Science.gov

Sample records for advanced combustion engine

  1. Advanced Combustion Engineering.

    ERIC Educational Resources Information Center

    Bartholomew, Calvin H.

    1987-01-01

    Describes the development of the Advanced Combustion Engineering Research Center (ACERC), which is a cooperative project of Brigham Young University, the University of Utah, and 25 governmental and industrial research laboratories. Discusses the research objectives, the academic program, the industrial relations and technology transfer program,…

  2. Ignition angle advancer for internal combustion engine

    SciTech Connect

    Yamazaki, T.

    1986-08-19

    This patent describes a throttle and spark advance control system for an internal combustion engine having a spark advance mechanism and a throttle valve comprising an operator controlled element, a throttle control lever supported for pivotal movement about an axis and directly connected to the operator controlled element for rotation under operator control. It also includes means for positively connecting the throttle control lever to the throttle valve for positioning the throttle valve in response to movement of the throttle control lever. A spark advance control lever supported for pivotal movement about an axis is included as well as motion transmitting means for operatively connecting the spark advance control lever to the throttle control lever for pivotal movement of the spark advance control lever about its axis in response to pivotal movement of the throttle control lever about its axis and the spark control lever to the spark advance mechanism for controlling the position of the spark advance mechanism in response to the position of the throttle control lever.

  3. FY2014 Advanced Combustion Engine Annual Progress Report

    SciTech Connect

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  4. FY 2007 Progress Report for Advanced Combustion Engine Technologies

    SciTech Connect

    None, None

    2007-12-01

    Advanced combustion engines have great potential for achieving dramatic energy efficiency improvements in light-duty vehicle applications, where it is suited to both conventional and hybrid- electric powertrain configurations. Light-duty vehicles with advanced combustion engines can compete directly with gasoline engine hybrid vehicles in terms of fuel economy and consumer-friendly driving characteristics; also, they are projected to have energy efficiencies that are competitive with hydrogen fuel cell vehicles when used in hybrid applications.Advanced engine technologies being researched and developed by the Advanced Combustion Engine R&D Sub-Program will also allow the use of hydrogen as a fuel in ICEs and will provide an energy-efficient interim hydrogen-based powertrain technology during the transition to hydrogen/fuelcell-powered transportation vehicles.

  5. FY2013 Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2013-12-01

    Annual progress report on the work of the the Advanced Combustion Engine Program. The Advanced Combustion Engine Program supports the Vehicle Technologies Office mission by addressing critical technical barriers to commercializing higher efficiency, very low emissions, advanced combustion engines for passenger and commercial vehicles that meet future federal emissions regulations.

  6. FY2012 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2013-02-01

    Annual report on the work of the the Advanced Combustion Engine R&D subprogram. The Advanced Combustion Engine R&D subprogram supports the Vehicle Technologies Office mission by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  7. Study of advanced rotary combustion engines for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Jones, C.; Myers, D.

    1983-01-01

    Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.

  8. Surrogate Model Development for Fuels for Advanced Combustion Engines

    SciTech Connect

    Anand, Krishnasamy; Ra, youngchul; Reitz, Rolf; Bunting, Bruce G

    2011-01-01

    The fuels used in internal-combustion engines are complex mixtures of a multitude of different types of hydrocarbon species. Attempting numerical simulations of combustion of real fuels with all of the hydrocarbon species included is highly unrealistic. Thus, a surrogate model approach is generally adopted, which involves choosing a few representative hydrocarbon species whose overall behavior mimics the characteristics of the target fuel. The present study proposes surrogate models for the nine fuels for advanced combustion engines (FACE) that have been developed for studying low-emission, high-efficiency advanced diesel engine concepts. The surrogate compositions for the fuels are arrived at by simulating their distillation profiles to within a maximum absolute error of 4% using a discrete multi-component (DMC) fuel model that has been incorporated in the multi-dimensional computational fluid dynamics (CFD) code, KIVA-ERC-CHEMKIN. The simulated surrogate compositions cover the range and measured concentrations of the various hydrocarbon classes present in the fuels. The fidelity of the surrogate fuel models is judged on the basis of matching their specific gravity, lower heating value, hydrogen/carbon (H/C) ratio, cetane number, and cetane index with the measured data for all nine FACE fuels.

  9. FY2011 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2011-12-01

    Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram supporting the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  10. FY2009 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2009-12-01

    Fiscal Year 2009 Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram. The Advanced Combustion Engine R&D subprogram supports the mission of the VTP program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  11. FY2010 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    Singh, Gurpreet

    2010-12-01

    The Advanced Combustion Engine R&D subprogram supports the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  12. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    SciTech Connect

    Pitz, William J.; McNenly, Matt J.; Whitesides, Russell; Mehl, Marco; Killingsworth, Nick J.; Westbrook, Charles K.

    2015-12-17

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  13. Advanced Combustion

    SciTech Connect

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  14. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

    NASA Astrophysics Data System (ADS)

    Cole, Lord Kahil

    A number of promising alternative rocket propulsion concepts have been developed over the past two decades that take advantage of unsteady combustion waves in order to produce thrust. These concepts include the Pulse Detonation Rocket Engine (PDRE), in which repetitive ignition, propagation, and reflection of detonations and shocks can create a high pressure chamber from which gases may be exhausted in a controlled manner. The Pulse Detonation Rocket Induced Magnetohydrodynamic Ejector (PDRIME) is a modification of the basic PDRE concept, developed by Cambier (1998), which has the potential for performance improvements based on magnetohydrodynamic (MHD) thrust augmentation. The PDRIME has the advantage of both low combustion chamber seeding pressure, per the PDRE concept, and efficient energy distribution in the system, per the rocket-induced MHD ejector (RIME) concept of Cole, et al. (1995). In the initial part of this thesis, we explore flow and performance characteristics of different configurations of the PDRIME, assuming quasi-one-dimensional transient flow and global representations of the effects of MHD phenomena on the gas dynamics. By utilizing high-order accurate solvers, we thus are able to investigate the fundamental physical processes associated with the PDRIME and PDRE concepts and identify potentially promising operating regimes. In the second part of this investigation, the detailed coupling of detonations and electric and magnetic fields are explored. First, a one-dimensional spark-ignited detonation with complex reaction kinetics is fully evaluated and the mechanisms for the different instabilities are analyzed. It is found that complex kinetics in addition to sufficient spatial resolution are required to be able to quantify high frequency as well as low frequency detonation instability modes. Armed with this quantitative understanding, we then examine the interaction of a propagating detonation and the applied MHD, both in one-dimensional and two

  15. Advanced Subsonic Combustion Rig

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming

    1998-01-01

    Researchers from the NASA Lewis Research Center have obtained the first combustion/emissions data under extreme future engine operating conditions. In Lewis' new world-class 60-atm combustor research facility--the Advanced Subsonic Combustion Rig (ASCR)--a flametube was used to conduct combustion experiments in environments as extreme as 900 psia and 3400 F. The greatest challenge for combustion researchers is the uncertainty of the effects of pressure on the formation of nitrogen oxides (NOx). Consequently, U.S. engine manufacturers are using these data to guide their future combustor designs. The flametube's metal housing has an inside diameter of 12 in. and a length of 10.5 in. The flametube can be used with a variety of different flow paths. Each flow path is lined with a high-temperature, castable refractory material (alumina) to minimize heat loss. Upstream of the flametube is the injector section, which has an inside diameter of 13 in. and a length of 0.5-in. It was designed to provide for quick changeovers. This flametube is being used to provide all U.S. engine manufacturers early assessments of advanced combustion concepts at full power conditions prior to engine production. To date, seven concepts from engine manufacturers have been evaluated and improved. This collaborated development can potentially give U.S. engine manufacturers the competitive advantage of being first in the market with advanced low-emission technologies.

  16. Design of a prototype Advanced Main Combustion Chamber for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Lackey, J. D.; Myers, W. N.

    1992-01-01

    Development of a prototype advanced main combustion chamber is underway at NASA Marshall Space Flight Center. The Advanced Main Combustion Chamber (AMCC) project is being approached utilizing a 'concurrent engineering' concept where groups from materials, manufacturing, stress, quality, and design are involved from the initiation of the project. The AMCC design has been tailored to be compatible with the investment casting process. Jacket, inlet/outlet manifolds, inlet/outlet neck coolant flow splitters, support ribs, actuator lugs, and engine controller mounting bracket will all be a part of the one-piece AMCC casting. Casting of the AMCC in a one-piece configuration necessitated a method of forming a liner in its structural jacket. A method of vacuum plasma spraying the liner is being developed. In 1994, the AMCC will be hot-fired on the Technology Test Bed Space Shuttle Main Engine.

  17. Some Effects of Injection Advance Angle, Engine-Jacket Temperature, and Speed on Combustion in a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1936-01-01

    An optical indicator and a high-speed motion-picture camera capable of operating at the rate of 2,000 frames per second were used to record simultaneously the pressure development and the flame formation in the combustion chamber of the NACA combustion apparatus. Tests were made at engine speeds of 570 and 1,500 r.p.m. The engine-jacket temperature was varied from 100 degrees to 300 degrees F. And the injection advance angle from 13 degrees after top center to 120 degrees before top center. The results show that the course of the combustion is largely controlled by the temperature and pressure of the air in the chamber from the time the fuel is injected until the time at which combustion starts and by the ignition lag. The conclusion is presented that in a compression-ignition engine with a quiescent combustion chamber the ignition lag should be the longest that can be used without excessive rates of pressure rise; any further shortening of the ignition lag decreased the effective combustion of the engine.

  18. Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)

    SciTech Connect

    Taylor, J.; Li, H.; Neill, S.

    2006-08-01

    The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.

  19. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect

    Gallant, Tom; Franz, Jim; Alnajjar, Mikhail; Storey, John Morse; Lewis Sr, Samuel Arthur; Sluder, Scott; Cannella, William C; Fairbridge, Craig; Hager, Darcy; Dettman, Heather; Luecke, Jon; Ratcliff, Matthew A.; Zigler, Brad

    2009-01-01

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  20. DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program

    SciTech Connect

    Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

    2012-10-26

    The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

  1. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender

    2014-01-01

    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  2. Diesel engine combustion processes

    SciTech Connect

    1995-12-31

    Diesel Engine Combustion Processes guides the engineer and research technician toward engine designs which will give the ``best payoff`` in terms of emissions and fuel economy. Contents include: Three-dimensional modeling of soot and NO in a direct-injection diesel engine; Prechamber for lean burn for low NOx; Modeling and identification of a diesel combustion process with the downhill gradient search method; The droplet group micro-explosions in W/O diesel fuel emulsion sprays; Combustion process of diesel spray in high temperature air; Combustion process of diesel engines at regions with different altitude; and more.

  3. Using a Phenomenological Computer Model to Investigate Advanced Combustion Trajectories in a CIDI Engine

    SciTech Connect

    Gao, Zhiming; Wagner, Robert M; Sluder, Scott; Daw, C Stuart; Green Jr, Johney Boyd

    2011-01-01

    This paper summarizes results from simulations of conventional, high-dilution, and high-efficiency clean combustion in a diesel engine based on a two-zone phenomenological model. The two-zone combustion model is derived from a previously published multi-zone model, but it has been further simplified to increase computational speed by a factor of over 100. The results demonstrate that this simplified model is still able to track key aspects of the combustion trajectory responsible for NOx and soot production. In particular, the two-zone model in combination with highly simplified global kinetics correctly predicts the importance of including oxygen mass fraction (in addition to equivalence ratio and temperature) in lowering emissions from high-efficiency clean combustion. The methodology also provides a convenient framework for extracting information directly from in-cylinder pressure measurements. This feature is likely to be useful for on-board combustion diagnostics and controls. Because of the possibility for simulating large numbers of engine cycles in a short time, models of this type can provide insight into multi-cycle and transient combustion behavior not readily accessible to more computationally intensive models. Also the representation of the combustion trajectory in 3D space corresponding to equivalence ratio, flame temperature, and oxygen fraction provides new insight into optimal combustion management.

  4. Analysis of Combustion Trajectories of Advanced Combustion Modes in a CIDI Engine with a Two-Zone Phenomenological Model

    SciTech Connect

    Gao, Zhiming; Daw, C Stuart; Wagner, Robert M; Sluder, Scott; Green Jr, Johney Boyd

    2011-01-01

    We describe a two-zone phenomenological model for simulating in-cylinder details in conventional, highdilution, and high-efficiency clean combustion in a diesel engine. Using this model we characterize the differences in these combustion modes in terms of 3D trajectories involving equivalence ratio, flame temperature, and oxygen mass fraction. These trajectories in turn make it possible to better understand the relative NOx and particulate emissions of the different modes. The two-zone model predictions are shown to be consistent with more detailed CFD simulations and provide the benefit of very rapid simulation.

  5. Combustion behaviors of a compression-ignition engine fueled with diesel/methanol blends under various fuel delivery advance angles.

    PubMed

    Huang, Zuohua; Lu, Hongbing; Jiang, Deming; Zeng, Ke; Liu, Bing; Zhang, Junqiang; Wang, Xibin

    2004-12-01

    A stabilized diesel/methanol blend was described and the basic combustion behaviors based on the cylinder pressure analysis was conducted in a compression-ignition engine. The study showed that increasing methanol mass fraction of the diesel/methanol blends would increase the heat release rate in the premixed burning phase and shorten the combustion duration of the diffusive burning phase. The ignition delay increased with the advancing of the fuel delivery advance angle for both the diesel fuel and the diesel/methanol blends. For a specific fuel delivery advance angle, the ignition delay increased with the increase of the methanol mass fraction (oxygen mass fraction) in the fuel blends and the behaviors were more obvious at low engine load and/or high engine speed. The rapid burn duration and the total combustion duration increased with the advancing of the fuel delivery advance angle. The centre of the heat release curve was close to the top-dead-centre with the advancing of the fuel delivery advance angle. Maximum cylinder gas pressure increased with the advancing of the fuel delivery advance angle, and the maximum cylinder gas pressure of the diesel/methanol blends gave a higher value than that of the diesel fuel. The maximum mean gas temperature remained almost unchanged or had a slight increase with the advancing of the fuel delivery advance angle, and it only slightly increased for the diesel/methanol blends compared to that of the diesel fuel. The maximum rate of pressure rise and the maximum rate of heat release increased with the advancing of the fuel delivery advance angle of the diesel/methanol blends and the value was highest for the diesel/methanol blends.

  6. Advanced radiation techniques for inspection of diesel engine combustion chamber materials components. Final report

    SciTech Connect

    1995-10-09

    Heavy duty truck engines must meet stringent life cycle cost and regulatory requirements. Meeting these requirements has resulted in convergence on 4-stroke 6-in-line, turbocharged, and after-cooled engines with direct-injection combustion systems. These engines provide much higher efficiencies (42%, fuel consumption 200 g/kW-hr) than automotive engines (31%, fuel consumption 270 g/kW-hr), but at higher initial cost. Significant near-term diesel engine improvements are necessary and are spurred by continuing competitive, Middle - East oil problems and Congressional legislation. As a result of these trends and pressures, Caterpillar has been actively pursuing a low-fuel consumption engine research program with emphasis on product quality through process control and product inspection. The goal of this project is to combine the nondestructive evaluation and computational resources and expertise available at LLNL with the diesel engine and manufacturing expertise of the Caterpillar Corporation to develop in-process monitoring and inspection techniques for diesel engine combustion chamber components and materials. Early development of these techniques will assure the optimization of the manufacturing process by design/inspection interface. The transition from the development stage to the manufacturing stage requires a both a thorough understanding of the processes and a way of verifying conformance to process standards. NDE is one of the essential tools in accomplishing both elements and in this project will be integrated with Caterpillar`s technological and manufacturing expertise to accomplish the project goals.

  7. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to

  8. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    NARloy-Z alloy (Cu-3 percent, Ag-0.5 percent, Zr) is a state of the art alloy currently used for fabricating rocket engine combustion chamber liners. Research conducted at NASA-MSFC and Penn State – Applied Research Laboratory has shown that thermal conductivity of NARloy-Z can be increased significantly by adding diamonds to form a composite (NARloy-Z-D). NARloy-Z-D is also lighter than NARloy-Z. These attributes make this advanced composite material an ideal candidate for fabricating combustion chamber liner for an advanced rocket engine. Increased thermal conductivity will directly translate into increased turbopump power and increased chamber pressure for improved thrust and specific impulse. This paper describes the process development for fabricating a subscale high thermal conductivity NARloy-Z-D combustion chamber liner using Field Assisted Sintering Technology (FAST). The FAST process uses a mixture of NARloy-Z and diamond powders which is sintered under pressure at elevated temperatures. Several challenges were encountered, i.e., segregation of diamonds, machining the super hard NARloy-Z-D composite, net shape fabrication and nondestructive examination. The paper describes how these challenges were addressed. Diamonds coated with copper (CuD) appear to give the best results. A near net shape subscale combustion chamber liner is being fabricated by diffusion bonding cylindrical rings of NARloy-Z-CuD using the FAST process.

  9. ABB Combustion Engineering nuclear technology

    SciTech Connect

    Matzie, R.A.

    1994-12-31

    The activities of ABB Combustion Engineering in the design and construction of nuclear systems and components are briefly reviewed. ABB Construction Engineering continues to improve the design and design process for nuclear generating stations. Potential improvements are evaluated to meet new requirements both of the public and the regulator, so that the designs meet the highest standards worldwide. Advancements necessary to meet market needs and to ensure the highest level of performance in the future will be made.

  10. Combustion engine system

    NASA Technical Reports Server (NTRS)

    Houseman, John (Inventor); Voecks, Gerald E. (Inventor)

    1986-01-01

    A flow through catalytic reactor which selectively catalytically decomposes methanol into a soot free hydrogen rich product gas utilizing engine exhaust at temperatures of 200 to 650 C to provide the heat for vaporizing and decomposing the methanol is described. The reactor is combined with either a spark ignited or compression ignited internal combustion engine or a gas turbine to provide a combustion engine system. The system may be fueled entirely by the hydrogen rich gas produced in the methanol decomposition reactor or the system may be operated on mixed fuels for transient power gain and for cold start of the engine system. The reactor includes a decomposition zone formed by a plurality of elongated cylinders which contain a body of vapor permeable, methanol decomposition catalyst preferably a shift catalyst such as copper-zinc.

  11. Internal combustion engine

    DOEpatents

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.

    1991-01-01

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  12. Internal combustion engine

    SciTech Connect

    Beaudsin, N.

    1984-05-22

    An internal combustion engine wherein the rod connecting the piston to the crankshaft has an enlarged portion defining a track which a crankshaft element cooperatingly engages; the track is topologically shaped so that the effect exerted by the crankshaft element on the connecting rod is reduced and/or cancelled for a given travel distance of the crankshaft element in the track.

  13. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    This paper describes the process development for fabricating a high thermal conductivity NARloy-Z-Diamond composite (NARloy-Z-D) combustion chamber liner for application in advanced rocket engines. The fabrication process is challenging and this paper presents some details of these challenges and approaches used to address them. Prior research conducted at NASA-MSFC and Penn State had shown that NARloy-Z-40%D composite material has significantly higher thermal conductivity than the state of the art NARloy-Z alloy. Furthermore, NARloy-Z-40 %D is much lighter than NARloy-Z. These attributes help to improve the performance of the advanced rocket engines. Increased thermal conductivity will directly translate into increased turbopump power, increased chamber pressure for improved thrust and specific impulse. Early work on NARloy-Z-D composites used the Field Assisted Sintering Technology (FAST, Ref. 1, 2) for fabricating discs. NARloy-Z-D composites containing 10, 20 and 40vol% of high thermal conductivity diamond powder were investigated. Thermal conductivity (TC) data. TC increased with increasing diamond content and showed 50% improvement over pure copper at 40vol% diamond. This composition was selected for fabricating the combustion chamber liner using the FAST technique.

  14. Internal combustion engine control system

    SciTech Connect

    Lambert, J.E.

    1989-12-12

    This patent describes an internal combustion engine control system apparatus. It comprises: carburetor venturi means flowing basic combustion air and having a induced fuel flow in the basic combustion air; carburetor by pass throttle valve means having a biased open position and causing and trimming the flow of supplementary combustion air parallel to and then into the basic combustion air for mixing; engine throttle valve means regulating the flow of a mixture of the supplementary combustion air and the basic combustion air with induced fuel flow for engine combustion; Separate electrical step motor means connected to the carburetor by-pass throttle valve means and to the engine throttle valve means; and pre-programmed microprocessor means connected to each of the electrical stepmotor means. The microprocessor means controlling one of the electrical stepmotor means and the trim positioning of the carburetor by-pass throttle valve means in response to sensed engine speed and sensed engine manifold pressure or throttle position conditions.

  15. DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines

    SciTech Connect

    Bunting, Bruce G; Bunce, Michael

    2012-01-01

    Research in 2011 was focused on diesel range fuels and diesel combustion and fuels evaluated in 2011 included a series of oxygenated biofuels fuels from University of Maine, oxygenated fuel compounds representing materials which could be made from sewage, oxygenated marine diesel fuels for low emissions, and a new series of FACE fuel surrogates and FACE fuels with detailed exhaust chemistry and particulate size measurements. Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel fuel (hydrotreated vegetable oil) from UOP, University of Maine cellulosic biofuel (levulene), and pyrolysis derived fuels from UOP pyrolysis oil, upgraded at University of Georgia. We were able to demonstrate, through a project with University of Wisconsin, that a hybrid strategy for fuel surrogates provided both accurate and rapid CFD combustion modeling for diesel HCCI. In this strategy, high molecular weight compounds are used to more accurately represent physical processes and smaller molecular weight compounds are used for chemistry to speed chemical calculations. We conducted a small collaboration with sp3H, a French company developing an on-board fuel quality sensor based on near infrared analysis to determine how to use fuel property and chemistry information for engine control. We were able to show that selected outputs from the sensor correlated to both fuel properties and to engine performance. This collaboration leveraged our past statistical analysis work and further work will be done as opportunity permits. We conducted blending experiments to determine characteristics of ethanol blends based on the gasoline characteristics used for blending. Results indicate that much of the octane benefits gained by high level ethanol blending can be negated by use of low octane gasoline blend stocks, as allowed by ASTM D5798. This may limit ability to optimize engines for improved efficiency with ethanol fuels

  16. Some Factors Affecting Combustion in an Internal-Combustion Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  17. Heat regenerative external combustion engine

    NASA Astrophysics Data System (ADS)

    Duva, Anthony W.

    1993-10-01

    A heat regenerative external combustion engine is disclosed. The engine includes fuel inlet means which extends along the exhaust passage and/or combustion chamber in order to preheat the fuel, To provide for preheating by gases in both the combustion chamber and the exhaust passage, the combustion chamber is arranged annularly around the drive shaft and between the cylinders. This configuration also is advantageous in that it reduces the noise of combustion. The engine of the invention is particularly well-suited for use in a torpedo.

  18. Internal combustion engine with multiple combustion chambers

    SciTech Connect

    Gruenwald, D.J.

    1992-05-26

    This patent describes a two-cycle compression ignition engine. It comprises one cylinder, a reciprocable piston moveable in the cylinder, a piston connecting rod, a crankshaft for operation of the piston connecting rod, a cylinder head enclosing the cylinder, the upper surface of the piston and the enclosing surface of the cylinder head defining a cylinder clearance volume, a first combustion chamber and a second combustion chamber located in the cylinder head. This patent describes improvement in means for isolating the combustion process for one full 360{degrees} rotation of the crankshaft; wherein the combustion chambers alternatively provide for expansion of combustion products in the respective chambers into the cylinder volume near top dead center upon each revolution of the crankshaft.

  19. Combustion modeling in internal combustion engines

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  20. Internal combustion engine

    SciTech Connect

    Breckenfeld, P.W.; Broughton, G.L.; Forquer, D.W.

    1990-02-19

    This patent describes a two-stroke internal combustion engine. It comprises: an engine block including an exterior planar surface portion having therein a pair of spaced bearing surfaces and a crankcase-defining cavity which includes a pair of spaced semi-cylindrical surfaces, a crankshaft including a pair of spaced bearing portions and a central part which is located between the bearing portions and which includes a pair of spaced and enlarged cylindrical surfaces, a pair of bearing blocks respectively including bearing surfaces, means fixing the bearing blocks to the exterior planar surface portion with each of the crankshaft bearing portions retained between a respective one of the bearing surfaces of the engine block and a respective one of the bearing surfaces of the bearing blocks and with each of the crankshaft cylindrical surfaces in coplanar relation to a respective one of the semi-cylindrical surfaces of the engine block, a crankcase cover including a mounting surface having therein a crankcase-defining cavity including a pair of spaced semi-cylindrical surfaces, and means fixedly connecting the mounting surface of the crankcase cover to the exterior planar surface portion of block with each of the semi-cylindrical surfaces of the crankcase cover in generally coplanar relation to a respective one of the semi-cylindrical surfaces of the engine block.

  1. Internal combustion engine

    SciTech Connect

    Evans, H.G.; Speer, S.

    1991-12-31

    This patent describes improvement in a 2-cycle, diesel cycle internal combustion engine comprising a single in-line engine block, internal wall surfaces defining at least one cylinder within the engine block, the central longitudinal axis of each cylinder being within a common plane extending longitudinally of the engine block, the axially extending internal wall surface of each cylinder being closed at one end and having at least one air intake port therethrough, a piston axially and reciprocally movable within each cylinder over a permitted stroke distance, so as to alternately cover and expose each air intake port for a finite time period; an exhaust port at the closed end of the cylinder above the piston, and a mechanically operated valve for opening and closing such exhaust port located immediately adjacent such port, a substantially rigid connecting rod pivotably connected at one end of each piston, and a crankshaft, rotatably connected to the second end of each connecting rod, such that the crankshaft is caused to rotate connecting means between the piston and the connecting rod. The improvement comprises the diameter of the cylinder is greater than the permitted stroke distance of the piston within the cylinder, and the axis of the crankshaft is parallel to and laterally offset from the common plane by a distance sufficient to form an angle alpha between the connecting rod and the axis of the cylinder, when the piston is at top-dead center, of at least about 12 degrees, such that the time during which each air intake port is exposed is increased when the direction of crankshaft rotation is opposite to the direction of the crankshaft offset from the common plane.

  2. Low emission internal combustion engine

    DOEpatents

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  3. Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels

    SciTech Connect

    Pratapas, John; Zelepouga, Serguei; Gnatenko, Vitaliy; Saveliev, Alexei; Jangale, Vilas; Li, Hailin; Getz, Timothy; Mather, Daniel

    2013-08-31

    The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

  4. Ignition brake for an internal combustion engine

    SciTech Connect

    Kandler, W.C.

    1993-07-06

    In an internal combustion engine powered implement having an engine with a piston disposed in a cylinder, a crankshaft, a flywheel secured to the crankshaft, and a sparking device for igniting fuel in the cylinder, a safety device is described comprising: an ignition circuit operable to produce a spark in the sparking device to combust the fuel, the ignition circuit having means for generating a normally timed sparking voltage to normally combust the fuel, and means for generating an advanced timed sparking voltage to prematurely combust the fuel; a switch device for decoupling one of the generating means from the ignition circuit and connecting the other of the generating means in the ignition circuit; and a dead man mechanism operable to actuate the switch device, the dead man mechanism being operator actuable into a first position wherein the switch device decouples the means for generating an advanced timed sparking voltage from the ignition circuit whereby the engine may normally run, the dead man mechanism normally biased into a second position when released by the operator wherein the switch device decouples the means for generating a normally timed sparking voltage from the ignition circuit and connects the means for generating an advanced sparking voltage to cause the engine to rapidly slow and stop under influence of the prematurely combusted fuel.

  5. Development of advanced combustion technology for medium- and high-speed natural gas engines. Final report, January 1985-February 1989

    SciTech Connect

    Snyder, W.E.

    1989-07-01

    The project investigated the several variables which influence the performance of pre-chamber equipped, lean-burn natural gas engines in general, and of the pre-chamber in particular. The effort was divided into four closely inter-related phases: Theoretical Analysis, Constant Volume Combustion (CVC) Rig Tests, Single Cylinder Engine Tests and Multi-Cylinder Engine Tests. The Theoretical Analysis was directed toward development of a computer program, called COGEN, which was then used to predict output performance trends resulting from changes to input parameters. The CVC Rig Test program was directed towards an improved understanding of the pre-chamber combustion process using high speed photography and simultaneous measurement of instantaneous pressures. Variations of pre-chamber size, throat design and air-fuel ratio were studied to guide the later engine test programs. The Single Cylinder Engine Tests were directed towards bridging the gap between the CVC Test Rig and the performance to be expected from a commercial multi-cylinder engine. Variations in pre-chamber design as well as engine compression ratio, Intake Manifold Temperature and load were investigated.

  6. Internal combustion engine ignition system

    SciTech Connect

    McDougal, J.A.; Lennington, J.W.

    1988-01-12

    In an engine having a predetermined operating cycle and including wall means defining at least one combustion chamber and igniting means associated with the combustion chamber for igniting a charge of fuel and air in the combustion chamber when energized, the fuel having a predeterminable octane rating, an ignition system for controlling the timing of the ignition of the charge for the combustion chambers, is described comprising; energizing means adapted to be connected to the igniting means for energizing the igniting means in response to a timing signal, means for generating a timing signal operatively connected to the energizing means, the timing signal being adjustable with respect to the mechanical cycle of the engine in response to an engine speed parameter and a charge density parameter, a manually adjustable octane selector and, function generator means responsive to manual actuation of the octane selector and operatively connected to the timing signal for selecting a predefined range of ignition timing relationships.

  7. Advanced expander test bed engine

    NASA Technical Reports Server (NTRS)

    Mitchell, J. P.

    1992-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  8. Supersonic combustion engine and method of combustion initiation and distribution

    SciTech Connect

    Stickler, D.B.; Ballantyne, A.; Kyuman Jeong.

    1993-06-29

    A supersonic combustion ramjet engine having a combustor with a combustion zone intended to channel gas flow at relatively high speed therethrough, the engine comprising: means for substantially continuously supplying fuel into the combustion zone; and means for substantially instantaneously igniting a volume of fuel in the combustion zone for providing a spatially controlled combustion distribution, the igniting means having means for providing a diffuse discharge of energy into the volume, the volume extending across a substantially complete cross-sectional area of the combustion zone, the means for discharging energy being capable of generating free radicals within the volume of reactive fuel in the combustion zone such that fuel in the volume can initiate a controlled relatively rapid combustion of fuel in the combustion zone whereby combustion distribution in relatively high speed gas flows through the combustion zone can be initiated and controlled without dependence upon a flame holder or relatively high local static temperature in the combustion zone.

  9. Advanced Combustion and Emission Control Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The Advanced Combustion and Emission Control (ACEC) Technical Team is focused on removing technical barriers to the commercialization of advanced, high-efficiency, emission-compliant internal combustion (IC) engines for light-duty vehicle powertrains (i.e., passenger car, minivan, SUV, and pickup trucks).

  10. Reciprocating piston internal combustion engine

    SciTech Connect

    Hayashi, Y.

    1986-04-15

    A reciprocating piston internal combustion engine is described which consists of: a piston movably disposed within an engine cylinder, the piston having a top surface and a piston ring, the engine cylinder and the top surface of the piston defining a combustion chamber, the piston having first and second sections which are divided by a vertical plane containing an axis of a piston pin, the first section being formed with a major thrust surface and the second section being formed with a minor thrust surface; and means for thrusting the piston against a major thrust side wall of the cylinder before the piston reaches top dead center in the cylinder, the thrusting means comprising: means defining a space in the piston, the space communicating with the combustion chamber and being located in the piston second section; a movable member disposed within the space, the movable member being capable of being thrust in the direction of a minor thrust side wall of the cylinder by gas pressure within the combustion chamber and being arranged to thrust the piston ring against the minor thrust side wall when thrust by the gas pressure; and means for producing gas pressure within the combustion chamber such that the gas pressure enters the space at the compression stroke of the engine so that the movable member receives the gas pressure and is thrust toward the minor thrust side wall of the cylinder such that the piston is thrust against a major thrust side wall of the cylinder.

  11. Plasma igniter for internal-combustion engines

    NASA Technical Reports Server (NTRS)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  12. Modified aspirated internal combustion engine

    SciTech Connect

    Smith, J.E.

    1993-06-01

    An internal combustion engine is described, comprising: an engine block; at least one cylinder; at least one piston, each piston being reciprocally movable in the cylinder; a head connected with the engine block so as to form a combustion chamber above each piston; aspiration means for providing gas entry into and gas exit from the combustion chamber of each cylinder; valves for controlling gas entry and exit; ignition for initiating and timing combustion in each combustion chamber; a crankshaft rotatably mounted to the engine block, the crankshaft having at least one crank arm; connecting rod between each piston and the crank arm for translating reciprocation of each piston into rotation of each crankshaft; mounting means for rotatably mounting crankshaft to the engine block, the mounting means at each mounting location comprising: a crankshaft journal located on the crankshaft, the crankshaft journal having a crankshaft cross-section and an off-set portion, the off-set portion having a maximum which is equal to a predetermined off-set, the maximum off-set being located on a predetermined side of the crankshaft, the off-set portion smoothly decreasing from the maximum to a minimum from each side of the maximum, the minimum being equal to a zero off-set, the minimum off-set being located on the crankshaft opposite maximum off-set; and an engine block bearing connected with the engine block, wherein the crankshaft rotates in relation to the engine block about an eccentric centerline passing axially through the crankshaft journal cross-section, the eccentric centerline being displaced from a true centerline passing axially through said crankshaft cross-section by a distance equal to one-half the off-set, wherein the crank arm has a predetermined radial length centered on the eccentric centerline, and wherein the modified crankshaft has at least one output shaft portion axially aligned with the eccentric centerline.

  13. Advanced Combustion Modeling for Complex Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Ham, Frank Stanford

    2005-01-01

    The next generation of aircraft engines will need to pass stricter efficiency and emission tests. NASA's Ultra-Efficient Engine Technology (UEET) program has set an ambitious goal of 70% reduction of NO(x) emissions and a 15% increase in fuel efficiency of aircraft engines. We will demonstrate the state-of-the-art combustion tools developed a t Stanford's Center for Turbulence Research (CTR) as part of this program. In the last decade, CTR has spear-headed a multi-physics-based combustion modeling program. Key technologies have been transferred to the aerospace industry and are currently being used for engine simulations. In this demo, we will showcase the next-generation combustion modeling tools that integrate a very high level of detailed physics into advanced flow simulation codes. Combustor flows involve multi-phase physics with liquid fuel jet breakup, evaporation, and eventual combustion. Individual components of the simulation are verified against complex test cases and show excellent agreement with experimental data.

  14. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  15. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2006-05-09

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  16. Advanced Combustion and Fuels; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Zigler, Brad

    2015-06-08

    Presented at the U.S. Department of Energy Vehicle Technologies Office 2015 Annual Merit Review and Peer Evaluation Meeting, held June 8-12, 2015, in Arlington, Virginia. It addresses technical barriers of inadequate data and predictive tools for fuel and lubricant effects on advanced combustion engines, with the strategy being through collaboration, develop techniques, tools, and data to quantify critical fuel physico-chemical effects to enable development of advanced combustion engines that use alternative fuels.

  17. Engine Knock and Combustion Chamber Form

    NASA Technical Reports Server (NTRS)

    Zinner, Karl

    1939-01-01

    The present report is confined to the effect of the combustion chamber shape on engine knock from three angles, namely: 1) The uniformity of flame-front movement as affected by chamber design and position of the spark plug; 2) The speed of advance of the flame as affected by turbulence and vibrations; 3) The reaction processes in the residual charge as affected by the walls.

  18. External combustion engine having a combustion expansion chamber

    NASA Astrophysics Data System (ADS)

    Duva, Anthony W.

    1993-03-01

    This patent application discloses an external combustion engine having a combustion expansion chamber. The engine includes a combustion chamber for generating a high-pressure, energized gas from a monopropellant fuel, and a cylinder for receiving the energized gas through a rotary valve to perform work on a cylinder disposed therein. A baffle plate is positioned between the combustion area and expansion area for reducing the pressure of the gas. The combustion area and expansion area are separated by a baffle plate having a flow area which is sufficiently large to eliminate the transmission of pressure pulsations from the combustion area to the expansion area while being small enough to provide for substantially complete combustion in the combustion area. The engine is particularly well suited for use in a torpedo.

  19. Engine Combustion Network Experimental Data

    DOE Data Explorer

    Maintained by the Engine Combustion Department of Sandia National Laboratories, data currently available on the website includes reacting and non-reacting sprays in a constant-volume chamber at conditions typical of diesel combustion. The data are useful for model development and validation because of the well-defined boundary conditions and the wide range of conditions employed. A search utility displays data based on experimental conditions such as ambient temperature, ambient density, injection pressure, nozzle size, fuel, etc. Experiment-related visualizations are also available. (Specialized Interface)

  20. Adaptive spark timing controller for an internal combustion engine

    SciTech Connect

    Javaherian, H.

    1989-09-19

    This patent describes a system for determining the ignition timing value in an ignition control system for an internal combustion engine having cylinders and an output crankshaft rotated during operation of the engine. The ignition control system initiating combustion in each cylinder of the engine at the determined ignition timing value. The system comprising, combination: means for sensing the end of combustion in a cylinder of the engine, the means for sensing including means for determining when an indicator function is at a peak as the crankshaft rotates; means for determining the magnitude of the crankshaft angle after top dead center of the cylinder at which the end of combustion in the cylinder was sensed; and means for establishing the ignition timing value at a start of combustion angle {theta}inew in advance of top dead center of the cylinders having a predetermined relationship to the determined magnitude of the end of combustion angle.

  1. Swing beam internal combustion engines

    SciTech Connect

    Freudenstein, F.

    1989-04-18

    This patent describes an internal combustion engine having a cylinder, a piston displaceable in the cylinder for executing at least two strokes over an engine cycle, namely, a compression stroke and a power stroke, a crankshaft, and a swing beam. It includes a coupling between one end of the swing beam and the piston; a second coupling between the crankshaft and swing beam; means engaging the swing beam for causing the swing beam to rotate about a pivot point; and means responsive to the piston stroke for varying the pivot point, relative to the cylinder, between each compression stroke and each power stroke.

  2. E-Alerts: Combustion, engines, and propellants (reciprocation and rotating combustion engines). E-mail newsletter

    SciTech Connect

    1999-04-01

    Design, performance, and testing of reciprocating and rotating engines of various configurations for all types of propulsion. Includes internal and external combustion engines; engine exhaust systems; engine air systems components; engine structures; stirling and diesel engines.

  3. Axial cylinder internal combustion engine

    SciTech Connect

    Gonzalez, C.

    1992-03-10

    This patent describes improvement in a barrel type internal combustion engine including an engine block having axial-positioned cylinders with reciprocating pistons arranged in a circular pattern: a drive shaft concentrically positioned within the cylinder block having an offset portion extending outside the cylinder block; a wobble spider rotatably journaled to the offset portion; connecting rods for each cylinder connecting each piston to the wobble spider. The improvement comprising: a first sleeve bearing means supporting the drive shaft in the engine block in a cantilevered manner for radial loads; a second sleeve bearing means rotatably supporting the wobble spider on the offset portion of the drive shaft for radial loads; a first roller bearing means positioned between the offset portion of the drive shaft and the wobble spider carrying thrust loadings only; a second roller bearing means carrying thrust loads only reacting to the first roller bearing located on the opposite end of the driveshaft between the shaft and the engine block.

  4. NASA Glenn's Advanced Subsonic Combustion Rig Supported the Ultra-Efficient Engine Technology Project's Emissions Reduction Test

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.

    2004-01-01

    The Advanced Subsonic Combustor Rig (ASCR) is NASA Glenn Research Center's unique high-pressure, high-temperature combustor facility supporting the emissions reduction element of the Ultra-Efficient Engine Technology (UEET) Project. The facility can simulate combustor inlet test conditions up to a pressure of 900 psig and a temperature of 1200 F (non-vitiated). ASCR completed three sector tests in fiscal year 2003 for General Electric, Pratt & Whitney, and Rolls-Royce North America. This will provide NASA and U.S. engine manufacturers the information necessary to develop future low-emission combustors and will help them to better understand durability and operability at these high pressures and temperatures.

  5. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect

    Pike, Edward

    2014-03-31

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  6. Emissions from combustion engines and their control

    SciTech Connect

    Patterson, D.J.; Henein, N.A.

    1981-01-01

    This standard text for the automotive industry explains in detail the fundamentals of emission formation and control for gasoline and diesel engines. These concepts can be applied to other combustion systems, such as gas turbines and stationary power plants. Topics of discussion include: combustion in homogeneous mixtures; effect of design and operating variables on gasoline engine exhaust emissions; hydrocarbon evaporation emissions; diesel engine combustion emissions and controls; emission instrumentation; and automotive exhaust emission testing. 200 references, 197 figures.

  7. Modeling the internal combustion engine

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  8. Structure of internal combustion engine

    SciTech Connect

    Nakamura, N.; Endo, H.; Oshio, S.; Ebisudani, T.; Ito, M.; Mizukami, T.; Kishimoto, M.

    1988-09-20

    This patent describes a structure of internal combustion engine, comprising a cylinder member formed with a cylinder which demarcates a combustion chamber in cooperation with a piston connected with a crankshaft, a crankcase provided in succession with the lower end of the cylinder member to accommodate the crankshaft, a valve actuating mechanism actuating valves provided in the combustion chamber in response to rotation of the crankshaft, at least a part of the valve actuating mechanism being accommodated in a rocker case provided on the upper end of the cylinder member, an oil return passage constituting means opening at one end into the rocker case, the other end being open into the crankcase at one side which is partitioned by a plane containing the cylinder axis of the cylinder member and the axis of the crankshaft and is occupied by a crank pin of the crankshaft when the piston rises, thereby constituting a passage for leading oil in the rocker case into the crankcase, and a restraining means provided in relation to the oil return passage constituting means so that an air flow around the axis of the crankshaft within the crankcase owing to the rotation of the crankshaft is restrained from entering into the passage through the opening of the other end.

  9. Horizontally opposed internal combustion engine

    SciTech Connect

    Honkanen, E.G.

