Science.gov

Sample records for advanced composite shear

  1. Advanced shear-lag model applicable to discontinuous fiber composites

    SciTech Connect

    Fukuda, H.; Chou, T.W.

    1981-01-01

    An analysis for predicting the stress distribution in unidirectional discontinuous fiber composites has been developed and is reported herein. Although the basic approach is based upon the shear-lag analysis, the load transfer at fiber ends is taken into consideration. This consideration becomes important if the bonding between the fiber and matrix at the fiber end is perfect such as the cases often observed in metal matrix composites, as well as during the early stage of loading of polymeric matrix composites. The present analysis includes the ordinary shear-lag analysis as a special case. 28 references.

  2. Development of a metal-clad advanced composite shear web design concept

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.

    1974-01-01

    An advanced composite web concept was developed for potential application to the Space Shuttle Orbiter main engine thrust structure. The program consisted of design synthesis, analysis, detail design, element testing, and large scale component testing. A concept was sought that offered significant weight saving by the use of Boron/Epoxy (B/E) reinforced titanium plate structure. The desired concept was one that was practical and that utilized metal to efficiently improve structural reliability. The resulting development of a unique titanium-clad B/E shear web design concept is described. Three large scale components were fabricated and tested to demonstrate the performance of the concept: a titanium-clad plus or minus 45 deg B/E web laminate stiffened with vertical B/E reinforced aluminum stiffeners.

  3. Use of an advanced shear-lag model to obtain the optimum internal damping in short-fiber composites

    SciTech Connect

    Hajela, P.; Shih, C.J. )

    1989-11-01

    The present paper examines a modified shear-lag model for predicting the stress distribution in short fiber reinforced composite materials. The model assumes perfect bonding between the fiber and the matrix materials, and allows for the matrix material to partially sustain axial loads. The stress distribution obtained on the basis of this model is used to predict the internal damping characteristics of the composite materials. These characteristics are a function of both the material properties and the geometrical layout of the composite, and are optimized by combining the analytical model with a nonlinear programming optimization algorithm. Representative numerical results are obtained for glass-epoxy and graphite-epoxy composites.

  4. Advanced Composition

    ERIC Educational Resources Information Center

    Sarantos, R. L.

    1974-01-01

    This is an excerpt from a course for advanced students, designed to teach proficiency in English composition by providing activities specifically geared to the elimination of native language interference. (LG)

  5. Repeated buckling of composite shear panels

    NASA Technical Reports Server (NTRS)

    Singer, Josef; Weller, Tanchum

    1990-01-01

    Failures in service of aerospace structures and research at the Technion Aircraft Structures Laboratory have revealed that repeatedly buckled stiffened shear panels might be susceptible to premature fatigue failures. Extensive experimental and analytical studies have been performed at Technion on repeated buckling, far in excess of initial buckling, for both metal and composite shear panels with focus on the influence of the surrounding structure. The core of the experimental investigation consisted of repeated buckling and postbuckling tests on Wagner beams in a three-point loading system under realistic test conditions. The effects of varying sizes of stiffeners, of the magnitude of initial buckling loads, of the panel aspect ratio and of the cyclic shearing force, V sub cyc, were studied. The cyclic to critical shear buckling ratios, (V sub cyc/V sub cr) were on the high side, as needed for efficient panel design, yet all within possible flight envelopes. The experiments were supplemented by analytical and numerical analyses. For the metal shear panels the test and numerical results were synthesized into prediction formulas, which relate the life of the metal shear panels to two cyclic load parameters. The composite shear panels studied were hybrid beams with graphite/epoxy webs bonded to aluminum alloy frames. The test results demonstrated that composite panels were less fatigue sensitive than comparable metal ones, and that repeated buckling, even when causing extensive damage, did not reduce the residual strength by more than 20 percent. All the composite panels sustained the specified fatigue life of 250,000 cycles. The effect of local unstiffened holes on the durability of repeatedly buckled shear panels was studied for one series of the metal panels. Tests on 2024 T3 aluminum panels with relatively small unstiffened holes in the center of the panels demonstrated premature fatigue failure, compared to panels without holes. Preliminary tests on two graphite

  6. Advanced composites for windmills

    NASA Astrophysics Data System (ADS)

    Bourquardez, G.

    A development status assessment is conducted for advanced composite construction techniques for windmill blade structures which, as in the case of composite helicopter rotors, promise greater reliability, longer service life, superior performance, and lower costs. Composites in wind turbine applications must bear aerodynamic, inertial and gravitational loads in complex interaction cycles. Attention is given to large Darrieus-type vertical axis windmills, to which composite construction methods may offer highly effective pitch-control mechanisms, especially in the 'umbrella' configuration.

  7. Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.; Straayer, J. W.

    1974-01-01

    A final program summary is reported for test and evaluation activities that were conducted for space shuttle web selection. Large scale advanced composite shear web components were tested and analyzed to evaluate application of advanced composite shear web construction to a space shuttle orbiter thrust structure. The shear web design concept consisted of a titanium-clad + or - 45 deg boron/epoxy web laminate stiffened with vertical boron-epoxy reinforced aluminum stiffeners and logitudinal aluminum stiffening. The design concept was evaluated to be efficient and practical for the application that was studied. Because of the effects of buckling deflections, a requirement is identified for shear buckling resistant design to maximize the efficiency of highly-loaded advanced composite shear webs.

  8. Analysis of shear test method for composite laminates

    NASA Technical Reports Server (NTRS)

    Bergner, H. W., Jr.; Davis, J. G., Jr.; Herakovich, C. T.

    1977-01-01

    An elastic plane stress finite element analysis of the stress distributions in four flat test specimens for in-plane shear response of composite materials subjected to mechanical or thermal loads is presented. The shear test specimens investigated include: slotted coupon, cross beam, losipescu, and rail shear. Results are presented in the form of normalized shear contour plots for all three in-plane stess components. It is shown that the cross beam, losipescu, and rail shear specimens have stress distributions which are more than adequate for determining linear shear behavior of composite materials. Laminate properties, core effects, and fixture configurations are among the factors which were found to influence the stress distributions.

  9. Advanced composites technology program

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr.

    1993-01-01

    This paper provides a brief overview of the NASA Advanced Composites Technology (ACT) Program. Critical technology issues that must be addressed and solved to develop composite primary structures for transport aircraft are delineated. The program schedule and milestones are included. Work completed in the first 3 years of the program indicates the potential for achieving composite structures that weigh less and are cost effective relative to conventional aluminum structure. Selected technical accomplishments are noted. Readers who are seeking more in-depth technical information should study the other papers included in these proceedings.

  10. Iosipescu shear properties of graphite fabric/epoxy composite laminates

    NASA Technical Reports Server (NTRS)

    Walrath, D. E.; Adams, D. F.

    1985-01-01

    The Iosipescu shear test method is used to measure the in-plane and interlaminar shear properties of four T300 graphite fabric/934 epoxy composite materials. Different weave geometries tested include an Oxford weave, a 5-harness satin weave, an 8-harness satin weave, and a plain weave with auxiliary warp yarns. Both orthogonal and quasi-isotropic layup laminates were tested. In-plane and interlaminar shear properties are obtained for laminates of all four fabric types. Overall, little difference in shear properties attributable to the fabric weave pattern is observed. The auxiliary warp material is significantly weaker and less stiff in interlaminar shear parallel to its fill direction. A conventional strain gage extensometer is modified to measure shear strains for use with the Iosipescu shear test. While preliminary results are encouraging, several design iterations failed to produce a reliable shear transducer prototype. Strain gages are still the most reliable shear strain transducers for use with this test method.

  11. Advanced composites technology

    SciTech Connect

    DeTeresa, S J; Groves, S E; Sanchez, R J

    1998-10-01

    The development of fiber composite components in next-generation munitions, such as sabots for kinetic energy penetrators and lightweight cases for advanced artillery projectiles, relies on design trade-off studies using validated computer code simulations. We are developing capabilities to determine the failure of advanced fiber composites under multiaxial stresses to critically evaluate three-dimensional failure models and develop new ones if necessary. The effects of superimposed hydrostatic pressure on failure of composites are being investigated using a high-pressure testing system that incorporates several unique features. Several improvements were made to the system this year, and we report on the first tests of both isotropic and fiber composite materials. The preliminary results indicate that pressure has little effect on longitudinal compression strength of unidirectional composites, but issues with obtaining reliable failures in these materials still remain to be resolved. The transverse compression strength was found to be significantly enhanced by pressure, and the trends observed for this property and the longitudinal strength are in agreement with recent models for failure of fiber composites.

  12. Advanced composites in Japan

    NASA Technical Reports Server (NTRS)

    Diefendorf, R. Judd; Hillig, William G.; Grisaffe, Salvatore J.; Pipes, R. Byron; Perepezko, John H.; Sheehan, James E.

    1994-01-01

    The JTEC Panel on Advanced Composites surveyed the status and future directions of Japanese high-performance ceramic and carbon fibers and their composites in metal, intermetallic, ceramic, and carbon matrices. Because of a strong carbon and fiber industry, Japan is the leader in carbon fiber technology. Japan has initiated an oxidation-resistant carbon/carbon composite program. With its outstanding technical base in carbon technology, Japan should be able to match present technology in the U.S. and introduce lower-cost manufacturing methods. However, the panel did not see any innovative approaches to oxidation protection. Ceramic and especially intermetallic matrix composites were not yet receiving much attention at the time of the panel's visit. There was a high level of monolithic ceramic research and development activity. High temperature monolithic intermetallic research was just starting, but notable products in titanium aluminides had already appeared. Matrixless ceramic composites was one novel approach noted. Technologies for high temperature composites fabrication existed, but large numbers of panels or parts had not been produced. The Japanese have selected aerospace as an important future industry. Because materials are an enabling technology for a strong aerospace industry, Japan initiated an ambitious long-term program to develop high temperature composites. Although just starting, its progress should be closely monitored in the U.S.

  13. Novel shear mechanism in nanolayered composites

    SciTech Connect

    Mara, Nathan; Bhattacharyya, Dhriti; Hirth, John P; Dickerson, Patricia O; Misra, Amit

    2009-01-01

    Recent studies have shown that two-phase nanocomposite materials with semicoherent interfaces exhibit enhanced strength, deformability, and radiation damage resistance. The remarkable behavior exhibited by these materials has been attributed to the atomistic structure of the bi-metal interface that results in interfaces with low shear strength and hence, strong barriers for slip transmission due to dislocation core spreading along the weak interfaces. In this work, the low interfacial shear strength of Cu/Nb nanoscale multilayers dictates a new mechanism for shear banding and strain softening during micropillar compression. Previous work investigating shear band formation in nanocrystalline materials has shown a connection between insufficient strain hardening and the onset of shear banding in Fe and Fe-10% Cu, but has also shown that hardening does not necessarily offset shear banding in Pd nanomaterials. Therefore, the mechanisms behind shear localization in nanocrystalline materials are not completely understood. Our findings, supported by molecular dynamics simulations, provide insight on the design of nanocomposites with tailored interface structures and geometry to obtain a combination of high strength and deformability. High strength is derived from the ability of the interfaces to trap dislocations through relative ease of interfacial shear, while deformability can be maximized by controlling the effects of loading geometry on shear band formation.

