemispherical screen of 6m diameter covering the entire lower hemisphere surrounds a group of up to four researchers at once. A variety of open source (e.g. Microsoft Research World Wide Telescope) and commercial software platforms allow the interaction with e.g. in-situ recorded video, vector maps, terrain, textured geometry, point cloud and volumetric data in four dimensions. Data can be put into a holistic, georeferenced context and viewed on scales stretching from centimeters to global. Several input devices from joysticks to gestures and vocalized commands allow interaction with the simulation, depending on individual preference. Annotations added to the dataset during the simulation session catalyze the following quantitative evaluation. Both the special simulator design, making data perception a group experience, and the ability to connect remote instances or scaled down versions of ARENA over the Internet are significant advantages over established immersive simulation environments.

  11. Supporting Students to Develop Collaborative Learning Skills in Technology-Based Environments

    ERIC Educational Resources Information Center

    Nevgi, Anne; Virtanen, Paivi; Niemi, Hannele

    2006-01-01

    The paper focuses on the question of how to advance collaboration through the Web and support lifelong learning. First, the theoretical framework and architecture of a new web-based tool, the "IQ Team," is introduced. IQ Team is an interactive online assessment and support system to learn social skills needed in cooperative work, and belongs in an…

  12. A Social Contract for University-Industry Collaboration: A Case of Project-Based Learning Environment

    NASA Astrophysics Data System (ADS)

    Vartiainen, Tero

    This study determines a social contract for a form of university-industry collaboration to a project-based learning environment in close collaboration with industry. The author's previous studies on moral conflicts in a project-based learning (PjBL) environment and his 5-year engagement in the PjBL environment are used as background knowledge, and John Rawls' veil of ignorance is used as a method in the contract formulation. Fair and impartial treatment of actors is strived for with the contract which constitutes of sets of obligations for each party, students, clients, and university (instructors) in the chosen project course. With the contract fair and impartial treatment of actors is strived for and the most dilemmatic moral conflicts are tried to be avoided. The forming of the social contract is evaluated, and implications for research and collaborations in practice are offered.

  13. Cross-standard user description in mobile, medical oriented virtual collaborative environments

    NASA Astrophysics Data System (ADS)

    Ganji, Rama Rao; Mitrea, Mihai; Joveski, Bojan; Chammem, Afef

    2015-03-01

    By combining four different open standards belonging to the ISO/IEC JTC1/SC29 WG11 (a.k.a. MPEG) and W3C, this paper advances an architecture for mobile, medical oriented virtual collaborative environments. The various users are represented according to MPEG-UD (MPEG User Description) while the security issues are dealt with by deploying the WebID principles. On the server side, irrespective of their elementary types (text, image, video, 3D, …), the medical data are aggregated into hierarchical, interactive multimedia scenes which are alternatively represented into MPEG-4 BiFS or HTML5 standards. This way, each type of content can be optimally encoded according to its particular constraints (semantic, medical practice, network conditions, etc.). The mobile device should ensure only the displaying of the content (inside an MPEG player or an HTML5 browser) and the capturing of the user interaction. The overall architecture is implemented and tested under the framework of the MEDUSA European project, in partnership with medical institutions. The testbed considers a server emulated by a PC and heterogeneous user devices (tablets, smartphones, laptops) running under iOS, Android and Windows operating systems. The connection between the users and the server is alternatively ensured by WiFi and 3G/4G networks.

  14. Advances in Web-Based Education: Personalized Learning Environments

    ERIC Educational Resources Information Center

    Magoulas, George, Ed.; Chen, Sherry, Ed.

    2006-01-01

    Advances in technology are increasingly impacting the way in which curriculum is delivered and assessed. The emergence of the Internet has offered learners a new instructional delivery system that connects them with educational resources. "Advances in Web-Based Education: Personalized Learning Environments" covers a wide range of factors that…

  15. A Web Based Collaborative Design Environment for Spacecraft

    NASA Technical Reports Server (NTRS)

    Dunphy, Julia

    1998-01-01

    In this era of shrinking federal budgets in the USA we need to dramatically improve our efficiency in the spacecraft engineering design process. We have come up with a method which captures much of the experts' expertise in a dataflow design graph: Seamlessly connectable set of local and remote design tools; Seamlessly connectable web based design tools; and Web browser interface to the developing spacecraft design. We have recently completed our first web browser interface and demonstrated its utility in the design of an aeroshell using design tools located at web sites at three NASA facilities. Multiple design engineers and managers are now able to interrogate the design engine simultaneously and find out what the design looks like at any point in the design cycle, what its parameters are, and how it reacts to adverse space environments.

  16. English 3310 Advanced Expository Writing: Rhetoric and Environment.

    ERIC Educational Resources Information Center

    Dobrin, Sidney I.

    1999-01-01

    Presents a course design for English 3310, a three-credit composition course offered to advanced writing majors and non-majors at the University of Florida. Describes the section subtitled "Rhetoric and Environment" that was taught in conjunction with the development of University of Florida's College of Natural Resources and Environment. (SC)

  17. Finnish upper secondary students' collaborative processes in learning statistics in a CSCL environment

    NASA Astrophysics Data System (ADS)

    Kaleva Oikarinen, Juho; Järvelä, Sanna; Kaasila, Raimo

    2014-04-01

    This design-based research project focuses on documenting statistical learning among 16-17-year-old Finnish upper secondary school students (N = 78) in a computer-supported collaborative learning (CSCL) environment. One novel value of this study is in reporting the shift from teacher-led mathematical teaching to autonomous small-group learning in statistics. The main aim of this study is to examine how student collaboration occurs in learning statistics in a CSCL environment. The data include material from videotaped classroom observations and the researcher's notes. In this paper, the inter-subjective phenomena of students' interactions in a CSCL environment are analysed by using a contact summary sheet (CSS). The development of the multi-dimensional coding procedure of the CSS instrument is presented. Aptly selected video episodes were transcribed and coded in terms of conversational acts, which were divided into non-task-related and task-related categories to depict students' levels of collaboration. The results show that collaborative learning (CL) can facilitate cohesion and responsibility and reduce students' feelings of detachment in our classless, periodic school system. The interactive .pdf material and collaboration in small groups enable statistical learning. It is concluded that CSCL is one possible method of promoting statistical teaching. CL using interactive materials seems to foster and facilitate statistical learning processes.

  18. A Pilot Study: Facilitating Cross-Cultural Understanding with Project-Based Collaborative Learning in an Online Environment

    ERIC Educational Resources Information Center

    Shadiev, Rustam; Hwang, Wu-Yuin; Huang, Yueh-Min

    2015-01-01

    This study investigated three aspects: how project-based collaborative learning facilitates cross-cultural understanding; how students perceive project-based collaborative learning implementation in a collaborative cyber community (3C) online environment; and what types of communication among students are used. A qualitative case study approach…

  19. Perfecting scientists’ collaboration and problem-solving skills in the virtual team environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perfecting Scientists’ Collaboration and Problem-Solving Skills in the Virtual Team Environment Numerous factors have contributed to the proliferation of conducting work in virtual teams at the domestic, national, and global levels: innovations in technology, critical developments in software, co-lo...

  20. Student Responses to Collaborating and Learning in a Web-based Environment.

    ERIC Educational Resources Information Center

    Oliver, R.; Omari, A.

    2001-01-01

    Describes a study which explored undergraduate students' reactions to a Web-based environment supporting problem-based learning. Findings revealed that while the majority of students saw value to be gained from learning in a student-centered, collaborative setting, many expressed preference for learning in the more conventional teacher-directed…

  1. Tracing the Change in Discourse in a Collaborative Dynamic Geometry Environment: From Visual to More Mathematical

    ERIC Educational Resources Information Center

    Oner, Diler

    2016-01-01

    This case study investigated the development of group cognition by tracing the change in mathematical discourse of a team of three middle-school students as they worked on a construction problem within a virtual collaborative dynamic geometry environment. Sfard's commognitive framework was employed to examine how the student team's word choice,…

  2. Novel collaboration and situational awareness environment for leaders and their support staff via self assembling software.

    SciTech Connect

    Bouchard, Ann Marie; Osbourn, Gordon Cecil; Bartholomew, John Warren

    2008-02-01

    This is the final report on the Sandia Fellow LDRD, project 117865, 08-0281. This presents an investigation of self-assembling software intended to create shared workspace environment to allow online collaboration and situational awareness for use by high level managers and their teams.

  3. Teaching and Learning Experiences in a Collaborative Distance-Education Environment

    ERIC Educational Resources Information Center

    Martin, Peter; Scheetz, Laura Temple

    2011-01-01

    The Great Plains Distance Education Alliance (Great Plains IDEA) emphasizes the importance of a collaborative environment for instructors and students in distance education. The authors highlight a number of important principles for distance-education programs and point out similarities and differences when compared to traditional face-face-to…

  4. Designing and Evaluating Collaboration in a Virtual Game Environment for Vocational Learning

    ERIC Educational Resources Information Center

    Hamalainen, Raija

    2008-01-01

    Especially in vocational education, attention should be paid not only to the use of new technological solutions but also to collaborative learning and cooperative working methods in order to develop students' skills for their future jobs. This study involves a design experiment including the design process of a new game environment, description of…

  5. Learner Perceptions and Recall of Small Group Discussions within 2D and 3D Collaborative Environments

    ERIC Educational Resources Information Center

    Downey, Steve; Mohler, Jill; Morris, Joan; Sanchez, Rene

    2012-01-01

    Online learning critically relies upon good communication between engaged parties in order to convey ideas, meanings, and values. Emerging technologies in collaborative virtual environments are providing new affordances in establishing greater online presence and, in turn, greater abilities to communicate and learn. This study examines how…

  6. Building of a Disaster Recovery Framework for E-Learning Environment Using Private Cloud Collaboration

    ERIC Educational Resources Information Center

    Togawa, Satoshi; Kanenishi, Kazuhide

    2014-01-01

    In this research, we have built a framework of disaster recovery such as against earthquake, tsunami disaster and a heavy floods for e-Learning environment. Especially, our proposed framework is based on private cloud collaboration. We build a prototype system based on IaaS architecture, and this prototype system is constructed by several private…

  7. Online Computer Games as Collaborative Learning Environments: Prospects and Challenges for Tertiary Education

    ERIC Educational Resources Information Center

    Papastergiou, Marina

    2009-01-01

    This study is aimed at presenting a critical overview of recent research studies on the use of educational online games as collaborative learning environments in Tertiary Education (TE), namely higher education and vocational training, with a view to identifying: a) the elements that online games should include in order to support fruitful and…

  8. Finnish Upper Secondary Students' Collaborative Processes in Learning Statistics in a CSCL Environment

    ERIC Educational Resources Information Center

    Oikarinen, Juho Kaleva; Järvelä, Sanna; Kaasila, Raimo

    2014-01-01

    This design-based research project focuses on documenting statistical learning among 16-17-year-old Finnish upper secondary school students (N = 78) in a computer-supported collaborative learning (CSCL) environment. One novel value of this study is in reporting the shift from teacher-led mathematical teaching to autonomous small-group learning in…

  9. Collaboration Modality, Cognitive Load, and Science Inquiry Learning in Virtual Inquiry Environments

    ERIC Educational Resources Information Center

    Erlandson, Benjamin E.; Nelson, Brian C.; Savenye, Wilhelmina C.

    2010-01-01

    Educational multi-user virtual environments (MUVEs) have been shown to be effective platforms for situated science inquiry curricula. While researchers find MUVEs to be supportive of collaborative scientific inquiry processes, the complex mix of multi-modal messages present in MUVEs can lead to cognitive overload, with learners unable to…

  10. Context Aware Ubiquitous Learning Environments for Peer-to-Peer Collaborative Learning

    ERIC Educational Resources Information Center

    Yang, Stephen J. H.

    2006-01-01

    A ubiquitous learning environment provides an interoperable, pervasive, and seamless learning architecture to connect, integrate, and share three major dimensions of learning resources: learning collaborators, learning contents, and learning services. Ubiquitous learning is characterized by providing intuitive ways for identifying right learning…

  11. Collaborative Blended Learning Writing Environment: Effects on EFL Students' Writing Apprehension and Writing Performance

    ERIC Educational Resources Information Center

    Challob, Ala'a Ismael; Bakar, Nadzrah Abu; Latif, Hafizah

    2016-01-01

    This study examined the effects of collaborative blended learning writing environment on students' writing apprehension and writing performance as perceived by a selected group of EFL students enrolled in one of the international schools in Malaysia. Qualitative case study method was employed using semi-structured interview, learning diaries and…

  12. Collaborative Concept Mapping in a Web-Based Learning Environment: A Pedagogic Experience in Architectural Education.

    ERIC Educational Resources Information Center

    Madrazo, Leandro; Vidal, Jordi

    2002-01-01

    Describes a pedagogical work, carried out within a school of architecture, using a Web-based learning environment to support collaborative understanding of texts on architectural theory. Explains the use of concept maps, creation of a critical vocabulary, exploration of semantic spaces, and knowledge discovery through navigation. (Author/LRW)

  13. Examining the Effect of Problem Type in a Synchronous Computer-Supported Collaborative Learning (CSCL) Environment

    ERIC Educational Resources Information Center

    Kapur, Manu; Kinzer, Charles K.

    2007-01-01

    This study investigated the effect of well- vs. ill-structured problem types on: (a) group interactional activity, (b) evolution of group participation inequities, (c) group discussion quality, and (d) group performance in a synchronous, computer-supported collaborative learning (CSCL) environment. Participants were 60 11th-grade science students…

  14. Coral-View: A Network-Based Design Environment for Collaborative Learning

    ERIC Educational Resources Information Center

    Sun, Chuen-Tsai; Lin, Sunny S. J.

    2004-01-01

    The vast majority of complex engineering tasks in today's business world are completed using a team-oriented approach. Therefore, teaching collaborative skills to university students can be viewed as a practical means of enhancing their employability. With these goals in mind, the authors developed a network environment that helps Taiwanese…

  15. Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Korte, John J.

    2003-01-01

    NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.

  16. Educating advanced level practice within complex health care workplace environments through transformational practice development.

    PubMed

    Hardy, Sally; Jackson, Carrie; Webster, Jonathan; Manley, Kim

    2013-10-01

    Over the past 20 years health care reform has influenced the development of advanced level practitioner roles and expectations. How advanced level practitioners work to survive the highly stimulating, yet sometimes overwhelming aspects of balancing high quality provision with political reform agendas, amidst economic constraint is considered. Transformational approaches (encompassing education and practice led service development) can provide, promote and 'provoke' a harnessing of complex issues workplace environment to produce creative solutions. Transformational Practice Development provides a structured, rigorous, systematic approach that practitioners, teams and health care consumers alike can utilise to achieve skills and attributes needed for successful innovation. The authors present case study materials from action orientated locally delivered Practice Development, as a complex strategic intervention approach to influence and promote advanced level practice expertise. Initiated through facilitation of transformational leadership, and resultant team based improvements, we present how strategic collaborative processes can harness work chaos and complexity to provide sustainable and productive workplace cultures of effectiveness. PMID:23453607

  17. The Effect of Audio and Visual Aids on Task Performance in Distributed Collaborative Virtual Environments

    NASA Astrophysics Data System (ADS)

    Ullah, Sehat; Richard, Paul; Otman, Samir; Mallem, Malik

    2009-03-01

    Collaborative virtual environments (CVE) has recently gained the attention of many researchers due to its numerous potential application domains. Cooperative virtual environments, where users simultaneously manipulate objects, is one of the subfields of CVEs. In this paper we present a framework that enables two users to cooperatively manipulate objects in virtual environment, while setting on two separate machines connected through local network. In addition the article presents the use of sensory feedback (audio and visual) and investigates their effects on the cooperation and user's performance. Six volunteers subject had to cooperatively perform a peg-in-hole task. Results revealed that visual and auditory aid increase users' performance. However majority of the users preferred visual feedback to audio. We hope this framework will greatly help in the development of CAD systems that allow the designers to collaboratively design while being distant. Similarly other application domains may be cooperative assembly, surgical training and rehabilitation systems.

  18. Vroom: designing an augmented environment for remote collaboration in digital cinema production

    NASA Astrophysics Data System (ADS)

    Margolis, Todd; Cornish, Tracy

    2013-03-01

    As media technologies become increasingly affordable, compact and inherently networked, new generations of telecollaborative platforms continue to arise which integrate these new affordances. Virtual reality has been primarily concerned with creating simulations of environments that can transport participants to real or imagined spaces that replace the "real world". Meanwhile Augmented Reality systems have evolved to interleave objects from Virtual Reality environments into the physical landscape. Perhaps now there is a new class of systems that reverse this precept to enhance dynamic media landscapes and immersive physical display environments to enable intuitive data exploration through collaboration. Vroom (Virtual Room) is a next-generation reconfigurable tiled display environment in development at the California Institute for Telecommunications and Information Technology (Calit2) at the University of California, San Diego. Vroom enables freely scalable digital collaboratories, connecting distributed, high-resolution visualization resources for collaborative work in the sciences, engineering and the arts. Vroom transforms a physical space into an immersive media environment with large format interactive display surfaces, video teleconferencing and spatialized audio built on a highspeed optical network backbone. Vroom enables group collaboration for local and remote participants to share knowledge and experiences. Possible applications include: remote learning, command and control, storyboarding, post-production editorial review, high resolution video playback, 3D visualization, screencasting and image, video and multimedia file sharing. To support these various scenarios, Vroom features support for multiple user interfaces (optical tracking, touch UI, gesture interface, etc.), support for directional and spatialized audio, giga-pixel image interactivity, 4K video streaming, 3D visualization and telematic production. This paper explains the design process that

  19. Environment assisted degradation mechanisms in advanced light metals

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Stoner, G. E.; Swanson, R. E.

    1989-01-01

    A multifaceted research program on the performance of advanced light metallic alloys in aggressive aerospace environments, and associated environmental failure mechanisms was initiated. The general goal is to characterize alloy behavior quantitatively and to develop predictive mechanisms for environmental failure modes. Successes in this regard will provide the basis for metallurgical optimization of alloy performance, for chemical control of aggressive environments, and for engineering life prediction with damage tolerance and long term reliability.

  20. Internet-based distributed collaborative environment for engineering education and design

    NASA Astrophysics Data System (ADS)

    Sun, Qiuli

    2001-07-01

    This research investigates the use of the Internet for engineering education, design, and analysis through the presentation of a Virtual City environment. The main focus of this research was to provide an infrastructure for engineering education, test the concept of distributed collaborative design and analysis, develop and implement the Virtual City environment, and assess the environment's effectiveness in the real world. A three-tier architecture was adopted in the development of the prototype, which contains an online database server, a Web server as well as multi-user servers, and client browsers. The environment is composed of five components, a 3D virtual world, multiple Internet-based multimedia modules, an online database, a collaborative geometric modeling module, and a collaborative analysis module. The environment was designed using multiple Intenet-based technologies, such as Shockwave, Java, Java 3D, VRML, Perl, ASP, SQL, and a database. These various technologies together formed the basis of the environment and were programmed to communicate smoothly with each other. Three assessments were conducted over a period of three semesters. The Virtual City is open to the public at www.vcity.ou.edu. The online database was designed to manage the changeable data related to the environment. The virtual world was used to implement 3D visualization and tie the multimedia modules together. Students are allowed to build segments of the 3D virtual world upon completion of appropriate undergraduate courses in civil engineering. The end result is a complete virtual world that contains designs from all of their coursework and is viewable on the Internet. The environment is a content-rich educational system, which can be used to teach multiple engineering topics with the help of 3D visualization, animations, and simulations. The concept of collaborative design and analysis using the Internet was investigated and implemented. Geographically dispersed users can build the

  1. A Web 2.0-Based Collaborative Annotation System for Enhancing Knowledge Sharing in Collaborative Learning Environments

    ERIC Educational Resources Information Center

    Su, Addison Y. S.; Yang, Stephen J. H.; Hwang, Wu-Yuin; Zhang, Jia

    2010-01-01

    A limitation of current Web-based collaborative learning is the restricted ability of students to create and share individual annotations with annotated documents. Applying Web 2.0 collaborative annotation systems and analyzing students' annotation behavior has attracted attention to improve collaborative learning. This study designed a…

  2. New Paradigms in International University/Industry/Government Cooperation. Canada-China Collaboration in Advanced Manufacturing Technologies.

    ERIC Educational Resources Information Center

    Bulgak, Akif Asil; Liquan, He

    1996-01-01

    A Chinese university and a Canadian university collaborated on an advanced manufacturing technologies project designed to address human resource development needs in China. The project featured university/industry/government partnership and attention to environmental issues. (SK)

  3. Advances in Wilms Tumor Treatment and Biology: Progress Through International Collaboration.

    PubMed

    Dome, Jeffrey S; Graf, Norbert; Geller, James I; Fernandez, Conrad V; Mullen, Elizabeth A; Spreafico, Filippo; Van den Heuvel-Eibrink, Marry; Pritchard-Jones, Kathy

    2015-09-20

    Clinical trials in Wilms tumor (WT) have resulted in overall survival rates of greater than 90%. This achievement is especially remarkable because improvements in disease-specific survival have occurred concurrently with a reduction of therapy for large patient subgroups. However, the outcomes for certain patient subgroups, including those with unfavorable histologic and molecular features, bilateral disease, and recurrent disease, remain well below the benchmark survival rate of 90%. Therapy for WT has been advanced in part by an increasingly complex risk-stratification system based on patient age; tumor stage, histology, and volume; response to chemotherapy; and loss of heterozygosity at chromosomes 1p and 16q. A consequence of this system has been the apportionment of patients into such small subgroups that only collaboration between large international WT study groups will support clinical trials that are sufficiently powered to answer challenging questions that move the field forward. This article gives an overview of the Children's Oncology Group and International Society of Pediatric Oncology approaches to WT and focuses on four subgroups (stage IV, initially inoperable, bilateral, and relapsed WT) for which international collaboration is pressing. In addition, biologic insights resulting from collaborative laboratory research are discussed. A coordinated expansion of international collaboration in both clinical trials and laboratory science will provide real opportunity to improve the treatment and outcomes for children with renal tumors on a global level. PMID:26304882

  4. CROSS DRIVE: A Collaborative and Distributed Virtual Environment for Exploitation of Atmospherical and Geological Datasets of Mars

    NASA Astrophysics Data System (ADS)

    Cencetti, Michele

    2016-07-01

    European space exploration missions have produced huge data sets of potentially immense value for research as well as for planning and operating future missions. For instance, Mars Exploration programs comprise a series of missions with launches ranging from the past to beyond present, which are anticipated to produce exceptional volumes of data which provide prospects for research breakthroughs and advancing further activities in space. These collected data include a variety of information, such as imagery, topography, atmospheric, geochemical datasets and more, which has resulted in and still demands, databases, versatile visualisation tools and data reduction methods. Such rate of valuable data acquisition requires the scientists, researchers and computer scientists to coordinate their storage, processing and relevant tools to enable efficient data analysis. However, the current position is that expert teams from various disciplines, the databases and tools are fragmented, leaving little scope for unlocking its value through collaborative activities. The benefits of collaborative virtual environments have been implemented in various industrial fields allowing real-time multi-user collaborative work among people from different disciplines. Exploiting the benefits of advanced immersive virtual environments (IVE) has been recognized as an important interaction paradigm to facilitate future space exploration. The current work is mainly aimed towards the presentation of the preliminary results coming from the CROSS DRIVE project. This research received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 607177 and is mainly aimed towards the implementation of a distributed virtual workspace for collaborative scientific discovery, mission planning and operations. The purpose of the CROSS DRIVE project is to lay foundations of collaborative European workspaces for space science. It will demonstrate the feasibility and

  5. A collaborative enterprise for multi-stakeholder participation in the advancement of quantitative imaging.

    PubMed

    Buckler, Andrew J; Bresolin, Linda; Dunnick, N Reed; Sullivan, Daniel C

    2011-03-01

    Medical imaging has seen substantial and rapid technical advances during the past decade, including advances in image acquisition devices, processing and analysis software, and agents to enhance specificity. Traditionally, medical imaging has defined anatomy, but increasingly newer, more advanced, imaging technologies provide biochemical and physiologic information based on both static and dynamic modalities. These advanced technologies are important not only for detecting disease but for characterizing and assessing change of disease with time or therapy. Because of the rapidity of these advances, research to determine the utility of quantitative imaging in either clinical research or clinical practice has not had time to mature. Methods to appropriately develop, assess, regulate, and reimburse must be established for these advanced technologies. Efficient and methodical processes that meet the needs of stakeholders in the biomedical research community, therapeutics developers, and health care delivery enterprises will ultimately benefit individual patients. To help address this, the authors formed a collaborative program-the Quantitative Imaging Biomarker Alliance. This program draws from the very successful precedent set by the Integrating the Healthcare Enterprise effort but is adapted to the needs of imaging science. Strategic guidance supporting the development, qualification, and deployment of quantitative imaging biomarkers will lead to improved standardization of imaging tests, proof of imaging test performance, and greater use of imaging to predict the biologic behavior of tissue and monitor therapy response. These, in turn, confer value to corporate stakeholders, providing incentives to bring new and innovative products to market. PMID:21339352

  6. Development and Application of the Collaborative Optimization Architecture in a Multidisciplinary Design Environment

    NASA Technical Reports Server (NTRS)

    Braun, R. D.; Kroo, I. M.

    1995-01-01

    Collaborative optimization is a design architecture applicable in any multidisciplinary analysis environment but specifically intended for large-scale distributed analysis applications. In this approach, a complex problem is hierarchically de- composed along disciplinary boundaries into a number of subproblems which are brought into multidisciplinary agreement by a system-level coordination process. When applied to problems in a multidisciplinary design environment, this scheme has several advantages over traditional solution strategies. These advantageous features include reducing the amount of information transferred between disciplines, the removal of large iteration-loops, allowing the use of different subspace optimizers among the various analysis groups, an analysis framework which is easily parallelized and can operate on heterogenous equipment, and a structural framework that is well-suited for conventional disciplinary organizations. In this article, the collaborative architecture is developed and its mathematical foundation is presented. An example application is also presented which highlights the potential of this method for use in large-scale design applications.

  7. Integrating interprofessional collaboration skills into the advanced practice registered nurse socialization process.

    PubMed

    Farrell, Kathleen; Payne, Camille; Heye, Mary

    2015-01-01

    The emergence of interprofessional collaboration and practice as a means to provide patient-centered care and to decrease the current fragmentation of health care services in the 21st century provides a clear and unique opportunity for the advanced practice registered nurse (APRN) to assume a key role. For APRNs and other health care providers, to participate effectively as team members requires an interprofessional mindset. Development of interprofessional skills and knowledge for the APRN has been hindered by a silo approach to APRN role socialization. The Institute of Medicine Report (IOM; 2010) states that current health care systems should focus on team collaboration to deliver accessible, high-quality, patient-centered health care that addresses wellness and prevention of illness and adverse events, management of chronic illness, and increased capacity of all providers on the team. The purpose of this article is to demonstrate the need to incorporate interprofessional education (IPE) into the socialization models used in advanced practice nursing programs. IPE requires moving beyond profession-specific educational efforts to engage students of different health care professions in interactive learning. Being able to work effectively as member of a clinical team while a student is a fundamental part of that learning (Interprofessional Education Collaborative Expert Panel, 2011). The objective of IPE curriculum models in graduate nursing programs is to educate APRNs in the development of an interprofessional mindset. Interprofessional collaboration and coordination are needed to achieve seamless transitions for patients between providers, specialties, and health care settings (IOM, 2010). Achieving the vision requires the continuous development of interprofessional competencies by APRNs as part of the learning process, so that upon entering the workforce, APRNs are ready to practice effective teamwork and team-based care. Socialization of the professional APRN

  8. Arctic Collaborative Environment: A New Multi-National Partnership for Arctic Science and Decision Support

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A,; Kress, Martin P.; McCracken, Jeff E.; Spehn, Stephen L.; Tanner, Steve

    2011-01-01

    The Arctic Collaborative Environment (ACE) project is a new international partnership for information sharing to meet the challenges of addressing Arctic. The goal of ACE is to create an open source, web-based, multi-national monitoring, analysis, and visualization decision-support system for Arctic environmental assessment, management, and sustainability. This paper will describe the concept, system architecture, and data products that are being developed and disseminated among partners and independent users through remote access.

  9. A hardware and software architecture to deal with multimodal and collaborative interactions in multiuser virtual reality environments

    NASA Astrophysics Data System (ADS)

    Martin, P.; Tseu, A.; Férey, N.; Touraine, D.; Bourdot, P.

    2014-02-01

    Most advanced immersive devices provide collaborative environment within several users have their distinct head-tracked stereoscopic point of view. Combining with common used interactive features such as voice and gesture recognition, 3D mouse, haptic feedback, and spatialized audio rendering, these environments should faithfully reproduce a real context. However, even if many studies have been carried out on multimodal systems, we are far to definitively solve the issue of multimodal fusion, which consists in merging multimodal events coming from users and devices, into interpretable commands performed by the application. Multimodality and collaboration was often studied separately, despite of the fact that these two aspects share interesting similarities. We discuss how we address this problem, thought the design and implementation of a supervisor that is able to deal with both multimodal fusion and collaborative aspects. The aim of this supervisor is to ensure the merge of user's input from virtual reality devices in order to control immersive multi-user applications. We deal with this problem according to a practical point of view, because the main requirements of this supervisor was defined according to a industrial task proposed by our automotive partner, that as to be performed with multimodal and collaborative interactions in a co-located multi-user environment. In this task, two co-located workers of a virtual assembly chain has to cooperate to insert a seat into the bodywork of a car, using haptic devices to feel collision and to manipulate objects, combining speech recognition and two hands gesture recognition as multimodal instructions. Besides the architectural aspect of this supervisor, we described how we ensure the modularity of our solution that could apply on different virtual reality platforms, interactive contexts and virtual contents. A virtual context observer included in this supervisor in was especially designed to be independent to the

  10. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-06-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.

  11. Surgeon-nurse anesthetist collaboration advanced surgery between 1889 and 1950.

    PubMed

    Koch, Bruce Evan

    2015-03-01

    To meet the need for qualified anesthetists, American surgeons recruited nurses to practice anesthesia during the Civil War and in the latter half of the 19th century. The success of this decision led them to collaborate with nurses more formally at the Mayo Clinic in Minnesota. During the 1890s, Alice Magaw refined the safe administration of ether. Florence Henderson continued her work improving the safety of ether administration during the first decade of the 20th century. Safe anesthesia enabled the Mayo surgeons to turn the St. Mary's Hospital into a surgical powerhouse. The prominent surgeon George Crile collaborated with Agatha Hodgins at the Lakeside Hospital in Cleveland to introduce nitrous oxide/oxygen anesthesia. Nitrous oxide/oxygen caused less cardiovascular depression than ether and thus saved the lives of countless trauma victims during World War I. Crile devised "anoci-association," an outgrowth of nitrous oxide/oxygen anesthesia. Hodgins' use of anoci-association made Crile's thyroid operations safer. Pioneering East Coast surgeons followed the lead of the surgeons at Mayo. William Halsted worked closely with Margaret Boise, and Harvey Cushing worked closely with Gertrude Gerard. As medicine became more complex, collaboration between surgeons and nurse anesthetists became routine and necessary. Teams of surgeons and nurse anesthetists advanced thoracic, cardiovascular, and pediatric surgery. The team of Evarts Graham and Helen Lamb performed the world's first pneumonectomy. Surgeon-nurse anesthetist collaboration seems to have been a uniquely American phenomenon. This collaboration facilitated both the "Golden Age of Surgery" and the profession we know today as nurse anesthesia. PMID:25695581

  12. Designing new collaborative learning spaces in clinical environments: experiences from a children's hospital in Australia.

    PubMed

    Bines, Julie E; Jamieson, Peter

    2013-09-01

    Hospitals are complex places that provide a rich learning environment for students, staff, patients and their families, professional groups and the community. The "new" Royal Children's Hospital opened in late 2011. Its mission is focused on improving health and well-being of children and adolescents through leadership in healthcare, research and education. Addressing the need to create "responsive learning environments" aligned with the shift to student-centred pedagogy, two distinct learning environments were developed within the new Royal Children's Hospital; (i) a dedicated education precinct providing a suite of physical environments to promote a more active, collaborative and social learning experience for education and training programs conducted on the Royal Children's Hospital campus and (ii) a suite of learning spaces embedded within clinical areas so that learning becomes an integral part of the daily activities of this busy Hospital environment. The aim of this article is to present the overarching educational principles that lead the design of these learning spaces and describe the opportunities and obstacles encountered in the development of collaborative learning spaces within a large hospital development. PMID:23701214

  13. Understanding social collaboration between actors and technology in an automated and digitised deep mining environment.

    PubMed

    Sanda, M-A; Johansson, J; Johansson, B; Abrahamsson, L

    2011-10-01

    The purpose of this article is to develop knowledge and learning on the best way to automate organisational activities in deep mines that could lead to the creation of harmony between the human, technical and the social system, towards increased productivity. The findings showed that though the introduction of high-level technological tools in the work environment disrupted the social relations developed over time amongst the employees in most situations, the technological tools themselves became substitute social collaborative partners to the employees. It is concluded that, in developing a digitised mining production system, knowledge of the social collaboration between the humans (miners) and the technology they use for their work must be developed. By implication, knowledge of the human's subject-oriented and object-oriented activities should be considered as an important integral resource for developing a better technological, organisational and human interactive subsystem when designing the intelligent automation and digitisation systems for deep mines. STATEMENT OF RELEVANCE: This study focused on understanding the social collaboration between humans and the technologies they use to work in underground mines. The learning provides an added knowledge in designing technologies and work organisations that could better enhance the human-technology interactive and collaborative system in the automation and digitisation of underground mines. PMID:21973002

  14. Architecture for an advanced biomedical collaboration domain for the European paediatric cancer research community (ABCD-4-E).