    1992-07-28

    This patent describes a internal combustion engine. It comprises a base plate coincident with a horizontal plane and generally symmetrical with respect to a central longitudinal axis coincident with a vertical plane extending between fore and aft ends of the base plate, a main power crankshaft suspended below the base plate and extending parallel with the central longitudinal axis, a plurality of open-ended piston cylinders disposed below the base plate arranged in axially aligned pairs, a pair of auxiliary crankshafts detachably journaled below the base plate on opposite sides of the vertical plane; a connecting rod assembly pivotally interconnecting the pair of auxiliary crankshafts with the main power crankshaft; a piston assembly in each of the cylinders operatively connected with the associated auxiliary crankshaft and including a piston having a head, a wrist-pin and a connecting rod connecting the wrist-pin of each piston with the associated auxiliary crankshaft; a fuel induction assembly for admitting a combustible fuel mixture into the cylinders between the opposed heads of the pistons in a controlled sequence correlated to the receding movement of the pistons in the cylinders in a fuel intake stroke; means for igniting the fuel mixture compressed between the juxtaposed heads of the pistons; means for exhausting from the cylinders the products of combustion of the fuel mixture in correlation to the movement of the pistons in an exhaust stroke; and means including an oil pan enclosing the auxiliary crankshafts.

  10. Combustion research for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.; Claus, R. W.

    1985-01-01

    Research on combustion is being conducted at Lewis Research Center to provide improved analytical models of the complex flow and chemical reaction processes which occur in the combustor of gas turbine engines and other aeropropulsion systems. The objective of the research is to obtain a better understanding of the various physical processes that occur in the gas turbine combustor in order to develop models and numerical codes which can accurately describe these processes. Activities include in-house research projects, university grants, and industry contracts and are classified under the subject areas of advanced numerics, fuel sprays, fluid mixing, and radiation-chemistry. Results are high-lighted from several projects.

  11. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  12. Method of combustion for dual fuel engine

    DOEpatents

    Hsu, Bertrand D.; Confer, Gregory L.; Shen, Zujing; Hapeman, Martin J.; Flynn, Paul L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

  13. Method of combustion for dual fuel engine

    DOEpatents

    Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

  14. Internal combustion engine ignition system and cleaning device

    SciTech Connect

    McDougal, J.A.; Lennington, J.W.

    1992-07-28

    This patent describes a method of causing a vehicle having an internal combustion engine to operate continuously with near optimum torque output of the engine with differing grades of fuel having range of octane ratings automatically without requiring intervention of the operator. It comprises providing the fuel system with a first grade of fuel having a predetermined low octane rating; burning the fuel having the predetermined low octane rating in the combustion chambers of the internal combustion engine; operating the engine using the predetermined nominal spark advance; detecting the occurrence of detonation and providing the detonation detector output signal to the ignition system; without requiring intervention of the vehicle operator, automatically adjusting the spark advance control signal to retard the spark advance in increments with respect to the nominal value upon the occurrence of a detector output signal indicative of detonation; without requiring intervention of the vehicle operator, automatically adjusting the spark advance control signal continuously repeating the detecting and adjusting steps while the fuel having the predetermined low octane rating is burned in the combustion chamber, detecting the occurrence of detonation and providing the detonation detector output signal to the ignition system; without requiring intervention of the vehicle operator, automatically adjusting the spark advance control signal; without requiring intervention of the vehicle operator, automatically adjusting the spark advance control signal; continuously repeating the detecting and adjusting steps while the fuel having the predetermined high octane rating is burned in the combustion chamber.

  15. Engine valve actuation for combustion enhancement

    DOEpatents

    Reitz, Rolf Deneys; Rutland, Christopher J.; Jhavar, Rahul

    2008-03-04

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-strokes combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  16. Engine Valve Actuation For Combustion Enhancement

    DOEpatents

    Reitz, Rolf Deneys; Rutland, Christopher J.; Jhavar, Rahul

    2004-05-18

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  17. Injector tip for an internal combustion engine

    DOEpatents

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  18. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    SciTech Connect

    Soloiu, Valentin A.

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  19. Carburetor for internal combustion engines

    SciTech Connect

    Peterson, R.W.

    1986-09-23

    This patent describes a carburetor for an internal combustion engine which includes a source of fuel and combustion chambers, the carburetor including a body surrounding an air passage, a venturi section in the air passage and throttle means for controlling the passage of air through the air passage, the carburetor further comprising a primary fuel circuit having a first metering valve for introducing fuel from the fuel source directly into the air passage to produce a relatively lean fuel-to-air mixture, first operating means for operating the first metering valve in conjunction with the throttle means whereby each incremental movement of the throttle means produces a proportional incremental operation of the first metering valve, a secondary fuel circuit having a second metering valve for introducing additional fuel from the fuel source directly into the air passage for enriching the fuel-to-air mixture, and second operating means for operating the second metering valve in conjunction with the air pressure in the venturi section in the air passage, the second operating means being adapted to be responsive to the air pressure in the venturi section and to produce a proportional incremental operation of the second metering valve in response to incremental changes in the air pressure in the venturi section.

  20. Carburetor for internal combustion engines

    DOEpatents

    Csonka, John J.; Csonka, Albert B.

    1978-01-01

    A carburetor for internal combustion engines having a housing including a generally discoidal wall and a hub extending axially from the central portion thereof, an air valve having a relatively flat radially extending surface directed toward and concentric with said discoidal wall and with a central conoidal portion having its apex directed toward the interior of said hub portion. The housing wall and the radially extending surface of the valve define an air passage converging radially inwardly to form an annular valving construction and thence diverge into the interior of said hub. The hub includes an annular fuel passage terminating at its upper end in a circumferential series of micro-passages for directing liquid fuel uniformly distributed into said air passage substantially at said valving constriction at right angles to the direction of air flow. The air valve is adjustable axially toward and away from the discoidal wall of the carburetor housing to regulate the volume of air drawn into the engine with which said carburetor is associated. Fuel is delivered under pressure to the fuel metering valve and from there through said micro-passages and controlled cams simultaneously regulate the axial adjustment of said air valve and the rate of delivery of fuel through said micro-passages according to a predetermined ratio pattern. A third jointly controlled cam simultaneously regulates the ignition timing in accordance with various air and fuel supply settings. The air valve, fuel supply and ignition timing settings are all independent of the existing degree of engine vacuum.

  1. Combustion diagnostic for active engine feedback control

    DOEpatents

    Green, Jr., Johney Boyd; Daw, Charles Stuart; Wagner, Robert Milton

    2007-10-02

    This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

  2. Internal combustion engine and method for control

    SciTech Connect

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  3. Development of advanced combustion technology for medium- and high-speed natural gas engines. Final report January 1985-February 1989. Sections A through I

    SciTech Connect

    Not Available

    1989-02-01

    The objective of the project was to investigate the variables which influence the performance of medium and high speed natural gas engines for applications in cogeneration plants. The final report includes the following: Summary and Overview; Theoretical analysis - Methods of increasing exhaust heat recovery and reducing specific fuel consumption; Theoretical analysis - Methods of increasing exhaust heat recovery and reducing cooling system losses; Design of constant volume combustion rig; Effect of pre-chamber geometry and fuel-air ratio; Parametric testing of the Ricardo Atlas single cylinder research engine; Effects of pre-chamber design on the combustion and performance of a lean-burn spark-ignited gas engine; and Effects of engine and operating variables on the performance of a commercial multi-cylinder pre-chamber natural gas engine. All five volumes of the report have been indexed separately for inclusion on the data base. A separate abstract is included for each of the 5 volumes of this set.

  4. COSTS FOR ADVANCED COAL COMBUSTION TECHNOLOGIES

    EPA Science Inventory

    The report gives results of an evaluation of the development status of advanced coal combustion technologies and discusses the preparation of performance and economic models for their application to electric utility plants. he technologies addressed were atmospheric fluidized bed...

  5. Development of advanced combustion technology for medium- and high-speed natural gas engines. Final report, January 1985-February 1989. Sections D and E. Volume 2

    SciTech Connect

    Snyder, W.E.

    1989-02-01

    A Constant Volume Combustion rig was designed and developed to simulate realistically the conditions in a lean burn pre-chamber engine at its top dead centre position. The rig provided good access for instrumentation and incorporated windows to allow high speed photography of the pre and main-chamber combustion. The rig incorporated a novel valve mechanism which separated the two combustion chambers during the charging process and, when the valve was opened and the injection triggered, gave realistic engine conditions with charge stratification and high pre-chamber turbulence. The combustion movies showed the progress of the flame down into the main-chamber and the ensuing combustion of the main-chamber charge. Recordings from the pressure transducers (one in each chamber) showed the rapid rise of pre-chamber pressure, its characteristic spike, and the subsequent main-chamber combustion and pressure rise. The test work described in the report covers the effect of varying pre-chamber geometry (including throat geometry) and air:fuel ratio in the pre- and main-chambers.

  6. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    SciTech Connect

    2009-02-01

    Gas Technology Institute will collaborate with Integrated CHP Systems Corporation, West Virginia University, Vronay Engineering Services, KAR Engineering Associates, Pioneer Air Systems, and Energy Concepts Company to recover waste heat from reciprocating engines. The project will integrate waste heat recovery along with gas clean-up technology system improvements. This will address fuel quality issues that have hampered expanded use of opportunity fuels such as landfill gas, digester biogas, and coal mine methane. This will enable increased application of CHP using renewable and domestically derived opportunity fuels.

  7. Cam drive internal combustion engine

    SciTech Connect

    Vadnjal, I.

    1993-06-01

    A cam drive internal combustion engine is described, comprising, a cylindrical crank case housing, and an axle co-axially directed through the crank case housing, and a cam ring fixedly mounted to the axle medially of the axle in an orthogonal relationship relative thereto, and a predetermined number of first cylinder bores positioned in an equally spaced annular array on a first side of the cam ring, and second cylinder bores positioned on a second side of the cam ring within the crank case housing, with said second cylinder bores defining a number equal to the predetermined number, wherein each cylinder bore of said first set of cylinders bores is co axially aligned with one of said cylinder bores of said second set of cylinder bores, and the first set of cylinder bores each include a first piston reciprocatably mounted there within, and the second set of cylinder bores include a second piston reciprocatably mounted there within, and the first set of pistons each include a first piston rod, and the second set of pistons each include a second piston rod, wherein the first piston rods and second piston rod are arranged parallel relative to the axle, and the first piston rods include rollers mounted thereon, and the second piston rods include second rollers mounted thereon, the cam ring including a first cam surface rotatably mounting the first rollers, and the cam ring further including a second cam surface mounting the second cam rollers rotatably thereon.

  8. Method and system for controlled combustion engines

    DOEpatents

    Oppenheim, A. K.

    1990-01-01

    A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

  9. Starting apparatus for internal combustion engines

    DOEpatents

    Dyches, G.M.; Dudar, A.M.

    1995-01-01

    This report is a patent description for a system to start an internal combustion engine. Remote starting and starting by hearing impaired persons are addressed. The system monitors the amount of current being drawn by the starter motor to determine when the engine is started. When the engine is started the system automatically deactivates the starter motor. Five figures are included.

  10. Combustion Limits and Efficiency of Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Barnett, H. C.; Jonash, E. R.

    1956-01-01

    Combustion must be maintained in the turbojet-engine combustor over a wide range of operating conditions resulting from variations in required engine thrust, flight altitude, and flight speed. Furthermore, combustion must be efficient in order to provide the maximum aircraft range. Thus, two major performance criteria of the turbojet-engine combustor are (1) operatable range, or combustion limits, and (2) combustion efficiency. Several fundamental requirements for efficient, high-speed combustion are evident from the discussions presented in chapters III to V. The fuel-air ratio and pressure in the burning zone must lie within specific limits of flammability (fig. 111-16(b)) in order to have the mixture ignite and burn satisfactorily. Increases in mixture temperature will favor the flammability characteristics (ch. III). A second requirement in maintaining a stable flame -is that low local flow velocities exist in the combustion zone (ch. VI). Finally, even with these requirements satisfied, a flame needs a certain minimum space in which to release a desired amount of heat, the necessary space increasing with a decrease in pressure (ref. 1). It is apparent, then, that combustor design and operation must provide for (1) proper control of vapor fuel-air ratios in the combustion zone at or near stoichiometric, (2) mixture pressures above the minimum flammability pressures, (3) low flow velocities in the combustion zone, and (4) adequate space for the flame.

  11. Fuel injection type internal combustion engine

    SciTech Connect

    Oishi, K.; Nakanishi, K.; Kayanuma, N.; Kawai, T.; Nakagawa, N.; Nomura, H.

    1987-05-26

    An internal combustion engine is described having a combustion chamber, comprising: a first intake valve opening at a crank angle near to top dead center of an intake stroke and closing at a beginning of a compression stroke; a second intake valve opening at a crank angle near to the top dead center of the intake stroke and closing at the beginning of the compression stroke; a third intake valve opening approximately at the center of the intake stroke and closing at the beginning of the compression stroke; a first intake passage connected to the combustion chamber via the first intake valve and creating a swirl motion in the combustion chamber; a second intake passage connected to the combustion chamber via the second intake valve; and a third intake passage connected to the combustion chamber via the third intake valve.

  12. Two phase exhaust for internal combustion engine

    SciTech Connect

    Vuk, Carl T.

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  13. Numerical modeling of hydrogen-fueled internal combustion engines

    SciTech Connect

    Johnson, N.L.; Amsden, A.A.; Butler, T.D.

    1996-07-01

    Major progress was achieved in the last year in advancing the modeling capabilities of hydrogen-fueled engines, both in support of the multi-laboratory project with SNL and LLNL to develop a high-efficiency, low emission powerplant and to provide the engine design tools to industry and research laboratories for hydrogen-fueled engines and stationary power generators. The culmination of efforts on many fronts was the excellent comparison of the experimental data from the Onan engine, operated by SNL.These efforts include the following. An extensive study of the intake flow culminated in a major understanding of the interdependence of the details of the intake port design and the engine operating condition on the emissions and efficiency. This study also resulted in design suggestions for future engines and general scaling laws for turbulence that enables the KIVA results to be applied to a wide variety of operating conditions. The research on the turbulent combustion of hydrogen brought into perspective the effect of the unique aspects of hydrogen combustion and their influence on possible models of turbulent combustion. The effort culminated in a proposed model for turbulent hydrogen combustion that is in agreement with available literature. Future work will continue the development in order to provide a generally predictive model for hydrogen combustion. The application of the combustion model to the Onan experiments elucidated the observed improvement of the efficiency of the engine with the addition of a shroud on the intake valve. This understanding will give guidance to future engine design for optimal efficiency. Finally, a brief summary is given of the extensions and refinements of the KIVA-3 code, in support of future designers of hydrogen-fueled engines.

  14. Development of advanced combustion technology for medium- and high-speed natural gas engines. Final report, January 1985-February 1989. Section F. Volume 3

    SciTech Connect

    Snyder, W.E.

    1989-02-01

    The test work was carried out on the Ricardo Atlas single cylinder research engine. This had been specially adapted to run as a spark ignited pre-chamber natural gas fuelled engine. A series of tests across the operational range of air:fuel ratios and ignition timings for various engine operating conditions were undertaken. The parameters tested were: 3 compression ratios, 2 air manifold temperatures, 3 load conditions, Swirl introduced into main chamber charge. In-cylinder pressure data was obtained from both the pre- and main-chambers as well as normal engine pressure and temperature measurements. Analysis of this information was undertaken using in-house computer programs. The analysis identified the effects of the parametric changes on such conditions as rates of burn, cylinder pressures, exhaust emissions, fuel consumption, heat balance etc. The effect of the changing engine operation on BSGC and BSNOx trade offs was studied and the major causes of limitations to this trade off were identified as incomplete combustion and reduced combustion efficiency when operating with lean air:fuel ratios. The effects on overall engine performance, particularly with a view to co-generation applications were investigated. The changes in high grade and low grade heat output from the engine exhaust and cooling fluids were studied, and the results are presented.

  15. Development of advanced combustion technology for medium- and high-speed natural gas engines. Final report, January 1985-February 1989. Sections G and H. Volume 4

    SciTech Connect

    Snyder, W.E.

    1989-02-01

    A test program has been carried out on the Ricardo Atlas engine to examine the effects of pre-chamber design on the combustion and performance of a lean-burn spark-ignited gas engine. The tests assessed the effects of pre-chamber throat size, number of holes, gas entry position and pre-chamber volume. For each build, the mixture strength and spark timing were varied over the operating range. In the single-cylinder engine tests, the pre-chamber design had a significant effect on engine performance and on the trade-off between gas consumption and NOx emissions. This effect is in marked contrast to both the constant volume combustion rig tests and the multi-cylinder engine tests where the pre-chamber design (within limits) had little effect on engine performance. Some reasons for the effect of pre-chamber design were proposed but many questions remain unanswered even though a large amount of analysis was done on the results. To improve clarity only the data and analysis which has led to this understanding has been included in the report. Other data is stored on computer file. The lean limit of the engine was limited entirely by the mixture strength in the pre-chamber. More development is required to extend the pre-chamber ignition limit.

  16. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOEpatents

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  17. Ultralean combustion in general aviation piston engines

    NASA Technical Reports Server (NTRS)

    Chirivella, J. E.

    1979-01-01

    The role of ultralean combustion in achieving fuel economy in general aviation piston engines was investigated. The aircraft internal combustion engine was reviewed with regard to general aviation requirements, engine thermodynamics and systems. Factors affecting fuel economy such as those connected with an ideal leanout to near the gasoline lean flammability limit (ultralean operation) were analyzed. A Lycoming T10-541E engine was tested in that program (both in the test cell and in flight). Test results indicate that hydrogen addition is not necessary to operate the engine ultralean. A 17 percent improvement in fuel economy was demonstrated in flight with the Beechcraft Duke B60 by simply leaning the engine at constant cruiser power and adjusting the ignition for best timing. No detonation was encountered, and a 25,000 ft ceiling was available. Engine roughness was shown to be the limiting factor in the leanout.

  18. Measuring Combustion Advance in Solid Propellants

    NASA Technical Reports Server (NTRS)

    Yang, L. C.

    1986-01-01

    Set of gauges on solid-propellant rocket motor with electrically insulating case measures advance of combustion front and local erosion rates of propellant and insulation. Data furnished by gauges aid in motor design, failure analysis, and performance prediction. Technique useful in determining propellant uniformity and electrical properties of exhaust plum. Gauges used both in flight and on ground. Foilgauge technique also useful in basic research on pulsed plasmas or combustion of solids.

  19. Annual Report: Advanced Combustion (30 September 2012)

    SciTech Connect

    Hawk, Jeffrey; Richards, George

    2012-09-30

    The Advanced Combustion Project addresses fundamental issues of fire-side and steam-side corrosion and materials performance in oxy-fuel combustion environments and provides an integrated approach into understanding the environmental and mechanical behavior such that environmental degradation can be ameliorated and long-term microstructural stability, and thus, mechanical performance can lead to longer lasting components and extended power plant life. The technical tasks of this effort are Oxy-combustion Environment Characterization, Alloy Modeling and Life Prediction, and Alloy Manufacturing and Process Development.

  20. Simulation Of The Internal-Combustion Engine

    NASA Technical Reports Server (NTRS)

    Zeleznik, Frank J.; Mcbride, Bonnie J.

    1987-01-01

    Program adapts to available information about particular engine. Mathematical model of internal-combustion engine constructed and implemented as computer program suitable for use on large digital computer systems. ZMOTTO program calculates Otto-cycle performance parameters as well as working-fluid compositions and properties throughout cycle for number of consecutive cycles and for variety of input parameters. Written in standard FORTRAN IV.

  1. Combustion dynamics in liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Mclain, W. H.

    1971-01-01

    A chemical analysis of the emission and absorption spectra in the combustion chamber of a nitrogen tetroxide/aerozine-50 rocket engine was conducted. Measurements were made under conditions of preignition, ignition, and post combustion operating periods. The cause of severe ignition overpressures sporadically observed during the vacuum startup of the Apollo reaction control system engine was investigated. The extent to which residual propellants or condensed intermediate reaction products remain after the engine has been operated in a pulse mode duty cycle was determined.

  2. Development of advanced combustion technology for medium- and high-speed natural gas engines. Final report, January 1985-February 1989. Sections A, B, and C. Volume 1

    SciTech Connect

    Snyder, W.E.

    1989-02-01

    The objective of the project was to investigate the variables which influence the performance of medium and high speed natural gas engines. Section A provides a summary and overview of the project; and includes a reprint of a paper on a natural gas engine combustion rig with high-speed photography, and a paper on a study of a lean burn spark ignited gas engine. Section B (Theoretical Analysis - Methods of Increasing Exhaust Heat Recovery and Reducing Specific Fuel Consumption) describes COGEN, a computer program used to predict pre-chamber lean-burn cogeneration natural gas engine performance. Section C (Theoretical Analysis - Methods of Increasing Exhaust Heat Recovery and Reducing Cooling System Losses) describes a survey of possible modifications to adapt an engine to best fit different cogeneration requirements.

  3. Findings of Hydrogen Internal Combustion Engine Durability

    SciTech Connect

    Garrett Beauregard

    2010-12-31

    Hydrogen Internal Combustion Engine (HICE) technology takes advantage of existing knowledge of combustion engines to provide a means to power passenger vehicle with hydrogen, perhaps as an interim measure while fuel cell technology continues to mature. This project seeks to provide data to determine the reliability of these engines. Data were collected from an engine operated on a dynamometer for 1000 hours of continuous use. Data were also collected from a fleet of eight (8) full-size pickup trucks powered with hydrogen-fueled engines. In this particular application, the data show that HICE technology provided reliable service during the operating period of the project. Analyses of engine components showed little sign of wear or stress except for cylinder head valves and seats. Material analysis showed signs of hydrogen embrittlement in intake valves.

  4. Combustion Processes in Hybrid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Venkateswaran,S.; Merkle, C. L.

    1996-01-01

    In recent years, there has been a resurgence of interest in the development of hybrid rocket engines for advanced launch vehicle applications. Hybrid propulsion systems use a solid fuel such as hydroxyl-terminated polybutadiene (HTPB) along with a gaseous/liquid oxidizer. The performance of hybrid combustors depends on the convective and radiative heat fluxes to the fuel surface, the rate of pyrolysis in the solid phase, and the turbulent combustion processes in the gaseous phases. These processes in combination specify the regression rates of the fuel surface and thereby the utilization efficiency of the fuel. In this paper, we employ computational fluid dynamics (CFD) techniques in order to gain a quantitative understanding of the physical trends in hybrid rocket combustors. The computational modeling is tailored to ongoing experiments at Penn State that employ a two dimensional slab burner configuration. The coordinated computational/experimental effort enables model validation while providing an understanding of the experimental observations. Computations to date have included the full length geometry with and with the aft nozzle section as well as shorter length domains for extensive parametric characterization. HTPB is sed as the fuel with 1,3 butadiene being taken as the gaseous product of the pyrolysis. Pure gaseous oxygen is taken as the oxidizer. The fuel regression rate is specified using an Arrhenius rate reaction, which the fuel surface temperature is given by an energy balance involving gas-phase convection and radiation as well as thermal conduction in the solid-phase. For the gas-phase combustion, a two step global reaction is used. The standard kappa - epsilon model is used for turbulence closure. Radiation is presently treated using a simple diffusion approximation which is valid for large optical path lengths, representative of radiation from soot particles. Computational results are obtained to determine the trends in the fuel burning or

  5. Power booster internal combustion engine flywheel

    SciTech Connect

    Dingess, B.E.

    1989-08-08

    This patent describes a flywheel apparatus for an internal combustion engine. The engine comprises a crankshaft, a cam shaft, a means of advancing the crankshaft in rotation on the power strokes to that of the flywheel, means of retarding the crankshaft on the compression strokes the flywheel. The apparatus further comprising, a first flywheel, linkage means connecting a flywheel shaft to the crankshaft, a first flywheel housing, bearing means of linking the first flywheel to the flywheel shaft, a plurality of cylinders housed to the first flywheel housing, a plurality of nitrogen charged bladders housed within the cylinders, a plurality of cam action rods housed within the cylinders, a cam housed to the flywheel shaft, linkage means linking the cam action rods to the bladders, second linkage means linking the cam action rods by way of a cam roller to the cam, a freewheeling flywheel housing, bearing means linking the freewheeling flywheel to the flywheel shaft, third linkage means linking a freewheeling clutch between the freewheeling flywheel housing and the flywheel shaft, a shifter apparatus comprising means of locking the first flywheel housing to the freewheeling flywheel housing in a first position, means of connecting the flywheel shaft and the freewheeling flywheel housing by way of the freewheeling clutch in a second position, a front flywheel comprising means of driving the cam shaft at a balanced rotational speed from the crankshaft when the crankshaft is rotating at varying rotational speeds within each revolution of the crankshaft.

  6. Dual fuel system for internal combustion engine

    SciTech Connect

    Haman, D.F.; Needham, D.M.

    1989-06-06

    An internal combustion engine is described comprising a crankcase, a cylinder extending from the crankcase and defining a combustion chamber having an inlet port, a transfer passage communicating between the crankcase and the inlet port, a carburetor having an air induction passage communicating with the crankcase and including a venturi and a float bowl adapted to contain fuel for normal operation, a throttle valve intermediate the venturi and the crankcase.

  7. Natural Gas for Advanced Dual-Fuel Combustion Strategies

    NASA Astrophysics Data System (ADS)

    Walker, Nicholas Ryan

    Natural gas fuels represent the next evolution of low-carbon energy feedstocks powering human activity worldwide. The internal combustion engine, the energy conversion device widely used by society for more than one century, is capable of utilizing advanced combustion strategies in pursuit of ultra-high efficiency and ultra-low emissions. Yet many emerging advanced combustion strategies depend upon traditional petroleum-based fuels for their operation. In this research the use of natural gas, namely methane, is applied to both conventional and advanced dual-fuel combustion strategies. In the first part of this work both computational and experimental studies are undertaken to examine the viability of utilizing methane as the premixed low reactivity fuel in reactivity controlled compression ignition, a leading advanced dual-fuel combustion strategy. As a result, methane is shown to be capable of significantly extending the load limits for dual-fuel reactivity controlled compression ignition in both light- and heavy-duty engines. In the second part of this work heavy-duty single-cylinder engine experiments are performed to research the performance of both conventional dual-fuel (diesel pilot ignition) and advanced dual-fuel (reactivity controlled compression ignition) combustion strategies using methane as the premixed low reactivity fuel. Both strategies are strongly influenced by equivalence ratio; diesel pilot ignition offers best performance at higher equivalence ratios and higher premixed methane ratios, whereas reactivity controlled compression ignition offers superior performance at lower equivalence ratios and lower premixed methane ratios. In the third part of this work experiments are performed in order to determine the dominant mode of heat release for both dual-fuel combustion strategies. By studying the dual-fuel homogeneous charge compression ignition and single-fuel spark ignition, strategies representative of autoignition and flame propagation

  8. Practical internal combustion engine laser spark plug development

    NASA Astrophysics Data System (ADS)

    Myers, Michael J.; Myers, John D.; Guo, Baoping; Yang, Chengxin; Hardy, Christopher R.

    2007-09-01

    Fundamental studies on laser ignition have been performed by the US Department of Energy under ARES (Advanced Reciprocating Engines Systems) and by the California Energy Commission under ARICE (Advanced Reciprocating Internal Combustion Engine). These and other works have reported considerable increases in fuel efficiencies along with substantial reductions in green-house gas emissions when employing laser spark ignition. Practical commercial applications of this technology require low cost high peak power lasers. The lasers must be small, rugged and able to provide stable laser beam output operation under adverse mechanical and environmental conditions. New DPSS (Diode Pumped Solid State) lasers appear to meet these requirements. In this work we provide an evaluation of HESP (High Efficiency Side Pumped) DPSS laser design and performance with regard to its application as a practical laser spark plug for use in internal combustion engines.

  9. Multicylinder internal combustion engine with rotation sensor

    SciTech Connect

    Shimada, S.; Otsuka, K.

    1988-01-12

    In a rotation sensor for an internal combustion engine having a crankshaft, a camshaft, a drive pulley on the crankshaft, a driven pulley on the camshaft, and an endless belt trained around the driver and driven pulleys, an improvement is described comprising, rotation sensing means on the driven pulley and engine for sensing the rotational position of the driven pulley relative to the engine during rotation of the driven pulley.

  10. Combustion modeling in advanced gas turbine systems

    SciTech Connect

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K.

    1995-12-31

    Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

  11. Jet plume injection and combustion system for internal combustion engines

    DOEpatents

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  12. Jet plume injection and combustion system for internal combustion engines

    DOEpatents

    Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

    1993-12-21

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

  13. ZMOTTO- MODELING THE INTERNAL COMBUSTION ENGINE

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1994-01-01

    The ZMOTTO program was developed to model mathematically a spark-ignited internal combustion engine. ZMOTTO is a large, general purpose program whose calculations can be established at five levels of sophistication. These five models range from an ideal cycle requiring only thermodynamic properties, to a very complex representation demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. ZMOTTO is a flexible and computationally economical program based on a system of ordinary differential equations for cylinder-averaged properties. The calculations assume that heat transfer is expressed in terms of a heat transfer coefficient and that the cylinder average of kinetic plus potential energies remains constant. During combustion, the pressures of burned and unburned gases are assumed equal and their heat transfer areas are assumed proportional to their respective mass fractions. Even the simplest ZMOTTO model provides for residual gas effects, spark advance, exhaust gas recirculation, supercharging, and throttling. In the more complex models, 1) finite rate chemistry replaces equilibrium chemistry in descriptions of both the flame and the burned gases, 2) poppet valve formulas represent fluid flow instead of a zero pressure drop flow, and 3) flame propagation is modeled by mass burning equations instead of as an instantaneous process. Input to ZMOTTO is determined by the model chosen. Thermodynamic data is required for all models. Transport properties and chemical kinetics data are required only as the model complexity grows. Other input includes engine geometry, working fluid composition, operating characteristics, and intake/exhaust data. ZMOTTO accommodates a broad spectrum of reactants. The program will calculate many Otto cycle performance parameters for a number of consecutive cycles (a cycle being an interval of 720 crankangle degrees). A typical case will have a number of initial ideal cycles and progress through levels

  14. Advanced Engineering Fibers.

    ERIC Educational Resources Information Center

    Edie, Dan D.; Dunham, Michael G.

    1987-01-01

    Describes Clemson University's Advanced Engineered Fibers Laboratory, which was established to provide national leadership and expertise in developing the processing equipment and advance fibers necessary for the chemical, fiber, and textile industries to enter the composite materials market. Discusses some of the laboratory's activities in…

  15. Combustion Synthesis of Advanced Porous Materials in Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Johnson, D. P.

    1999-01-01

    Combustion synthesis, otherwise known as self-propagating high temperature synthesis (SHS), can be used to produce engineered advanced porous material implants which offer the possibility for bone ingrowth as well as a permanent structure framework for the long-term replacement of bone defects. The primary advantage of SHS is based on its rapid kinetics and favorable energetics. The structure and properties of materials produced by SHS are strongly dependent on the combustion reaction conditions. Combustion reaction conditions such as reaction stoichiometry, particle size, green density, the presence and use of diluents or inert reactants, and pre-heating of the reactants, will affect the exothermicity of the reaction. A number of conditions must be satisfied in order to obtain high porosity materials: an optimal amount of liquid, gas and solid phases must be present in the combustion front. Therefore, a balance among these phases at the combustion front must be created by the SHS reaction to successfully engineer a bone replacement material system. Microgravity testing has extended the ability to form porous products. The convective heat transfer mechanisms which operate in normal gravity, 1 g, constrain the combustion synthesis reactions. Gravity also acts to limit the porosity which may be formed as the force of gravity serves to restrict the gas expansion and the liquid movement during reaction. Infiltration of the porous product with other phases can modify both the extent of porosity and the mechanical properties.

  16. Advanced engine study program

    NASA Astrophysics Data System (ADS)

    Masters, A. I.; Galler, D. E.; Denman, T. F.; Shied, R. A.; Black, J. R.; Fierstein, A. R.; Clark, G. L.; Branstrom, B. R.

    1993-06-01

    A design and analysis study was conducted to provide advanced engine descriptions and parametric data for space transfer vehicles. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high-performance engines capable of achieving reliable and versatile operation in a space environment. Four variations on the expander cycle were compared, and the advantages and disadvantages of each were assessed. Parametric weight, envelope, and performance data were generated over a range of 7,500 to 50,000 lb thrust and a wide range of chamber pressure and nozzle expansion ratio.

  17. Advanced engine study program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.; Denman, T. F.; Shied, R. A.; Black, J. R.; Fierstein, A. R.; Clark, G. L.; Branstrom, B. R.

    1993-01-01

    A design and analysis study was conducted to provide advanced engine descriptions and parametric data for space transfer vehicles. The study was based on an advanced oxygen/hydrogen engine in the 7,500 to 50,000 lbf thrust range. Emphasis was placed on defining requirements for high-performance engines capable of achieving reliable and versatile operation in a space environment. Four variations on the expander cycle were compared, and the advantages and disadvantages of each were assessed. Parametric weight, envelope, and performance data were generated over a range of 7,500 to 50,000 lb thrust and a wide range of chamber pressure and nozzle expansion ratio.

  18. Fatigue of internal combustion engines

    NASA Technical Reports Server (NTRS)

    Dumanois, P

    1924-01-01

    The above conditions enable the employment of a criterion of general fatigue which simultaneously takes account of both mechanical and thermal conditions, for the sake of comparing any projected engine with engines of the same type already in use.

  19. Advanced general aviation engine/airframe integration study

    NASA Technical Reports Server (NTRS)

    Zmroczek, L. A.

    1982-01-01

    A comparison of the in-airframe performance and efficiency of the advanced engine concepts is presented. The results indicate that the proposed advanced engines can significantly improve the performance and economy of general aviation airplanes. The engine found to be most promising is the highly advanced version of a rotary combustion (Wankel) engine. The low weight and fuel consumption of this engine, as well as its small size, make it suited for aircraft use.

  20. Stratified charge rotary engine combustion studies

    NASA Technical Reports Server (NTRS)

    Shock, H.; Hamady, F.; Somerton, C.; Stuecken, T.; Chouinard, E.; Rachal, T.; Kosterman, J.; Lambeth, M.; Olbrich, C.

    1989-01-01

    Analytical and experimental studies of the combustion process in a stratified charge rotary engine (SCRE) continue to be the subject of active research in recent years. Specifically to meet the demand for more sophisticated products, a detailed understanding of the engine system of interest is warranted. With this in mind the objective of this work is to develop an understanding of the controlling factors that affect the SCRE combustion process so that an efficient power dense rotary engine can be designed. The influence of the induction-exhaust systems and the rotor geometry are believed to have a significant effect on combustion chamber flow characteristics. In this report, emphasis is centered on Laser Doppler Velocimetry (LDV) measurements and on qualitative flow visualizations in the combustion chamber of the motored rotary engine assembly. This will provide a basic understanding of the flow process in the RCE and serve as a data base for verification of numerical simulations. Understanding fuel injection provisions is also important to the successful operation of the stratified charge rotary engine. Toward this end, flow visualizations depicting the development of high speed, high pressure fuel jets are described. Friction is an important consideration in an engine from the standpoint of lost work, durability and reliability. MSU Engine Research Laboratory efforts in accessing the frictional losses associated with the rotary engine are described. This includes work which describes losses in bearing, seal and auxillary components. Finally, a computer controlled mapping system under development is described. This system can be used to map shapes such as combustion chamber, intake manifolds or turbine blades accurately.

  1. Advanced main combustion chamber program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The topics presented are covered in viewgraph form and include the following: investment of low cost castings; usage of SSME program; usage of MSFC personnel for design effort; and usage of concurrent engineering techniques.

  2. Combustion engine for solid and liquid fuels

    NASA Technical Reports Server (NTRS)

    Pabst, W.

    1986-01-01

    A combustion engine having no piston, a single cylinder, and a dual-action, that is applicable for solid and liquid fuels and propellants, and that functions according to the principle of annealing point ignition is presented. The invention uses environmentally benign amounts of fuel and propellants to produce gas and steam pressure, and to use a simple assembly with the lowest possible consumption and constant readiness for mixing and burning. The advantage over conventional combustion engines lies in lower consumption of high quality igniting fluid in the most cost effective manner.

  3. History of the internal combustion engine

    SciTech Connect

    Somerscales, E.F.C. ); Zagotta, A.A. )

    1989-01-01

    The study of engineering history by the practioners of engineering is not well-developed. This is unfortunate, because if nothing else, it is the culture of our profession, but even more importantly, it provides us with a proper understanding of current and future engineering. Without an adequate historical background the engineer could, for example, respond incorrectly to problems that might arise in some device or make inappropriate changes in the design. History can also suggest the path that might be followed by a new product, and thereby guide the development and marketing. Because of the fuller appreciation of the art and science of engineering that is provided by an awareness of engineering history, it seems appropriate for the ASME to recognize the role in our profession. The papers in this volume, which deal and various aspects of the history of the internal combustion engine, were presented in a session at the Fall Technical Conference of the ASME Internal Combustion Engine Division held in Dearborn, Michigan on October 17, 1989. The session was jointly sponsored and arranged by the Internal Combustion Engine Division and by the History and Heritage Committee of ASME. It is the first in what the latter hopes will be a regular series of sessions at various Society meetings jointly sponsored with the different divisions of the Society. It is hoped in this way to raise the consciousness of the engineering community to its history and to encourage in particular the preparation of historical papers by engineer-historians, who are involved in the practice of engineering. An approximate chronological order has been chosen for the arrangement of the papers, with the first, by H.O. Hardenberg, being on the gunpowder engines, which were experimented with from the sixteenth century to the middle of the nineteenth century.

  4. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    NASA Astrophysics Data System (ADS)

    DeFilippo, Anthony Cesar

    The ever-present need for reducing greenhouse gas emissions associated with transportation motivates this investigation of a novel ignition technology for internal combustion engine applications. Advanced engines can achieve higher efficiencies and reduced emissions by operating in regimes with diluted fuel-air mixtures and higher compression ratios, but the range of stable engine operation is constrained by combustion initiation and flame propagation when dilution levels are high. An advanced ignition technology that reliably extends the operating range of internal combustion engines will aid practical implementation of the next generation of high-efficiency engines. This dissertation contributes to next-generation ignition technology advancement by experimentally analyzing a prototype technology as well as developing a numerical model for the chemical processes governing microwave-assisted ignition. The microwave-assisted spark plug under development by Imagineering, Inc. of Japan has previously been shown to expand the stable operating range of gasoline-fueled engines through plasma-assisted combustion, but the factors limiting its operation were not well characterized. The present experimental study has two main goals. The first goal is to investigate the capability of the microwave-assisted spark plug towards expanding the stable operating range of wet-ethanol-fueled engines. The stability range is investigated by examining the coefficient of variation of indicated mean effective pressure as a metric for instability, and indicated specific ethanol consumption as a metric for efficiency. The second goal is to examine the factors affecting the extent to which microwaves enhance ignition processes. The factors impacting microwave enhancement of ignition processes are individually examined, using flame development behavior as a key metric in determining microwave effectiveness. Further development of practical combustion applications implementing microwave

  5. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  6. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  7. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2016-06-28

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  8. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work

  9. Wear aspects of internal combustion engine valves

    NASA Astrophysics Data System (ADS)

    Panţuru, M.; Chicet, D.; Paulin, C.; Alexandru, A.; Munteanu, C.

    2016-08-01

    Because the surface engineering is becoming an increasingly viable alternative to the constructive changes made to improve the efficiency of internal combustion engines, have been proposed and tested various types of coatings of some organs of internal combustion engines. One vital organ is the engine valves, which is subjected during operation to combined thermal, mechanical, corrosion and wear solicitations, which are leading to severe corrosion and complete breakdown. In this paper were analyzed aspects of valves wear and the active surfaces were coated using the atmospheric plasma spraying method (APS) with two commercial powders: Ni-Al and YSZ. Microstructural analyzes were made on these layers and also observations regarding the possibility of using them as thermal barrier and anti-oxidant coatings.

  10. New perspectives for advanced automobile diesel engines

    NASA Technical Reports Server (NTRS)

    Tozzi, L.; Sekar, R.; Kamo, R.; Wood, J. C.

    1983-01-01

    Computer simulation results are presented for advanced automobile diesel engine performance. Four critical factors for performance enhancement were identified: (1) part load preheating and exhaust gas energy recovery, (2) fast heat release combustion process, (3) reduction in friction, and (4) air handling system efficiency. Four different technology levels were considered in the analysis. Simulation results are compared in terms of brake specific fuel consumption and vehicle fuel economy in km/liter (miles per gallon). Major critical performance sensitivity areas are: (1) combustion process, (2) expander and compressor efficiency, and (3) part load preheating and compound system. When compared to the state of the art direct injection, cooled, automobile diesel engine, the advanced adiabatic compound engine concept showed the unique potential of doubling the fuel economy. Other important performance criteria such as acceleration, emissions, reliability, durability and multifuel capability are comparable to or better than current passenger car diesel engines.

  11. Combustion engine. [for air pollution control

    NASA Technical Reports Server (NTRS)

    Houseman, J. (Inventor)

    1977-01-01

    An arrangement for an internal combustion engine is provided in which one or more of the cylinders of the engine are used for generating hydrogen rich gases from hydrocarbon fuels, which gases are then mixed with air and injected into the remaining cylinders to be used as fuel. When heavy load conditions are encountered, hydrocarbon fuel may be mixed with the hydrogen rich gases and air and the mixture is then injected into the remaining cylinders as fuel.

  12. Comparing maximum pressures in internal combustion engines

    NASA Technical Reports Server (NTRS)

    Sparrow, Stanwood W; Lee, Stephen M

    1922-01-01

    Thin metal diaphragms form a satisfactory means for comparing maximum pressures in internal combustion engines. The diaphragm is clamped between two metal washers in a spark plug shell and its thickness is chosen such that, when subjected to explosion pressure, the exposed portion will be sheared from the rim in a short time.

  13. Advancing cardiovascular tissue engineering

    PubMed Central

    Truskey, George A.

    2016-01-01

    Cardiovascular tissue engineering offers the promise of biologically based repair of injured and damaged blood vessels, valves, and cardiac tissue. Major advances in cardiovascular tissue engineering over the past few years involve improved methods to promote the establishment and differentiation of induced pluripotent stem cells (iPSCs), scaffolds from decellularized tissue that may produce more highly differentiated tissues and advance clinical translation, improved methods to promote vascularization, and novel in vitro microphysiological systems to model normal and diseased tissue function. iPSC technology holds great promise, but robust methods are needed to further promote differentiation. Differentiation can be further enhanced with chemical, electrical, or mechanical stimuli. PMID:27303643

  14. ABB Combustion Engineering`s nuclear experience and technologies

    SciTech Connect

    Matzie, R.A.