  14. Advanced composite fuselage technology

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Smith, Peter J.; Horton, Ray E.

    1993-01-01

    Boeing's ATCAS program has completed its third year and continues to progress towards a goal to demonstrate composite fuselage technology with cost and weight advantages over aluminum. Work on this program is performed by an integrated team that includes several groups within The Boeing Company, industrial and university subcontractors, and technical support from NASA. During the course of the program, the ATCAS team has continued to perform a critical review of composite developments by recognizing advances in metal fuselage technology. Despite recent material, structural design, and manufacturing advancements for metals, polymeric matrix composite designs studied in ATCAS still project significant cost and weight advantages for future applications. A critical path to demonstrating technology readiness for composite transport fuselage structures was created to summarize ATCAS tasks for Phases A, B, and C. This includes a global schedule and list of technical issues which will be addressed throughout the course of studies. Work performed in ATCAS since the last ACT conference is also summarized. Most activities relate to crown quadrant manufacturing scaleup and performance verification. The former was highlighted by fabricating a curved, 7 ft. by 10 ft. panel, with cocured hat-stiffeners and cobonded J-frames. In building to this scale, process developments were achieved for tow-placed skins, drape formed stiffeners, braided/RTM frames, and panel cure tooling. Over 700 tests and supporting analyses have been performed for crown material and design evaluation, including structural tests that demonstrated limit load requirements for severed stiffener/skin failsafe damage conditions. Analysis of tests for tow-placed hybrid laminates with large damage indicates a tensile fracture toughness that is higher than that observed for advanced aluminum alloys. Additional recent ATCAS achievements include crown supporting technology, keel quadrant design evaluation, and

  15. Simplified Shear Solution for Determination of the Shear Stress Distribution in a Composite Panel from the Applied Shear Resultant

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Yarrington, Phillip W.; Collier, Craig S.

    2008-01-01

    The simplified shear solution method is presented for approximating the through-thickness shear stress distribution within a composite laminate or panel based on laminated beam theory. The method does not consider the solution of a particular boundary value problem; rather it requires only knowledge of the global shear loading, geometry, and material properties of the laminate or panel. It is thus analogous to lamination theory in that ply level stresses can be efficiently determined from global load resultants (as determined, for instance, by finite element analysis) at a given location in a structure and used to evaluate the margin of safety on a ply by ply basis. The simplified shear solution stress distribution is zero at free surfaces, continuous at ply boundaries, and integrates to the applied shear load. Comparisons to existing theories are made for a variety of laminates, and design examples are provided illustrating the use of the method for determining through-thickness shear stress margins in several types of composite panels and in the context of a finite element structural analysis.

  16. Longitudinal interfacial shearing of a unidirectional fiber composite

    SciTech Connect

    Yang, M.; Kurth, R.E.

    1995-12-31

    In this work, longitudinal interfacial shearing of a unidirectional fiber composite which sustains slippage at the interface between fiber and matrix is analyzed. Based on the experimental work on the fiber pull-out, the interface between the fiber and the matrix can be divided as three regions, depending on the longitudinal shear stress. These three regions are the bonded region, frictional slip regions, and the free-friction slid region. The problem is formulated as a nonlinear system of singular integral equations and solved numerically. It has been shown that when the longitudinal shear stress is less than a critical value, the fiber and the matrix can be assumed to be bonded perfectly. When the longitudinal shear stress is greater than this critical value, the slippage at the interface between the fiber and the interface takes place. From the recent fiber pull-out test, the phenomena of fiber frictional slip followed by free slide has been observed and analyzed. Thus, there are three stages for the deformation of interfacial shearing of a unidirectional fiber composite under longitudinal shearing. The first stage occurs when the applied longitudinal shear stress is less than the critical value corresponding to the onset of slippage. In the second stage, the interface is divided into two regions, namely, the bonded region and the frictional slip region in which the shear stress is either assumed to be constant or governed by a friction law. The third stage occurs when the longitudinal shear stress is greater than the critical value corresponding to free sliding or when the friction limit is exceeded. In the third stage, the interface between the fiber and the matrix can be divided into three regions, depending on the longitudinal shear stress. These three regions are the bonded region, the frictional slip regions, and the free-friction slide region in which the shear stress is neglected.

  17. Advanced composite materials and processes

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.

    1991-01-01

    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  18. Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application. Phase 3 Summary report: Shear web component testing and analysis

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.; Straayer, J. W.

    1973-01-01

    Three large scale advanced composite shear web components were tested and analyzed to evaluate application of the design concept to a space shuttle orbiter thrust structure. The shear web design concept consisted of a titanium-clad + or - 45 deg boron/epoxy web laminate stiffened with vertical boron/epoxy reinforced aluminum stiffeners. The design concept was evaluated to be efficient and practical for the application that was studied. Because of the effects of buckling deflections, a requirement is identified for shear buckling resistant design to maximize the efficiency of highly-loaded advanced composite shear webs. An approximate analysis of prebuckling deflections is presented and computer-aided design results, which consider prebuckling deformations, indicate that the design concept offers a theoretical weight saving of 31 percent relative to all metal construction. Recommendations are made for design concept options and analytical methods that are appropriate for production hardware.

  19. Advanced technology composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Walker, Thomas H.

    1991-01-01

    Work performed during the 25th month on NAS1-18889, Advanced Technology Composite Aircraft Structures, is summarized. The main objective of this program is to develop an integrated technology and demonstrate a confidence level that permits the cost- and weight-effective use of advanced composite materials in primary structures of future aircraft with the emphasis on pressurized fuselages. The period from 1-31 May 1991 is covered.

  20. Advances in Composites Technology

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Dexter, H. B.

    1985-01-01

    A significant level of research is currently focused on the development of tough resins and high strain fibers in an effort to gain improved damage tolerance. Moderate success has been achieved with the development of new resins such as PEEK and additional improvements look promising with new thermoplastic resins. Development of innovative material forms such as 2-D and 3-D woven fabrics and braided structural subelements is also expected to improve damage tolerance and durability of composite hardware. The new thrust in composites is to develop low cost manufacturing and design concepts to lower the cost of composite hardware. Processes being examined include automated material placement, filament winding, pultrusion, and thermoforming. The factory of the future will likely incorporate extensive automation in all aspects of manufacturing composite components.

  1. Evaluation of cylindrical shear joints for composite materials

    NASA Astrophysics Data System (ADS)

    Groves, Scott; Sanchez, Roberto; Lyon, Richard; Magness, Frank

    1992-01-01

    An evaluation is made of the strength of four candidate cylindrical shear joints for composite tubes. The basic joint design is of one inch axial length with an external 15 deg tapered cone. The purpose of the joint is to transfer axial loads from a cylinder through a steel shear attachment with a matching internal conical seat. The candidate designs are a bonded wedge cone, a pinned wedge cone, a bonded and pinned wedge cone attached to a two-inch diameter composite tube, and a wedge cone integrally wound into the tube. The actual joint strengths were found to be dependent on the amount of hydrostatic or radial compression applied to the joint. The bonded wedge ring and the integral wedge ring both achieved over 96 MPa (14 ksi) of shear strength without failure. The bonded and pinned joint reached a peak shear strength of 78.9 MPa (11.5 ksi), and the pinned only configuration achieved 70.6 MPa (10.3 ksi). Without any hydrostatic compression loading, the joint strengths were less than 34.3 MPa (5 ksi); however, the failure mode was hoop compression buckling of the tube itself as opposed to a joint shear failure.

  2. Simple torsion test for shear moduli determination of orthotropic composites

    NASA Technical Reports Server (NTRS)

    Sumsion, H. T.; Rajapakse, Y. D. S.

    1978-01-01

    The shear moduli G13 and G23 for two different composites (AS/3501 and T300/5209) of uniaxial and cross-ply fiber orientations were determined by torsion testing of flat specimens of rectangular cross section. Torsion tests were run under controlled angle of twist in an electro-hydraulic servo-controlled test system. Both laser and potentiometer methods of measuring the angle of twist were used. The in-plane shear modulus was calculated with a formula for transversally isotropic materials and a formula for orthotropic materials, while the out-of-plane shear modulus was calculated from the orthotropic material formula. Neither the uniaxial nor the angle-ply composite materials studied were transversely isotropic. The degree of anisotropy for the angle-ply materials was several times greater than that of the uniaxial composites. For specimens of uniaxial fiber orientation, the in-plane shear moduli could be calculated to a good approximation by using the isotropic formula and test machine deflection data.

  3. Composite Interlaminar Shear Fracture Toughness, G(sub 2c): Shear Measurement of Sheer Myth?

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin

    1997-01-01

    The concept of G2c as a measure of the interlaminar shear fracture toughness of a composite material is critically examined. In particular, it is argued that the apparent G2c as typically measured is inconsistent with the original definition of shear fracture. It is shown that interlaminar shear failure actually consists of tension failures in the resin rich layers between plies followed by the coalescence of ligaments created by these failures and not the sliding of two planes relative to one another that is assumed in fracture mechanics theory. Several strain energy release rate solutions are reviewed for delamination in composite laminates and structural components where failures have been experimentally documented. Failures typically occur at a location where the mode 1 component accounts for at least one half of the total G at failure. Hence, it is the mode I and mixed-mode interlaminar fracture toughness data that will be most useful in predicting delamination failure in composite components in service. Although apparent G2c measurements may prove useful for completeness of generating mixed-mode criteria, the accuracy of these measurements may have very little influence on the prediction of mixed-mode failures in most structural components.

  4. A comparison of three shear test methods for composite materials

    NASA Technical Reports Server (NTRS)

    Ho, H.; Tsai, M. Y.; Morton, J.; Farley, G. L.

    1991-01-01

    A graphite-epoxy composite material system is used to evaluate the performance of three popular shear tests - the 10-deg off-axis, the +/-45-deg tension, and the Iosipescu specimen tested in the modified Wyoming fixture. A comparison of the shear stress-strain response for each test method is made using a conventional strain gage instrument and moire interferometry. The uniformity and purity of the strain fields in the test sections of the specimens are discussed, and the shear responses obtained from each test are presented and compared. It is shown that the shear stress-strain responses obtained by instrumenting only one face of the 90-deg Iosipescu specimen could give erroneous results. The +/-45-deg tensile and 0-deg Iosipescu specimens were not affected by front-to-back face shear strain variations. Correction factors could be applied to bring all responses together, within the limits of the material uniformity, which was itself documented in the moire fringe patterns.