    PubMed

    Nitzlnader, Michael; Falgenhauer, Markus; Gossy, Christian; Schreier, Günter

    2015-01-01

    Today, progress in biomedical research often depends on large, interdisciplinary research projects and tailored information and communication technology (ICT) support. In the context of the European Network for Cancer Research in Children and Adolescents (ENCCA) project the exchange of data between data source (Source Domain) and data consumer (Consumer Domain) systems in a distributed computing environment needs to be facilitated. This work presents the requirements and the corresponding solution architecture of the Advanced Biomedical Collaboration Domain for Europe (ABCD-4-E). The proposed concept utilises public as well as private cloud systems, the Integrating the Healthcare Enterprise (IHE) framework and web-based applications to provide the core capabilities in accordance with privacy and security needs. The utility of crucial parts of the concept was evaluated by prototypic implementation. A discussion of the design indicates that the requirements of ENCCA are fully met. A whole system demonstration is currently being prepared to verify that ABCD-4-E has the potential to evolve into a domain-bridging collaboration platform in the future. PMID:26063273

  15. Harsh environment sensor development for advanced energy systems

    NASA Astrophysics Data System (ADS)

    Romanosky, Robert R.; Maley, Susan M.

    2013-05-01

    Highly efficient, low emission power systems have extreme conditions of high temperature, high pressure, and corrosivity that require monitoring. Sensing in these harsh environments can provide key information that directly impacts process control and system reliability. To achieve the goals and demands of clean energy, the conditions under which fossil fuels are converted into heat and power are harsh compared to traditional combustion/steam cycles. Temperatures can extend as high as 1600 Celsius (°C) in certain systems and pressures can reach as high as 5000 pounds per square inch (psi)/340 atmospheres (atm). The lack of suitable measurement technology serves as a driver for the innovations in harsh environment sensor development. Two major considerations in the development of harsh environments sensors are the materials used for sensing and the design of the sensing device. This paper will highlight the U.S. Department of Energy's, Office of Fossil Energy and National Energy Technology Laboratory's Program in advanced sensing concepts that are aimed at addressing the technology needs and drivers through the development of new sensor materials and designs capable of withstanding harsh environment conditions. Recent developments with harsh environment sensors will be highlighted and future directions towards in advanced sensing will be introduced.

  16. Joining teleoperation with robotics for advanced manipulation in hostile environments

    SciTech Connect

    Martin, H.L.; Hamel, W.R.

    1984-01-01

    Manipulators have been used for many years to perform remote handling tasks in hazardous environments. The development history of teleoperators is reviewed, and applications around the world are summarized. The effect of computer supervisory control is discussed, and similarities between robots and teleoperator research activities are delineated. With improved control strategies and system designs, combination of positive attributes of robots with teleoperators will lead to advanced machines capable of autonomy in unstructured environments. This concept of a telerobot is introduced as a goal for future activities.

  17. The Nature of the Discourse in Web-Based Collaborative Learning Environments: Case Studies from Four Different Countries

    ERIC Educational Resources Information Center

    Veermans, M.; Cesareni, D.

    2005-01-01

    The present paper describes a series of case studies of collaborative learning supported by two web-based learning environments: Synergeia2 and FLE3. The case studies were conducted in Finland, Greece, Italy, and the Netherlands as a part of international project called Innovative Technologies for Collaborative Learning. The general aim of this…

  18. The Effects of Cooperative and Collaborative Strategies on Student Achievement and Satisfaction in Blended and Online Learning Environments

    ERIC Educational Resources Information Center

    Nickel, Christine E.

    2010-01-01

    The purpose of this study was to examine whether cooperative versus collaborative strategies used for a group project had differential effects on students' achievement, process and solution satisfaction, value and preference for collaboration, and perceptions of community of inquiry in online and blended environments. The study sample consisted of…

  19. Collaborative Visualization Project: shared-technology learning environments for science learning

    NASA Astrophysics Data System (ADS)

    Pea, Roy D.; Gomez, Louis M.

    1993-01-01

    Project-enhanced science learning (PESL) provides students with opportunities for `cognitive apprenticeships' in authentic scientific inquiry using computers for data-collection and analysis. Student teams work on projects with teacher guidance to develop and apply their understanding of science concepts and skills. We are applying advanced computing and communications technologies to augment and transform PESL at-a-distance (beyond the boundaries of the individual school), which is limited today to asynchronous, text-only networking and unsuitable for collaborative science learning involving shared access to multimedia resources such as data, graphs, tables, pictures, and audio-video communication. Our work creates user technology (a Collaborative Science Workbench providing PESL design support and shared synchronous document views, program, and data access; a Science Learning Resource Directory for easy access to resources including two-way video links to collaborators, mentors, museum exhibits, media-rich resources such as scientific visualization graphics), and refine enabling technologies (audiovisual and shared-data telephony, networking) for this PESL niche. We characterize participation scenarios for using these resources and we discuss national networked access to science education expertise.

  20. Perfecting Scientists' Collaboration and Problem-Solving Skills in the Virtual Team Environment

    NASA Astrophysics Data System (ADS)

    Jabro, A.; Jabro, J.

    2012-04-01

    PPerfecting Scientists' Collaboration and Problem-Solving Skills in the Virtual Team Environment Numerous factors have contributed to the proliferation of conducting work in virtual teams at the domestic, national, and global levels: innovations in technology, critical developments in software, co-located research partners and diverse funding sources, dynamic economic and political environments, and a changing workforce. Today's scientists must be prepared to not only perform work in the virtual team environment, but to work effectively and efficiently despite physical and cultural barriers. Research supports that students who have been exposed to virtual team experiences are desirable in the professional and academic arenas. Research supports establishing and maintaining established protocols for communication behavior prior to task discussion provides for successful team outcomes. Research conducted on graduate and undergraduate virtual teams' behaviors led to the development of successful pedagogic practices and assessment strategies.

  1. The Role of the Constructivist Learning Theory and Collaborative Learning Environment on Wiki Classroom, and the Relationship between Them

    ERIC Educational Resources Information Center

    Alzahrani, Ibraheem; Woollard, John

    2013-01-01

    This paper seeks to discover the relationship between both the social constructivist learning theory and the collaborative learning environment. This relationship can be identified by giving an example of the learning environment. Due to wiki characteristics, Wiki technology is one of the most famous learning environments that can show the…

  2. Detection of Anomalous Insiders in Collaborative Environments via Relational Analysis of Access Logs

    PubMed Central

    Chen, You; Malin, Bradley

    2014-01-01

    Collaborative information systems (CIS) are deployed within a diverse array of environments, ranging from the Internet to intelligence agencies to healthcare. It is increasingly the case that such systems are applied to manage sensitive information, making them targets for malicious insiders. While sophisticated security mechanisms have been developed to detect insider threats in various file systems, they are neither designed to model nor to monitor collaborative environments in which users function in dynamic teams with complex behavior. In this paper, we introduce a community-based anomaly detection system (CADS), an unsupervised learning framework to detect insider threats based on information recorded in the access logs of collaborative environments. CADS is based on the observation that typical users tend to form community structures, such that users with low a nity to such communities are indicative of anomalous and potentially illicit behavior. The model consists of two primary components: relational pattern extraction and anomaly detection. For relational pattern extraction, CADS infers community structures from CIS access logs, and subsequently derives communities, which serve as the CADS pattern core. CADS then uses a formal statistical model to measure the deviation of users from the inferred communities to predict which users are anomalies. To empirically evaluate the threat detection model, we perform an analysis with six months of access logs from a real electronic health record system in a large medical center, as well as a publicly-available dataset for replication purposes. The results illustrate that CADS can distinguish simulated anomalous users in the context of real user behavior with a high degree of certainty and with significant performance gains in comparison to several competing anomaly detection models. PMID:25485309

  3. Towards Modeling a Collaborative Environment for Extension of Professional Active Life

    NASA Astrophysics Data System (ADS)

    Afsarmanesh, Hamideh; Camarinha-Matos, Luis

    Progress on computer networks is offering new conditions for individuals to remain active after their retirement. Furthermore, the scarcity of human resources and the increasing percentage of elder professionals in Europe have catalyzed the formation of a new type of collaborative community referred to as community of active senior professionals (CASP). These new networks aim to support retired professionals with their participation in socio-economic activities and thus remaining professionally active. As such, identification of their specificities as well as developing a descriptive model of CASPs is challenging. This paper characterizes the CASP environments and performs a first attempt towards identifying and modeling their constituent elements.

  4. Opinions, Conflicts, and Consensus: Modeling Social Dynamics in a Collaborative Environment

    NASA Astrophysics Data System (ADS)

    Török, János; Iñiguez, Gerardo; Yasseri, Taha; San Miguel, Maxi; Kaski, Kimmo; Kertész, János

    2013-02-01

    Information-communication technology promotes collaborative environments like Wikipedia where, however, controversy and conflicts can appear. To describe the rise, persistence, and resolution of such conflicts, we devise an extended opinion dynamics model where agents with different opinions perform a single task to make a consensual product. As a function of the convergence parameter describing the influence of the product on the agents, the model shows spontaneous symmetry breaking of the final consensus opinion represented by the medium. In the case when agents are replaced with new ones at a certain rate, a transition from mainly consensus to a perpetual conflict occurs, which is in qualitative agreement with the scenarios observed in Wikipedia.

  5. Advancing Geospatial Technologies in Science and Social Science: A Case Study in Collaborative Education

    NASA Astrophysics Data System (ADS)

    Williams, N. A.; Morris, J. N.; Simms, M. L.; Metoyer, S.

    2007-12-01

    The Advancing Geospatial Skills in Science and Social Sciences (AGSSS) program, funded by NSF, provides middle and high school teacher-partners with access to graduate student scientists for classroom collaboration and curriculum adaptation to incorporate and advance skills in spatial thinking. AGSSS Fellows aid in the delivery of geospatially-enhanced activities utilizing technology such as geographic information systems, remote sensing, and virtual globes. The partnership also provides advanced professional development for both participating teachers and fellows. The AGSSS program is mutually beneficial to all parties involved. This successful collaboration of scientists, teachers, and students results in greater understanding and enthusiasm for the use of spatial thinking strategies and geospatial technologies. In addition, the partnership produces measurable improvements in student efficacy and attitudes toward processes of spatial thinking. The teacher partner training and classroom resources provided by AGSSS will continue the integration of geospatial activities into the curriculum after the project concludes. Time and resources are the main costs in implementing this partnership. Graduate fellows invest considerable time and energy, outside of academic responsibilities, to develop materials for the classroom. Fellows are required to be available during K-12 school hours, which necessitates forethought in scheduling other graduate duties. However, the benefits far outweigh the costs. Graduate fellows gain experience in working in classrooms. In exchange, students gain exposure to working scientists and their research. This affords graduate fellows the opportunity to hone their communication skills, and specifically allows them to address the issue of translating technical information for a novice audience. Teacher-partners and students benefit by having scientific expertise readily available. In summation, these experiences result in changes in teacher

  6. Using Advanced Scientific Diving Technologies to Assess the Underwater Environment

    SciTech Connect

    Southard, John A.; Williams, Greg D.; Sargeant, Susan L.; Diefenderfer, Heida L.; Blanton, Michael L.

    2003-03-31

    Scientific diving can provide unique information for addressing complex environmental issues in the marine environment and is applied to a variety of increasingly important issues throughout Puget Sound, including habitat degradation, endangered species, biological availability of contaminants, and the effects of overwater structures and shoreline protection features. The Pacific Northwest National Laboratory, Battelle Marine Sciences Laboratory uses trained scientific divers in conjunction with advanced technologies to collect in-situ information best obtained through direct observation and requiring minimal environmental disturbance. For example, advances in underwater communications allow divers to discuss observations and data collection techniques in real time, both with each other and with personnel on the surface. Other examples include the use of Dual frequency IDentification SONar (DIDSON), an underwater camera used to capture digital images of benthic structures, fish, and organisms during low light and high turbidity levels; the use of voice-narrated underwater video; and the development of sediment collection methods yielding one-meter cores. The combination of using trained scientific SCUBA divers and advanced underwater technologies is a key element in addressing multifaceted environmental problems, resulting in a more comprehensive understanding of the underwater environment and more reliable data with which to make resource management decisions.

  7. Cloud hosting of the IPython Notebook to Provide Collaborative Research Environments for Big Data Analysis

    NASA Astrophysics Data System (ADS)

    Kershaw, Philip; Lawrence, Bryan; Gomez-Dans, Jose; Holt, John

    2015-04-01

    We explore how the popular IPython Notebook computing system can be hosted on a cloud platform to provide a flexible virtual research hosting environment for Earth Observation data processing and analysis and how this approach can be expanded more broadly into a generic SaaS (Software as a Service) offering for the environmental sciences. OPTIRAD (OPTImisation environment for joint retrieval of multi-sensor RADiances) is a project funded by the European Space Agency to develop a collaborative research environment for Data Assimilation of Earth Observation products for land surface applications. Data Assimilation provides a powerful means to combine multiple sources of data and derive new products for this application domain. To be most effective, it requires close collaboration between specialists in this field, land surface modellers and end users of data generated. A goal of OPTIRAD then is to develop a collaborative research environment to engender shared working. Another significant challenge is that of data volume and complexity. Study of land surface requires high spatial and temporal resolutions, a relatively large number of variables and the application of algorithms which are computationally expensive. These problems can be addressed with the application of parallel processing techniques on specialist compute clusters. However, scientific users are often deterred by the time investment required to port their codes to these environments. Even when successfully achieved, it may be difficult to readily change or update. This runs counter to the scientific process of continuous experimentation, analysis and validation. The IPython Notebook provides users with a web-based interface to multiple interactive shells for the Python programming language. Code, documentation and graphical content can be saved and shared making it directly applicable to OPTIRAD's requirements for a shared working environment. Given the web interface it can be readily made into a hosted

  8. Catchment Prediction In Changing Environments (CAPICHE): A collaborative experiment in an open water science laboratory

    NASA Astrophysics Data System (ADS)

    Hutton, Christopher; Wagener, Thorsten; Freer, Jim; Han, Dawei

    2015-04-01

    Predicting the function of hydrological systems under near-stationary conditions faces a number of challenges due to incomplete system understanding, and uncertainty in models and measurements. However, due to changes in climate, land use/land cover, and water demand, the hydrological function of many catchments cannot be considered as stationary. Such changes make modelling catchment systems more difficult, as models need to account for non-stationary forcing and boundary conditions, which in turn can change internal catchment function, and the states and processes that dominate hydrological response. In addition, such models may need to be used to make predictions beyond a range of conditions for which they were originally calibrated. Despite these problems, deriving accurate hydrological predictions under changing conditions is increasingly important for future water resource and flood hazard assessment. Simulating catchments under changing conditions may require more complex distributed models in order to adequately represent spatial changes in boundary conditions (e.g. land cover change). However, the potential for complex models to address these issues cannot be realised in many places because of data problems, which may result from a lack of data, data access issues, and time-consuming problems in bringing diverse sources of data together and into a useable format. A greater understanding of the link between model complexity and data is required to make appropriate modelling choices. Virtual water science laboratories offer the ideal opportunity to explore the issues of model complexity and data availability in the context of predictions under changing environments because they: (1) provide an opportunity to share open data; (2) provide a platform to compare different models; (3) facilitate collaboration between different modelling research groups. This paper introduces a new collaborative experiment, conducted in an open virtual water science laboratory as

  9. NOSTOS: a paper-based ubiquitous computing healthcare environment to support data capture and collaboration.

    PubMed

    Bång, Magnus; Larsson, Anders; Eriksson, Henrik

    2003-01-01

    In this paper, we present a new approach to clinical workplace computerization that departs from the window-based user interface paradigm. NOSTOS is an experimental computer-augmented work environment designed to support data capture and teamwork in an emergency room. NOSTOS combines multiple technologies, such as digital pens, walk-up displays, headsets, a smart desk, and sensors to enhance an existing paper-based practice with computer power. The physical interfaces allow clinicians to retain mobile paper-based collaborative routines and still benefit from computer technology. The requirements for the system were elicited from situated workplace studies. We discuss the advantages and disadvantages of augmenting a paper-based clinical work environment. PMID:14728131

  10. NOSTOS: A Paper–Based Ubiquitous Computing Healthcare Environment to Support Data Capture and Collaboration

    PubMed Central

    Bång, Magnus; Larsson, Anders; Eriksson, Henrik

    2003-01-01

    In this paper, we present a new approach to clinical workplace computerization that departs from the window–based user interface paradigm. NOSTOS is an experimental computer–augmented work environment designed to support data capture and teamwork in an emergency room. NOSTOS combines multiple technologies, such as digital pens, walk–up displays, headsets, a smart desk, and sensors to enhance an existing paper–based practice with computer power. The physical interfaces allow clinicians to retain mobile paper–based collaborative routines and still benefit from computer technology. The requirements for the system were elicited from situated workplace studies. We discuss the advantages and disadvantages of augmenting a paper–based clinical work environment. PMID:14728131

  11. Advanced coating lining systems for challenging chemical environments

    SciTech Connect

    Brupbacher, J.M.; Stiles, J.E.

    1997-08-01

    Advanced coatings and coating lining systems are being increasingly used by industry to protect process equipment in challenging chemical environments. This includes not only severe corrosive liquors encountered in many Chemical Process Industry streams, but also the high purity process liquors and rinse systems of the pharmaceutical and microelectronics industries. This paper discusses the design options for optimizing the performance of fluoropolymer-based coating systems for industry-specific applications such as these. Design factors discussed will include surface pre-treatment options, chemical and mechanical bonding systems, field-proven and advanced polymer barrier coatings, homogeneous and graded polymer barrier stacks, and imbedded permeation barriers. The processing techniques for applying engineered coatings will be discussed since processing also plays an important role in the design options available to individual coating applicators and ultimate performance of the coating system applied. Several case studies will be presented and discussed.

  12. Analysis of Special Nuclear Material (SNM) detection and interdiction using a collaborative constructive simulation environment

    NASA Astrophysics Data System (ADS)

    Hendrix, Lee A.; Calman, Jack; Fisher, Brian M.; Kay, Stephen W.; Lavelle, Christopher M.; Mayo, Robert M.; Miller, Bruce E.; Ruben, Katherine M.; West, Roger L.

    2012-05-01

    The acquisition of systems to locate and interdict Special Nuclear Material (SNM) is significantly enhanced when trade space analysis of and CONOPS development for various proposed sensor systems is performed using realistic operational scenarios in a synthetic simulation environment. To this end, the U. S. Defense Threat Reduction Agency (DTRA) has developed a collaborative constructive simulation environment hosted at the DTRA Center at Ft. Belvoir, VA. The simulation environment includes a suite of modeling and simulation (M&S) tools, scenario vignette representations, geographic information databases, and authoritative sensor system representations. Currently focused on modeling the detection and interdiction of in-transit SNM, the M&S tools include the Monte Carlo N-Particle (MCNP) simulation for detailed nuclear transport calculations and the JHU/APL enhanced Joint Semi-Automated Forces (JSAF) synthetic simulation environment and several associated High-Level Architecture (HLA) federate simulations for engagement-level vignette executions. This presentation will focus on the JHU/APL enhancements to JSAF which have enabled the execution of SNM detection vignettes. These enhancements include the addition of a user-configurable Radioactive Material (RM) module for representation of SNM objects, a user-configurable RM Detection Module to represent operational and notional gamma and neutron detectors, a Radiation Attenuation Module to calculate net emissions at the detector face in the dynamic JSAF environment, and an RM Stimulation Module to represent notional proton and photon beam systems in active interrogation scenarios.

  13. Designing a Collaborative Problem Solving Environment for Integrated Water Resource Modeling

    SciTech Connect

    Thurman, David A.; Cowell, Andrew J.; Taira, Randal Y.; Frodge, Jonathan

    2004-06-14

    We report on our approach for designing a collaborative problem solving environment for hydrologists, water quality planners and natural resource managers, all roles within a natural resource management agency and stakeholders in an integrated water resource management process. We describe our approach in context of the Integrated Water Resource Modeling System (IWRMS), under development by Pacific Northwest National Laboratory for the Department of Natural Resources and Parks in King County, Washington. This system will integrate a collection of water resource models (watersheds, rivers, lakes, estuaries) to provide the ability to address water, land use, and other natural resource management decisions and scenarios, with the goal of developing an integrated modeling capability to address future land use and resource management scenarios and provide scientific support to decision makers. Here, we discuss the five-step process used to ascertain the (potentially opposing) needs and interests of stakeholders and provide results and summaries from our experiences. The results of this process guide user interface design efforts to create a collaborative problems solving environment supporting multiple users with differing scientific backgrounds and modeling needs. We conclude with a discussion of participatory interface design methods used to encourage stakeholder involvement and acceptance of the system as well as the lessons learned to date.

  14. Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry

    NASA Astrophysics Data System (ADS)

    Sun, Daner; Looi, Chee-Kit

    2013-02-01

    The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as develop critical learning skills through model-based collaborative inquiry approach. It is intended to support collaborative inquiry, real-time social interaction, progressive modeling, and to provide multiple sources of scaffolding for students. We first discuss the theoretical underpinnings for synthesizing the WiMVT design framework, introduce the components and features of the system, and describe the proposed work flow of WiMVT instruction. We also elucidate our research approach that supports the development of the system. Finally, the findings of a pilot study are briefly presented to demonstrate of the potential for learning efficacy of the WiMVT implementation in science learning. Implications are drawn on how to improve the existing system, refine teaching strategies and provide feedback to researchers, designers and teachers. This pilot study informs designers like us on how to narrow the gap between the learning environment's intended design and its actual usage in the classroom.

  15. Analyzing Collaborative Learning Processes Automatically: Exploiting the Advances of Computational Linguistics in Computer-Supported Collaborative Learning

    ERIC Educational Resources Information Center

    Rose, Carolyn; Wang, Yi-Chia; Cui, Yue; Arguello, Jaime; Stegmann, Karsten; Weinberger, Armin; Fischer, Frank

    2008-01-01

    In this article we describe the emerging area of text classification research focused on the problem of collaborative learning process analysis both from a broad perspective and more specifically in terms of a publicly available tool set called TagHelper tools. Analyzing the variety of pedagogically valuable facets of learners' interactions is a…

  16. The viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames

    NASA Technical Reports Server (NTRS)

    Clipson, Colin

    1994-01-01

    This paper will review and summarize research initiatives conducted between 1987 and 1992 at NASA Ames Research Center by a research team from the University of Michigan Architecture Research Laboratory. These research initiatives, funded by a NASA grant NAG2-635, examined the viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames in California. Collaborative Research Environments are envisioned as a way of enhancing the work of NASA research teams, optimizing the use of shared resources, and providing superior environments for housing research activities. The Integrated Simulation Project at NASA, Ames Human Performance Research Laboratory is one of the current realizations of this initiative.

  17. HydroShare: An online, collaborative environment for the sharing of hydrologic data and models (Invited)

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D.; Goodall, J. L.; Band, L. E.; Merwade, V.; Couch, A.; Arrigo, J.; Hooper, R. P.; Valentine, D. W.; Maidment, D. R.

    2013-12-01

    HydroShare is an online, collaborative system being developed for sharing hydrologic data and models. The goal of HydroShare is to enable scientists to easily discover and access data and models, retrieve them to their desktop or perform analyses in a distributed computing environment that may include grid, cloud or high performance computing model instances as necessary. Scientists may also publish outcomes (data, results or models) into HydroShare, using the system as a collaboration platform for sharing data, models and analyses. HydroShare is expanding the data sharing capability of the CUAHSI Hydrologic Information System by broadening the classes of data accommodated, creating new capability to share models and model components, and taking advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. One of the fundamental concepts in HydroShare is that of a Resource. All content is represented using a Resource Data Model that separates system and science metadata and has elements common to all resources as well as elements specific to the types of resources HydroShare will support. These will include different data types used in the hydrology community and models and workflows that require metadata on execution functionality. HydroShare will use the integrated Rule-Oriented Data System (iRODS) to manage federated data content and perform rule-based background actions on data and model resources, including parsing to generate metadata catalog information and the execution of models and workflows. This presentation will introduce the HydroShare functionality developed to date, describe key elements of the Resource Data Model and outline the roadmap for future development.

  18. 76 FR 32364 - Collaboration in Regulatory Science and Capacity To Advance Global Access to Safe Vaccines and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ...The Food and Drug Administration (FDA) announces its intention to accept and consider a single source application for award of a cooperative agreement to the World Health Organization (WHO) in support of collaboration in regulatory science and capacity of National Regulatory Authorities (NRAs) to advance global access to safe and effective vaccines and other biologicals that meet international......

  19. WHIPPET: a collaborative software environment for medical image processing and analysis

    NASA Astrophysics Data System (ADS)

    Hu, Yangqiu; Haynor, David R.; Maravilla, Kenneth R.

    2007-03-01

    While there are many publicly available software packages for medical image processing, making them available to end users in clinical and research labs remains non-trivial. An even more challenging task is to mix these packages to form pipelines that meet specific needs seamlessly, because each piece of software usually has its own input/output formats, parameter sets, and so on. To address these issues, we are building WHIPPET (Washington Heterogeneous Image Processing Pipeline EnvironmenT), a collaborative platform for integrating image analysis tools from different sources. The central idea is to develop a set of Python scripts which glue the different packages together and make it possible to connect them in processing pipelines. To achieve this, an analysis is carried out for each candidate package for WHIPPET, describing input/output formats, parameters, ROI description methods, scripting and extensibility and classifying its compatibility with other WHIPPET components as image file level, scripting level, function extension level, or source code level. We then identify components that can be connected in a pipeline directly via image format conversion. We set up a TWiki server for web-based collaboration so that component analysis and task request can be performed online, as well as project tracking, knowledge base management, and technical support. Currently WHIPPET includes the FSL, MIPAV, FreeSurfer, BrainSuite, Measure, DTIQuery, and 3D Slicer software packages, and is expanding. Users have identified several needed task modules and we report on their implementation.

  20. Advanced Engineering Environment FY09/10 pilot project.

    SciTech Connect

    Lamph, Jane Ann; Kiba, Grant W.; Pomplun, Alan R.; Dutra, Edward G.; Sego, Abraham L.

    2010-06-01

    The Advanced Engineering Environment (AEE) project identifies emerging engineering environment tools and assesses their value to Sandia National Laboratories and our partners in the Nuclear Security Enterprise (NSE) by testing them in our design environment. This project accomplished several pilot activities, including: the preliminary definition of an engineering bill of materials (BOM) based product structure in the Windchill PDMLink 9.0 application; an evaluation of Mentor Graphics Data Management System (DMS) application for electrical computer-aided design (ECAD) library administration; and implementation and documentation of a Windchill 9.1 application upgrade. The project also supported the migration of legacy data from existing corporate product lifecycle management systems into new classified and unclassified Windchill PDMLink 9.0 systems. The project included two infrastructure modernization efforts: the replacement of two aging AEE development servers for reliable platforms for ongoing AEE project work; and the replacement of four critical application and license servers that support design and engineering work at the Sandia National Laboratories/California site.

  1. Advancing cancer control research in an emerging news media environment.

    PubMed

    Smith, Katherine C; Niederdeppe, Jeff; Blake, Kelly D; Cappella, Joseph N

    2013-12-01

    Cancer is both highly feared and highly newsworthy, and there is a robust body of research documenting the content and effects of cancer news coverage on health behaviors and policy. Recent years have witnessed ongoing, transformative shifts in American journalism alongside rapid advances in communication technology and the public information environment. These changes create a pressing need to consider a new set of research questions, sampling strategies, measurement techniques, and theories of media effects to ensure continued relevance and adaptation of communication research to address critical cancer control concerns. This paper begins by briefly reviewing what we know about the role of cancer news in shaping cancer-related beliefs, attitudes, behaviors, and policies. We then outline challenges and opportunities, both theoretical and methodological, posed by the rapidly changing news media environment and the nature of audience engagement. We organize our discussion around three major shifts associated with the emerging news media environment as it relates to health communication: 1) speed and dynamism of news diffusion, 2) increased narrowcasting of media content for specialized audiences, and 3) broadened participation in shaping media content. In so doing, we articulate a set of questions for future theory and research, in an effort to catalyze innovative communication scholarship to improve cancer prevention and control. PMID:24395988

  2. A collaborative working environment for small group meetings in Second Life.

    PubMed

    da Silva, Cintia Rc; Garcia, Ana Cristina B

    2013-01-01

    This paper presents the SLMeetingRoom, a virtual reality online environment to support group meetings of geographically dispersed participants. A prototype was developed to demonstrate the feasibility of the approach using the Second Life platform. Ten additional components had to be added to Second Life environment to support group work essential activities such as participants' communication, tasks' and participants' coordination, participants' collaboration and work evolution's perception. Empirical studies, both pilot and experiment, were developed comparing four different meeting settings: face-to-face, videoconference, stand Second Life and SLMeetingRoom. The study involved graduate students enrolled in the Interface and Multimedia discipline at the Fluminense Federal University (UFF) in Brazil. Results indicated that groups working within SLMeetingRoom environment presented similar results as face-to-face meeting as far as sense of presence is concerned and with low cognitive effort. Task completion and degree of participation were not affected by the meeting set up. It was concluded that Second Life, in conjunction with the SLMeetingRoom components, is a good tool for holding synchronous remote meetings and coexists with other electronic meeting technologies. PMID:23961384

  3. Teaching and learning experiences in a collaborative distance-education environment.

    PubMed

    Martin, Peter; Scheetz, Laura Temple

    2011-01-01

    The Great Plains Distance Education Alliance (Great Plains IDEA) emphasizes the importance of a collaborative environment for instructors and students in distance education. The authors highlight a number of important principles for distance-education programs and point out similarities and differences when compared to traditional face-face-to classes such as communication, classroom management, connectivity, and technical challenges. They summarize general topics concerning the faculty, the syllabus, office hours, the calendar, and announcements. Three essential lesson components are noted: an overview, the lesson itself, and supplemanetary material. The authors also take the student perspective, emphasizing the diversity of students, the importance of computer proficiency, and student interactions. Finally, they summarize a first round of course evaluations in the Great Plains IDEA gerontology master's program. PMID:21846232

  4. Opinions, conflicts, and consensus: modeling social dynamics in a collaborative environment.

    PubMed

    Török, János; Iñiguez, Gerardo; Yasseri, Taha; San Miguel, Maxi; Kaski, Kimmo; Kertész, János

    2013-02-22

    Information-communication technology promotes collaborative environments like Wikipedia where, however, controversy and conflicts can appear. To describe the rise, persistence, and resolution of such conflicts, we devise an extended opinion dynamics model where agents with different opinions perform a single task to make a consensual product. As a function of the convergence parameter describing the influence of the product on the agents, the model shows spontaneous symmetry breaking of the final consensus opinion represented by the medium. In the case when agents are replaced with new ones at a certain rate, a transition from mainly consensus to a perpetual conflict occurs, which is in qualitative agreement with the scenarios observed in Wikipedia. PMID:23473207

  5. Mapping students' ideas to understand learning in a collaborative programming environment

    NASA Astrophysics Data System (ADS)

    Harlow, Danielle Boyd; Leak, Anne Emerson

    2014-07-01

    Recent studies in learning programming have largely focused on high school and college students; less is known about how young children learn to program. From video data of 20 students using a graphical programming interface, we identified ideas that were shared and evolved through an elementary school classroom. In mapping these ideas and their resulting changes in programs and outputs, we were able to identify the contextual features which contributed to how ideas moved through the classroom as students learned. We suggest this process of idea mapping in visual programming environments as a viable method for understanding collaborative, constructivist learning as well as a context under which experiences can be developed to improve student learning.

  6. Advanced Life Systems for Extreme Environments: An Arctic Application

    NASA Technical Reports Server (NTRS)

    Lewis, Carol E.; Stanford, Kerry L.; Bubenheim, David L.; Covington, Alan (Technical Monitor)

    1995-01-01

    The problems of obtaining adequate pure drinking water and disposing of liquid and solid waste in the U.S. Arctic, a region where virtually all water is frozen solid for much of the year, has led to unsanitary solutions (U.S. Arctic Research Commission). These solutions are also damaging to the environment. Sanitation and a safe water supply are particularly problems in rural villages. About one-fourth of Alaska's 86.000 Native residents live in these communities. They are without running water and use plastic buckets for toilets. The outbreak of diseases is believed to be partially attributable to exposure to human waste. Villages with the most frequent outbreaks of disease are those in which running water is difficult to obtain (Office of Technology Assessment, 1994). Waste is emptied into open lagoons, rivers, or onto the sea coast. It does not degrade rapidly and in addition to affecting human health, can be harmful to the fragile ecology of the Arctic and the indigenous wildlife and fish populations. Advanced Life Systems for Extreme Environments (ALSEE) provides a solution to sanitation and safe water problems. The system uses an advanced integrated technology developed for Antarctic and space applications. ALSEE uses the systems approach to address more than waste and water problems. By incorporating hydroponic horticulture and aquaculture into the waste treatment system, ALSEE addresses the quality and quantity of fresh foods available to Arctic residents. A temperate climate is required for year-round plant growth. ALSEE facilities can be designed to include a climate controlled area within the structure. This type of environment is a change from the long periods of darkness and cold found in the Arctic and can help alleviate stress so often associated with these extremes. While the overall concept of ALSEE projects is advanced, system facilities can be operated by village residents with appropriate training. ALSEE provides continuing training and

  7. Multi-Disciplinary Analysis for Future Launch Systems Using NASA's Advanced Engineering Environment (AEE)

    NASA Technical Reports Server (NTRS)

    Monell, Donald; Mathias, Donovan; Reuther, James; Garn, Michelle

    2003-01-01

    A new engineering environment constructed for the purposes of analyzing and designing Reusable Launch Vehicles (RLVs) is presented. The new environment has been developed to allow NASA to perform independent analysis and design of emerging RLV architectures and technologies. The new Advanced Engineering Environment (AEE) is both collaborative and distributed. It facilitates integration of the analyses by both vehicle performance disciplines and life-cycle disciplines. Current performance disciplines supported include: weights and sizing, aerodynamics, trajectories, propulsion, structural loads, and CAD-based geometries. Current life-cycle disciplines supported include: DDT&E cost, production costs, operations costs, flight rates, safety and reliability, and system economics. Involving six NASA centers (ARC, LaRC, MSFC, KSC, GRC and JSC), AEE has been tailored to serve as a web-accessed agency-wide source for all of NASA's future launch vehicle systems engineering functions. Thus, it is configured to facilitate (a) data management, (b) automated tool/process integration and execution, and (c) data visualization and presentation. The core components of the integrated framework are a customized PTC Windchill product data management server, a set of RLV analysis and design tools integrated using Phoenix Integration's Model Center, and an XML-based data capture and transfer protocol. The AEE system has seen production use during the Initial Architecture and Technology Review for the NASA 2nd Generation RLV program, and it continues to undergo development and enhancements in support of its current main customer, the NASA Next Generation Launch Technology (NGLT) program.