    1994-12-31

    ABB Combustion Engineering`s nuclear experience and technologies are outlined. The following topics are discussed: evolutionary approach using proven technology, substantial improvement to plant safety, utility perspective up front in developing design, integrated design, competitive plant cost, operability and maintainability, standardization, and completion of US NRC technical review.

  15. Marine propulsion internal combustion engine

    SciTech Connect

    Anderson, P.A.; Bernau, W.A.; Breckenfeld, P.W.; Broughton, G.L.; Karrasch, W.R.

    1992-02-18

    This patent describes an engine. It comprises an engine block having an exterior surface and an interior, a crankshaft extending from the engine block interior, being rotatably supported by the block, and including a first portion extending exteriorly of the engine block surface, having a first radius, and a second portion extending from the first portion in concentric relation thereto and having a second radius less than the first radius so as to define a radially extending shoulder on the first portion, a flywheel including a surface engaging the shoulder, and a central aperture receiving the second portion of the crankshaft and having a third radius less than the first radius and greater than the second radius, and means extending through the flywheel and into the first portion of the crankshaft for securing the flywheel to the crankshaft.

  16. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  17. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  18. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  19. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  20. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  1. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  2. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  3. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  4. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  5. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  6. Internal combustion engine with an exhaust gas turbocharger

    SciTech Connect

    Hiereth, H.; Withalm, G.

    1981-06-09

    An internal combustion engine with an exhaust-gas turbocharger, particularly a mixture-compressing internal combustion engine, is disclosed in which a bleeder valve is provided which during the operation of the internal combustion engine in the partial load range conducts the exhaust gases in bypassing relationship to the turbine of the exhaust gas turbocharger.

  7. Fuel injection system for internal combustion engine

    SciTech Connect

    Nagao, A.; Yoshioka, S.; Oda, H.; Tokushima, T.

    1988-11-22

    This patent describes a fuel injection system for an internal combustion engine having a crankshaft and a combustion chamber, the system comprising (a) an intake passage for introducing an intake gas into the combustion chamber and provided with an intake valve; (b) a fuel injection valve for injecting fuel into the intake passage in the vicinity of the combustion chamber; (c) operating condition detecting means for detecting the operating condition of the engine and outputting a signal corresponding to the thus detected operating condition; (d) fuel injection amount determining means which receives an output signal of the operating conditions detecting means, thereby determining the amount of fuel to be supplied to the combustion chamber, and outputs a signal corresponding to thus determined amount; (e) crankshaft angle detecting means for detecting the rotation angle of the crankshaft; (f) injection timing control means which receives signals from the fuel injection amount determining means and crankshaft angle detecting means, outputs a start signal for actuating the fuel injection valve and a termination signal for terminating the actuation of the fuel injection valve, and actuates the fuel injection valve for the duration between the start and termination signals, thereby supplying an amount of fuel determined by the fuel injection amount determining means; (g) the start and termination signals being set against the crankshaft angle so that the whole fuel injection from the injection valve to the intake passage under light load operation of the engine reaches the combustion chamber substantially in the latter half of the intake stroke before the intake valve is closed.

  8. Deformation analysis of rotary combustion engine housings

    NASA Technical Reports Server (NTRS)

    Vilmann, Carl

    1991-01-01

    This analysis of the deformation of rotary combustion engine housings targeted the following objectives: (1) the development and verification of a finite element model of the trochoid housing, (2) the prediction of the stress and deformation fields present within the trochoid housing during operating conditions, and (3) the development of a specialized preprocessor which would shorten the time necessary for mesh generation of a trochoid housing's FEM model from roughly one month to approximately two man hours. Executable finite element models were developed for both the Mazda and the Outboard Marine Corporation trochoid housings. It was also demonstrated that a preprocessor which would hasten the generation of finite element models of a rotary engine was possible to develop. The above objectives are treated in detail in the attached appendices. The first deals with finite element modeling of a Wankel engine center housing, and the second with the development of a preprocessor that generates finite element models of rotary combustion engine center housings. A computer program, designed to generate finite element models of user defined rotary combustion engine center housing geometries, is also included.

  9. Supersonic combustion engine testbed, heat lightning

    NASA Technical Reports Server (NTRS)

    Hoying, D.; Kelble, C.; Langenbahn, A.; Stahl, M.; Tincher, M.; Walsh, M.; Wisler, S.

    1990-01-01

    The design of a supersonic combustion engine testbed (SCET) aircraft is presented. The hypersonic waverider will utilize both supersonic combustion ramjet (SCRAMjet) and turbofan-ramjet engines. The waverider concept, system integration, electrical power, weight analysis, cockpit, landing skids, and configuration modeling are addressed in the configuration considerations. The subsonic, supersonic and hypersonic aerodynamics are presented along with the aerodynamic stability and landing analysis of the aircraft. The propulsion design considerations include: engine selection, turbofan ramjet inlets, SCRAMjet inlets and the SCRAMjet diffuser. The cooling requirements and system are covered along with the topics of materials and the hydrogen fuel tanks and insulation system. A cost analysis is presented and the appendices include: information about the subsonic wind tunnel test, shock expansion calculations, and an aerodynamic heat flux program.

  10. EGR control device for internal combustion engine

    SciTech Connect

    Nishida, M.; Inoue, N.; Asayama, Y.; Suzuki, H.

    1988-12-13

    This patent describes an EGR control device for an internal combustion engine comprising an EGR control valve installed in EGR passageway communicating with an exhaust system and an intake system of an internal combustion engine, an oxygen sensor for detecting the oxygen content of the intake air installed in the downstream of the opening of the EGR passageway in the intake system, a pressure sensor for detecting the atmospheric pressure in the oxygen sensor, and EGR control means for computing a first quantity corresponding to a target EGR rate, correcting the output signal of the oxygen sensor using the output signal of the pressure sensor, and opening or shutting the EGR control valve in proportion to the deviation of the second quantity thus corrected from the first quantity in order to set the operating condition of the engine in conformity with a predetermined target EGR.

  11. CARS measurements in an internal combustion engine.

    PubMed

    Stenhouse, I A; Williams, D R; Cole, J B; Swords, M D

    1979-11-15

    The first reported coherent anti-Stokes Raman scattering (CARS) experiments within the cylinder of a firing internal combustion engine are described. The feasibility of making noninvasive temperature and species measurements, with good spatial and temporal resolution, both before and after ignition has been demonstrated. Temperatures have been derived from the shape of the Q-branch vibrational spectrum of nitrogen since it is present as a major species and does not take part in combustion. Methods of overcoming such problems as were encountered are discussed.

  12. Plasma igniter for internal combustion engine

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D. J.; Breshears, R. R. (Inventor)

    1978-01-01

    An igniter for the air/fuel mixture used in the cylinders of an internal combustion engine is described. A conventional spark is used to initiate the discharge of a large amount of energy stored in a capacitor. A high current discharge of the energy in the capacitor switched on by a spark discharge produces a plasma and a magnetic field. The resultant combined electromagnetic current and magnetic field force accelerates the plasma deep into the combustion chamber thereby providing an improved ignition of the air/fuel mixture in the chamber.

  13. Analysis of rocket engine injection combustion processes

    NASA Technical Reports Server (NTRS)

    Salmon, J. W.

    1976-01-01

    A critique is given of the JANNAF sub-critical propellant injection/combustion process analysis computer models and application of the models to correlation of well documented hot fire engine data bases. These programs are the distributed energy release (DER) model for conventional liquid propellants injectors and the coaxial injection combustion model (CICM) for gaseous annulus/liquid core coaxial injectors. The critique identifies model inconsistencies while the computer analyses provide quantitative data on predictive accuracy. The program is comprised of three tasks: (1) computer program review and operations; (2) analysis and data correlations; and (3) documentation.

  14. The Rotary Combustion Engine: a Candidate for General Aviation. [conferences

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The state of development of the rotary combustion engine is discussed. The nonturbine engine research programs for general aviation and future requirements for general aviation powerplants are emphasized.

  15. Fiber-optic pressure sensors for internal combustion engines.

    PubMed

    Atkins, R A; Gardner, J H; Gibler, W N; Lee, C E; Oakland, M D; Spears, M O; Swenson, V P; Taylor, H F; McCoy, J J; Beshouri, G

    1994-03-01

    Two designs incorporating embedded fiber Fabry-Perot interferometers as strain gauges were used for monitoring gas pressure in internal combustion engines. Measurements on a Diesel engine, a gasoline-fueled engine, and a natural-gas engine are reported.

  16. Advanced nozzle and engine components test facility

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.; Delroso, Richard L.; Delrosario, Ruben

    1992-01-01

    A test facility for conducting scaled advanced nozzle and engine component research is described. The CE-22 test facility, located in the Engine Research Building of the NASA Lewis Research Center, contains many systems for the economical testing of advanced scale-model nozzles and engine components. The combustion air and altitude exhaust systems are described. Combustion air can be supplied to a model up to 40 psig for primary air flow, and 40, 125, and 450 psig for secondary air flow. Altitude exhaust can be simulated up to 48,000 ft, or the exhaust can be atmospheric. Descriptions of the multiaxis thrust stand, a color schlieren flow visualization system used for qualitative flow analysis, a labyrinth flow measurement system, a data acquisition system, and auxiliary systems are discussed. Model recommended design information and temperature and pressure instrumentation recommendations are included.

  17. Combustion modeling in advanced gas turbine systems

    SciTech Connect

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.

    1995-10-01

    The goal of the U.S. Department of Energy`s Advanced Turbine Systems (ATS) program is to help develop and commercialize ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. Combustion modeling, including emission characteristics, has been identified as a needed, high-priority technology by key professionals in the gas turbine industry.

  18. Influence of the Combustion Energy Release on Surface Accelerations of an HCCI Engine

    SciTech Connect

    Massey, Jeffery A; Eaton, Scott J; Wagner, Robert M

    2009-01-01

    Large cyclic variability along with increased combustion noise present in low temperature combustion (LTC) modes of internal combustion engines has driven the need for fast response, robust sensors for diagnostics and feedback control. Accelerometers have been shown as a possible technology for diagnostics and feedback control of advanced LTC operation in internal combustion engines. To make better use of this technology, an improved understanding is necessary of the effect of energy release from the combustion process on engine surface vibrations. This study explores the surface acceleration response for a single-cylinder engine operating with homogeneous charge compression ignition (HCCI) combustion. Preliminary investigation of the engine surface accelerations is conducted using a finite element analysis of the engine cylinder jacket along with consideration of cylindrical modes of the engine cylinder. Measured in-cylinder pressure is utilized as a load input to the FE model to provide an initial comparison of the computed and measured surface accelerations. Additionally, the cylindrical cavity resonant modes of the engine geometry are computed and the in-cylinder pressure frequency content is examined to verify this resonant behavior. Experimental correlations between heat release and surface acceleration metrics are then used to identify specific acceleration frequency bands in which characteristics of the combustion heat release process is detected with minimal structural resonant influence. Investigation of a metric capable of indicting combustion phasing is presented. Impact of variations in the combustion energy release process on the surface accelerations is discussed.

  19. Internal combustion engine timing chain cover

    SciTech Connect

    Carvalho, A.

    1991-03-12

    This patent describes an internal combustion engine end and timing chain cover for a multi-cylinder, automotive vehicle type engine having a generally horizontally arranged engine block with a forward end and upper and lower portions, and a generally horizontally extending crankshaft with a forward end portion, and a timing chain mechanism on the block forward end above crankshaft: It comprises: a unitary, a cast metal, dish-like, cover having a forward wall surrounded by an integral edge wall shaped to fit over and mount upon the forward end of the engine block with the cover forming an enclosed cavity at the front end of the engine and with the cover cavity adapted to receive and enclose the engine timing chain mechanism portions located on the engine forward end; the cover having a hole formed in its lower portion in alignment with the engine crankshaft, and with the engine crankshaft forward end portion extending through the hole and being surrounded by a seal; the seal being mounted within the hole in the cover, within an open, rabbit-like groove surrounding the hold and opening forwardly of the cover, so that the seal may be removed in a forward direction relative to the engine and replaced without removing the cover when the cover is mounted upon the block with the crankshaft extending therethrough; and bolt receiving openings formed on the cover edge wall through which mounting bolts may be positioned for fastening the cover upon the engine.

  20. Internal combustion engine without connecting rods

    SciTech Connect

    Adams, L.M.

    1989-05-09

    This patent describes a reciprocating, multicylinder, internal combustion engine having an axially rotating power output crankshaft, the combination of: (a) combustion chambers in side-by-side parallel arrangement, each chamber containing first means to admit a combustible fuel/air mixture and to exhaust the fumes of combustion; (b) a separate cylinder having an open end and a closed end forming part of each combustion chamber and a piston working independently in each cylinder and arranged to travel toward the closed end to compress the mixture and be driven in a power stroke toward the open end as a result of the burning of the mixture; (c) a carrier member and means to attach the member to a pair of adjacent pistons for interconnecting them to reciprocate in unison in their respective cylinders; and, (d) a guide member, pivotally attached to an offset throw formed in the output crankshaft connected to the carrier member in sliding engagement therewith to convert the reciprocating motion of the pistons into rotary motion of the crankshaft through motion in a plane lying transverse to the axis of the crankshaft.

  1. Internal combustion engine without connecting rods

    SciTech Connect

    Adams, L.M.

    1989-03-21

    This patent describes a reciprocating, multicylinder, internal combustion engine having an axially rotating power output crankshaft, the combination of: (a) a plurality of combustion chambers in side-by-side parallel arrangement, each chamber containing first means to admit a combustible fuel/air mixture and to exhaust the fumes of combustion; (b) a separate cylinder having an open end and a closed end forming apart of each combustion chamber and a piston working independently in each cylinder and arranged to travel toward the closed end to compress the mixture and be driven in a power stroke toward the open end as a result of the burning of the mixture; (c) a carrier member and means to attach the member in fixed relationship to a pair of adjacent pistons for interconnecting them to reciprocate in unison their respective cylinders; (d) means for absorbing side thrust developed during the rotation of the crankshaft; and, (e) a guide member, pivotally attached to an offset throw formed in the output crankshaft, connected to the carrier member in sliding engagement therewith to convert the reciprocating motion of the pistons into rotary motion of the crankshaft through motion in a plane lying transverse to the axis of the crankshaft.

  2. Starting apparatus for internal combustion engines

    DOEpatents

    Dyches, Gregory M.; Dudar, Aed M.

    1997-01-01

    An internal combustion engine starting apparatus uses a signal from a curt sensor to determine when the engine is energized and the starter motor should be de-energized. One embodiment comprises a transmitter, receiver, computer processing unit, current sensor and relays to energize a starter motor and subsequently de-energize the same when the engine is running. Another embodiment comprises a switch, current transducer, low-pass filter, gain/comparator, relay and a plurality of switches to energize and de-energize a starter motor. Both embodiments contain an indicator lamp or speaker which alerts an operator as to whether a successful engine start has been achieved. Both embodiments also contain circuitry to protect the starter and to de-energize the engine.

  3. Magneto-generator for internal combustion engine

    SciTech Connect

    Asai, M.; Hikimoto, Y.

    1986-12-16

    This patent describes a magneto-generator for an internal combustion engine having a crankshaft, comprising: an iron cup fixedly mounted on the crankshaft of the internal combustion engine for rotation therewith and having the open end thereof faced outward in a direction away from the crankshaft; a permanent magnet mounted on the outer periphery of the iron cup for rotation therewith; a stator core located opposingly to the permanent magnet; a power-generating coil mounted on the stator core; a signal generator located substantially centrally in the iron cup and having at least one part thereof located in a position opposing the fore end of the crankshaft; and a timing portion provided on the inner periphery of the iron cup in a position opposing the signal generator.

  4. Automotive fuels and internal combustion engines: a chemical perspective.

    PubMed

    Wallington, T J; Kaiser, E W; Farrell, J T

    2006-04-01

    Commercial transportation fuels are complex mixtures containing hundreds or thousands of chemical components, whose composition has evolved considerably during the past 100 years. In conjunction with concurrent engine advancements, automotive fuel composition has been fine-tuned to balance efficiency and power demands while minimizing emissions. Pollutant emissions from internal combustion engines (ICE), which arise from non-ideal combustion, have been dramatically reduced in the past four decades. Emissions depend both on the engine operating parameters (e.g. engine temperature, speed, load, A/F ratio, and spark timing) and the fuel. These emissions result from complex processes involving interactions between the fuel and engine parameters. Vehicle emissions are comprised of volatile organic compounds (VOCs), CO, nitrogen oxides (NO(x)), and particulate matter (PM). VOCs and NO(x) form photochemical smog in urban atmospheres, and CO and PM may have adverse health impacts. Engine hardware and operating conditions, after-treatment catalysts, and fuel composition all affect the amount and composition of emissions leaving the vehicle tailpipe. While engine and after-treatment effects are generally larger than fuel effects, engine and after-treatment hardware can require specific fuel properties. Consequently, the best prospects for achieving the highest efficiency and lowest emissions lie with optimizing the entire fuel-engine-after-treatment system. This review provides a chemical perspective on the production, combustion, and environmental aspects of automotive fuels. We hope this review will be of interest to workers in the fields of chemical kinetics, fluid dynamics of reacting flows, atmospheric chemistry, automotive catalysts, fuel science, and governmental regulations. PMID:16565750

  5. Automotive fuels and internal combustion engines: a chemical perspective.

    PubMed

    Wallington, T J; Kaiser, E W; Farrell, J T

    2006-04-01

    Commercial transportation fuels are complex mixtures containing hundreds or thousands of chemical components, whose composition has evolved considerably during the past 100 years. In conjunction with concurrent engine advancements, automotive fuel composition has been fine-tuned to balance efficiency and power demands while minimizing emissions. Pollutant emissions from internal combustion engines (ICE), which arise from non-ideal combustion, have been dramatically reduced in the past four decades. Emissions depend both on the engine operating parameters (e.g. engine temperature, speed, load, A/F ratio, and spark timing) and the fuel. These emissions result from complex processes involving interactions between the fuel and engine parameters. Vehicle emissions are comprised of volatile organic compounds (VOCs), CO, nitrogen oxides (NO(x)), and particulate matter (PM). VOCs and NO(x) form photochemical smog in urban atmospheres, and CO and PM may have adverse health impacts. Engine hardware and operating conditions, after-treatment catalysts, and fuel composition all affect the amount and composition of emissions leaving the vehicle tailpipe. While engine and after-treatment effects are generally larger than fuel effects, engine and after-treatment hardware can require specific fuel properties. Consequently, the best prospects for achieving the highest efficiency and lowest emissions lie with optimizing the entire fuel-engine-after-treatment system. This review provides a chemical perspective on the production, combustion, and environmental aspects of automotive fuels. We hope this review will be of interest to workers in the fields of chemical kinetics, fluid dynamics of reacting flows, atmospheric chemistry, automotive catalysts, fuel science, and governmental regulations.

  6. Comparison of combustion efficiencies for ramjet engines

    NASA Technical Reports Server (NTRS)

    Bergmann, J. W.

    1984-01-01

    Four different combustion efficiencies commonly used for assessing ramjet engines are compared. The mixture ratios cover a range from stoichiometric to an equivalence ratio of 0.2, and the polyethylene/air propellant system is used. The ratio of effective to ideal temperature rise is taken as reference efficiency. As might be expected, major differences can be observed near stoichiometric and down to equilvalence ratios of 0.5. These are quantitatively demonstrated.

  7. Tailoring next-generation biofuels and their combustion in next-generation engines.

    SciTech Connect

    Gladden, John Michael; Wu, Weihua; Taatjes, Craig A.; Scheer, Adam Michael; Turner, Kevin M.; Yu, Eizadora T.; O'Bryan, Greg; Powell, Amy Jo; Gao, Connie W.

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  8. Variable-cycle reciprocating internal combustion engine

    SciTech Connect

    Johnston, R.P.

    1989-08-15

    This patent describes a variable cycle internal combustion engine. It comprises: a block the block having at least one cylinder chamber disposed therein; a pair of opposed pistons mounted in the cylinder chamber; a first rotating crankshaft and a second rotating crankshaft, each crankshaft connected to a different one of the pistons; means for synchronizing the speed and relative phase relationship of the crankshaft, the synchronizing means connected to at least one of the crankshafts; a harmonic gear drive assembly for selectively adjusting the rotation phase relationship between the crankshaft during operation of the engine. The harmonic gear drive assembly being connected to the synchronizing means.

  9. Ignition system improvements for internal combustion engines

    SciTech Connect

    Noble, G.A.

    1989-07-11

    This patent describes an ignition system for a spark ignition internal combustion engine. The system consists of: a pulse transformer having a primary winding and a secondary winding connected to a spark plug; driver means for supplying a voltage signal to the pulse transformer primary winding thereby including a high voltage signal and the secondary winding applied to the spark plug; controller means for providing control signals to the driver means, thereby causing the driver means to generate a voltage applied to the secondary winding, and discharge detection means for sensing the occurrence of electrical discharge across the spark plug and applying a discharge signal to the controller means for controlling the operation of the controller means; wherein the ignition system detects the existence of auto-ignition characterized by pressure and temperature fluctuations within the engine combustion chamber occurring after piston top dead center which departs from normal combustion, and further comprising timing means for sensing the position of the piston and for providing a timing signal, and wherein the controller means applies a hover voltage of a predetermined maximum level across the spark plug during a period of the cylinder cycle operating cycle after piston top dead center, the hover voltage applied at a level at which discharge across the spark plug occurs in the event that the combustion chamber is experiencing auto-ignition but does not occur if the conditions within the cylinder are of normal combustion, wherein the discharge detection means thereby provides an indication of the existence of auto-ignition.

  10. Glow plug for an internal combustion engine

    SciTech Connect

    Ito, N.; Atsumi, K.; Mizuno, N.; Kikuchi, T.

    1986-07-08

    A glow plug mounted in a combustion chamber of an internal combustion engine is described which consists of: (1) a heater support member projecting into the combustion chamber of the internal combustion engine, the heater support member being formed of a mixture containing alumina and silicon nitride; (2) a heater member affixed to the surface of the heater support member, the heater member being formed of a mixture containing molybdenum disilicate and silicon nitride, the heater support member and the heater member being integrally sintered; the heater support member being in the form of a rod, and the heater member covering in a U-shaped form the tip end face of the heater support member and the upper and lower face portions of the heater support member contiguous to the end face; (3) first, second and third lead wires for power supply embedded in the heater support member; one end of the first lead wire being connected embeddedly to one end portion of the heater member, one end of the second lead wire being connected embeddedly to the other end portion of the heater member and one end of the third lead wire being connected embeddedly to the central portion of the heater member, thereby forming two heater elements having substantially the same resistance value between the lead wires; (4) a power source; and (5) a power switching means for connecting the power source selectively between the lead wires for power supply according to the state of preheating in the combustion chamber, the power switching means having a switching relay contact for connecting the power source selectively between the third lead wire and the other two lead wires and between the other two lead wires.

  11. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion...

  12. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion...

  13. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion...

  14. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion...

  15. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion...

  16. Centrifugal governor for internal combustion engines

    SciTech Connect

    Ohnishi, M.

    1986-09-23

    A centrifugal governor is described for use with an internal combustion engine which consists of: a control rack for regulating the quantity of fuel to be supplied to the engine; flyweights radially displaceable in response to the rotational speed of the engine; a tension lever pivotable through an angle dependent upon the amount of radial displacement of the flyweights; an idling spring for urging the tension lever against radially outward displacement of the flyweights; a torque cam having a cam surface determining a fuel increment to be applied at the start of the engine; a sensor lever having one end engaged by the control rack, and another end adapted to engage with the cam surface of the torque cam; a cancelling spring interposed between the torque cam and the tension lever; a control lever; a floating lever interlocking with the control lever; and spring force adjusting means arranged at one end of the idling spring.

  17. Manifold intake arrangement for internal combustion engines

    SciTech Connect

    Heath, K.E.

    1988-09-27

    This patent describes an internal combustion engine, comprising: a combustion chamber having a piston disposed therein; a pressure chamber; a first intake valve means for providing selective communication between the pressure chamber and the combustion chamber; a second valve means for providing selective communication between the pressure chamber and a fuel and air mixture supply; exhaust valve means for providing selective communication between the combustion chamber and the atmosphere, the exhaust valve means opening during the exhaust stroke of the piston and allowing spent gases to be expelled therethrough and closing at the end of the exhaust stroke; an intake control means connected to the first valve means for opening the first valve means during the intake stroke of the piston after the exhaust valve means is closed and maintaining the first valve open during an initial portion of the compression stroke for pressurizing the pressure chamber during the initial portion of the compression stroke and for closing the first valve means during the remaining portion of the compression stroke; wherein the second valve means opens during the intake stroke of the piston a period of time after the opening of the first valve means and closes during the compression stroke of the piston.

  18. Combustion process in a spark ignition engine: dynamics and noise level estimation.

    PubMed

    Kaminski, T; Wendeker, M; Urbanowicz, K; Litak, G

    2004-06-01

    We analyze the experimental time series of internal pressure in a four cylinder spark ignition engine. In our experiment, performed for different spark advance angles, apart from the usual cyclic changes of engine pressure we observed additional oscillations. These oscillations are with longer time scales ranging from one to several hundred engine cycles depending on engine working conditions. Based on the pressure time dependence we have calculated the heat released per combustion cycle. Using the time series of heat release to calculate the correlation coarse-grained entropy we estimated the noise level for internal combustion process. Our results show that for a larger spark advance angle the system is more deterministic.

  19. An overview of NASA intermittent combustion engine research

    NASA Technical Reports Server (NTRS)

    Willis, E. A.; Wintucky, W. T.

    1984-01-01

    This paper overviews the current program, whose objective is to establish the generic technology base for advanced aircraft I.C. engines of the early 1990's and beyond. The major emphasis of this paper is on development of the past two years. Past studies and ongoing confirmatory experimental efforts are reviewed, which show unexpectly high potential when modern aerospace technologies are applied to inherently compact and balanced I.C. engine configurations. Currently, the program is focussed on two engine concepts the stratified-charge, multi-fuel rotary, and the lightweight two-stroke diesel. A review is given of contracted and planned high performance one-rotor and one-cylinder test engine work addressing several levels of technology. Also reviewed are basic supporting efforts, e.g., the development and experimental validation of computerized airflow and combustion process models, being performed in-house at Lewis Research Center and by university grants.

  20. Chemistry and the Internal Combustion Engine II: Pollution Problems.

    ERIC Educational Resources Information Center

    Hunt, C. B.

    1979-01-01

    Discusses pollution problems which arise from the use of internal combustion (IC) engines in the United Kingdom (UK). The IC engine exhaust emissions, controlling IC engine pollution in the UK, and some future developments are also included. (HM)

  1. Torque sensor for internal-combustion engine

    SciTech Connect

    Kay, I.W.; Lehrach, R.P.C.

    1987-09-01

    This patent describes an apparatus for providing a measure of the torque of an internal-combustion engine having a rotating crankshaft for connection to a load, the crankshaft undergoing acceleration/deceleration sub-cycles associated with respective firing intervals within an engine cycle. The sensor consists of: means for providing electrical signals indicating occurrence of particular angular positions of the crankshaft in an engine cycle; electronic signal processing means responsive to the signals indicative of a crankshaft angle for providing signals, N/sub i/, indicative of instantaneous sub-cyclic engine speed at each of a plurality of predetermined crankshaft angles in an engine cycle, the plurality of predetermined crankshaft angles including a respective pair of angles for each firing interval, the respective two crankshaft angles of each pair being spaced from one another by an angle corresponding with substantially one-half of a firing interval, for providing in response to the sub-cyclic engine speed signals, N/sub i/, further signals, ..delta..N/sub i/; representative of the average of the difference between instantaneous engine speeds of the two crank angles of each respective pair of crankshaft angles within an engine cycle, for providing signals, N/sub avg/, indicative of average engine speed, and for generating a torque signal, T, as a function of the average engine speed signal N/sub avg/, and the average instantaneous engine speed difference signal, ..delta..N/sub i/, and electrical utilization means having the torque signal, T, operatively connected as an input thereto.

  2. Energy Efficient Engine (E3) combustion system component technology performance report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) combustor effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent of this effort was to evolve a design that meets the stringent emissions and life goals of the E3, as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this effort was incorporated into the engine combustion hardware design. The advanced engine combustion system was then evaluated in component testing to verify the design intent. What evolved from this effort was an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3.

  3. Centrifugal governor for internal combustion engines

    SciTech Connect

    Ohkoshi, M.

    1987-04-14

    This patent describes a centrifugal governor for use with an internal combustion engine, comprising: a control rack for regulating the quantity of fuel to be supplied to the engine; flyweights radially displaceable in response to the rotational speed of the engine; a tension lever pivotable through an angle dependent upon the amount of radial displacement of the flyweights; a torque cam pivotable about and relative to a fulcrum shaft thereof and having a cam surface including a cam surface portion determining a fuel increment to be applied at the start of the engine; a sensor lever having one end engaged by the control rack; the sensor lever having another end disposed to engage with the cam surface portion of the torque cam when the engine is in a starting condition, to permit displacement of the control rack into a fuel increasing position for the start of the engine; and a cancelling spring interposed between the torque cam and the tension lever and urging the torque cam with a force dependent upon the angularity of the tension lever to cause pivoting of the torque cam about the fulcrum shaft thereof in a direction of disengaging the sensor lever from the cam surface portion of the torque cam. The improvement is described comprising biasing means for forcibly pivotally displacing, immediately before operation of a starter of the engine, the torque cam in one direction against the urging force of the cancelling spring to a predetermined position.

  4. High efficiency stoichiometric internal combustion engine system

    DOEpatents

    Winsor, Richard Edward; Chase, Scott Allen

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  5. Studies on pressure-gain combustion engines

    NASA Astrophysics Data System (ADS)

    Matsutomi, Yu

    Various aspects of the pressure-gain combustion engine are investigated analytically and experimentally in the current study. A lumped parameter model is developed to characterize the operation of a valveless pulse detonation engine. The model identified the function of flame quenching process through gas dynamic process. By adjusting fuel manifold pressure and geometries, the duration of the air buffer can be effectively varied. The parametric study with the lumped parameter model has shown that engine frequency of up to approximately 15 Hz is attainable. However, requirements for upstream air pressure increases significantly with higher engine frequency. The higher pressure requirement indicates pressure loss in the system and lower overall engine performance. The loss of performance due to the pressure loss is a critical issue for the integrated pressure-gain combustors. Two types of transitional methods are examined using entropy-based models. An accumulator based transition has obvious loss due to sudden area expansion, but it can be minimized by utilizing the gas dynamics in the combustion tube. An ejector type transition has potential to achieve performance beyond the limit specified by a single flow path Humphrey cycle. The performance of an ejector was discussed in terms of apparent entropy and mixed flow entropy. Through an ideal ejector, the apparent part of entropy increases due to the reduction in flow unsteadiness, but entropy of the mixed flow remains constant. The method is applied to a CFD simulation with a simple manifold for qualitative evaluation. The operation of the wave rotor constant volume combustion rig is experimentally examined. The rig has shown versatility of operation for wide range of conditions. Large pressure rise in the rotor channel and in a section of the exhaust duct are observed even with relatively large leakage gaps on the rotor. The simplified analysis indicated that inconsistent combustion is likely due to insufficient

  6. Programmed electronic advance for engines

    SciTech Connect

    Dogadko, P.

    1987-03-03

    An ignition advance control is described for an internal combustion engine including a crankshaft, a throttle control, and at least one cylinder, the ignition advance control comprising a spark ignition circuit associated with the cylinder and including trigger means operative to cause an ignition spark, means for generating a control pulse associated with the cylinder, latch means for enabling the trigger means in response to generation of the control pulse, means for generating a constant plurality of sequentially occurring electrical reference pulses during each revolution of the crankshaft, means for counting the reference pulses developed during each revolution of the crankshaft, means for firing the enabled trigger means in response to the counting means counting a predetermined number of the reference pulses to cause the ignition spark at a predetermined ignition point in each revolution of the crankshaft, means for sensing the position of the throttle control, and means responsive to the throttle sensing means for varying the predetermined number of reference pulses solely in accordance with the position of the throttle control to vary the predetermined ignition point as appropriate for the position of the throttle control.

  7. Materials performance in advanced combustion systems

    SciTech Connect

    Natesan, K.

    1992-12-01

    A number of advanced technologies are being developed to convert coal into clean fuels for use as feedstock in chemical plants and for power generation. From the standpoint of component materials, the environments created by coal conversion and combustion in these technologies and their interactions with materials are of interest. The trend in the new or advanced systems is to improve thermal efficiency and reduce the environmental impact of the process effluents. This paper discusses several systems that are under development and identifies requirements for materials application in those systems. Available data on the performance of materials in several of the environments are used to examine the performance envelopes for materials for several of the systems and to identify needs for additional work in different areas.

  8. Ignition timing control method for internal combustion engines

    SciTech Connect

    Otobe, T.; Suzuki, Y.; Kimura, S.; Ohsawa, N.

    1987-09-29

    This patent describes an ignition timing control method for an internal combustion engine wherein ignition timing of the engine is controlled in response to operating conditions of the engine to appropriate values for the operating conditions of the engine, based upon advance angle control data read from memory means in which they are stored. The method comprises the steps of: (1) storing beforehand correction values as a function of the rotational speed of the engine and an output voltage from a variable voltage creating means which is humanly adjustable to a voltage value appropriate to each individual engine from the outside of an ignition timing control system to which the method is applied, after mass production of the system; (2) detecting the output voltage from the variable voltage creating means; (3) detecting the rotational speed of the engine; (4) reading one of the correction values, which corresponds to the detected output voltage and the detected rotational speed of the engine; and (5) arithmetically correcting the ignition timing which is determined beforehand in response to operating conditions of the engine, by the use of the read one correction value.

  9. Centrifugal governor for internal combustion engines

    SciTech Connect

    Ohnishi, M.

    1986-08-12

    A centrifugal governor is described for use with an internal combustion engine, comprising: a control rack for regulating the quantity of fuel to be supplied to the engine; flyweights radially displaceable in response to the rotational speed of the engine; a tension lever pivotable about a stationary fulcrum in response to the radial displacement of the flyweights; a torque cam having a cam surface determining a fuel increment to be applied at the start of the engine; a sensor lever having one end engaged by the control rack and another end disposed for engagement with the cam surface of the torque cam, the sensor lever being adapted to engage with the cam surface of the torque cam when the engine is in a starting condition, to cause displacement of the control rack into a fuel increasing position for the start of the engine; and spring means interposed between the torque cam and the tension lever and urging the torque cam with a force dependent upon the angularity of the tension lever in a direction of disengaging the sensor lever from the cam surface of the torque cam; the spring means comprising first and second springs, one of the first and second springs being formed of a thermosensitive material having a smaller spring constant at a low temperature below a predetermined value, and a larger spring constant at a temperature above the predetermined value; and the first and second springs of the spring means comprising coiled springs disposed concentrically with each other.

  10. Engine valve operating system for an internal combustion engine

    SciTech Connect

    Hara, S.; Matsumoto, Y.; Matayoshi, Y.

    1986-02-04

    This patent describes an engine valve operating system for an internal combustion engine. The system consists of: a driving cam rotatable in timed relation to engine revolution; a rocker arm having a first end section drivingly connected to an engine valve and a second end section drivably connected to the driving cam; an elongated lever pivoted at a first end section and disposed in fulcrum contact with the rocker arm; an apparatus for biasing the rocker arm and the lever away from each other; and a hydraulic actuator having a movable end section which is in contact with a second end section of the lever and movable to control the pivotal location of the lever in accordance with an engine operating condition.

  11. Piston for an internal combustion engine

    SciTech Connect

    Tokoro, N.

    1988-11-22

    This patent describes a piston for an internal combustion engine comprising: a crown having a circumferentially extending oil-ring groove in an outer portion of the crown, the oil-ring groove having slits on thrust and thurst-opposing sides of the piston; a skirt integrally connected to the crown and extending downward, the skirt having a circumferentially extending faucet rib on an inside surface of a lower portion of the skirt; a pair of opposed bosses protruding inward from an inside surface of the piston and extending in a direction perpendicular with a thrust and thurst-opposing direction of the piston, the bosses being opposed to each other.

  12. A hybrid 2-zone/WAVE engine combustion model for simulating combustion instabilities during dilute operation

    SciTech Connect

    Edwards, Kevin Dean; Wagner, Robert M; Chakravarthy, Veerathu K; Daw, C Stuart; Green Jr, Johney Boyd

    2006-01-01

    Internal combustion engines are operated under conditions of high exhaust gas recirculation (EGR) to reduce NO x emissions and promote enhanced combustion modes such as HCCI. However, high EGR under certain conditions also promotes nonlinear feedback between cycles, leading to the development of combustion instabilities and cyclic variability. We employ a two-zone phenomenological combustion model to simulate the onset of combustion instabilities under highly dilute conditions and to illustrate the impact of these instabilities on emissions and fuel efficiency. The two-zone in-cylinder combustion model is coupled to a WAVE engine-simulation code through a Simulink interface, allowing rapid simulation of several hundred successive engine cycles with many external engine parametric effects included. We demonstrate how this hybrid model can be used to study strategies for adaptive feedback control to reduce cyclic combustion instabilities and, thus, preserve fuel efficiency and reduce emissions.

  13. Engine combustion control with ignition timing by pressure ratio management

    SciTech Connect

    Matekunas, F.A.

    1986-11-18

    This patent describes an ignition timing control for an internal combustion engine of the type having a combustion chamber, a rotating crankshaft and ignition apparatus for the combustion chamber. The control comprises in combination: means responsive to combustion chamber pressure to generate signals for a combustion event indicating combustion pressure and motored pressure at a first predetermined crankshaft rotational angle during combustion and at a second predetermined crankshaft rotational angle at substantially complete combustion; means effective to compute, from the signals, first and second pressure ratios of combustion pressure to motored pressure at the first and second crankshaft rotational angles, respectively; and means responsible to the last means to adjust the ignition timing to maintain a predetermined ratio between the first and second pressure ratios each decreased by one, whereby combustion timing is controlled in closed loop to an MBT value.

  14. Statistics of indicated pressure in combustion engine.

    NASA Astrophysics Data System (ADS)

    Sitnik, L. J.; Andrych-Zalewska, M.

    2016-09-01

    The paper presents the classic form of pressure waveforms in burn chamber of diesel engine but based on strict analytical basis for amending the displacement volume. The pressure measurement results are obtained in the engine running on an engine dynamometer stand. The study was conducted by a 13-phase ESC test (European Stationary Cycle). In each test phase are archived 90 waveforms of pressure. As a result of extensive statistical analysis was found that while the engine is idling distribution of 90 value of pressure at any value of the angle of rotation of the crankshaft can be described uniform distribution. In the each point of characteristic of the engine corresponding to the individual phases of the ESC test, 90 of the pressure for any value of the angle of rotation of the crankshaft can be described as normal distribution. These relationships are verified using tests: Shapiro-Wilk, Jarque-Bera, Lilliefors, Anderson-Darling. In the following part, with each value of the crank angle, are obtain values of descriptive statistics for the pressure data. In its essence, are obtained a new way to approach the issue of pressure waveform analysis in the burn chamber of engine. The new method can be used to further analysis, especially the combustion process in the engine. It was found, e.g. a very large variances of pressure near the transition from compression to expansion stroke. This lack of stationarity of the process can be important both because of the emissions of exhaust gases and fuel consumption of the engine.

  15. Fuel injection system for internal combustion engines

    SciTech Connect

    Yamaguchi, S.

    1986-10-28

    A fuel injection system is described for an internal combustion engine, comprising: (a) a fuel injection pump driven by the engine for fuel injection thereto and including a plunger reciprocably movable at a non-uniform speed and a control sleeve slidably fitted on the plunger; (b) first drive means operatively connected with the plunger for rotating the latter to thereby adjust the effective stroke of the plunger; (c) second drive means operatively connected with the control sleeve for displacing the latter in an axial direction to thereby adjust the pre-stroke of the control sleeve; (d) an operation sensor for detecting operating conditions of the engine; (e) a position sensor for detecting a position of the control sleeve; (f) first arithmetic means responsive to the engine operating conditions detected by the operation sensor, for computing an object injection quantity; (g) second arithmetic means responsive to the position of the control sleeve detected by the position sensor, for computing an object pre-stroke of the plunger; (h) third arithmetic means responsive to the engine operating conditions detected and the position of the control sleeve detected, for computing a correction amount; (i) first control means responsive to the correction amount computed by the third arithmetic means, for correcting the object injection quantity and for delivering a control signal to the first drive means; and (j) second control means responsive to the object injection quantity computed by the second arithmetic means, for delivering a control signal to the second drive means.

  16. Internal combustion engine with balancing forces

    SciTech Connect

    Fisher, M.A.

    1990-07-10

    This patent describes an internal combustion engine of the opposed cylinder type. It comprises: a crankshaft and at least one set of pistons movably connected thereto. Each piston of the one set is reciprocally mounted within a separate corresponding cylinder and rotatably drive the crankshaft during a power stroke thereof, the one set of pistons including at least a first piston and cylinder assembly mounted on one side of the crankshaft and at least a second and a third piston and cylinder assembly mounted on the other side of the crankshaft in directly opposed relation to the first piston and cylinder assembly, each of the cylinders of the second and third piston and cylinder assemblies comprising one half the displacement volume of the cylinder of the first piston and cylinder assembly, whereby vibration of the engine is substantially reduced at all running speeds.

  17. Hydrogen-fueled internal combustion engines.

    SciTech Connect

    Verhelst, S.; Wallner, T.; Energy Systems; Ghent Univ.

    2009-12-01

    The threat posed by climate change and the striving for security of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Taking a prominent place in these strategic plans is hydrogen as a future energy carrier. A number of manufacturers are now leasing demonstration vehicles to consumers using hydrogen-fueled internal combustion engines (H{sub 2}ICEs) as well as fuel cell vehicles. Developing countries in particular are pushing for H{sub 2}ICEs (powering two- and three-wheelers as well as passenger cars and buses) to decrease local pollution at an affordable cost. This article offers a comprehensive overview of H{sub 2}ICEs. Topics that are discussed include fundamentals of the combustion of hydrogen, details on the different mixture formation strategies and their emissions characteristics, measures to convert existing vehicles, dedicated hydrogen engine features, a state of the art on increasing power output and efficiency while controlling emissions and modeling.

  18. Method for controlling an internal combustion engine

    SciTech Connect

    Krebs, S.; Achleitner, E.