  5. Simple torsion test for shear moduli determination of orthotropic composites

    NASA Technical Reports Server (NTRS)

    Sumsion, H. T.; Rajapakse, Y. D. S.

    1978-01-01

    By means of torsion tests performed on test specimens of the same material having a minimum of two different cross sections (flat sheet of different widths), the effective in-plane (G13) and out-of-plane (G23) shear moduli were determined for two composite materials of uniaxial and angleply fiber orientations. Test specimens were 16 plies (nominal 2 mm) thick, 100 mm in length, and in widths of 6.3, 9.5, 12.5, and 15.8 mm. Torsion tests were run under controlled deflection (constant angle of twist) using an electrohydraulic servocontrolled test system. In-plane and out-of-plane shear moduli were calculated from an equation derived in the theory of elasticity which relates applied torque, the torsional angle of twist, the specimen width/thickness ratio, and the ratio of the two shear moduli G13/G23. Results demonstrate that torsional shear moduli, G23 as well as G13, can be determined by simple torsion tests of flat specimens of rectangular cross section. Neither the uniaxial nor angleply composite material were transversely isotropic.

  6. Matrix cracking of fiber-reinforced ceramic composites in shear

    NASA Astrophysics Data System (ADS)

    Rajan, Varun P.; Zok, Frank W.

    2014-12-01

    The mechanics of cracking in fiber-reinforced ceramic matrix composites (CMCs) under general loadings remains incomplete. The present paper addresses one outstanding aspect of this problem: the development of matrix cracks in unidirectional plies under shear loading. To this end, we develop a model based on potential energy differences upstream and downstream of a fully bridged steady-state matrix crack. Through a combination of analytical solutions and finite element simulations of the constituent stresses before and after cracking, we identify the dominant stress components that drive crack growth. We show that, when the axial slip lengths are much larger than the fiber diameter and when interfacial slip precedes cracking, the shear stresses in the constituents are largely unaffected by the presence of the crack; the changes that do occur are confined to a 'core' region within a distance of about one fiber diameter from the crack plane. Instead, the driving force for crack growth derives mainly from the axial stresses-tensile in the fibers and compressive in the matrix-that arise upon cracking. These stresses are well-approximated by solutions based on shear-lag analysis. Combining these solutions with the governing equation for crack growth yields an analytical estimate of the critical shear stress for matrix cracking. An analogous approach is used in deriving the critical stresses needed for matrix cracking under arbitrary in-plane loadings. The applicability of these results to cross-ply CMC laminates is briefly discussed.

  7. ISAAC Advanced Composites Research Testbed

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stewart, Brian K.; Martin, Robert A.

    2014-01-01

    The NASA Langley Research Center is acquiring a state-of-art composites fabrication capability to support the Center's advanced research and technology mission. The system introduced in this paper is named ISAAC (Integrated Structural Assembly of Advanced Composites). The initial operational capability of ISAAC is automated fiber placement, built around a commercial system from Electroimpact, Inc. that consists of a multi-degree of freedom robot platform, a tool changer mechanism, and a purpose-built fiber placement end effector. Examples are presented of the advanced materials, structures, structural concepts, fabrication processes and technology development that may be enabled using the ISAAC system. The fiber placement end effector may be used directly or with appropriate modifications for these studies, or other end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.

  8. Presenting numerical mathematical formulas to design composite steel shear walls

    NASA Astrophysics Data System (ADS)

    Hatami, Farzad; Ragheb, Mahdi; Ghamari, Ali

    2012-12-01

    In this paper behavior of steel shear wall Composited (CSSW) with carbon fiber polymer in different angles have investigated. The present experimental and numerical studies conducted to carry out the effects of fiber polymer, angle of fiber polymer. Results showed that the CFRP enhance the behavior of CSSW. Despite the advantages of CSSW, there are some hardness which is caused the use of CSSW become restricted, as evaluating the shear stiffness and ultimate strength which those parameters will need to design and analysis. Analysis of CSSW, due to their out of plan buckling and post buckling behavior is extremely abstruse. Nonlinear analysis of CSSW is possible with finite element software, but nonlinear geometry and material is difficult and it tacks a long time. According to the problems mentioned representing valid formulas in nonlinear region is quite necessary which the formulas obtained from numerical analysis have suggest in this paper.

  9. Material Characterization of Flexibly Supported Shear Deformable Laminated Composite Plates

    NASA Astrophysics Data System (ADS)

    Lee, C. R.; Kam, T. Y.

    2006-03-01

    This paper presents a method for nondestructively evaluating the system parameters of elastically restrained shear deformable laminated composite plates using measured natural frequencies. The proposed method is established on the basis of a multi-start global minimization method in which an objective function measuring the differences between the predicted and measured natural frequencies is constructed and a design variables normalization technique for expediting the convergence of the search of the solution is adopted. Vibration testing of several laminated composite plates with different boundary conditions was performed. Seven natural frequencies extracted from the vibration data of each of the plates were used in the proposed method to identify the system parameters of the plate. Excellent results have been obtained for the plates.

  10. Interlaminar shear fracture toughness and fatigue thresholds for composite materials

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin; Murri, Gretchen B.; Salpekar, Satish A.

    1987-01-01

    Static and cyclic end notched flexure tests were conducted on a graphite epoxy, a glass epoxy, and graphite thermoplastic to determine their interlaminar shear fracture toughness and fatigue thresholds for delamination in terms of limiting values of the mode II strain energy release rate, G-II, for delamination growth. The influence of precracking and data reduction schemes are discussed. Finite element analysis indicated that the beam theory calculation for G-II with the transverse shear contribution included was reasonably accurate over the entire range of crack lengths. Cyclic loading significantly reduced the critical G-II for delamination. A threshold value of the maximum cyclic G-II below which no delamination occurred after one million cycles was identified for each material. Also, residual static toughness tests were conducted on glass epoxy specimens that had undergone one million cycles without delamination. A linear mixed-mode delamination criteria was used to characterize the static toughness of several composite materials; however, a total G threshold criterion appears to characterize the fatigue delamination durability of composite materials with a wide range of static toughness.

  11. Interlaminar shear fracture toughness and fatigue thresholds for composite materials

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin; Murri, Gretchen B.; Salpekar, Satish A.

    1989-01-01

    Static and cyclic end notched flexure tests were conducted on a graphite epoxy, a glass epoxy, and graphite thermoplastic to determine their interlaminar shear fracture toughness and fatigue thresholds for delamination in terms of limiting values of the mode II strain energy release rate, G-II, for delamination growth. The influence of precracking and data reduction schemes are discussed. Finite element analysis indicated that the beam theory calculation for G-II with the transverse shear contribution included was reasonably accurate over the entire range of crack lengths. Cyclic loading significantly reduced the critical G-II for delamination. A threshold value of the maximum cyclic G-II below which no delamination occurred after one million cycles was identified for each material. Also, residual static toughness tests were conducted on glass epoxy specimens that had undergone one million cycles without delamination. A linear mixed-mode delamination criteria was used to characterize the static toughness of several composite materials; however, a total G threshold criterion appears to characterize the fatigue delamination durability of composite materials with a wide range of static toughness.

  12. Shear bond strength of indirect composite material to monolithic zirconia

    PubMed Central

    2016-01-01

    PURPOSE This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). MATERIALS AND METHODS Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). RESULTS Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). CONCLUSION Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia. PMID:27555895

  13. A biaxial method for inplane shear testing. [shear strain in composite materials

    NASA Technical Reports Server (NTRS)

    Bush, H. G.; Weller, T.

    1978-01-01

    A biaxial method for performing inplane shear tests of materials using a shear frame is described. Aluminum plate and sandwich specimens were used to characterize the uniformity of shear strain imparted by the biaxial method of loading as opposed to the uniaxial method. The inplane stiffening effect of aluminum honeycomb core was determined. Test results for (+ or - 45) graphite-epoxy laminate are presented. Some theoretical considerations of subjecting an anisotropic material to a uniform shear deformation are discussed.

  14. Finite strip analysis of anisotropic laminated composite plates using higher-order shear deformation theory

    NASA Astrophysics Data System (ADS)

    Akhras, G.; Cheung, M. S.; Li, W.

    1994-08-01

    In the present study, a finite strip method for the elastic analysis of anisotropic laminated composite plates is developed according to higher-order shear deformation theory. This theory accounts for the parabolic distribution of the transverse shear strains through the thickness of the plate and for zero transverse shear stresses on the plate surfaces. In comparison with the finite strip method based on first-order shear deformation theory, the present method gives improved results while using approximately the same number of degrees of freedom. It also eliminates the need for shear correction factors in calculating the transverse shear stiffness.

  15. Compositional evolution of high-temperature sheared lherzolite PHN 1611

    SciTech Connect

    Smith, D. ); Griffin, W.L.; Ryan, C.G. )

    1993-02-01

    The evolution of fertile' mantle has been studied by proton microprobe (PIXE) analysis of minerals of a high-temperature sheared xenolith from the Thaba Putsoa kimerlite in Lesotho, southern Africa. Analyzed elements include Ni, Cu, Zn, Ga, Sr, Y, and Zr. Garnets are homogeneous in Ni and Zn but have rims enriched relative to cores in Zr and Y. Compositions of olivine neoblasts define intergranular gradients of Fe, Zn, and Ni; Fe-rich olivine is relatively Zn-rich but Ni-poore. Although individual clinopyroxene grains are nearly homogeneous, clinopyroxene associated with Fe-rich olivine is relatively Fe- and Zn-rich but Sr- and Cr-poor. The trace-element abundances and compositional gradients constrain the processes of periodotite enrichment and the thermal history. Enrichment of Zr, Y, and Fe in garnet rims documents infiltration of a silica-undersaturated melt. The Fe-rich olivine compositions and the Zn and Fe gradients establish that the xenolith was sampled from near a melt conduit. Mechanical mixing of inhomogeneous peridotite and melt infiltration may have been concurrent. Because garnets appear homogeneous in Ni, mantle temperature changes affecting PHN 1611 occurred before or over a longer period than the melt infiltration. Measured and calculated abundances of many incompatible trace elements in the rock are similar to those proposed for primitive mantle. Calculated chondrite-normalized abundances of Sr, Ti, Zr, and Y are like those of appropriate REE. Enrichment processes in PHN 1611 proceeded at unusually high recorded temperature and in the apparent absence of minor phases common in lower-temperature metasomatized rocks, but similar processes may be common. In particular, mechanical mixing near mantle dikes may frequently occur. These enrichment mechanisms may produce xenolith compositions that resemble some proposed for primitive mantle but that have different implications for mantle evolution. 61 refs., 7 figs., 2 tabs.