  8. A Collaborative Education Network for Advancing Climate Literacy using Data Visualization Technology

    NASA Astrophysics Data System (ADS)

    McDougall, C.; Russell, E. L.; Murray, M.; Bendel, W. B.

    2013-12-01

    among members, we have, collectively, been able to advance all of our efforts. The member institutions, through regular face-to-face workshops and an online community, share practices in creation and cataloging of datasets, new methods for delivering content via SOS, and updates on the SOS system and software. One hallmark of the SOS Users Collaborative Network is that it exemplifies an ideal partnership between federal science agencies and informal science education institutions. The science agencies (including NOAA, NASA, and the Department of Energy) provide continuously updated global datasets, scientific expertise, funding, and support. In turn, museums act as trusted public providers of scientific information, provide audience-appropriate presentations, localized relevance to global phenomena and a forum for discussing the complex science and repercussions of global change. We will discuss the characteristics of this Network that maximize collaboration and what we're learning as a community to improve climate literacy.

  9. The Building Blocks Collaborative: advancing a life course approach to health equity through multi-sector collaboration.

    PubMed

    Shrimali, Bina Patel; Luginbuhl, Jessica; Malin, Christina; Flournoy, Rebecca; Siegel, Anita

    2014-02-01

    Too many children are born into poverty, often living in disinvested communities without adequate opportunities to be healthy and thrive. Two complementary frameworks-health equity and life course-propose new approaches to these challenges. Health equity strategies seek to improve community conditions that influence health. The life course perspective focuses on key developmental periods that can shift a person's trajectory over the life course, and highlights the importance of ensuring that children have supports in place that set them up for long-term success and health. Applying these frameworks, the Alameda County Public Health Department launched the Building Blocks Collaborative (BBC), a countywide multi-sector initiative to engage community partners in improving neighborhood conditions in low-income communities, with a focus on young children. A broad cross-section of stakeholders, called to action by the state of racial and economic inequities in children's health, came together to launch the BBC and develop a Bill of Rights that highlights the diverse factors that contribute to children's health. BBC partners then began working together to improve community conditions by learning and sharing ideas and strategies, and incubating new collaborative projects. Supportive health department leadership; dedicated staff; shared vision and ownership; a flexible partnership structure; and broad collective goals that build on partners' strengths and priorities have been critical to the growth of the BBC. Next steps include institutionalizing BBC projects into existing infrastructure, ongoing partner engagement, and continued project innovation-to achieve a common vision that all babies have the best start in life. PMID:23807714

  10. High temperature, harsh environment sensors for advanced power generation systems

    NASA Astrophysics Data System (ADS)

    Ohodnicki, P. R.; Credle, S.; Buric, M.; Lewis, R.; Seachman, S.

    2015-05-01

    One mission of the Crosscutting Technology Research program at the National Energy Technology Laboratory is to develop a suite of sensors and controls technologies that will ultimately increase efficiencies of existing fossil-fuel fired power plants and enable a new generation of more efficient and lower emission power generation technologies. The program seeks to accomplish this mission through soliciting, managing, and monitoring a broad range of projects both internal and external to the laboratory which span sensor material and device development, energy harvesting and wireless telemetry methodologies, and advanced controls algorithms and approaches. A particular emphasis is placed upon harsh environment sensing for compatibility with high temperature, erosive, corrosive, and highly reducing or oxidizing environments associated with large-scale centralized power generation. An overview of the full sensors and controls portfolio is presented and a selected set of current and recent research successes and on-going projects are highlighted. A more detailed emphasis will be placed on an overview of the current research thrusts and successes of the in-house sensor material and device research efforts that have been established to support the program.

  11. Advanced monitoring systems for biological applications in marine environments

    NASA Astrophysics Data System (ADS)

    Cella, U.; Chiffings, T.; Gandelli, A.; Grimaccia, F.; Johnstone, R. W.; Zich, R. E.

    2007-12-01

    The increasing need to manage complex environmental problems demands a new approach and new technologies to provide the information required at a spatial and temporal resolution appropriate to the scales at which the biological processes occur. In particular sensor networks, now quite popular on land, still poses many difficult problems in underwater environments. In this context, it is necessary to develop an autonomous monitoring system that can be remotely interrogated and directed to address unforeseen or expected changes in such environmental conditions. This system, at the highest level, aims to provide a framework for combining observations from a wide range of different in-situ sensors and remote sensing instruments, with a long-term plan for how the network of sensing modalities will continue to evolve in terms of sensing modality, geographic location, and spatial and temporal density. The advances in sensor technology and digital electronics have made it possible to produce large amount of small tag-like sensors which integrate sensing, processing, and communication capabilities together and form an autonomous entity. To successfully use this kind of systems in under water environments, it becomes necessary to optimize the network lifetime and face the relative hindrances that such a field imposes, especially in terms of underwater information exchange.

  12. Advancing the Interdisciplinary Collaborative Health Team Model: Applying Democratic Professionalism, Implementation Science, and Therapeutic Alliance to Enact Social Justice Practice.

    PubMed

    Murphy, Nancy

    2015-01-01

    This essay reframes the interdisciplinary collaborative health team model by proposing the application of 3 foundational pillars-democratic professionalism, implementation science, and therapeutic alliance to advance this practice. The aim was to address challenges to the model, enhance their functional capacity, and explicate and enact social justice practices to affect individual health outcomes while simultaneously addressing health inequities. The pillars are described and examples from the author's dissertation research illustrate how the pillars were used to bring about action. Related theories, models, and frameworks that have negotiation, capacity building, collaboration, and knowledge/task/power sharing as central concepts are presented under each of the pillars. PMID:26244478

  13. Telematics-based online client-server/client collaborative environment for radiotherapy planning simulations.

    PubMed

    Kum, Oyeon

    2007-11-01

    Customized cancer radiation treatment planning for each patient is very useful for both a patient and a doctor because it provides the ability to deliver higher doses to a more accurately defined tumor and at the same time lower doses to organs at risk and normal tissues. This can be realized by building an accurate planning simulation system to provide better treatment strategies based on each patient's tomographic data such as CT, MRI, PET, or SPECT. In this study, we develop a real-time online client-server/client collaborative environment between the client (health care professionals or hospitals) and the server/client under a secure network using telematics (the integrated use of telecommunications and medical informatics). The implementation is based on a point-to-point communication scheme between client and server/client following the WYSIWIS (what you see is what I see) paradigm. After uploading the patient tomographic data, the client is able to collaborate with the server/client for treatment planning. Consequently, the level of health care services can be improved, specifically for small radiotherapy clinics in rural/remote-country areas that do not possess much experience or equipment such as a treatment planning simulator. The telematics service of the system can also be used to provide continued medical education in radiotherapy. Moreover, the system is easy to use. A client can use the system if s/he is familiar with the Windows(TM) operating system because it is designed and built based on a user-friendly concept. This system does not require the client to continue hardware and software maintenance and updates. These are performed automatically by the server. PMID:17943336

  14. CIP Training Manual: Collaborative Information Portal Advance Training Information for Field Test Participants

    NASA Technical Reports Server (NTRS)

    Schreiner, John; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The Collaborative Information Portal (CIP) is a web-based information management and retrieval system. Its purpose is to provide users at MER (Mars Exploration Rover) mission operations with easy access to a broad range of mission data and products and contextual information such as the current operations schedule. The CIP web-server provides this content in a user customizable web-portal environment. Since CIP is still under development, only a subset of the full feature set will be available for the EDO field test. The CIP web-portal will be accessed through a standard web browser. CIP is intended to be intuitive and simple to use, however, at the training session, users will receive a one to two page reference guide, which should aid them in using CIP. Users must provide their own computers for accessing CIP during the field test. These computers should be configured with Java 1.3 and a Java 2 enabled browser. Macintosh computers should be running OS 10.1.3 or later. Classic Mac OS (OS 9) is not supported. For more information please read section 7.3 in the FIASCO Rover Science Operations Test Mission Plan. Several screen shots of the Beta Release of CIP are shown on the following pages.

  15. Application Description and Policy Model in Collaborative Environment for Sharing of Information on Epidemiological and Clinical Research Data Sets

    PubMed Central

    de Carvalho, Elias César Araujo; Batilana, Adelia Portero; Simkins, Julie; Martins, Henrique; Shah, Jatin; Rajgor, Dimple; Shah, Anand; Rockart, Scott; Pietrobon, Ricardo

    2010-01-01

    Background Sharing of epidemiological and clinical data sets among researchers is poor at best, in detriment of science and community at large. The purpose of this paper is therefore to (1) describe a novel Web application designed to share information on study data sets focusing on epidemiological clinical research in a collaborative environment and (2) create a policy model placing this collaborative environment into the current scientific social context. Methodology The Database of Databases application was developed based on feedback from epidemiologists and clinical researchers requiring a Web-based platform that would allow for sharing of information about epidemiological and clinical study data sets in a collaborative environment. This platform should ensure that researchers can modify the information. A Model-based predictions of number of publications and funding resulting from combinations of different policy implementation strategies (for metadata and data sharing) were generated using System Dynamics modeling. Principal Findings The application allows researchers to easily upload information about clinical study data sets, which is searchable and modifiable by other users in a wiki environment. All modifications are filtered by the database principal investigator in order to maintain quality control. The application has been extensively tested and currently contains 130 clinical study data sets from the United States, Australia, China and Singapore. Model results indicated that any policy implementation would be better than the current strategy, that metadata sharing is better than data-sharing, and that combined policies achieve the best results in terms of publications. Conclusions Based on our empirical observations and resulting model, the social network environment surrounding the application can assist epidemiologists and clinical researchers contribute and search for metadata in a collaborative environment, thus potentially facilitating

  16. Assessing the Available ICT Infrastructure for Collaborative Web Technologies in a Blended Learning Environment in Tanzania: A Mixed Methods Research

    ERIC Educational Resources Information Center

    Pima, John Marco; Odetayo, Michael; Iqbal, Rahat; Sedoyeka, Eliamani

    2016-01-01

    This paper is about the use of a Mixed Methods approach in an investigation that sought to assess the available Information and Communication Technologies (ICT) infrastructure capable of supporting Collaborative Web Technologies (CWTs) in a Blended Learning (BL) environment in Tanzanian Higher Education Institutions (HEIs). We first used…

  17. Training Math and Science Teacher-Researchers in a Collaborative Research Environment: Implications for Math and Science Education

    ERIC Educational Resources Information Center

    Kyei-Blankson, Lydia

    2014-01-01

    In this mixed-methods study, the effect of training teacher-researchers in a collaborative research environment is examined for a cohort of teachers enrolled in a Math and Science Partnership (MSP) master's degree program. The teachers describe changes in their research views and in their application of research in practice, and detail the…

  18. A Cross-Cultural Study of Self-Regulated Learning in a Computer-Supported Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Shi, Yongchao; Frederiksen, Carl H.; Muis, Krista R.

    2013-01-01

    Self-regulated learning (SRL) actions of 30 Canadian and 30 Chinese university students were studied in a face-to-face problem-based learning environment. Participants were randomly assigned to work in dyads consisting of Chinese, Canadian, or mixed Chinese-Canadian pairs to learn Analysis of Variance collaboratively using a computer coach. Dialog…

  19. Examining the Roles of Blended Learning Approaches in Computer-Supported Collaborative Learning (CSCL) Environments: A Delphi Study

    ERIC Educational Resources Information Center

    So, Hyo-Jeong; Bonk, Curtis J.

    2010-01-01

    In this study, a Delphi method was used to identify and predict the roles of blended learning approaches in computer-supported collaborative learning (CSCL) environments. The Delphi panel consisted of experts in online learning from different geographic regions of the world. This study discusses findings related to (a) pros and cons of blended…

  20. Student Perceptions of Collaborative Learning, Social Presence and Satisfaction in a Blended Learning Environment: Relationships and Critical Factors

    ERIC Educational Resources Information Center

    So, Hyo-Jeong; Brush, Thomas A.

    2008-01-01

    The purpose of this study was to examine the relationships of the students' perceived levels of collaborative learning, social presence and overall satisfaction in a blended learning environment. This research studied the relationship of these three variables and identified critical factors related to them. The participants were 48 graduate…

  1. Working Collaboratively in Virtual Learning Environments: Using Second Life with Korean High School Students in History Class

    ERIC Educational Resources Information Center

    Kim, Mi Hwa

    2013-01-01

    The purpose of this experimental study was to investigate the impact of the use of a virtual environment for learning Korean history on high school students' learning outcomes and attitudes toward virtual worlds (collaboration, engagement, general use of SL [Second Life], and immersion). In addition, this experiment examined the relationships…

  2. Using a Virtual Research Environment to Support New Models of Collaborative and Participative Research in Scottish Education

    ERIC Educational Resources Information Center

    Wilson, Alastair; Rimpilainen, Sanna; Skinner, Don; Cassidy, Claire; Christie, Donald; Coutts, Norman; Sinclair, Christine

    2007-01-01

    Drawing on research supported within the Scottish "Applied Educational Research Scheme" this paper explores the use of the Virtual Research Environment (VRE) in developing "communities of enquiry" in Scottish education and research. It focuses on the role of VREs in influencing collaborative working and educational research. The paper uses three…

  3. Development of advanced strain diagnostic techniques for reactor environments.

    SciTech Connect

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  4. Affordances of Web 2.0 Technologies for Collaborative Advanced Writing in a Foreign Language

    ERIC Educational Resources Information Center

    Strobl. Carola

    2014-01-01

    Can online collaboration yield a positive effect on academic writing in a foreign language? If so, what exactly is the added value, compared to individual writing, and (how) does it translate to better output? These are the central questions addressed in this paper. L2 writing research has long highlighted the benefits of collaboration in terms of…

  5. Collaborative Learning: Cognitive and Computational Approaches. Advances in Learning and Instruction Series.

    ERIC Educational Resources Information Center

    Dillenbourg, Pierre, Ed.

    Intended to illustrate the benefits of collaboration between scientists from psychology and computer science, namely machine learning, this book contains the following chapters, most of which are co-authored by scholars from both sides: (1) "Introduction: What Do You Mean by 'Collaborative Learning'?" (Pierre Dillenbourg); (2) "Learning Together:…

  6. Leading the Ongoing Development of Collaborative Data Practices: Advancing a Schema for Diagnosis and Intervention

    ERIC Educational Resources Information Center

    Cosner, Shelby

    2012-01-01

    Research suggests that school leaders play an important role in cultivating and developing collaborative data practices by teachers. Although diagnosis and intervention are critical facets of leaders' work to support collaborative data practice development, this work remains poorly understood. Missing from data-use literature is more explicit and…

  7. Integrating Compassionate, Collaborative Care (the "Triple C") Into Health Professional Education to Advance the Triple Aim of Health Care.

    PubMed

    Lown, Beth A; McIntosh, Sharrie; Gaines, Martha E; McGuinn, Kathy; Hatem, David S

    2016-03-01

    Empathy and compassion provide an important foundation for effective collaboration in health care. Compassion (the recognition of and response to the distress and suffering of others) should be consistently offered by health care professionals to patients, families, staff, and one another. However, compassion without collaboration may result in uncoordinated care, while collaboration without compassion may result in technically correct but depersonalized care that fails to meet the unique emotional and psychosocial needs of all involved. Providing compassionate, collaborative care (CCC) is critical to achieving the "triple aim" of improving patients' health and experiences of care while reducing costs. Yet, values and skills related to CCC (or the "Triple C") are not routinely taught, modeled, and assessed across the continuum of learning and practice. To change this paradigm, an interprofessional group of experts recently recommended approaches and a framework for integrating CCC into health professional education and postgraduate training as well as clinical care. In this Perspective, the authors describe how the Triple C framework can be integrated and enhance existing competency standards to advance CCC across the learning and practice continuum. They also discuss strategies for partnering with patients and families to improve health professional education and health care design and delivery through quality improvement projects. They emphasize that compassion and collaboration are important sources of professional, patient, and family satisfaction as well as critical aspects of professionalism and person-centered, relationship-based high-quality care. PMID:26717505

  8. Leveraging Social Networks to Detect Anomalous Insider Actions in Collaborative Environments

    PubMed Central

    Chen, You; Nyemba, Steve; Zhang, Wen; Malin, Bradley

    2014-01-01

    Collaborative information systems (CIS) enable users to coordinate efficiently over shared tasks. T hey are often deployed in complex dynamic systems that provide users with broad access privileges, but also leave the system vulnerable to various attacks. Techniques to detect threats originating from beyond the system are relatively mature, but methods to detect insider threats are still evolving. A promising class of insider threat detection models for CIS focus on the communities that manifest between users based on the usage of common subjects in the system. However, current methods detect only when a user’s aggregate behavior is intruding, not when specific actions have deviated from expectation. In this paper, we introduce a method called specialized network anomaly detection (SNAD) to detect such events. SNAD assembles the community of users that access a particular subject and assesses if similarities of the community with and without a certain user are sufficiently different. We present a theoretical basis and perform an extensive empirical evaluation with the access logs of two distinct environments: those of a large electronic health record system (6,015 users, 130,457 patients and 1,327,500 accesses) and the editing logs of Wikipedia (2,388,955 revisors, 55,200 articles and 6,482,780 revisions). We compare SNAD with several competing methods and demonstrate it is significantly more effective: on average it achieves 20–30% greater area under an ROC curve. PMID:25621314

  9. Cyber Enabled Collaborative Environment for Data and Modeling Driven Curriculum Modules for Hydrology and Geoscience Education

    NASA Astrophysics Data System (ADS)

    Merwade, V.; Ruddell, B. L.; Manduca, C. A.; Fox, S.; Kirk, K. B.

    2012-12-01

    With the access to emerging datasets and computational tools, there is a need to bring these capabilities into hydrology and geoscience classrooms. However, developing curriculum modules using data and models to augment classroom teaching is hindered by steep technology learning curve, rapid technology turnover, and lack of an organized community cyberinfrastructure (CI) for the dissemination, publication, and sharing of the latest tools and curriculum material for hydrology and geoscience education. The objective of this project is to overcome some of these limitations by developing a cyber enabled collaborative environment for publishing, sharing and adoption of data and modeling driven curriculum modules in hydrology and geoscience classroom. The CI is based on Carleton College's Science Education Resource Center (SERC) Content Management System. Building on its existing community authoring capabilities the system is being extended to allow assembly of new teaching activities by drawing on a collection of interchangeable building blocks; each of which represents a step in the modeling process. This poster presentation will describe the structure of the CI, the type and description of the modules that are under development, and the approach that will be used in assessing students' learning from using modules.

  10. The Human Toxome Collaboratorium: A Shared Environment for Multi-Omic Computational Collaboration within a Consortium

    PubMed Central

    Fasani, Rick A.; Livi, Carolina B.; Choudhury, Dipanwita R.; Kleensang, Andre; Bouhifd, Mounir; Pendse, Salil N.; McMullen, Patrick D.; Andersen, Melvin E.; Hartung, Thomas; Rosenberg, Michael

    2016-01-01

    The Human Toxome Project is part of a long-term vision to modernize toxicity testing for the 21st century. In the initial phase of the project, a consortium of six academic, commercial, and government organizations has partnered to map pathways of toxicity, using endocrine disruption as a model hazard. Experimental data is generated at multiple sites, and analyzed using a range of computational tools. While effectively gathering, managing, and analyzing the data for high-content experiments is a challenge in its own right, doing so for a growing number of -omics technologies, with larger data sets, across multiple institutions complicates the process. Interestingly, one of the most difficult, ongoing challenges has been the computational collaboration between the geographically separate institutions. Existing solutions cannot handle the growing heterogeneous data, provide a computational environment for consistent analysis, accommodate different workflows, and adapt to the constantly evolving methods and goals of a research project. To meet the needs of the project, we have created and managed The Human Toxome Collaboratorium, a shared computational environment hosted on third-party cloud services. The Collaboratorium provides a familiar virtual desktop, with a mix of commercial, open-source, and custom-built applications. It shares some of the challenges of traditional information technology, but with unique and unexpected constraints that emerge from the cloud. Here we describe the problems we faced, the current architecture of the solution, an example of its use, the major lessons we learned, and the future potential of the concept. In particular, the Collaboratorium represents a novel distribution method that could increase the reproducibility and reusability of results from similar large, multi-omic studies. PMID:26924983

  11. The Human Toxome Collaboratorium: A Shared Environment for Multi-Omic Computational Collaboration within a Consortium.

    PubMed

    Fasani, Rick A; Livi, Carolina B; Choudhury, Dipanwita R; Kleensang, Andre; Bouhifd, Mounir; Pendse, Salil N; McMullen, Patrick D; Andersen, Melvin E; Hartung, Thomas; Rosenberg, Michael

    2015-01-01

    The Human Toxome Project is part of a long-term vision to modernize toxicity testing for the 21st century. In the initial phase of the project, a consortium of six academic, commercial, and government organizations has partnered to map pathways of toxicity, using endocrine disruption as a model hazard. Experimental data is generated at multiple sites, and analyzed using a range of computational tools. While effectively gathering, managing, and analyzing the data for high-content experiments is a challenge in its own right, doing so for a growing number of -omics technologies, with larger data sets, across multiple institutions complicates the process. Interestingly, one of the most difficult, ongoing challenges has been the computational collaboration between the geographically separate institutions. Existing solutions cannot handle the growing heterogeneous data, provide a computational environment for consistent analysis, accommodate different workflows, and adapt to the constantly evolving methods and goals of a research project. To meet the needs of the project, we have created and managed The Human Toxome Collaboratorium, a shared computational environment hosted on third-party cloud services. The Collaboratorium provides a familiar virtual desktop, with a mix of commercial, open-source, and custom-built applications. It shares some of the challenges of traditional information technology, but with unique and unexpected constraints that emerge from the cloud. Here we describe the problems we faced, the current architecture of the solution, an example of its use, the major lessons we learned, and the future potential of the concept. In particular, the Collaboratorium represents a novel distribution method that could increase the reproducibility and reusability of results from similar large, multi-omic studies. PMID:26924983

  12. Graduate Education to Facilitate Interdisciplinary Research Collaboration: Identifying Individual Competencies and Developmental Activities

    ERIC Educational Resources Information Center

    Holt, Valerie Ciocca

    2013-01-01

    Interdisciplinary research collaborations (IDRC) are considered essential for addressing the most complex global community problems concerning science, health, education, energy, the environment, and society. In spite of technological advances, supportive funding, and even researcher proclivity to collaborate, these complex interdisciplinary…

  13. Faculty and Librarian Collaborations: A Case Study and Proposal for Online Learning Environments

    ERIC Educational Resources Information Center

    Bielema, Cheryl; Crocker, Dan; Miller, Joan; Reynolds-Moehrle, Jennifer; Shaw, Helen

    2005-01-01

    To design a new distance education course with an emphasis on student group work, a collaborative effort among the University of Missouri St. Louis Libraries and faculty was established. The collaborative process resulted in a more individualized service experience for library users, and the problems of course construction, using the Blackboard…

  14. A Design and Development of Distance Learning Support Environment for Collaborative Problem Solving in Group Learners

    ERIC Educational Resources Information Center

    Nitta, Takuya; Takaoka, Ryo; Ahama, Shigeki; Shimokawa, Masayuki

    2014-01-01

    The competency and curriculum for human resource development in knowledge based society are proposed in each country. We think the keywords are "collaborative problem solving" and "effective use of ICT". In particular, the competency to perform the collaborative problem solving and learning with others on the network is…

  15. When Feedback Harms and Collaboration Helps in Computer Simulation Environments: An Expertise Reversal Effect

    ERIC Educational Resources Information Center

    Nihalani, Priya K.; Mayrath, Michael; Robinson, Daniel H.

    2011-01-01

    We investigated the effects of feedback and collaboration on undergraduates' transfer performance when using a computer networking training simulation. In Experiment 1, 65 computer science "novices" worked through an instructional protocol individually (control), individually with feedback, or collaboratively with feedback. Unexpectedly,…

  16. Virtual Learning Spaces in the Web: An Agent-Based Architecture of Personalized Collaborative Learning Environment.

    ERIC Educational Resources Information Center

    Nunez Esquer, Gustavo; Sheremetov, Leonid

    This paper reports on the results and future research work within the paradigm of Configurable Collaborative Distance Learning, called Espacios Virtuales de Apredizaje (EVA). The paper focuses on: (1) description of the main concepts, including virtual learning spaces for knowledge, collaboration, consulting, and experimentation, a "multi-book"…

  17. The Proposed Model of Collaborative Virtual Learning Environment for Introductory Programming Course

    ERIC Educational Resources Information Center

    Othman, Mahfudzah; Othman, Muhaini

    2012-01-01

    This paper discusses the proposed model of the collaborative virtual learning system for the introductory computer programming course which uses one of the collaborative learning techniques known as the "Think-Pair-Share". The main objective of this study is to design a model for an online learning system that facilitates the collaborative…

  18. The Impact of Integrated Coaching and Collaboration within an Inquiry Learning Environment

    ERIC Educational Resources Information Center

    Dragon, Toby

    2013-01-01

    This thesis explores the design and evaluation of a collaborative, inquiry learning Intelligent Tutoring System for ill-defined problem spaces. The common ground in the fields of Artificial Intelligence in Education and Computer-Supported Collaborative Learning is investigated to identify ways in which tutoring systems can employ both automated…

  19. A case study in the participatory design of a collaborative science-based learning environment

    NASA Astrophysics Data System (ADS)

    Chin, George, Jr.

    Educational technology research studies have found computer and software technologies to be underutilized in U.S. classrooms. In general, many teachers have had difficulty integrating computer and software technologies into learning activities and classroom curriculums because specific technologies are ill-suited to their needs, or they lack the ability to make effective use of these technologies. In the development of commercial and business applications, participatory design approaches have been applied to facilitate the direct participation of users in system analysis and design. Among the benefits of participatory design include mutual learning between users and developers, envisionment of software products and their use contexts, empowerment of users in analysis and design, grounding of design in the practices of users, and growth of users as designers and champions of technology. In the context of educational technology development, these similar consequences of participatory design may lead to more appropriate and effective education systems as well as greater capacities by teachers to apply and integrate educational systems into their teaching and classroom practices. We present a case study of a participatory design project that took place over a period of two and one half years, and in which teachers and developers engaged in the participatory analysis and design of a collaborative science learning environment. A significant aspect of the project was the development methodology we followed---Progressive Design. Progressive Design evolved as an integration of methods for participatory design, ethnography, and scenario-based design. In this dissertation, we describe the Progressive Design approach, how it was used, and its specific impacts and effects on the development of educational systems and the social and cognitive growth of teachers.

  20. Combining advanced networked technology and pedagogical methods to improve collaborative distance learning.

    PubMed

    Staccini, Pascal; Dufour, Jean-Charles; Raps, Hervé; Fieschi, Marius

    2005-01-01

    Making educational material be available on a network cannot be reduced to merely implementing hypermedia and interactive resources on a server. A pedagogical schema has to be defined to guide students for learning and to provide teachers with guidelines to prepare valuable and upgradeable resources. Components of a learning environment, as well as interactions between students and other roles such as author, tutor and manager, can be deduced from cognitive foundations of learning, such as the constructivist approach. Scripting the way a student will to navigate among information nodes and interact with tools to build his/her own knowledge can be a good way of deducing the features of the graphic interface related to the management of the objects. We defined a typology of pedagogical resources, their data model and their logic of use. We implemented a generic and web-based authoring and publishing platform (called J@LON for Join And Learn On the Net) within an object-oriented and open-source programming environment (called Zope) embedding a content management system (called Plone). Workflow features have been used to mark the progress of students and to trace the life cycle of resources shared by the teaching staff. The platform integrated advanced on line authoring features to create interactive exercises and support live courses diffusion. The platform engine has been generalized to the whole curriculum of medical studies in our faculty; it also supports an international master of risk management in health care and will be extent to all other continuous training diploma. PMID:16160271

  1. Supporting Systemic Science Reform - Collaboration to Advance Teaching Technology and Science (CATTS) and the National Optical Astronomy Observatory (NOAO)

    NASA Astrophysics Data System (ADS)

    Moore, K. S.; Offerdahl, E. G.; Hall-Wallace, M.; Pompea, S. M.; Regens, N.

    2003-12-01

    Through the NSF-funded Collaboration to Advance Teaching Technology and Science (CATTS), graduate and undergraduate students in the sciences partner with elementary, middle, and high school teachers to support efforts in science education. One such partnership, sponsored by the National Optical Astronomy Observatory (NOAO), works to enhance the teaching of astronomy and optics-related topics. Graduate and undergraduate Fellows in the CATTS/NOAO program support the efforts of teachers through the classroom implementation of GEMS (Great Explorations in Math and Science) curriculum guides such as Invisible Universe, Living With a Star, Real Reasons for the Seasons, Color Analyzers, and More Than Magnifiers. These guides are inquiry-based, hands-on activities that closely align with the National Science Education Standards. Details of the guides as well as the organization and benefits of the partnership will be described here. The NOAO/CATTS collaboration represents a high leverage program using quality instructional materials as part of a professional development effort for teachers while providing valuable student experiences in science education. As such, it represents an effective educational model that may be duplicated at other research facilities with EPO missions. The University of Arizona's Collaboration to Advance Teaching Technology and Science (CATTS) program is sponsored under grant 9979670 from the National Science Foundation. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.

  2. Advanced practice roles in the managed care environment.

    PubMed

    Madden, M J; Ponte, P R

    1994-01-01

    The role of the advanced practice nurse is based on expert clinical knowledge and skill and is practiced in multiple settings. As healthcare reform emerges, the context in which healthcare is delivered changes. The authors describe a creative approach to packaging and marketing the services of advanced practice nurses to the customers of the managed care system. PMID:8308561

  3. Advancing Innovation Through Collaboration: Implementation of the NASA Space Life Sciences Strategy

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2010-01-01

    On October 18, 2010, the NASA Human Health and Performance center (NHHPC) was opened to enable collaboration among government, academic and industry members. Membership rapidly grew to 90 members (http://nhhpc.nasa.gov ) and members began identifying collaborative projects as detailed in this article. In addition, a first workshop in open collaboration and innovation was conducted on January 19, 2011 by the NHHPC resulting in additional challenges and projects for further development. This first workshop was a result of the SLSD successes in running open innovation challenges over the past two years. In 2008, the NASA Johnson Space Center, Space Life Sciences Directorate (SLSD) began pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical problems. From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external challenges were conducted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive platform, customized to NASA use, and promoted as NASA@Work. The results from the 34 challenges involved not only technical solutions that were reported previously at the 61st IAC, but also the formation of new collaborative relationships. For example, the TopCoder pilot was expanded by the NASA Space Operations Mission Directorate to the NASA Tournament Lab in collaboration with Harvard Business School and TopCoder. Building on these initial successes, the NHHPC workshop in January of 2011, and ongoing NHHPC member discussions, several important collaborations have been developed: (1) Space Act Agreement between NASA and GE for collaborative projects (2) NASA and academia for a Visual Impairment / Intracranial Hypertension summit (February 2011) (3) NASA and the DoD through the Defense Venture Catalyst Initiative (DeVenCI) for a technical needs workshop (June 2011) (4

  4. INL - NNL an International Technology Collaboration Case Study - Advanced Fogging Technologies for Decommissioning - 13463

    SciTech Connect

    Banford, Anthony; Edwards, Jeremy; Demmer, Rick; Rankin, Richard; Hastings, Jeremy

    2013-07-01

    International collaboration and partnerships have become a reality as markets continue to globalize. This is the case in nuclear sector where over recent years partnerships commonly form to bid for capital projects internationally in the increasingly contractorized world and international consortia regularly bid and lead Management and Operations (M and O) / Parent Body Organization (PBO) site management contracts. International collaboration can also benefit research and technology development. The Idaho National Laboratory (INL) and the UK National Nuclear Laboratory (NNL) are internationally recognized organizations delivering leading science and technology development programmes both nationally and internationally. The Laboratories are actively collaborating in several areas with benefits to both the laboratories and their customers. Recent collaborations have focused on fuel cycle separations, systems engineering supporting waste management and decommissioning, the use of misting for decontamination and in-situ waste characterisation. This paper focuses on a case study illustrating how integration of two technologies developed on different sides of the Atlantic are being integrated through international collaboration to address real decommissioning challenges using fogging technology. (authors)

  5. Prototyping an in-field collaborative environment for landscape decision support by linking GIS with a game engine

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Stock, Christian; Bishop, Ian D.; O'Connor, Alice N.