    1993-07-13

    In a method for controlling an internal combustion engine having cylinders operating in cycles and an intake tube for intake air, which includes determining a fuel mass to be injected into each cylinder for each cycle as a function of operating parameters of the internal combustion engine by reading a basic fuel value out of a basic family of characteristics and correcting the basic fuel value as a function of a temperature of the intake air, and multiplying the basic fuel value by a correction factor FK = A/B, wherein the denominator B is a temperature value, the improvement is described which comprises: selecting the variables of the basic family of characteristics as a pressure in the intake tube and an rpm, and reading a correction temperature contained in the temperature value out of a family of temperature characteristics in dependence on a variable dependent on an air flow and of a heating temperature being determinative for heating up the intake air in the intake tube.

  19. Internal combustion engine using premixed combustion of stratified charges

    DOEpatents

    Marriott, Craig D.; Reitz, Rolf D. (Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  20. Device for controlling ignition timing in internal combustion engine

    SciTech Connect

    Tanaka, A.

    1988-01-12

    A device for controlling ignition timing in an internal combustion engine is described comprising: a. combustion state detection means disposed in the vicinity of the combustion chamber of each cylinder of an internal combustion engine for detecting the state of combustion in the combustion chamber, b. crankshaft angle detection means disposed in the vicinity of the rotating member of the internal combustion engine for detecting the angular position of a crankshaft of the internal combustion engine, c. maximum cylinder pressure angle calculation means which receives the outputs of the combustion state detection means and the crankshaft angle detection means and calculates the maximum cylinder pressure angle, d. cylinder pressure calculation means which receives the output of the combustion state detection means and calculates the cylinder pressure, e. ignition timing calculation means which receives the outputs of the crankshaft angle detection means, the maximum cylinder pressure angle calculation means and the cylinder pressure calculation means and calculates the ignition timing such that the maximum cylinder pressure angle converges on a target angle, and f. ignition means which receives the output of the ignition timing calculation means and ignites a fuel and air mixture in the combustion chamber, whereby the ignition timing calculation means detecting transient conditions in the engine driving operation on the basis of the output of the cylinder pressure calculation means.

  1. Supplemental air valve for internal combustion engine

    SciTech Connect

    Pankow, C.W.

    1987-12-29

    A valve for attachment in the PCV system of an internal combustion engine for regulating the admission of supplemental air to the crank case blow-by return, comprising: (a) a valve body defining a bore, the body having an inlet and an outlet connection defining a passageway through the valve for the blow-by return, the body further defining a port for air; (b) a valve member reciprocal within the bore having a piston member dividing at least a portion of the bore into two pressure chambers, the pressure chambers having means for connection of each to a source of engine vacuum; (c) the valve member being shiftable from and open position permitting air to enter through the port to the passageway and having a closed position blocking admission of air through the port to the passageway; and (d) resilient means normally urging the valve body to the closed position, the resilient means being selectively adjustable to provide a predetermined biasing force whereby the piston is shiftable to the open position in response to changes in engine vacuum to admit supplemental air to the engine.

  2. Fuel injection pump for internal combustion engines

    SciTech Connect

    Kato, Y.; Suzuki, S.; Inoue, A.

    1987-03-24

    A fuel injection pump is described for an internal combustion engine having fuel injection nozzles, comprising: a plunger disposed to be rotated and reciprocated; cam means having a camming surface operatively coupled with the plunger and disposed to be rotatively driven for causing rotation and reciprocation of the plunger to cause same to pressurize drawn fuel and distribute the pressurized fuel, to thereby deliver the pressurized fuel to the engine; the camming surface of the cam means having such a configuration as to include a first angular region for causing the plunger to be lifted for pressurizing drawn fuel during idling of the engine at a first, substantially constant velocity. It has a second angular region subsequent to the first angular region for causing the plunger to be lifted for pressurizing drawn fuel at a second velocity higher than the first velocity; a plurality of delivery valves each disposed such that fuel pressurized by the plunger is supplied to the engine through the delivery valve; and injection pipes connected, respectively, to the delivery valves to feed pressurized fuel discharged from the respective delivery valves; the delivery valves each being adapted to maintain a residual pressure within a corresponding one of the injection pipes at a value that enables to attain injection initiation pressure within an extent of rotation of the cam means corresponding to the first angular region.

  3. Advanced Materials for Mercury 50 Gas Turbine Combustion System

    SciTech Connect

    Price, Jeffrey

    2008-09-30

    Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector

  4. 74. ARAII. Dr. William Zinn of combustion engineering company and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. ARA-II. Dr. William Zinn of combustion engineering company and others at controls of SL-1. August 8, 1959. Ineel photo no. 59-4109. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  5. Distributed ignition method and apparatus for a combustion engine

    SciTech Connect

    Willi, Martin L.; Bailey, Brett M.; Fiveland, Scott B.; Gong, Weidong

    2006-03-07

    A method and apparatus for operating an internal combustion engine is provided. The method comprises the steps of introducing a primary fuel into a main combustion chamber of the engine, introducing a pilot fuel into the main combustion chamber of the engine, determining an operating load of the engine, determining a desired spark plug ignition timing based on the engine operating load, and igniting the primary fuel and pilot fuel with a spark plug at the desired spark plug ignition timing. The method is characterized in that the octane number of the pilot fuel is lower than the octane number of the primary fuel.

  6. Supercharger control system for internal combustion engines

    SciTech Connect

    Nagase, H.; Hirayama, T.

    1986-01-21

    This patent describes a supercharger control system for an internal combustion engine. The system has a throttle valve with a throttle operating lever, an engine air inlet passage, and a venturi-type carburetor. It consists of: a supercharger located in the engine air inlet passage upstream of the throttle valve, the supercharger being driven by the engine, a bypass within the engine inlet passage around the supercharger, a control valve with a control lever located within the bypass to control air flow, a diaphragm device, a first side of the diaphragm device being in communication with the engine inlet passage at the exit of the supercharger, a second side of the diaphragm being in communication with the venturi carburetor, a valve control linkage being constructed and arranged to open the control valve with increased vacuum in the first side of the diaphragm, spring means biasing the diaphragm to open the control valve, an activation lever with a stopper protrustion, the activation lever being pivotally mounted about the throttle valve, a first stop pin in the intake passage wall, a second stop pin on the throttle operating lever to selectively engage the activation lever, a regulation lever pivotally mounted about the control valve, a third stop pin on the control lever to selectively engage the regulating lever, an activation linkage connecting the activation lever and the regulating lever so as to create reciprocating motion, and spring means biasing both the regulating lever against the third stop pin when the control valve is in the fully open position and the stopper protrusion is against the first stop pin.

  7. Development of advanced combustion technology for medium- and high-speed natural gas engines. Final report, January 1985-February 1989. Section I. Volume 5

    SciTech Connect

    Snyder, W.E.

    1989-02-01

    The objective of this phase of the work was to quantify the effects of engine and operating variables on the performance of a commercial multi-cylinder pre-chamber natural gas engine. Of particular interest were the oxides of nitrogen (NOx) and the brake specific fuel consumption (BSFC). Data for thirteen series of tests are presented and the relationship between the variables discussed. The major variables and their effects are as follows: Increased Relative Air-Fuel Ratio--Increased BSFC and decreased NOx; Advanced Timing--Decreased BSFC and increased NOx; Changed Pre-chamber Design--Very little effect on either BSFC or NOx when the delay within the pre-chamber is considered; Increased Intercooler Water Temperature--Decreased BSFC and increased NOx; Dry Exhaust Manifold--Very small effect on either BSFC or NOx Increased exhaust gas temperature; Increased Compression Ratio--Decreased BSFC and increased NOx; and Ebullient Cooling--Decreased BSFC and slightly increased NOx. In every case, as noted above, any change which increased the BSFC also decreased the NOx, and vice versa; optimum performance is therefore a balance between all of these variables.

  8. Compounded turbocharged rotary internal combustion engine fueled with natural gas

    SciTech Connect

    Jenkins, P.E.

    1992-10-15

    This patent describes a compounded engine. It comprises: a first Wankel engine having a housing with a trochoidal inner surface containing a generally triangular shaped rotor, the engine containing a fuel supply system suitable for operating the engine with natural gas as a fuel; a turbocharge compressing air for combustion by the engine, the turbocharger being driven by the exhaust gases which exit from the engine; a combustion chamber in fluid communication with the exhaust from the engine after that exhaust has passed through the turbocharger, the chamber having an ignition device suitable for igniting hydrocarbons in the engine exhaust, whereby the engine timing, and the air and fuel mixture of the engine are controlled so that when the engine exhaust reaches the combustion chamber the exhaust contains a sufficient amount of oxygen and hydrocarbons to enable ignition and combustion of the engine exhaust in the combustion chamber without the addition of fuel or air, and whereby the engine operating conditions are controlled to vary the performance of the secondary combustor; and a controllable ignition device to ignite the exhaust gases in the combustion chamber at predetermined times.

  9. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    DOEpatents

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  10. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    SciTech Connect

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  11. Two-stroke internal combustion engine

    SciTech Connect

    Ancheta, A.D.

    1986-03-18

    A two-stroke supercharged multi-cylinder internal combustion engine is described comprising in combination a cylinder block having cylinder bores formed therein. A cylinder head on an upper end of the cylindrical bores defines a main combustion chamber, a piston assembly in each of the cylinder bores and including a piston have a domed head and a connecting rod operatively connected to the piston for reciprocating same between top dead center and bottom dead center. The piston includes means to reduce and control the escape of lubricating oil therepast. The means includes the piston assembly having a piston skirt extending from the head, a pair of diametrically opposed wrist pin bosses in the skirt below the domed head, a wrist pin mounted within the bosses with a retainer ring installed in an annular groove formed in an outermost edge portion of each of the bosses adjacent outer ends of the wrist pin for restricting endwise movement of the wrist pin. The wrist pin operatively connects the connecting rod to the piston, sealing ''O'' rings having high temperature resistance properties installed in an annular groove formed in each of the bosses of the piston adjacent to each end portion of the wrist pin after assembly to prevent the escape and discharge of lubricating oil therepast, at least two compression piston rings situated in spaced and parallel grooves in the head of the piston above the wrist pin bosses and at least one oil scraper ring mounted within an annular groove around the skirt.

  12. Fuel injection pump for internal combustion engines

    SciTech Connect

    Kato, Y.

    1987-08-11

    A fuel injection pump for an internal combustion engine is described which consists of: a plunger disposed to be rotated and reciprocated; and cam means having a camming surface operatively coupled with the plunger and disposed to be rotatively driven for causing rotation and reciprocation of the plunger to cause same to pressurize drawn fuel and distribute the pressurized fuel, to thereby deliver the pressurized fuel to the engine; the camming surface of the cam means having such a configuration as to include a first angular region for causing the plunger to be lifted for pressurizing drawn fuel during idling of the engine at a first, substantially constant velocity, and a second angular region subsequent to the first angular region for causing the plunger to be lifted for pressurizing drawn fuel at a second velocity higher than the first velocity, and a third angular region preceding the first angular region, for causing the plunger to be lifted for pressurizing drawn fuel at a velocity higher than the first velocity, but lower than the second velocity.

  13. An Extended Combustion Model for the Aircraft Turbojet Engine

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Andres-Mihăilă, Mihai; Matei, Pericle Gabriel

    2014-08-01

    The paper consists in modelling and simulation of the combustion in a turbojet engine in order to find optimal characteristics of the burning process and the optimal shape of combustion chambers. The main focus of this paper is to find a new configuration of the aircraft engine combustion chambers, namely an engine with two main combustion chambers, one on the same position like in classical configuration, between compressor and turbine and the other, placed behind the turbine but not performing the role of the afterburning. This constructive solution could allow a lower engine rotational speed, a lower temperature in front of the first stage of the turbine and the possibility to increase the turbine pressure ratio by extracting the flow stream after turbine in the inner nozzle. Also, a higher thermodynamic cycle efficiency and thrust in comparison to traditional constant-pressure combustion gas turbine engines could be obtained.

  14. Unit injector for internal combustion engines

    SciTech Connect

    Hiyama, Y.; Nozaki, S.

    1987-06-23

    This patent describes a unit fuel injector for an internal combustion engine, including: the improvement: a solenoid valve is arranged across the fuel overflow passage for closing to determine the injection timing and the injection quantity; the communication passage means comprises a first longitudinal slit for communicating the fuel intake passage with the plunger chamber, a second longitudinal slit for communicating the fuel overflow passage with the plunger chamber, and a circumferentially extending suction slit communicating with the first longitudinal slit and registrable with the fuel intake passage when the plunger is in an extreme position remote from the plunger chamber; the second longitudinal slit axially extending beyond the fuel overflow passage toward an opposite end of the plunger remote from the plunger chamber so as to maintain communication of the fuel overflow passage with the plunger chamber throughout the whole stroke of the plunger when the second longitudinal slit is circumferentially aligned with the fuel overflow passage.

  15. Crankcase for an internal combustion engine

    SciTech Connect

    Yasutake, K.

    1986-02-04

    This patent describes a crankcase for an internal combustion engine having a crankshaft and at least one cylinder with an axial centerline intersecting an axial centerline of the crankshaft, the crankcase being split at a plane perpendicular to the axis of the crankshaft. The crankcase consists of: a crankshaft bearing wall having upper and lower portions on opposite sides of a plane perpendicular to the cylinder axial centerline through the axis of the crankshaft; blind holes extending into the crankshaft bearing wall into both the upper and lower portions adjacent and past either side of the bearing hole; threaded bolts disposed in the blind holes extending from a top of the unitary bearing wall to the threaded end portions of the blind holes and screwed together with the holes with the bolts in tension.

  16. Balancer device for internal combustion engines

    SciTech Connect

    Oshiro, N.; Futakuchi, Y.

    1986-10-21

    This patent describes an internal combustion engine having at least two cylinders arranged in the shape of a ''V'' at an included angle other than 90/sup 0/, pistons in the cylinders, a crankshaft supported for rotation, and connecting rods connecting each of the pistons with the crankshaft. The connecting rods are offset in the axial direction of the crankshaft. The improvement described here consists of 1.) a balancer device comprising only one shaft member supported for rotation about an axis parallel to the axis of rotation of the crankshaft and a means for driving the shaft member at the same speed as the crankshaft but in the opposite direction; 2.) a first weight on the shaft member for balancing at least a portion of the force of first order which is generated by the reciprocal movements of the pistons; and 3.) further weights formed on the shaft member for eliminating the force couple generated from the axial offset of the connecting rods.

  17. Lubricating system for an internal combustion engine

    SciTech Connect

    Ishikawa, T.

    1988-12-27

    This patent describes a lubricating system for an internal combustion engine having at least one cylinder, crankcase, a crankshaft, a balancer shaft rotated by the crankshaft through gears, and an oil pump, comprising: a cover secured to the crankcase to form a part of the crankcase, the crankshaft being supported by a first bearing provided in the cover and by a second bearing provided in the crankcase; a first oil passage provided in the crankcase and cover and extending from an opening at a bottom of the crankcase to an inlet of the oil pump; a second oil passage provided in the cover and extending from an outlet of the oil pump to a first opening which opens to a journal of the crankshaft; a third oil passage provided in the crankshaft and extending from a second opening corresponding to the first opening to third openings which open to the first and second bearings and to connecting rods at crankpins of the crankshaft.

  18. Ignition apparatus for internal combustion engine

    SciTech Connect

    Imoto, K.; Katada, H.

    1986-10-07

    An ignition apparatus is described for an internal combustion engine having a crankshaft and a camshaft coupled to the crankshaft to be rotated thereby, comprising: crankshaft position signal generating means for detecting that the crankshaft has rotated to a predetermined angular position and for generating crankshaft position signals in response to the detection; camshaft position signal generating means for detecting that the camshaft has rotated to a predetermined angular position and for generating camshaft position signals in response to the detection; command signal generating means coupled to receive the crankshaft position signals, for generating ignition command signals in response to the crankshaft position signals; and ignition circuit means for generating a high ignition voltage in response to the ignition command signals.

  19. V-type internal combustion engine

    SciTech Connect

    Tamba, S.; Ueki, N.

    1987-10-06

    A V-type internal combustion engine is described comprising: a crankcase; a crankshaft having a central axis and supported in the crankcase. The governor means are located within the crankcase. Cylinders each include a cylinder skirt portion projecting into the crankcase. The cylinders are arranged in a V-shape and have center axes offset from each other in a direction along the crankshaft central axis and a rotational speed transmission system for transmitting the rotational speed of a governor gear to a governor lever shaft. The rotational speed transmission system engages a rearward side of the cylinder skirt portion of a cylinder spaced forward from a rearmost cylinder as viewed along the crankshaft central axis.

  20. Combustion characterization of methylal in reciprocating engines

    SciTech Connect

    Dodge, L.; Naegeli, D.

    1994-06-01

    Methylal, CH{sub 3}OCH{sub 2}OCH{sub 3}, also known as dimethoxy-methane, is unique among oxygenates in that it has a low autoignition temperature, no carbon-carbon bonds, and is soluble in middle distillate fuels. Because of these properties, methylal has been shown to be a favorable fuel additive for reducing smoke in diesel engines. Recent measurements of ignition delay times indicate that methylal has a cetane number in the range of 45-50, which is compatible with diesel fuels. Engine tests have shown that adding methylal to diesel fuel significantly reduces smoke emissions. Gaseous emissions and combustion efficiencies obtained with methylal/diesel fuel blends remain essentially the same as those measured using neat diesel fuel. Lubricity measurements of methylal/diesel fuel blends with a ball on cylinder lubrication evaluator (BOCLE) show that methylal improves the lubricity of diesel fuel. Even though additions of methylal lower the fuel viscosity, the results of the BOCLE tests indicate that the methylal/diesel fuel blends cause less pump wear than neat diesel fuel. The one drawback is that methylal has a low boiling point (42{degrees}C) and a relatively high vapor pressure. As a result, it lowers the flash point of diesel fuel and causes a potential fuel tank flammability hazard. One solution to this increased volatility is to make polyoxymethylenes with the general formula of CH{sub 3}O(CH{sub 2}O){sub x}CH{sub 3} where x > 2. The molecules are similar to methylal, but have higher molecular weights and thus higher viscosities and substantially lower vapor pressures. Therefore, their flash points will be compatible with regular diesel fuel. The polyoxymethylenes are expected to have combustion properties similar to methylal. It is theorized that by analogy with hydrocarbons, the ignition quality (i.e., cetane number) of the polyoxymethylenes will be better than that of methylal.

  1. Thermal and Environmental Barrier Coatings for Advanced Propulsion Engine Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. For future high performance engines, the development of advanced ceramic barrier coating systems will allow these coatings to be used to simultaneously increase engine operating temperature and reduce cooling requirements, thereby leading to significant improvements in engine power density and efficiency. In order to meet future engine performance and reliability requirements, the coating systems must be designed with increased high temperature stability, lower thermal conductivity, and improved thermal stress and erosion resistance. In this paper, ceramic coating design and testing considerations will be described for high temperature and high-heat-flux engine applications in hot corrosion and oxidation, erosion, and combustion water vapor environments. Further coating performance and life improvements will be expected by utilizing advanced coating architecture design, composition optimization, and improved processing techniques, in conjunction with modeling and design tools.

  2. Plasma Assisted Combustion: Fundamental Studies and Engine Applications

    NASA Astrophysics Data System (ADS)

    Lefkowitz, Joseph K.

    Successful and efficient ignition in short residence time environments or ultra-lean mixtures is a key technological challenge for the evolution of advanced combustion devices in terms of both performance and efficiency. To meet this challenge, interest in plasma assisted combustion (PAC) has expanded over the past 20 years. However, understanding of the underlying physical processes of ignition by plasma discharge remains elementary. In order to shed light on the key processes involved, two main thrusts of research were undertaken in this dissertation. First, demonstration of the applicability of plasma discharges in engines and engine-like environments was carried out using a microwave discharge and a nanosecond repetitively pulsed discharge in an internal combustion engine and a pulsed detonation engine, respectively. Major conclusions include the extension of lean ignition limits for both engines, significant reduction of ignition time for mixtures with large minimum ignition energy, and the discovery of the inter-pulse coupling effect of nanosecond repetitively pulsed (NRP) discharges at high frequency. In order to understand the kinetic processes that led to these improvements, the second thrust of research directly explored the chemical kinetic processes of plasma discharges with hydrocarbon fuels. For this purpose, a low pressure flow reactor with a NRP dielectric barrier discharge cell was assembled. The discharge cell was fitted with a Herriott type multipass mirror arrangement, which allowed quantitative laser absorption spectroscopy to be performed in situ during the plasma discharge. Experiments on methane and ethylene mixtures with oxygen, argon, and helium revealed the importance of low temperature oxidation pathways in PAC. In particular, oxygen addition reactions were shown to be of primary importance in the oxidation of these small hydrocarbons in the temperature range of 300-600 K. Kinetic modeling tools, including both a coupled plasma and

  3. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis.

    PubMed

    Daw, C S; Finney, C E A; Kaul, B C; Edwards, K D; Wagner, R M

    2015-02-13

    Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel economy. One new advanced engine strategy ustilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy in the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities. PMID:25548262

  4. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis

    SciTech Connect

    Daw, C. Stuart; Finney, Charles E. A.; Kaul, Brian C.; Edwards, Kevin Dean; Wagner, Robert M.

    2014-12-29

    Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel-economy. One new advanced engine strategy utilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy in the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities.

  5. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis.

    PubMed

    Daw, C S; Finney, C E A; Kaul, B C; Edwards, K D; Wagner, R M

    2015-02-13

    Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel economy. One new advanced engine strategy ustilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy in the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities.

  6. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis

    DOE PAGES

    Daw, C. Stuart; Finney, Charles E. A.; Kaul, Brian C.; Edwards, Kevin Dean; Wagner, Robert M.

    2014-12-29

    Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel-economy. One new advanced engine strategy utilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy inmore » the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities.« less

  7. Variable compression ratio device for internal combustion engine

    DOEpatents

    Maloney, Ronald P.; Faletti, James J.

    2004-03-23

    An internal combustion engine, particularly suitable for use in a work machine, is provided with a combustion cylinder, a cylinder head at an end of the combustion cylinder and a primary piston reciprocally disposed within the combustion cylinder. The cylinder head includes a secondary cylinder and a secondary piston reciprocally disposed within the secondary cylinder. An actuator is coupled with the secondary piston for controlling the position of the secondary piston dependent upon the position of the primary piston. A communication port establishes fluid flow communication between the combustion cylinder and the secondary cylinder.

  8. Fuel injection for an internal combustion engine

    SciTech Connect

    Long, M.W.; Fry, C.B.; Rix, D.M.; Krivoy, R.

    1991-12-17

    This paper describes a fuel injector for use in an internal combustion engine. It comprises: an injector body having a first cylindrical bore and a second cylindrical bore, the second cylindrical bore being coaxially positioned relative to and in communication with the first cylindrical bore; control means for metering a predetermined volume of fuel at high pressure; a metering barrel having a metering chamber for receiving the predetermined volume of fuel at high pressure, the metering barrel being connected to the injector body; a timing plunger chamber forming part of the second cylindrical bore and being in continuous fluid communication with the control means for metering the predetermined volume of fuel; a timing plunger adapted for movement within the timing plunger chamber; a coupling member adapted for movement within the first cylindrical bore; the coupling member and the timing plunger being in abutting relationship and being free to move independently within the first cylindrical bore and the second cylindrical bore respectively, the timing plunger motion being controlled by the control means to meter the predetermined volume of fuel; and an injection nozzle in communication with the metering plunger chamber for delivering the predetermined volume of fuel into the engine.

  9. Advanced Diagnostics for High Pressure Spray Combustion.

    SciTech Connect

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  10. Advanced rotary engine studies

    NASA Technical Reports Server (NTRS)

    Jones, C.

    1980-01-01

    A review of rotary engine developments relevant to a stratified charge rotary aircraft engine is presented. Advantages in module size and weight, fuel efficiency, reliability, and multi-fuel capability are discussed along with developments in turbocharging, increased mean effective pressure, improved apex seal/trochoid wear surfacing materials, and high strength and temperature aluminum casting alloys. A carbureted prototype aircraft engine is also described.

  11. Signal Processing Methods for Liquid Rocket Engine Combustion Spontaneous Stability and Rough Combustion Assessments

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Casiano, Matthew; Fischbach, Sean; Hulka, James R.

    2012-01-01

    Liquid rocket engine combustion stability assessments are traditionally broken into three categories: dynamic stability, spontaneous stability, and rough combustion. This work focuses on comparing the spontaneous stability and rough combustion assessments for several liquid engine programs. The techniques used are those developed at Marshall Space Flight Center (MSFC) for the J-2X Workhorse Gas Generator program. Stability assessment data from the Integrated Powerhead Demonstrator (IPD), FASTRAC, and Common Extensible Cryogenic Engine (CECE) programs are compared against previously processed J-2X Gas Generator data. Prior metrics for spontaneous stability assessments are updated based on the compilation of all data sets.

  12. Method of controlling cyclic variation in engine combustion

    DOEpatents

    Davis, L.I. Jr.; Daw, C.S.; Feldkamp, L.A.; Hoard, J.W.; Yuan, F.; Connolly, F.T.

    1999-07-13

    Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling. 27 figs.

  13. Method of controlling cyclic variation in engine combustion

    DOEpatents

    Davis, Jr., Leighton Ira; Daw, Charles Stuart; Feldkamp, Lee Albert; Hoard, John William; Yuan, Fumin; Connolly, Francis Thomas

    1999-01-01

    Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling.

  14. Solid fuel combustion system for gas turbine engine

    DOEpatents

    Wilkes, Colin; Mongia, Hukam C.

    1993-01-01

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  15. Combustion synthesis of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Moore, John J.

    1993-01-01

    Self-propagating high temperature (combustion) synthesis (SHS), has been investigated as a means of producing both dense and expanded (foamed) ceramic and ceramic-metal composites, ceramic powders and whiskers. Several model exothermic combustion synthesis reactions were used to establish the importance of certain reaction parameters, e.g., stoichiometry, green density, combustion mode, particle size, etc. on the control of the synthesis reaction, product morphology and properties. The use of an in situ liquid infiltration technique and the effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e., solids, liquids and gases, with varying physical properties e.g., volatility and thermal conductivity, on the microstructure and morphology of synthesized composite materials is discussed. Conducting the combustion synthesis reaction in a reactive gas environment to take advantage of the synergistic effects of combustion synthesis and vapor phase transport is also examined.

  16. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems

    NASA Astrophysics Data System (ADS)

    Gu, Yongxian

    The demand of portable power generation systems for both domestic and military applications has driven the advances of mesoscale internal combustion engine systems. This dissertation was devoted to the gasdynamic modeling and parametric study of the mesoscale internal combustion swing engine/generator systems. First, the system-level thermodynamic modeling for the swing engine/generator systems has been developed. The system performance as well as the potentials of both two- and four-stroke swing engine systems has been investigated based on this model. Then through parameterc studies, the parameters that have significant impacts on the system performance have been identified, among which, the burn time and spark advance time are the critical factors related to combustion process. It is found that the shorter burn time leads to higher system efficiency and power output and the optimal spark advance time is about half of the burn time. Secondly, the turbulent combustion modeling based on levelset method (G-equation) has been implemented into the commercial software FLUENT. Thereafter, the turbulent flame propagation in a generic mesoscale combustion chamber and realistic swing engine chambers has been studied. It is found that, in mesoscale combustion engines, the burn time is dominated by the mean turbulent kinetic energy in the chamber. It is also shown that in a generic mesoscale combustion chamber, the burn time depends on the longest distance between the initial ignition kernel to its walls and by changing the ignition and injection locations, the burn time can be reduced by a factor of two. Furthermore, the studies of turbulent flame propagation in real swing engine chambers show that the combustion can be enhanced through in-chamber turbulence augmentation and with higher engine frequency, the burn time is shorter, which indicates that the in-chamber turbulence can be induced by the motion of moving components as well as the intake gas jet flow. The burn time

  17. Unit injector of an internal combustion engine

    SciTech Connect

    Taniguchi, H.; Tsukahara, H.

    1986-01-21

    This patent describes a fuel injector which is to be utilized in an internal combustion engine. Described in detail in the patent is a plunger which is adapted to be reciprocated in order to effect the pressurizing of a supplied fuel as well as a barrel configured to receive the plunger. An injector body component of the injector apparatus characterized in detail is indicated as housing a number of member parts structurally configured in a way crucial to the functioning of the patent device. The first parts housed in this body are a plunger and its associated barrel. The next part so housed is a nozzle valve which is adapted to inject pressurized fuel into the engine. Closely associated with these aforementioned two components is a check valve which is located between them physically. The injector body is further characterized as being of cylindrical shape and containing an upper bore and a lower bore that are separated by a partition and which open on the upper and lower sides of the body. The upper bore is detailed as being adapted in such a way as to define a chamber for receiving a plunger spring and a bore element to receive the plunger barrel. Similarly, the lower bore is designed such that it defines a nozzle spring chamber. Consequently, as the patent discusses, when the nozzle spring, nozzle body and nozzle valve are assembled into the unit they are inserted into the lower bore from the lower side of the injector body and mechanically secured in place. Likewise, the check valve, the plunger and its associated barrel and the plunger spring are inserted into the upper bore from the upper side of the injector body and secured in place by means of a barrel holder screwed into an internally threaded portion formed in the upper bore.

  18. Advanced combustion turbines and cycles: An EPRI perspective

    SciTech Connect

    Touchton, G.; Cohn, A.

    1995-10-01

    EPRI conducts a broad program of research in combustion turbine technology on behalf of its funders which is directed toward improving their competitive positions through lower cost of generation and risk mitigation. The major areas of EPRI interest are: (1) Combustion Turbine Technology Development, Assessment, and Procurement Information and Products. (2) Risk mitigation of emerging combustion turbines through durability surveillance. (3) Existing Fleet Management and Improvement Technology. In the context of the DOE ATS Review, the present paper will address new advanced turbines and cycles and durability surveillance, of emerging combustion turbines. It will touch on existing fleet management and improvement technology as appropriate.

  19. Variable camshaft timing for internal combustion engine

    SciTech Connect

    Butterfield, R.P.; Smith, F.R.; Dembosky, S.K.

    1991-09-10

    This patent describes an internal combustion engine. It comprises a rotatable crankshaft; a camshaft, the camshaft being rotatable about its longitudinal central axis and being subject to a unidirectionally acting torque during the rotation thereof; first means mounted on the camshaft, the first means being oscillatable with respect to the camshaft about the longitudinal central axis of the camshaft at least through a limited arc; second means keyed to the camshaft for rotation therewith; rotary movement transmitting means interconnecting the crankshaft and one of the first means and the second means for transmitting rotary movement from the crankshaft to the camshaft; a first hydraulic cylinder having a body end pivotably attached to one of the first means and the second means and a piston end pivotably attached to the other of the first means and the second means; a second hydraulic cylinder having a body end pivotably attached to the one of the first means and the second means and a piston end pivotably attached to the other of the first means and the second means, the second hydraulic cylinder and the first hydraulic cylinder being disposed to act in opposite directions.

  20. Fluidic systems may improve combustion in automotive engines

    NASA Technical Reports Server (NTRS)

    Mangion, C.

    1972-01-01

    Application of fluidic devices to reduce generation of noxious exhausts from internal combustion engines is discussed. Operation of fluidic system to provide bypass of fuel air mixture into heated loop to provide more complete combustion is explanined. Advantage lies in no moving parts required for fluidic by-pass action.

  1. An overview of NASA intermittent combustion engine research

    NASA Technical Reports Server (NTRS)

    Willis, E. A.; Wintucky, W. T.

    1984-01-01

    This paper overviews the current program, whose objective is to establish the generic technology base for advanced aircraft I.C. engines of the early 1990's and beyond. The major emphasis of this paper is on development of the past two years. Past studies and ongoing confirmatory experimental efforts are reviewed, which show unexpectedly high potential when modern aerospace technologies are applied to inherently compact and balanced I.C. engine configurations. Currently, the program is focussed on two engine concepts, the stratified-charge, multi-fuel rotary and the lightweight two-stroke diesel. A review is given of contracted and planned high performance one-rotor and one-cylinder test engine work addressing several levels of technology. Also reviewed are basic supporting efforts, e.g., the development and experimental validation of computerized airflow and combustion process models, being performed in-house at Lewis Research Center and by university grants. Previously announced in STAR as N84-24583

  2. Combustion and operating characteristics of spark-ignition engines

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Keck, J. C.; Beretta, G. P.; Watts, P. A.

    1980-01-01

    The spark-ignition engine turbulent flame propagation process was investigated. Then, using a spark-ignition engine cycle simulation and combustion model, the impact of turbocharging and heat transfer variations or engine power, efficiency, and NO sub x emissions was examined.

  3. CFD-simulation of hydrogen combustion in internal combustion engines

    SciTech Connect

    Bludszuweit, S.; Schmidt, H.; Britsch, M.; Holzapfel, J.

    1996-12-31

    The globally recognized importance of hydrogen in meeting the future energy demand of mankind is broadly based on its non-polluting incorporation into the general nature cycle. Simultaneously, the use of hydrogen can mitigate and even reverse the dangerous perturbation of the equilibrium in the earth`s atmosphere. However, high costs and safety risks prevent its wider use. Optimization of the combustion process and the elimination of potential risks are therefore of obvious importance. Sophisticated CFD software packages provide an effective approach to the solution of these complex problems. This paper describes numerical flow simulations of the mixing process and chemical reactions between oxygen and air. The simulation results were validated by experiment. The studies also revealed that powerful simulation tools can be used to improve combustion process efficiency. This can significantly reduce the load on the environment.

  4. Advanced oxygen-hydrocarbon rocket engine study

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.; Ewen, R. L.

    1981-01-01

    This study identifies and evaluates promising LO2/HC rocket engine cycles, produces a consistent and reliable data base for vehicle optimization and design studies, demonstrates the significance of propulsion system improvements, and selects the critical technology areas necessary to realize an improved surface to orbit transportation system. Parametric LO2/HC engine data were generated over a range of thrust levels from 890 to 6672 kN (200K to 1.5M 1bF) and chamber pressures from 6890 to 34500 kN (1000 to 5000 psia). Engine coolants included RP-1, refined RP-1, LCH4, LC3H8, LO2, and LH2. LO2/RP-1 G.G. cycles were found to be not acceptable for advanced engines. The highest performing LO2/RP-1 staged combustion engine cycle utilizes LO2 as the coolant and incorporates an oxidizer rich preburner. The highest performing cycle for LO2/LCH4 and LO2/LC3H8 utilizes fuel cooling and incorporates both fuel and oxidizer rich preburners. LO2/HC engine cycles permitting the use of a third fluid LH2 coolant and an LH2 rich gas generator provide higher performance at significantly lower pump discharge pressures. The LO2/HC dual throat engine, because of its high altitude performance, delivers the highest payload for the vehicle configuration that was investigated.

  5. Fabrication of Composite Combustion Chamber/Nozzle for Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Lawrence, T.; Beshears, R.; Burlingame, S.; Peters, W.; Prince, M.; Suits, M.; Tillery, S.; Burns, L.; Kovach, M.; Roberts, K.

    2001-01-01

    The Fastrac Engine developed by the Marshall Space Flight Center for the X-34 vehicle began as a low cost engine development program for a small booster system. One of the key components to reducing the engine cost was the development of an inexpensive combustion chamber/nozzle. Fabrication of a regeneratively cooled thrust chamber and nozzle was considered too expensive and time consuming. In looking for an alternate design concept, the Space Shuttle's Reusable Solid Rocket Motor Project provided an extensive background with ablative composite materials in a combustion environment. An integral combustion chamber/nozzle was designed and fabricated with a silica/phenolic ablative liner and a carbon/epoxy structural overwrap. This paper describes the fabrication process and developmental hurdles overcome for the Fastrac engine one-piece composite combustion chamber/nozzle.

  6. Fabrication of Composite Combustion Chamber/Nozzle for Fastrac Engine

    NASA Technical Reports Server (NTRS)

    Lawerence, T.; Beshears, R.; Burlingame, S.; Peters, W.; Prince, M.; Suits, M.; Tillery, S.; Burns, L.; Kovach, M.; Roberts, K.; Clinton, R. G., Jr. (Technical Monitor)

    2000-01-01

    The Fastrac Engine developed by the Marshall Space Flight Center for the X-34 vehicle began as a low cost engine development program for a small booster system. One of the key components to reducing the engine cost was the development of an inexpensive combustion chamber/nozzle. Fabrication of a regeneratively cooled thrust chamber and nozzle was considered too expensive and time consuming. In looking for an alternate design concept, the Space Shuttle's Reusable Solid Rocket Motor Project provided an extensive background with ablative composite materials in a combustion environment. An integral combustion chamber/nozzle was designed and fabricated with a silica/phenolic ablative liner and a carbon/epoxy structural overwrap. This paper describes the fabrication process and developmental hurdles overcome for the Fastrac engine one-piece composite combustion chamber/nozzle.

  7. Development of Advanced Small Hydrogen Engines

    SciTech Connect

    Sapru, Krishna; Tan, Zhaosheng; Chao, Ben

    2010-09-30

    The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

  8. Supercomputer modeling of hydrogen combustion in rocket engines

    NASA Astrophysics Data System (ADS)

    Betelin, V. B.; Nikitin, V. F.; Altukhov, D. I.; Dushin, V. R.; Koo, Jaye

    2013-08-01

    Hydrogen being an ecological fuel is very attractive now for rocket engines designers. However, peculiarities of hydrogen combustion kinetics, the presence of zones of inverse dependence of reaction rate on pressure, etc. prevents from using hydrogen engines in all stages not being supported by other types of engines, which often brings the ecological gains back to zero from using hydrogen. Computer aided design of new effective and clean hydrogen engines needs mathematical tools for supercomputer modeling of hydrogen-oxygen components mixing and combustion in rocket engines. The paper presents the results of developing verification and validation of mathematical model making it possible to simulate unsteady processes of ignition and combustion in rocket engines.

  9. Combustion system CFD modeling at GE Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Burrus, D.; Mongia, H.; Tolpadi, Anil K.; Correa, S.; Braaten, M.

    1995-01-01

    This viewgraph presentation discusses key features of current combustion system CFD modeling capabilities at GE Aircraft Engines provided by the CONCERT code; CONCERT development history; modeling applied for designing engine combustion systems; modeling applied to improve fundamental understanding; CONCERT3D results for current production combustors; CONCERT3D model of NASA/GE E3 combustor; HYBRID CONCERT CFD/Monte-Carlo modeling approach; and future modeling directions.

  10. NASA Teams With Army in Vortex Combustion Chamber Engine Test

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photograph depicts one of over thirty tests conducted on the Vortex Combustion Chamber Engine at Marshall Space Flight Center's (MSFC) test stand 115, a joint effort between NASA's MSFC and the U.S. Army AMCOM of Redstone Arsenal. The engine tests were conducted to evaluate an irnovative, 'self-cooled', vortex combustion chamber, which relies on tangentially injected propellants from the chamber wall producing centrifugal forces that keep the relatively cold liquid propellants near the wall.

  11. Simulation and experiment for oxygen-enriched combustion engine using liquid oxygen to solidify CO2

    NASA Astrophysics Data System (ADS)

    Liu, Yongfeng; Jia, Xiaoshe; Pei, Pucheng; Lu, Yong; Yi, Li; Shi, Yan

    2016-01-01

    For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine.

  12. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  13. Determination of combustion parameters using engine crankshaft speed

    NASA Astrophysics Data System (ADS)

    Taglialatela, F.; Lavorgna, M.; Mancaruso, E.; Vaglieco, B. M.

    2013-07-01

    Electronic engine controls based on real time diagnosis of combustion process can significantly help in complying with the stricter and stricter regulations on pollutants emissions and fuel consumption. The most important parameter for the evaluation of combustion quality in internal combustion engines is the in-cylinder pressure, but its direct measurement is very expensive and involves an intrusive approach to the cylinder. Previous researches demonstrated the direct relationship existing between in-cylinder pressure and engine crankshaft speed and several authors tried to reconstruct the pressure cycle on the basis of the engine speed signal. In this paper we propose the use of a Multi-Layer Perceptron neural network to model the relationship between the engine crankshaft speed and some parameters derived from the in-cylinder pressure cycle. This allows to have a non-intrusive estimation of cylinder pressure and a real time evaluation of combustion quality. The structure of the model and the training procedure is outlined in the paper. A possible combustion controller using the information extracted from the crankshaft speed information is also proposed. The application of the neural network model is demonstrated on a single-cylinder spark ignition engine tested in a wide range of speeds and loads. Results confirm that a good estimation of some combustion pressure parameters can be obtained by means of a suitable processing of crankshaft speed signal.

  14. Disturbing effect of free hydrogen on fuel combustion in internal combustion engines

    NASA Technical Reports Server (NTRS)

    Riedler, A

    1923-01-01

    Experiments with fuel mixtures of varying composition, have recently been conducted by the Motor Vehicle and Airplane Engine Testing Laboratories of the Royal Technical High School in Berlin and at Fort Hahneberg, as well as at numerous private engine works. The behavior of hydrogen during combustion in engines and its harmful effect under certain conditions, on the combustion in the engine cylinder are of general interest. Some of the results of these experiments are given here, in order to elucidate the main facts and explain much that is already a matter of experience with chauffeurs and pilots.

  15. Development potential of Intermittent Combustion (I.C.) aircraft engines for commuter transport applications

    NASA Technical Reports Server (NTRS)

    Willis, E. A.

    1982-01-01

    An update on general aviation (g/a) and commuter aircraft propulsion research effort is reviewed. The following topics are discussed: on several advanced intermittent combustion engines emphasizing lightweight diesels and rotary stratified charge engines. The current state-of-the-art is evaluated for lightweight, aircraft suitable versions of each engine. This information is used to project the engine characteristics that can be expected on near-term and long-term time horizons. The key enabling technology requirements are identified for each engine on the long-term time horizon.

  16. Engine ignition timing by combustion pressure harmonic phase difference

    SciTech Connect

    Jensen, E.J.

    1987-10-13

    An ignition timing control for an internal combustion engine is described including a combustion chamber, means effective to ignite a combustible charge in the combustion chamber and power output apparatus including a rotating crankshaft driven in response to the expansion of the ignited combustible charge. The ignition timing control comprises, in combination: pressure sensing mean effective to sense the pressure in the combustion chamber and generate a combustion pressure signal therefrom; means effective to sense the rotational speed of the crankshaft; frequency selective filter means for generating at least two predetermined harmonic signals of the combustion pressure signal, the frequency selective filter means being responsive to the last means to maintain the frequencies of the harmonic signals at whole number multiples of the firing frequency of the engine as the rotational speed of the crankshaft changes; means effective to detect the times of corresponding peaks in the two predetermined harmonic signals and determine the difference therebetween; and means for varying the ignition timing of the engine to reduce the difference to zer in closed loop operation.