  16. Advanced Technology Composite Fuselage - Manufacturing

    NASA Technical Reports Server (NTRS)

    Wilden, K. S.; Harris, C. G.; Flynn, B. W.; Gessel, M. G.; Scholz, D. B.; Stawski, S.; Winston, V.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program is to develop the technology required for cost-and weight-efficient use of composite materials in transport fuselage structure. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements, and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of stringer-stiffened and sandwich skin panels. Circumferential and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant-section stiffening elements. Drape forming was chosen for stringers and other stiffening elements cocured to skin structures. Significant process development efforts included AFP, braiding, RTM, autoclave cure, and core blanket fabrication for both sandwich and stiffened-skin structure. Outer-mold-line and inner-mold-line tooling was developed for sandwich structures and stiffened-skin structure. The effect of design details, process control and tool design on repeatable, dimensionally stable, structure for low cost barrel assembly was assessed. Subcomponent panels representative of crown, keel, and side quadrant panels were fabricated to assess scale-up effects and manufacturing anomalies for full-scale structures. Manufacturing database including time studies, part quality, and manufacturing plans were generated to support the development of designs and analytical models to access cost, structural performance, and dimensional tolerance.

  17. Interlaminar shear properties of graphite fiber, high-performance resin composites

    NASA Technical Reports Server (NTRS)

    Needles, H. L.; Kourtides, D. A.; Fish, R. H.; Varma, D. S.

    1983-01-01

    Short beam testing was used to determine the shear properties of laminates consisting of T-300 and Celion 3000 and 6000 graphite fibers, in epoxy, hot melt and solvent bismaleimide, polyimide and polystyrylpyridine (PSP). Epoxy, composites showed the highest interlaminar shear strength, with values for all other resins being substantially lower. The dependence of interlaminar shear properties on the fiber-resin interfacial bond and on resin wetting characteristics and mechanical properties is investigated, and it is determined that the lower shear strength of the tested composites, by comparison with epoxy resin matrix composites, is due to their correspondingly lower interfacial bond strengths. An investigation of the effect of the wettability of carbon fiber tow on shear strength shows wetting variations among resins that are too small to account for the large shear strength property differences observed.

  18. A comparison of three popular test methods for determining the shear modulus of composite materials

    NASA Technical Reports Server (NTRS)

    Ho, H.; Tsai, M. Y.; Morton, J.; Farley, G. L.

    1993-01-01

    Three popular shear tests - the 10 deg off-axis, the +/- 45 deg tensile and the Iosipescu specimen tested in the modified Wyoming fixture - for shear modulus measurement are evaluated for a graphite-epoxy composite material system. A comparison of the shear stress-strain response for each test method is made using conventional strain gage instrumentation and moire interferometry. The uniformity and purity of the strain fields in the test sections of the specimens are discussed, and the shear responses obtained from each test technique are presented and compared. For accurate measurement of the shear modulus, the 90 deg Iosipescu specimen is recommended.

  19. A comparison of three popular test methods for determining the shear modulus of composite materials

    NASA Technical Reports Server (NTRS)

    Ho, Henjen; Tsai, Ming-Yi; Morton, John; Farley, Gary L.

    1991-01-01

    Three popular shear tests (the 10 degree off-axis, the plus or minus 45 degree tensile, and the Iosipescu specimen tested in the modified Wyoming fixture) for shear modulus measurement are evaluated for a graphite-epoxy composite material system. A comparison of the shear stress-strain response for each test method is made using conventional strain gage instrumentation and moire interferometry. The uniformity and purity of the strain fields in the test sections of the specimens are discussed, and the shear responses obtained from each test technique are presented and compared. For accurate measurement of shear modulus, the 90 degree Iosipescu specimen is recommended.

  20. A novel method of testing the shear strength of thick honeycomb composites

    NASA Technical Reports Server (NTRS)

    Hodge, A. J.; Nettles, A. T.

    1991-01-01

    Sandwich composites of aluminum and glass/phenolic honeycomb core were tested for shear strength before and after impact damage. The assessment of shear strength was performed in two ways; by four point bend testing of sandwich beams and by a novel double lap shear (DLS) test. This testing technique was developed so smaller specimens could be used, thus making the use of common lab scale fabrication and testing possible. The two techniques yielded similar data. The DLS test gave slightly lower shear strength values of the two methods but were closer to the supplier's values for shear strength.

  1. Exploring the piezoelectric performance of PZT particulate-epoxy composites loaded in shear

    NASA Astrophysics Data System (ADS)

    Van Loock, F.; Deutz, D. B.; van der Zwaag, S.; Groen, W. A.

    2016-08-01

    The active and passive piezoelectric response of lead zirconium titanate (PZT)-epoxy particulate composites loaded in shear is studied using analytical models, a finite element model and by experiments. The response is compared to that of the same composites when loaded in simple tension. Analogously to bulk PZT, particulate PZT-polymer composites loaded in shear show higher piezoelectric charge coefficient (d 15) and energy density figure of merit (FOM15) values compared to simple tension (d 33) and (FOM33). This outcome demonstrates the as-yet barely explored potential of piezoelectric particulate composites for optimal strain energy harvesting when activated in shear.

  2. Comparative evaluation of shear bond strength and nanoleakage of conventional and self-adhering flowable composites to primary teeth dentin

    PubMed Central

    Sachdeva, Priyanka; Goswami, Mousumi; Singh, Darrel

    2016-01-01

    Background: The latest advancement in adhesive dentistry is the development of self adhering flowable composite resin which incorporates the self-etch adhesion technology to eliminate the steps of etching, rinsing, priming and bonding. Few studies have addressed resin bonding to primary teeth. Aim: The aim of this study was to compare the shear bond strength and nanoleakage of conventional and self adhering flowable composites to primary teeth dentin. Settings and Design: This study was conducted in the Department of Pedodontics and Preventive Dentistry, I.T.S Dental College, Hospital and Research Centre, Greater Noida; in association with the Department of Mechanical Engineering, I.T.S Engineering College, Greater Noida; and the Advanced Instrumentation Research Facility (AIRF), Jawaharlal Nehru University, New Delhi. Materials and Methods: Sixty of the ninety primary teeth were evaluated for shear bond strength and thirty for nanoleakage. The samples were divided into three groups; Group I – Dyad Flow (Kerr), Group II – Fusio Liquid Dentin (Pentron Clinical Technologies) and Group III – G-aenial Universal Flo (GC). Shear bond strength was determined using a universal testing machine. Nanoleakage pattern was observed under scanning electron microscope. Results: The shear bond strength of conventional flowable composite was significantly greater than self adhering flowable composite (p<0.05). Nanoleakage scores of both conventional and self adhering flowable composites were comparable. Conclusions: Self adhering flowable composites combine properties of composites and self etch adhesives, eliminating the need for separate bond application that simplifies direct restorative procedure. The evolution of self adhering materials could open new horizons for pediatric dentistry.

  3. Comparative evaluation of shear bond strength and nanoleakage of conventional and self-adhering flowable composites to primary teeth dentin

    PubMed Central

    Sachdeva, Priyanka; Goswami, Mousumi; Singh, Darrel

    2016-01-01

    Background: The latest advancement in adhesive dentistry is the development of self adhering flowable composite resin which incorporates the self-etch adhesion technology to eliminate the steps of etching, rinsing, priming and bonding. Few studies have addressed resin bonding to primary teeth. Aim: The aim of this study was to compare the shear bond strength and nanoleakage of conventional and self adhering flowable composites to primary teeth dentin. Settings and Design: This study was conducted in the Department of Pedodontics and Preventive Dentistry, I.T.S Dental College, Hospital and Research Centre, Greater Noida; in association with the Department of Mechanical Engineering, I.T.S Engineering College, Greater Noida; and the Advanced Instrumentation Research Facility (AIRF), Jawaharlal Nehru University, New Delhi. Materials and Methods: Sixty of the ninety primary teeth were evaluated for shear bond strength and thirty for nanoleakage. The samples were divided into three groups; Group I – Dyad Flow (Kerr), Group II – Fusio Liquid Dentin (Pentron Clinical Technologies) and Group III – G-aenial Universal Flo (GC). Shear bond strength was determined using a universal testing machine. Nanoleakage pattern was observed under scanning electron microscope. Results: The shear bond strength of conventional flowable composite was significantly greater than self adhering flowable composite (p<0.05). Nanoleakage scores of both conventional and self adhering flowable composites were comparable. Conclusions: Self adhering flowable composites combine properties of composites and self etch adhesives, eliminating the need for separate bond application that simplifies direct restorative procedure. The evolution of self adhering materials could open new horizons for pediatric dentistry. PMID:27630496

  4. An evaluation of the +/-45 deg tensile test for the determination of the in-plane shear strength of composite materials

    NASA Technical Reports Server (NTRS)

    Kellas, S.; Morton, J.; Jackson, K. E.

    1991-01-01

    The applicability of the +/-45 deg tensile test for the determination of the in-plane shear strength of advanced composite laminates is studied. The assumptions used for the development of the shear strength formulas were examined, and factors such as the specimen geometry and stacking sequence were assessed experimentally. It was found that the strength of symmetric and balanced +/-45 deg laminates depends primarily upon the specimen thickness rather than the specimen width. These findings have important implications for the +/-45 deg tensile test which is recommended by several organizations for the determination of the in-plane shear stress/strain response and the shear strength of continuous fiber reinforced composites. Modifications to the recommended practices for specimen selection and shear strength determination are suggested.

  5. The Iosipescu shear test method as used for testing polymers and composite materials

    NASA Technical Reports Server (NTRS)

    Adams, Donald F.

    1990-01-01

    This paper describes a shear test method for polymers and composite materials, based on the Iosipescu (1967) shear test which was originally developed for use with homogeneous isotropic metals. Special attention is given to the loading fixture for the test, the standard specimen design and shear stress measurements. The range of the test applications is indicated. The method is in the final stages of being accepted as an ASTM standard.

  6. Environmental effects on advanced composites

    NASA Technical Reports Server (NTRS)

    Unnam, J.; Houska, C. R.; Naidu, S. V. N.

    1979-01-01

    The development of titanium matrix composites for elevated temperature applications was investigated. General solutions for treating diffusion in multiphase multicomponent systems were studied. Graphite polyimide composites were characterized with respect to mechanical property degradation by moisture.

  7. Thermoelastic bending analysis of laminated composite plates according to various shear deformation theories

    NASA Astrophysics Data System (ADS)

    Sayyad, Atteshamuddin Shamshuddin; Shinde, Bharati Machhindra; Ghugal, Yuwaraj Marotrao

    2014-11-01

    This study presents the thermoelastic analysis of laminated composite plates subjected to sinusoidal thermal load linearly varying across the thickness. Analytical solutions for thermal displacements and stresses are investigated by using a unified plate theory which includes different functions in terms of thickness coordinate to represent the effect of shear deformation. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Governing equations of equilibrium and associated boundary conditions of the theory are obtained using the principle of virtual work. The Navier solution for simply supported laminated composite plates has been developed. Numerical results are presented to demonstrate the thermal response of the laminated composite plates.