    2006-10-01

    With public environmental awareness increasing, there are growing prospects for access to real-time data anytime and everywhere for decision support involving multiple users not only office-based but also remotely. This paper describes the development of a prototype system implementing an in-field collaborative visualisation environment in order to facilitate decision support in landscape planning and environmental management. Our initial development is based on live linking GIS with a fully immersive collaborative virtual decision environment which uses the commercial low-cost Torque Game Engine (TGE, www.garagegames.com). Game engines provide efficient image rendering, a built-in editor for interactive processing of terrain surface features and, in particular, sophisticated and robust client/server networked functionality for multi-user access. Anticipated research activities include the development of an interfacing Augmented Reality (AR) extension to the system, terrain feature library establishment and the deployment of a pilot project including in field mobile observation.

  6. Academia, advocacy, and industry: a collaborative method for clinical research advancement.

    PubMed

    Vanzo, Rena J; Lortz, Amanda; Calhoun, Amy R U L; Carey, John C

    2014-07-01

    Professionals who work in academia, advocacy, and industry often carry out mutually exclusive activities related to research and clinical care. However, there are several examples of collaboration among such professionals that ultimately allows for improved scientific and clinical understanding. This commentary recounts our particular experience (a collaboration between geneticists at the Universities of Minnesota and Utah, the 4p- Support Group, and Lineagen, Inc) and reviews other similar projects. We formally propose this collaborative method as a conduit for future clinical research programs. Specifically, we encourage academicians, directors of family/advocacy/support groups, and members of industry to establish partnerships and document their experiences. The medical community as a whole will benefit from such partnerships and, specifically, families will teach us lessons that could never be learned in a laboratory or textbook. PMID:24700599

  7. ActiveSpaces on the grid: The construction of advanced visualization and interaction environments

    SciTech Connect

    Childers, L.; Disz, T.; Hereld, M.; Hudson, R.; Judson, I.; Olson, R.; Papka, M. E.; Paris, J.; Stevens, R.

    2000-07-24

    The Futures Lab group at Argonne National Laboratory and the University of Chicago are designing, building, and evaluating a new type of interactive computing environment that couples in a deep way the concepts of direct manipulation found in virtual reality with the richness and variety of interactive devices found in ubiquitous computing. This environment provides the interactivity and collaboration support of teleimmersive environments with the exibility and availability of desktop collaboration tools. The authors call these environments ActiveSpaces. An ActiveSpace is a physical domain that has been augmented with multiscale multiscreen displays, environment-specific and device-specific sensors, body and object trackers, human-input and instrument-input interfaces, streaming audio and video capture devices, and force feedback devices--and has then been connected to other such spaces via the Grid.

  8. Seeding collaborations to advance kinase science with the GSK Published Kinase Inhibitor Set (PKIS).

    PubMed

    Drewry, David H; Willson, Timothy M; Zuercher, William J

    2014-01-01

    To catalyze research on historically untargeted protein kinases, we created the PKIS, an annotated set of 367 small molecule kinase inhibitors. The set has been widely distributed to academic collaborators as an open access tool. It has been used to identify chemical starting points for development of chemical probes for orphan kinases and to investigate kinase signaling in high content phenotypic assays. Access to the set comes with few restrictions other than the requirement that assay results be released into the public domain for the benefit of the entire research community. Examples from the efforts of several collaborators are summarized. PMID:24283969

  9. Model collaboration: university library system and rehabilitation research team to advance telepractice knowledge.

    PubMed

    Deliyannides, Timothy S; Gabler, Vanessa

    2012-01-01

    This Publisher's Report describes the collaboration between a university library system's scholarly communication and publishing office and a federally funded research team, the Rehabilitation Engineering Research Center (RERC) on Telerehabilitation. This novel interdisciplinary collaboration engages librarians, information technologists, publishing professionals, clinicians, policy experts, and engineers and has produced a new Open Access journal, International Journal of Telerehabilitation, and a developing, interactive web-based product dedicated to disseminating information about telerehabilitation. Readership statistics are presented for March 1, 2011 - February 29, 2012. PMID:25945191

  10. Advancing migratory bird conservation and management by using radar: An interagency collaboration

    USGS Publications Warehouse

    Ruth, Janet M.; Barrow, Wylie C.; Sojda, Richard S.; Dawson, Deanna K.; Diehl, Robert H.; Manville, Albert; Green, Michael T.; Krueper, David J.; Johnston, Scott

    2005-01-01

    Many technical issues make this work difficult, including complex data structures, massive data sets, digital recognition of birds, large areas not covered by weather radar, and model validation; however, progress will only be furthered by tackling the challenge. The new coalition will meets its goals by: (1) facilitating a productive collaboration with NOAA, Department of the Interior bureaus, state wildlife agencies, universities, power companies, and other potential partners; (2) building and strengthening scientific capabilities within USGS; (3) addressing key migratory bird management issues; and (4) ensuring full funding for the collaborative effort.

  11. Erosion Coatings for High-Temperature Polymer Composites: A Collaborative Project With Allison Advanced Development Company

    NASA Technical Reports Server (NTRS)

    Sutter, James K.

    2000-01-01

    composite (ASTM D 4541 95 "Pull Off Strength of Coatings"). Glenn and Allison Advanced Development Company collaborated to optimize erosion coatings for gas turbine fan and compressor applications. All the coating systems survived aggressive thermal cycling without spalling. During erosion tests (see the final photo), the most promising coating systems tested had Cr3C2-NiCr and WC-Co as the hard topcoats. In all cases, these coating systems performed significantly better than that with a TiN hard topcoat. When material depth (thickness) loss is considered, the Cr3C2-NiCr and WC-Co coating systems provided, on average, an erosion resistance 8.5 times greater than that for the uncoated PMR 15/T650 35 composite. Similarly, Cr3C2-NiCr and WC-Co coating systems adhered to the PMC substrate during tensile tests significantly better than systems containing a TiN topcoat. Differences in topcoats of Cr3C2-NiCr and WC-Co were determined by considering issues such as cost and environmental impact. The preferred erosion-resistant coating system for PMR 15/T650 35 has WC-Co as the hard topcoat. This system provides the following benefits in comparison to the coating system with Cr3C2-NiCr topcoat: lower powder material cost (15 to 20 percent), environmentally friendly materials (Cr3C2-NiCr is hazardous), and higher deposition yield (10 to 15 percent), which results in less waste.

  12. The Midwestern Higher Education Compact: Advancing Education through Collaboration and Resource Sharing

    ERIC Educational Resources Information Center

    Rasmussen, Christopher J.; Horn, Aaron S.; Reinert, Leah J.

    2015-01-01

    This article summarizes the work of the Midwestern Higher Education Compact (MHEC) in assisting community colleges through cost savings programs, collaborative programmatic initiatives, and research to inform policy and improve practice--including recent efforts to develop valid and reliable methods of measuring the effectiveness and efficiency of…

  13. The Global Classroom: Advancing Cultural Awareness in Special Schools through Collaborative Work Using ICT

    ERIC Educational Resources Information Center

    Abbott, Lesley; Austin, Roger; Mulkeen, Aidan; Metcalfe, Nigel

    2004-01-01

    This paper reports research on cross-national collaboration through Information and Communications Technology (ICT) within the statutory curricula of 10 special schools in Northern Ireland and the Republic of Ireland. Working in north-south paired classes, the pupils carried out joint tasks using asynchronous computer conferencing and…

  14. NMR Studies of Structure-Reactivity Relationships in Carbonyl Reduction: A Collaborative Advanced Laboratory Experiment

    ERIC Educational Resources Information Center

    Marincean, Simona; Smith, Sheila R.; Fritz, Michael; Lee, Byung Joo; Rizk, Zeinab

    2012-01-01

    An upper-division laboratory project has been developed as a collaborative investigation of a reaction routinely taught in organic chemistry courses: the reduction of carbonyl compounds by borohydride reagents. Determination of several trends regarding structure-activity relationship was possible because each student contributed his or her results…

  15. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    ERIC Educational Resources Information Center

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-01-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment "StudentResearcher," which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum…

  16. U.S. Geological Survey Ecosystems science strategy: advancing discovery and application through collaboration

    USGS Publications Warehouse

    Williams, Byron K.; Wingard, G. Lynn; Brewer, Gary; Cloern, James E.; Gelfenbaum, Guy; Jacobson, Robert B.; Kershner, Jeffrey L.; McGuire, Anthony David; Nichols, James D.; Shapiro, Carl D.; van Riper, Charles, III; White, Robin P.

    2013-01-01

    Ecosystem science is critical to making informed decisions about natural resources that can sustain our Nation’s economic and environmental well-being. Resource managers and policymakers are faced with countless decisions each year at local, regional, and national levels on issues as diverse as renewable and nonrenewable energy development, agriculture, forestry, water supply, and resource allocations at the urbanrural interface. The urgency for sound decisionmaking is increasing dramatically as the world is being transformed at an unprecedented pace and in uncertain directions. Environmental changes are associated with natural hazards, greenhouse gas emissions, and increasing demands for water, land, food, energy, mineral, and living resources. At risk is the Nation’s environmental capital, the goods and services provided by resilient ecosystems that are vital to the health and wellbeing of human societies. Ecosystem science—the study of systems of organisms interacting with their environment and the consequences of natural and human-induced change on these systems—is necessary to inform decisionmakers as they develop policies to adapt to these changes. This Ecosystems Science Strategy is built on a framework that includes basic and applied science. It highlights the critical roles that U.S. Geological Survey (USGS) scientists and partners can play in building scientific understanding and providing timely information to decisionmakers. The strategy underscores the connection between scientific discoveries and the application of new knowledge, and it integrates ecosystem science and decisionmaking, producing new scientific outcomes to assist resource managers and providing public benefits. We envision the USGS as a leader in integrating scientific information into decisionmaking processes that affect the Nation’s natural resources and human well-being. The USGS is uniquely positioned to play a pivotal role in ecosystem science. With its wide range of

  17. Comparing Simple and Advanced Video Tools as Supports for Complex Collaborative Design Processes

    ERIC Educational Resources Information Center

    Zahn, Carmen; Pea, Roy; Hesse, Friedrich W.; Rosen, Joe

    2010-01-01

    Working with digital video technologies, particularly advanced video tools with editing capabilities, offers new prospects for meaningful learning through design. However, it is also possible that the additional complexity of such tools does "not" advance learning. We compared in an experiment the design processes and learning outcomes of 24…

  18. Advancing Scholarship, Team Building, and Collaboration in a Hybrid Doctoral Program in Educational Leadership

    ERIC Educational Resources Information Center

    Holmes, Barbara; Trimble, Meridee; Morrison-Danner, Dietrich

    2014-01-01

    Hybrid programs are changing the landscape of doctoral programs at American universities and colleges. The increased demand for hybrid doctoral programs, particularly for educational and career advancement, serves as an innovative way to increase scholarship, advance service, and promote leadership. Hybrid programs serve as excellent venues for…

  19. Differentiation and Collaboration in a Competitive Environment: A Case Study of Ontario Postsecondary Education System

    ERIC Educational Resources Information Center

    Jafar, Hayfa

    2015-01-01

    The essay explores how the dynamics of competition and collaboration among Ontario's higher education institutions contribute to the system's differentiation strategy. The essay implements a content analysis approach to the Strategic Mandate Agreement submissions signed between the Ontario Government and the Ontario Colleges and Universities in…

  20. Harnessing the Power of Technologies to Manage Collaborative e-Learning Projects in Dispersed Environments

    ERIC Educational Resources Information Center

    Gosper, Maree Veroncia; McNeill, Margot Anne; Woo, Karen

    2010-01-01

    "The impact of web-based lecture technologies on current and future practice in learning and teaching" was a collaborative project across four Australian universities, funded by the Australian Learning and Teaching Council (ALTC). The project was both exploratory and developmental in nature and according to the project's external evaluator, was…

  1. Working Together: How Teachers Teach and Students Learn in Collaborative Learning Environments

    ERIC Educational Resources Information Center

    Burns, Mary; Pierson, Elizabeth; Reddy, Shylaja

    2014-01-01

    Active Learning in Maths and Science (ALMS) was a six-month face-to-face professional development program for middle school maths and science teachers carried out between June and November, 2010 in two Indian states. ALMS's theory of action is grounded in the belief that collaborative learning serves as a "gateway" to learner-centered…

  2. Collaborative Practice of Science Construction in a Computer-Based Multimedia Environment.

    ERIC Educational Resources Information Center

    Kumpulainen, Kristiina; Mutanen, Mika

    1998-01-01

    Examines the ways in which the collaborative use of a multimedia-based CD-ROM encyclopedia in a sixth-grade Finnish classroom fosters science learning. Results show that students' activities during task-processing were highly procedural and product-oriented. Students had inefficient skills in accessing and retrieving information from the…

  3. Mobile Voting Tools for Creating Collaboration Environment and a New Educational Design of the University Lecture

    ERIC Educational Resources Information Center

    Titova, Svetlana

    2014-01-01

    Mobile devices can enhance learning experience in many ways: provide instant feedback and better diagnosis of learning problems; enhance learner autonomy; create mobile networking collaboration; help design enquiry-based activities based on augmented reality, geo-location awareness and video-capture. One of the main objectives of the international…

  4. The Effects of Case Libraries in Supporting Collaborative Problem-Solving in an Online Learning Environment

    ERIC Educational Resources Information Center

    Tawfik, Andrew A.; Sánchez, Lenny; Saparova, Dinara

    2014-01-01

    Various domains require practitioners to encounter and resolve ill-structured problems using collaborative problem-solving. As such, problem-solving is an essential skill that educators must emphasize to prepare learners for practice. One potential way to support problem-solving is through further investigation of instructional design methods that…

  5. The Effects of Using PBWorks in a Hybrid Collaborative Class Environment on Students' Academic Achievement

    ERIC Educational Resources Information Center

    Ibrahim, Abdullah Y. A. A. A.

    2011-01-01

    E-learning plays an important role in higher education, especially with the appearance of web 2.0. The study investigated the effects of using PBWorks, as a free web 2.0 wiki, on students' academic achievement, and students' attitudes toward collaborative learning. The study was designed as an experimental study. There was comparison between two…

  6. Mathematics Teacher Change in a Collaborative Environment: To What Extent and How

    ERIC Educational Resources Information Center

    Munoz-Catalan, Maria de la Cinta; Carrillo Yanez, Jose; Climent Rodriguez, Nuria

    2010-01-01

    This article reports on a study into how collaborative contexts influence the professional development of an early-career primary teacher, Julia. We describe the process of change by which Julia manages to make her planning to teach mathematics more flexible so as to adapt to student difficulties, and we analyse the role that joint reflection…

  7. A Collaborative Autoethnography of Literacy Professional Development Work in a High-Needs Environment

    ERIC Educational Resources Information Center

    Sanders, Jennifer Y.; Parsons, Sue Christian; Mwavita, Mwarumba; Thomas, Katherine

    2015-01-01

    This article presents the findings of a collaborative autoethnography (CAE) of three teacher educators' work as literacy professional development (PD) leaders in a high-needs, culturally diverse, urban, US school district. The research questions focused on what the facilitators learned about leading literacy PD in a high-needs/high-stakes…

  8. Studying the Effectiveness of Multi-User Immersive Environments for Collaborative Evaluation Tasks

    ERIC Educational Resources Information Center

    Lorenzo, Carlos-Miguel; Sicilia, Miguel Angel; Sanchez, Salvador

    2012-01-01

    Massively Multiuser On-line Learning (MMOL) Platforms, often called "virtual learning worlds", constitute a still unexplored context for communication-enhanced learning, where synchronous communication skills in an explicit social setting enhance the potential of effective collaboration. In this paper, we report on an experimental study of…

  9. How Working Collaboratively with Technology Can Foster a Creative Learning Environment

    ERIC Educational Resources Information Center

    Gómez, Susana

    2016-01-01

    Research has shown that collaborative learning is a very powerful methodology as it ensures interaction among students, humanises the learning process and has positive effects on academic achievement. An activity based on this approach can also benefit from the use of technology, making this task more appealing to our students today. The aim of…

  10. The Affordance of Online Multiuser Virtual Environments (MUVE) for Creative Collaboration

    ERIC Educational Resources Information Center

    Hong, Seung Wan

    2013-01-01

    Creativity is an important criterion for evaluating conceptual and design abilities of architects and their praxis. However, in recent years, the world has grown more complex. New problems have emerged that are often outside the architect's capacity. Given this challenge, architects collaborate with colleagues from architecture and other related…

  11. Modeling Peer Assessment as Agent Negotiation in a Computer Supported Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Lai, K. Robert; Lan, Chung Hsien

    2006-01-01

    This work presents a novel method for modeling collaborative learning as multi-issue agent negotiation using fuzzy constraints. Agent negotiation is an iterative process, through which, the proposed method aggregates student marks to reduce personal bias. In the framework, students define individual fuzzy membership functions based on their…

  12. Collaborative Research to Advance Precision Medicine in the Post-Genomic World | Office of Cancer Genomics

    Cancer.gov

    My name is Subhashini Jagu, and I am the Scientific Program Manager for the Cancer Target Discovery and Development (CTD2) Network at the Office of Cancer Genomics (OCG). In my new role, I help CTD2 work toward its mission, which is to develop new scientific approaches to accelerate the translation of genomic discoveries into new treatments. Collaborative efforts that bring together a variety of expertise and infrastructure are needed to understand and successfully treat cancer, a highly complex disease.

  13. Advanced Scientific Computing Environment Team new scientific database management task

    SciTech Connect

    Church, J.P.; Roberts, J.C.; Sims, R.N.; Smetana, A.O.; Westmoreland, B.W.

    1991-06-01

    The mission of the ASCENT Team is to continually keep pace with, evaluate, and select emerging computing technologies to define and implement prototypic scientific environments that maximize the ability of scientists and engineers to manage scientific data. These environments are to be implemented in a manner consistent with the site computing architecture and standards and NRTSC/SCS strategic plans for scientific computing. The major trends in computing hardware and software technology clearly indicate that the future computer'' will be a network environment that comprises supercomputers, graphics boxes, mainframes, clusters, workstations, terminals, and microcomputers. This network computer'' will have an architecturally transparent operating system allowing the applications code to run on any box supplying the required computing resources. The environment will include a distributed database and database managing system(s) that permits use of relational, hierarchical, object oriented, GIS, et al, databases. To reach this goal requires a stepwise progression from the present assemblage of monolithic applications codes running on disparate hardware platforms and operating systems. The first steps include converting from the existing JOSHUA system to a new J80 system that complies with modern language standards, development of a new J90 prototype to provide JOSHUA capabilities on Unix platforms, development of portable graphics tools to greatly facilitate preparation of input and interpretation of output; and extension of Jvv'' concepts and capabilities to distributed and/or parallel computing environments.

  14. Musical Composition and Creativity in an Advanced Software Environment

    ERIC Educational Resources Information Center

    Reynolds, Nicholas

    2002-01-01

    This paper serves as a brief description of research into the use of professional level music software as a learning tool for creativity and composition by primary school children. The research formed the basis of a Master of Information Technology in Education degree at the University of Melbourne. The paper examines the physical environment, the…

  15. Environment assisted degradation mechanisms in advanced light metals

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Stoner, Glenn E.; Swanson, Robert E.

    1988-01-01

    The general goals of the research program are to characterize alloy behavior quantitatively and to develop predictive mechanisms for environmental failure modes. Successes in this regard will provide the basis for metallurgical optimization of alloy performance, for chemical control of aggressive environments, and for engineering life prediction with damage tolerance and long term reliability.

  16. Collaborative Virtual Environments for Mars Science Analysis and Rover Target Planning

    NASA Astrophysics Data System (ADS)

    Gerndt, A.; Gwinner, K.; Fernando, T.; Roberts, D.; Musso, I.; Basso, V.; Giuranna, M.; Vandaele, A. C.; Kasaba, Y.

    2015-10-01

    The CROSS DRIVE project aims to develop an innovative collaborative workspace infrastructure for space missions that will allow distributed scientific and engineering teams to collectively analyse and interpret scientific data as well as execute operations of planetary spacecraft. It aims to mobilise a team of best European expertise in the field of Mars science data collection and analysis to propose and study synergic combinations of data sets and their benchmarking.

  17. Environment enhanced fatigue of advanced aluminum alloys and composites

    NASA Technical Reports Server (NTRS)

    Slavik, Donald C.; Gangloff, Richard P.

    1990-01-01

    The objective is to characterize and understand the environmental fatigue crack propagation behavior of advanced, high stiffness and strength, aluminum alloys and metal matrix composites. Those gases and aqueous electrolytes which are capable of producing atomic hydrogen by reactions on clean crack surfaces are emphasized. Characterizations of the behavior of new materials are sought to provide data for damage tolerant component life prediction. Mechanistic models are sought for crack tip damage processes which are generally applicable to structural aluminum alloys. Such models will enable predictions of cracking behavior outside of the data, metallurgical improvements in material cracking resistance, and insight on hydrogen compatibility.

  18. Technical advancements in submersible pump power cable for harsh environments

    SciTech Connect

    Guzy, R.; Vandevier, J.

    1985-01-01

    In artificial lift systems, such as electrical submersible pumping, the power cable provides the link between the surface equipment and the pumping unit. New cable designs are constantly being introduced. This article discusses these designs and their materials. Information on a new approach to cable manufacturing and use of downhole materials in harsh environments is also provided. This paper includes work on cable designs which incorporate a new, unique, elastomeric composition that resists rupture of jacketing materials used on downhole cables, eliminating the need for tape and braid. Cable history is also reviewed, classifying the cables by use temperatures and relative cost. The criteria for selecting materials suitable for the entire range of downhole environments is included.

  19. The U.S. Geological Survey Ecosystem Science Strategy, 2012-2022 - Advancing discovery and application through collaboration

    USGS Publications Warehouse

    Williams, Byron K.; Wingard, G. Lynn; Brewer, Gary; Cloern, James; Gelfenbaum, Guy; Jacobson, Robert B.; Kershner, Jeffrey L.; McGuire, Anthony David; Nichols, James D.; Shapiro, Carl D.; van Riper, Charles, III; White, Robin P.

    2012-01-01

    technologies for data collection, management, and visualization. Collectively, these capabilities can be used to reveal ecological patterns and processes, explain how and why ecosystems change, and forecast change over different spatial and temporal scales. USGS science can provide managers with options and decision-support tools to use resources sustainably. The USGS has long-standing, collaborative relationships with the DOI and other partners in the natural sciences, in both conducting science and its application. The USGS engages these partners in cooperative investigations that otherwise would lack the necessary support or be too expensive for a single bureau to conduct. The heart of this strategy is a framework and vision for USGS ecosystems science that focuses on five long-term goals, which are seen as interconnected and reinforcing components: * Improve understanding of ecosystem structure, function, and processes. The focus for this goal is an understanding of how ecosystems work, including the dynamics of species, their populations, interactions, and genetics, and how they change across spatial and temporal scales. * Advance understanding of how drivers influence ecosystem change. The challenges here are explaining the drivers of ecosystem change, their spatio-temporal patterns, their uncertainties and interactions, and their influence on ecosystem processes and dynamics. * Improve understanding of the services that ecosystems provide to society. Here the emphasis is on the measurement of environmental capital and ecosystem services, and the identification of sources and patterns of change in space and time. * Develop tools, technologies, and capacities to inform decision-making about ecosystems. This includes developing new technologies and approaches for conducting applications-oriented ecosystem science. A principal challenge will be how to quantify uncertainty and incorporate it in decision analysis. * Apply science to enhance strategies for management

  20. Difficult-to-manage HIV/AIDS clients with psychiatric illness and substance abuse problems: a collaborative practice with psychiatric advanced practice nurses.

    PubMed

    Morgan, Betty D; Rossi, Anne P

    2007-01-01

    Complex clients with comorbid HIV disease, other medical illness, psychiatric illness, and substance abuse problems present tremendous challenges to providers. Medication adherence and case management become vital issues in providing comprehensive care to this population. This report describes the practice of two advanced practice psychiatric registered nurses who worked collaboratively with each other and with nurse practitioners to provide care to such complex clients. Description of collaborative practices and the model of collaboration used by the two practitioners are highlighted through three case studies. Conclusions about the practice and its use with complex clients are provided. PMID:17991601

  1. Understanding the operational environment: implications for advanced visualizations

    NASA Astrophysics Data System (ADS)

    Aleva, Denise; Fitzhugh, Elisabeth; Dixon, Sharon

    2009-05-01

    With the changing character of warfare, information superiority is a high priority. Given the complexity of current and future operating environments, analysts, strategists and planners need a multidimensional understanding of the battlespace. Asymmetric warfare necessitates that our strategists look beyond targets-based operations, where we simply identify and destroy enemy entities. Effects-based operations models the enemy as a system which reacts to our actions. This requires the capability to predict the adversary response to a selected action. Actions may be diplomatic, information, military or economic (DIME). Effects may be political, military, economic, social, information or infrastructure (PMESII). Timing must be explicitly considered and effects dynamically assessed. Visualizations of intelligence information are needed which will promote full understanding of all aspects of adversary strengths and weaknesses by providing the extensive data about adversary forces, organic essentials, infrastructure, leadership, population, and science and technology in an easily accessible and understandable format. This will enhance Effectsbased operations, and therefore, the capability to predict and counter adversary courses of action. This paper outlines a systems engineering approach to designing visualizations which convey the multidimensional information to decision makers. Visualization issues inherent in understanding the multidimensional operational environment will be discussed.

  2. 77 FR 19030 - Automated Commercial Environment Required for the Transmission of Advance Ocean and Rail Cargo...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... SECURITY U.S. Customs and Border Protection Automated Commercial Environment Required for the Transmission... recently completed the testing of the Automated Commercial Environment (ACE) for the transmission of..., rail or truck. See Required Advance Electronic ] Presentation of Cargo Information, 68 FR...

  3. Advances through collaboration: sharing seismic reflection data via the Antarctic Seismic Data Library System for Cooperative Research (SDLS)

    USGS Publications Warehouse

    Wardell, N.; Childs, J. R.; Cooper, A. K.

    2007-01-01

    The Antarctic Seismic Data Library System for Cooperative Research (SDLS) has served for the past 16 years under the auspices of the Antarctic Treaty (ATCM Recommendation XVI-12) as a role model for collaboration and equitable sharing of Antarctic multichannel seismic reflection (MCS) data for geoscience studies. During this period, collaboration in MCS studies has advanced deciphering the seismic stratigraphy and structure of Antarctica’s continental margin more rapidly than previously. MCS data compilations provided the geologic framework for scientific drilling at several Antarctic locations and for high-resolution seismic and sampling studies to decipher Cenozoic depositional paleoenvironments. The SDLS successes come from cooperation of National Antarctic Programs and individual investigators in “on-time” submissions of their MCS data. Most do, but some do not. The SDLS community has an International Polar Year (IPY) goal of all overdue MCS data being sent to the SDLS by end of IPY. The community science objective is to compile all Antarctic MCS data to derive a unified seismic stratigraphy for the continental margin – a stratigraphy to be used with drilling data to derive Cenozoic circum-Antarctic paleobathymetry maps and local-to-regional scale paleoenvironmental histories.

  4. Combustion Synthesis of Advanced Porous Materials in Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Johnson, D. P.

    1999-01-01

    Combustion synthesis, otherwise known as self-propagating high temperature synthesis (SHS), can be used to produce engineered advanced porous material implants which offer the possibility for bone ingrowth as well as a permanent structure framework for the long-term replacement of bone defects. The primary advantage of SHS is based on its rapid kinetics and favorable energetics. The structure and properties of materials produced by SHS are strongly dependent on the combustion reaction conditions. Combustion reaction conditions such as reaction stoichiometry, particle size, green density, the presence and use of diluents or inert reactants, and pre-heating of the reactants, will affect the exothermicity of the reaction. A number of conditions must be satisfied in order to obtain high porosity materials: an optimal amount of liquid, gas and solid phases must be present in the combustion front. Therefore, a balance among these phases at the combustion front must be created by the SHS reaction to successfully engineer a bone replacement material system. Microgravity testing has extended the ability to form porous products. The convective heat transfer mechanisms which operate in normal gravity, 1 g, constrain the combustion synthesis reactions. Gravity also acts to limit the porosity which may be formed as the force of gravity serves to restrict the gas expansion and the liquid movement during reaction. Infiltration of the porous product with other phases can modify both the extent of porosity and the mechanical properties.

  5. Designing Collaborative Knowledge Building Environments Accessible to All Learners: Impacts and Design Challenges

    ERIC Educational Resources Information Center

    So, Hyo-Jeong; Seah, Lay Hoon; Toh-Heng, Hwee Leng

    2010-01-01

    The present study attempted to investigate whether young learners who were new to knowledge building approaches could work towards advancing both individual and collective knowledge, and whether knowledge building could be beneficial to both high-achieving and low-achieving students. Findings reported in this paper are from one and a half-year…

  6. Implementation of Advanced Warehouses in a Hospital Environment - Case study

    NASA Astrophysics Data System (ADS)

    Costa, J.; Sameiro Carvalho, M.; Nobre, A.

    2015-05-01

    In Portugal, there is an increase of costs in the healthcare sector due to several factors such as the aging of the population, the increased demand for health care services and the increasing investment in new technologies. Thus, there is a need to reduce costs, by presenting the effective and efficient management of logistics supply systems with enormous potential to achieve savings in health care organizations without compromising the quality of the provided service, which is a critical factor, in this type of sector. In this research project the implementation of Advanced Warehouses has been studied, in the Hospital de Braga patient care units, based in a mix of replenishment systems approaches: the par level system, the two bin system and the consignment model. The logistics supply process is supported by information technology (IT), allowing a proactive replacement of products, based on the hospital services consumption records. The case study was developed in two patient care units, in order to study the impact of the operation of the three replenishment systems. Results showed that an important inventory holding costs reduction can be achieved in the patient care unit warehouses while increasing the service level and increasing control of incoming and stored materials with less human resources. The main conclusion of this work illustrates the possibility of operating multiple replenishment models, according to the types of materials that healthcare organizations deal with, so that they are able to provide quality health care services at a reduced cost and economically sustainable. The adoption of adequate IT has been shown critical for the success of the project.

  7. Distributed collaborative environment with real-time tracking of 3D body postures

    NASA Astrophysics Data System (ADS)

    Alisi, Thomas M.; Del Bimbo, Alberto; Pucci, Fabio; Valli, Alessandro

    2003-12-01

    In this paper a multi-user motion capture system is presented, where users work from separate locations and interact in a common virtual environment. The system functions well on low-end personal computers; it implements a natural human/machine interaction due to the complete absence of markers and weak constraints on users' clothes and environment lighting. It is suitable for every-day use, where the great precision reached by complex commercial systems is not the principal requisite.

  8. The Effects of Different Computer-Supported Collaboration Scripts on Students' Learning Processes and Outcome in a Simulation-Based Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Wieland, Kristina

    2010-01-01

    Students benefit from collaborative learning activities, but they do not automatically reach desired learning outcomes when working together (Fischer, Kollar, Mandl, & Haake, 2007; King, 2007). Learners need instructional support to increase the quality of collaborative processes and individual learning outcomes. The core challenge is to find the…

  9. Thin film subsurface environments; Advanced X-ray spectroscopies and a novel Bayesian inference modeling algorithm

    NASA Astrophysics Data System (ADS)

    Church, Jonathan R.

    New condensed matter metrologies are being used to probe ever smaller length scales. In support of the diverse field of materials research synchrotron based spectroscopies provide sub-micron spatial resolutions and a breadth of photon wavelengths for scientific studies. For electronic materials the thinnest layers in a complementary metal-oxide-semiconductor (CMOS) device have been reduced to just a few nanometers. This raises concerns for layer uniformity, complete surface coverage, and interfacial quality. Deposition processes like chemical vapor deposition (CVD) and atomic layer deposition (ALD) have been shown to deposit the needed high-quality films for the requisite thicknesses. However, new materials beget new chemistries and, unfortunately, unwanted side-reactions and by-products. CVD/ALD tools and chemical precursors provided by our collaborators at Air Liquide utilized these new chemistries and films were deposited for which novel spectroscopic characterization methods were used. The second portion of the thesis focuses on fading and decomposing paint pigments in iconic artworks. Efforts have been directed towards understanding the micro-environments causing degradation. Hard X-ray photoelectron spectroscopy (HAXPES) and variable kinetic energy X-ray photoelectron spectroscopy (VKE-XPS) are advanced XPS techniques capable of elucidating both chemical environments and electronic band structures in sub-surface regions of electronic materials. HAXPES has been used to study the electronic band structure in a typical CMOS structure; it will be shown that unexpected band alignments are associated with the presence of electronic charges near a buried interface. Additionally, a computational modeling algorithm, Bayes-Sim, was developed to reconstruct compositional depth profiles (CDP) using VKE-XPS data sets; a subset algorithm also reconstructs CDP from angle-resolved XPS data. Reconstructed CDP produced by Bayes-Sim were most strongly correlated to the real

  10. E-Learning in Engineering Education: Design of a Collaborative Advanced Remote Access Laboratory

    ERIC Educational Resources Information Center

    Chandra A. P., Jagadeesh; Samuel, R. D. Sudhaker

    2010-01-01

    Attaining excellence in technical education is a worthy challenge to any life goal. Distance learning opportunities make these goals easier to reach with added quality. Distance learning in engineering education is possible only through successful implementations of remote laboratories in a learning-by-doing environment. This paper presents one…

  11. Gerontological nursing leadership in the Advancing Excellence Campaign: moving interdisciplinary collaboration forward.