  17. Ducted combustion chamber for direct injection engines and method

    SciTech Connect

    Mueller, Charles

    2015-03-03

    An internal combustion engine includes an engine block having a cylinder bore and a cylinder head having a flame deck surface disposed at one end of the cylinder bore. A piston connected to a rotatable crankshaft and configured to reciprocate within the cylinder bore has a piston crown portion facing the flame deck surface such that a combustion chamber is defined within the cylinder bore and between the piston crown and the flame deck surface. A fuel injector having a nozzle tip disposed in fluid communication with the combustion chamber has at least one nozzle opening configured to inject a fuel jet into the combustion chamber along a fuel jet centerline. At least one duct defined in the combustion chamber between the piston crown and the flame deck surface has a generally rectangular cross section and extends in a radial direction relative to the cylinder bore substantially along the fuel jet centerline.

  18. New trends in combustion research for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.

    1983-01-01

    Research on combustion is being conducted to provide improved analytical models of the complex flow and chemical reaction processes which occur in the combustor of gas turbine engines, in order to enable engine manufacturers to reduce the development time of these concepts. The elements of the combustion fundamentals program is briefly discussed with examples of research projects described more fully. Combustion research will continue to emphasize the development of analytical models and the support of these models with fundamental flow experiments to assess the models accuracy and shortcomings.

  19. Combustion in a High-Speed Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M

    1933-01-01

    An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.

  20. Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines

    SciTech Connect

    Srinivasan, K. K.; Krishnan, S. R.; Qi, Y.

    2012-05-09

    Dual fuel pilot ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed low temperature combustion (LTC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90%t relative to straight diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel LTC is achieved by injection of a small amount of diesel fuel (2-3 percent on an energy basis) to ignite a premixed natural gas₋air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed "relative combustion phasing" ). For conventional dual fueling, as % NG increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel LTC, as diesel injection timing is advanced from 20° to 60° BTDC, the relative combustion phasing is identified as an important combustion parameter along with SoC, Pmax, and CaPmax. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high %NG and advanced injection timings. Finally, heat release return maps were analyzed to demonstrate thermal management strategies as an effective tool to mitigate cyclic combustion variations, especially in dual fuel LTC.

  1. Cylinder Pressure-Based Spark Advance Control for SI Engines

    NASA Astrophysics Data System (ADS)

    Park, Seungbum; Yoon, Paljoo; Sunwoo, Myoungho

    The introduction of inexpensive cylinder pressure sensors provides new opportunities for precise engine control. This paper presents a spark advance control strategy based upon cylinder pressure in spark ignition engines. It is well known that the location of peak pressure(LPP) reflects combustion phasing and can be used for controlling the spark advance. The well-known problems of the LPP-based spark advance control method are that many samples of data are required and there is loss of combustion phasing detection capability due to hook-back at late burn conditions. To solve these problems, a multi-layer feedforward neural network is employed. The LPP and hook-back are estimated, using the neural network, which needs only five output voltage samples from the pressure sensor. The neural network plays an important role in mitigating the A/D conversion load of an electronic engine controller by increasing the sampling interval from 1° crank angle (CA) to 20° CA. A proposed control algorithm does not need a sensor calibration and pegging (bias calculation) procedure because the neural network estimates the LPP from the raw sensor output voltage. The estimated LPP can be regarded as a good index for combustion phasing, and can also be used as an MBT control parameter. The feasibility of this methodology is closely examined through steady and transient engine operations to control individual cylinder spark advances. The experimental results have revealed a favorable agreement of optimal combustion phasing in each cylinder.

  2. Radial inflow gas turbine engine with advanced transition duct

    SciTech Connect

    Wiebe, David J

    2015-03-17

    A gas turbine engine (10), including: a turbine having radial inflow impellor blades (38); and an array of advanced transition combustor assemblies arranged circumferentially about the radial inflow impellor blades (38) and having inner surfaces (34) that are adjacent to combustion gases (40). The inner surfaces (34) of the array are configured to accelerate and orient, for delivery directly onto the radial inflow impellor blades (38), a plurality of discrete flows of the combustion gases (40). The array inner surfaces (34) define respective combustion gas flow axes (20). Each combustion gas flow axis (20) is straight from a point of ignition until no longer bound by the array inner surfaces (34), and each combustion gas flow axis (20) intersects a unique location on a circumference defined by a sweep of the radial inflow impellor blades (38).

  3. Comparisons between measurement and analysis of fluid motion in internal combustion engines

    SciTech Connect

    Witze, P.O.

    1981-10-01

    The Engine Combustion Technology Project was created for the purpose of promoting the development of advanced piston engine concepts by the development of techniques to measure, analyze, and understand the combustion process. The technologies emphasized in the project include laser-based measurement techniques and large-scale computer simulations. Considerable progress has already been achieved by project participants in modeling engine air motion, fuel sprays, and engine combustion phenomena. This milestone report covers one part of that progress, summarizing the current capabilities of multi-dimensional computer codes being developed by the project to predict the behavior of turbulent air motion in an engine environment. Computed results are compared directly with experimental data in six different areas of importance to internal combustion engines: (1) Induction-generated ring-vortex structures; (2) Piston-induced vortex roll-up; (3) Behavior of turbulence during compression; (4) Decay of swirling flow during compression; (5) Decay of swirling flow in a constant volume engine simulator; (6) Exhaust-pipe flow. The computational procedures used include vortex dynamics, rapid distortion theory, and finite difference models employing two-equation and subgrid-scale turbulence models. Although the capability does not yet exist to predict the air motion in an engine from its geometric configuration alone, the results presented show that many flowfield sub-processes can be predicted given well-specified initial and boundary conditions.

  4. A review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Schock, H. J.

    1984-01-01

    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed.

  5. Advanced space engine preliminary design

    NASA Technical Reports Server (NTRS)

    Cuffe, J. P. B.; Bradie, R. E.

    1973-01-01

    A preliminary design was completed for an O2/H2, 89 kN (20,000 lb) thrust staged combustion rocket engine that has a single-bell nozzle with an overall expansion ratio of 400:1. The engine has a best estimate vacuum specific impulse of 4623.8 N-s/kg (471.5 sec) at full thrust and mixture ratio = 6.0. The engine employs gear-driven, low pressure pumps to provide low NPSH capability while individual turbine-driven, high-speed main pumps provide the system pressures required for high-chamber pressure operation. The engine design dry weight for the fixed-nozzle configuration is 206.9 kg (456.3 lb). Engine overall length is 234 cm (92.1 in.). The extendible nozzle version has a stowed length of 141.5 cm (55.7 in.). Critical technology items in the development of the engine were defined. Development program plans and their costs for development, production, operation, and flight support of the ASE were established for minimum cost and minimum time programs.

  6. The Combination of Internal-Combustion Engine and Gas Turbine

    NASA Technical Reports Server (NTRS)

    Zinner, K.

    1947-01-01

    While the gas turbine by itself has been applied in particular cases for power generation and is in a state of promising development in this field, it has already met with considerable success in two cases when used as an exhaust turbine in connection with a centrifugal compressor, namely, in the supercharging of combustion engines and in the Velox process, which is of particular application for furnaces. In the present paper the most important possibilities of combining a combustion engine with a gas turbine are considered. These "combination engines " are compared with the simple gas turbine on whose state of development a brief review will first be given. The critical evaluation of the possibilities of development and fields of application of the various combustion engine systems, wherever it is not clearly expressed in the publications referred to, represents the opinion of the author. The state of development of the internal-combustion engine is in its main features generally known. It is used predominantly at the present time for the propulsion of aircraft and road vehicles and, except for certain restrictions due to war conditions, has been used to an increasing extent in ships and rail cars and in some fields applied as stationary power generators. In the Diesel engine a most economical heat engine with a useful efficiency of about 40 percent exists and in the Otto aircraft engine a heat engine of greatest power per unit weight of about 0.5 kilogram per horsepower.

  7. Engineering and Economic Analysis of an Advanced Ultra-Supercritical Pulverized Coal Power Plant with and without Post-Combustion Carbon Capture Task 7. Design and Economic Studies

    SciTech Connect

    Booras, George; Powers, J.; Riley, C.; Hendrix, H.

    2015-09-01

    This report evaluates the economics and performance of two A-USC PC power plants; Case 1 is a conventionally configured A-USC PC power plant with superior emission controls, but without CO2 removal; and Case 2 adds a post-combustion carbon capture (PCC) system to the plant from Case 1, using the design and heat integration strategies from EPRI’s 2015 report, “Best Integrated Coal Plant.” The capture design basis for this case is “partial,” to meet EPA’s proposed New Source Performance Standard, which was initially proposed as 500 kg-CO2/MWh (gross) or 1100 lb-CO2/MWh (gross), but modified in August 2015 to 635 kg-CO2/MWh (gross) or 1400 lb-CO2/MWh (gross). This report draws upon the collective experience of consortium members, with EPRI and General Electric leading the study. General Electric provided the steam cycle analysis as well as v the steam turbine design and cost estimating. EPRI performed integrated plant performance analysis using EPRI’s PC Cost model.

  8. Advances in engineering plastics

    SciTech Connect

    Leonard, L.

    1997-12-01

    New polymers are being commercialized in record numbers, offering the product designer a new realm of possibilities, and promising tough competition to the traditional engineering resins. Most of the growth is in single-site catalyzed resins. Metallocene (and non-metallocene) single-site catalysts enhance polymer architecture to generate highly uniform molecules, and even permit tailoring new categories of polymers. These new materials include the truly unique aliphatic polyketone, syndiotactic polystyrene (SPS); polyethylene naphthalate (PEN) resins; and novel variations of established polymers. This article provides a closer look at these newcomers to the plastics marketplace, with an emphasis on their properties and potential applications.

  9. Advances in water engineering

    SciTech Connect

    Tebbutt, T.H.Y.

    1985-01-01

    Water is the world's most important natural resource and its efficient utilization requires a proper understanding of the multifunctional role of water in modern society. The philosophy of integrating both quality and quantity considerations of water engineering is an essential aspect of optimal use of resources and this book provides a collection of 41 papers to emphasize this philosophy. Each section of the contents includes a state-of-the art review followed by specialist contributions on a specific topic so that the reader can gain an overview of the area as well as being informed about the latest developments in particular aspects of the subject.

  10. Diagnostics of abnormal combustion in a SI automotive engine using in-cylinder optical combustion sensor

    NASA Astrophysics Data System (ADS)

    Piernikarski, Dariusz; Hunicz, Jacek

    2004-08-01

    The paper presents development of a research project oriented towards application of optical sensors and optical wave-guides for the investigation and diagnostics of the combustion process in the internal-combustion automotive engine. Applied measurement method assumes usage of photometric techniques, and in particular spectrophotometry of the flames existing in the combustion chamber. Emission signal during combustion is picked up by an optical sensor with direct access to the combustion chamber, then transmitted using two parallel fiber-optic bundles. The signal can be filtered with set of interference filters and finally it is converted using grating monochromator or photodetector. The main goal of the project is to develop a laboratory diagnostic system enabling on-line identification of the abnormal combustion phenomena like knocking or misfires (lack of combustion). Extracted synthetic quality indexes will be used in the improvement of combustion process and as a feedback signals in the engine control algorithms. The paper is illustrated with some results obtained during previous experiments.

  11. Adaptive spark timing controller for an internal combustion engine

    SciTech Connect

    Javaherian, H.

    1989-09-19

    This patent describes a system for controlling the ignition timing angle in the ignition control system for an internal combustion engine having cylinders and an output crankshaft rotated during operation of the engine. The ignition control system initiating combustion in each cylinder of the engine at the determined ignition timing value. The system comprising, in combination: means for determining the start of combustion in a cylinder; means for monitoring the value of an indicator function during rotation of the crankshaft after the start of combustion; means for sensing the fpeak value of the indicator function; means for determining the crankshaft angle at which the value of the indicator function is one half the sume of the values of the indicator function at the start of combustion and the peak value occurring at the end of combustion; and means for controlling the ignition timing angle to initiate combustion in the cylinders to establish the crankshaft angle and therefore the cylinder burn establish the crankshaft angle and therefore the cylinder burn center at a predetermined crankshaft angle.

  12. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    SciTech Connect

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  13. Coal slurry combustion optimization on single cylinder engine

    SciTech Connect

    Not Available

    1992-09-01

    Under the sponsorship of the US Department of Energy, Morgantown Energy Technology Center, GE Transportation System has been conducting a proof of concept program to use coal water slurry (CWS) fuel to power a diesel engine locomotive since 1988. As reported earlier [1], a high pressure electronically controlled accumulator injector using a diamond compact insert nozzle was developed for this project. The improved reliability and durability of this new FIE allowed for an improved and more thorough study of combustion of CWS fuel in a diesel engine. It was decided to include a diesel pilot fuel injector in the combustion system mainly due to engine start and low load operation needs. BKM, Inc. of San Diego, CA was contracted to develop the electronic diesel fuel pilot/starting FIE for the research engine. As a result, the experimental combustion study was very much facilitated due to the ability of changing pilot/CWS injection timings and quantities without having to stop the engine. Other parameters studied included combustion chamber configuration (by changing CWS fuel injector nozzle hole number/shape/angle), as well as injection pressure. The initial phase of this combustion study is now complete. The results have been adopted into the design of a 12 cylinder engine FIE, to be tested in 1992. This paper summarizes the main findings of this study.

  14. Carbon/Carbon Pistons for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.

    1986-01-01

    Carbon/carbon piston performs same function as aluminum pistons in reciprocating internal combustion engines while reducing weight and increasing mechanical and thermal efficiencies of engine. Carbon/carbon piston concept features low piston-to-cylinder wall clearance - so low piston rings and skirts unnecessary. Advantages possible by negligible coefficient of thermal expansion of carbon/carbon.

  15. Carbon-Carbon Turbocharger Housing Unit for Intermittent Combustion Engines

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1998-01-01

    An improved, lightweight, turbine housing unit for an intermittent combustion reciprocating internal combustion engine turbocharger is prepared from a lay-up or molding of carbon-carbon composite materials in a single-piece or two-piece process. When compared to conventional steel or cast iron, the use of carbon-carbon composite materials in a turbine housing unit reduces the overall weight of the engine and reduces the heat energy loss used in the turbocharging process. This reduction in heat energy loss and weight reduction provides for more efficient engine operation.

  16. Investigation of combustion in a gasoline engine using spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Hunicz, Jacek; Piernikarski, Dariusz

    2001-08-01

    Spectrophotometric methods provide many new possibilities of investigation of combustion process in the automotive engine with spark ignition. Emission spectrum of the flames from the combustion chamber provides valuable information, which is difficult or even not accessible with the aid of other measurement methods. Spectral analysis allows to evaluate concentration of active compounds present in flames, which do not constitute final products of combustion. Concentration of radicals depends on some combustion parameters such as air-fuel ratio. The paper describes an engine test stand equipped with fiber-optic measurement system. The measurement system consists of an optical sensor mounted in the engine head, fiber-optic bundle for signal transmission, grating monochromator and photodetector. Voltage signal from the photodetector is recorded by the PC- based data acquisition system. The main aim of research was to verify usability of the designed fiber-optic measurement system in combustion diagnosis and to develop a method of evaluation of the air-fuel ratio on the base of simplified spectral analysis of the emission during combustion process in an automotive gasoline engine.

  17. Advanced Technology Spark-Ignition Aircraft Piston Engine Design Study

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each item of required advanced technology into the engine design.

  18. Combustion Velocity of Benzine-Benzol-Air Mixtures in High-Speed Internal-Combustion Engines

    NASA Technical Reports Server (NTRS)

    Schnauffer, Kurt

    1932-01-01

    The present paper describes a device whereby rapid flame movement within an internal-combustion engine cylinder may be recorded and determined. By the aid of a simple cylindrical contact and an oscillograph the rate of combustion within the cylinder of an airplane engine during its normal operation may be measured for gas intake velocities of from 30 to 35 m/s and for velocities within the cylinder of from 20 to 25 m/s. With it the influence of mixture ratios, of turbulence, of compression ratio and kind of fuel on combustion velocity may be determined. Besides the determination of the influence of the above factors on combustion velocity, the degree of turbulence may also be determined. As a unit of reference in estimating the degree of turbulence, the intake velocity of the charge is chosen.

  19. Combustion mode switching with a turbocharged/supercharged engine

    SciTech Connect

    Mond, Alan; Jiang, Li

    2015-09-22

    A method for switching between low- and high-dilution combustion modes in an internal combustion engine having an intake passage with an exhaust-driven turbocharger, a crankshaft-driven positive displacement supercharger downstream of the turbocharger and having variable boost controllable with a supercharger bypass valve, and a throttle valve downstream of the supercharger. The current combustion mode and mass air flow are determined. A switch to the target combustion mode is commanded when an operating condition falls within a range of predetermined operating conditions. A target mass air flow to achieve a target air-fuel ratio corresponding to the current operating condition and the target combustion mode is determined. The degree of opening of the supercharger bypass valve and the throttle valve are controlled to achieve the target mass air flow. The amount of residual exhaust gas is manipulated.

  20. Engine combustion control at low loads via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2014-10-07

    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

  1. Combustion Enhancement in Scramjet-Operation of a RBCC Engine

    NASA Astrophysics Data System (ADS)

    Sadatake Tomioka, By; Ryohei Kobayashi; Murakami, Atsuo; Shuichi Ueda; Komuro, Tomoyuki; Katsuhiro Itoh, And

    Combination of a scramjet (supersonic combustion ramjet) flow-pass with embedded rocket engines (the combined system termed as Rocket Based Combined Cycle engine) are expected to be the most effective propulsion system for Booster stage of space launch vehicles. At hypersonic regime, it will be operated at rather high rocket engine output for final acceleration with some Isp gains due to air-breathing effects. In this regime, attaining thrust at this high-speed regime becomes very difficult, so that parallel injection of the fuel for scramjet combustion is favorable as the momentum of the injection can contribute to the thrust production. Thus, embedded rocket chamber was supposed to the operated as fuel rich gas generator at very high output. This configuration was tested at simulated flight Mach number of 7-11 at High Enthalpy Shock Tunnel (HIEST) with detonation tube as the source of the simulated rocket exhaust. However, combustion of the residual fuel in the rocket exhaust with airflow could not be attained. Direct-connect combustor tests were performed to evaluate effectiveness of a combustion enhancement technique termed auxiliary injection, i.e., a portion of fuel to be directly injected into airflow to provide ignition source for the residual fuel. Results of both the engine model tests at HIEST and the direct-connect tests are summarized and presented, and modification to the engine model for combustion enhancement was proposed.

  2. Advanced Technology for Engineering Education

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1998-01-01

    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  3. Pulsed jet combustion generator for premixed charge engines

    DOEpatents

    Oppenheim, A. K.; Stewart, H. E.; Hom, K.

    1990-01-01

    A method and device for generating pulsed jets which will form plumes comprising eddie structures, which will entrain a fuel/air mixture from the head space of an internal combustion engine, and mixing this fuel/air mixture with a pre-ignited fuel/air mixture of the plumes thereby causing combustion of the reactants to occur within the interior of the eddie structures.

  4. Development of next generation 1500C class advanced combustion turbines

    SciTech Connect

    Aoki, S.; Tskuda, Y.; Akita, E.; Tomita, Y.

    1998-07-01

    The full load test run of the 501G combustion turbine has just finished at Takasago combined cycle plant in MHI, Japan. The 501G has power output of 230MW at turbine inlet temperature of 1,500 C and can achieve combined net efficiency of 52%. The NO{sub x} level proved to be less than 25 ppm. The 501G and 701G1 combustion turbines are large heavy-duty single shaft combustion turbines which combine the proven reliability and efficiency of the F series with the latest low NO{sub x} combustion technology and the state-of-the-art cooling technique. As the full load test run has proved, it is a highly advanced designed turbine with documented high temperature, low NO{sub x} and high efficiency. This combined with time proven design concepts has created a new powerful combustion turbine, which will satisfy the large combustion turbine power generation needs for the next decades. The 501G turbine is the 60Hz, 3,600 rpm heavy duty combustion turbine rated at 230MW at a turbine inlet of 1,500 C fired on natural gas fuel. The combined cycle net efficiency is 58%. Verification tests for various components have been conducted through the last 3 years and since February '97 a full scale-full load test is being performed to verify the high performance, reliability and maintainability. The 701G1 is a 3,000 rpm combustion turbine designed for the 50 Hz power generation utilities and industrial service. The first 701G1 gas turbine is expected to begin commercial operation in 1999 in Tohoku Electric Power Co. Higashi Nilgata Power Plant No.4, in Japan. This paper describes the features of the next generation 1,500 C class advanced combustion turbines. Aerodynamic, cooling and mechanical design improvement is discussed along with the evolutionary changes based on time proven design concepts.

  5. A combustion model for IC engine combustion simulations with multi-component fuels

    SciTech Connect

    Ra, Youngchul; Reitz, Rolf D.

    2011-01-15

    Reduced chemical kinetic mechanisms for the oxidation of representative surrogate components of a typical multi-component automotive fuel have been developed and applied to model internal combustion engines. Starting from an existing reduced mechanism for primary reference fuel (PRF) oxidation, further improvement was made by including additional reactions and by optimizing reaction rate constants of selected reactions. Using a similar approach to that used to develop the reduced PRF mechanism, reduced mechanisms for the oxidation of n-tetradecane, toluene, cyclohexane, dimethyl ether (DME), ethanol, and methyl butanoate (MB) were built and combined with the PRF mechanism to form a multi-surrogate fuel chemistry (MultiChem) mechanism. The final version of the MultiChem mechanism consists of 113 species and 487 reactions. Validation of the present MultiChem mechanism was performed with ignition delay time measurements from shock tube tests and predictions by comprehensive mechanisms available in the literature. A combustion model was developed to simulate engine combustion with multi-component fuels using the present MultiChem mechanism, and the model was applied to simulate HCCI and DI engine combustion. The results show that the present multi-component combustion model gives reliable performance for combustion predictions, as well as computational efficiency improvements through the use of reduced mechanism for multi-dimensional CFD simulations. (author)

  6. Ignition and combustion phenomena in Diesel engines

    NASA Technical Reports Server (NTRS)

    Sass, F

    1928-01-01

    Evidences were found that neither gasification nor vaporization of the injected fuel occurs before ignition; also that the hydrogen coefficient has no significance. However the knowledge of the ignition point and of the "time lag" is important. After ignition, the combustion proceeds in a series of reactions, the last of which at least are now known.

  7. Hydrogen-oxygen powered internal combustion engine

    NASA Technical Reports Server (NTRS)

    Cameron, H.; Morgan, N.

    1970-01-01

    Hydrogen at 300 psi and oxygen at 800 psi are injected sequentially into the combustion chamber to form hydrogen-rich mixture. This mode of injection eliminates difficulties of preignition, detonation, etc., encountered with carburated, spark-ignited, hydrogen-air mixtures. Ignition at startup is by means of a palladium catalyst.

  8. Crankshaft supporting structure for multicylinder internal combustion combustion engines

    SciTech Connect

    Fukuo, K.; Chosa, M.; Kazama, A.; Anno, N.; Kusakabe, Y.

    1988-06-28

    A crankshaft support structure is described for a multicylinder engine, comprising, a cylinder block of a lightweight material having a first coefficient of thermal expansion, the cylinder block extending longitudinally along the crankshaft and having a plurality of lateral extending and longitudinally spaced journal walls. Bearing caps of heavyweight material have a second coefficient of thermal expansion different from the first coefficient, a bearing cap mounted on each journal wall, the bearing caps and journal walls define bearing holes therebetween for supporting the crankshaft, a bridge of a lightweight material having a coefficient of thermal expansion which is substantially equal to the first coefficient, the bridge extending longitudinally over the bearing caps, and means mounting the bridge and bearing caps of the journal walls whereby the cylinder block and bridge undergo a substantially equal amount of thermal expansion and the bearing caps undergo a different amount of thermal expansion which is accommodated by the cylinder block and bridge.

  9. Laser ignition in internal-combustion engines: Sparkless initiation

    NASA Astrophysics Data System (ADS)

    Andronov, A. A.; Gurin, V. A.; Marugin, A. V.; Savikin, A. P.; Svyatoshenko, D. E.; Tukhomirov, A. N.; Utkin, Yu. S.; Khimich, V. L.

    2014-08-01

    Laser ignition has been implemented in a single-cylinder internal combustion engine fueled by gasoline. Indicator diagrams (cylinder pressure versus crank angle) were obtained for laser ignition with nano- and microsecond pulses of an Nd:YAG laser. The maximum power of microsecond pulses was below critical for spark initiation, while the radiation wavelength was outside the spectral range of optical absorption by hydrocarbon fuels. Apparently, the ignition starts due to radiation absorption by the oil residues or carbon deposit in the combustion chamber, so that the ability of engine to operate is retained. This initiation of spark-free ignition shows the possibility of using compact semiconductor quantum-cascade lasers operating at wavelengths of about 3.4 μm (for which the optical absorption by fuel mixtures is high) in ignition systems of internal combustion engines.

  10. Researches on direct injection in internal-combustion engines

    NASA Technical Reports Server (NTRS)

    Tuscher, Jean E

    1941-01-01

    These researches present a solution for reducing the fatigue of the Diesel engine by permitting the preservation of its components and, at the same time, raising its specific horsepower to a par with that of carburetor engines, while maintaining for the Diesel engine its perogative of burning heavy fuel under optimum economical conditions. The feeding of Diesel engines by injection pumps actuated by engine compression achieves the required high speeds of injection readily and permits rigorous control of the combustible charge introduced into each cylinder and of the peak pressure in the resultant cycle.

  11. Timing transmission device for an internal combustion engine

    SciTech Connect

    Inagaki, T.; Okazaki, K.; Ikeda, T.

    1989-06-06

    This patent describes an internal combustion engine comprising: an engine body; a crankshaft rotatably supported on the engine body; a camshaft rotatably supported on the engine body in spaced, parallel relation to the crankshaft; a drive gear on the crankshaft; a driven gear on the crankshaft; a support plate pivotably mounted at one end to one of the crankshaft and the camshaft; the other end of the support plate being loosely secured to the engine body to accommodate thermal expansion thereof; and an idler gear rotatably mounted on the support plate for drivingly connecting the drive gear to the driven gear.

  12. Considerations on the external combustion system of the Stirling hot gas engine

    NASA Technical Reports Server (NTRS)

    Zacharias, F.

    1983-01-01

    After an introduction on the Stirling engine the external combustion system as well as the general loss division and efficiencies are described. The requirements for the combustion system and different variants of the combustion system are compared and discussed.

  13. Combustion analysis and its optimization in two-stroke engines

    SciTech Connect

    Ishibe, Noriaki; Ohira, Tetsuya

    1995-12-31

    The purpose of this study is to show cycle-to-cycle combustion variation in transient conditions of quick throttle opening and to control the combustion fluctuation and improve acceleration in a two-stroke motorcycle engine. Two phases of engine operation were focused on: the low-load condition before quick throttle opening, and the transient condition after quick throttle opening. The time-series variation of the heat release rate based on the in-cylinder pressure, the engine-speed and the exhaust pressure variation were measured simultaneously, in an engine with a new multiple-timing-ignition-system, and in an engine with a modified exhaust port. Stable ignition performance and fast burning velocity were the keys to attaining smooth acceleration.

  14. Recent advances in large-eddy simulation of spray and coal combustion

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.

    2013-07-01

    Large-eddy simulation (LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering. Spray and coal combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering, hence LES of spray and coal two-phase combustion is particularly important for engineering application. LES of two-phase combustion attracts more and more attention; since it can give the detailed instantaneous flow and flame structures and more exact statistical results than those given by the Reynolds averaged modeling (RANS modeling). One of the key problems in LES is to develop sub-grid scale (SGS) models, including SGS stress models and combustion models. Different investigators proposed or adopted various SGS models. In this paper the present author attempts to review the advances in studies on LES of spray and coal combustion, including the studies done by the present author and his colleagues. Different SGS models adopted by different investigators are described, some of their main results are summarized, and finally some research needs are discussed.

  15. 49 CFR 176.905 - Motor vehicles or mechanical equipment powered by internal combustion engines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... internal combustion engines. 176.905 Section 176.905 Transportation Other Regulations Relating to... engines. (a) A motor vehicle or any mechanized equipment powered by an internal combustion engine is... met: (1) The motor vehicle or mechanical equipment has an internal combustion engine using liquid...

  16. Advanced engineering environment pilot project.

    SciTech Connect

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty

    2006-10-01

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solution to deploy the AEE across the NWC.

  17. Preburner of Staged Combustion Rocket Engine

    NASA Technical Reports Server (NTRS)

    Yost, M. C.

    1978-01-01

    A regeneratively cooled LOX/hydrogen staged combustion assembly system with a 400:1 expansion area ratio nozzle utilizing an 89,000 Newton (20,000 pound) thrust regeneratively cooled thrust chamber and 175:1 tubular nozzle was analyzed, assembled, and tested. The components for this assembly include two spark/torch oxygen-hydrogen igniters, two servo-controlled LOX valves, a preburner injector, a preburner combustor, a main propellant injector, a regeneratively cooled combustion chamber, a regeneratively cooled tubular nozzle with an expansion area ratio of 175:1, an uncooled heavy-wall steel nozzle with an expansion area ratio of 400:1, and interconnecting ducting. The analytical effort was performed to optimize the thermal and structural characteristics of each of the new components and the ducting, and to reverify the capabilities of the previously fabricated components. The testing effort provided a demonstration of the preburner/combustor chamber operation, chamber combustion efficiency and stability, and chamber and nozzle heat transfer.

  18. Corrosion performance of materials for advanced combustion systems

    SciTech Connect

    Natesan, K.; Yanez-Herrero, M.; Fornasieri, C.

    1993-12-01

    Conceptual designs of advanced combustion systems that utilize coal as a feedstock require high-temperature furnaces and heat transfer surfaces capable of operating at more elevated temperatures than those prevalent in current coal-fired power plants. The combination of elevated temperatures and hostile combustion environments necessitates development/application of advanced ceramic materials in these designs. This report characterizes the chemistry of coal-fired combustion environments over the wide temperature range that is of interest in these systems and discusses preliminary experimental results on several materials (alumina, Hexoloy, SiC/SiC, SiC/Si{sub 3}N{sub 4}/Si{sub 3}N{sub 4}, ZIRCONIA, INCONEL 677 and 617) with potential for application in these systems.

  19. Dynamic instabilities in spark-ignited combustion engines with high exhaust gas recirculation

    SciTech Connect

    Daw, C Stuart; FINNEY, Charles E A

    2011-01-01

    We propose a cycle-resolved dynamic model for combustion instabilities in spark-ignition engines operating with high levels of exhaust gas recirculation (EGR). High EGR is important for increasing fuel efficiency and implementing advanced low-emission combustion modes such as homogenous charge compression ignition (HCCI). We account for the complex combustion response to cycle-to-cycle feedback by utilizing a global probability distribution that describes the pre-spark state of in-cylinder fuel mixing. The proposed model does a good job of simulating combustion instabilities observed in both lean-fueling engine experiments and in experiments where nitrogen dilution is used to simulate some of the combustion inhibition of EGR. When used to simulate high internal EGR operation, the model exhibits a range of global bifurcations and chaos that appear to be very robust. We use the model to show that it should be possible to reduce high EGR combustion instabilities by switching from internal to external EGR. We also explain why it might be helpful to deliberately stratify the fuel in the pre-spark gas mixture. It might be possible to extend the simple approach used in this model to other chemical reaction systems with spatial inhomogeneity.

  20. Plastics within the internal combustion engine

    SciTech Connect

    Gaudette, E.P.

    1985-01-01

    A high strength, lightweight polymeric material has been developed which shows considerable promise as an engine component material. The polymer has been successfully tested in a number of engine components, such as spring retainers, valve stems, piston skirts, and piston pins. This paper introduces the concept of using plastic material to produce an engine component. The utilization of polymeric materials in the transportation industry, especially automotive, is extensive. This paper describes the designs, assembly, and performance of plastic engine components as currently known today.

  1. Progress in Advanced Spray Combustion Code Integration

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan

    1993-01-01

    A multiyear project to assemble a robust, muitiphase spray combustion code is now underway and gradually building up to full speed. The overall effort involves several university and government research teams as well as Rocketdyne. The first part of this paper will give an overview of the respective roles of the different participants involved, the master strategy, the evolutionary milestones, and an assessment of the state-of-the-art of various key components. The second half of this paper will highlight the progress made to date in extending the baseline Navier-Stokes solver to handle multiphase, multispecies, chemically reactive sub- to supersonic flows. The major hurdles to overcome in order to achieve significant speed ups are delineated and the approaches to overcoming them will be discussed.

  2. Materials Challenges for Advanced Combustion and Gasification Fossil Energy Systems

    NASA Astrophysics Data System (ADS)

    Sridhar, S.; Rozzelle, P.; Morreale, B.; Alman, D.

    2011-04-01

    This special section of Metallurgical and Materials Transactions is devoted to materials challenges associated with coal based energy conversion systems. The purpose of this introductory article is to provide a brief outline to the challenges associated with advanced combustion and advanced gasification, which has the potential of providing clean, affordable electricity by improving process efficiency and implementing carbon capture and sequestration. Affordable materials that can meet the demanding performance requirements will be a key enabling technology for these systems.

  3. Performance of Several Combustion Chambers Designed for Aircraft Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, William F; Kemper, Carlton

    1928-01-01

    Several investigations have been made on single-cylinder test engines to determine the performance characteristics of four types of combustion chambers designed for aircraft oil engines. Two of the combustion chambers studied were bulb-type precombustion chambers, the connecting orifice of one having been designed to produce high turbulence by tangential air flow in both the precombustion chamber and the cylinder. The other two were integral combustion chambers, one being dome-shaped and the other pent-roof shaped. The injection systems used included cam and eccentric driven fuel pumps, and diaphragm and spring-loaded fuel-injection valves. A diaphragm type maximum cylinder pressure indicator was used in part of these investigations with which the cylinder pressures were controlled to definite valves. The performance of the engines when equipped with each of the combustion chambers is discussed. The best performance for the tests reported was obtained with a bulb-type combustion chamber designed to give a high degree of turbulence within the bulb and cylinder. (author)

  4. Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE)

    SciTech Connect

    Eckerle, Wayne; Rutland, Chris; Rohlfing, Eric; Singh, Gurpreet; McIlroy, Andrew

    2011-03-03

    This report is based on a SC/EERE Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE), held March 3, 2011, to determine strategic focus areas that will accelerate innovation in engine design to meet national goals in transportation efficiency. The U.S. has reached a pivotal moment when pressures of energy security, climate change, and economic competitiveness converge. Oil prices remain volatile and have exceeded $100 per barrel twice in five years. At these prices, the U.S. spends $1 billion per day on imported oil to meet our energy demands. Because the transportation sector accounts for two-thirds of our petroleum use, energy security is deeply entangled with our transportation needs. At the same time, transportation produces one-quarter of the nation’s carbon dioxide output. Increasing the efficiency of internal combustion engines is a technologically proven and cost-effective approach to dramatically improving the fuel economy of the nation’s fleet of vehicles in the near- to mid-term, with the corresponding benefits of reducing our dependence on foreign oil and reducing carbon emissions. Because of their relatively low cost, high performance, and ability to utilize renewable fuels, internal combustion engines—including those in hybrid vehicles—will continue to be critical to our transportation infrastructure for decades. Achievable advances in engine technology can improve the fuel economy of automobiles by over 50% and trucks by over 30%. Achieving these goals will require the transportation sector to compress its product development cycle for cleaner, more efficient engine technologies by 50% while simultaneously exploring innovative design space. Concurrently, fuels will also be evolving, adding another layer of complexity and further highlighting the need for efficient product development cycles. Current design processes, using “build and test” prototype engineering, will not

  5. A review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Schock, H. J.

    1984-01-01

    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed. Previously announced in STAR as N84-24999

  6. Advanced System for Process Engineering

    1992-02-01

    ASPEN (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes. ASPEN can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations. It is supported by a comprehensive physical property system for computationmore » of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The ASPEN Input Language is oriented towards process engineers.« less

  7. Knocking in an Internal-combustion Engine

    NASA Technical Reports Server (NTRS)

    Sokolik, A; Voinov, A

    1940-01-01

    The question remains open of the relation between the phenomena of knocking in the engine and the explosion wave. The solution of this problem is the object of this paper. The tests were conducted on an aircraft engine with a pyrex glass window in the cylinder head. Photographs were then taken of various combinations of fuels and conditions.

  8. Electrostatic fuel conditioning of internal combustion engines

    NASA Technical Reports Server (NTRS)

    Gold, P. I.

    1982-01-01

    Diesel engines were tested to determine if they are influenced by the presence of electrostatic and magnetic fields. Field forces were applied in a variety of configurations including pretreatment of the fuel and air, however, no affect on engine performance was observed.

  9. Advanced fuel chemistry for advanced engines.

    SciTech Connect

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  10. Holographic aids for internal combustion engine flow studies

    NASA Technical Reports Server (NTRS)

    Regan, C.

    1984-01-01

    Worldwide interest in improving the fuel efficiency of internal combustion (I.C.) engines has sparked research efforts designed to learn more about the flow processes of these engines. The flow fields must be understood prior to fuel injection in order to design efficient valves, piston geometries, and fuel injectors. Knowledge of the flow field is also necessary to determine the heat transfer to combustion chamber surfaces. Computational codes can predict velocity and turbulence patterns, but experimental verification is mandatory to justify their basic assumptions. Due to their nonintrusive nature, optical methods are ideally suited to provide the necessary velocity verification data. Optical sytems such as Schlieren photography, laser velocimetry, and illuminated particle visualization are used in I.C. engines, and now their versatility is improved by employing holography. These holographically enhanced optical techniques are described with emphasis on their applications in I.C. engines.

  11. Molecular structure of photosynthetic microbial biofuels for improved engine combustion and emissions characteristics.

    PubMed

    Hellier, Paul; Purton, Saul; Ladommatos, Nicos

    2015-01-01

    The metabolic engineering of photosynthetic microbes for production of novel hydrocarbons presents an opportunity for development of advanced designer biofuels. These can be significantly more sustainable, throughout the production-to-consumption lifecycle, than the fossil fuels and crop-based biofuels they might replace. Current biofuels, such as bioethanol and fatty acid methyl esters, have been developed primarily as drop-in replacements for existing fossil fuels, based on their physical properties and autoignition characteristics under specific combustion regimes. However, advances in the genetic engineering of microalgae and cyanobacteria, and the application of synthetic biology approaches offer the potential of designer strains capable of producing hydrocarbons and oxygenates with specific molecular structures. Furthermore, these fuel molecules can be designed for higher efficiency of energy release and lower exhaust emissions during combustion. This paper presents a review of potential fuel molecules from photosynthetic microbes and the performance of these possible fuels in modern internal combustion engines, highlighting which modifications to the molecular structure of such fuels may enhance their suitability for specific combustion regimes. PMID:25941673

  12. Molecular structure of photosynthetic microbial biofuels for improved engine combustion and emissions characteristics.

    PubMed

    Hellier, Paul; Purton, Saul; Ladommatos, Nicos

    2015-01-01

    The metabolic engineering of photosynthetic microbes for production of novel hydrocarbons presents an opportunity for development of advanced designer biofuels. These can be significantly more sustainable, throughout the production-to-consumption lifecycle, than the fossil fuels and crop-based biofuels they might replace. Current biofuels, such as bioethanol and fatty acid methyl esters, have been developed primarily as drop-in replacements for existing fossil fuels, based on their physical properties and autoignition characteristics under specific combustion regimes. However, advances in the genetic engineering of microalgae and cyanobacteria, and the application of synthetic biology approaches offer the potential of designer strains capable of producing hydrocarbons and oxygenates with specific molecular structures. Furthermore, these fuel molecules can be designed for higher efficiency of energy release and lower exhaust emissions during combustion. This paper presents a review of potential fuel molecules from photosynthetic microbes and the performance of these possible fuels in modern internal combustion engines, highlighting which modifications to the molecular structure of such fuels may enhance their suitability for specific combustion regimes.

  13. Molecular Structure of Photosynthetic Microbial Biofuels for Improved Engine Combustion and Emissions Characteristics

    PubMed Central

    Hellier, Paul; Purton, Saul; Ladommatos, Nicos

    2015-01-01

    The metabolic engineering of photosynthetic microbes for production of novel hydrocarbons presents an opportunity for development of advanced designer biofuels. These can be significantly more sustainable, throughout the production-to-consumption lifecycle, than the fossil fuels and crop-based biofuels they might replace. Current biofuels, such as bioethanol and fatty acid methyl esters, have been developed primarily as drop-in replacements for existing fossil fuels, based on their physical properties and autoignition characteristics under specific combustion regimes. However, advances in the genetic engineering of microalgae and cyanobacteria, and the application of synthetic biology approaches offer the potential of designer strains capable of producing hydrocarbons and oxygenates with specific molecular structures. Furthermore, these fuel molecules can be designed for higher efficiency of energy release and lower exhaust emissions during combustion. This paper presents a review of potential fuel molecules from photosynthetic microbes and the performance of these possible fuels in modern internal combustion engines, highlighting which modifications to the molecular structure of such fuels may enhance their suitability for specific combustion regimes. PMID:25941673

  14. Testing a dual-mode ramjet engine with kerosene combustion

    NASA Astrophysics Data System (ADS)

    Levin, V. M.; Karasev, V. N.; Kartovitskii, L. L.; Krymov, E. A.; Skachkov, O. A.

    2015-09-01

    Results of life firing tests of a dual-mode ramjet engine intended for operation in the speed range M = 3-6 are discussed. The tests were carried out on a test bench under freestream conditions typical of Mach 6 flight at 27.6-km altitude. In the tests, the adopted design and technological solutions were verified, and efficient operation of the ramjet engine with kerosene combustion during 110 s was demonstrated.