  8. Advanced composite vertical stabilizer for DC-10 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stephens, C. O.

    1979-01-01

    Structural design, tooling, fabrication, and test activities are reported for a program to develop an advanced composite vertical stabilizer (CVS) for the DC 10 Commercial Transport Aircraft. Structural design details are described and the status of structural and weight analyses are reported. A structural weight reduction of 21.7% is currently predicted. Test results are discussed for sine wave stiffened shear webs containing representative of the CVS spar webs and for lightning current transfer and tests on a panel representative of the CVS skins.

  9. Multispan-Beam Shear Test For Composite Laminates

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Williams, Jerry G.

    1988-01-01

    New approach for studying failure mechanism is use of multispan-beam shear test, which puts some regions of specimen in almost pure shear and enables observation of location of initial failure and way in which damage propagates. Test stopped at any time, such as when first failure event occurs, for study of phenomenon or taking photographs of failure event. Individual plies studied easily with long-distance microscope or from photographs taken during test.

  10. Failure mechanisms of laminated carbon-carbon composites; 2: Under shear loads

    SciTech Connect

    Anand, K.; Gupta, V.; Dartford, D. . Thayer School of Engineering)

    1994-03-01

    Failure mechanisms under both interlaminar and in-plane shear loading are determined for two-dimensional carbon-carbon composites by using a direct shear set-up. This set-up is applicable for both types of shear loading as manufactured laminate thickness can be tested without the need to make long samples by gluing different pieces together. A detailed finite element analysis, which considers the microstructure of the composite shows that for woven laminates, the initial crimp angle morphology does not allow the composite to deform in a state of simple shear. In fact, normal tensile and compressive stresses of almost twice the magnitude of the peak shear stress are produced in the vicinity of the crimped bundles. Consistent with these predictions, the authors observed the shear fault following the crimp boundaries in 0[degree]/90[degree] and quasi-isotropic laminates. Therefore, experimental techniques which can secure a state of pure shear stress in aligned, unkinked, uniaxial fiber composites cannot do so in woven laminated composites.

  11. Custom Machines Advance Composite Manufacturing

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Here is a brief list of materials that NASA will not be using to construct spacecraft: wood, adobe, fiberglass, bone. While it might be obvious why these materials would not make for safe space travel, they do share a common characteristic with materials that may well be the future foundation of spacecraft design: They all are composites. Formed of two or more unlike materials - such as cellulose and lignin in the case of wood, or glass fibers and plastic resin in the case of fiberglass-composites provide enhanced mechanical and physical properties through the combination of their constituent materials. For this reason, composites are used in everything from buildings, bathtubs, and countertops to boats, racecars, and sports equipment. NASA continually works to develop new materials to enable future space missions - lighter, less expensive materials that can still withstand the extreme demands of space travel. Composites such as carbon fiber materials offer promising solutions in this regard, providing strength and stiffness comparable to metals like aluminum but with less weight, allowing for benefits like better fuel efficiency and simpler propulsion system design. Composites can also be made fatigue tolerant and thermally stable - useful in space where temperatures can swing hundreds of degrees. NASA has recently explored the use of composites for aerospace applications through projects like the Composite Crew Module (CCM), a composite-constructed version of the aluminum-lithium Multipurpose Crew Capsule. The CCM was designed to give NASA engineers a chance to gain valuable experience developing and testing composite aerospace structures.

  12. Performance Properties of Graphite Reinforced Composites with Advanced Resin Matrices

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1980-01-01

    This article looks at the effect of different resin matrices on thermal and mechanical properties of graphite composites, and relates the thermal and flammability properties to the anaerobic char yield of the resins. The processing parameters of graphite composites utilizing graphite fabric and epoxy or other advanced resins as matrices are presented. Thermoset resin matrices studied were: aminecured polyfunctional glycidyl aminetype epoxy (baseline), phenolicnovolac resin based on condensation of dihydroxymethyl-xylene and phenol cured with hexamine, two types of polydismaleimide resins, phenolic resin, and benzyl resin. The thermoplastic matrices studied were polyethersulfone and polyphenylenesulfone. Properties evaluated in the study included anaerobic char yield, limiting oxygen index, smoke evolution, moisture absorption, and mechanical properties at elevated temperatures including tensile, compressive, and short-beam shear strengths. Generally, it was determined that graphite composites with the highest char yield exhibited optimum fire-resistant properties.

  13. An evaluation of the Iosipescu specimen for composite materials shear property measurement

    NASA Technical Reports Server (NTRS)

    Morton, J.; Ho, H.; Tsai, M. Y.; Farley, G. L.

    1992-01-01

    A detailed evaluation of the suitability of the Iosipescu specimen tested in the modified Wyoming fixture is presented. A linear finite element model of the specimen is used to assess the uniformity of the shear stress field in the vicinity of the notch, and demonstrate the effect of the nonuniform stress field upon strain gage measurements used for the determination of composite shear moduli. Based upon test results from graphite-epoxy laminates, the proximity of the load introduction point to the test section and the material orthotropy greatly influence the individual gage readings, however, shear modulus determination is not significantly affected by the lack of pure shear. Correction factors are needed to allow for the nonuniformity of the strain field and the use of the average shear stress in the shear modulus evaluation. The correction factors are determined for the region occupied by the strain gage rosette. A comparison of the strain gage readings from one surface of a specimen with corresponding data from moire interferometry on the opposite face documented an extreme sensitivity of some fiber orientations to eccentric loading which induced twisting and spurious shear stress-strain curves. The discovery of specimen twisting explains the apparently inconsistent shear property data found in the literature. Recommendations for improving the reliability and accuracy of the shear modulus values are made, and the implications for shear strength measurement discussed.

  14. On the axial and interfacial shear stresses due to thermal mismatch in hybrid composites

    SciTech Connect

    Rossettos, J.N.; Shen, X.

    1994-12-31

    An analytical model is formulated which attempts to account for the axial and the interfacial shear stresses which can develop in hybrid fiber composites due to the mismatch in coefficients of thermal expansion and Youngs modulus. A finite width hybrid composite monolayer with alternating high modulus and low modulus fibers is considered. To properly account for the interfacial shear between fiber and matrix, a modified shear lag model is used, which permits extensional deformation in the matrix in the fiber direction. Typical stresses due solely to temperature changes are calculated, and show steep boundary layer edge stresses at free corners.

  15. Research priorities for advanced fibrous composites

    NASA Technical Reports Server (NTRS)

    Baumann, K. J.; Swedlow, J. L.

    1981-01-01

    Priorities for research in advanced laminated fibrous composite materials are presented. Supporting evidence is presented in two bodies, including a general literature survey and a survey of aerospace composite hardware and service experience. Both surveys were undertaken during 1977-1979. Specific results and conclusions indicate that a significant portion of contemporary published research diverges from recommended priorites.

  16. An Evaluation of the Iosipescu Specimen for Composite Materials Shear Property Measurement. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Ho, Henjen

    1991-01-01

    A detailed evaluation of the suitability of the Iosipescu specimen tested in the modified Wyoming fixture is presented. An experimental investigation using conventional strain gage instrumentation and moire interferometry is performed. A finite element analysis of the Iosipescu shear test for unidirectional and cross-ply composites is used to assess the uniformity of the shear stress field in the vicinity of the notch, and demonstrate the effect of the nonuniform stress field upon the strain gage measurements used for the determination of composite shear moduli. From the test results for graphite-epoxy laminates, it is shown that the proximity of the load introduction point to the test section greatly influences the individual gage readings for certain fiber orientations but the effect upon shear modulus measurement is relatively unimportant. A numerical study of the load contact effect shows the sensitivity of some fiber configurations to the specimen/fixture contact mechanism and may account for the variations in the measured shear moduli. A comparison of the strain gage readings from one surface of a specimen with corresponding data from moire interferometry on the opposite face documented an extreme sensitivity of some fiber orientations to eccentric loading which induced twisting and yielded spurious shear stress-strain curves. In the numerical analysis, it is shown that the Iosipescu specimens for different fiber orientations have to be modeled differently in order to closely approximate the true loading conditions. Correction factors are needed to allow for the nonuniformity of the strain field and the use of the average shear stress in the shear modulus evaluation. The correction factors, which are determined for the region occupied by the strain gage rosette, are found to be dependent upon the material orthotropic ratio and the finite element models. Based upon the experimental and numerical results, recommendations for improving the reliability and

  17. A comparative evaluation of in-plane shear test methods for laminated graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Morton, John; Ho, Henjen

    1992-01-01

    The objectives were to evaluate popular shear test methods for various forms of graphite-epoxy composite materials and to determine the shear response of graphite-epoxy composites with various forms of fiber architecture. Numerical and full-field experimental stress analyses were performed on four shear test configurations for unidirectional and bidirectional graphite-epoxy laminates to assess the uniformity and purity of the shear stress (strain) fields produced in the specimen test section and to determine the material in-plane shear modulus and shear response. The test methods were the 10 deg off-axis, the +/- 45 deg tension, the Iosipescu V-notch, and a compact U-notch specimen. Specimens were prepared from AS4/3501-6 graphite-epoxy panels, instrumented with conventional strain gage rosettes and with a cross-line moire grating, and loaded in a convenient testing machine. The shear responses obtained for each test method and the two methods of specimen instrumentation were compared. In a second phase of the program the shear responses obtained from Iosipescu V-notch beam specimens were determined for woven fabric geometries of different weave and fiber architectures. Again the responses of specimens obtained from strain gage rosettes and moire interferometry were compared. Additional experiments were performed on a bidirectional cruciform specimen which was also instrumented with strain gages and a moire grating.

  18. A simple higher order shear deformation theory for mechanical behavior of laminated composite plates

    NASA Astrophysics Data System (ADS)

    Adim, Belkacem; Daouadji, Tahar Hassaine; Rabahi, Aberezak

    2016-06-01

    In the present study, the static, buckling, and free vibration of laminated composite plates is examined using a refined shear deformation theory and developed for a bending analysis of orthotropic laminated composite plates. These models take into account the parabolic distribution of transverse shear stresses and satisfy the condition of zero shear stresses on the top and bottom surfaces of the plates. The most interesting feature of this theory is that it allows for parabolic distributions of transverse shear stresses across the plate thickness and satisfies the conditions of zero shear stresses at the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns in the present theory is four, as against five in other shear deformation theories. In the analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained through the use of Hamilton's principle. The accuracy of the analysis presented is demonstrated by comparing the results with solutions derived from other higher order models and with data found in the literature. It can be concluded that the proposed theory is accurate and simple in solving the static, the buckling, and free vibration behaviors of laminated composite plates.