    PubMed

    Bakerjian, Debra; Beverly, Claudia; Burger, Sarah Greene; Carter, Diane; Dornberger, Sherrie; Eliopoulos, Charlotte; Remsburg, Robin

    2014-01-01

    Nursing was not a part of the coalition of multiple nursing home stakeholders at the roll out of the Advancing Excellence Campaign (AEC). In January 2007, several nurse organizations proactively approached the AEC leadership, were welcomed and immediately began to volunteer for leadership positions such as committee chairs and conference coordinators. This paper presents an exemplar of how a proactive stance, even when not initially included, allowed nurses to secure chairs at the decision making table of this quality campaign and contribute to improved resident outcomes. PMID:24970338

  12. Microsoft Kinect based head tracking for Life Size Collaborative Surgical Simulation Environments (LS-CollaSSLE).

    PubMed

    Dargar, Saurabh; Nunno, Austin; Sankaranarayanan, Ganesh; De, Suvranu

    2013-01-01

    Virtual surgical skills trainers are proving to be very useful for the medical training community. With efforts to increase patient safety and surgeon expertise, the need for surgical skills trainers that provide training in an operating room (OR) like condition is now more pressing. To allow for virtual surgery simulators to be instructed in an OR-like setting we have created a large display based immersive surgical simulation environment. Using the Microsoft Kinect we have created a real-time simulation environment that tracks the test user and appropriately adjust the perspective of the virtual OR for an immersive virtual experience. PMID:23400140

  13. Chinese Students' Perceptions of a Collaborative E-Learning Environment and Factors Affecting Their Performance: Implementing a Flemish E-Learning Course in a Chinese Educational Context

    ERIC Educational Resources Information Center

    Zhu, Chang; Valcke, Martin; Schellens, Tammy; Li, Yifei

    2009-01-01

    This study was set up in a Chinese university in Beijing by implementing a Flemish e-learning course in a Chinese setting. A main feature of the e-learning environment is the asynchronous "task-based" online group discussion. The purpose of the study is to understand Chinese students' perceptions of a collaborative e-learning environment and the…

  14. Australia's TERN: Building, Sustaining and Advancing Collaborative Long Term Ecosystem Research Networks

    NASA Astrophysics Data System (ADS)

    HEld, A. A.; Phinn, S. R.

    2012-12-01

    TERN is Australia's Terrestrial Ecosystem Research Network (www.tern.org.au) is one of several environmental data collection, storage and sharing projects developed through the government's research infrastructure programs 2008-2014. This includes terrestrial and coastal ecosystem data collection infrastructure across multiple disciplines, hardware, software and processes used to store, analyse and integrate data sets. TERN's overall objective is to build the collaborations, infrastructure and programs to meet the needs of ecosystem science communities in Australia in the long term, through institutional frameworks necessary to establish a national terrestrial ecosystem site and observational network, coordinated networks enabling cooperation and operational experience; public access to quality assured and appropriately licensed data; and allowing the terrestrial ecosystem research community to define and sustain the terrestrial observing paradigm into the longer term. This paper explains how TERN was originally established, and now operates, along with plans to sustain itself in the future. TERN is implemented through discipline/technical groups referred to as "TERN Facilities". Combined, the facilities provide observations of surface mass and energy fluxes over key ecosystems, biophysical remote sensing data, ecological survey plots, soils information, and coastal ecosystems and associated water quality variables across Australia. Additional integrative facilities cover elements of ecoinformatics, data-scaling and modelling, and linking science to management. A central coordination and portal facility provides meta-data storage, data identification, legal and licensing support. Data access, uploading, meta-data generation, DOI attachment and licensing is completed at each facility's own portal level. TERN also acts as the open-data repository of choice for Australian scientists required to publish their data. Several key lessons we have learnt, will be presented

  15. "Parisara": Developing a Collaborative, Free, Public Domain Knowledge Resource on Indian Environment

    ERIC Educational Resources Information Center

    Gadgil, Madhav

    2012-01-01

    To address the important challenge of taking good care of India's environment, substantial, good quality information is crucial. Unfortunately, pertinent information is in very short supply. Much of the nationally collected information lacks quality and is incomplete. Modern science has demonstrated that good information flows from an open,…

  16. A Working Model for Intercultural Learning and Engagement in Collaborative Online Language Learning Environments

    ERIC Educational Resources Information Center

    Lawrence, Geoff

    2013-01-01

    Given the emerging focus on the intercultural dimension in language teaching and learning, language educators have been exploring the use of information and communications technology ICT-mediated language learning environments to link learners in intercultural language learning communities around the globe. Despite the potential promise of…

  17. Collaborative Embodied Learning in Mixed Reality Motion-Capture Environments: Two Science Studies

    ERIC Educational Resources Information Center

    Johnson-Glenberg, Mina C.; Birchfield, David A.; Tolentino, Lisa; Koziupa, Tatyana

    2014-01-01

    These 2 studies investigate the extent to which an Embodied Mixed Reality Learning Environment (EMRELE) can enhance science learning compared to regular classroom instruction. Mixed reality means that physical tangible and digital components were present. The content for the EMRELE required that students map abstract concepts and relations onto…

  18. Collaborative Virtual Environments as Means to Increase the Level of Intersubjectivity in a Distributed Cognition System

    ERIC Educational Resources Information Center

    Ligorio, M. Beatrice; Cesareni, Donatella; Schwartz, Neil

    2008-01-01

    Virtual environments are able to extend the space of interaction beyond the classroom. In order to analyze how distributed cognition functions in such an extended space, we suggest focusing on the architecture of intersubjectivity. The Euroland project--a virtual land created and populated by seven classrooms supported by a team of…

  19. The Influence of a Collaborative Learning Environment on Primary Students' Conceptions about Acid Rain.

    ERIC Educational Resources Information Center

    Marinopoulos, Dimitrios; Stavridou, Heleni

    2002-01-01

    Investigates primary students' conceptions of acid rain formation and its consequences to people and the environment before and after a 10-hour constructivist teaching intervention. Reports improvement in conceptions of physical and chemical phenomena among the experimental group participants. (Contains 23 references.) (Author/YDS)

  20. Constructing Liminal Blends in a Collaborative Augmented-Reality Learning Environment

    ERIC Educational Resources Information Center

    Enyedy, Noel; Danish, Joshua A.; DeLiema, David

    2015-01-01

    In vision-based augmented-reality (AR) environments, users view the physical world through a video feed or device that "augments" the display with a graphical or informational overlay. Our goal in this manuscript is to ask "how" and "why" these new technologies create opportunities for learning. We suggest that AR is…

  1. Computer-Supported Collaborative Learning in a Multi-Media Distance Education Environment.

    ERIC Educational Resources Information Center

    Kaye, Tony

    The design issues involved in the effective use of computer-mediated communication in a multimedia distance education environment are examined, with particular reference to recent and current initiatives at the Open University in Great Britain. A description of the components of the Open University's electronic campus (the conferencing system and…

  2. Measuring Flow Experience in an Immersive Virtual Environment for Collaborative Learning

    ERIC Educational Resources Information Center

    van Schaik, P.; Martin, S.; Vallance, M.

    2012-01-01

    In contexts other than immersive virtual environments, theoretical and empirical work has identified flow experience as a major factor in learning and human-computer interaction. Flow is defined as a "holistic sensation that people feel when they act with total involvement". We applied the concept of flow to modeling the experience of…

  3. Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry

    ERIC Educational Resources Information Center

    Sun, Daner; Looi, Chee-Kit

    2013-01-01

    The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as…

  4. Using a Collaborative Virtual Role-Play Environment To Foster Characterization in Stories.

    ERIC Educational Resources Information Center

    Robertson, Judy; Good, Judith

    2003-01-01

    Reports the results of a field study evaluation of a virtual role-play environment, "Ghostwriter," which was designed as a preparation activity for writing stories. Examines the effects of "Ghostwriter" has on characterization in children's imaginative writing. Participants were 60 children aged between 10-12 years. Results support the view that…

  5. Collaborative Spaces for GIS-Based Multimedia Cartography in Blended Environments

    ERIC Educational Resources Information Center

    Balram, Shivanand; Dragicevic, Suzana

    2008-01-01

    The interaction spaces between instructors and learners in the traditional face-to-face classroom environment are being changed by the diffusion and adoption of many forms of computer-based pedagogy. An integrated understanding of these evolving interaction spaces together with how they interconnect and leverage learning are needed to develop…

  6. Designing Collaborative E-Learning Environments Based upon Semantic Wiki: From Design Models to Application Scenarios

    ERIC Educational Resources Information Center

    Li, Yanyan; Dong, Mingkai; Huang, Ronghuai

    2011-01-01

    The knowledge society requires life-long learning and flexible learning environment that enables fast, just-in-time and relevant learning, aiding the development of communities of knowledge, linking learners and practitioners with experts. Based upon semantic wiki, a combination of wiki and Semantic Web technology, this paper designs and develops…

  7. Creating a Collaborative Web-Based Environment through the Inclusion of Metaphorically Enhanced Graphics.

    ERIC Educational Resources Information Center

    Henry, Anne; Crawford, Caroline M.

    The inclusion of metaphors within a World Wide Web-based environment offers users the opportunity not only to obtain a visual understanding of the information being presented, but also aids users in developing a clearer understanding of the information and builds on their previously conceptual framework of understanding. The importance of a…

  8. Developing a Collaborative Research Environment for a Study of Coastal Groundwater Hydraulics: Benin, West Africa

    NASA Astrophysics Data System (ADS)

    Silliman, S. E.; Boukari, M.; Yalo, N.

    2011-12-01

    The city of Cotonou, Benin, has a population between 1.5 and 2 million people served by groundwater wells. Recent evidence suggests that salinity is increasing in a series of wells which border a salt-water lake. Modeling and field characterization of this complex groundwater system is targeted at providing the national water agency in Benin with assessment of multiple management strategies to reduce the impact of saline inflows from the lake. Research efforts have evolved through development of collaboration among colleagues from the Universite d'Abomey-Calavi (Benin) and the University of Notre Dame (USA): participants have included faculty and students (undergraduate and graduate) from both institutions. The combined research team has provided the ability to: (i) identify funding opportunities through multiple funding sources, (ii) establish long-term monitoring in the lake and groundwater systems through field measurements by Benin partners, (iii) introduce new tools (numerical and instrumentation) through professional contacts and suppliers in the U.S., (iv) establish site security (for long-term installation of equipment) through local knowledge of customs and cultural requirements, and (v) interpret data and management strategies from multiple viewpoints. The project has provided for collection of high-quality data that have provided opportunities to improve both the conceptual model of the local hydrogeology and the field strategies used to characterize both parameters and boundary conditions impacting flow to the water-supply wells.

  9. Human Collaborative Localization and Mapping in Indoor Environments with Non-Continuous Stereo

    PubMed Central

    Guerra, Edmundo; Munguia, Rodrigo; Bolea, Yolanda; Grau, Antoni

    2016-01-01

    A new approach to the monocular simultaneous localization and mapping (SLAM) problem is presented in this work. Data obtained from additional bearing-only sensors deployed as wearable devices is fully fused into an Extended Kalman Filter (EKF). The wearable device is introduced in the context of a collaborative task within a human-robot interaction (HRI) paradigm, including the SLAM problem. Thus, based on the delayed inverse-depth feature initialization (DI-D) SLAM, data from the camera deployed on the human, capturing his/her field of view, is used to enhance the depth estimation of the robotic monocular sensor which maps and locates the device. The occurrence of overlapping between the views of both cameras is predicted through geometrical modelling, activating a pseudo-stereo methodology which allows to instantly measure the depth by stochastic triangulation of matched points found through SIFT/SURF. Experimental validation is provided through results from experiments, where real data is captured as synchronized sequences of video and other data (relative pose of secondary camera) and processed off-line. The sequences capture indoor trajectories representing the main challenges for a monocular SLAM approach, namely, singular trajectories and close turns with high angular velocities with respect to linear velocities. PMID:26927100

  10. Human Collaborative Localization and Mapping in Indoor Environments with Non-Continuous Stereo.

    PubMed

    Guerra, Edmundo; Munguia, Rodrigo; Bolea, Yolanda; Grau, Antoni

    2016-01-01

    A new approach to the monocular simultaneous localization and mapping (SLAM) problem is presented in this work. Data obtained from additional bearing-only sensors deployed as wearable devices is fully fused into an Extended Kalman Filter (EKF). The wearable device is introduced in the context of a collaborative task within a human-robot interaction (HRI) paradigm, including the SLAM problem. Thus, based on the delayed inverse-depth feature initialization (DI-D) SLAM, data from the camera deployed on the human, capturing his/her field of view, is used to enhance the depth estimation of the robotic monocular sensor which maps and locates the device. The occurrence of overlapping between the views of both cameras is predicted through geometrical modelling, activating a pseudo-stereo methodology which allows to instantly measure the depth by stochastic triangulation of matched points found through SIFT/SURF. Experimental validation is provided through results from experiments, where real data is captured as synchronized sequences of video and other data (relative pose of secondary camera) and processed off-line. The sequences capture indoor trajectories representing the main challenges for a monocular SLAM approach, namely, singular trajectories and close turns with high angular velocities with respect to linear velocities. PMID:26927100

  11. Combining Collaborative Learning with Learning Management Systems in Teaching Programming Language

    ERIC Educational Resources Information Center

    Cavus, Nadire; Uzunboylu, Huseyin; Ibrahim, Dogan

    2006-01-01

    The development of collaborative studies in learning has led to a renewed interest in the field of web-based education. In this experimental study, a highly interactive and collaborative teaching environment was created using Moodle, a learning management system with two types of Collaborative Tools (CTs): Standard CT and Advanced CT to create a…

  12. Collaborative Problem-Solving Environments; Proceedings for the Workshop CPSEs for Scientific Research, San Diego, California, June 20 to July 1, 1999

    SciTech Connect

    Chin, George

    1999-01-11

    A workshop on collaborative problem-solving environments (CPSEs) was held June 29 through July 1, 1999, in San Diego, California. The workshop was sponsored by the U.S. Department of Energy and the High Performance Network Applications Team of the Large Scale Networking Working Group. The workshop brought together researchers and developers from industry, academia, and government to identify, define, and discuss future directions in collaboration and problem-solving technologies in support of scientific research.

  13. Using Collaborative Engineering to Inform Collaboration Engineering

    NASA Technical Reports Server (NTRS)

    Cooper, Lynne P.

    2012-01-01

    Collaboration is a critical competency for modern organizations as they struggle to compete in an increasingly complex, global environment. A large body of research on collaboration in the workplace focuses both on teams, investigating how groups use teamwork to perform their task work, and on the use of information systems to support team processes ("collaboration engineering"). This research essay presents collaboration from an engineering perspective ("collaborative engineering"). It uses examples from professional and student engineering teams to illustrate key differences in collaborative versus collaboration engineering and investigates how challenges in the former can inform opportunities for the latter.

  14. Collaborative Annotation of a Hyperbook on Hypermedia Design.

    ERIC Educational Resources Information Center

    Jonassen, David H.; Wang, Sherwood

    This report describes the process and results of a collaborative annotation process for inserting internal, conceptual linking in a book about hypertext design and the implications of that process for designing collaborative hypertext environments. The book was the product of a NATO (North Atlantic Treaty Organization)-sponsored Advanced Research…

  15. Ensuring Mobility-Supporting Environments for an Aging Population: Critical Actors and Collaborations

    PubMed Central

    Kochtitzky, Chris S.; Freeland, Amy L.; Yen, Irene H.

    2011-01-01

    Successful aging takes on an array of attributes, including optimal health and community participation. Research indicates that (1) persons with disabilities, including age-related disabilities, report frequent barriers to community participation, including unsuitable building design (43%), transportation (32%), and sidewalks/curbs (31%), and (2) many seniors report an inability to cross roads safely near their homes. This paper attempts to define mobility-related elements that contribute to optimal health and quality of life, within the context of successful aging. It then examines the impacts of community design on individual mobility, delving into which traditional and nontraditional actors—including architects, urban planners, transportation engineers, occupational therapists, and housing authorities—play critical roles in ensuring that community environments serve as facilitators (rather than barriers) to mobility. As America ages, mobility challenges for seniors will only increase unless both traditional aging specialists and many nontraditional actors make a concerted effort to address the challenges. PMID:21766029

  16. The development of a new database of gas emissions in Italy: a collaborative web environment for collecting and publishing data on natural gas emissions

    NASA Astrophysics Data System (ADS)

    Cardellini, C.; Frigeri, A.; Frondini, F.; Chiodini, G.

    2010-12-01

    In spite of the large extension of the Earth degassing process and of the correlations with geodynamic processes and large scale geochemical processes, the Earth degassing process in the world is still poorly known. Beside the scientific interest on studying gas emissions, a better knowledge of the degassing process is crucial for mitigate gas hazard correlated to the release of dangerous gases (e.g., CO2, H2S) from natural emissions, that, like in Italy, caused many lethal accidents to animals and humans. After years of data collection organized on a base of a single research group, institution, or project, there is clearly a need for common frameworks that allow to aggregate data in order to observe the phenomena at various scale. The development of Googas in 2007 (Chiodini et al., 2008), funded by the Italian Civil Defence and focused on the serialization of data and the publication of a web map of gas emissions, was the first attempt to create a collaborative database on gas emissions. Googas, that represented an important advance in the knowledge of the phenomenon at the national scale, is however a static representation of the results of the project. Starting from the Googas experience, we are now extending the capabilities of Googas on the user side, developing a new web environment for collecting and publishing data of gas natural emissions dynamically. The collaborative environment allows researchers from different institutions to collect data in the most seamless way, and data to be published directly from within the same system. The web interface allows to insert data interactively into a spatially referred relational database management system. Moreover, researchers are aware of the activity of the others and can access data, leave comments as soon as data is being inserted. This new system aims to excite, inspire, and encourage participation among researchers. As gas emissions are inherently referred to geographic locations, published digital data will

  17. Development of the assessment for collaborative environments (ACE-15): A tool to measure perceptions of interprofessional "teamness".

    PubMed

    Tilden, Virginia P; Eckstrom, Elizabeth; Dieckmann, Nathan F

    2016-05-01

    As interprofessional education moves from classroom to clinical settings, assessing clinical training sites for a high level of "teamness" to ensure optimal learning environments is critical but often problematic ahead of student placement. We developed a tool (Assessment for Collaborative Environments, or ACE), suitable for a range of clinical settings and health professionals, that allows rapid assessment of a clinical practice's teamwork qualities. We collected evidence of tool validity including content, response process, internal structure, and convergent validity. Expert review and cognitive interviews allowed reduction of the initial 30-item tool to 15 items (the ACE-15). Data from 192 respondents from 17 clinical professions and varied clinical settings (inpatient, ambulatory, urban, and rural) were used for factor analysis, which resulted in a single factor solution. Internal consistency reliability Cronbach's alpha was high at 0.91. Subgroup analysis of 121 respondents grouped by their clinical teams (n = 16 teams) showed a wide range of intra-team agreement. Data from a subsequent sample of 54 clinicians who completed the ACE-15 and a measure of team cohesion indicated convergent validity, with a correlation of the tools at r = 0.81. We conclude that the ACE-15 has acceptable psychometric properties and promising utility for assessing interprofessional teamness in clinical training sites that are settings for learners, and, in addition may be useful for team development. PMID:27029641

  18. A China-US collaborative effort to build a web-based grid computational environment for geodynamics

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Shi, Y.; Liu, M.; Wu, Z.; Li, Q.

    2005-12-01

    Information technology is causing a revolution in geosciences research: various cyberinfrastructures now provide easy access to vast amount of multidisciplinary data; low-cost computer clusters and grids offer unprecedented computing power. Geodynamics modeling, which is to turn data into knowledge and understanding, plays a key role in this revolution. However, developing proper computer codes to take full advantage of the data and hardware resources is beyond most users. To address this challenge, we are developing a web-based community modeling environment that will allow users to generate and run finite element codes on parallel computers by providing only the basic mathematical description of the physical processes to be modeled. We have developed preliminary modules for a variety of geodynamic problems, including global mental convection and lithospheric deformation. Collaborating with GEON and PRAGMA, we are adapting the system for grid computing and developing a web-based service. In this presentation we will introduce this modeling environment, show some examples, and discuss some of the challenges we are facing.

  19. Collaboration and entanglement: An actor-network theory analysis of team-based intraprofessional care for patients with advanced heart failure.

    PubMed

    McDougall, A; Goldszmidt, M; Kinsella, E A; Smith, S; Lingard, L

    2016-09-01

    Despite calls for more interprofessional and intraprofessional team-based approaches in healthcare, we lack sufficient understanding of how this happens in the context of patient care teams. This multi-perspective, team-based interview study examined how medical teams negotiated collaborative tensions. From 2011 to 2013, 50 patients across five sites in three Canadian provinces were interviewed about their care experiences and were asked to identify members of their health care teams. Patient-identified team members were subsequently interviewed to form 50 "Team Sampling Units" (TSUs), consisting of 209 interviews with patients, caregivers and healthcare providers. Results are gathered from a focused analysis of 13 TSUs where intraprofessional collaborative tensions involved treating fluid overload, or edema, a common HF symptom. Drawing on actor-network theory (ANT), the analysis focused on intraprofessional collaboration between specialty care teams in cardiology and nephrology. The study found that despite a shared narrative of common purpose between cardiology teams and nephrology teams, fluid management tools and techniques formed sites of collaborative tension. In particular, care activities involved asynchronous clinical interpretations, geographically distributed specialist care, fragmented forms of communication, and uncertainty due to clinical complexity. Teams 'disentangled' fluid in order to focus on its physiological function and mobilisation. Teams also used distinct 'framings' of fluid management that created perceived collaborative tensions. This study advances collaborative entanglement as a conceptual framework for understanding, teaching, and potentially ameliorating some of the tensions that manifest during intraprofessional care for patients with complex, chronic disease. PMID:27490299

  20. Fast immunosensing technique to detect Legionella pneumophila in different natural and anthropogenic environments: comparative and collaborative trials

    PubMed Central

    2013-01-01

    Background Legionellosis is an uncommon form of pneumonia. After a clinical encounter, the necessary antibiotic treatment is available if the diagnosis is made early in the illness. Before the clinical encounter, early detection of the main pathogen involved, Legionella pneumophila, in hazardous environments is important in preventing infectious levels of this bacterium. In this study a qualitative test based on combined magnetic immunocapture and enzyme-immunoassay for the fast detection of Legionella pneumophila in water samples was compared with the standard method, in both comparative and collaborative trials. The test was based on the use of anti-Legionella pneumophila antibodies immobilized on magnetic microspheres. The final protocol included concentration by filtration, resuspension and immunomagnetic capture. The whole assay took less than 1 hour to complete. Results A comparative trial was performed against the standard culture method (ISO 11731) on both artificially and naturally contaminated water samples, for two matrices: chlorinated tap water and cooling tower water. Performance characteristics of the test used as screening with culture confirmation resulted in sensitivity, specificity, false positive, false negative, and efficiency of 96.6%, 100%, 0%, 3.4%, and 97.8%, respectively. The detection limit at the level under which the false negative rate increases to 50% (LOD50) was 93 colony forming units (CFU) in the volume examined for both tested matrices. The collaborative trial included twelve laboratories. Water samples spiked with certified reference materials were tested. In this study the coincidence level between the two methods was 95.8%. Conclusion Results demonstrate the applicability of this immunosensing technique to the rapid, simple, and efficient detection of Legionella pneumophila in water samples. This test is not based on microbial growth, so it could be used as a rapid screening technique for the detection of L. pneumophila in

  1. Impacts Of Global/Regional Climate Changes On Environment And Health: Need For Integrated Research And Education Collaboration (Invited)

    NASA Astrophysics Data System (ADS)

    Tuluri, F.

    2013-12-01

    The realization of long term changes in climate in research community has to go beyond the comfort zone through climate literacy in academics. Higher education on climate change is the platform to bring together the otherwise disconnected factors such as effective discovery, decision making, innovation, interdisciplinary collaboration, Climate change is a complex process that may be due to natural internal processes within the climate system, or to variations in natural or anthropogenic (human-driven) external forcing. Global climate change indicates a change in either the mean state of the climate or in its variability, persisting for several decades or longer. This includes changes in average weather conditions on Earth, such as a change in average global temperature, as well as changes in how frequently regions experience heat waves, droughts, floods, storms, and other extreme weather. It is important to examine the effects of climate variations on human health and disorders in order to take preventive measures. Similarly, the influence of climate changes on animal management practices, pests and pest management systems, and high value crops such as citrus and vegetables is also equally important for investigation. New genetic agricultural varieties must be explored, and pilot studies should examine biotechnology transfer. Recent climate model improvements have resulted in an enhanced ability to simulate many aspects of climate variability and extremes. However, they are still characterized by systematic errors and limitations in accurately simulating more precisely regional climate conditions. The present situations warrant developing climate literacy on the synergistic impacts of environmental change, and improve development, testing and validation of integrated stress impacts through computer modeling. In the present study we present a detailed study of the current status on the impacts of global/regional climate changes on environment and health with a view

  2. An Online Task-Based Language Learning Environment: Is It Better for Advanced- or Intermediate-Level Second Language Learners?

    ERIC Educational Resources Information Center

    Arslanyilmaz, Abdurrahman

    2012-01-01

    This study investigates the relationship of language proficiency to language production and negotiation of meaning that non-native speakers (NNSs) produced in an online task-based language learning (TBLL) environment. Fourteen NNS-NNS dyads collaboratively completed four communicative tasks, using an online TBLL environment specifically designed…

  3. ARTEMIS: a collaborative framework for health care.

    PubMed

    Reddy, R; Jagannathan, V; Srinivas, K; Karinthi, R; Reddy, S M; Gollapudy, C; Friedman, S

    1993-01-01

    Patient centered healthcare delivery is an inherently collaborative process. This involves a wide range of individuals and organizations with diverse perspectives: primary care physicians, hospital administrators, labs, clinics, and insurance. The key to cost reduction and quality improvement in health care is effective management of this collaborative process. The use of multi-media collaboration technology can facilitate timely delivery of patient care and reduce cost at the same time. During the last five years, the Concurrent Engineering Research Center (CERC), under the sponsorship of DARPA (Defense Advanced Research Projects Agency, recently renamed ARPA) developed a number of generic key subsystems of a comprehensive collaboration environment. These subsystems are intended to overcome the barriers that inhibit the collaborative process. Three subsystems developed under this program include: MONET (Meeting On the Net)--to provide consultation over a computer network, ISS (Information Sharing Server)--to provide access to multi-media information, and PCB (Project Coordination Board)--to better coordinate focussed activities. These systems have been integrated into an open environment to enable collaborative processes. This environment is being used to create a wide-area (geographically distributed) research testbed under DARPA sponsorship, ARTEMIS (Advance Research Testbed for Medical Informatics) to explore the collaborative health care processes. We believe this technology will play a key role in the current national thrust to reengineer the present health-care delivery system. PMID:8130536

  4. MAGA, a new database of gas natural emissions: a collaborative web environment for collecting data.

    NASA Astrophysics Data System (ADS)

    Cardellini, Carlo; Chiodini, Giovanni; Frigeri, Alessandro; Bagnato, Emanuela; Frondini, Francesco; Aiuppa, Alessandro

    2014-05-01

    The data on volcanic and non-volcanic gas emissions available online are, as today, are incomplete and most importantly, fragmentary. Hence, there is need for common frameworks to aggregate available data, in order to characterize and quantify the phenomena at various scales. A new and detailed web database (MAGA: MApping GAs emissions) has been developed, and recently improved, to collect data on carbon degassing form volcanic and non-volcanic environments. MAGA database allows researchers to insert data interactively and dynamically into a spatially referred relational database management system, as well as to extract data. MAGA kicked-off with the database set up and with the ingestion in to the database of the data from: i) a literature survey on publications on volcanic gas fluxes including data on active craters degassing, diffuse soil degassing and fumaroles both from dormant closed-conduit volcanoes (e.g., Vulcano, Phlegrean Fields, Santorini, Nysiros, Teide, etc.) and open-vent volcanoes (e.g., Etna, Stromboli, etc.) in the Mediterranean area and Azores, and ii) the revision and update of Googas database on non-volcanic emission of the Italian territory (Chiodini et al., 2008), in the framework of the Deep Earth Carbon Degassing (DECADE) research initiative of the Deep Carbon Observatory (DCO). For each geo-located gas emission site, the database holds images and description of the site and of the emission type (e.g., diffuse emission, plume, fumarole, etc.), gas chemical-isotopic composition (when available), gas temperature and gases fluxes magnitude. Gas sampling, analysis and flux measurement methods are also reported together with references and contacts to researchers expert of each site. In this phase data can be accessed on the network from a web interface, and data-driven web service, where software clients can request data directly from the database, are planned to be implemented shortly. This way Geographical Information Systems (GIS) and

  5. Engaging Learner Support: An Investigation of Faculty-Library Collaboration to Provide Live Course-Specific Learner Support in the Online Classroom Environment

    ERIC Educational Resources Information Center

    Fields, Alison

    2014-01-01

    Collaboration between faculty and learner support can create seamless services for e-learners. Providing access to learning materials and activities with co-located tailored learner support creates an environment in which e-learners can easily access everything they need for an enhanced, supported, and more focused learning experience. The…

  6. No Student Left Behind: A Collaborative and Competitive Game-Based Learning Environment to Reduce the Achievement Gap of EFL Students in Taiwan

    ERIC Educational Resources Information Center

    Hung, Hui-Chun; Young, Shelley Shwu-Ching; Lin, Chiu-Pin

    2015-01-01

    How to close the achievement gap in the classroom so that no student is left behind becomes one of the most important issues nowadays. This study aims to construct a collaborative and competitive game-based learning environment to improve English proficiencies and reduce the achievement gap for disadvantaged students. The Wireless Crossword…

  7. Organization and Implementation of a University-Wide Collaboration for Advancing Teaching Technology and Science in Public Schools

    NASA Astrophysics Data System (ADS)

    Regens, N.; Hall-Wallace, M. K.

    2003-12-01

    The University of Arizona's Collaboration for the Advancement of Teaching Technology and Science (CATTS) was formed 4 years ago for the purpose of teaming university graduate and undergraduate science students with local K-12 teachers to enhance science teaching at all grade levels. This NSF-funded GK-12 program has been remarkably successful at training university students to use exemplary science education materials and to enable them to work within the culture of K-12 classrooms. The program relies on the formation and maintainence of a respectful, robust, and mutually beneficial relationship between the university and Tucson area school districts, school principals, and schoolteachers. This paper explores the process we have used and are using to build and maintain a partnership between two very diverse cultures: the K-12 culture and the university's research-based culture. The CATTS program links University of Arizona outreach projects with schools, trains CATTS Fellows on current educational pedagogical thinking, and provides a means of evaluating the teaching effectiveness of CATTS Fellows. The presentation will describe the strategies and techniques for building and maintaining alliances and creating ownership of the CATTS programs by school districts, school administrators, and teachers. We will also describe recruiting and training practices and various corrective actions we have taken to improve the program over its lifetime. The CATTS program provides an effective outreach tool for educational programs in geophysics, marine biology and oceanography, climatology, hydrology, and space physics and astronomy, to name a few. As such it is an example of a core outreach program that can be used at research universities, national research facilities, or non-research oriented colleges. The program also provides an effective way to train future teaching professors and scientists to effectively participate in formal and informal education and public outreach

  8. Design of an ultralight head-mounted projective display (HMPD) and its applications in augmented collaborative environments

    NASA Astrophysics Data System (ADS)

    Hua, Hong; Gao, Chunyu; Brown, Leonard; Biocca, Frank; Rolland, Jannick P.

    2002-05-01

    Head-mounted displays (HMDs) are widely used for 3D visualization tasks such as surgical planning, scientific visualization, or engineering design. Even though the HMD technologies have undergone great development, tradeoffs in capability and limitation exist. The concept of head-mounted projective displays (HMPDs) is an emerging technology on the boundary of conventional HMDs and projective displays such as the CAVE technology. It has been recently demonstrated to yield 3D visualization capability with potentially a large FOV, lightweight optics, low distortion, as well as correct occlusion of virtual objects by real objects. As such, the HMPD has been proposed as an alternative to stereoscopic displays for 3D visualization applications. In this paper, a brief review the HMPD technology is followed by the presentation of a recent design and implementation of a compact HMPD prototype based on an ultra-light design of projective optics using diffractive optical element (DOE) and plastic components. Finally, we will include applications of the HMPD technology being developed across three universities for augmented visualization tasks and distributed collaboration in augmented environments.

  9. A Cyber Enabled Collaborative Environment for Creating, Sharing and Using Data and Modeling Driven Curriculum Modules for Hydrology Education

    NASA Astrophysics Data System (ADS)

    Merwade, V.; Ruddell, B. L.; Fox, S.; Iverson, E. A. R.

    2014-12-01

    With the access to emerging datasets and computational tools, there is a need to bring these capabilities into hydrology classrooms. However, developing curriculum modules using data and models to augment classroom teaching is hindered by a steep technology learning curve, rapid technology turnover, and lack of an organized community cyberinfrastructure (CI) for the dissemination, publication, and sharing of the latest tools and curriculum material for hydrology and geoscience education. The objective of this project is to overcome some of these limitations by developing a cyber enabled collaborative environment for publishing, sharing and adoption of data and modeling driven curriculum modules in hydrology and geosciences classroom. The CI is based on Carleton College's Science Education Resource Center (SERC) Content Management System. Building on its existing community authoring capabilities the system is being extended to allow assembly of new teaching activities by drawing on a collection of interchangeable building blocks; each of which represents a step in the modeling process. Currently the system hosts more than 30 modules or steps, which can be combined to create multiple learning units. Two specific units: Unit Hydrograph and Rational Method, have been used in undergraduate hydrology class-rooms at Purdue University and Arizona State University. The structure of the CI and the lessons learned from its implementation, including preliminary results from student assessments of learning will be presented.