  15. Combustion of CNG in Charged Spark Ignition Engines

    NASA Astrophysics Data System (ADS)

    Mitianiec, Wladyslaw

    2009-12-01

    The paper describes mixing of injected CNG with air and combustion process in spark ignition internal combustion engine. Because of higher ignition temperature of CNG the SI engines have more effective ignition system than conventional engines. The gas motion, turbulence, charge temperature and obviously electrical energy of the ignition coil have a big influence on the ignition and burning process in the combustion chamber. The paper includes theoretical and experimental investigations of ignition process in the high charged SI engines with direct CNG injection by using LES technique in KIVA program. Simulation of CNG combustion in the caloric chamber was carried in the environment of OpenFOAM program with LES model and also the experimental test was carried out for comparison of results in the chamber with the same geometry. The influence of the "tumble" and "swirl" on the sparking is shown by modelling of this process in premixed charge by using LES technique. The charge motion and also considerably turbulence effect influence strongly on the ignition process.

  16. Numerical modeling of hydrogen-fueled internal combustion engines

    SciTech Connect

    Johnson, N.L.; Amsden, A.A.

    1996-12-31

    The planned use of hydrogen as the energy carrier of the future introduces new challenges and opportunities, especially to the engine design community. Hydrogen is a bio-friendly fuel that can be produced from renewable resources and has no carbon dioxide combustion products; and in a properly designed ICE, almost zero NO{sub x} and hydrocarbon emissions can be achieved. Because of the unique properties of hydrogen combustion - in particular the highly wrinkled nature of the laminar flame front due to the preferential diffusion instability - modeling approaches for hydrocarbon gaseous fuels are not generally applicable to hydrogen combustion. This paper reports on the current progress to develop a engine design capability based on KIVA family of codes for hydrogen-fueled, spark-ignited engines in support of the National Hydrogen Program. A turbulent combustion model, based on a modified eddy-turnover model in conjunction with an intake flow valve model, is found to describe well the efficiency and NO{sub x} emissions of this engine satisfy the Equivalent Zero Emission Vehicle (EZEV) standard established by the California Resource Board. 26 refs., 10 figs., 1 tab.

  17. Liquid rocket engine fluid-cooled combustion chambers

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A monograph on the design and development of fluid cooled combustion chambers for liquid propellant rocket engines is presented. The subjects discussed are (1) regenerative cooling, (2) transpiration cooling, (3) film cooling, (4) structural analysis, (5) chamber reinforcement, and (6) operational problems.

  18. A sustained-arc ignition system for internal combustion engines

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  19. The railplug: Development of a new ignitor for internal combustion engines

    NASA Astrophysics Data System (ADS)

    Matthews, R. D.; Nichols, S. P.; Weldon, W. F.

    1994-11-01

    A three year investigation of a new type of ignitor for internal combustion engines has been performed using funds from the Advanced Energy Projects Program of The Basic Energy Sciences Division of the U.S. Department of Energy and with matching funding from Research Applications, Inc. This project was a spin-off of 'Star Wars' defense technology, specifically the railgun. The 'railplug' is a miniaturized railgun which produces a high velocity plume of plasma that is injected into the combustion chamber of an engine. Unlike other types of alternative ignitors, such as plasma jet ignitors, electromagnetic forces enhance the acceleration of the plasma generated by a railplug. Thus, for a railplug, the combined effects of electromagnetic and thermodynamic forces drive the plasma into the combustion chamber. Several engine operating conditions or configurations can be identified that traditionally present ignition problems, and might benefit from enhanced ignition systems. One of these is ultra-lean combustion in spark ignition (SI) engines. This concept has the potential for lowering emissions of NO(x) while simultaneously improving thermal efficiency. Unfortunately, current lean burn engines cannot be operated sufficiently lean before ignition related problems are encountered to offer any benefits. High EGR engines have similar potential for emissions improvement, but also experience similar ignition problems, particularly at idle. Other potential applications include diesel cold start, alcohol and dual fuel engines, and high altitude relight of gas turbines. The railplug may find application for any of the above. This project focused on three of these potential applications: lean burn SI engines, high EGR SI engines, and diesel cold start.

  20. The railplug: Development of a new ignitor for internal combustion engines. Final report

    SciTech Connect

    Matthews, R.D.; Nichols, S.P.; Weldon, W.F.

    1994-11-29

    A three year investigation of a new type of ignitor for internal combustion engines has been performed using funds from the Advanced Energy Projects Program of The Basic Energy Sciences Division of the U.S. Department of Energy and with matching funding from Research Applications, Inc. This project was a spin-off of {open_quotes}Star Wars{close_quotes} defense technology, specifically the railgun. The {open_quotes}railplug{close_quotes} is a miniaturized railgun which produces a high velocity plume of plasma that is injected into the combustion chamber of an engine. Unlike other types of alternative ignitors, such as plasma jet ignitors, electromagnetic forces enhance the acceleration of the plasma generated by a railplug. Thus, for a railplug, the combined effects of electromagnetic and thermodynamic forces drive the plasma into the combustion chamber. Several engine operating conditions or configurations can be identified that traditionally present ignition problems, and might benefit from enhanced ignition systems. One of these is ultra-lean combustion in spark ignition (SI) engines. This concept has the potential for lowering emissions of NOx while simultaneously improving thermal efficiency. Unfortunately, current lean burn engines cannot be operated sufficiently lean before ignition related problems are encountered to offer any benefits. High EGR engines have similar potential for emissions improvement, but also experience similar ignition problems, particularly at idle. Other potential applications include diesel cold start, alcohol and dual fuel engines, and high altitude relight of gas turbines. The railplug may find application for any of the above. This project focused on three of these potential applications: lean burn SI engines, high EGR SI engines, and diesel cold start.

  1. Advanced engineering environment collaboration project.

    SciTech Connect

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

    2008-12-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

  2. Exhaust Nozzle for a Multitube Detonative Combustion Engine

    NASA Technical Reports Server (NTRS)

    Bratkovich, Thomas E.; Williams, Kevin E.; Bussing, Thomas R. A.; Lidstone, Gary L.; Hinkey, John B.

    2004-01-01

    An improved type of exhaust nozzle has been invented to help optimize the performances of multitube detonative combustion engines. The invention is applicable to both air-breathing and rocket engines used to propel some aircraft and spacecraft, respectively. In a detonative combustion engine, thrust is generated through the expulsion of combustion products from a detonation process in which combustion takes place in a reaction zone coupled to a shock wave. The combustion releases energy to sustain the shock wave, while the shock wave enhances the combustion in the reaction zone. The coupled shockwave/reaction zone, commonly referred to as a detonation, propagates through the reactants at very high speed . typically of the order of several thousands of feet per second (of the order of 1 km/s). The very high speed of the detonation forces combustion to occur very rapidly, thereby contributing to high thermodynamic efficiency. A detonative combustion engine of the type to which the present invention applies includes multiple parallel cylindrical combustion tubes, each closed at the front end and open at the rear end. Each tube is filled with a fuel/oxidizer mixture, and then a detonation wave is initiated at the closed end. The wave propagates rapidly through the fuel/oxidizer mixture, producing very high pressure due to the rapid combustion. The high pressure acting on the closed end of the tube contributes to forward thrust. When the detonation wave reaches the open end of the tube, it produces a blast wave, behind which the high-pressure combustion products are expelled from the tube. The process of filling each combustion tube with a detonable fuel/oxidizer mixture and then producing a detonation repeated rapidly to obtain repeated pulses of thrust. Moreover, the multiple combustion tubes are filled and fired in a repeating sequence. Hence, the pressure at the outlet of each combustion tube varies cyclically. A nozzle of the present invention channels the

  3. The Cummins advanced turbocompound diesel engine evaluation

    NASA Technical Reports Server (NTRS)

    Hoehne, J. L.; Werner, J. R.

    1982-01-01

    An advanced turbocompound diesel engine program was initiated to improve the tank mileage of the turbocompound engine by 5% over the vehicle test engines. Engine improvements could be realized by increasing the available energy of the exhaust gas at the turbine inlet, incorporating gas turbine techniques into improving the turbomachinery efficiencies, and through refined engine system optimization. The individual and cumulative performance gains achieved with the advanced turbocompound engine improvements are presented.

  4. Hypersonic propulsion. [supersonic combustion ramjet engines

    NASA Technical Reports Server (NTRS)

    Beach, H. L., Jr.

    1979-01-01

    Research on hydrogen fueled scramjet engines for hypersonic flight is reviewed. Component developments, computational methods, and preliminary ground tests of subscale scramjet engine modules at Mach 4 and 7 are emphasized. Airframe integration, structures, and flow diagnostics are also discussed. It is shown that mixed-mode perpendicular and parallel fuel injection controls heat release over a wide Mach range and the fixed geometry inlet gives good performance over a wide range of Mach numbers.

  5. Performance of a high efficiency advanced coal combustor. Task 2, Pilot scale combustion tests: Final report

    SciTech Connect

    Toqan, M.A.; Paloposki, T.; Yu, T.; Teare, J.D.; Beer, J.M.

    1989-12-01

    Under contract from DOE-PETC, Combustion Engineering, Inc. undertook the lead-role in a multi-task R&D program aimed at development of a new burner system for coal-based fuels; the goal was that this burner system should be capable of being retrofitted in oil- or gas-fired industrial boilers, or usable in new units. In the first phase of this program a high efficiency advanced coal combustor was designed jointly by CE and MIT. Its burner is of the multiannular design with a fixed shrouded swirler in the center immediately surrounding the atomizer gun to provide the ``primary act,`` and three further annuli for the supply of the ``secondary air.`` The degree of rotation (swirl) in the secondary air is variable. The split of the combustion air into primary and secondary air flows serves the purpose of flame stabilization and combustion staging, the latter to reduce NO{sub x} formation.

  6. Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start

    DOEpatents

    Janata, Jiri; McVay, Gary L.; Peden, Charles H.; Exarhos, Gregory J.

    1998-01-01

    A method and apparatus for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO.sub.2 is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine.

  7. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Internal combustion engines, other than ship's equipment... SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.136 Internal combustion engines, other than ship's...) When internal combustion engines furnished by the employer are used in a fixed position below...

  8. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Internal combustion engines, other than ship's equipment... SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.136 Internal combustion engines, other than ship's...) When internal combustion engines furnished by the employer are used in a fixed position below...

  9. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Internal combustion engines, other than ship's equipment... SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.136 Internal combustion engines, other than ship's...) When internal combustion engines furnished by the employer are used in a fixed position below...

  10. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Internal combustion engines, other than ship's equipment... SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.136 Internal combustion engines, other than ship's...) When internal combustion engines furnished by the employer are used in a fixed position below...

  11. 49 CFR 173.220 - Internal combustion engines, self-propelled vehicles, mechanical equipment containing internal...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Internal combustion engines, self-propelled vehicles, mechanical equipment containing internal combustion engines, and battery powered vehicles or... Than Class 1 and Class 7 § 173.220 Internal combustion engines, self-propelled vehicles,...

  12. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Internal combustion engines, other than ship's equipment... SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.136 Internal combustion engines, other than ship's...) When internal combustion engines furnished by the employer are used in a fixed position below...

  13. Recent Advances In Science Support For Isolated Droplet Combustion Experiments

    NASA Technical Reports Server (NTRS)

    Dryer, F. L.; Kazakov, A.; Urban, B. D.; Kroenlein, K.

    2003-01-01

    In a joint program involving Prof. F.A. Williams of the University of California, San Diego and Dr. V. Nayagam of the National Center for Microgravity Research, the combustion characteristics of isolated liquid fuel droplets of n-heptane, n-decane, methanol, methanol-water, ethanol and ethanol-water having initial diameters between about 1 mm and 6 mm continues to be investigated. The objectives of the work are to improve fundamental knowledge of droplet combustion dynamics for pure fuels and fuel-water mixtures through microgravity experiments and theoretical analyses. The Princeton contributions support the engineering design, data analysis, and data interpretation requirements for the study of initially single component, spherically symmetric, isolated droplet combustion studies through experiments and numerical modeling. UCSD contributions are described in a companion communication in this conference. The Princeton effort also addresses the analyses of Fiber Supported Droplet Combustion (FSDC) experiments conducted with the above fuels and collaborative work with others who are investigating droplet combustion in the presence of steady convection. A thorough interpretation of droplet burning behavior for n-heptane and n-decane over a relatively wide range of conditions also involves the influences of sooting on the combustion behavior, and this particular aspect on isolated burning of droplets is under consideration in a collaborative program underway with Drexel University. This collaboration is addressed in another communication at this conference. The one-dimensional, time-dependent, numerical modeling approach that we have continued to evolve for analyzing isolated, quiescent droplet combustion data has been further applied to investigate several facets of isolated droplet burning of simple alcohols, n-heptane, and n-decane. Some of the new results are described below.

  14. FUEL INTERCHANGEABILITY FOR LEAN PREMIXED COMBUSTION IN GAS TURBINE ENGINES

    SciTech Connect

    Don Ferguson; Geo. A. Richard; Doug Straub

    2008-06-13

    In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms, changes in fuel composition can alter the dynamic response of a given combustion system. This is of particular interest as increases in demand of domestic natural gas have fueled efforts to utilize alternatives such as coal derived syngas, imported liquefied natural gas and hydrogen or hydrogen augmented fuels. However, prior to changing the fuel supply end-users need to understand how their system will respond. A variety of historical parameters have been utilized to determine fuel interchangeability such as Wobbe and Weaver Indices, however these parameters were never optimized for today’s engines operating under lean pre-mixed combustion. This paper provides a discussion of currently available parameters to describe fuel interchangeability. Through the analysis of the dynamic response of a lab-scale Rijke tube combustor operating on various fuel blends, it is shown that commonly used indices are inadequate for describing combustion specific phenomena.

  15. Fuel injector nozzle for an internal combustion engine

    DOEpatents

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2007-11-06

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  16. Fuel injector nozzle for an internal combustion engine

    DOEpatents

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2008-11-04

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  17. Fuel Injector Nozzle For An Internal Combustion Engine

    DOEpatents

    Cavanagh, Mark S.; Urven, Jr.; Roger L.; Lawrence, Keith E.

    2006-04-25

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  18. Fuel injector nozzle for an internal combustion engine

    SciTech Connect

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2011-03-22

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  19. Structurally compliant rocket engine combustion chamber: Experimental and analytical validation

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Arya, Vinod K.; Kazaroff, John M.; Halford, Gary R.

    1994-01-01

    A new, structurally compliant rocket engine combustion chamber design has been validated through analysis and experiment. Subscale, tubular channel chambers have been cyclically tested and analytically evaluated. Cyclic lives were determined to have a potential for 1000 percent increase over those of rectangular channel designs, the current state of the art. Greater structural compliance in the circumferential direction gave rise to lower thermal strains during hot firing, resulting in lower thermal strain ratcheting and longer predicted fatigue lives. Thermal, structural, and durability analyses of the combustion chamber design, involving cyclic temperatures, strains, and low-cycle fatigue lives, have corroborated the experimental observations.

  20. Combustion of liquid fuels in diesel engine

    NASA Technical Reports Server (NTRS)

    Alt, Otto

    1924-01-01

    Hitherto, definite specifications have always been made for fuel oils and they have been classified as more or less good or non-utilizable. The present aim, however, is to build Diesel engines capable of using even the poorest liquid fuels and especially the waste products of the oil industry, without special chemical or physical preparation.

  1. Turbo-supercharger for internal combustion engine

    SciTech Connect

    Inoue, K.; Suzuki, M.; Narisawa, R.; Terabe, I.; Kubota, O.

    1988-04-05

    A turbo-supercharged motorcycle is described including: a frame; an engine mounted on the frame and having suction pipe defining a suction passage and an exhaust pipe defining an exhaust passage; a turbo-supercharger connected with the engine and comprising; a turbine disposed at an intermediate portion of the exhaust passage for the engine and driven by a gas flowing therein, and a compressor disposed at an intermediate portion of the suction passage for the engine and driven by the turbine; a pre-chamber disposed at the portion of the suction passage which is on the downstream side of the compressor; a branch passage connected to the suction passage at the portion thereof which is upstream of the compressor; a resonance chamber communicated with the suction passage via the branch passage; and a throttle valve disposed in the suction passage downstream of the pre-chamber. The resonance chamber is formed by means for preventing surging positioned at a forward portion of the frame.

  2. The application of ceramic materials to internal combustion engines

    SciTech Connect

    Kalamasz, T.G.; Goth, G.

    1988-01-01

    Based on the unique properties of structural ceramics, considerable interest has been generated in their application to internal combustion engines. However, before ceramics gain widespread acceptance as a material or load carrying applications, both their durability must be proven and the benefits associated with their use quantified. The results from live engine testing of selected ceramic components show there to be measurable advantages when compared to standard metal components. This testing has also served to establish the durability of ceramics under actual engine operating conditions.

  3. Advanced radiant combustion system. Final report, September 1989--September 1996

    SciTech Connect

    Sullivan, J.D.; Carswell, M.G.; Long, F.S.

    1996-09-01

    Results of the Advanced Radiant Combustion System (ARCS) project are presented in this report. This work was performed by Alzeta Corporation as prime contractor under a contract to the U.S. Department of Energy Office of Industrial Technologies as part of a larger DOE program entitled Research Program for Advanced Combustion Systems. The goals of the Alzeta ARCS project were to (a) Improve the high temperature performance characteristics of porous surface ceramic fiber burners, (b) Develop an Advanced Radiant Combustion System (ARCS) that combines combustion controls with an advanced radiant burner, and (c) Demonstrate the advanced burner and controls in an industrial application. Prior to the start of this project, Alzeta had developed and commercialized a porous surface radiant burner, the Pyrocore{trademark} burner. The product had been commercially available for approximately 5 years and had achieved commercial success in a number of applications ranging from small burners for commercial cooking equipment to large burners for low temperature industrial fluid heating applications. The burner was not recommended for use in applications with process temperatures above 1000{degrees}F, which prevented the burner from being used in intermediate to high temperature processes in the chemical and petroleum refining industries. The interest in increasing the maximum use temperature of the burner was motivated in part by a desire to expand the number of applications that could use the Pyrocore product, but also because many of the fluid sensitive heating applications of interest would benefit from the distributed flux characteristic of porous surface burners. Background information on porous surface radiant burners, and a discussion of advantages that would be provided by an improved product, are presented in Section 2.

  4. Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Elam, Sandra; McKechnie, Timothy; Hickman, Robert; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    Next-generation, regeneratively cooled rocket engines require materials that can meet high temperatures while resisting the corrosive oxidation-reduction reaction of combustion known as blanching, the main cause of engine failure. A project was initiated at NASA-Marshal Space Flight Center (MSFC) to combine three existing technologies to build and demonstrate an advanced liquid rocket engine combustion chamber that would provide a 100 mission life. Technology developed in microgravity research to build cartridges for space furnaces was utilized to vacuum plasma spray (VPS) a functional gradient coating on the hot wall of the combustion liner as one continuous operation, eliminating any bondline between the coating and the liner. The coating was NiCrAlY, developed previously as durable protective coatings on space shuttle high pressure fuel turbopump (HPFTP) turbine blades. A thermal model showed that 0.03 in. NiCrAlY applied to the hot wall of the combustion liner would reduce the hot wall temperature 200 F, a 20% reduction, for longer life. Cu-8Cr-4Nb alloy, which was developed by NASA-Glenn Research Center (GRC), and which possesses excellent high temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability, was utilized as the liner material in place of NARloy-Z. The Cu-8Cr-4Nb material exhibits better mechanical properties at 650 C (1200 F) than NARloy-Z does at 538 C (1000 F). VPS formed Cu-8Cr-4Nb combustion chamber liners with a protective NiCrAlY functional gradient coating have been hot fire tested, successfully demonstrating a durable coating for the first time. Hot fire tests along with tensile and low cycle fatigue properties of the VPS formed combustion chamber liners and witness panel specimens are discussed.

  5. Electronically controlled carburetor for internal combustion engine

    SciTech Connect

    Kuroiwa, H.; Oyama, Y.

    1981-07-28

    An electronically-controlled carburetor is disclosed. This electronically-controlled carburetor is provided with a control fuel path in addition to a main fuel path opened to the venturi of the air horn. This control fuel, after being introduced to a constant pressure chamber regulated at a constant pressure, is further introduced to the air horn through a sonic flow nozzle provided at the opening of the constant pressure chamber, together with the control air introduced to the constant pressure chamber. The amount of the control fuel introduced to the air horn and the amount of the control air are regulated on the basis of control electrical signals generated by an electronic control circuit supplied with data indicative of engine running conditions. In this way, the air-fuel ratio is properly controlled over the entire range of engine running conditions.

  6. Exhaust system for an internal combustion engine

    SciTech Connect

    Ikenoya, Y.; Otani, J.

    1982-10-19

    An exhaust system for an engine of a motorcycle is disclosed having catalytic and silencing mufflers arranged in adjacent side -by-side series flow relationship, the catalytic muffler extending rearwardly of the motorcycle, and, adjacent its rear end, being interconnected with the silencing muffler, the silencing muffler including plural expansion chambers which are interconnected in flow reversal relationship for gases to be exhausted rearwardly of the motorcycle.

  7. A Preliminary Motion-picture Study of Combustion in a Compression-ignition Engine

    NASA Technical Reports Server (NTRS)

    Buckley, E C; Waldron, C D

    1934-01-01

    Motion pictures were taken at 1,850 frames per second of the spray penetration and combustion occurring in the N.A.C.A. combustion apparatus arranged to operate as a compression-ignition engine. Indicator cards were taken simultaneously with the motion pictures by means of the N.A.C.A. optical indicator. The motion pictures showed that when ignition occurred during injection it started in the spray envelope. If ignition occurred after injection cut-off, however, and after considerable mixing had taken place, it was impossible to predict where the ignition would start. The pictures also showed that ignition usually started at several points in the combustion chamber. With this apparatus, as the injection advance angle increased from 0 degrees to 40 degrees before top center, the rate of flame spread increased and the duration of the burning decreased.

  8. Scaling of Performance in Liquid Propellant Rocket Engine Combustion Devices

    NASA Technical Reports Server (NTRS)

    Hulka, James R.

    2008-01-01

    This paper discusses scaling of combustion and combustion performance in liquid propellant rocket engine combustion devices. In development of new combustors, comparisons are often made between predicted performance in a new combustor and measured performance in another combustor with different geometric and thermodynamic characteristics. Without careful interpretation of some key features, the comparison can be misinterpreted and erroneous information used in the design of the new device. This paper provides a review of this performance comparison, including a brief review of the initial liquid rocket scaling research conducted during the 1950s and 1960s, a review of the typical performance losses encountered and how they scale, a description of the typical scaling procedures used in development programs today, and finally a review of several historical development programs to see what insight they can bring to the questions at hand.

  9. Internal combustion engine having opposed pistons

    SciTech Connect

    Puzio, E.T.

    1993-07-20

    An internal combustion apparatus is described having opposed sets of pistons comprising: (a) an inner crankcase means defining an inner chamber means therein, the inner crankcase means further defining a first connecting arm aperture means and a second connecting arm aperture means therein; (b) a crankshaft means rotatably mounted within the inner chamber means of the inner crankcase means and defining a crankshaft axis means extending axially there through, the crankshaft means defining a driving means peripherally therearound to facilitate distribution of driving power therefrom; (c) a first outer crankcase means defining a first outer chamber means in fluid flow communication with respect to the inner chamber means through the first connecting arm aperture means; (d) a second outer crankcase means defining a second outer chamber means in fluid flow communication with respect to the inner chamber means through the second connecting arm aperture means, the second outer crankcase means defining a second piston bore means extending longitudinally therein; (e) a crank pin means positioned extending through the crank pin aperture in the crankshaft means, the crank pin means being rotatable with respect to the crank pin aperture means; (f) a first connecting arm means fixedly secured with respect to one end of the crank pin means and extending through the first connecting arm aperture means into the first outer crankcase means; (g) a second connecting arm means fixedly secured with respect to the other end of the crank pin means and extending through the second connecting arm aperture means into the second outer crankcase means; (h) a first piston assembly means positioned extending through the first piston bore means to be reciprocally axially movable therein; (i) a second piston assembly means positioned extending through the second piston bore means to be reciprocally axially movable therein.

  10. Fuel injection system for an internal combustion engine

    SciTech Connect

    Hirose, K.; Noguchi, H.; Baika, T.; Horii, K.; Nagaosa, H.; Tanahashi, T.; Itoh, T.

    1989-04-25

    An internal combustion engine is described, comprising: an engine body; an intake system connected to the engine body for an introduction of air thereto; an exhaust system connected to the engine body for a removal of a resultant exhaust gas; means for supplying a desired amount of fuel to the engine; means for calculating the desired amount of fuel in accordance with basic engine operating conditions including an map means for storing data of a parameter for a compensation of the amount of air to be blown out, the map means comprising a plurality of values of the parameter, each value being determined by a combination of at least an engine load and engine speed; means for reading a value of the parameter from the map means corresponding to a combination of an engine load and engine Speed; means for correcting the calculated fuel amount by incorporating the calculated parameter, and; means for generating a signal directed to the fuel supply means for introduction of a corrected amount of fuel into the engine.

  11. Advanced System for Process Engineering

    1998-09-14

    PRO ASPEN/PC1.0 (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes and has been ported to run on a PC. PRO ASPEN/PC1.0 can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations.more » It is supported by a comprehensive physical property system for computation of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The PRO ASPEN/PC1.0 Input Language is oriented towards process engineers.« less

  12. Supersonic combustion ramjet /scramjet/ engine development in the United States

    NASA Technical Reports Server (NTRS)

    Waltrup, P. J.; Anderson, G. Y.; Stull, F. D.

    1976-01-01

    This survey of supersonic combustion ramjet (scramjet) engine development in the United States covers development of this unique engine cycle from its inception in the early 1960's through the various programs currently being pursued and, in some instances, describing the future direction of the programs. These include developmental efforts supported by the U.S. Navy, National Aeronautics and Space Administration, and U.S. Air Force. Results of inlet, combustor, and nozzle component tests, free-jet engine tests, analytical techniques developed to analyze and predict component and engine performance, and flight-weight hardware development are presented. These results show that efficient scramjet propulsion is attainable in a variety of flight configurations with a variety of fuels. Since the scramjet is the most efficient engine cycle for hypersonic flight within the atmosphere, it should be given serious consideration in future propulsion schemes

  13. Anti-overrunning device for an internal combustion engine

    SciTech Connect

    Sejimo, Y.; Tsubai, T.; Tobinai, T.

    1989-03-07

    An anti-overrunning device for an internal combustion engine is described, consisting of (a) a carburetor having a venturi passage for a fuel and air mixture, (b) a throttle valve in the passage movable to open and closed positions to regulate the effective area of the passage, (c) an actuator including a diaphragm responsive to pneumatic pressure operatively connected to the throttle valve, (d) an inertial pump comprising a housing having a weighted diaphragm mounted on an engine and subject to engine vibrations to develop pneumatic pressure, the inertial pump having an inlet to receive atmospheric air and an outlet connected to the actuator, and (e) a vibration sensor in communication with the inertial pump inlet responsive to excessive vibration of the engine to connect the inlet to atmosphere to initiate pumping air from the outlet to the actuator to cause movement of the actuator diaphragm and the throttle valve in a closing direction to reduce the speed of the engine.

  14. Anti-overrunning device for an internal combustion engine

    SciTech Connect

    Sejimo, Y.; Tsubai, T.; Tobinai, T.

    1989-03-07

    An anti-overrunning device is described for an internal combustion engine, comprising: (a) a carburetor having a venture passage for a fuel and air mixture, (b) a throttle valve in the passage movable to open and closed positions to regulate the effective area of the passage, (c) an actuator including a diaphragm responsive to pneumatic pressure operatively connected to the throttle valve, (d) an inertial pump comprising a housing having a weighted diaphragm mounted on an engine and subject to engine vibrations to develop pneumatic pressure, the inertial pump having an outlet connection to the actuator, and (e) a vibration sensor valve interposed in the outlet connection between the inertial pump and the actuator responsive to excessive vibration of the engine to connect the pump pressure to the actuator to cause movement of the throttle valve in a closing direction to reduce the speed of the engine.

  15. Rotary valve system for internal combustion engines

    SciTech Connect

    Moore, R.G.

    1992-05-12

    This patent describes a fuel intake and exhaust system for use with a four stroke engine of a type having an engine block formed with at least one piston cavity having an upper opening in the top surface of the block, a piston having an upper surface reciprocating in the cavity toward and away from the upper opening, a crankshaft and a connecting rod secured to the piston and crankshaft. This patent describes improvement in a housing disposed over the block and having an interior chamber formed with a lower opening located directly over the upper opening and the lower opening having approximately the same dimension as the upper opening; the housing formed with fuel intake and exhaust ports; a rotor shaft rotatably received in the chamber; a triangular rotor having first second and third surfaces carried out by the shaft and movable therewith; means connecting the crankshaft to the rotor shaft for relative rotative movement therebetween; the first surface of the rotor spanning the upper opening at a particular rotative disposition of the rotor while isolating the intake and exhaust ports from the piston cavity.

  16. Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Elam, Sandra; Ellis, David L.; McKechnie, Timothy; Hickman, Robert; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. Fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of shrinking budgets. Three technologies have been combined to produce an advanced liquid rocket engine combustion chamber at NASA-Marshall Space Flight Center (MSFC) using relatively low-cost, vacuum-plasma-spray (VPS) techniques. Copper alloy NARloy-Z was replaced with a new high performance Cu-8Cr-4Nb alloy developed by NASA-Glenn Research Center (GRC), which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. Functional gradient technology, developed building composite cartridges for space furnaces was incorporated to add oxidation resistant and thermal barrier coatings as an integral part of the hot wall of the liner during the VPS process. NiCrAlY, utilized to produce durable protective coating for the space shuttle high pressure fuel turbopump (BPFTP) turbine blades, was used as the functional gradient material coating (FGM). The FGM not only serves as a protection from oxidation or blanching, the main cause of engine failure, but also serves as a thermal barrier because of its lower thermal conductivity, reducing the temperature of the combustion liner 200 F, from 1000 F to 800 F producing longer life. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost VPS process. VPS formed combustion chamber test articles have been formed with the FGM hot wall built in and hot fire tested, demonstrating for the first time a coating that will remain intact through the hot firing test, and with

  17. Evaluation of a turbulent combustion model for internal combustion engine applications

    SciTech Connect

    Traci, R.M.; Su, F.Y.

    1987-01-01

    Multidimensional numerical models of internal combustion engine processes require closure approximations for the effective turbulent reaction rates for the reactive mixture. In this paper, an engineering level approach, called the ''Eddy-Burn-Rate'' model, is proposed which attempts to reconcile the multiscale effects of turbulence on flame propagation. Two rate limiting steps are considered: an entrainment or mixing step and a burn or microscale reaction step. The model treats mixing via a two-equation second order closure turbulence model and defines a time constant for the fuel oxidation reaction based on laminar flame consumption on the Taylor micro-scale. The Eddy-Burn Rate model is evaluated against alternative turbulent reaction rate closure methods as well as data from two different combustion bombs.

  18. Experimental results with hydrogen fueled internal combustion engines

    NASA Technical Reports Server (NTRS)

    De Boer, P. C. T.; Mclean, W. J.; Homan, H. S.

    1975-01-01

    The paper focuses on the most important experimental findings for hydrogen-fueled internal combustion engines, with particular reference to the application of these findings to the assessment of the potential of hydrogen engines. Emphasis is on the various tradeoffs that can be made, such as between maximum efficiency, maximum power, and minimum NO emissions. The various possibilities for induction and ignition are described. Some projections are made about areas in which hydrogen engines may find their initial application and about optimum ways to design such engines. It is shown that hydrogen-fueled reciprocal internal combustion engines offer important advantages with respect to thermal efficiency and exhaust emissions. Problems arising from preignition can suitably be avoided by restricting the fuel-air equivalence ratio to values below about 0.5. The direct cylinder injection appears to be a very attractive way to operate the engine, because it combines a wide range of possible power outputs with a high thermal efficiency and very low NO emissions at part loads.

  19. Method of fabricating a rocket engine combustion chamber

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R. (Inventor); Mckechnie, Timothy N. (Inventor); Power, Christopher A. (Inventor); Daniel, Ronald L., Jr. (Inventor); Saxelby, Robert M. (Inventor)

    1993-01-01

    A process for making a combustion chamber for a rocket engine wherein a copper alloy in particle form is injected into a stream of heated carrier gas in plasma form which is then projected onto the inner surface of a hollow metal jacket having the configuration of a rocket engine combustion chamber is described. The particles are in the plasma stream for a sufficient length of time to heat the particles to a temperature such that the particles will flatten and adhere to previously deposited particles but will not spatter or vaporize. After a layer is formed, cooling channels are cut in the layer, then the channels are filled with a temporary filler and another layer of particles is deposited.

  20. High Speed Photographic Studies Of Rocket Engine Combustion

    NASA Astrophysics Data System (ADS)

    Uyemura, Tsuneyoshi; Ozono, Shigeo; Mizunuma, Toshio; Yamamoto, Yoshitaka; Kikusato, Yutaka; Eiraku, Masamitsu; Uchida, Yubu

    1983-03-01

    The high speed cameras were used to develop the new sounding rocket motor and to check the safety operation system. The new rocket motor was designed as a single stage rocket and its power was greater than the multi-stage K-9M rocket motor. The test combustion of this new type rocket engine was photographed by the high speed cameras to analyze the burning process. At the outside of rocket chamber, the cable which connect the detector of an engine nozzle with the telemeter system was fixed. To check the thero.,a1 influences of combustion flame to the cable, the thermo-tapes and high speed cameras were used Safety operation system was tested and photographed with high speed cameras using a S0-1510 model rocket.

  1. Evaluation of the Migrating Combustion Chamber (MCC) engine

    NASA Astrophysics Data System (ADS)

    Miller, K. M.; Morar, Dorin

    1993-01-01

    The Belvoir Research, Development and Engineering Center (BRDEC) tested three Migrating Combustion Chamber (MCC) engines built by Engine Research Associates (ERA) for Natick RD and E Center. The MCC concept attempts to provide a lightweight, quiet engine having a cool exhaust gas stream. The cool exhaust is attained by capturing additional energy from expansion beyond that achievable in conventional engines by the use of gas porting to multiple expansion chambers; this provides a more efficient engine operation than is otherwise attainable for the configuration. The testing included determining the engine torque-speed-power characteristics and the Brake Specific Fuel Consumption (BSFC) under a variety of load conditions. Startability and operability were concerns; starting under normal ambient conditions was difficult. All testing was performed using a 10:1 fuel/oil mixture of low lead gasoline with AMZOIL synthetic lubricating oil for two-stroke engines. The maximum power achieved was 0.25 horsepower at 4,400 rpm. The peak torque observed was 69 oz.-in. at 3,200 rpm. It was not possible to make noise and vibration measurements during the testing cycle, but they appeared to be low. The MCC engines tested had relatively short lives, operating for less than 25 hours. Performance and durability improvements are necessary before this MCC design can be considered as a viable alternative to commercially available two-cycle engines.

  2. Camshaft driving system for internal combustion engine

    SciTech Connect

    Hiroshima, K.A.

    1987-06-23

    This patent describes camshaft driving system for a double overhead camshaft engine cylinder rows extend parallel to the crankshaft of the engine. The second cylinder row is rearwardly displaced from the first cylinder row in the axial direction of the crankshaft so that vacant spaces are formed respectively behind the first cylinder row and in front of the second cylinder row. All the pistons in the cylinders of the first and second cylinder rows are connected to the crankshaft and a pair of camshafts for driving the intake and exhaust valves are provided in the cylinder head of each cylinder row to extend in the direction of the crankshaft. The camshaft driving system comprises a timing pulley provided on one of the intake and exhaust camshafts of each cylinder row to rotate together with the camshaft; A crank pulley is driven by the crankshaft; A first driving force transmission means transmits rotation of the crank pulley to the timing pulleys of the first and second cylinder rows; a second driving force transmission means transmits rotation of the timing pulley of the first cylinder row to the other of the camshafts of the first cylinder row; and a third driving force transmission means transmits rotation of the timing pulley of the second cylinder row to the other of the camshafts of the second cylinder row. The second driving force transmission means is disposed in the vacant space behind the first cylinder row and the third driving force transmission means is disposed in the vacant space in front of the second cylinder row.

  3. The effect of insulated combustion chamber surfaces on direct-injected diesel engine performance, emissions, and combustion

    NASA Technical Reports Server (NTRS)

    Dickey, Daniel W.; Vinyard, Shannon; Keribar, Rifat

    1988-01-01

    The combustion chamber of a single-cylinder, direct-injected diesel engine was insulated with ceramic coatings to determine the effect of low heat rejection (LHR) operation on engine performance, emissions, and combustion. In comparison to the baseline cooled engine, the LHR engine had lower thermal efficiency, with higher smoke, particulate, and full load carbon monoxide emissions. The unburned hydrocarbon emissions were reduced across the load range. The nitrous oxide emissions increased at some part-load conditions and were reduced slightly at full loads. The poor LHR engine performance was attributed to degraded combustion characterized by less premixed burning, lower heat release rates, and longer combustion duration compared to the baseline cooled engine.

  4. Enhanced efficiency of internal combustion engines by employing spinning gas

    NASA Astrophysics Data System (ADS)

    Geyko, V. I.; Fisch, N. J.

    2014-08-01

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency.

  5. Enhanced efficiency of internal combustion engines by employing spinning gas.

    PubMed

    Geyko, V I; Fisch, N J

    2014-08-01

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency. PMID:25215720

  6. Pulsed jet combustion generator for non-premixed charge engines

    DOEpatents

    Oppenheim, A. K.; Stewart, H. E.

    1990-01-01

    A device for introducing fuel into the head space of cylinder of non-premixed charge (diesel) engines is disclosed, which distributes fuel in atomized form in a plume, whose fluid dynamic properties are such that the compression heated air in the cylinder head space is entrained into the interior of the plume where it is mixed with and ignites the fuel in the plume interior, to thereby control combustion, particularly by use of a multiplicity of individually controllable devices per cylinder.

  7. A comprehensive combustion model for biodiesel-fueled engine simulations

    NASA Astrophysics Data System (ADS)

    Brakora, Jessica L.

    Engine models for alternative fuels are available, but few are comprehensive, well-validated models that include accurate physical property data as well as a detailed description of the fuel chemistry. In this work, a comprehensive biodiesel combustion model was created for use in multi-dimensional engine simulations, specifically the KIVA3v R2 code. The model incorporates realistic physical properties in a vaporization model developed for multi-component fuel sprays and applies an improved mechanism for biodiesel combustion chemistry. A reduced mechanism was generated from the methyl decanoate (MD) and methyl-9-decenoate (MD9D) mechanism developed at Lawrence Livermore National Laboratory. It was combined with a multi-component mechanism to include n-heptane in the fuel chemistry. The biodiesel chemistry was represented using a combination of MD, MD9D and n-heptane, which varied for a given fuel source. The reduced mechanism, which contained 63 species, accurately predicted ignition delay times of the detailed mechanism over a range of engine-specific operating conditions. Physical property data for the five methyl ester components of biodiesel were added to the KIVA library. Spray simulations were performed to ensure that the models adequately reproduce liquid penetration observed in biodiesel spray experiments. Fuel composition impacted liquid length as expected, with saturated species vaporizing more and penetrating less. Distillation curves were created to ensure the fuel vaporization process was comparable to available data. Engine validation was performed against a low-speed, high-load, conventional combustion experiments and the model was able to predict the performance and NOx formation seen in the experiment. High-speed, low-load, low-temperature combustion conditions were also modeled, and the emissions (HC, CO, NOx) and fuel consumption were well-predicted for a sweep of injection timings. Finally, comparisons were made between the results of biodiesel

  8. Enhanced efficiency of internal combustion engines by employing spinning gas.

    PubMed

    Geyko, V I; Fisch, N J

    2014-08-01

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency.

  9. Enhanced Efficiency of Internal Combustion Engines By Employing Spinning Gas

    SciTech Connect

    Geyko, Vasily; Fisch, Nathaniel

    2014-02-27

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A gain in fuel efficiency of several percent is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in the efficiency.

  10. Internal combustion engine and cam drive mechanism therefor

    SciTech Connect

    Ma, T.T.

    1986-03-25

    This patent describes a cam mechanism for driving the camshaft of a four-stroke internal combustion engine having one or more sets of n number of cylinders where n is a positive integer, a piston connected to a crankshaft and reciprocable in each cylinder and is either in phase or out of phase with any other piston in the set to which it belongs by a phase angle A/sup 0/, or an integral multiple thereof. A camshaft carries rotatable cams for actuating inlet and/or exhaust valves for each cylinder in the set. Characterized in the cam drive mechanism consist of means for rotating the camshaft with a rotational movement which is a combination of a circular motion about its axis of rotation which has a predetermined phase relationship with the circular movement of the crankshaft and an oscillatory motion about its axis of rotation to advance and retard the angular position of the cams relative to the valves with which they are associated. The oscillatory motion has a predetermined phase relationship with the crankshaft, and means for varying the amplitude of the oscillatory motion whereby the timing of the opening and closing of the valves may be varied, characterized in that the speed of the circular movement of the camshaft is half the speed of the crankshaft. The frequency of oscillations of the camshaft is f times the frequency of rotation of the crankshaft. The cam drive mechanism consists of a rotatable drive member drivable by the crankshaft. A connection is between the drive member and camshaft for transmitting the rotary motion of the drive member thereto. The connection including a sleeve element rotatable by the drive element and axially slidable relative thereto and having a helically splined connection with the camshaft whereby axial movement of the sleeve element effects a rotation of the camshaft relative to the drive member.

  11. Fuel Vaporization and Its Effect on Combustion in a High-Speed Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1933-01-01

    The tests discussed in this report were conducted to determine whether or not there is appreciable vaporization of the fuel injected into a high-speed compression-ignition engine during the time available for injection and combustion. The effects of injection advance angle and fuel boiling temperature were investigated. The results show that an appreciable amount of the fuel is vaporized during injection even though the temperature and pressure conditions in the engine are not sufficient to cause ignition either during or after injection, and that when the conditions are such as to cause ignition the vaporization process affects the combustion. The results are compared with those of several other investigators in the same field.