  19. Crack Growth Mechanisms under Anti-Plane Shear in Composite Laminates

    NASA Astrophysics Data System (ADS)

    Horner, Allison Lynne

    The research conducted for this dissertation focuses on determining the mechanisms associated with crack growth in polymer matrix composite laminates subjected to anti-plane shear (mode III) loading. For mode III split-beam test methods were proposed, and initial evaluations were conducted. A single test method was selected for further evaluation. Using this test method, it was determined that the apparent mode III delamination toughness, GIIIc , depended on geometry, which indicated a true material property was not being measured. Transverse sectioning and optical microscopy revealed an array of transverse matrix cracks, or echelon cracks, oriented at approximately 45° and intersecting the plane of the delamination. Subsequent investigations found the echelon array formed prior to the onset of planar delamination advance and that growth of the planar delamination is always coupled to echelon array formation in these specimens. The evolution of the fracture surfaces formed by the echelon array and planar delamination were studied, and it was found that the development was similar to crack growth in homogenous materials subjected to mode III or mixed mode I-III loading, although the composite laminate architecture constrained the fracture surface development differently than homogenous materials. It was also found that, for split-beam specimens such as those used herein, applying an anti-plane shear load results in twisting of the specimen's uncracked region which gives rise to a mixed-mode I-III load condition. This twisting has been related to the apparent mode III toughness as well as the orientation of the transverse matrix cracks. A finite element model was then developed to study the mechanisms of initial echelon array formation. From this, it is shown that an echelon array will develop, but will become self-limiting prior to the onset of planar delamination growth.

  20. Evaluation of interlaminar shear strength of a unidirectional carbon/epoxy laminated composite under impact loading

    NASA Astrophysics Data System (ADS)

    Yokoyama, T.; Nakai, K.

    2006-08-01

    The interlaminar shear strength (ILSS) of a unidirectional carbon/epoxy (T700/2521) laminated composite under impact loading is determined using the conventional split Hopkinson pressure bar. Double-notch shear (DNS) specimens with lateral constraint from a supporting jig are used in the static and impact interlaminar compressive shear tests. Short-beam shear specimens are also used under static 3-point bending. Numerical stress analyses are performed to determine the shear stress and normal stress distributions on the expected failure plane in the DNS specimen using the MSC/NASTRAN package. The effect of deformation rate on the ILSS and failure mode is investigated. It is observed that the ILSS is independent of the deformation rate up to nearly 1.5m/s (dotγ ≈ 780/s). The validity of the test results is confirmed by microscopic examinations of both static and impact failure surfaces for the DNS specimens.

  1. Characterization of compressive and short beam shear strength of bamboo opened cell foam core sandwich composites

    NASA Astrophysics Data System (ADS)

    Setyawan, Paryanto Dwi; Sugiman, Saputra, Yudhi

    2016-03-01

    The paper presents the compressive and the short beam shear strength of a sandwich composite with opened cell foam made of bamboo fiber as the core and plywood as the skins. The core thickness was varied from 10 mm to 40 mm keeping the volume fraction of fiber constant. Several test s were carried out including the core density, flatwise compressive and the short beam shear testing in three point bending. The results show that the density of bamboo opened cell foam is comparable with commercial plastic foam, such as polyurethane foam. The compressive strength tends to increase linearly with increasing the core thickness. The short beam shear failure load of the sandwich composite increases with the increase of core thickness, however on the contrary, the short beam shear strength which tends to sharply decrease from the thickness of 10 mm to 30 mm and then becomes flat.

  2. Advanced composite airframe program: Today's technology

    NASA Technical Reports Server (NTRS)

    Good, Danny E.; Mazza, L. Thomas

    1988-01-01

    The Advanced Composite Airframe Program (ACAP) was undertaken to demonstrate the advantages of the application of advanced composite materials and structural design concepts to the airframe structure on helicopters designed to stringent military requirements. The primary goals of the program were the reduction of airframe production costs and airframe weight by 17 and 22 percent respectively. The ACAP effort consisted of a preliminary design phase, detail design, and design support testing, full-scale fabrication, laboratory testing, and a ground/flight test demonstration. Since the completion of the flight test demonstration programs follow-on efforts were initiated to more fully evaluate a variety of military characteristics of the composite airframe structures developed under the original ACAP advanced development contracts. An overview of the ACAP program is provided and some of the design features, design support testing, manufacturing approaches, and the results of the flight test evaluation, as well as, an overview of Militarization Test and Evaluation efforts are described.

  3. Large strain variable stiffness composites for shear deformations with applications to morphing aircraft skins

    NASA Astrophysics Data System (ADS)

    McKnight, G. P.; Henry, C. P.

    2008-03-01

    Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than

  4. In-plane and through-thickness shear characterization in S-RIM composites

    SciTech Connect

    Walsh, T.J.; Ochoa, O.O.

    1995-10-01

    Variations of woven and stitched preform architectures to be used in Structural Reaction Injection Molding (S-RIM) are experimentally evaluated to determine shear properties and damage mechanisms. The selected systems represent commercially available mats where fiber tows are woven or stitched. Fiber tows are sources of stress concentrations and damage initiation sites both within the fiber-rich bundle and between bundles in the resin-rich regions. Crimp angles in woven preforms and cross-over regions in stitched preforms provide additional initiation sites. Microscopy observations are applied to evaluate the shear damage characteristics unique to each type of architecture. The Iosipescu G{sub xy} shear test is conducted on sets of S-RIM composite, to distinct stages of ultimate failure: 70%, 80%, 90% and 100%. In the post-test analysis, material sections are removed from the shear damaged zone in the specimen and polished. Optical and Scanning Electron Microscopy techniques are then implemented to capture the initiation and propagation of shear damage within the resin and resin/fiber interface. This technique provides a time trace of shear damage that culminates in ultimate shear failure of composite materials. In addition, a procedure for determination of G{sub xz} and G{sub yz} properties is developed. In the approach, identical laminates are bonded through the thickness to achieve a 19 mm total height. Then Iosipescu specimens are sliced through the thickness of the bonded laminates. Because of woven fiber bundles in the composite, several post-test computations are required for accurate interpretation of the shear test data. These include strain transformations and normalization techniques for specimens with different two architecture.

  5. Advanced composite stabilizer for Boeing 737 aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Activities related to development of an advanced composites stabilizer for the Boeing 737 commercial transport are reported. Activities include discussion of criteria and objectives, design loads, the fatigue spectrum definition to be used for all spectrum fatigue testing, fatigue analysis, manufacturing producibility studies, the ancillary test program, quality assurance, and manufacturing development.

  6. Advanced composite elevator for Boeing 727 aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Detail design activities are reported for a program to develop an advanced composites elevator for the Boeing 727 commercial transport. Design activities include discussion and results of the ancillary test programs, sustaining efforts, weight status, manufacturing producibility studies, quality assurance development, and production status.

  7. English 341: Advanced Composition for Teachers

    ERIC Educational Resources Information Center

    Duffy, William

    2013-01-01

    English 341: Advanced Composition for Teachers is a three-credit undergraduate course for pre-service educators at Francis Marion University, a mid-size public university located in northeast South Carolina. According to the university catalog, students enrolled in English 341 "explore connections among writing, teaching, and learning as they…

  8. Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application. Phase 1 summary report: Shear web design development

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.; Zimmerman, D. K.

    1972-01-01

    An advanced composite shear web design concept was developed for the Space Shuttle orbiter main engine thrust beam structure. Various web concepts were synthesized by a computer-aided adaptive random search procedure. A practical concept is identified having a titanium-clad + or - 45 deg boron/epoxy web plate with vertical boron/epoxy reinforced aluminum stiffeners. The boron-epoxy laminate contributes to the strength and stiffness efficiency of the basic web section. The titanium-cladding functions to protect the polymeric laminate parts from damaging environments and is chem-milled to provide reinforcement in selected areas. Detailed design drawings are presented for both boron/epoxy reinforced and all-metal shear webs. The weight saving offered is 24% relative to all-metal construction at an attractive cost per pound of weight saved, based on the detailed designs. Small scale element tests substantiate the boron/epoxy reinforced design details in critical areas. The results show that the titanium-cladding reliably reinforces the web laminate in critical edge load transfer and stiffener fastener hole areas.

  9. Numerical analysis of mechanical testing for evaluating shear strength of SiC/SiC composite joints

    NASA Astrophysics Data System (ADS)

    Serizawa, H.; Fujita, D.; Lewinsohn, C. A.; Singh, M.; Murakawa, H.

    2007-08-01

    As examples of the most typical methods to determine the shear strength of SiC/SiC composite joints, the asymmetrical four point bending test of a butt-joined composite, the tensile test of a lap-joined composite, and the compression test of a double-notched composite joint were analyzed by using a finite element method with the interface element. From the results, it was found that the shear strength in the asymmetrical bending test was controlled by both the surface energy and the shear strength at the interface regardless of their combination while the strength in the tensile test or the compression test was governed by the surface energy when both the surface energy and the shear strength were large. Also, the apparent shear strength of the composite joint obtained experimentally appeared to be affected by the combination of the surface energy and the shear strength at the interface.

  10. A Shear Deformable Shell Element for Laminated Composites

    NASA Technical Reports Server (NTRS)

    Chao, W. C.; Reddy, J. N.

    1984-01-01

    A three-dimensional element based on the total Lagrangian description of the motion of a layered anisotropic composite medium is developed, validated, and used to analyze layered composite shells. The element contains the following features: geometric nonlinearity, dynamic (transient) behavior, and arbitrary lamination scheme and lamina properties. Numerical results of nonlinear bending, natural vibration, and transient response are presented to illustrate the capabilities of the element.

  11. Interfacial shear strength of cast and directionally solidified NiAl-sapphire fiber composites

    NASA Astrophysics Data System (ADS)

    Tewari, S. N.; Asthana, R.; Noebe, R. D.

    1993-09-01

    The feasibility of fabricating intermetallic NiAl-sapphire fiber composites by casting and zone directional solidification has been examined. The fiber-matrix interfacial shear strengths measured using a fiber push-out technique in both cast and directionally solidified composites are greater than the strengths reported for composites fabricated by powder cloth process using organic binders. Microscopic examination of fibers extracted from cast, directionally solidified (DS), and thermally cycled composites, and the high values of interfacial shear strengths suggest that the fiber-matrix interface does not degrade due to casting and directional solidification. Sapphire fibers do not pin grain boundaries during directional solidification, suggesting that this technique can be used to fabricate sapphire fiber reinforced NiAl composites with single crystal matrices.

  12. Interfacial Shear Strength of Cast and Directionally Solidified Nial-Sapphire Fiber Composites

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Asthana, R.; Noebe, R. D.

    1993-01-01

    The feasibility of fabricating intermetallic NiAl-sapphire fiber composites by casting and zone directional solidification has been examined. The fiber-matrix interfacial shear strengths measured using a fiber push-out technique in both cast and directionally solidified composites are greater than the strengths reported for composites fabricated by powder cloth process using organic binders. Microscopic examination of fibers extracted from cast, directionally solidified (DS), and thermally cycled composites, and the high values of interfacial shear strengths suggest that the fiber-matrix interface does not degrade due to casting and directional solidification. Sapphire fibers do not pin grain boundaries during directional solidification, suggesting that this technique can be used to fabricate sapphire fiber reinforced NiAl composites with single crystal matrices.