  10. Enhancing army analysis capability for warfighter protection: TRADOC-RDECOM M&S decision support environment collaboration

    NASA Astrophysics Data System (ADS)

    Athmer, Keith; Gaughan, Chris; McDonnell, Joseph S.; Leach, Robert; Davis, Bert; Truong, Kiet; Borum, Howard; Leslie, Richard; Ma, Lein

    2012-05-01

    The development of an Integrated Base Defense (IBD) is a significant challenge for the Army with many analytical gaps. The IBD problem space is complex, with evolving requirements and a large stakeholder base. In order to evaluate and analyze IBD decisions, the Training & Doctrine Command (TRADOC) Maneuver Support Center of Excellence (MSCoE) led and continues to lead a series of IBD focused experiments and wargames. Modeling and Simulation (M&S) significantly contributes to this effort. To improve IBD M&S capabilities, a collaborative demonstration with the Research, Development and Engineering Command's (RDECOM's) M&S Decision Support Environment (MSDSE) was held in September 2011. The results of this demonstration provided key input to MSCoE IBD related concepts and technologies. Moreover, it established an initial M&S toolset that will significantly improve force protection in combat zones and Army installations worldwide by providing leaders a capability to conduct analysis of defense and mission rehearsals. The demonstration was executed with a "human in the loop" Battle Captain, who was aided by mission command assets such as Base Expeditionary Targeting and Surveillance Sensors-Combined (BETSS-C). The Common Operating Picture was populated and stimulated using Science & Technology (S&T) M&S, allowing for a realistic representation of physical phenomena without the need for real systems. Novel methods were used for simulation orchestration, and for initializing the simulations and Opposing Force (OPFOR) activities. Ultimately, this demonstration showed that the MSDSE is suitable to support TRADOC IBD analyses and that S&T M&S is ready to be used in a demanding simulation environment. This paper will highlight the event's outcomes and lessons identified.

  11. ABrIL - Advanced Brain Imaging Lab : a cloud based computation environment for cooperative neuroimaging projects.

    PubMed

    Neves Tafula, Sérgio M; Moreira da Silva, Nádia; Rozanski, Verena E; Silva Cunha, João Paulo

    2014-01-01

    Neuroscience is an increasingly multidisciplinary and highly cooperative field where neuroimaging plays an important role. Neuroimaging rapid evolution is demanding for a growing number of computing resources and skills that need to be put in place at every lab. Typically each group tries to setup their own servers and workstations to support their neuroimaging needs, having to learn from Operating System management to specific neuroscience software tools details before any results can be obtained from each setup. This setup and learning process is replicated in every lab, even if a strong collaboration among several groups is going on. In this paper we present a new cloud service model - Brain Imaging Application as a Service (BiAaaS) - and one of its implementation - Advanced Brain Imaging Lab (ABrIL) - in the form of an ubiquitous virtual desktop remote infrastructure that offers a set of neuroimaging computational services in an interactive neuroscientist-friendly graphical user interface (GUI). This remote desktop has been used for several multi-institution cooperative projects with different neuroscience objectives that already achieved important results, such as the contribution to a high impact paper published in the January issue of the Neuroimage journal. The ABrIL system has shown its applicability in several neuroscience projects with a relatively low-cost, promoting truly collaborative actions and speeding up project results and their clinical applicability. PMID:25570014

  12. An evaluation of descent strategies for TNAV-equipped aircraft in an advanced metering environment

    NASA Technical Reports Server (NTRS)

    Izumi, K. H.; Schwab, R. W.; Groce, J. L.; Coote, M. A.

    1986-01-01

    Investigated were the effects on system throughput and fleet fuel usage of arrival aircraft utilizing three 4D RNAV descent strategies (cost optimal, clean-idle Mach/CAS and constant descent angle Mach/CAS), both individually and in combination, in an advanced air traffic control metering environment. Results are presented for all mixtures of arrival traffic consisting of three Boeing commercial jet types and for all combinations of the three descent strategies for a typical en route metering airport arrival distribution.

  13. Increasing Social Engagement in Children with High-Functioning Autism Spectrum Disorder Using Collaborative Technologies in the School Environment

    ERIC Educational Resources Information Center

    Bauminger-Zviely, Nirit; Eden, Sigal; Zancanaro, Massimo; Weiss, Patrice L.; Gal, Eynat

    2013-01-01

    This study examined the effectiveness of a school-based, collaborative technology intervention combined with cognitive behavioral therapy to teach the concepts of social collaboration and social conversation to children with high-functioning autism spectrum disorders ("n" = 22) as well as to enhance their actual social engagement behaviors…

  14. User requirements for geo-collaborative work with spatio-temporal data in a web-based virtual globe environment.

    PubMed

    Yovcheva, Zornitza; van Elzakker, Corné P J M; Köbben, Barend

    2013-11-01

    Web-based tools developed in the last couple of years offer unique opportunities to effectively support scientists in their effort to collaborate. Communication among environmental researchers often involves not only work with geographical (spatial), but also with temporal data and information. Literature still provides limited documentation when it comes to user requirements for effective geo-collaborative work with spatio-temporal data. To start filling this gap, our study adopted a User-Centered Design approach and first explored the user requirements of environmental researchers working on distributed research projects for collaborative dissemination, exchange and work with spatio-temporal data. Our results show that system design will be mainly influenced by the nature and type of data users work with. From the end-users' perspective, optimal conversion of huge files of spatio-temporal data for further dissemination, accuracy of conversion, organization of content and security have a key role for effective geo-collaboration. PMID:23164199

  15. Electrochemical characterization and occluded environment analysis of localized corrosion in advanced aluminum alloys

    SciTech Connect

    Wall, F.D.; Stoner, G.E.

    1994-12-31

    In order for advanced aluminum alloys to be used in structural applications it is necessary to understand and mitigate failures that can occur due to localized corrosion events. Mechanical and electrochemical stresses interacting with a microstructural heterogeneity can result in the rapid growth of a flaw in the material; this phenomenon is a form of environmentally assisted cracking (EAC). One possible mechanism of EAC in Al-Li-X alloys is the preferential dissolution of an electrochemically active microstructural feature along a grain or sub-grain boundary. To examine this mechanism it is necessary to obtain information on the occluded environment that develops in a growing crack and the electrochemical behavior of boundary phases in the occluded environment. The electrochemistry of three relevant boundary phases (matrix phase (SHT 2095), T{sub 1} precipitate (Al{sub 2}CuLi) and Cu-depleted zone (99.99% Al)) in several model environments has been documented using a variety of electrochemical techniques including scratching and straining electrode experiments. The electrochemical behavior of these phases has been linked to the SCC behavior of several Al-Li-X alloys using constant load testing under applied potentials in NaCl/Li{sub 2}CO{sub 3} and NaCl/Na{sub 2}CrO{sub 4} environments. The occluded environment model is being evaluated and refined by analysis of occluded chemistries using pH measurements and capillary electrophoresis.

  16. Advanced satellite workstation: An integrated workstation environment for operational support of satellite system planning and analysis

    NASA Technical Reports Server (NTRS)

    Sutton, Stewart A.

    1992-01-01

    A prototype integrated environment, the Advanced Satellite Workstation (ASW), is described that has been developed and delivered for evaluation and operator feedback in an operational satellite control center. The current ASW hardware consists of a Sun Workstation and Macintosh II Workstation connected via an ethernet Network Hardware and Software, Laser Disk System, Optical Storage System, and Telemetry Data File Interface. The central mission of ASW is to provide an intelligent decision support and training environment for operator/analysts of complex systems such as satellites. There have been many workstation implementations recently which incorporate graphical telemetry displays and expert systems. ASW is a considerably broader look at intelligent, integrated environments for decision support, based upon the premise that the central features of such an environment are intelligent data access and integrated toolsets. A variety of tools have been constructed in support of this prototype environment including: an automated pass planner for scheduling vehicle support activities, architectural modeler for hierarchical simulation and analysis of satellite vehicle subsystems, multimedia-based information systems that provide an intuitive and easily accessible interface to Orbit Operations Handbook and other relevant support documentation, and a data analysis architecture that integrates user modifiable telemetry display systems, expert systems for background data analysis, and interfaces to the multimedia system via inter-process communication.

  17. Investigating the barriers to teaching family physicians' and specialists' collaboration in the training environment: a qualitative study

    PubMed Central

    Beaulieu, Marie-Dominique; Samson, Louise; Rocher, Guy; Rioux, Marc; Boucher, Laurier; Del Grande, Claudio

    2009-01-01

    Background Collaboration between physicians in different specialties is often taken for granted. However, poor interactions between family physicians and specialists contribute significantly to the observed discontinuity between primary and specialty care. The objective of this study was to explore how collaboration between family physicians and specialists was conceptualised as a competency and experienced in residency training curricula of four faculties of medicine in Canada. Methods This is a multiple-case study based on Abbott's theory of professions. Programs targeted were family medicine, general psychiatry, radiology, and internal medicine. The content of the programs' objectives was analyzed. Associate deans of postgraduate studies, program directors, educators, and residents were interviewed individually or in focus groups (47 residents and 45 faculty members). Results The training objectives related to family physicians-specialists collaboration were phrased in very general terms and lacked specificity. Obstacles to effective collaboration were aggregated under themes of professional responsibility and questioned expertise. Both trainees and trainers reported increasing distances between specialty and general medicine in three key fields of the professional system: the workplace arena, the training setting, and the production of academic knowledge. Conclusion The challenges of developing collaborating skills between generalists and specialist physicians are comparable in many ways to those encountered in inter-professional collaboration and should be given more consideration than they currently receive if we want to improve coordination between primary and specialty care. PMID:19500409

  18. The Potential for Collaborative Agri-Environment Schemes in England: Can a Well-Designed Collaborative Approach Address Farmers' Concerns with Current Schemes?

    ERIC Educational Resources Information Center

    Emery, Steven B.; Franks, Jeremy R.

    2012-01-01

    There is increasing recognition that whilst agri-environment schemes in England have had discernable benefits, their success in relation to certain species and resources has been inhibited by the piecemeal implementation of Environmental Stewardship (ES) on the basis of single farm agreements. In this paper we examine the receptivity of farmers to…

  19. Environment enhanced fatigue of advanced aluminum alloys and metal matrix composites

    NASA Technical Reports Server (NTRS)

    Slavik, Donald C.; Gangloff, Richard P.

    1991-01-01

    The environmental fatigue crack propagation behavior of advanced Al-Li-Cu based alloys and metal matrix composites is being characterized. Aqueous NaCl and water vapor, which produce atomic hydrogen by reactions on clean crack surfaces, are emphasized. The effects of environment sensitive crack closure, stress ratio, and precipitate microstructure are assessed. Mechanistic models are sought for intrinsic crack tip damage processes to enable predictions of cracking behavior outside of the data, metallurgical improvements in material cracking resistance, and insight on hydrogen compatibility.

  20. Environment Conscious Ceramics (Ecoceramics): An Eco-Friendly Route to Advanced Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2001-01-01

    Environment conscious ceramics (Ecoceramics) are a new class of materials, which can be produced with renewable natural resources (wood) or wood wastes (wood sawdust). This technology provides an eco-friendly route to advanced ceramic materials. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. Silicon carbide-based ecoceramics have been fabricated by reactive infiltration of carbonaceous preforms by molten silicon or silicon-refractory metal alloys. The fabrication approach, microstructure, and mechanical properties of SiC-based ecoceramics are presented.

  1. What do the cited and citing environments reveal about Advances in Atmospheric Physics?

    NASA Astrophysics Data System (ADS)

    Shi, Aolan; Leydesdorff, Loet

    2011-01-01

    The networking status of journals reflects their academic influence among peer journals. This paper analyzes the cited and citing environments of this journal, Advances in Atmospheric Sciences ( Adv. Atmos. Sci.), using methods from social network analysis. Since its initial publication, Adv. Atmos. Sci. has been actively participating in the international journal environment and international journals are frequently cited in Adv. Atmos. Sci. Particularly, this journal is intensely interrelated with its international peer journals in terms of their similar citing patterns. The international influence of Adv. Atmos. Sci. is comparatively bigger than other Chinese SCI journals in atmospheric sciences as reflected by total cites to Adv. Atmos. Sci. and the total number of international journals citing it. The academic visibility of Adv. Atmos. Sci. is continuing to improve in the international research community as the number of reference citation it receives in its peer journals internationally increases over time.

  2. Flight investigation of cockpit-displayed traffic information utilizing coded symbology in an advanced operational environment

    NASA Technical Reports Server (NTRS)

    Abbott, T. S.; Moen, G. C.; Person, L. H., Jr.; Keyser, G. L., Jr.; Yenni, K. R.; Garren, J. F., Jr.

    1980-01-01

    Traffic symbology was encoded to provide additional information concerning the traffic, which was displayed on the pilot's electronic horizontal situation indicators (EHSI). A research airplane representing an advanced operational environment was used to assess the benefit of coded traffic symbology in a realistic work-load environment. Traffic scenarios, involving both conflict-free and conflict situations, were employed. Subjective pilot commentary was obtained through the use of a questionnaire and extensive pilot debriefings. These results grouped conveniently under two categories: display factors and task performance. A major item under the display factor category was the problem of display clutter. The primary contributors to clutter were the use of large map-scale factors, the use of traffic data blocks, and the presentation of more than a few airplanes. In terms of task performance, the cockpit-displayed traffic information was found to provide excellent overall situation awareness. Additionally, mile separation prescribed during these tests.

  3. Integrated performance and dependability analysis using the advanced design environment prototype tool ADEPT

    SciTech Connect

    Rao, R.; Rahman, A.; Johnson, B.W.

    1995-09-01

    The Advanced Design Environment Prototype Tool (ADEPT) is an evolving integrated design environment which supports both performance and dependability analysis. ADEPT models are constructed using a collection of predefined library elements, called ADEPT modules. Each ADEPT module has an unambiguous mathematical definition in the form of a Colored Petri Net (CPN) and a corresponding Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) description. As a result, both simulation-based and analytical approaches for analysis can be employed. The focus of this paper is on dependability modeling and analysis using ADEPT. We present the simulation based approach to dependability analysis using ADEPT and an approach to integrating ADEPT and the Reliability Estimation System Testbed (REST) engine developed at NASA. We also present analytical techniques to extract the dependability characteristics of a system from the CPN definitions of the modules, in order to generate alternate models such as Markov models and fault trees.

  4. Advanced Remedial Methods for Metals and Radionuclides in Vadose Zone Environments

    SciTech Connect

    Wellman, Dawn M.; Mattigod, Shas V.; Hubbard, Susan; Miracle, Ann L.; Zhong, Lirong; Foote, Martin; Wu, Yuxin; Jansik, Danielle P.

    2010-10-03

    -/ intermediate-scale investigation to simulate, develop, demonstrate, and monitor (i.e. advanced geophysical techniques and advanced predictive biomarkers) foam-based delivery of remedial amendments to remediate metals and radionuclides in vadose zone environments.

  5. Generation of large scale urban environments to support advanced sensor and seeker simulation

    NASA Astrophysics Data System (ADS)

    Giuliani, Joseph; Hershey, Daniel; McKeown, David, Jr.; Willis, Carla; Van, Tan

    2009-05-01

    One of the key aspects for the design of a next generation weapon system is the need to operate in cluttered and complex urban environments. Simulation systems rely on accurate representation of these environments and require automated software tools to construct the underlying 3D geometry and associated spectral and material properties that are then formatted for various objective seeker simulation systems. Under an Air Force Small Business Innovative Research (SBIR) contract, we have developed an automated process to generate 3D urban environments with user defined properties. These environments can be composed from a wide variety of source materials, including vector source data, pre-existing 3D models, and digital elevation models, and rapidly organized into a geo-specific visual simulation database. This intermediate representation can be easily inspected in the visible spectrum for content and organization and interactively queried for accuracy. Once the database contains the required contents, it can then be exported into specific synthetic scene generation runtime formats, preserving the relationship between geometry and material properties. To date an exporter for the Irma simulation system developed and maintained by AFRL/Eglin has been created and a second exporter to Real Time Composite Hardbody and Missile Plume (CHAMP) simulation system for real-time use is currently being developed. This process supports significantly more complex target environments than previous approaches to database generation. In this paper we describe the capabilities for content creation for advanced seeker processing algorithms simulation and sensor stimulation, including the overall database compilation process and sample databases produced and exported for the Irma runtime system. We also discuss the addition of object dynamics and viewer dynamics within the visual simulation into the Irma runtime environment.

  6. A Collaboration of School Administrators and a University Faculty to Advance School Administrator Practices Using Appreciative Inquiry

    ERIC Educational Resources Information Center

    Calabrese, Raymond

    2015-01-01

    Purpose: An appreciative inquiry (AI) collaborative study with 11 school administrators in a highly diverse suburban school district sought to understand if observing and sharing successful school practices/events in a whole group setting led to change in their perceptions, attitudes, and administrative practice. The paper aims to discuss these…

  7. Dyadic Collaboration among Preschool-Age Children and the Benefits of Working with a More Socially Advanced Peer

    ERIC Educational Resources Information Center

    Park, Jeongeon; Lee, Jeonghwa

    2015-01-01

    Research Findings: This study examined the learning effects of collaborative group work under heterogeneous group composition among 5-year-old children, especially in terms of their social skills. To this end, the study utilized an experimental research design wherein 3 groups of differently composed dyads and a group of students who worked alone…

  8. Regulatory Advances in 11 Sub-Saharan Countries in Year 3 of the African Health Profession Regulatory Collaborative for Nurses and Midwives (ARC).

    PubMed

    Dynes, Michelle; Tison, Laura; Johnson, Carla; Verani, Andre; Zuber, Alexandra; Riley, Patricia L

    2016-01-01

    Sub-Saharan Africa carries the greatest burden of the HIV pandemic. Enhancing the supply and use of human resources through policy and regulatory reform is a key action needed to improve the quality of HIV services in this region. In year 3 of the African Health Profession Regulatory Collaborative for Nurses and Midwives (ARC), a President's Emergency Plan for AIDS Relief initiative, 11 country teams of nursing and midwifery leaders ("Quads") received small grants to carry out regulatory improvement projects. Four countries advanced a full stage on the Regulatory Function Framework (RFF), a staged capability maturity model used to evaluate progress in key regulatory functions. While the remaining countries did not advance a full stage on the RFF, important gains were noted. The year-3 evaluation highlighted limitations of the ARC evaluation strategy to capture nuanced progress and provided insight into how the RFF might be adapted for future use. PMID:27086189

  9. Regulatory Advances in 11 Sub-Saharan Countries in Year 3 of the African Health Profession Regulatory Collaborative for Nurses and Midwives (ARC)

    PubMed Central

    Dynes, Michelle; Tison, Laura; Johnson, Carla; Verani, Andre; Zuber, Alexandra; Riley, Patricia L.

    2016-01-01

    Sub-Saharan Africa carries the greatest burden of the HIV pandemic. Enhancing the supply and use of human resources through policy and regulatory reform is a key action needed to improve the quality of HIV services in this region. In year 3 of the African Health Profession Regulatory Collaborative for Nurses and Midwives (ARC), a President’s Emergency Plan for AIDS Relief initiative, 11 country teams of nursing and midwifery leaders (“Quads”) received small grants to carry out regulatory improvement projects. Four countries advanced a full stage on the Regulatory Function Framework (RFF), a staged capability maturity model used to evaluate progress in key regulatory functions. While the remaining countries did not advance a full stage on the RFF, important gains were noted. The year-3 evaluation highlighted limitations of the ARC evaluation strategy to capture nuanced progress and provided insight into how the RFF might be adapted for future use. PMID:27086189

  10. Development of a Peer-Assisted Learning Strategy in Computer-Supported Collaborative Learning Environments for Elementary School Students

    ERIC Educational Resources Information Center

    Tsuei, Mengping

    2011-01-01

    This study explores the effects of Electronic Peer-Assisted Learning for Kids (EPK), on the quality and development of reading skills, peer interaction and self-concept in elementary students. The EPK methodology uses a well-developed, synchronous computer-supported, collaborative learning system to facilitate students' learning in Chinese. We…

  11. The Insiders' Perspectives: A Focus Group Study on Gender Issues in a Computer-Supported Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Huynh, Minh Q.; Lee, Jae-Nam; Schuldt, Barbara A.

    2005-01-01

    There is little doubt that the advent of collaborative technologies in recent years has brought some significant changes in the way students learn, communicate, and interact with one another. In recent years, this emergence has sparked increased interest for research into the role and impact of instructional technologies on group learning. Despite…

  12. Developing Digital Literacy through Collaborative Inquiry Learning in the Web 2.0 Environment--An Exploration of Implementing Strategy

    ERIC Educational Resources Information Center

    Pow, Jacky; Fu, Jun

    2012-01-01

    This study explores a strategy for Web-based collaborative inquiry learning (WCIL) for the purpose of developing students' digital literacy (DL). In view of the problems and difficulties identified in a previously published case study of WCIL practice in a class of secondary 3 students (aged 14 to 15), another round of WCIL activity was carried…

  13. Transforming the Undergraduate Research Experience through Sustained Mentoring: Creating a Strong Support Network and a Collaborative Learning Environment

    ERIC Educational Resources Information Center

    Camacho, Erika T.; Holmes, Raquell M.; Wirkus, Stephen A.

    2015-01-01

    This chapter describes how sustained mentoring together with rigorous collaborative learning and community building contributed to successful mathematical research and individual growth in the Applied Mathematical Sciences Summer Institute (AMSSI), a program that focused on women, underrepresented minorities, and individuals from small teaching…

  14. Delivering on the E-Learning Promise: A Case for a Learning Environment that Enables Collaborative Online Problem Solving (COPS)

    ERIC Educational Resources Information Center

    Edwards, Sylvia Lauretta; Watson, Jason; Farrell, Ann; Nash, Robyn

    2007-01-01

    Research spanning the last thirty years confirms that people learn better by active enquiry, collaboration and experimental problem solving than by passive reception and acceptance of information. Empirical evidence, as well as the pressing demands of pervasive social and technological change, requires learning and teaching approaches that combine…

  15. Creating an Environment Conducive to Active and Collaborative Learning: Redesigning Introduction to Sociology at a Large Research University

    ERIC Educational Resources Information Center

    Lo, C. C.; Prohaska, A.

    2011-01-01

    In 2003 a Southeastern research university undertook the redesign of an introductory sociology course in order to improve student success by adding active and collaborative learning activities that gave students greater responsibility for learning. The new "hybrid" course provides most course materials online, requires electronic submission of…

  16. Collaborative Research in a Post-Katrina Environment: The Facilitation, Communication, and Ethical Considerations of University Researchers

    ERIC Educational Resources Information Center

    Peters, Gary; McNeese, Rose M.

    2008-01-01

    The aftermath of Hurricane Katrina brought devastation and confusion to the Mississippi Gulf Coast region on August 29, 2005. A desperate need for leadership, collaboration, and coordination of relief and recovery efforts was revealed during a March 2007 strategic planning session involving 96 organizations, groups, agencies, and researchers…

  17. Design for Collaboration

    ERIC Educational Resources Information Center

    Blake, Canan; Scanlon, Eileen

    2013-01-01

    Online learning environments offer new opportunities for learning and over the last decade or so a variety of online learning environments have been developed by researchers to facilitate collaborative learning among students. In this paper we will present a case study of a successful collaborative learning design. This involves a near synchronous…

  18. Opportunities across Boundaries: Lessons from a Collaboratively Delivered Cross-Institution Master's Programme

    ERIC Educational Resources Information Center

    de Róiste, Mairéad; Breetzke, Gregory; Reitsma, Femke

    2015-01-01

    Advances in technology have created opportunities for collaborative multi-institution programme delivery which are increasingly attractive within a constrained financial environment. This paper details the development of a cross-institution collaboratively delivered masters and postgraduate diploma programme in Geographical Information Science in…

  19. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    SciTech Connect

    Shen, Chen

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  20. A Collaboration on Collaboration

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent

    2004-01-01

    NASA's 2003-2004 Leadership Development Program class recognized that effective collaborations are often the key to achieving mission success. Personal connections and common goals were key elements of their work together and key findings of their collaboration benchmarking within the agency.

  1. The Pioneering Role of the Vaccine Safety Datalink Project (VSD) to Advance Collaborative Research and Distributed Data Networks

    PubMed Central

    Fahey, Kevin R.

    2015-01-01

    Introduction: Large-scale distributed data networks consisting of diverse stakeholders including providers, patients, and payers are changing health research in terms of methods, speed and efficiency. The Vaccine Safety Datalink (VSD) set the stage for expanded involvement of health plans in collaborative research. Expanding Surveillance Capacity and Progress Toward a Learning Health System: From an initial collaboration of four integrated health systems with fewer than 10 million covered lives to 16 diverse health plans with nearly 100 million lives now in the FDA Sentinel, the expanded engagement of health plan researchers has been essential to increase the value and impact of these efforts. The collaborative structure of the VSD established a pathway toward research efforts that successfully engage all stakeholders in a cohesive rather than competitive manner. The scientific expertise and methodology developed through the VSD such as rapid cycle analysis (RCA) to conduct near real-time safety surveillance allowed for the development of the expanded surveillance systems that now exist. Building on Success and Lessons Learned: These networks have learned from and built on the knowledge base and infrastructure created by the VSD investigators. This shared technical knowledge and experience expedited the development of systems like the FDA’s Mini-Sentinel and the Patient Centered Outcomes Research Institute (PCORI)’s PCORnet Conclusion: This narrative reviews the evolution of the VSD, its contribution to other collaborative research networks, longer-term sustainability of this type of distributed research, and how knowledge gained from the earlier efforts can contribute to a continually learning health system. PMID:26793736

  2. Advanced end-to-end fiber optic sensing systems for demanding environments

    NASA Astrophysics Data System (ADS)

    Black, Richard J.; Moslehi, Behzad

    2010-09-01

    Optical fibers are small-in-diameter, light-in-weight, electromagnetic-interference immune, electrically passive, chemically inert, flexible, embeddable into different materials, and distributed-sensing enabling, and can be temperature and radiation tolerant. With appropriate processing and/or packaging, they can be very robust and well suited to demanding environments. In this paper, we review a range of complete end-to-end fiber optic sensor systems that IFOS has developed comprising not only (1) packaged sensors and mechanisms for integration with demanding environments, but (2) ruggedized sensor interrogators, and (3) intelligent decision aid algorithms software systems. We examine the following examples: " Fiber Bragg Grating (FBG) optical sensors systems supporting arrays of environmentally conditioned multiplexed FBG point sensors on single or multiple optical fibers: In conjunction with advanced signal processing, decision aid algorithms and reasoners, FBG sensor based structural health monitoring (SHM) systems are expected to play an increasing role in extending the life and reducing costs of new generations of aerospace systems. Further, FBG based structural state sensing systems have the potential to considerably enhance the performance of dynamic structures interacting with their environment (including jet aircraft, unmanned aerial vehicles (UAVs), and medical or extravehicular space robots). " Raman based distributed temperature sensing systems: The complete length of optical fiber acts as a very long distributed sensor which may be placed down an oil well or wrapped around a cryogenic tank.

  3. Collaborative engagement

    NASA Astrophysics Data System (ADS)

    Wade, Robert L.; Reames, Joseph M.

    2004-09-01

    A need exists for United States military forces to perform collaborative engagement operations between unmanned systems. This capability has the potential to contribute significant tactical synergy to the Joint Force operating in the battlespace of the future. Collaborative engagements potentially offer force conservation, perform timely acquisition and dissemination of essential combat information, and can eliminate high value and time critical targets. Collaborative engagements can also add considerably to force survivability by reducing soldier and equipment exposure during critical operations. This paper will address a multiphase U.S. Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC) Joint Technology Center (JTC) Systems Integration Laboratory (SIL) program to assess information requirements, Joint Architecure for Unmanned Systems (JAUS), on-going Science and Technology initiatives, and conduct simulation based experiments to identify and resolve technical risks required to conduct collaborative engagements using unmanned aerial vehicles (UAV) and unmanned ground vehicles (UGV). The schedule outlines an initial effort to expand, update and exercise JAUS, provide early feedback to support user development of Concept of Operations (CONOPs) and Tactics, Techniques and Procedures (TTPs), and develop a Multiple Unified Simulation Environment (MUSE) system with JAUS interfaces necessary to support an unmanned system of systems collaboartive engagement.

  4. Natural environment design criteria for the Advanced X-ray Astrophysics Facility (AXAF) definition and preliminary design

    NASA Technical Reports Server (NTRS)

    Greene, W. M.; Vaughan, W. W.

    1984-01-01

    This document provides the natural environment design criteria requirements for use in the Advanced X-Ray Astrophysics Facility (AXAF) definition and preliminary design studies. The atmospheric dynamic and thermodynamic environments, meteoroids, radiation, magnetic fields, and physical constants are all addressed. This information will enable all groups involved in the definition and preliminary design studies to proceed with a common and consistent set of natural environment criteria requirements.

  5. A simulation study of crew performance in operating an advanced transport aircraft in an automated terminal area environment

    NASA Technical Reports Server (NTRS)

    Houck, J. A.

    1983-01-01

    A simulation study assessing crew performance operating an advanced transport aircraft in an automated terminal area environment is described. The linking together of the Langley Advanced Transport Operating Systems Aft Flight Deck Simulator with the Terminal Area Air Traffic Model Simulation was required. The realism of an air traffic control (ATC) environment with audio controller instructions for the flight crews and the capability of inserting a live aircraft into the terminal area model to interact with computer generated aircraft was provided. Crew performance using the advanced displays and two separate control systems (automatic and manual) in flying area navigation routes in the automated ATC environment was assessed. Although the crews did not perform as well using the manual control system, their performances were within acceptable operational limits with little increase in workload. The crews favored using the manual control system and felt they were more alert and aware of their environment when using it.

  6. Advanced Remedial Methods for Metals and Radionuclides in Vadose Zone Environments

    SciTech Connect

    Wellman, Dawn M.; Mattigod, Shas V.; Hubbard, Susan S.; Miracle, Ann L.; Zhong, Lirong; Foote, Martin W.; Wu, Yuxin; Jansik, Danielle P.

    2012-02-03

    -scale investigation to simulate, develop, demonstrate, and monitor (using advanced geophysical techniques and natural marker monitoring) foam-based delivery of remedial amendments to stabilize metals and radionuclides in vadose zone environments.

  7. Perspectives on Advanced Learning Technologies and Learning Networks and Future Aerospace Workforce Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    2003-01-01

    An overview of the advanced learning technologies is given in this presentation along with a brief description of their impact on future aerospace workforce development. The presentation is divided into five parts (see Figure 1). In the first part, a brief historical account of the evolution of learning technologies is given. The second part describes the current learning activities. The third part describes some of the future aerospace systems, as examples of high-tech engineering systems, and lists their enabling technologies. The fourth part focuses on future aerospace research, learning and design environments. The fifth part lists the objectives of the workshop and some of the sources of information on learning technologies and learning networks.

  8. Oxy-Combustion Environment Characterization: Fire- and Steam-Side Corrosion in Advanced Combustion

    SciTech Connect

    G. R. Holcomb; J. Tylczak; G. H. Meier; B. S. Lutz; N. M. Yanar; F. S. Pettit; J. Zhu; A. Wise; D. E. Laughlin; S. Sridhar

    2012-09-25

    Oxy-fuel combustion is burning a fuel in oxygen rather than air. The low nitrogen flue gas that results is relatively easy to capture CO{sub 2} from for reuse or sequestration. Corrosion issues associated with the environment change (replacement of much of the N{sub 2} with CO{sub 2} and higher sulfur levels) from air- to oxy-firing were examined. Alloys studied included model Fe-Cr alloys and commercial ferritic steels, austenitic steels, and nickel base superalloys. The corrosion behavior is described in terms of corrosion rates, scale morphologies, and scale/ash interactions for the different environmental conditions. Additionally, the progress towards laboratory oxidation tests in advanced ultra-supercritical steam is updated.

  9. Feasibility of a Networked Air Traffic Infrastructure Validation Environment for Advanced NextGen Concepts

    NASA Technical Reports Server (NTRS)

    McCormack, Michael J.; Gibson, Alec K.; Dennis, Noah E.; Underwood, Matthew C.; Miller,Lana B.; Ballin, Mark G.