  12. Partially-Premixed Flames in Internal Combustion Engines

    SciTech Connect

    Robert W. Pitz; Michael C. Drake; Todd D. Fansler; Volker Sick

    2003-11-05

    This was a joint university-industry research program funded by the Partnerships for the Academic-Industrial Research Program (PAIR). The research examined partially premixed flames in laboratory and internal combustion engine environments at Vanderbilt University, University of Michigan, and General Motors Research and Development. At Vanderbilt University, stretched and curved ''tubular'' premixed flames were measured in a unique optically accessible burner with laser-induced spontaneous Raman scattering. Comparisons of optically measured temperature and species concentration profiles to detailed transport, complex chemistry simulations showed good correspondence at low-stretch conditions in the tubular flame. However, there were significant discrepancies at high-stretch conditions near flame extinction. The tubular flame predictions were found to be very sensitive to the specific hydrogen-air chemical kinetic mechanism and four different mechanisms were compared. In addition, the thermo-diffusive properties of the deficient reactant, H2, strongly affected the tubular flame structure. The poor prediction near extinction is most likely due to deficiencies in the chemical kinetic mechanisms near extinction. At the University of Michigan, an optical direct-injected engine was built up for laser-induced fluorescence imaging experiments on mixing and combustion under stratified charge combustion conditions with the assistance of General Motors. Laser attenuation effects were characterized both experimentally and numerically to improve laser imaging during the initial phase of the gasoline-air mixture development. Toluene was added to the isooctane fuel to image the fuel-air equivalence ratio in an optically accessible direct-injected gasoline engine. Temperature effects on the toluene imaging of fuel-air equivalence ratio were characterized. For the first time, oxygen imaging was accomplished in an internal combustion engine by combination of two fluorescence trackers

  13. Advanced General Aviation Turbine Engine (GATE) study

    NASA Technical Reports Server (NTRS)

    Smith, R.; Benstein, E. H.

    1979-01-01

    The small engine technology requirements suitable for general aviation service in the 1987 to 1988 time frame were defined. The market analysis showed potential United States engines sales of 31,500 per year providing that the turbine engine sales price approaches current reciprocating engine prices. An optimum engine design was prepared for four categories of fixed wing aircraft and for rotary wing applications. A common core approach was derived from the optimum engines that maximizes engine commonality over the power spectrum with a projected price competitive with reciprocating piston engines. The advanced technology features reduced engine cost, approximately 50 percent compared with current technology.

  14. Advanced Combustion Systems for Next Generation Gas Turbines

    SciTech Connect

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program

  15. Genetically Engineered Immunotherapy for Advanced Cancer

    Cancer.gov

    In this trial, doctors will collect T lymphocytes from patients with advanced mesothelin-expressing cancer and genetically engineer them to recognize mesothelin. The gene-engineered cells will be multiplied and infused into the patient to fight the cancer

  16. Fuel injection system for an internal combustion engine

    SciTech Connect

    Freyer, E.; Steinwart, J.; Will, P.

    1981-01-06

    A fuel injection system for an internal combustion engine includes an air suction pipe, a throttle valve located in the pipe, and a member, upstream of the throttle valve, which is actuatable by air flowing through the suction pipe so as to move a piston valve to dose a quantity of fuel to a fuel injection nozzle. The system includes a duct which bypasses the throttle valve, the duct having a valve which closes the duct when the throttle valve is closed and when the engine is above the idling speed. Dosing of fuel is thereby stopped during coasting of a vehicle, leading to decreased fuel consumption.

  17. Elimination of abnormal combustion in a hydrogen-fueled engine

    SciTech Connect

    Swain, M.R.; Swain, M.N.

    1995-11-01

    This report covers the design, construction, and testing of a dedicated hydrogen-fueled engine. Both part-load and full-load data were taken under laboratory conditions. The engine design included a billet aluminum single combustion chamber cylinder-head with one intake valve, two sodium coiled exhaust valves, and two spark plugs. The cylinder-head design also included drilled cooling passages. The fuel-delivery system employed two modified Siemens electrically actuated fuel injectors, The exhaust system included two separate headers, one for each exhaust port. The piston/ring combination was designed specifically for hydrogen operation.

  18. New engine and advanced component design

    SciTech Connect

    Not Available

    1990-01-01

    This book contains the proceedings on new engine and advance component design. Topics covered include: development of low emission high performance four valve engines, the effect of engine build options on powerplant inertias, silicon nitride turbocharger rotor for high performance automotive engines and development of Toyota reflex Burn (TRB) system in DI diesel.

  19. Combustion system for dual fuel engine

    SciTech Connect

    Schaub, F.S.; Smith, J.G.

    1990-10-30

    This patent describes in an dual gas-liquid fuel four cycle engine having cylinders and wherein each cylinder is operatively connected thereto and each cylinder has a piston, two inlet valves, two exhaust valves and a first liquid fuel injector. It comprises: at least one fuel torch cell operatively connected to at least one cylinder, the torch cell having a torch cell nozzle at one end thereof and the other end having appropriate means to connect the torch cell to a fuel supply, a second fuel injector mounted in the torch cell at a predetermined angle to an axis of the torch cell, the torch cell defining an auto-ignition chamber, the second fuel injector being in operative communication with the auto-ignition chamber by an injector nozzle passageway, the injector nozzle passageway entering the auto-ignition chamber at a predetermined angle relative to the axis, and a torch nozzle passage connecting the auto-ignition chamber with the cylinder at a predetermined angle to a top inner portion of a cylinder head.

  20. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Installation of internal combustion engines-TB/ALL. 32... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-5 Installation of internal combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided...

  1. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Installation of internal combustion engines-TB/ALL. 32... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-5 Installation of internal combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided...

  2. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Installation of internal combustion engines-TB/ALL. 32... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-5 Installation of internal combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided...

  3. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Installation of internal combustion engines-TB/ALL. 32... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-5 Installation of internal combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided...

  4. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Installation of internal combustion engines-TB/ALL. 32... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-5 Installation of internal combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided...

  5. Air supply system for an internal combustion engine

    SciTech Connect

    Eftink, A.J.

    1991-03-12

    This patent describes a reciprocating piston internal combustion engine having a crankshaft and at least two cylinders, each cylinder having a displacement volume V{sub 1}, the improved means for supplying air to each cylinder. It comprises: a rotary, trochoidal chamber air pump defining at least one pair of pumping chambers, the number of pumping chambers being equal to the number of cylinders in the engine; air intake conduits connecting each pumping chamber to one cylinder of the engine; a rotor rotatable in each pair of pumping chambers, the rotor having three faces such that passage of a face of the rotor through a pumping chamber forces air in the pumping chamber into the associated air intake conduit and, consequently, into the engine cylinder; and means interconnecting the rotor and the crankshaft so as to rotate the rotor approximately one revolution for every three revolutions of the crankshaft.

  6. Ignition timing control system for internal combustion engines

    SciTech Connect

    Suzuki, Y.; Kimura, S.

    1988-05-31

    An ignition timing control system for an internal combustion engine having a crankshaft is described comprising: magnetic pick-up means for magnetically sensing the angular position of the crankshaft and for generating an output signal indictive thereof; and control means for controlling the ignition timing of the engine based on the output signal from the magnetic pick-up means. The control means includes correction means for correcting a basic ignition timing, which is determined in accordance with at least one engine operating parameter, by the use of a correction value, which is determined in accordance with a time delay in the generation of the output signal from the magnetic pick-up means with respect to the angular position of the crankshaft and which increases with a rise in the rotational speed of the engine.

  7. Vacuum Plasma Spray of CuCrNb Alloy for Advanced Liquid - Fuel Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2000-01-01

    The copper-8 atomic percent chromium-4 atomic percent niobium (CuCrNb) alloy was developed by Glenn Research Center (formally Lewis Research Center) as an improved alloy for combustion chamber liners. In comparison to NARloy-Z, the baseline (as in Space Shuttle Main Engine) alloy for such liners, CuCrNb demonstrates mechanical and thermophysical properties equivalent to NARloy-Z, but at temperatures 100 C to 150 C (180 F to 270 F) higher. Anticipated materials related benefits include decreasing the thrust cell liner weight 5% to 20%, increasing the service life at least two fold over current combustion chamber design, and increasing the safety margins available to designers. By adding an oxidation and thermal barrier coating to the liner, the combustion chamber can operate at even higher temperatures. For all these benefits, however, this alloy cannot be formed using conventional casting and forging methods because of the levels of chromium and niobium, which exceed their solubility limit in copper. Until recently, the only forming process that maintains the required microstructure of CrNb intermetallics is powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. Vacuum plasma spray (VPS) has been demonstrated as a method to form structural articles including small combustion chambers from the CuCrNb alloy. In addition, an oxidation and thermal barrier layer can be formed integrally on the hot wall of the liner that improve performance and extend service life. This paper discusses the metallurgy and thermomechanical properties of VPS formed CuCrNb versus the baseline powder metallurgy process, and the manufacturing of small combustion chamber liners at Marshall Space Flight Center using the VPS process. The benefits to advanced propulsion initiatives of using VPS to fabricate combustion chamber liners

  8. Process/Engineering Co-Simulation of Oxy-Combustion and Chemical Looping Combustion

    SciTech Connect

    Sloan, David

    2013-03-01

    Over the past several years, the DOE has sponsored various funded programs, collectively referred to as Advanced Process Engineering Co-Simulator (APECS) programs, which have targeted the development of a steady-state simulator for advanced power plants. The simulator allows the DOE and its contractors to systematically evaluate various power plant concepts, either for preliminary conceptual design or detailed final design.

  9. Advanced solutions in combustion-based WtE technologies.

    PubMed

    Martin, Johannes J E; Koralewska, Ralf; Wohlleben, Andreas

    2015-03-01

    Thermal treatment of waste by means of combustion in grate-based systems has gained world-wide acceptance as the preferred method for sustainable management and safe disposal of residual waste. In order to maintain this position and to address new challenges and/or priorities, these systems need to be further developed with a view to energy conservation, resource and climate protection and a reduction in the environmental impact in general. MARTIN GmbH has investigated continuously how the implementation of innovative concepts in essential parts of its grate-based Waste-to-Energy (WtE) combustion technology can be used to meet the above-mentioned requirements. As a result of these efforts, new "advanced solutions" were developed, four examples of which are shown in this article. PMID:25305685

  10. The problem of carrying out a diagnosis of an internal combustion engine by vibroacoustical parameters

    NASA Technical Reports Server (NTRS)

    Lukanin, V. N.; Sidorov, V. I.

    1973-01-01

    The physics of noise formation in an internal combustion engine is discussed. A dependence of the acoustical radiation on the engine operating process, its construction, and operational parameters, as well as on the degree of wear on its parts, has been established. An example of tests conducted on an internal combustion engine is provided. A system for cybernetic diagnostics for internal combustion engines by vibroacoustical parameters is diagrammed.

  11. Vortex formation in a proposed detonation internal combustion engine

    SciTech Connect

    Loth, E.

    1995-05-01

    A possible configuration for taking advantage of detonation combustion in an internal combustion engine is described, which uses a separate detonation combustion chamber that discharges tangentially into a vortex chamber formed by the piston and cylinder at top dead center. The vortex chamber is designed to efficiently store a portion of the kinetic energy produced by the detonation wave in the form of a vortex, which would subsequently be converted into static pressure. By placing this chamber above the piston surface, the detonation and primary shock waves are directed parallel to the piston surface, thus avoiding potentially destructive loads to the piston. The rapid burning followed by mixing with air in the vortex chamber may reduce the formation of NOx and unburned hydrocarbons as compared to conventional combustion. Such a configuration may efficiently take advantage of clean-burning slow-deflagrating fuels such as natural gas to yield constant volume-type efficiencies. Shock wave propagation through the vortex chamber was simulated to qualitatively observe the vortex storage and rapid mixing characteristics. 30 refs.

  12. Coal-water slurry fuel internal combustion engine and method for operating same

    DOEpatents

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  13. Dynamic estimator for determining operating conditions in an internal combustion engine

    DOEpatents

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-01-05

    Methods and systems are provided for estimating engine performance information for a combustion cycle of an internal combustion engine. Estimated performance information for a previous combustion cycle is retrieved from memory. The estimated performance information includes an estimated value of at least one engine performance variable. Actuator settings applied to engine actuators are also received. The performance information for the current combustion cycle is then estimated based, at least in part, on the estimated performance information for the previous combustion cycle and the actuator settings applied during the previous combustion cycle. The estimated performance information for the current combustion cycle is then stored to the memory to be used in estimating performance information for a subsequent combustion cycle.

  14. Virtual Instrument for Emissions Measurement of Internal Combustion Engines.

    PubMed

    Pérez, Armando; Ramos, Rogelio; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user. PMID:27034893

  15. Virtual Instrument for Emissions Measurement of Internal Combustion Engines.

    PubMed

    Pérez, Armando; Ramos, Rogelio; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user.

  16. Virtual Instrument for Emissions Measurement of Internal Combustion Engines

    PubMed Central

    Pérez, Armando; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user. PMID:27034893

  17. Method and apparatus for controlling spark timing in internal combustion engines

    SciTech Connect

    Sasaki, K.; Tachi, R.; Iwamoto, K.

    1986-04-29

    This patent describes an apparatus for controlling the spark timing of an internal combustion engine having a crankshaft. The apparatus consists of: (a) sensor means for sensing engine operating parameters including engine load and engine rotational speed; (b) means for generating a reference position signal indicating a predetermined engine crankshaft position; (c) means responsive to the reference position signal generating means for generating a reference pulse signal having a leading edge advanced with respect to the predetermined engine crankshaft position as a function of the rotational speed of the engine crankshaft and having a trailing edge substantially coinciding with the predetermined engine crankshaft position; (d) means for deriving a desired ignition timing as a function of the engine operating parameters sensed by the sensor means; (e) means for computing a period of time elapsed from the leading edge of the reference pulse so that the end of the period of time coincides with the desired ignition timing; (f) means for detecting the variation of a period between the leading edge and the trailing edge of the reference pulse in relation to each cylinder of the engine; and (g) correction means including means responsive to the computing means and detecting means for correcting the computed period of time in accordance with the detected variation and means for generating a signal causing an ignition to occur after elapse of the corrected period of time in response to the leading edge of the reference pulse.

  18. The thermodynamics and gas dynamics of internal-combustion engines. Volume II

    SciTech Connect

    Horlock, J.H.; Winterbone, D.E.

    1986-01-01

    This book is composed of chapters covering methods of analyzing engine air and gas flows, combustion and heat transfer in the engine cylinder, and the application and integration of these analytical tools into a tool for complete engine performance prediction.

  19. Evaluation of undeveloped rocket engine cycle applications to advanced transportation

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Undeveloped pump-fed, liquid propellant rocket engine cycles were assessed and evaluated for application to Next Manned Transportation System (NMTS) vehicles, which would include the evolving Space Transportation System (STS Evolution), the Personnel Launch System (PLS), and the Advanced Manned Launch System (AMLS). Undeveloped engine cycles selected for further analysis had potential for increased reliability, more maintainability, reduced cost, and improved (or possibly level) performance when compared to the existing SSME and proposed STME engines. The split expander (SX) cycle, the full flow staged combustion (FFSC) cycle, and a hybrid version of the FFSC, which has a LOX expander drive for the LOX pump, were selected for definition and analysis. Technology requirements and issues were identified and analyses of vehicle systems weight deltas using the SX and FFSC cycles in AMLS vehicles were performed. A strawman schedule and cost estimate for FFSC subsystem technology developments and integrated engine system demonstration was also provided.

  20. The hard start phenomena in hypergolic engines. Volume 3: Physical and combustion characteristics of engine residuals

    NASA Technical Reports Server (NTRS)

    Miron, Y.; Perlee, H. E.

    1974-01-01

    An investigation was conducted to determine the cause of starting problems in the hypergolic rocket engines of the Apollo reaction control (RCS) engines. The scope of the investigation was as follows: (1) to establish that chemical reactions occurred during the preignition and post combustion periods, (2) to identify the chemical species of the products of preignition and post combustion reaction, and (3) to determine the explosive nature of the identified species. The methods used in identifying the chemical products are described species. The infrared spectra, X-ray spectra, and other signatures of the compounds are presented. The physical and explosion characteristics of various hypergolic agents are reported.

  1. Fuel property effects on engine combustion processes. Final report

    SciTech Connect

    Cernansky, N.P.; Miller, D.L.

    1995-04-27

    A major obstacle to improving spark ignition engine efficiency is the limitations on compression ratio imposed by tendency of hydrocarbon fuels to knock (autoignite). A research program investigated the knock problem in spark ignition engines. Objective was to understand low and intermediate temperature chemistry of combustion processes relevant to autoignition and knock and to determine fuel property effects. Experiments were conducted in an optically and physically accessible research engine, static reactor, and an atmospheric pressure flow reactor (APFR). Chemical kinetic models were developed for prediction of species evolution and autoignition behavior. The work provided insight into low and intermediate temperature chemistry prior to autoignition of n-butane, iso-butane, n-pentane, 1-pentene, n-heptane, iso-octane and some binary blends. Study of effects of ethers (MTBE, ETBE, TAME and DIPE ) and alcohols (methanol and ethanol) on the oxidation and autoignition of primary reference fuel (PRF) blends.

  2. Experimental analysis of IMEP in a rotary combustion engine

    NASA Technical Reports Server (NTRS)

    Schock, H. J.; Rice, W. J.; Meng, P. R.

    1981-01-01

    A real time indicated mean effective pressure measurement system is described which is used to judge proposed improvements in cycle efficiency of a rotary combustion engine. This is the first self-contained instrument that is capable of making real time measurements of IMEP in a rotary engine. Previous methods used require data recording and later processing using a digital computer. The unique features of this instrumentation include its ability to measure IMEP on a cycle by cycle, real time basis and the elimination of the need to differentiate volume function in real time. Measurements at two engine speeds (2000 and 3000 rpm) and a full range of loads are presented, although the instrument was designed to operate to speeds of 9000 rpm.

  3. Heat storage for a bus petrol internal-combustion engine

    NASA Astrophysics Data System (ADS)

    Vasiliev, Leonard L.; Burak, Victor S.; Kulakov, Andry G.; Mishkinis, Donatas A.; Bohan, Pavel V.

    The heat storage (HS) system for pre-heating a bus petrol internal combustion engine to starting was mathematically modelled and experimentally investigated. The development of such devices is an extremely urgent problem especially for regions with a cold climate. We discuss how HS works on the effect of absorption and rejection of heat energy at a solid-liquid phase change of a HS substance. In the first part of the paper a numerical method to calculate the HS mass-dimensional parameters and their characteristics are described. In the experimental part of the paper results are given of experiments on the pre-heating device aiding to start a carburettor engine under operational conditions and analysis of data received. Practical confirmation of the theoretical development of HS devices for a bus engine for starting by pre-heating is given.

  4. Multiple fuel supply system for an internal combustion engine

    DOEpatents

    Crothers, William T.

    1977-01-01

    A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

  5. Exhaust recycle to carburetor of an internal combustion engine

    SciTech Connect

    Johnson, C.R.

    1984-03-20

    A hot slipstream from the exhaust of an internal combustion engine is used directly, that is without valving it, to heat and vaporize fuel as it is sprayed from the fuel nozzle of a carburetor having a booster venturi above the throttle plate, provided the ratio of the volume of slipstream to the volume of exhaust gases is self-regulated within narrow limits at all times during the engine's operation, in accordance with the physical considerations governing gas flow. The main jets of a conventional carburetor may be changed to provide decreased flow of gasoline by about 10% to give better mileage without sacrificing performance of the engine, and without adversely affecting the exhaust emissions which are otherwise controlled by a conventional emission control system.

  6. Hydrogen-Assisted IC Engine Combustion as a Route to Hydrogen Implementation

    SciTech Connect

    Andre Boehman; Daniel Haworth

    2008-09-30

    studies of spark-ignition engine operation on H{sub 2}-NG and numerical simulation of the impact of hydrogen blending on the physical and chemical processes within the engine; and (2) Examination of hydrogen-assisted combustion in advanced compression-ignition engine processes. To that end, numerical capabilities were applied to the study of hydrogen assisted combustion and experimental facilities were developed to achieve the project objectives.

  7. Variable cycle engines for advanced supersonic transports

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.; Kozlowski, H.

    1975-01-01

    Variable Cycle Engines being studied for advanced commercial supersonic transports show potential for significant environmental and economic improvements relative to 1st generation SST engines. The two most promising concepts are: a Variable Stream Control Engine and a Variable Cycle Engine with a rear flow-control valve. Each concept utilizes variable components and separate burners to provide independent temperature and velocity control for two coannular flow streams. Unique fuel control techniques are combined with cycle characteristics that provide low fuel consumption, similar to a turbojet engine, for supersonic operation. This is accomplished while retaining the good subsonic performance features of a turbofan engine. A two-stream coannular nozzle shows potential to reduce jet noise to below FAR Part 36 without suppressors. Advanced burner concepts have the potential for significant reductions in exhaust emissions. In total, these unique engine concepts have the potential for significant overall improvements to the environmental and economic characteristics of advanced supersonic transports.

  8. Precision distributorless ignition control system for internal combustion engines

    SciTech Connect

    Long, A.

    1987-03-17

    An electronic ignition system is described for controlling as a function of a selected engine parameter the ignition instants of an internal combustion engine having at least one cylinder, a piston, and a rotatable crankshaft coupled to the piston to be rotatably driven as combustions within the cylinder occur at the ignition instants. The crankshaft has at least one first reference position defining a positional relationship of the crankshaft to the cylinder, the crankshaft having a second reference position disposed a fixed angular distance before the first reference position considering the rotational direction of the crankshaft. The ignition instant is intended to occur upon the termination of a variable crankshaft arc beginning at the second reference position, the length of the crankshaft arc determined as a function of the selected engine parameter. The electronic ignition system comprises: (a) a rotor coupled to rotate with the crankshaft and having at least one first reference indicium and N second reference indicia thereon for each first reference indicium, the first reference indicium positionally related to the second reference position. The second reference indicia includes at least one second reference indicium aligned with the first reference indicium, the second reference indicia being spaced from each other by substantially equal angles; and (b) first and second signal generating means disposed at a point fixed in relation to the rotation of the crankshaft for providing respectively a first train of signals and a second train of signals.

  9. Idling control device for internal combustion engine with turbocharger

    SciTech Connect

    Ando, H.; Kondo, T.

    1986-09-23

    An idling control device is described for an internal combustion engine with a turbocharger, comprising: an air intake pipe having an inlet at an upstream end thereof adapted to accept air which is to be supplied through the air intake pipe to the internal combustion engine a turbocharger having a housing incorporated in the air intake pipe between the inlet and the outlet, a throttle valve incorporated in the air intake pipe between the turbocharger and the outlet, a surge tank incorporated in the air intake pipe between the throttle valve and the outlet; a bypass air passage means provided in parallel with the air intake pipe between upstream of the turbocharger and downstream of the throttle valve; a flow-control valve incorporated in the bypass air passage means; an actuator operatively associated with the flow-control valve, a computer operatively associated with the actuator and arranged to receive signals relating to operating conditions of the engine; a check valve incorporated in the bypass air passage means downstream of the flow-control valve.

  10. Development and application of noninvasive technology for study of combustion in a combustion chamber of gas turbine engine

    NASA Astrophysics Data System (ADS)

    Inozemtsev, A. A.; Sazhenkov, A. N.; Tsatiashvili, V. V.; Abramchuk, T. V.; Shipigusev, V. A.; Andreeva, T. P.; Gumerov, A. R.; Ilyin, A. N.; Gubaidullin, I. T.

    2015-05-01

    The paper formulates the issue of development of experimental base with noninvasive optical-electronic tools for control of combustion in a combustion chamber of gas turbine engine. The design and specifications of a pilot sample of optronic system are explained; this noninvasive system was created in the framework of project of development of main critical technologies for designing of aviation gas turbine engine PD-14. The testbench run data are presented.

  11. Characterization of Single-Cylinder Small-Bore 4-Stroke CIDI Engine Combustion

    SciTech Connect

    Henein, N A

    2005-11-30

    the spray behavior under high injection pressures in small-bore, high compression ratio, high-speed, direct-injection diesel engines equipped with advanced fuel injection system. The final results demonstrate the capability of the engine in reducing the engine-out emissions and improve the trade-off between nitrogen oxides (NOx), particulate matter, other emissions and fuel economy. This report introduces a new phenomenological model for the fuel distribution and combustion, and emissions formation in the small bore, high speed, direct injection diesel engine. This will be followed by an analysis of the effect of each of injection pressure, EGR, injection advance and retard and swirl ratio on engine-out emissions and fuel economy. A discussion will be given on the 2-D and 3-D trade of maps. Finally a discussion will be made on the low temperature combustion regimes, its major problems and proposed solutions.

  12. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Starting systems for internal-combustion engines. 62.35... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...-2/11.11 of the ABS Steel Vessel Rules (incorporated by reference; see 46 CFR 62.05-1)....

  13. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Starting systems for internal-combustion engines. 62.35... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...-2/11.11 of the ABS Steel Vessel Rules (incorporated by reference; see 46 CFR 62.05-1)....

  14. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Starting systems for internal-combustion engines. 62.35... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...-2/11.11 of the ABS Steel Vessel Rules (incorporated by reference; see 46 CFR 62.05-1)....

  15. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Starting systems for internal-combustion engines. 62.35... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...-2/11.11 of the ABS Steel Vessel Rules (incorporated by reference; see 46 CFR 62.05-1)....

  16. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Starting systems for internal-combustion engines. 62.35... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...-2/11.11 of the ABS Steel Vessel Rules (incorporated by reference; see 46 CFR 62.05-1)....

  17. Method and apparatus for supplying fuel to internal combustion engine

    SciTech Connect

    Tomita, T.

    1986-03-25

    An apparatus is described for supplying fuel to a two-cycle internal combustion engine having a rotating crankshaft in a crank chamber, comprising an intake port provided in the engine and open to the crank chamber of the engine, a single intake passage connected at one end to the intake port and at an opposite end leading to atmosphere, and means connected to an intermediate portion of the intake passage for supplying fuel to the latter and suspending fuel supply thereto. The means consists of: a carburetor disposed in the intermediate portion of the intake passage, the carburetor having a venturi portion, a float chamber and a fuel injection nozzle connecting between the venturi portion and the float chamber; a stop valve for controlling injection of fuel into the intake passage through the fuel injection nozzle; a valve actuator operatively connected to the stop valve; and a switch means disposed in a circuit connecting the stop valve and the valve actuator, the switch means being operatively connected to the crankshaft of the engine to actuate the stop valve in accordance with revolution speed of the engine, such that the means acts to alternately admit air-fuel mixture and fresh air only, respectively, during alternate revolutions of the engine.

  18. Engine ignition timing with knock control by combustion pressure harmonic amplitude ratio

    SciTech Connect

    Jensen, E.J.

    1989-07-11

    An ignition timing control is described for an internal combustion engine including a combustion chamber, means effective to ignite a combustible charge in the combustion chamber and power output apparatus including a rotating crankshaft driven in response to the expansion of the ignited combustible charge. The ignition timing control consists of: means effective to define a normal ignition timing for the engine in the absence of knock; pressure sensing means effective to sense the combustion chamber and generate a combustion pressure signal therefrom; means effective to sense the rotational speed of the crankshaft; frequency selective filter means for generating a plurality of predetermined harmonic signals of the combustion pressure signal, the frequency selective filter means being responsive to the last means to maintain the frequencies of the harmonic signals at whole number multiples of the firing frequency of the engine as the rotational speed of the crankshaft changes.

  19. Connecting rod for internal combustion engine and method of manufacture

    SciTech Connect

    Machida, I.; Sato, Y.; Yamada, Y.

    1989-05-09

    A connecting rod is described for an internal combustion engine having a crankshaft axis and a piston axis the connecting rod comprising: a pair of flanges disposed in parallel relation with a plane including the crankshaft axis and the piston pin axis, each flange having a body and edges, each edge having a lateral rounded projection thereon, such that the edges are thicker than the body; and a web connecting the pair of flanges together, the web and flanges thereby forming a rod portion having a generally I-shaped section.

  20. Catalyst for treatment of exhaust gases from internal combustion engines

    SciTech Connect

    Blanchard, G.; Brunelle, J.P.; Prigent, M.

    1984-01-17

    The exhaust gases from internal combustion engines are catalytically oxidized/reduced, to remove CO, unburned hydrocarbons and NO /SUB x/ therefrom, utilizing an improved stable and long-lived catalyst which comprises (1) a support substrate, e.g., a monolithic or particulate support, and (2) an active phase deposited thereon, said active phase (2) comprising (i) cerium, (ii) iron, (iii) at least one of the metals gallium and/or yttrium, (iv) at least one of the metals platinum and/or palladium, and (v) at least one of the metals iridium and/or rhodium.

  1. ADVANCED DIESEL ENGINE AND AFTERTREATMENT TECHNOLOGY DEVELOPMENT FOR TIER 2 EMISSIONS

    SciTech Connect

    Aneja, R.; Bolton, B; Oladipo, A; Pavlova-MacKinnon, Z; Radwan, A

    2003-08-24

    Advanced diesel engine and aftertreatment technologies have been developed for multiple engine and vehicle platforms. Tier 2 (2007 and beyond) emissions levels have been demonstrated for a light truck vehicle over a FTP-75 test cycle on a vehicle chassis dynamometer. These low emissions levels are obtained while retaining the fuel economy advantage characteristic of diesel engines. The performance and emissions results were achieved by integrating advanced combustion strategies (CLEAN Combustion{copyright}) with prototype aftertreatment systems. CLEAN Combustion{copyright} allows partial control of exhaust species for aftertreatment integration in addition to simultaneous NOx and PM reduction. Analytical tools enabled the engine and aftertreatment sub-systems development and system integration. The experimental technology development methodology utilized a range of facilities to streamline development of the eventual solution including utilization of steady state and transient dynamometer test-beds to simulate chassis dynamometer test cycles.

  2. Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start

    DOEpatents

    Janata, J.; McVay, G.L.; Peden, C.H.; Exarhos, G.J.

    1998-07-14

    A method and apparatus are disclosed for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO{sub 2} is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine. 4 figs.

  3. Progress toward an advanced condition monitoring system for reusable rocket engines

    NASA Technical Reports Server (NTRS)

    Maram, J.; Barkhoudarian, S.

    1987-01-01

    A new generation of advanced sensor technologies will allow the direct measurement of critical/degradable rocket engine components' health and the detection of degraded conditions before component deterioration affects engine performance, leading to substantial improvements in reusable engines' operation and maintenance. When combined with a computer-based engine condition-monitoring system, these sensors can furnish a continuously updated data base for the prediction of engine availability and advanced warning of emergent maintenance requirements. Attention is given to the case of a practical turbopump and combustion device diagnostic/prognostic health-monitoring system.

  4. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    NASA Astrophysics Data System (ADS)

    Ho, R. J.; Yusoff, M. Z.; Palanisamy, K.

    2013-06-01

    Stringent emission policy has put automotive research & development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R&D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NOx) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  5. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    SciTech Connect

    Yang, Li-Ping Ding, Shun-Liang; Song, En-Zhe; Ma, Xiu-Zhen; Litak, Grzegorz

    2015-01-15

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  6. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine.

    PubMed

    Yang, Li-Ping; Ding, Shun-Liang; Litak, Grzegorz; Song, En-Zhe; Ma, Xiu-Zhen

    2015-01-01

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  7. Combustion performance of bipropellant liquid rocket engine combustors with fuel-impingement cooling

    SciTech Connect

    Jiang, T.L.; Chiang, W.; Jang, S.

    1995-05-01

    In order to obtain an accurate combustion analyses which are important in the thruster design of modern advanced liquid rocket engine, flow analysis should be conducted from the injector phase down to the propulsive nozzle throat. Thus, in the present study, flow analysis for the axisymmetric thrust chamber of an OMV(exp 3) installed with a pintle-type ring-shaped injector and a conical convergent nozzle is conducted. Liquid monomethyl hydrazine (MMH) and nitrogen tetroxide (NTO) storable bipropellants are used as fuel and oxidizer sources. An optimum injected fuel and oxidizer droplet-size combination is proposed. Finally, the results obtained are presented. 4 refs.

  8. Combustion performance of bipropellant liquid rocket engine combustors with fuel-impingement cooling

    NASA Astrophysics Data System (ADS)

    Jiang, Tsung Leo; Chiang, Wei-Tang; Jang, Shyh-Dihng

    1995-05-01

    In order to obtain an accurate combustion analyses which are important in the thruster design of modern advanced liquid rocket engine, flow analysis should be conducted from the injector phase down to the propulsive nozzle throat. Thus, in the present study, flow analysis for the axisymmetric thrust chamber of an OMV(exp 3) installed with a pintle-type ring-shaped injector and a conical convergent nozzle is conducted. Liquid monomethyl hydrazine (MMH) and nitrogen tetroxide (NTO) storable bipropellants are used as fuel and oxidizer sources. An optimum injected fuel and oxidizer droplet-size combination is proposed. Finally, the results obtained are presented.

  9. Exhaust gas recirculation method for internal combustion engines

    SciTech Connect

    Kawanabe, T.; Kimura, K.; Asakura, M.; Shiina, T.

    1988-07-19

    This patent describes a method of controlling exhaust gas recirculation in an internal combustion engine having an exhaust passage, an intake passage, an exhaust gas recirculating passage communicating the exhaust passage with the intake passage, and exhaust gas recirculating valve; and a transmission having a shift lever. The valve opening of the exhaust gas recirculating valve is controlled in response to operating conditions of the engine so as to regulate the amount of exhaust gas recirculation to values appropriate to the operating conditions of the engine. The method comprising the steps of (1) determining whether or not the engine is in at least one of a predetermined accelerating condition and a predetermined decelerating condition; (2) varying the valve opening of the exhaust gas recirculating valve by a predetermined value when the engine is determined to be in at least one of the predetermined accelerating condition and the predetermined decelerating condition; (3) detecting a position of the shift lever of the transmission; and (4) correcting the predetermined value in accordance with the detected position of the shift lever so as to increase the valve opening of the exhaust gas recirculating valve as the shift lever of the transmission is set to a higher speed position.

  10. The history and evolution of optically accessible research engines and their impact on our understanding of engine combustion

    SciTech Connect

    Miles, Paul C.

    2015-03-01

    The development and application of optically accessible engines to further our understanding of in-cylinder combustion processes is reviewed, spanning early efforts in simplified engines to the more recent development of high-pressure, high-speed engines that retain the geometric complexities of modern production engines. Limitations of these engines with respect to the reproduction of realistic metal test engine characteristics and performance are identified, as well as methods that have been used to overcome these limitations. Finally, the role of the work performed in these engines on clarifying the fundamental physical processes governing the combustion process and on laying the foundation for predictive engine simulation is summarized.

  11. Exhaust gas recirculation system for an internal combustion engine

    DOEpatents

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  12. Automatic compression adjusting mechanism for internal combustion engines

    NASA Technical Reports Server (NTRS)

    Akkerman, J. W. (Inventor)

    1983-01-01

    Means for controlling the compression pressure in an internal combustion engine having one or more cylinders and subject to widely varying power output requirements are provided. Received between each crank pin and connecting rod is an eccentric sleeve selectively capable of rotation about the crank pin and/or inside the rod and for latching with the rod to vary the effective length of the connecting rod and thereby the clearance volume of the engine. The eccentric normally rotates inside the connecting rod during the exhaust and intake strokes but a latching pawl carried by the eccentric is movable radially outwardly to latch the rod and eccentric together during the compression and power strokes. A control valve responds to intake manifold pressure to time the supply of hydraulic fluid to move the latch-pawl outwardly, varying the effective rod length to maintain a substantially optimum firing chamber pressure at all intake manifold pressures.

  13. A dynamic analysis of rotary combustion engine seals

    NASA Technical Reports Server (NTRS)

    Knoll, J.; Vilmann, C. R.; Schock, H. J.; Stumpf, R. P.

    1984-01-01

    Real time work cell pressures are incorporated into a dynamic analysis of the gas sealing grid in Rotary Combustion Engines. The analysis which utilizes only first principal concepts accounts for apex seal separation from the crochoidal bore, apex seal shifting between the sides of its restraining channel, and apex seal rotation within the restraining channel. The results predict that apex seals do separate from the trochoidal bore and shift between the sides of their channels. The results also show that these two motions are regularly initiated by a seal rotation. The predicted motion of the apex seals compares favorably with experimental results. Frictional losses associated with the sealing grid are also calculated and compare well with measurements obtained in a similar engine. A comparison of frictional losses when using steel and carbon apex seals has also been made as well as friction losses for single and dual side sealing.

  14. Impact of workstations on criticality analyses at ABB combustion engineering

    SciTech Connect

    Tarko, L.B.; Freeman, R.S.; O'Donnell, P.F. )

    1993-01-01

    During 1991, ABB Combustion Engineering (ABB C-E) made the transition from a CDC Cyber 990 mainframe for nuclear criticality safety analyses to Hewlett Packard (HP)/Apollo workstations. The primary motivation for this change was improved economics of the workstation and maintaining state-of-the-art technology. The Cyber 990 utilized the NOS operating system with a 60-bit word size. The CPU memory size was limited to 131 100 words of directly addressable memory with an extended 250000 words available. The Apollo workstation environment at ABB consists of HP/Apollo-9000/400 series desktop units used by most application engineers, networked with HP/Apollo DN10000 platforms that use 32-bit word size and function as the computer servers and network administrative CPUS, providing a virtual memory system.

  15. Preliminary Evaluation of a Turbine/Rotary Combustion Compound Engine for a Subsonic Transport. [fuel consumption and engine tests of turbofan engines

    NASA Technical Reports Server (NTRS)

    Civinskas, K. C.; Kraft, G. A.

    1976-01-01

    The fuel consumption of a modern compound engine with that of an advanced high pressure ratio turbofan was compared. The compound engine was derived from a turbofan engine by replacing the combustor with a rotary combustion (RC) engine. A number of boost pressure ratios and compression ratios were examined. Cooling of the RC engine was accomplished by heat exchanging to the fan duct. Performance was estimated with an Otto-cycle for two levels of energy lost to cooling. The effects of added complexity on cost and maintainability were not examined and the comparison was solely in terms of cruise performance and weight. Assuming a 25 percent Otto-cycle cooling loss (representative of current experience), the best compound engine gave a 1.2 percent improvement in cruise. Engine weight increased by 23 percent. For a 10 percent Otto-cycle cooling loss (representing advanced insulation/high temperature materials technology), a compound engine with a boost PR of 10 and a compression ratio of 10 gave an 8.1 percent lower cruise than the reference turbofan.

  16. Internal combustion engine for natural gas compressor operation

    DOEpatents

    Hagen, Christopher L.; Babbitt, Guy; Turner, Christopher; Echter, Nick; Weyer-Geigel, Kristina

    2016-04-19

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a system for compressing a gas comprises a reciprocating internal combustion engine including at least one piston-cylinder assembly comprising a piston configured to travel in a cylinder and to compress gas in the cylinder in multiple compression stages. The system can further comprise a first pressure tank in fluid communication with the piston-cylinder assembly to receive compressed gas from the piston-cylinder assembly until the first pressure tank reaches a predetermined pressure, and a second pressure tank in fluid communication with the piston-cylinder assembly and the first pressure tank. The second pressure tank can be configured to receive compressed gas from the piston-cylinder assembly until the second pressure tank reaches a predetermined pressure. When the first and second pressure tanks have reached the predetermined pressures, the first pressure tank can be configured to supply gas to the piston-cylinder assembly, and the piston can be configured to compress the gas supplied by the first pressure tank such that the compressed gas flows into the second pressure tank.

  17. The Rocket Engine Advancement Program 2 (REAP2)

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Hawk, Clark W.

    2004-01-01

    The Rocket Engine Advancement Program (REAP) 2 program is being conducted by a university propulsion consortium consisting of the University of Alabama in Huntsville, Penn State University, Purdue University, Tuskegee University and Auburn University. It has been created to bring their combined skills to bear on liquid rocket combustion stability and thrust chamber cooling. The research team involves well established and known researchers in the propulsion community. The cure team provides the knowledge base, research skills, and commitment to achieve an immediate and continuing impact on present and future propulsion issues. through integrated research teams composed of analysts, diagnosticians, and experimentalists working together in an integrated multi-disciplinary program. This paper provides an overview of the program, its objectives and technical approaches. Research on combustion instability and thrust chamber cooling are being accomplished

  18. System for examining burning based on traditional fuel sources for internal-combustion engines

    SciTech Connect

    Nazarov, I.P.; Naumov, S.V.; Prostov, V.N.

    1983-11-01

    An experimental system is described for examining stable turbulent combustion of various fuels in a burner having a cylindrical channel. Results are presented on the formation of nitric oxide in the combustion of hydrocarbon fuels with the addition of water in the burner and in internal-combustion engines.

  19. Engineering visualization utilizing advanced animation

    NASA Technical Reports Server (NTRS)

    Sabionski, Gunter R.; Robinson, Thomas L., Jr.

    1989-01-01

    Engineering visualization is the use of computer graphics to depict engineering analysis and simulation in visual form from project planning through documentation. Graphics displays let engineers see data represented dynamically which permits the quick evaluation of results. The current state of graphics hardware and software generally allows the creation of two types of 3D graphics. The use of animated video as an engineering visualization tool is presented. The engineering, animation, and videography aspects of animated video production are each discussed. Specific issues include the integration of staffing expertise, hardware, software, and the various production processes. A detailed explanation of the animation process reveals the capabilities of this unique engineering visualization method. Automation of animation and video production processes are covered and future directions are proposed.

  20. Ceramic Technology for Advanced Heat Engines Project

    SciTech Connect

    Not Available

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  1. Coal slurry combustion optimization on single cylinder engine. Task 1.1.2.2.2, Combustion R&D

    SciTech Connect

    Not Available

    1992-09-01

    Under the sponsorship of the US Department of Energy, Morgantown Energy Technology Center, GE Transportation System has been conducting a proof of concept program to use coal water slurry (CWS) fuel to power a diesel engine locomotive since 1988. As reported earlier [1], a high pressure electronically controlled accumulator injector using a diamond compact insert nozzle was developed for this project. The improved reliability and durability of this new FIE allowed for an improved and more thorough study of combustion of CWS fuel in a diesel engine. It was decided to include a diesel pilot fuel injector in the combustion system mainly due to engine start and low load operation needs. BKM, Inc. of San Diego, CA was contracted to develop the electronic diesel fuel pilot/starting FIE for the research engine. As a result, the experimental combustion study was very much facilitated due to the ability of changing pilot/CWS injection timings and quantities without having to stop the engine. Other parameters studied included combustion chamber configuration (by changing CWS fuel injector nozzle hole number/shape/angle), as well as injection pressure. The initial phase of this combustion study is now complete. The results have been adopted into the design of a 12 cylinder engine FIE, to be tested in 1992. This paper summarizes the main findings of this study.

  2. Advances in engineering science, volume 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Proceedings from a conference on engineering advances are presented, including materials science, fracture mechanics, and impact and vibration testing. The tensile strength and moisture transport of laminates are also discussed.