  13. Advanced composite materials: a strong growth industry

    SciTech Connect

    Lees, J.K.

    1987-01-01

    Advanced composites represent a material form that will see significant growth in structural applications. The authors notes that Du Pont sees a broad opportunity for these materials and proceeds to review reasons for the company's optimism as well as their approach to this technology. Substitution of composites for metals is shown graphically since 1960 and projected to 2025. Price reductions vs. steel of five materials also shown graphically since 1970 and projected to 1990. Today, use of advanced composites is primarily when high performance, is required, e.g., aerospace and sporting goods. The author sees a shift into higher-volume applications in the next 15 years, primarily the automotive industry. Finally, as the next century approaches, the author sees a possible capture of 50% of the structure-materials market, mostly in lightweight bridging structures and the top portion of large high-rise structures.

  14. ISAAC - A Testbed for Advanced Composites Research

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stewart, Brian K.; Martin, Robert A.

    2014-01-01

    The NASA Langley Research Center is acquiring a state-of-art composites fabrication environment to support the Center's research and technology development mission. This overall system described in this paper is named ISAAC, or Integrated Structural Assembly of Advanced Composites. ISAAC's initial operational capability is a commercial robotic automated fiber placement system from Electroimpact, Inc. that consists of a multi-degree of freedom commercial robot platform, a tool changer mechanism, and a specialized automated fiber placement end effector. Examples are presented of how development of advanced composite materials, structures, fabrication processes and technology are enabled by utilizing the fiber placement end effector directly or with appropriate modifications. Alternatively, end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.

  15. Structural Aspects of Railway Truss Bridges Affecting Transverse Shear Forces in Steel-Concrete Composite Decks

    NASA Astrophysics Data System (ADS)

    Siekierski, Wojciech

    2015-03-01

    At the steel-concrete interface, the horizontal shear forces that are transverse to cross beams occur due to joint action of the steel-concrete composite deck and the truss girders. Numerical analysis showed that values of the forces are big in comparison to the longitudinal shear forces. In both cases extreme force values occur near side edges of a slab. The paper studies possibilities of reduction of these shear forces by structural alterations of the following: rigidity of a concrete slab, arrangement of a wind bracing, arrangement of concrete slab expansion joints. An existing railway truss bridge span has been analysed. Numerical analysis shows that it is possible to reduce the values of shear forces transverse to cross beams. It may reach 20% near the side edges of slabs and 23% in the centre of slab width.

  16. Prebuckling and Postbuckling Response of Tailored Composite Stiffened Panels with Axial-Shear Coupling

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Hyer, Michael W.; Starnes, James H., Jr.

    2000-01-01

    Results of a numerical parametric study of the prebuckling and postbuckling response of tailored composite stiffened panels with axial-shear coupling are presented. In the stiffened panels, axial-shear stiffness coupling is created by rotating the stiffener orientation and tailoring the skin laminate anisotropy. The panels are loaded in axial compression and the effects of stiffener orientation and skin anisotropy on the panel stiffness, buckling parameters, and axial-shear coupling response are described. Results are obtained from a nonlinear general shell finite element analysis computer code. The prebuckling and postbuckling responses can be affected by both the stiffener orientation and skin laminate anisotropy, and the effects are different and load dependent. The results help identify different mechanisms for axial-shear coupling, and show that a load-dependent structural response can be controlled by selecting appropriate stiffener and skin parameters.

  17. Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams

    NASA Astrophysics Data System (ADS)

    Dong, Hongying; Cao, Wanlin; Wu, Haipeng; Zhang, Jianwei; Xu, Fangfang

    2013-12-01

    A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements — the CFST columns and SP deep beams — to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.

  18. Relationship between voids and interlaminar shear strength of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Frimpong, Stephen

    1991-01-01

    The effect of voids on the interlaminar shear strength of a polyimide matrix composite system is described. The AS4 graphite/PMR-15 composite was chosen for study because this system can be readily processed by using the standard specified cure cycle to produce void-free composites and because preliminary work in this study had shown that the processing parameters of this resin matrix system can be altered to produce cured composites of varying void contents. Thirty-eight 12-ply unidirectional composite panels were fabricated for this study. A significant range of void contents (0 to 10 percent) was produced. The panels were mapped, ultrasonically inspected, and sectioned into interlaminar shear, flexure, and fiber content specimens. The density of each specimen was measured and interlaminar shear and flexure strength measurements were then made. The fiber content was measured last. The results of these tests were evaluated by using ultrasonic results, photomicrographs, statistical methods, theoretical relationships derived by other investigators, and comparison of the test data with the Integrated Composite Analyzer (ICAN) computer program developed at the Lewis Research Center for predicting composite ply properties. The testing is described in as much detail as possible in order to help others make realistic comparisons.

  19. Automotive applications for advanced composite materials

    NASA Technical Reports Server (NTRS)

    Deutsch, G. C.

    1978-01-01

    A description is presented of nonaerospace applications for advanced composite materials with special emphasis on the automotive applications. The automotive industry has to satisfy exacting requirements to reduce the average fuel consumption of cars. A feasible approach to accomplish this involves the development of composites cars with a total weight of 2400 pounds and a fuel consumption of 33 miles per gallon. In connection with this possibility, the automotive companies have started to look seriously at composite materials. The aerospace industry has over the past decade accumulated a considerable data base on composite materials and this is being made available to the nonaerospace sector. However, the automotive companies will place prime emphasis on low cost resins which lend themselves to rapid fabrication techniques.

  20. Recent advances in aerospace composite NDE

    NASA Astrophysics Data System (ADS)

    Georgeson, Gary E.

    2002-06-01

    As the aerospace industry continues to advance the design and use of composite structure, the NDE community faces the difficulties of trying to keep up. The challenges lie in manufacturing evaluation of the newest aerospace structures and materials and the in-service inspection and monitoring of damaged or aging composites. This paper provides examples of several promising NDI applications in the world of aerospace composites. Airborne (or non-contact) Ultrasonic Testing (UT) has been available for decades, but recently has generated new interest due to significant improvements in transducer design and low noise electronics. Boeing is developing inspection techniques for composite joints and core blankets using this technology. In-service inspection techniques for thick, multi-layer structures are also being advanced. One effective technique integrates the S-9 Sondicator, a traditional bond testing device, with Boeing's Mobile Automated Scanner (MAUS) platform. Composite patches have seen limited use on-aircraft, due, in part, to the difficulty of determining the quality of a bonded joint. A unique approach using Electronic Speckle Pattern Interferometry (ESPI) is showing promise as a bonded patch-inspection method. Other NDI techniques currently being developed for aerospace application are also briefly discussed.

  1. Incremental layer shear bond strength of low-shrinkage resin composites under different bonding conditions.

    PubMed

    Al Musa, A H; Al Nahedh, H N A

    2014-01-01

    The purpose of this study was to determine the incremental shear bond strength of a silorane-based composite (Filtek Silorane) repaired with silorane or a methacrylate-based composite (Filtek Z250) under various aging conditions. Also, the incremental bond strength of the silorane-based composite was compared with that of another low-shrinkage methacrylate-based composite (Aelite LS Posterior) under fresh and aged conditions, with and without the use of an adhesive resin between successive layers. The two brands of low-shrinkage composites were compared with a microhybrid, Filtek Z250, which served as the control. Substrate discs were fabricated and second layers were adhered to them immediately, after two weeks of aging, or after four weeks of aging and with and without an adhesive resin. Shear bond strengths were measured and failure modes were evaluated. The incremental bond strength of silorane to the silorane-based composite was not significantly different from that of the methacrylate-based composite. However, repairing a silorane-based composite with a methacrylate-based composite significantly reduced the bond strength. Aelite showed a lower incremental bond strength than Z250 and silorane, but the use of an adhesive significantly improved the bond strength. The absence of an oxygen-inhibited layer did not affect the bond strength of the consecutive layers of the silorane-based composite. PMID:24807812

  2. Second NASA Advanced Composites Technology Conference

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)

    1992-01-01

    The conference papers are presented. The Advanced Composite Technology (ACT) Program is a major multi-year research initiative to achieve a national goal of technology readiness before the end of the decade. Conference papers recorded results of research in the ACT Program in the specific areas of automated fiber placement, resin transfer molding, textile preforms, and stitching as these processes influence design, performance, and cost of composites in aircraft structures. These papers will also be included in the Ninth Conference Proceedings to be published by the Federal Aviation Administration as a separate document.

  3. Advanced fiber placement of composite fuselage structures

    NASA Technical Reports Server (NTRS)

    Anderson, Robert L.; Grant, Carroll G.

    1991-01-01

    The Hercules/NASA Advanced Composite Technology (ACT) program will demonstrate the low cost potential of the automated fiber placement process. The Hercules fiber placement machine was developed for cost effective production of composite aircraft structures. The process uses a low cost prepreg tow material form and achieves equivalent laminate properties to structures fabricated with prepreg tape layup. Fiber placement demonstrations planned for the Hercules/NASA program include fabrication of stiffened test panels which represent crown, keel, and window belt segments of a typical transport aircraft fuselage.

  4. The plane strain shear fracture of the advanced high strength steels

    SciTech Connect

    Sun, Li

    2013-12-16

    The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component.

  5. Transverse shear stresses and their sensitivity coefficients in multilayered composite panels

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Kim, Yong H.; Peters, Jeanne M.

    1994-01-01

    A computational procedure is presented for the accurate determination of transverse shear stresses and their sensitivity coefficients in flat multilayered composite panels subjected to mechanical and thermal loads. The sensitivity coefficients measure the sensitivity of the transverse shear stresses to variations in the different lamination and material parameters of the panel. The panel is discretized by using either a three-field mixed finite element model based on a two-dimensional first- order shear deformation plate theory or a two-field degenerate solid element with each of the displacement components having a linear variation throughout the thickness of the laminate. The evaluation of transverse shear stresses can be conveniently divided into two phases. The first phase consists of using a superconvergent recovery technique for evaluating the in-plane stresses in the different layers. In the second phase, the transverse shear stresses are evaluated by using piecewise integration, in the thickness direction, of the three-dimensional equilibrium equations. The same procedure is used for evaluating the sensitivity coefficients of the transverse shear stresses. The effectiveness of the computational procedure is demonstrated by means of numerical examples of multilayered cross-ply panels subjected to transverse loading, uniform temperature change, and uniform temperature gradient through the thickness of the panel. In each case the standard of the comparison is taken to be the exact solution of the three dimensional thermoelasticity equations of the panel.