    2013-01-01

    Abstract-Next Generation Air Transportation System (NextGen) applications reliant upon aircraft data links such as Automatic Dependent Surveillance-Broadcast (ADS-B) offer a sweeping modernization of the National Airspace System (NAS), but the aviation stakeholder community has not yet established a positive business case for equipage and message content standards remain in flux. It is necessary to transition promising Air Traffic Management (ATM) Concepts of Operations (ConOps) from simulation environments to full-scale flight tests in order to validate user benefits and solidify message standards. However, flight tests are prohibitively expensive and message standards for Commercial-off-the-Shelf (COTS) systems cannot support many advanced ConOps. It is therefore proposed to simulate future aircraft surveillance and communications equipage and employ an existing commercial data link to exchange data during dedicated flight tests. This capability, referred to as the Networked Air Traffic Infrastructure Validation Environment (NATIVE), would emulate aircraft data links such as ADS-B using in-flight Internet and easily-installed test equipment. By utilizing low-cost equipment that is easy to install and certify for testing, advanced ATM ConOps can be validated, message content standards can be solidified, and new standards can be established through full-scale flight trials without necessary or expensive equipage or extensive flight test preparation. This paper presents results of a feasibility study of the NATIVE concept. To determine requirements, six NATIVE design configurations were developed for two NASA ConOps that rely on ADS-B. The performance characteristics of three existing in-flight Internet services were investigated to determine whether performance is adequate to support the concept. Next, a study of requisite hardware and software was conducted to examine whether and how the NATIVE concept might be realized. Finally, to determine a business case

  10. Gender differences in an elementary school learning environment: A study on how girls learn science in collaborative learning groups

    NASA Astrophysics Data System (ADS)

    Greenspan, Yvette Frank

    Girls are marked by low self-confidence manifested through gender discrimination during the early years of socialization and culturalization (AAUW, 1998). The nature of gender bias affects all girls in their studies of science and mathematics, particularly in minority groups, during their school years. It has been found that girls generally do not aspire in either mathematical or science-oriented careers because of such issues as overt and subtle stereotyping, inadequate confidence in ability, and discouragement in scientific competence. Grounded on constructivism, a theoretical framework, this inquiry employs fourth generation evaluation, a twelve-step evaluative process (Guba & Lincoln, 1989). The focus is to discover through qualitative research how fifth grade girls learn science in a co-sexual collaborative learning group, as they engage in hands-on, minds-on experiments. The emphasis is centered on one Hispanic girl in an effort to understand her beliefs, attitudes, and behavior as she becomes a stakeholder with other members of her six person collaborative learning group. The intent is to determine if cultural and social factors impact the learning of scientific concepts based on observations from videotapes, interviews, and student opinion questionnaires. QSR NUD*IST 4, a computer software program is utilized to help categorize and index data. Among the findings, there is evidence that clearly indicates girls' attitudes toward science are altered as they interact with other girls and boys in a collaborative learning group. Observations also indicate that cultural and social factors affect girls' performance as they explore and discover scientific concepts with other girls and boys. Based upon what I have uncovered utilizing qualitative research and confirmed according to current literature, there seems to be an appreciable impact on the way girls appear to learn science. Rooted in the data, the results mirror the conclusions of previous studies, which

  11. Who will be the shade of our tree when you leave? Collaborating as women to advance community emancipation.

    PubMed

    Daniels, Doria

    2006-06-01

    In 1994, out of a population of 45 million people an estimated 7.7 million people lived in informal settlements in South Africa (South African Institute of Race Relations, 1994). This article focuses on one community whose residents' desperation to own housing contributed to community disintegration, typified by infighting among women, and threats to human life. Issues of diversity became more prominent and destabilized community-building efforts. One effort to collaboratively break down barriers that deterred women from working together is presented to illustrate how these women created bonds based on "discovered similarities." The participatory and personal-experience approach described here contributed to their becoming active protagonists of their learning and encouraged tolerance and understanding among community women from differing ethnic, linguistic, and political backgrounds. The article concludes with a discussion of the critical importance of recognizing and working with and through differences within the current South African reality. PMID:16758328

  12. A home environment test battery for status assessment in patients with advanced Parkinson's disease.

    PubMed

    Westin, Jerker; Dougherty, Mark; Nyholm, Dag; Groth, Torgny

    2010-04-01

    A test battery for assessing patient state in advanced Parkinson's disease, consisting of self-assessments and motor tests, was constructed and implemented on a hand computer with touch screen in a telemedicine setting. The aim of this work was to construct an assessment device, applicable during motor fluctuations in the patient's home environment. Selection of self-assessment questions was based on questions from an e-diary, previously used in a clinical trial. Both un-cued and cued tapping tests and spiral drawing tests were designed for capturing upper limb stiffnes, slowness and involuntary movements. The patient interface gave an audible signal at scheduled response times and was locked otherwise. Data messages in an XML-format were sent from the hand unit to a central server for storage, processing and presentation. In tapping tests, speed and accuracy were calculated and in spiral tests, standard deviation of frequency filtered radial drawing velocity was calculated. An overall test score, combining repeated assessments of the different test items during a test period, was defined based on principal component analysis and linear regression. An evaluation with two pilot patients before and after receiving new types of treatments was performed. Compliance and usability was assessed in a clinical trial (65 patients with advanced Parkinson's disease) and correlations between different test items and internal consistency were investigated. The test battery could detect treatment effect in the two pilot patients, both in self-assessments, tapping tests' results and spiral scores. It had good patient compliance and acceptable usability according to nine nurses. Correlation analysis showed that tapping results provided different information as compared to diary responses. Internal consistency of the test battery was good and learning effects in the tapping tests were small. PMID:19740563

  13. Utility-Oriented Placement of Actuator Nodes with a Collaborative Serving Scheme for Facilitated Business and Working Environments

    PubMed Central

    2014-01-01

    Places to be served by cyber-physical systems (CPS) are usually distributed unevenly over the area. Thus, different areas usually have different importance and values of serving. In other words, serving power can be excessive or insufficient in practice. Therefore, actuator nodes (ANs) in CPS should be focused on serving around points of interest (POIs) with considerations of “service utility.” In this paper, a utility-oriented AN placement framework with a collaborative serving scheme is proposed. Through spreading serving duties among correctly located ANs, deployment cost can be reduced, utility of ANs can be fully utilized, and the system longevity can be improved. The problem has been converted into a binary integer linear programming optimization problem. Service fading, 3D placements, multiscenario placements, and fault-tolerant placements have been modeled in the framework. An imitated example of a CPS deployment in a smart laboratory has been used for evaluations. PMID:25110746

  14. The issue of the arrangement of new environments for science education through collaborative actions between schools, museums and science centres in the Brazilian context of teacher training

    NASA Astrophysics Data System (ADS)

    Monteiro, Bruno Andrade Pinto; Martins, Isabel; de Souza Janerine, Aline; de Carvalho, Fabiana Cristina

    2016-02-01

    We present, in this article, an investigation about the potential of the relationship between formal and non-formal educational environments. Therefore it is not an empirical research, but an essay on the topic. This paper demonstrates the concept that science education and science outreach can be privileged by actions that are developed by closer relations between formal and non-formal places. Currently, non-formal environments such as museums and science and technology centres are considered potential educational resources within the reach of schools. Educators from museums have conducted studies which demonstrate a predominant model of the utilization of these institutions by teachers, which consists of illustrative visits during the exhibitions, but does not feature a collaborative relationship or partnership between schools and these institutions. In Brazil, the main examples of approaches to collaboration between these places and schools have been taking place through the initiatives of teachers or through projects developed by the educational sector, aiming to broaden the dialogue between their institutions and the school community. Another approach mechanism relates to research and extension projects developed by university researchers, sponsored by state and federal funding agencies. In this case, the universities and university museums appear as new social actors that stand in the way of the schools and the cultural environments, complicating the relationship and, at the same time, bringing new questions to the field of educational research. We believe that the discourse in this paper should bring about further discussions in the initial teacher training courses to contribute to the understanding of practices related to the extension of the field of activity of the school.

  15. The issue of the arrangement of new environments for science education through collaborative actions between schools, museums and science centres in the Brazilian context of teacher training

    NASA Astrophysics Data System (ADS)

    Monteiro, Bruno Andrade Pinto; Martins, Isabel; de Souza Janerine, Aline; de Carvalho, Fabiana Cristina

    2016-06-01

    We present, in this article, an investigation about the potential of the relationship between formal and non-formal educational environments. Therefore it is not an empirical research, but an essay on the topic. This paper demonstrates the concept that science education and science outreach can be privileged by actions that are developed by closer relations between formal and non-formal places. Currently, non-formal environments such as museums and science and technology centres are considered potential educational resources within the reach of schools. Educators from museums have conducted studies which demonstrate a predominant model of the utilization of these institutions by teachers, which consists of illustrative visits during the exhibitions, but does not feature a collaborative relationship or partnership between schools and these institutions. In Brazil, the main examples of approaches to collaboration between these places and schools have been taking place through the initiatives of teachers or through projects developed by the educational sector, aiming to broaden the dialogue between their institutions and the school community. Another approach mechanism relates to research and extension projects developed by university researchers, sponsored by state and federal funding agencies. In this case, the universities and university museums appear as new social actors that stand in the way of the schools and the cultural environments, complicating the relationship and, at the same time, bringing new questions to the field of educational research. We believe that the discourse in this paper should bring about further discussions in the initial teacher training courses to contribute to the understanding of practices related to the extension of the field of activity of the school.

  16. COLLABORATIVE RESEARCH:USING ARM OBSERVATIONS & ADVANCED STATISTICAL TECHNIQUES TO EVALUATE CAM3 CLOUDS FOR DEVELOPMENT OF STOCHASTIC CLOUD-RADIATION

    SciTech Connect

    Somerville, Richard

    2013-08-22

    The long-range goal of several past and current projects in our DOE-supported research has been the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data, and the implementation and testing of these parameterizations in global models. The main objective of the present project being reported on here has been to develop and apply advanced statistical techniques, including Bayesian posterior estimates, to diagnose and evaluate features of both observed and simulated clouds. The research carried out under this project has been novel in two important ways. The first is that it is a key step in the development of practical stochastic cloud-radiation parameterizations, a new category of parameterizations that offers great promise for overcoming many shortcomings of conventional schemes. The second is that this work has brought powerful new tools to bear on the problem, because it has been a collaboration between a meteorologist with long experience in ARM research (Somerville) and a mathematician who is an expert on a class of advanced statistical techniques that are well-suited for diagnosing model cloud simulations using ARM observations (Shen).

  17. USGS ecosystem research for the next decade: advancing discovery and application in parks and protected areas through collaboration

    USGS Publications Warehouse

    van Riper, Charles, III; Nichols, James D.; Wingard, G. Lynn; Kershner, Jeffrey L.; Cloern, James E.; Jacobson, Robert B.; White, Robin P.; McGuire, Anthony David; Williams, Byron K.; Gelfenbaum, Guy; Shapiro, Carl D.

    2014-01-01

    Ecosystems within parks and protected areas in the United States and throughout the world are being transformed at an unprecedented rate. Changes associated with natural hazards, greenhouse gas emissions, and increasing demands for water, food, land, energy and mineral resources are placing urgency on sound decision making that will help sustain our Nation’s economic and environmental well-being (Millennium Ecosystem Assessment, 2005). In recognition of the importance of science in making these decisions, the U.S. Geological Survey (USGS) in 2007 identified ecosystem science as one of six science directions included in a comprehensive decadal strategy (USGS 2007). The Ecosystems Mission Area was identified as essential for integrating activity within the USGS and as a key to enhanced integration with other Federal and private sector research and management organizations (Myers at al., 2007). This paper focuses on benefits to parks and protected areas from the USGS Ecosystems Mission Area plan that expanded the scope of the original 2007 science strategy, to identify the Bureau’s work in ecosystem science over the next decade (Williams et al., 2013). The plan describes a framework that encompasses both basic and applied science and allows the USGS to continue to contribute meaningfully to conservation and management issues related to the Nation’s parks and ecological resources. This framework relies on maintaining long-standing, collaborative relationships with partners in both conducting science and applying scientific results. Here we summarize the major components of the USGS Ecosystems Science Strategy, articulating the vision, goals and strategic approaches, then outlining some of the proposed actions that will ultimately prove useful to those managing parks and protected areas. We end with a discussion on the future of ecosystem science for the USGS and how it can be used to evaluate ecosystem change and the associated consequences to management of our

  18. The RD53 collaboration's SystemVerilog-UVM simulation framework and its general applicability to design of advanced pixel readout chips

    NASA Astrophysics Data System (ADS)

    Marconi, S.; Conti, E.; Placidi, P.; Christiansen, J.; Hemperek, T.

    2014-10-01

    The foreseen Phase 2 pixel upgrades at the LHC have very challenging requirements for the design of hybrid pixel readout chips. A versatile pixel simulation platform is as an essential development tool for the design, verification and optimization of both the system architecture and the pixel chip building blocks (Intellectual Properties, IPs). This work is focused on the implemented simulation and verification environment named VEPIX53, built using the SystemVerilog language and the Universal Verification Methodology (UVM) class library in the framework of the RD53 Collaboration. The environment supports pixel chips at different levels of description: its reusable components feature the generation of different classes of parameterized input hits to the pixel matrix, monitoring of pixel chip inputs and outputs, conformity checks between predicted and actual outputs and collection of statistics on system performance. The environment has been tested performing a study of shared architectures of the trigger latency buffering section of pixel chips. A fully shared architecture and a distributed one have been described at behavioral level and simulated; the resulting memory occupancy statistics and hit loss rates have subsequently been compared.

  19. We Can Do That! Collaborative Assessment of School Environments to Promote Healthy Adolescent Nutrition and Physical Activity Behaviors

    ERIC Educational Resources Information Center

    Williams, Susan L.; Mummery, W. Kerry

    2015-01-01

    Evidence for effectiveness of school-based studies for prevention of adolescent obesity is equivocal. Tailoring interventions to specific settings is considered necessary for effectiveness and sustainability. The PRECEDE framework provides a formative research approach for comprehensive understanding of school environments and identification of…

  20. The Relationship between an Online Synchronous Learning Environment and Knowledge Acquisition Skills and Traits: The Blackboard Collaborate Experience

    ERIC Educational Resources Information Center

    Politis, John; Politis, Denis

    2016-01-01

    Online learning is becoming more attractive to perspective students because it offers them greater accessibility, convenience and flexibility to study at a reduced cost. While these benefits may attract prospective learners to embark on an online learning environment there remains little empirical evidence relating the skills and traits of…

  1. Challenging the CSCW Matrix: A Rough Draft of a New Conceptualisation of Collaborative Practices in Learning Environments

    ERIC Educational Resources Information Center

    Jørnø, Rasmus Leth; Gynther, Karsten; Christensen, Ove

    2013-01-01

    This paper challenges traditional dichotomies that identify temporal and spatial restrains as relevant defining properties of learning environments. We present a critique of the current dominant computer-supported cooperative work (CSCW) taxonomy. Although we believe that the taxonomy does provide useful information, we question whether the axis…

  2. A Study of the Relationship of Communication Technology Configurations in Virtual Research Environments and Effectiveness of Collaborative Research

    ERIC Educational Resources Information Center

    Ahmed, Iftekhar

    2009-01-01

    Virtual Research Environments (VRE) are electronic meeting places for interaction among scientists created by combining software tools and computer networking. Virtual teams are enjoying increased importance in the conduct of scientific research because of the rising cost of traditional scientific scholarly communication, the growing importance of…

  3. The Open Dataset on Students' Perceptions of Virtual Learning Environments in Ireland: Collaborating to Listen to the Student Voice

    ERIC Educational Resources Information Center

    Risquez, Angelica; Raftery, Damien; Costello, Eamon

    2015-01-01

    The Irish inter-institutional virtual learning environments (VLEs) open dataset stems from ongoing work with a rolling longitudinal survey of students' usage of VLEs which has been ongoing in 12 higher education institutions since 2008. The project has collected over 21,000 student responses to date through the growth of an extended network of…

  4. Exploring the Social Competence of Students with Autism Spectrum Conditions in a Collaborative Virtual Learning Environment--The Pilot Study

    ERIC Educational Resources Information Center

    Cheng, Yufang; Ye, Jun

    2010-01-01

    Social reciprocity deficits are a core feature of the autism spectrum conditions (ASCs). Many individual with ASCs have difficulty with social interaction due to a frequent lack of social competence. This study focuses on using a virtual learning environment to help the deficiencies of social competence for people with ASCs, and to increase their…

  5. Collaboration, Reflection and Selective Neglect: Campus-Based Marketing Students' Experiences of Using a Virtual Learning Environment

    ERIC Educational Resources Information Center

    Molesworth, Mike

    2004-01-01

    Previous studies have suggested significant benefits to using computer-mediated communication in higher education and the development of the relevant skills may also be important for preparing students for their working careers. This study is a review of the introduction of a virtual learning environment to support a group of 60 campus-based,…

  6. The Nanomaterial Data Curation Initiative: A collaborative approach to assessing, evaluating, and advancing the state of the field

    PubMed Central

    Powers, Christina M; Hoover, Mark D; Harper, Stacey L

    2015-01-01

    Summary The Nanomaterial Data Curation Initiative (NDCI), a project of the National Cancer Informatics Program Nanotechnology Working Group (NCIP NanoWG), explores the critical aspect of data curation within the development of informatics approaches to understanding nanomaterial behavior. Data repositories and tools for integrating and interrogating complex nanomaterial datasets are gaining widespread interest, with multiple projects now appearing in the US and the EU. Even in these early stages of development, a single common aspect shared across all nanoinformatics resources is that data must be curated into them. Through exploration of sub-topics related to all activities necessary to enable, execute, and improve the curation process, the NDCI will provide a substantive analysis of nanomaterial data curation itself, as well as a platform for multiple other important discussions to advance the field of nanoinformatics. This article outlines the NDCI project and lays the foundation for a series of papers on nanomaterial data curation. The NDCI purpose is to: 1) present and evaluate the current state of nanomaterial data curation across the field on multiple specific data curation topics, 2) propose ways to leverage and advance progress for both individual efforts and the nanomaterial data community as a whole, and 3) provide opportunities for similar publication series on the details of the interactive needs and workflows of data customers, data creators, and data analysts. Initial responses from stakeholder liaisons throughout the nanoinformatics community reveal a shared view that it will be critical to focus on integration of datasets with specific orientation toward the purposes for which the individual resources were created, as well as the purpose for integrating multiple resources. Early acknowledgement and undertaking of complex topics such as uncertainty, reproducibility, and interoperability is proposed as an important path to addressing key challenges

  7. Use of high-performance computers, FEA and the CAVE automatic virtual environment for collaborative design of complex systems

    SciTech Connect

    Plaskacz, E.J.; Kulak, R.F.

    1996-03-01

    Concurrent, interactive engineering design and analysis has the potential for substantially reducing product development time and enhancing US competitiveness. Traditionally, engineering design has involved running engineering analysis codes to simulate and evaluate the response of a product or process, writing the output data to file, and viewing or ``post-processing`` the results at a later time. The emergence of high-performance computer architectures, virtual reality, and advanced telecommunications in the mid 90`s promises to dramatically alter the way designers, manufacturers, engineers and scientists will do their work.

  8. Wikis and Collaborative Learning in Higher Education

    ERIC Educational Resources Information Center

    Zheng, Binbin; Niiya, Melissa; Warschauer, Mark

    2015-01-01

    While collaborative learning and collaborative writing can be of great value to student learning, the implementation of a technology-supported collaborative learning environment is a challenge. With their built-in features for supporting collaborative writing and social communication, wikis are a promising platform for collaborative learning;…

  9. Life testing of reflowed and reworked advanced CCGA surface mount packages in harsh thermal environments

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2013-03-01

    Life testing/qualification of reflowed (1st reflow) and reworked (1st reflow, 1st removal, and then 1st rework) advanced ceramic column grid array (CCGA) surface mount interconnect electronic packaging technologies for future flight projects has been studied to enhance the mission assurance of JPL-NASA projects. The reliability of reworked/reflowed surface mount technology (SMT) packages is very important for short-duration and long-duration deep space harsh extreme thermal environmental missions. The life testing of CCGA electronic packages under extreme thermal environments (for example: -185°C to +125°C) has been performed with reference to various JPL/NASA project requirements which encompass the temperature range studied. The test boards of reflowed and reworked CCGA packages (717 Xilinx package, 624, 1152, and 1272 column Actel Packages) were selected for the study to survive three times the total number of expected temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware including all relevant manufacturing, ground operations, and mission phases or cycles to failure to assess the life of the hardware. Qualification/life testing was performed by subjecting test boards to the environmental harsh temperature extremes and assessing any structural failures, mechanical failures or degradation in electrical performance solder-joint failures due to either overstress or thermal cycle fatigue. The large, high density, high input/output (I/O) electronic interconnect SMT packages such as CCGA have increased usage in avionics hardware of NASA projects during the last two decades. The test boards built with CCGA packages are expensive and often require a rework to replace a reflowed, reprogrammed, failed, redesigned, etc., CCGA packages. Theoretically speaking, a good rework process should have similar temperature-time profile as that used for the original manufacturing process of solder reflow. A

  10. Tele-Presence Microscopy: An interactive multi-user environment for Collaborative research using high speed networks and the Internet

    SciTech Connect

    Zaluzec, N.J.

    1996-03-01

    Tele-Presence Microscopy (TPM) is an advanced concept in the integration of computers and high speed networks with scientific instruments for operation, control, communication, and research, which makes use of ANL`s Advanced Analytical Electron Microscope and Analytical Scanning Electron Microscope as development/test bed sites. Implementation of a TPM facility allows a user from a remote location to either observe and/or control state-of-the-art instrumentation in a real time interactive mode. Using TPM, a user will be able to {ital actively} participate in scientific investigations at unique resources such as user facilities without being physically present at those locations. Manufacturers would be able to configure demonstration equipment and to remotely service/diagnose the system. Students would be able to initiate tele- presence operation of instruments which may not be available at their host institution; they would also be able to consult an advisor or nonlocal expert on-line. The generic TPM/LabSpace system is composed of both software and hardware which operate in a client/server relationship.

  11. Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems

    SciTech Connect

    Gleeson, Brian

    2014-09-30

    Air plasma sprayed (APS) thermal barrier coatings (TBCs) are used to provide thermal insulation for the hottest components in gas turbines. Zirconia stabilized with 7wt% yttria (7YSZ) is the most common ceramic top coat used for turbine blades. The 7YSZ coating can be degraded from the buildup of fly-ash deposits created in the power-generation process. Fly ash from an integrated gasification combined cycle (IGCC) system can result from coal-based syngas. TBCs are also exposed to harsh gas environments containing CO2, SO2, and steam. Degradation from the combined effects of fly ash and harsh gas atmospheres has the potential to severely limit TBC lifetimes. The main objective of this study was to use lab-scale testing to systematically elucidate the interplay between prototypical deposit chemistries (i.e., ash and its constituents, K2SO4, and FeS) and environmental oxidants (i.e., O2, H2O and CO2) on the degradation behavior of advanced TBC systems. Several mechanisms of early TBC failure were identified, as were the specific fly-ash constituents responsible for degradation. The reactivity of MCrAlY bondcoats used in TBC systems was also investigated. The specific roles of oxide and sulfate components were assessed, together with the complex interplay between gas composition, deposit chemistry and alloy reactivity. Bondcoat composition design strategies to mitigate corrosion were established, particularly with regard to controlling phase constitution and the amount of reactive elements the bondcoat contains in order to achieve optimal corrosion resistance.

  12. A Laboratory-Based System for Managing and Distributing Publically Funded Geochemical Data in a Collaborative Environment

    NASA Astrophysics Data System (ADS)

    McInnes, B.; Brown, A.; Liffers, M.

    2015-12-01

    Publically funded laboratories have a responsibility to generate, archive and disseminate analytical data to the research community. Laboratory managers know however, that a long tail of analytical effort never escapes researchers' thumb drives once they leave the lab. This work reports on a research data management project (Digital Mineralogy Library) where integrated hardware and software systems automatically archive and deliver analytical data and metadata to institutional and community data portals. The scientific objective of the DML project was to quantify the modal abundance of heavy minerals extracted from key lithological units in Western Australia. The selected analytical platform was a TESCAN Integrated Mineral Analyser (TIMA) that uses EDS-based mineral classification software to image and quantify mineral abundance and grain size at micron scale resolution. The analytical workflow used a bespoke laboratory information management system (LIMS) to orchestrate: (1) the preparation of grain mounts with embedded QR codes that serve as enduring links between physical samples and analytical data, (2) the assignment of an International Geo Sample Number (IGSN) and Digital Object Identifier (DOI) to each grain mount via the System for Earth Sample Registry (SESAR), (3) the assignment of a DOI to instrument metadata via Research Data Australia, (4) the delivery of TIMA analytical outputs, including spatially registered mineralogy images and mineral abundance data, to an institutionally-based data management server, and (5) the downstream delivery of a final data product via a Google Maps interface such as the AuScope Discovery Portal. The modular design of the system permits the networking of multiple instruments within a single site or multiple collaborating research institutions. Although sharing analytical data does provide new opportunities for the geochemistry community, the creation of an open data network requires: (1) adopting open data reporting

  13. MEDXVIEWER: PROVIDING A WEB-ENABLED WORKSTATION ENVIRONMENT FOR COLLABORATIVE AND REMOTE MEDICAL IMAGING VIEWING, PERCEPTION STUDIES AND READER TRAINING.

    PubMed

    Looney, P T; Young, K C; Halling-Brown, M D

    2016-06-01

    MedXViewer (Medical eXtensible Viewer) has been developed to address the need for workstation-independent, picture archiving and communication system (PACS)-less viewing and interaction with anonymised medical images. The aim of this paper is to describe the design and features of MedXViewer as well as to introduce the new features available in the latest release (version 1.2). MedXViewer currently supports digital mammography and tomosynthesis. The flexible software design used to develop MedXViewer allows it to be easily extended to support other imaging modalities. Regions of interest can be drawn by a user, and any associated information about a mark, an image or a study can be added. The questions and settings can be easily configured depending on the need of the research allowing both ROC and FROC studies to be performed. Complex tree-like questions can be asked where a given answer presents the user to new questions. The hanging protocol can be specified for each study. Panning, windowing, zooming and moving through slices are all available while modality-specific features can be easily enabled, e.g. quadrant zooming in digital mammography and tomosynthesis studies. MedXViewer can integrate with a web-based image database OPTIMAM Medical Image Database allowing results and images to be stored centrally. The software can, alternatively, run without a network connection where the images and results can be encrypted and stored locally on a machine or external drive. MedXViewer has been used for running remote paper-less observer studies and is capable of providing a training infrastructure and coordinating remote collaborative viewing sessions. PMID:26628613

  14. Final Progress Report: Collaborative Research: Decadal-to-Centennial Climate & Climate Change Studies with Enhanced Variable and Uniform Resolution GCMs Using Advanced Numerical Techniques

    SciTech Connect

    Fox-Rabinovitz, M; Cote, J

    2009-06-05

    The joint U.S-Canadian project has been devoted to: (a) decadal climate studies using developed state-of-the-art GCMs (General Circulation Models) with enhanced variable and uniform resolution; (b) development and implementation of advanced numerical techniques; (c) research in parallel computing and associated numerical methods; (d) atmospheric chemistry experiments related to climate issues; (e) validation of regional climate modeling strategies for nested- and stretched-grid models. The variable-resolution stretched-grid (SG) GCMs produce accurate and cost-efficient regional climate simulations with mesoscale resolution. The advantage of the stretched grid approach is that it allows us to preserve the high quality of both global and regional circulations while providing consistent interactions between global and regional scales and phenomena. The major accomplishment for the project has been the successful international SGMIP-1 and SGMIP-2 (Stretched-Grid Model Intercomparison Project, phase-1 and phase-2) based on this research developments and activities. The SGMIP provides unique high-resolution regional and global multi-model ensembles beneficial for regional climate modeling and broader modeling community. The U.S SGMIP simulations have been produced using SciDAC ORNL supercomputers. Collaborations with other international participants M. Deque (Meteo-France) and J. McGregor (CSIRO, Australia) and their centers and groups have been beneficial for the strong joint effort, especially for the SGMIP activities. The WMO/WCRP/WGNE endorsed the SGMIP activities in 2004-2008. This project reflects a trend in the modeling and broader communities to move towards regional and sub-regional assessments and applications important for the U.S. and Canadian public, business and policy decision makers, as well as for international collaborations on regional, and especially climate related issues.

  15. Collaborative Learning.

    ERIC Educational Resources Information Center

    Levy-Reiner, Sherry, Ed.

    1985-01-01

    Descriptions of 10 college programs involving collaborative learning are presented, along with Karen T. Romer's essay, "Collaboration: New Forms of Learning, New Ways of Thinking." The essay identifies various kinds of collaborative learning as well as the benefits of collaborative models. The following programs and schools are described: the…

  16. Development of Collaborative Research Initiatives to Advance the Aerospace Sciences-via the Communications, Electronics, Information Systems Focus Group

    NASA Technical Reports Server (NTRS)

    Knasel, T. Michael

    1996-01-01

    The primary goal of the Adaptive Vision Laboratory Research project was to develop advanced computer vision systems for automatic target recognition. The approach used in this effort combined several machine learning paradigms including evolutionary learning algorithms, neural networks, and adaptive clustering techniques to develop the E-MOR.PH system. This system is capable of generating pattern recognition systems to solve a wide variety of complex recognition tasks. A series of simulation experiments were conducted using E-MORPH to solve problems in OCR, military target recognition, industrial inspection, and medical image analysis. The bulk of the funds provided through this grant were used to purchase computer hardware and software to support these computationally intensive simulations. The payoff from this effort is the reduced need for human involvement in the design and implementation of recognition systems. We have shown that the techniques used in E-MORPH are generic and readily transition to other problem domains. Specifically, E-MORPH is multi-phase evolutionary leaming system that evolves cooperative sets of features detectors and combines their response using an adaptive classifier to form a complete pattern recognition system. The system can operate on binary or grayscale images. In our most recent experiments, we used multi-resolution images that are formed by applying a Gabor wavelet transform to a set of grayscale input images. To begin the leaming process, candidate chips are extracted from the multi-resolution images to form a training set and a test set. A population of detector sets is randomly initialized to start the evolutionary process. Using a combination of evolutionary programming and genetic algorithms, the feature detectors are enhanced to solve a recognition problem. The design of E-MORPH and recognition results for a complex problem in medical image analysis are described at the end of this report. The specific task involves the

  17. Laser Light Scattering, from an Advanced Technology Development Program to Experiments in a Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Tscharnuter, Walther W.; Macgregor, Andrew D.; Dautet, Henri; Deschamps, Pierre; Boucher, Francois; Zuh, Jixiang; Tin, Padetha; Rogers, Richard B.; Ansari, Rafat R.

    1994-01-01

    Recent advancements in laser light scattering hardware are described. These include intelligent single card correlators; active quench/active reset avalanche photodiodes; laser diodes; and fiber optics which were used by or developed for a NASA advanced technology development program. A space shuttle experiment which will employ aspects of these hardware developments is previewed.

  18. Collaboration of the NASA Glenn Research Center and Rolls-Royce Developed Thin Film Multilayered Dielectrics for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Busfield, A. Rachel; Thomas, Valarie D.; Blaha, Charles A.

    2003-01-01

    The use of thin films to electrically insulate thin film sensors on engine components minimizes the intrusiveness of the sensors and allows a more accurate measurement of the environment. A variety of insulating films were investigated for preventing electrical shorting caused by insulator failure between the sensor and the component. By alternating layers of sputtered high-temperature ceramics, a sequence of insulating layers was devised that (1) prevents pinholes from forming completely through the insulator and (2) maintains high electrical resistivity at high temperatures. The total thickness is only a fraction of that needed for conventional insulating techniques. The Sensors and Electronics Technology Branch of the NASA Glenn Research Center has an in-house effort to develop thin film sensors for surface measurement in propulsion system research. Thin film sensors do not require special machining of the components on which they are mounted, and they are considerably thinner (less than 10 mm thick) than wire or foil sensors. The thin film sensors are thus much less disturbing to the operating environment and have a minimal impact on the physical characteristics of the supporting component. To further this research, NASA Glenn and Rolls-Royce (Derby, UK), with assistance from the Ohio Aerospace Institute (OAI) and the Akima Corporation, pursued a joint investigation using multilayered thin film dielectrics as a reliable insulator in harsh environments. The use of a multilayered scheme is thought to be promising for the fabrication of electrically insulating thin films. A major cause of conduction in thin film dielectrics is the presence of defects, such as pinholes, that propagate through the film to the underlying substrate surface. By alternating the insulating material, each new growth pattern would deviate from the previous one, eliminating direct pathways for conduction to the substrate. The film depositions and testing were conducted in the Instrument

  19. Scratchpads 2.0: a Virtual Research Environment supporting scholarly collaboration, communication and data publication in biodiversity science.

    PubMed

    Smith, Vincent S; Rycroft, Simon D; Brake, Irina; Scott, Ben; Baker, Edward; Livermore, Laurence; Blagoderov, Vladimir; Roberts, David

    2011-01-01

    The Scratchpad Virtual Research Environment (http://scratchpads.eu/) is a flexible system for people to create their own research networks supporting natural history science. Here we describe Version 2 of the system characterised by the move to Drupal 7 as the Scratchpad core development framework and timed to coincide with the fifth year of the project's operation in late January 2012. The development of Scratchpad 2 reflects a combination of technical enhancements that make the project more sustainable, combined with new features intended to make the system more functional and easier to use. A roadmap outlining strategic plans for development of the Scratchpad project over the next two years concludes this article. PMID:22207806

  20. Scratchpads 2.0: a Virtual Research Environment supporting scholarly collaboration, communication and data publication in biodiversity science

    PubMed Central

    Smith, Vincent S.; Rycroft, Simon D.; Brake, Irina; Scott, Ben; Baker, Edward; Livermore, Laurence; Blagoderov, Vladimir; Roberts, David

    2011-01-01

    Abstract The Scratchpad Virtual Research Environment (http://scratchpads.eu/) is a flexible system for people to create their own research networks supporting natural history science. Here we describe Version 2 of the system characterised by the move to Drupal 7 as the Scratchpad core development framework and timed to coincide with the fifth year of the project’s operation in late January 2012. The development of Scratchpad 2 reflects a combination of technical enhancements that make the project more sustainable, combined with new features intended to make the system more functional and easier to use. A roadmap outlining strategic plans for development of the Scratchpad project over the next two years concludes this article. PMID:22207806

  1. Methods of validating the Advanced Diagnosis and Warning system for aircraft ICing Environments (ADWICE)

    NASA Astrophysics Data System (ADS)

    Rosczyk, S.; Hauf, T.; Leifeld, C.