  3. Recurrence plot for parameters analysing of internal combustion engine

    NASA Astrophysics Data System (ADS)

    Alexa, O.; Ilie, C. O.; Marinescu, M.; Vilau, R.; Grosu, D.

    2015-11-01

    In many technical disciplines modem data analysis techniques has been successfully applied to understand the complexity of the system. The growing volume of theoretical knowledge about systems dynamic's offered researchers the opportunity to look for non-linear dynamics in data whose evolution linear models are unable to explain in a satisfactory manner. One approach in this respect is Recurrence Analysis - RA which is a graphical method designed to locate hidden recurring patterns, nonstationarity and structural changes. RA approach arose in natural sciences like physics and biology but quickly was adopted in economics and engineering. Meanwhile. The fast development of computer resources has provided powerful tools to perform this new and complex model. One free software which was used to perform our analysis is Visual Recurrence Analysis - VRA developed by Eugene Kononov. As is presented in this paper, the recurrence plot investigation for the analyzing of the internal combustion engine shows some of the RPA capabilities in this domain. We chose two specific engine parameters measured in two different tests to perform the RPA. These parameters are injection impulse width and engine angular speed and the tests are I11n and I51n. There were computed graphs for each of them. Graphs were analyzed and compared to obtain a conclusion. This work is an incipient research, being one of the first attempts of using recurrence plot for analyzing automotive dynamics. It opens a wide field of action for future research programs.

  4. Combustion instability investigations on the BR710 jet engine

    SciTech Connect

    Konrad, W.; Brehm, N.; Kameier, F.; Freeman, C.; Day, I.J.

    1998-01-01

    During the development of the BR710 jet engine, audible combustor instabilities (termed rumble) occurred. Amplitudes measured with test cell microphones were up to 130 dB at around 100 Hz. Disturbances of this amplitude are clearly undesirable, even if only present during start-up, and a research program was initiated to eliminate the problem. Presented here is the methodical and structured approach used to identify, understand, and remove the instability. Some reference is made to theory, which was used for guidance, but the focus of the work is on the research done to find the cause of the problem and to correct it. The investigation followed two separate, but parallel, paths--one looking in detail at individual components of the engine to identify possible involvement in the instability and the other looking at the pressure signals from various parts of a complete engine to help pinpoint the source of the disturbance. The main cause of the BR710 combustor rumble was found to be a self-excited aerodynamic instability arising from the design of the fuel injector head. In the end, minor modifications lead to spray pattern changes, which greatly reduced the combustor noise. As a result of this work, new recommendation are made for reducing the risk of combustion instabilities in jet engines.

  5. Clutch system for an internal combustion engine provided with engine units

    SciTech Connect

    Yamakawa, T.

    1987-05-05

    This patent describes a gear and clutch system for an internal combustion engine in a vehicle controlled by an accelerator pedal. The engine comprises a primary engine unit and an auxiliary engine unit, the system including an output shaft, a gear train for connecting crankshafts of the primary and auxiliary engines to the output shaft, and an oil-pressure-operated friction clutch for connecting the crankshaft of the auxiliary engine unit to the output shaft through the gear train. The improvement comprises: a gear pump comprising the gear train; a passage communicating the gear pump with the clutch; a control valve in the passage; and means for opening the control valve when the accelerator pedal is deeply depressed so that oil is supplied to the clutch through the passage and the control valve is engagement of the clutch.

  6. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certified to the standards in 40 CFR part 1039. (b) Stationary CI internal combustion engine manufacturers... engines as specified in 40 CFR part 94. (c) Stationary CI internal combustion engine manufacturers must... internal combustion engine manufacturers must meet the corresponding provisions of 40......

  7. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... certified to the standards in 40 CFR part 1039. (b) Stationary CI internal combustion engine manufacturers... engines as specified in 40 CFR part 94. (c) Stationary CI internal combustion engine manufacturers must... internal combustion engine manufacturers must meet the corresponding provisions of 40......

  8. Photographic Investigation of Combustion in a Two-dimensional Transparent Rocket Engine

    NASA Technical Reports Server (NTRS)

    Bellman, Donald R; Humphrey, Jack C; Male, Theodore

    1953-01-01

    Motion pictures at camera speeds up to 3000 frames per second were taken of the combustion of liquid oxygen and gasoline in a 100-pound thrust rocket engine. The effect of seven methods of propellant injection on the uniformity of combustion was investigated. The flame front was generally found to extend to the injector faces and all the injection systems showed considerable nonuniformity of combustion. Pressure vibration records indicated combustion vibrations that corresponded to resonant-chamber frequencies.

  9. Towards a detailed soot model for internal combustion engines

    SciTech Connect

    Mosbach, Sebastian; Celnik, Matthew S.; Raj, Abhijeet; Kraft, Markus; Zhang, Hongzhi R.; Kubo, Shuichi; Kim, Kyoung-Oh

    2009-06-15

    In this work, we present a detailed model for the formation of soot in internal combustion engines describing not only bulk quantities such as soot mass, number density, volume fraction, and surface area but also the morphology and chemical composition of soot aggregates. The new model is based on the Stochastic Reactor Model (SRM) engine code, which uses detailed chemistry and takes into account convective heat transfer and turbulent mixing, and the soot formation is accounted for by SWEEP, a population balance solver based on a Monte Carlo method. In order to couple the gas-phase to the particulate phase, a detailed chemical kinetic mechanism describing the combustion of Primary Reference Fuels (PRFs) is extended to include small Polycyclic Aromatic Hydrocarbons (PAHs) such as pyrene, which function as soot precursor species for particle inception in the soot model. Apart from providing averaged quantities as functions of crank angle like soot mass, volume fraction, aggregate diameter, and the number of primary particles per aggregate for example, the integrated model also gives detailed information such as aggregate and primary particle size distribution functions. In addition, specifics about aggregate structure and composition, including C/H ratio and PAH ring count distributions, and images similar to those produced with Transmission Electron Microscopes (TEMs), can be obtained. The new model is applied to simulate an n-heptane fuelled Homogeneous Charge Compression Ignition (HCCI) engine which is operated at an equivalence ratio of 1.93. In-cylinder pressure and heat release predictions show satisfactory agreement with measurements. Furthermore, simulated aggregate size distributions as well as their time evolution are found to qualitatively agree with those obtained experimentally through snatch sampling. It is also observed both in the experiment as well as in the simulation that aggregates in the trapped residual gases play a vital role in the soot

  10. Oxy-Combustion Environment Characterization: Fire- and Steam-Side Corrosion in Advanced Combustion

    SciTech Connect

    G. R. Holcomb; J. Tylczak; G. H. Meier; B. S. Lutz; N. M. Yanar; F. S. Pettit; J. Zhu; A. Wise; D. E. Laughlin; S. Sridhar

    2012-09-25

    Oxy-fuel combustion is burning a fuel in oxygen rather than air. The low nitrogen flue gas that results is relatively easy to capture CO{sub 2} from for reuse or sequestration. Corrosion issues associated with the environment change (replacement of much of the N{sub 2} with CO{sub 2} and higher sulfur levels) from air- to oxy-firing were examined. Alloys studied included model Fe-Cr alloys and commercial ferritic steels, austenitic steels, and nickel base superalloys. The corrosion behavior is described in terms of corrosion rates, scale morphologies, and scale/ash interactions for the different environmental conditions. Additionally, the progress towards laboratory oxidation tests in advanced ultra-supercritical steam is updated.

  11. Advanced materials for aircraft engine applications.

    PubMed

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time.

  12. Advanced materials for aircraft engine applications.

    PubMed

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time. PMID:17817782

  13. Mathematical simulation of hydrogen-oxygen combustion in rocket engines using LOGOS code

    NASA Astrophysics Data System (ADS)

    Betelin, V. B.; Shagaliev, R. M.; Aksenov, S. V.; Belyakov, I. M.; Deryuguin, Yu. N.; Korchazhkin, D. A.; Kozelkov, A. S.; Nikitin, V. F.; Sarazov, A. V.; Zelenskiy, D. K.

    2014-03-01

    Hydrogen-oxygen fuels are very attractive now for rocket engines designers, because this pair is ecology friendly. Computer aided design of new effective and clean hydrogen engines needs mathematical tools for supercomputer modeling of hydrogen-oxygen components mixing and combustion in rocket engines. The paper presents the results of developing, verification and validation of mathematical model making it possible to simulate unsteady processes of ignition and combustion in rocket engines.

  14. Turbocharged two-stroke internal combustion engine with four-stroke capability

    SciTech Connect

    Burrahm, R.W.

    1990-03-13

    This patent describes, in a turbocharged two-stroke internal combustion engine without crankcase scavenging and having means for operating the exhaust valves in accordance with either two-stroke or four-stroke operation, a means for enabling the intake of combustible gas into cylinders of the engine during four-stroke operation through a port in each cylinder from a combustible gas source. It comprises: a valve mounted on each port responsive to pressure within the cylinder.

  15. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's... 40 Protection of Environment 20 2011-07-01 2011-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL...

  16. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's... 40 Protection of Environment 21 2013-07-01 2013-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL...

  17. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's... 40 Protection of Environment 20 2014-07-01 2013-07-01 true State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL...

  18. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's... 40 Protection of Environment 21 2012-07-01 2012-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL...

  19. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's... 40 Protection of Environment 20 2010-07-01 2010-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL...

  20. Advanced diesel engine component development program, tasks 4-14

    NASA Astrophysics Data System (ADS)

    Kaushal, Tony S.; Weber, Karen E.

    1994-11-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system

  1. Advanced diesel engine component development program, tasks 4-14

    NASA Technical Reports Server (NTRS)

    Kaushal, Tony S.; Weber, Karen E.

    1994-01-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system

  2. Thermal and Environmental Barrier Coatings for Advanced Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2005-01-01

    Ceramic thermal and environmental barrier coatings (T/EBCs) will play a crucial role in advanced gas turbine engine systems because of their ability to significantly increase engine operating temperatures and reduce cooling requirements, thus help achieve engine low emission and high efficiency goals. Advanced T/EBCs are being developed for the low emission SiC/SiC ceramic matrix composite (CMC) combustor applications by extending the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water vapor containing combustion environments. Low conductivity thermal barrier coatings (TBCs) are also being developed for metallic turbine airfoil and combustor applications, providing the component temperature capability up to 1650 C (3000 F). In this paper, ceramic coating development considerations and requirements for both the ceramic and metallic components will be described for engine high temperature and high-heat-flux applications. The underlying coating failure mechanisms and life prediction approaches will be discussed based on the simulated engine tests and fracture mechanics modeling results.

  3. Experimental investigation of gasoline compression ignition combustion in a light-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Loeper, C. Paul

    fuel consumption (gross indicated fuel consumption <200 g/kWh). [1] Dec, J. E., Yang, Y., and Dronniou, N., 2011, "Boosted HCCI - Controlling Pressure- Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline," SAE Int. J. Engines, 4(1), pp. 1169-1189. [2] Kalghatgi, G., Hildingsson, L., and Johansson, B., 2010, "Low NO(x) and Low Smoke Operation of a Diesel Engine Using Gasolinelike Fuels," Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 132(9), p. 9. [3] Manente, V., Zander, C.-G., Johansson, B., Tunestal, P., and Cannella, W., 2010, "An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency from Idle to Max Load Using Gasoline Partially Premixed Combustion," SAE International, 2010-01-2198. [4] Ra, Y., Loeper, P., Reitz, R., Andrie, M., Krieger, R., Foster, D., Durrett, R., Gopalakrishnan, V., Plazas, A., Peterson, R., and Szymkowicz, P., 2011, "Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime," SAE Int. J. Engines, 4(1), pp. 1412-1430. [5] Ra, Y., Loeper, P., Andrie, M., Krieger, R., Foster, D., Reitz, R., and Durrett, R., 2012, "Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection," SAE Int. J. Engines, 5(3), pp. 1109-1132.

  4. Spectral Separation of the Turbofan Engine Coherent Combustion Noise Component

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2008-01-01

    The core noise components of a dual spool turbofan engine (Honeywell TECH977) were separated by the use of a coherence function. A source location technique based on adjusting the time delay between the combustor pressure sensor signal and the far-field microphone signal to maximize the coherence and remove as much variation of the phase angle with frequency as possible was used. While adjusting the time delay to maximize the coherence and minimize the cross spectrum phase angle variation with frequency, the discovery was made that for the 130 microphone a 90.027 ms time shift worked best for the frequency band from 0 to 200 Hz while a 86.975 ms time shift worked best for the frequency band from 200 to 400 Hz. Since the 0 to 200 Hz band signal took more time to travel the same distance, it is slower than the 200 to 400 Hz band signal. This suggests the 0 to 200 Hz coherent cross spectral density band is partly due to indirect combustion noise attributed to hot spots interacting with the turbine. The signal in the 200 to 400 Hz frequency band is attributed mostly to direct combustion noise.

  5. Optical Study of Flow and Combustion in an HCCI Engine with Negative Valve Overlap

    NASA Astrophysics Data System (ADS)

    Wilson, Trevor S.; Xu, Hongming; Richardson, Steve; Wyszynski, Miroslaw L.; Megaritis, Thanos

    2006-07-01

    One of the most widely used methods to enable Homogeneous Charge Compression Ignition (HCCI) combustion is using negative valve overlapping to trap a sufficient quantity of hot residual gas. The characteristics of air motion with specially designed valve events having reduced valve lift and durations associated with HCCI engines and their effect on subsequent combustion are not yet fully understood. In addition, the ignition process and combustion development in such engines are very different from those in conventional spark-ignition or diesel compression ignition engines. Very little data has been reported concerning optical diagnostics of the flow and combustion in the engine using negative valve overlapping. This paper presents an experimental investigation into the in-cylinder flow characteristics and combustion development in an optical engine operating in HCCI combustion mode. PIV measurements have been taken under motored engine conditions to provide a quantitative flow characterisation of negative valve overlap in-cylinder flows. The ignition and combustion process was imaged using a high resolution charge coupled device (CCD) camera and the combustion imaging data was supplemented by simultaneously recorded in-cylinder pressure data which assisted the analysis of the images. It is found that the flow characteristics with negative valve overlapping are less stable and more valve event driven than typical spark ignition in-cylinder flows, while the combustion initiation locations are not uniformly distributed.

  6. Engine health monitoring: An advanced system

    NASA Technical Reports Server (NTRS)

    Dyson, R. J. E.

    1981-01-01

    The advanced propulsion monitoring system is described. The system was developed in order to fulfill a growing need for effective engine health monitoring. This need is generated by military requirements for increased performance and efficiency in more complex propulsion systems, while maintaining or improving the cost to operate. This program represents a vital technological step in the advancement of the state of the art for monitoring systems in terms of reliability, flexibility, accuracy, and provision of user oriented results. It draws heavily on the technology and control theory developed for modern, complex, electronically controlled engines and utilizes engine information which is a by-product of such a system.

  7. Duplex carburetor and intake system for internal combustion engines

    SciTech Connect

    Yokoyama, H.; Ishida, T.

    1984-06-05

    A duplex carburetor for an internal combustion engine has a primary barrel having a primary venturi for supplying an air-fuel mixture to an intake manifold under a full range of engine loads and a secondary barrel having a secondary venturi for supplying an air-fuel mixture to the manifold under higher engine loads. The primary venturi has a cross section which ranges from 20% to 30% of that of the secondary venturi. The secondary barrel has a flattened cross-sectional shape such as of a segment of a circle of an ellipse, and is located adjacent to the primary barrel. The intake manifold is of a duplex construction having primary and secondary common passages connected to the primary and secondary barrels, respectively, of the carburetor. The secondary passage of the manifold has a flattened cross-sectional shape such as of a segment of a circle or an ellipse, and is positioned adjacent to the primary passage. The primary passage extends through a region where the secondary passage is divided into a plurality of secondary branches, and is located immediately in front of the shortest one of the secondary branch. The primary passage is also branched into a plurality of primary branches, the shortest of which is displaced out of axial alignment with a central axis of the intake manifold.

  8. Effect of torch jet direction on combustion and performance of a prechamber spark-ignition engine

    SciTech Connect

    Ryu, H.; Chtsu, A.; Asanuma, T.

    1987-01-01

    To examine the effect of torch jet direction on the combustion characteristics and engine performances, a spark-ignition engine with each divided chamber having a torch nozzle of different flow direction is used by changing the torch nozzle area, prechamber volume and air-fuel ratio, while keeping the engine speed of 1000 rpm. Typical pressure diagrams for different torch jet directions are analyzed to obtain such combustion characteristics as the crank angles of combustion start and finish, heat release rate and mass burned fraction. The engine performances, e.g. mean effective pressure and specific fuel consumption, are also measured. As a result, it can be made clear not only the effect of torch jet direction on the combustion characteristics, but also the relationship between the combustion characteristics and the engine performances for different torch jet directions.

  9. Advanced Monitoring to Improve Combustion Turbine/Combined Cycle Reliability, Availability & Maintainability

    SciTech Connect

    Leonard Angello

    2005-09-30

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established Operation and Maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that, in real time, interpret data to assess the 'total health' of combustion turbines. The 'Combustion Turbine Health Management System' (CTHMS) will consist of a series of 'Dynamic Link Library' (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. CTHMS interprets sensor and instrument outputs, correlates them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, the CTHMS enables real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

  10. Computational Combustion

    SciTech Connect

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

    2004-08-26

    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

  11. Active Control of High Frequency Combustion Instability in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    Corrigan, Bob (Technical Monitor); DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    Active control of high-frequency (greater than 500 Hz) combustion instability has been demonstrated in the NASA single-nozzle combustor rig at United Technologies Research Center. The combustor rig emulates an actual engine instability and has many of the complexities of a real engine combustor (i.e. actual fuel nozzle and swirler, dilution cooling, etc.) In order to demonstrate control, a high-frequency fuel valve capable of modulating the fuel flow at up to 1kHz was developed. Characterization of the fuel delivery system was accomplished in a custom dynamic flow rig developed for that purpose. Two instability control methods, one model-based and one based on adaptive phase-shifting, were developed and evaluated against reduced order models and a Sectored-1-dimensional model of the combustor rig. Open-loop fuel modulation testing in the rig demonstrated sufficient fuel modulation authority to proceed with closed-loop testing. During closed-loop testing, both control methods were able to identify the instability from the background noise and were shown to reduce the pressure oscillations at the instability frequency by 30%. This is the first known successful demonstration of high-frequency combustion instability suppression in a realistic aero-engine environment. Future plans are to carry these technologies forward to demonstration on an advanced low-emission combustor.

  12. Elimination of High-Frequency Combustion Instability in the Fastrac Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin; Nesman, Thomas E.

    1998-01-01

    NASA's Marshall Space Flight Center(MSFC) has been tasked with developing a 60,000 pound thrust, pump-fed, LOX/RP-1 engine under the Advanced Space Transportation Program(ASTP). This government-led design has been designated the Fastrac engine. The X-34 vehicle will use the Fastrac engine as the main propulsion system. The X-34 will be a suborbital vehicle developed by the Orbital Sciences Corporation. The X-34 vehicle will be launched from an L-1011 airliner. After launch, the X-34 vehicle will be able to climb to altitudes up to 250,000 feet and reach speeds up to Mach 8, over a mission range of 500 miles. The overall length, wingspan, and gross takeoff weight of the X-34 vehicle are 58.3 feet, 27.7 feet and 45,000 pounds, respectively. This report summarizes the plan of achieving a Fastrac thrust chamber assembly(TCA) stable bomb test that meets the JANNAF standards, the Fastrac TCA design, and the combustion instabilities exhibited by the Fastrac TCA during testing at MSFC's test stand 116 as determined from high-frequency fluctuating pressure measurements. This report also summarizes the characterization of the combustion instabilities from the pressure measurements and the steps taken to eliminate the instabilities.

  13. Liquid-cooled cylinder assembly in internal-combustion engine

    SciTech Connect

    Nakano, H.; Ozu, T.

    1987-02-03

    This patent describes an internal-combustion engine of the piston type having at least one cylinder assembly comprising a cylinder head and a cylinder liner capped at the upper end thereof by the cylinder head. The improvement described here comprises: a reinforcing ring fixedly fitted around the outer cylindrical surface of the upper end part of the cylinder liner; recesses grooved in and at respective positions around the outer cylindrical surface; passageways in the reinforcing ring and communicating with respective the recesses to form cooling-liquid passageways; the upper end part of the cylinder liner having an inverted frustoconical shape with the outer diameter thereof increasing gradually in the direction toward the cylinder head. The inner wall surface of the reinforcing ring is formed to fit tightly around the upper end part in a lead-proof manner for preventing relative displacements between the cylinder head, the cylinder liner, and the reinforcing ring.

  14. Axially staged combustion system for a gas turbine engine

    SciTech Connect

    Bland, Robert J.

    2009-12-15

    An axially staged combustion system is provided for a gas turbine engine comprising a main body structure having a plurality of first and second injectors. First structure provides fuel to at least one of the first injectors. The fuel provided to the one first injector is adapted to mix with air and ignite to produce a flame such that the flame associated with the one first injector defines a flame front having an average length when measured from a reference surface of the main body structure. Each of the second injectors comprising a section extending from the reference surface of the main body structure through the flame front and having a length greater than the average length of the flame front. Second structure provides fuel to at least one of the second injectors. The fuel passes through the one second injector and exits the one second injector at a location axially spaced from the flame front.

  15. Crankshaft structure of two-cycle internal combustion engine

    SciTech Connect

    Oyama, K.

    1986-11-18

    This patent describes a crankshaft structure in a two-cycle internal combustion engine comprising a crank web and a crank journal rotatably supported in a crank case by a bearing means. The crank web includes a supporting part having a central bore for receiving the crank journal press-fit therein. The supporting part has a reduced outer diameter portion disposed adjacent the bearing means supporting the crank journal and at an axial position overlying a press-fit part of the crank journal in the central bore of the crank web supporting part. The reduced outer diameter portion of the supporting part has a sealing member disposed on the outer periphery thereof.

  16. Crankshaft supporting and lubricating structure for multicylinder internal combustion engines

    SciTech Connect

    Anno, N.

    1987-04-14

    This patent describes a crankshaft supporting and lubricating device in a multicylinder internal combustion engine having bearing caps secured to journal walls of a cylinder block rotatably supporting a crankshaft between the bearing caps and the journal walls with a bridge interconnecting the bearing caps. The improvement described here comprises: the bearing caps and the bridge having branch oil passages defined therein for supplying lubricating oil to bearings of the crankshaft; the branch oil passages being deviated to one side from a cylinder axis passing through the center of the crankshaft; the bridge having a main gallery defined therein in communication with the branch oil passages and also deviated to the one side; and the bridge and one of the bearing caps having an oil passage defined therein on the one side and providing communication between the main gallery and a pressurized oil source.

  17. Crankshaft supporting structure for multicylinder internal combustion engines

    SciTech Connect

    Fukuo, K.; Ito, T.; Ichida, K.

    1988-03-08

    A crankshaft supporting structure in a multicylinder internal combustion engine is described including a bearing caps secured respectively to journal walls integral with a crankcase of a cylinder block, a crankshaft rotatably supported between the journal walls and the bearing caps, at least one counterweight on the crankshaft, and a bridge interconnecting the bearing caps. The bridge includes integral baffle plates extending between locations of the bearing caps and curved along a path of outer peripheral surfaces of each counterweight on the crankshaft. The bridge includes an oil supply gallery which extends substantially along a length of the bridge and generally parallel to the crankshaft and branch passages are provided in the bridge and the bearing caps extending from the gallery to a bearing hole defined by each journal wall and bearing cap.

  18. Metallized Gelled Propellants Combustion Experiments in a Pulse Detonation Engine

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Jurns, John; Breisacher, Kevin; Kearns, Kim

    2006-01-01

    A series of combustion tests were performed with metallized gelled JP 8/aluminum fuels in a Pulse Detonation Engine (PDE). Nanoparticles of aluminum were used in the 60 to 100 nanometer diameter. Gellants were also of a nanoparticulate type composed of hydrocarbon alkoxide materials. Using simulated air (a nitrogen-oxygen mixture), the ignition potential of metallized gelled fuels with nanoparticle aluminum was investigated. Ignition of the JP 8/aluminum was possible with less than or equal to a 23-wt% oxygen loading in the simulated air. JP 8 fuel alone was unable to ignite with less than 30 percent oxygen loaded simulated air. The tests were single shot tests of the metallized gelled fuel to demonstrate the capability of the fuel to improve fuel detonability. The tests were conducted at ambient temperatures and with maximal detonation pressures of 1340 psia.

  19. Status on the Verification of Combustion Stability for the J-2X Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Casiano, Matthew; Hinerman, Tim; Kenny, R. Jeremy; Hulka, Jim; Barnett, Greg; Dodd, Fred; Martin, Tom

    2013-01-01

    Development is underway of the J -2X engine, a liquid oxygen/liquid hydrogen rocket engine for use on the Space Launch System. The Engine E10001 began hot fire testing in June 2011 and testing will continue with subsequent engines. The J -2X engine main combustion chamber contains both acoustic cavities and baffles. These stability aids are intended to dampen the acoustics in the main combustion chamber. Verification of the engine thrust chamber stability is determined primarily by examining experimental data using a dynamic stability rating technique; however, additional requirements were included to guard against any spontaneous instability or rough combustion. Startup and shutdown chug oscillations are also characterized for this engine. This paper details the stability requirements and verification including low and high frequency dynamics, a discussion on sensor selection and sensor port dynamics, and the process developed to assess combustion stability. A status on the stability results is also provided and discussed.

  20. Development and test of combustion chamber for Stirling engine heated by natural gas

    NASA Astrophysics Data System (ADS)

    Li, Tie; Song, Xiange; Gui, Xiaohong; Tang, Dawei; Li, Zhigang; Cao, Wenyu

    2014-04-01

    The combustion chamber is an important component for the Stirling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stirling engine which aims to generate 3˜5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two apparent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stirling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experimental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utilization efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of combustion chamber has reached the design goal. The designed combustion chamber can be applied to a real Stirling engine heated by natural gas which is to generate 3˜5 kWe electric power.

  1. Rocket Engine Innovations Advance Clean Energy

    NASA Technical Reports Server (NTRS)

    2012-01-01

    During launch countdown, at approximately T-7 seconds, the Space Shuttle Main Engines (SSMEs) roar to life. When the controllers indicate normal operation, the solid rocket boosters ignite and the shuttle blasts off. Initially, the SSMEs throttle down to reduce stress during the period of maximum dynamic pressure, but soon after, they throttle up to propel the orbiter to 17,500 miles per hour. In just under 9 minutes, the three SSMEs burn over 1.6 million pounds of propellant, and temperatures inside the main combustion chamber reach 6,000 F. To cool the engines, liquid hydrogen circulates through miles of tubing at -423 F. From 1981to 2011, the Space Shuttle fleet carried crew and cargo into orbit to perform a myriad of unprecedented tasks. After 30 years and 135 missions, the feat of engineering known as the SSME boasted a 100-percent flight success rate.

  2. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    SciTech Connect

    Besmann, Theodore M

    2015-01-06

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  3. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    SciTech Connect

    Besmann, Theodore M

    2014-01-21

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  4. Light Duty Efficient, Clean Combustion

    SciTech Connect

    Stanton, Donald W.

    2011-06-03

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of our objectives were met with fuel efficiency improvement targets exceeded.

  5. Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion (HECC) in a Light-Duty Diesel Engine

    SciTech Connect

    Cho, Kukwon; Han, Manbae; Wagner, Robert M; Sluder, Scott

    2009-01-01

    An experimental study was performed to understand fuel property effects on low temperature combustion (LTC) processes in a light-duty diesel engine. These types of combustion modes are often collectively referred to as high efficiency clean combustion (HECC). A statistically designed set of research fuels, the Fuels for Advanced Combustion Engines (FACE), were used for this study. Engine conditions consistent with low speed cruise (1500 rpm, 2.6 bar BMEP) were chosen for investigating fuel property effects on HECC operation in a GM 1.9-L common rail diesel engine. The FACE fuel matrix includes nine combinations of fuel properties including cetane number (30 to 55), aromatic contents (20 to 45 %), and 90 % distillation temperature (270 to 340 C). HECC operation was achieved with high levels of EGR and adjusting injection parameters, e.g. higher fuel rail pressure and single injection event, which is also known as Premixed Charge Compression Ignition (PCCI) combustion. Engine performance, pollutant emissions, and details of the combustion process are discussed in this paper. Cetane number was found to significantly affect the combustion process with variations in the start of injection (SOI) timing, which revealed that the ranges of SOI timing for HECC operation and the PM emission levels were distinctively different between high cetane number (55) and low cetane number fuels (30). Low cetane number fuels showed comparable levels of regulated gas emissions with high cetane number fuels and had an advantage in PM emissions.

  6. Advances in meniscal tissue engineering.

    PubMed

    Eli, Nnaemeka; Oragui, Emeka; Khan, Wasim

    2011-01-01

    Injuries and lesions to the meniscal cartilage of the knee joint are common. As a result of its limited regenerative capacity, early degenerative changes to the articular surface frequently occur, resulting in pain and poor function. Currently available surgical interventions include repair of tears, and partial and total meniscectomy but the results are inconsistent and often poor. Interest in the field of meniscal tissue engineering with the possibilities of better treatment outcomes has grown in recent times. Current research has focused on the use of mesenchymal stem cells, fibrochondrocytes, meniscal derived cells and fibroblast-like synoviocytes in tissue engineering. Mesenchymal stem cells are multipotent cells that have been identified in a number of tissues including bone marrow and synovium. Current research is aimed at defining the correct combination of cytokines and growth factors necessary to induce specific tissue formation and includes transforming growth factor-β (TGF-β), Platelet Derived Growth Factor (PDGF) and Fibroblast Growth Factor 2 (FGF2). Scaffolds provide mechanical stability and integrity, and supply a template for three-dimensional organization of the developing tissue. A number of experimental and animal models have been used to investigate the ideal scaffolds for meniscal tissue engineering. The ideal scaffold for meniscal tissue engineering has not been identified but biodegradable scaffolds have shown the most promising results. In addition to poly-glycolic acid (PGA) and poly-lactic acid (PLLA) scaffolds, new synthetic hydrogels and collagen sponges are also being explored. There are two synthetic meniscal implants currently in clinical use and there are a number of clinical trials in the literature with good short- and medium-term results. Both products are indicated for segmental tissue loss and not for complete meniscal replacement. The long-term results of these implants are unknown and we wait to see whether they will be

  7. Internal combustion engine report: Spark ignited ICE GenSet optimization and novel concept development

    SciTech Connect

    Keller, J.; Blarigan, P. Van

    1998-08-01

    In this manuscript the authors report on two projects each of which the goal is to produce cost effective hydrogen utilization technologies. These projects are: (1) the development of an electrical generation system using a conventional four-stroke spark-ignited internal combustion engine generator combination (SI-GenSet) optimized for maximum efficiency and minimum emissions, and (2) the development of a novel internal combustion engine concept. The SI-GenSet will be optimized to run on either hydrogen or hydrogen-blends. The novel concept seeks to develop an engine that optimizes the Otto cycle in a free piston configuration while minimizing all emissions. To this end the authors are developing a rapid combustion homogeneous charge compression ignition (HCCI) engine using a linear alternator for both power take-off and engine control. Targeted applications include stationary electrical power generation, stationary shaft power generation, hybrid vehicles, and nearly any other application now being accomplished with internal combustion engines.

  8. Elimination of High-Frequency Combustion Instability in the Fastrac Engine Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin; Nesman, Tomas E.

    1999-01-01

    A series of tests were conducted to stabilize the combustion of the Fastrac engine thrust chamber. The first few stability tests resulted in unstable combustion due ineffective acoustic cavity designs. The thrust chamber exhibited unstable combustion in the first-tangential mode and its harmonics. Combustion was stabilized by increasing the volume of the acoustic cavities and by plugging the dump-cooling orifices so that the cavities were uncooled. Although the first few stability tests resulted in unstable combustion, prior and subsequent long-duration performance tests of the Fastrac thrust chamber were spontaneously stable. Stability considerations during the injector faceplate design were based on the Hewitt correlation.

  9. Combustion in Homogeneous Charge Compression Ignition Engines: Experiments and Detailed Chemical Kinetic Simulations

    SciTech Connect

    Flowers, D L

    2002-06-07

    Homogeneous charge compression ignition (HCCI) engines are being considered as an alternative to diesel engines. The HCCI concept involves premixing fuel and air prior to induction into the cylinder (as is done in current spark-ignition engine) then igniting the fuel-air mixture through the compression process (as is done in current diesel engines). The combustion occurring in an HCCI engine is fundamentally different from a spark-ignition or Diesel engine in that the heat release occurs as a global autoignition process, as opposed to the turbulent flame propagation or mixing controlled combustion used in current engines. The advantage of this global autoignition is that the temperatures within the cylinder are uniformly low, yielding very low emissions of oxides of nitrogen (NO{sub x}, the chief precursors to photochemical smog). The inherent features of HCCI combustion allows for design of engines with efficiency comparable to, or potentially higher than, diesel engines. While HCCI engines have great potential, several technical barriers exist which currently prevent widespread commercialization of this technology. The most significant challenge is that the combustion timing cannot be controlled by typical in-cylinder means. Means of controlling combustion have been demonstrated, but a robust control methodology that is applicable to the entire range of operation has yet to be developed. This research focuses on understanding basic characteristics of controlling and operating HCCI engines. Experiments and detailed chemical kinetic simulations have been applied to the characterize some of the fundamental operational and design characteristics of HCCI engines. Experiments have been conducted on single and multi-cylinder engines to investigate general features of how combustion timing affects the performance and emissions of HCCI engines. Single-zone modeling has been used to characterize and compare the implementation of different control strategies. Multi

  10. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... certified to the standards in 40 CFR part 1039. (b) Stationary CI internal combustion engine manufacturers... certified to the emission standards in 40 CFR part 1039. Stationary CI internal combustion engine... labeled according to 40 CFR 1039.20. (2) Stationary CI internal combustion engines manufactured from......

  11. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... certified to the standards in 40 CFR part 1039. (b) Stationary CI internal combustion engine manufacturers... certified to the emission standards in 40 CFR part 1039. Stationary CI internal combustion engine... labeled according to 40 CFR 1039.20. (2) Stationary CI internal combustion engines manufactured from......

  12. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... certified to the standards in 40 CFR part 1039. (b) Stationary CI internal combustion engine manufacturers... certified to the emission standards in 40 CFR part 1039. Stationary CI internal combustion engine... labeled according to 40 CFR 1039.20. (2) Stationary CI internal combustion engines manufactured from......

  13. Influence of ethanol on the operating parameters of an internal-combustion engine

    NASA Astrophysics Data System (ADS)

    Assad, M. S.; Kucharchuk, I. G.; Penyazkov, O. G.; Rusetskii, A. M.; Chornyi, A. D.

    2011-11-01

    Distinctive features of the operation of an internal-combustion engine burning ethanol-containing fuels have been studied. It has been shown that the enrichment of gasoline with ethanol tends to diminish the concentrations of CO and NO in combustion products, with the engine's fuel efficiency being inevitably degraded due to the lower volumetric heat of combustion of the blend. The experimentally confirmed technique of blocking the growth in the concentration of NO in the combustion products of hydrogen-containing fuels by enrichment of the blend with ethanol has been proposed; the optimum parameters of the three-fuel composition have been established.

  14. Boost compensator for use with internal combustion engine with supercharger

    SciTech Connect

    Asami, T.

    1988-04-12

    A boost compensator for controlling the position of a control rack of a fuel injection pump to supply fuel to an internal combustion with a supercharger in response to a boost pressure to be applied to the engine is described. The control rack is movable in a first direction increasing an amount of fuel to be supplied by the fuel injection pump to the engine and in a second direction, opposite to the first direction, decreasing the amount of fuel. The boost compensator comprises: a push rod disposed for forward and rearward movement in response to the boost pressure; a main lever disposed for angular movement about a first pivot; an auxiliary lever disposed for angular movement about a second pivot; return spring means associated with the first portion of the auxiliary lever for resiliently biasing same in one direction about the second pivot; and abutment means mounted on the second portion of the auxiliary lever and engageable with the second portion of the main lever.

  15. Centrifugal governor for injection type internal combustion engine

    SciTech Connect

    Takahashi, M

    1989-05-23

    A centrifugal governor for an injection type internal combustion engine, comprising: a housing in which a cam shaft is rotatably supported at its lower section and a fuel injection pump is disposed above the cam shaft; a flyweight disposed at an end of the cam shaft so as to be displaced in accordance with a rotational speed of the engine; a tension lever rotatable upon a driving force of the flyweight with an intermediate fixed shaft as a pivot; a governor spring assembly supported so as not to exert any supporting load between a housing side spring seat and another spring seat provided to the tension lever, and so as to be compressed upon rotation of the tension lever; a guide lever and a floating lever, both rotatable with a pin provided at a lower end of the tension lever as a pivot, and normally connected to each other as an integrated element by a cancellation spring surrounding the pin; the speed lever have a shaped like bell crank, rotatably supported at one end with a shaft connecting the control lever as a pivot, and engaged with an intermediated guide of the guide lever at the other end.

  16. Heat transfer in rocket engine combustion chambers and nozzles

    NASA Astrophysics Data System (ADS)

    Anderson, P. G.; Cheng, G. C.; Farmer, R. C.

    1993-07-01

    Complexities of liquid rocket engine heat transfer which involve the injector faceplate and regeneratively and film cooled walls are being investigated by computational analysis. A conjugate heat transfer analysis will be used to describe localized heating phenomena associated with particular injector configurations and coolant channels and film coolant dumps. These components are being analyzed, and the analyses verified with appropriate test data. Finally, the component analyses will be synthesized into an overall flowfield/heat transfer model. The FDNS code is being used to make the component analyses. Particular attention is being given to the representation of the thermodynamic properties of the fluid streams and to the method of combining the detailed models to represent overall heating. Unit flow models of specific coaxial injector elements have been developed and will be described. Since test data from the NLS development program are not available, new validation heat transfer data have been sought. Suitable data were obtained from a Rocketdyne test program on a model hydrocarbon/oxygen engine. Simulations of these test data will be presented. Recent interest in the hybrid motor have established the need for analyses of ablating solid fuels in the combustion chamber. Analysis of a simplified hybrid motor will also be presented.

  17. Hydraulically actuated valve train for an internal combustion engine

    SciTech Connect

    Brisko, F.S.

    1986-09-23

    A hydraulically actuated valve train is described for an internal combustion engine comprising a poppet valve supported for reciprocation for controlling the communication of a port with a chamber of the engine, a fluid actuated piston associated with the poppet valve for operating the poppet valve, and a remotely positioned actuator device for supplying fluid under pressure to the fluid piston. The actuator device comprises a housing defining a fluid chamber and having a bore, means for delivering fluid under pressure to the chamber, the bore communicating with the fluid piston for delivering fluid thereto. A plunger is supported in the bore for pressurizing the fluid in the bore, valve means comprising a sleeve slidably supported on the plunger and within the bore for selectively communicating a chamber formed in the bore above the valve sleeve and the plunger with the fluid chamber and for isolating the bore from the fluid chamber. A means for cyclically and sequentially closing the valve for isolating the bore from the fluid chamber and for moving the plunger in the bore for pressurizing the fluid piston and actuating the poppet valve, comprises a first relatively light spring means interposed between the plunger and the valve sleeve for urging the valve sleeve toward a closed position. A second relatively heavier valve spring means acts on the plunger for urging the plunger into engagement with an actuating member for effecting reciprocation of the plunger and the valve sleeve.

  18. Internal combustion engine having aluminum alloy cylinder block

    SciTech Connect

    Ogawa, N.

    1987-03-24

    An internal combustion engine is described comprising: a cylinder block formed of aluminium alloy and having main bearing bulkheads each of which is formed with a bearing surface; main bearing caps formed of aluminium alloy and securely connected, respectively, with the bearing bulkheads, the bearing caps being formed with bearing surfaces which are located, respectively, in opposition to the bearing surfaces of the bearing bulkhead; a crankshaft formed of iron alloy and rotatably supported by the bearing bulkheads and the bearing caps. The main journal of the crankshaft is located between the bearing surfaces of the bearing bulkheads and the bearing caps. The surface of the crankshaft main journal is in direct contact with the bearing surfaces of the bearing bulkheads and the bearing caps; and means defining an oil groove on the bearing surface of each bearing bulkhead for supplying engine lubricating oil between the crankshaft main journal and the bearing surfaces of the bearing bulkheads and the bearing caps. The oil groove extends along the periphery of the bearing bulkhead bearing surfaces, the bearing surfaces of the bearing caps being free of oil grooves so as to provide maximum contacting area with the main crankshaft journal to absorb greater explosive force.

  19. Air to fuel ratio control system for internal combustion engine

    SciTech Connect

    Nishimura, Y.; Oyama, Y.

    1980-05-06

    An air to fuel ratio control system for an internal combustion engine having a fixed venturi type carburetor is disclosed. The air to fuel ratio control system comprises a device for extracting an atmospheric pressure within a venturi or a pressure corresponding to a relieved venturi vacuum, a device for extracting a static fuel pressure downstream of a main jet provided in a fuel path, a device for comparing those pressures directly or indirectly and a device for controlling the static fuel pressure in accordance with an output of the detecting device. Control is made such that the difference between those pressures is always maintained substantially constant. The air to fuel ratio control system may further comprise a device for detecting composition of exhaust gas of the engine. An output of the composition detecting device is applied to a control device which controls the static fuel pressure based on the output of the differential pressure detecting device and the output of the composition detecting device.

  20. Closed-loop fluidic control system for internal combustion engines

    SciTech Connect

    Abbey, H.G.

    1982-01-05

    A closed-loop fluidic control servo system is described for a vehicle having an internal combustion engine provided with a variable venturi carburetor having an axially-shiftable spool operated by a vacuum motor. The system acts automatically through the motor to maintain the ratio of fuel-to-air supplied by the venturi carburetor to the intake manifold of the system at the optimum value during all prevailing conditions of engine speed and load encountered in vehicular operation. The system includes a vacuum amplifier coupled to the intake manifold and responsive to a differential vacuum signal developed between the pressures existing at the inlet and throat of the venturi to produce a proportionally amplified vacuum which is derived from the intake manifold vacuum and is a function of the vacuum signal. The proportionally amplified vacuum serves to energize the vacuum motor to shift the axial position thereof in a direction and to an extent bringing about the desired fuel-to-air ratio.