    2003-04-01

    In-flight icing is one of the most hazardous problems in aviation. It was determined as contributing factor in more than 800 incidents worldwide. And though the meteorological factors of airframe icing become more and more transparent, they have to be integrated into the Federal Aviation Administration's (FAA) certification rules first. Therefore best way to enhance aviational safety is to know the areas of dangerous icing conditions in order to prevent flying in them. For this reason the German Weather Service (DWD), the Institute for Atmospheric Physics at the German Aerospace Centre (DLR) and the Institute of Meteorology and Climatology (ImuK) of the University of Hanover started developingADWICE - theAdvanced Diagnosis and Warning system for aircraft ICing Environments - in 1998. This algorithm is based on the DWDLocal Model (LM) forecast of temperature and humidity, in fusion with radar and synop and, coming soon, satellite data. It gives an every-hour nowcast of icing severity and type - divided into four categories: freezing rain, convective, stratiform and general - for the middle European area. A first validation of ADWICE took place in 1999 with observational data from an in-flight icing campaign during EURICE in 1997. The momentary validation deals with a broader database. As first step the output from ADWICE is compared to observations from pilots (PIREPs) to get a statistic of the probability of detecting icing and either no-icing conditions within the last icing-seasons. There were good results of this method with the AmericanIntegrated Icing Diagnostic Algorithm (IIDA). A problem though is the small number of PIREPs from Europe in comparison to the US. So a temporary campaign of pilots (including Lufthansa and Aerolloyd) collecting cloud and icing information every few miles is intended to solve this unpleasant situation. Another source of data are the measurements of theFalcon - a DLR research aircraft carrying an icing sensor. In addition to that

  2. Advanced Oil Spill Detection Algorithms For Satellite Based Maritime Environment Monitoring

    NASA Astrophysics Data System (ADS)

    Radius, Andrea; Azevedo, Rui; Sapage, Tania; Carmo, Paulo

    2013-12-01

    During the last years, the increasing pollution occurrence and the alarming deterioration of the environmental health conditions of the sea, lead to the need of global monitoring capabilities, namely for marine environment management in terms of oil spill detection and indication of the suspected polluter. The sensitivity of Synthetic Aperture Radar (SAR) to the different phenomena on the sea, especially for oil spill and vessel detection, makes it a key instrument for global pollution monitoring. The SAR performances in maritime pollution monitoring are being operationally explored by a set of service providers on behalf of the European Maritime Safety Agency (EMSA), which has launched in 2007 the CleanSeaNet (CSN) project - a pan-European satellite based oil monitoring service. EDISOFT, which is from the beginning a service provider for CSN, is continuously investing in R&D activities that will ultimately lead to better algorithms and better performance on oil spill detection from SAR imagery. This strategy is being pursued through EDISOFT participation in the FP7 EC Sea-U project and in the Automatic Oil Spill Detection (AOSD) ESA project. The Sea-U project has the aim to improve the current state of oil spill detection algorithms, through the informative content maximization obtained with data fusion, the exploitation of different type of data/ sensors and the development of advanced image processing, segmentation and classification techniques. The AOSD project is closely related to the operational segment, because it is focused on the automation of the oil spill detection processing chain, integrating auxiliary data, like wind information, together with image and geometry analysis techniques. The synergy between these different objectives (R&D versus operational) allowed EDISOFT to develop oil spill detection software, that combines the operational automatic aspect, obtained through dedicated integration of the processing chain in the existing open source NEST

  3. Research on Intelligent Synthesis Environments

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.; Loftin, R. Bowen

    2002-12-01

    Four research activities related to Intelligent Synthesis Environment (ISE) have been performed under this grant. The four activities are: 1) non-deterministic approaches that incorporate technologies such as intelligent software agents, visual simulations and other ISE technologies; 2) virtual labs that leverage modeling, simulation and information technologies to create an immersive, highly interactive virtual environment tailored to the needs of researchers and learners; 3) advanced learning modules that incorporate advanced instructional, user interface and intelligent agent technologies; and 4) assessment and continuous improvement of engineering team effectiveness in distributed collaborative environments.

  4. Research on Intelligent Synthesis Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Lobeck, William E.

    2002-01-01

    Four research activities related to Intelligent Synthesis Environment (ISE) have been performed under this grant. The four activities are: 1) non-deterministic approaches that incorporate technologies such as intelligent software agents, visual simulations and other ISE technologies; 2) virtual labs that leverage modeling, simulation and information technologies to create an immersive, highly interactive virtual environment tailored to the needs of researchers and learners; 3) advanced learning modules that incorporate advanced instructional, user interface and intelligent agent technologies; and 4) assessment and continuous improvement of engineering team effectiveness in distributed collaborative environments.

  5. Framing the Progress of Collaborative Teacher Education

    ERIC Educational Resources Information Center

    Griffin, Cynthia C.; Pugach, Marlene C.

    2007-01-01

    In this article, the authors advance 10 postulates describing what they believe to be true about collaboration in special education: (1) Collaboration in teacher education is possible; (2) Collaborative programs can be initiated from many departure points; (3) Collaboration requires real time for communication; (4) Supportive leadership is…

  6. The effect of the low Earth orbit environment on space solar cells: Results of the Advanced Photovoltaic Experiment (S0014)

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.; Scheiman, David A.

    1993-01-01

    The results of post-flight performance testing of the solar cells flown on the Advanced Photovoltaic Experiment are reported. Comparison of post-flight current-voltage characteristics with similar pre-flight data revealed little or no change in solar cell conversion efficiency, confirming the reliability and endurance of space photovoltaic cells. This finding is in agreement with the lack of significant physical changes in the solar cells despite nearly six years in the low Earth orbit environment.

  7. A Comparison of Reasoning Processes in a Collaborative Modelling Environment: Learning about genetics problems using virtual chat

    NASA Astrophysics Data System (ADS)

    Pata, Kai; Sarapuu, Tago

    2006-09-01

    This study investigated the possible activation of different types of model-based reasoning processes in two learning settings, and the influence of various terms of reasoning on the learners’ problem representation development. Changes in 53 students’ problem representations about genetic issue were analysed while they worked with different modelling tools in a synchronous network-based environment. The discussion log-files were used for the “microgenetic” analysis of reasoning types. For studying the stages of students’ problem representation development, individual pre-essays and post-essays and their utterances during two reasoning phases were used. An approach for mapping problem representations was developed. Characterizing the elements of mental models and their reasoning level enabled the description of five hierarchical categories of problem representations. Learning in exploratory and experimental settings was registered as the shift towards more complex stages of problem representations in genetics. The effect of different types of reasoning could be observed as the divergent development of problem representations within hierarchical categories.

  8. Interactive Design Environment: Tools for Facilitating Communication and Collaboration Among Universities on Projects Related to a Mars Mission

    NASA Astrophysics Data System (ADS)

    1999-01-01

    The HEDS-UP program is comprised of student groups from many different universities across the United States working independently on various aspects of the grand objective - a manned mission to Mars. The inherent value of the program is in the nature of the students working in it. Students offer a different perspective on an existing project. Their contribution is in bringing the off the wall ideas to the table, among others. Students are unbounded by tradition and precedents in methodology. This enables them to approach the problem from a unique angle. They have the potential to bring fresh ideas and new dimensions to the overall project, thus contributing something original rather than mimicking existing projects. With proper facilitation the HEDS-UP program can become an evolutionary dynamic im environment in which ideas are proposed and tested under pressure and those with sufficient merit survive. Moreover, the incredibly cheap price of student labor gives the HEDS-UP program enormous potential to provide a substantial and lasting contribution to the Mars mission. The potential value of the projects completed by the HEDS-UP universities is limited by the geographical and academic separation of the universities, the short term nature of the projects, and insufficient input from NASA. If communication exists between the universities at all, it is minimal and limited to the conference, The projects are limited by the school term and the turn over rate of the participants is exceedingly high with an influx of new students each semester. This means that much of the work from previous semesters is lost as it is improperly passed on, incompletely understood, and consequently disregarded. There is no consistent method employed across the universities for storing the information and making it accessible to others in the field. Moreover the projects suffer from a dislocation from NASA itself. The insufficient feedback and inadequate resources for the projects limit

  9. Supporting collaborative computing and interaction

    SciTech Connect

    Agarwal, Deborah; McParland, Charles; Perry, Marcia

    2002-05-22

    To enable collaboration on the daily tasks involved in scientific research, collaborative frameworks should provide lightweight and ubiquitous components that support a wide variety of interaction modes. We envision a collaborative environment as one that provides a persistent space within which participants can locate each other, exchange synchronous and asynchronous messages, share documents and applications, share workflow, and hold videoconferences. We are developing the Pervasive Collaborative Computing Environment (PCCE) as such an environment. The PCCE will provide integrated tools to support shared computing and task control and monitoring. This paper describes the PCCE and the rationale for its design.

  10. Team Collaboration Software

    NASA Technical Reports Server (NTRS)

    Wang, Yeou-Fang; Schrock, Mitchell; Baldwin, John R.; Borden, Charles S.

    2010-01-01

    The Ground Resource Allocation and Planning Environment (GRAPE 1.0) is a Web-based, collaborative team environment based on the Microsoft SharePoint platform, which provides Deep Space Network (DSN) resource planners tools and services for sharing information and performing analysis.

  11. Building Collaborative Partnerships

    ERIC Educational Resources Information Center

    Madigan, Jennifer C.; Schroth-Cavataio, Georganne

    2011-01-01

    Communication and professional dialogue are essential elements of a high-quality education environment in which all students can succeed. Such an environment is especially important for the success of students with special needs. Unfortunately, collaboration between special educators, general educators, and other professionals is often hindered by…

  12. The development of a new database of gas emissions: MAGA, a collaborative web environment for collecting data

    NASA Astrophysics Data System (ADS)

    Cardellini, C.; Chiodini, G.; Frigeri, A.; Bagnato, E.; Aiuppa, A.; McCormick, B.

    2013-12-01

    The data on volcanic and non-volcanic gas emissions available online are, as today, incomplete and most importantly, fragmentary. Hence, there is need for common frameworks to aggregate available data, in order to characterize and quantify the phenomena at various spatial and temporal scales. Building on the Googas experience we are now extending its capability, particularly on the user side, by developing a new web environment for collecting and publishing data. We have started to create a new and detailed web database (MAGA: MApping GAs emissions) for the deep carbon degassing in the Mediterranean area. This project is part of the Deep Earth Carbon Degassing (DECADE) research initiative, lunched in 2012 by the Deep Carbon Observatory (DCO) to improve the global budget of endogenous carbon from volcanoes. MAGA database is planned to complement and integrate the work in progress within DECADE in developing CARD (Carbon Degassing) database. MAGA database will allow researchers to insert data interactively and dynamically into a spatially referred relational database management system, as well as to extract data. MAGA kicked-off with the database set up and a complete literature survey on publications on volcanic gas fluxes, by including data on active craters degassing, diffuse soil degassing and fumaroles both from dormant closed-conduit volcanoes (e.g., Vulcano, Phlegrean Fields, Santorini, Nysiros, Teide, etc.) and open-vent volcanoes (e.g., Etna, Stromboli, etc.) in the Mediterranean area and Azores. For each geo-located gas emission site, the database holds images and description of the site and of the emission type (e.g., diffuse emission, plume, fumarole, etc.), gas chemical-isotopic composition (when available), gas temperature and gases fluxes magnitude. Gas sampling, analysis and flux measurement methods are also reported together with references and contacts to researchers expert of the site. Data can be accessed on the network from a web interface or as

  13. Collaborative Arrangements.

    ERIC Educational Resources Information Center

    Cota-Robles, Eugene; Doby, Winston

    Two conference papers describing various collaborative arrangements within the educational community among teachers, students and others are presented in this document. The first paper, "Successful Collaborations" (Eugene Cota-Robles), describes the following projects in California that seek to forge collaborations to improve the education of…

  14. TA Collaborations

    ERIC Educational Resources Information Center

    Diefendorf, Martha

    2010-01-01

    This paper highlights several current collaborative activities of the National Early Childhood Technical Assistance Center (NECTAC). There are many specific examples of TA (Technical Assistance) collaborations that take place on a regular basis; the seven examples presented here were selected to represent different types of collaboration. The…

  15. Collaborative Inquiry

    ERIC Educational Resources Information Center

    David, Jane L.

    2009-01-01

    Teachers can make better use of data when they work together than when they do it alone. Creating the conditions for such collaboration is a tall order. This article describes the idea behind the collaborative inquiry approach. It also mentions several studies that indicate its effectiveness. Tips on how collaborative inquiry can be implemented…

  16. Collaboration Connections

    ERIC Educational Resources Information Center

    Harvey, Carl A., II

    2008-01-01

    Of all the buzz words used in the school library media profession, "collaboration" evokes the strongest feelings--and not all of those feelings are positive. Some library media specialists are not convinced that collaboration is an essential part of their programs, yet collaboration seems to be essential in many other professions. In fact, there…

  17. C3: A Collaborative Web Framework for NASA Earth Exchange

    NASA Astrophysics Data System (ADS)

    Foughty, E.; Fattarsi, C.; Hardoyo, C.; Kluck, D.; Wang, L.; Matthews, B.; Das, K.; Srivastava, A.; Votava, P.; Nemani, R. R.

    2010-12-01

    The NASA Earth Exchange (NEX) is a new collaboration platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing. NEX combines NASA advanced supercomputing resources, Earth system modeling, workflow management, NASA remote sensing data archives, and a collaborative communication platform to deliver a complete work environment in which users can explore and analyze large datasets, run modeling codes, collaborate on new or existing projects, and quickly share results among the Earth science communities. NEX is designed primarily for use by the NASA Earth science community to address scientific grand challenges. The NEX web portal component provides an on-line collaborative environment for sharing of Eearth science models, data, analysis tools and scientific results by researchers. In addition, the NEX portal also serves as a knowledge network that allows researchers to connect and collaborate based on the research they are involved in, specific geographic area of interest, field of study, etc. Features of the NEX web portal include: Member profiles, resource sharing (data sets, algorithms, models, publications), communication tools (commenting, messaging, social tagging), project tools (wikis, blogs) and more. The NEX web portal is built on the proven technologies and policies of DASHlink.arc.nasa.gov, (one of NASA's first science social media websites). The core component of the web portal is a C3 framework, which was built using Django and which is being deployed as a common framework for a number of collaborative sites throughout NASA.

  18. Current State of Digital Reference in Primary and Secondary Education; The Technological Challenges of digital Reference; Question Negotiation and the Technological Environment; Evaluation of Chat Reference Service Quality; Visual Resource Reference: Collaboration between Digital Museums and Digital Libraries.

    ERIC Educational Resources Information Center

    Lankes, R. David; Penka, Jeffrey T.; Janes, Joseph; Silverstein, Joanne; White, Marilyn Domas; Abels, Eileen G.; Kaske, Neal; Goodrum, Abby A.

    2003-01-01

    Includes five articles that discuss digital reference in elementary and secondary education; the need to understand the technological environment of digital reference; question negotiation in digital reference; a pilot study that evaluated chat reference service quality; and collaborative digital museum and digital library reference services. (LRW)

  19. Collaborative Project Work Development in a Virtual Environment with Low-Intermediate Undergraduate Colombian Students (Desarrollo de trabajo colaborativo en un ambiente virtual con estudiantes colombianos de pregrado de nivel intermedio-bajo)

    ERIC Educational Resources Information Center

    Salinas Vacca, Yakelin

    2014-01-01

    This paper reports on an exploratory, descriptive, and interpretive study in which the roles of discussion boards, the students, the teacher, and the monitors were explored as they constructed a collaborative class project in a virtual environment. This research was conducted in the virtual program of a Colombian public university. Data were…

  20. Importance of the Natural Terrestrial Environment with Regard to Advanced Launch Vehicle Design and Development

    NASA Technical Reports Server (NTRS)

    Pearson, S. D.; Vaughan, W. W.; Batts, G. W.; Jasper, G. L.

    1996-01-01

    The terrestrial environment is an important forcing function in the design and development of the launch vehicle. The scope of the terrestrial environment includes the following phenomena: Winds; Atmospheric Thermodynamic Models and Properties; Thermal Radiation; U.S. and World Surface Environment Extremes; Humidity; Precipitation, Fog, and Icing; Cloud Characteristics and Cloud Cover Models; Atmospheric Electricity; Atmospheric Constituents; Vehicle Engine Exhaust and Toxic Chemical Release; Occurrences of Tornadoes and Hurricanes; Geological Hazards, and Sea States. One must remember that the flight profile of any launch vehicle is in the terrestrial environment. Terrestrial environment definitions are usually limited to information below 90 km. Thus, a launch vehicle's operations will always be influenced to some degree by the terrestrial environment with which it interacts. As a result, the definition of the terrestrial environment and its interpretation is one of the key launch vehicle design and development inputs. This definition is a significant role, for example, in the areas of structures, control systems, trajectory shaping (performance), aerodynamic heating and take off/landing capabilities. The launch vehicle's capabilities which result from the design, in turn, determines the constraints and flight opportunities for tests and operations.

  1. Comprehensive multiplatform collaboration

    NASA Astrophysics Data System (ADS)

    Singh, Kundan; Wu, Xiaotao; Lennox, Jonathan; Schulzrinne, Henning G.

    2003-12-01

    We describe the architecture and implementation of our comprehensive multi-platform collaboration framework known as Columbia InterNet Extensible Multimedia Architecture (CINEMA). It provides a distributed architecture for collaboration using synchronous communications like multimedia conferencing, instant messaging, shared web-browsing, and asynchronous communications like discussion forums, shared files, voice and video mails. It allows seamless integration with various communication means like telephones, IP phones, web and electronic mail. In addition, it provides value-added services such as call handling based on location information and presence status. The paper discusses the media services needed for collaborative environment, the components provided by CINEMA and the interaction among those components.

  2. NASA University Research Centers Technical Advances in Education, Aeronautics, Space, Autonomy, Earth and Environment

    NASA Technical Reports Server (NTRS)

    Jamshidi, M. (Editor); Lumia, R. (Editor); Tunstel, E., Jr. (Editor); White, B. (Editor); Malone, J. (Editor); Sakimoto, P. (Editor)

    1997-01-01

    This first volume of the Autonomous Control Engineering (ACE) Center Press Series on NASA University Research Center's (URC's) Advanced Technologies on Space Exploration and National Service constitute a report on the research papers and presentations delivered by NASA Installations and industry and Report of the NASA's fourteen URC's held at the First National Conference in Albuquerque, New Mexico from February 16-19, 1997.

  3. STRUCTURED LEARNING AND TRAINING ENVIRONMENTS--A PREPARATION LABORATORY FOR ADVANCED MAMMALIAN PHYSIOLOGY.

    ERIC Educational Resources Information Center

    FIEL, NICHOLAS J.; JOHNSTON, RAYMOND F.

    A PREPARATION LABORATORY WAS DESIGNED TO FAMILIARIZE STUDENTS IN ADVANCED MAMMALIAN PHYSIOLOGY WITH LABORATORY SKILLS AND TECHNIQUES AND THUS SHORTEN THE TIME THEY SPEND IN SETTING UP ACTUAL EXPERIMENTS. THE LABORATORY LASTS 30 MINUTES, IS FLEXIBLE AND SIMPLE OF OPERATION, AND DOES NOT REQUIRE A PROFESSOR'S PRESENCE. THE BASIC TRAINING UNIT IS THE…

  4. DEVELOPMENT OF ADVANCED IN SITU TECHNIQUES FOR CHEMISTRY MONITORING AND CORROSION MITIGATION IN SCWO ENVIRONMENTS

    EPA Science Inventory

    We propose to develop chemical and corrosion sensors for use in high subcritical and supercritical aqueous environments, to improve their precision and reliability, and to use them to characterize the fundamental properties of supercritical aqueous solutions. A better understandi...

  5. Advances towards the qualification of an aircraft fuel tank inert environment fiber optic oxygen sensor system

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Songjian; Susko, Kenneth; Goglia, John

    2011-06-01

    An all optical pressure and temperature compensated fiber optic oxygen sensor (FOxSenseTM) system is under qualification for use in the in-situ closed-loop-control of the inert atmosphere environment inside fuel tanks of military and commercial aircraft. The all-optical oxygen environment control sensor is a passive, intrinsically safe, fiber-optic sensor device with no electrical connections leading to the sensors installed within the fuel tanks of an aircraft. To control the fuel tank environment, an array of multiple sensors is deployed throughout the fuel tanks of an aircraft, and a remote multi-channel optoelectronic system is used to monitor the status of all the sensors in real time to provide feedback oxygen environment information to the on-board inert gas generating system (OBIGS). Qualification testing of the all optical sensor have demonstrated the ability to monitor the oxygen environment inside a simulated fuel tank environment in the oxygen range from 0% to 21% oxygen concentrations, temperatures from (-) 40°C to (+) 60°C, and altitudes from sea level to 40,000 feet. Fiber optic oxygen sensors with built-in temperature compensation as well as the conduit fiber optic cables have passed DO-160E including acoustic noise and burn test.

  6. Initial AUV Investigation of the Dynamic Morainal Bank Environment of the Advancing Hubbard Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Lawson, D. E.; Gulick, S. P. S.; Goff, J. A.

    2015-12-01

    Hubbard Glacier has been steadily advancing into tidewater > 200 years; advance over last 40 years has averaged ~34 m/yr, although at spatially variable rates across the terminus (14-80 m/yr) and with a seasonal advance and retreat cycle of ~100 m to 300 m, but as much as 600 m. The advance of the terminus is synchronous with the movement of the morainal bank that underlies it. The mechanics of this motion and the related sedimentological processes responsible for this coordinated advance of the grounding line are based largely on inferences from geophysical surveys of remnant morainal banks. In situ and repeated observations of the submarine margin are required to improve our understanding of how the terminus advances into deep fjords. We conducted initial submarine observations using a Bluefin 9M AUV (Autonomous Underwater Vehicle) and acquired high-resolution swath bathymetry and sidescan backscatter along a ~2 km long section of the ice face of the glacier. Onboard oceanographic measurements and surface CTD casts were obtained during AUV deployment. Decimeter-scale imagery of the seabed reveals numerous erosional and depositional bedforms and gravitational features next to the ice face and down the morainal bank's proximal slope. The moraine surface adjacent to the ice face is coarse, apparently swept clear of finer materials, exhibits gravel stripes and boulder lags. The slope into the fjord displays a sequence of bedforms from barchan-shaped dunes up to 15 m on a side to barchanoid transverse ridges >50 m long to transverse ridges >100 m long. This transition implies increased sand supply to the bed downslope. Channels, erosional gullies and scours cross the upper slope, while localized slump and flow failures occur sporadically across the face. We speculate that high concentration bottom flows originating from turbulent subglacial discharge are likely processes creating the barchan forms and that the flow velocity reduces with distance from the grounding

  7. Streaming visualization for collaborative environments.

    SciTech Connect

    Hereld, M.; Olson, E.; Papka, M. E.; Uram, T. D.

    2008-01-01

    Connecting expensive and scarce visual data analysis resources to end-users is a major challenge today. We describe a flexible mechanism for meeting this challenge based on commodity compression technologies for streaming video. The advantages of this approach include simplified application development, access to generic client components for viewing, and simplified incorporation of improved codecs as they become available. In this paper we report newly acquired experimental results for two different applications being developed to exploit this approach and test its merits. One is based on a new plugin for ParaView that adds video streaming cleanly and transparently to existing applications. The other is a custom volume rendering application with new remote capabilities. Using typical datasets under realistic conditions, we find the performance for both is satisfactory.

  8. Advanced Scientific Computing Environment Team new scientific database management task. Progress report

    SciTech Connect

    Church, J.P.; Roberts, J.C.; Sims, R.N.; Smetana, A.O.; Westmoreland, B.W.

    1991-06-01

    The mission of the ASCENT Team is to continually keep pace with, evaluate, and select emerging computing technologies to define and implement prototypic scientific environments that maximize the ability of scientists and engineers to manage scientific data. These environments are to be implemented in a manner consistent with the site computing architecture and standards and NRTSC/SCS strategic plans for scientific computing. The major trends in computing hardware and software technology clearly indicate that the future ``computer`` will be a network environment that comprises supercomputers, graphics boxes, mainframes, clusters, workstations, terminals, and microcomputers. This ``network computer`` will have an architecturally transparent operating system allowing the applications code to run on any box supplying the required computing resources. The environment will include a distributed database and database managing system(s) that permits use of relational, hierarchical, object oriented, GIS, et al, databases. To reach this goal requires a stepwise progression from the present assemblage of monolithic applications codes running on disparate hardware platforms and operating systems. The first steps include converting from the existing JOSHUA system to a new J80 system that complies with modern language standards, development of a new J90 prototype to provide JOSHUA capabilities on Unix platforms, development of portable graphics tools to greatly facilitate preparation of input and interpretation of output; and extension of ``Jvv`` concepts and capabilities to distributed and/or parallel computing environments.

  9. Collaborative Attack vs. Collaborative Defense

    NASA Astrophysics Data System (ADS)

    Xu, Shouhuai

    We have witnessed many attacks in the cyberspace. However, most attacks are launched by individual attackers even though an attack may involve many compromised computers. In this paper, we envision what we believe to be the next generation cyber attacks — collaborative attacks. Collaborative attacks can be launched by multiple attackers (i.e., human attackers or criminal organizations), each of which may have some specialized expertise. This is possible because cyber attacks can become very sophisticated and specialization of attack expertise naturally becomes relevant. To counter collaborative attacks, we might need collaborative defense because each “chain” in a collaborative attack may be only adequately dealt with by a different defender. In order to understand collaborative attack and collaborative defense, we present a high-level abstracted framework for evaluating the effectiveness of collaborative defense against collaborative attacks. As a first step towards realizing and instantiating the framework, we explore a characterization of collaborative attacks and collaborative defense from the relevant perspectives.

  10. Recent advances in the study of limnological processes in permafrost environments

    NASA Astrophysics Data System (ADS)

    Oliva, Marc; Antoniades, Dermot

    2016-07-01

    Permafrost underlies approximately 22 million km2, which constitutes ca. 17% of the Earth's exposed land surface (Gruber, 2012). Permanently frozen ground is distributed in polar regions, mid-latitude high mountain environments and high plateaus. The land surface where permanently frozen conditions are observed can be subdivided into different geographical zones: continuous, discontinuous, sporadic and isolated patches of permafrost. The presence or absence of permafrost has major implications both for terrestrial and aquatic environments, since it influences physical, hydrological, biogeochemical and geomorphological processes.

  11. Computer Aided Design of Advanced Turbine Airfoil Alloys for Industrial Gas Turbines in Coal Fired Environments

    SciTech Connect

    G.E. Fuchs

    2007-12-31

    Recent initiatives for fuel flexibility, increased efficiency and decreased emissions in power generating industrial gas turbines (IGT's), have highlighted the need for the development of techniques to produce large single crystal or columnar grained, directionally solidified Ni-base superalloy turbine blades and vanes. In order to address the technical difficulties of producing large single crystal components, a program has been initiated to, using computational materials science, better understand how alloy composition in potential IGT alloys and solidification conditions during processing, effect castability, defect formation and environmental resistance. This program will help to identify potential routes for the development of high strength, corrosion resistant airfoil/vane alloys, which would be a benefit to all IGT's, including small IGT's and even aerospace gas turbines. During the first year, collaboration with Siemens Power Corporation (SPC), Rolls-Royce, Howmet and Solar Turbines has identified and evaluated about 50 alloy compositions that are of interest for this potential application. In addition, alloy modifications to an existing alloy (CMSX-4) were also evaluated. Collaborating with SPC and using computational software at SPC to evaluate about 50 alloy compositions identified 5 candidate alloys for experimental evaluation. The results obtained from the experimentally determined phase transformation temperatures did not compare well to the calculated values in many cases. The effects of small additions of boundary strengtheners (i.e., C, B and N) to CMSX-4 were also examined. The calculated phase transformation temperatures were somewhat closer to the experimentally determined values than for the 5 candidate alloys, discussed above. The calculated partitioning coefficients were similar for all of the CMSX-4 alloys, similar to the experimentally determined segregation behavior. In general, it appears that computational materials science has become a

  12. Advanced Algorithms and Automation Tools for Discrete Ordinates Methods in Parallel Environments

    SciTech Connect

    Alireza Haghighat

    2003-05-07

    This final report discusses major accomplishments of a 3-year project under the DOE's NEER Program. The project has developed innovative and automated algorithms, codes, and tools for solving the discrete ordinates particle transport method efficiently in parallel environments. Using a number of benchmark and real-life problems, the performance and accuracy of the new algorithms have been measured and analyzed.

  13. Handling Complexity in Learning Environments: Theory and Research. Advances in Learning and Instruction

    ERIC Educational Resources Information Center

    Elen, Jan, Ed.; Clark, Richard, Ed.

    2006-01-01

    What is meant when people say that "learning environments are increasingly complex"? What is known about the cognitive processing that occurs during complex learning? How can educators provide effective instructional support for students who must learn and apply complex knowledge? These questions, and related issues, have fascinated educators and…

  14. SINGLE-PARTICLE ICPMS FOR CHARACTERIZING METAL-BASED NANOPARTICLES IN THE ENVIRONMENT - ADVANCES AND CHALLENGES

    EPA Science Inventory

    As engineered metal-based nanomaterials become widely used in consumer and industrial products, the amount of these materials introduced into the environment by a variety of paths will increase. The concentration of metal associated with these engineered nanoparticles will be s...

  15. Development and Deployment of a Library of Industrially Focused Advanced Immersive VR Learning Environments

    ERIC Educational Resources Information Center

    Cameron, Ian; Crosthwaite, Caroline; Norton, Christine; Balliu, Nicoleta; Tadé, Moses; Hoadley, Andrew; Shallcross, David; Barton, Geoff

    2008-01-01

    This work presents a unique education resource for both process engineering students and the industry workforce. The learning environment is based around spherical imagery of real operating plants coupled with interactive embedded activities and content. This Virtual Reality (VR) learning tool has been developed by applying aspects of relevant…

  16. Using Wiki to Teach Part-Time Adult Learners in a Blended Learning Environment

    ERIC Educational Resources Information Center

    Basar, Siti Mariam Muhammad Abdul; Yusop, Farrah Dina

    2014-01-01

    This exploratory study investigated the perceptions of 31 part-time adult learners who participated in an online collaborative writing experience. Situated in the context of a blended learning environment of an advanced English learning course, this study looked into learners' perceptions with respect to the benefits of collaborative writing using…

  17. Mechanical Properties and Durability of Advanced Environmental Barrier Coatings in Calcium-Magnesium-Alumino-Silicate Environments

    NASA Technical Reports Server (NTRS)

    Miladinovich, Daniel S.; Zhu, Dongming

    2011-01-01

    Environmental barrier coatings are being developed and tested for use with SiC/SiC ceramic matrix composite (CMC) gas turbine engine components. Several oxide and silicate based compositons are being studied for use as top-coat and intermediate layers in a three or more layer environmental barrier coating system. Specifically, the room temperature Vickers-indentation-fracture-toughness testing and high-temperature stability reaction studies with Calcium Magnesium Alumino-Silicate (CMAS or "sand") are being conducted using advanced testing techniques such as high pressure burner rig tests as well as high heat flux laser tests.

  18. Technical advancements in submersible-pump power cable for harsh environments

    SciTech Connect

    Guzy, R.; Vandevier, J.

    1987-05-01

    In artificial-lift systems, such as electrical submersible pumps, the power cable provides the link between the surface equipment and the pumping unit. New cable designs are constantly being introduced. This paper discusses these designs and their materials. Information on a new approach to cable manufacturing and on use of downhole materials in harsh environments is also provided. This paper includes work on cable designs that incorporate a new, unique, elastomeric composition that resists rupture of jacketing materials used on downhole cables, eliminating the need for tape and braid. Cable history is also reviewed, classifying the cables by use temperatures and relative cost. Criteria for selecting materials suitable for the entire range of downhole environments are included.

  19. Simulating Visual Attention Allocation of Pilots in an Advanced Cockpit Environment

    NASA Technical Reports Server (NTRS)

    Frische, F.; Osterloh, J.-P.; Luedtke, A.

    2011-01-01

    This paper describes the results of experiments conducted with human line pilots and a cognitive pilot model during interaction with a new 40 Flight Management System (FMS). The aim of these experiments was to gather human pilot behavior data in order to calibrate the behavior of the model. Human behavior is mainly triggered by visual perception. Thus, the main aspect was to setup a profile of human pilots' visual attention allocation in a cockpit environment containing the new FMS. We first performed statistical analyses of eye tracker data and then compared our results to common results of familiar analyses in standard cockpit environments. The comparison has shown a significant influence of the new system on the visual performance of human pilots. Further on, analyses of the pilot models' visual performance have been performed. A comparison to human pilots' visual performance revealed important improvement potentials.

  20. Distance collaborations with industry

    SciTech Connect

    Peskin, A.; Swyler, K.

    1998-06-01

    The college industry relationship has been identified as a key policy issue in Engineering Education. Collaborations between academic institutions and the industrial sector have a long history and a bright future. For Engineering and Engineering Technology programs in particular, industry has played a crucial role in many areas including advisement, financial support, and practical training of both faculty and students. Among the most important and intimate interactions are collaborative projects and formal cooperative education arrangements. Most recently, such collaborations have taken on a new dimension, as advances in technology have made possible meaningful technical collaboration at a distance. There are several obvious technology areas that have contributed significantly to this trend. Foremost is the ubiquitous presence of the Internet. Perhaps almost as important are advances in computer based imaging. Because visual images offer a compelling user experience, it affords greater knowledge transfer efficiency than other modes of delivery. Furthermore, the quality of the image appears to have a strongly correlated effect on insight. A good visualization facility offers both a means for communication and a shared information space for the subjects, which are among the essential features of both peer collaboration and distance learning.