  6. Advanced powder metallurgy aluminum alloys and composites

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  7. Thermo-Oxidative Stability of Graphite/PMR-15 Composites: Effect of Fiber Surface Modification on Composite Shear Properties

    NASA Technical Reports Server (NTRS)

    Madhukar, Madhu S.; Bowles, Kenneth J.; Papadopolous, Demetrios S.

    1994-01-01

    Experiments were conducted to establish a correlation between the weight loss of a polyimide (PMR- 15) matrix and graphite fibers and the in-plane shear properties of their unidirectional composites subjected to different isothermal aging times up to 1000 hr at 316 C. The role of fiber surface treatment on the composite degradation during the thermo-oxidative aging was investigated by using A4 graphite fibers with three surface modifications: untreated (AU-4), surface treated (AS-4), and surface treated and sized with an epoxy-compatible sizing (AS-4G). The weight loss of the matrix fibers, and composites was determined during the aging. The effect of thermal aging was seen in all the fiber samples in terms of weight loss and reduction in fiber diameter. Calculated values of weight loss fluxes for different surfaces of rectangular unidirectional composite plates showed that the largest weight loss occurred at those cut surfaces where fibers were perpendicular to the surface. Consequently, the largest amount of damage was also noted on these cut surfaces. Optical observation of the neat matrix and composite plates subjected to different aging times revealed that the degradation (such as matrix microcracking and void growth) occurred in a thin surface layer near the specimen edges. The in-plane shear modulus of the composites was unaffected by the fiber surface treatment and the thermal aging. The shear strength of the composites with the untreated fibers was the lowest and it decreased with aging. A fracture surface examination of the composites with untreated fibers suggested that the weak interface allowed the oxidation reaction to proceed along the interface and thus expose the inner material to further oxidation. The results indicated that the fiber-matrix interface affected the composite degradation process during its thermal aging and that the the weak interface accelerated the composite degradation.

  8. Feasibility on Generation Mechanism of Ultrasonic Shear Wave for the Application on Stacking Orientation Defect in CFRP Composite Laminates

    NASA Astrophysics Data System (ADS)

    Im, Kwang-Hee; Kim, Hak-Joon; Song, Sung-Jin; Hsu, David K.; Lee, Kil-Sung; Yang, In-Young; Park, Je-Woong

    2009-03-01

    Composite materials are attractive for a wide range of applications due to the advantages associated with their very large strength-to-weight and stiffness-to-weight ratios. Increasingly, high performance engineering structures are being built with critical structural components made from composite materials. It is very important to detect fiber orientation error in composite laminates because the layup of a CFRP composite laminates affects the properties of the laminate, including stiffness, strength and thermal behavior. An NDE technique for stacking orientation determination would be very beneficial because of layup orientation influence to the laminate stiffness. Usually, it is found that ultrasonic shear wave is pretty sensitive to fiber direction of CFRP composite laminates. An investigation of shear wave ultrasonic technique was carried out in order to detect stacking orientation error for quasi-isotropy composite laminates. Also, a jig is developed for generating a shear wave. A pyramid with an isosceles triangle with two 45° was made of aluminum to generate shear waves using two longitudinal transducers based on ultrasonic-polarized mechanism. Also, the signal splitter was connected to the pulser jack on the pulser/receiver and to the longitudinal transducers. An investigation of shear wave ultrasonic technique was carried out in order to generating shear wave. Therefore, it is found that the experimentally shear wave variation of specially designed jig was consistent with simulated results and shear wave ultrasonic measurement might be very useful to detect the defects in CFRP composites.

  9. Shear-flexible finite-element models of laminated composite plates and shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Mathers, M. D.

    1975-01-01

    Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.

  10. Analysis of laminated composite plates using a higher-order shear deformation theory

    NASA Technical Reports Server (NTRS)

    Phan, N. D.; Reddy, J. N.

    1985-01-01

    A higher-order deformation theory is used to analyse laminated anisotropic composite plates for deflections, stresses, natural frequencies and buckling loads. The theory accounts for parabolic distribution of the transverse shear stresses, and requires no shear correction coefficients. A displacement finite element model of the theory is developed, and applications of the element to bending, vibration and stability of laminated plates are discussed. The present solutions are compared with those obtained using the classical plate theory and the three-dimensional elasticity theory.

  11. Composite armored vehicle advanced technology demonstator

    SciTech Connect

    Ostberg, D.T.; Dunfee, R.S.; Thomas, G.E.

    1996-12-31

    Composite structures are a key technology needed to develop future lightweight combat vehicles that are both deployable and survivable. The Composite Armored Vehicle Advanced Technology Demonstrator Program that started in fiscal year 1994 will continue through 1998 to verily that composite structures are a viable solution for ground combat vehicles. Testing thus far includes material characterization, structural component tests and full scale quarter section tests. Material and manufacturing considerations, tests, results and changes, and the status of the program will be described. The structural component tests have been completed successfully, and quarter section testing is in progress. Upon completion of the critical design review, the vehicle demonstrator will be Fabricated and undergo government testing.

  12. Interfacial shear strength estimates of NiTi-Al matrix composites fabricated via ultrasonic additive manufacturing

    NASA Astrophysics Data System (ADS)

    Hehr, Adam; Pritchard, Joshua; Dapino, Marcelo J.

    2014-03-01

    The purpose of this study is to understand and improve the interfacial shear strength of metal matrix composites fabricated via very high power (VHP) ultrasonic additive manufacturing (UAM). VHP-UAM NiTi-Al composites have shown a dramatic decrease in thermal expansion compared to Al, yet thermal blocking stresses developed during thermal cycling have been found to degrade and eventually cause interface failure. Consequently, to improve understanding of the interface and guide the development of stronger NiTi- Al composites, the interface strength was investigated through the use of single ber pullout tests. It was found that the matrix yielded prior to the interface breaking since adhered aluminum was consistently observed on all pullout samples. Additionally, measured pullout loads were utilized as an input to a nite element model for stress and shear lag analysis, which, in turn showed that the Al matrix experienced a peak shear stress near 230 MPa. This stress is above the Al matrix's ultimate shear strength of 150-200 MPa, thus this large stress corroborates with matrix failure observed during testing. The in uence of various ber surface treatments on bond mechanisms was also studied with scanning electron microscopy and energy dispersive X-ray spectroscopy.

  13. Advanced composite combustor structural concepts program

    NASA Technical Reports Server (NTRS)

    Sattar, M. A.; Lohmann, R. P.

    1984-01-01

    An analytical study was conducted to assess the feasibility of and benefits derived from the use of high temperature composite materials in aircraft turbine engine combustor liners. The study included a survey and screening of the properties of three candidate composite materials including tungsten reinforced superalloys, carbon-carbon and silicon carbide (SiC) fibers reinforcing a ceramic matrix of lithium aluminosilicate (LAS). The SiC-LAS material was selected as offering the greatest near term potential primarily on the basis of high temperature capability. A limited experimental investigation was conducted to quantify some of the more critical mechanical properties of the SiC-LAS composite having a multidirection 0/45/-45/90 deg fiber orientation favored for the combustor linear application. Rigorous cyclic thermal tests demonstrated that SiC-LAS was extremely resistant to the thermal fatigue mechanisms that usually limit the life of metallic combustor liners. A thermal design study led to the definition of a composite liner concept that incorporated film cooled SiC-LAS shingles mounted on a Hastelloy X shell. With coolant fluxes consistent with the most advanced metallic liner technology, the calculated hot surface temperatures of the shingles were within the apparent near term capability of the material. Structural analyses indicated that the stresses in the composite panels were low, primarily because of the low coefficient of expansion of the material and it was concluded that the dominant failure mode of the liner would be an as yet unidentified deterioration of the composite from prolonged exposure to high temperature. An economic study, based on a medium thrust size commercial aircraft engine, indicated that the SiC-LAS combustor liner would weigh 22.8N (11.27 lb) less and cost less to manufacture than advanced metallic liner concepts intended for use in the late 1980's.

  14. Propagation of shear elastic and electromagnetic waves in one dimensional piezoelectric and piezomagnetic composites.

    PubMed

    Shi, P; Chen, C Q; Zou, W N

    2015-01-01

    Coupled shear (SH) elastic and electromagnetic (EM) waves propagating oblique to a one dimensional periodic piezoelectric and piezomagnetic composite are investigated using the transfer matrix method. Closed-form expression of the dispersion relations is derived. We find that the band structures of the periodic composite show simultaneously the features of phononic and photonic crystals. Strong interaction between the elastic and EM waves near the center of the Brillouin zone (i.e., phonon-polariton) is revealed. It is shown the elastic branch of the band structures is more sensitive to the piezoelectric effect while the phonon-polariton is more sensitive to the piezomagnetic effect of the composite.

  15. Impact of triacylglycerol composition on shear-induced textural changes in highly saturated fats.

    PubMed

    Gregersen, Sandra B; Andersen, Morten D; Hammershøj, Marianne; Wiking, Lars

    2017-01-15

    This study demonstrates a strong interaction between triacylglycerol (TAG) composition and effects of shear rate on the microstructure and texture of fats. Cocoa butter alternatives with similar saturated fat content, but different major TAGs (PPO-, PSO-, SSO-, POP- and SOS-rich blends) were evaluated. Results show how shear can create a harder texture in fat blends based on symmetric monounsaturated TAGs (up to ∼200%), primarily due to reduction in crystal size, whereas shear has little effect on hardness of asymmetric monounsaturated TAGs. Such differences could not be ascribed to differences in the degree of supercooling, but was found to be a consequence of differences in the crystallisation behaviour of different TAGs. The fractal dimension was evaluated by dimensional detrended fluctuation analysis and Fourier transformation of microscopy images. However, the concept of fractal patterns was found to be insufficient to describe microstructural changes of fat blends with high solid fat content.

  16. Impact of triacylglycerol composition on shear-induced textural changes in highly saturated fats.

    PubMed

    Gregersen, Sandra B; Andersen, Morten D; Hammershøj, Marianne; Wiking, Lars

    2017-01-15

    This study demonstrates a strong interaction between triacylglycerol (TAG) composition and effects of shear rate on the microstructure and texture of fats. Cocoa butter alternatives with similar saturated fat content, but different major TAGs (PPO-, PSO-, SSO-, POP- and SOS-rich blends) were evaluated. Results show how shear can create a harder texture in fat blends based on symmetric monounsaturated TAGs (up to ∼200%), primarily due to reduction in crystal size, whereas shear has little effect on hardness of asymmetric monounsaturated TAGs. Such differences could not be ascribed to differences in the degree of supercooling, but was found to be a consequence of differences in the crystallisation behaviour of different TAGs. The fractal dimension was evaluated by dimensional detrended fluctuation analysis and Fourier transformation of microscopy images. However, the concept of fractal patterns was found to be insufficient to describe microstructural changes of fat blends with high solid fat content. PMID:27542496

  17. Evaluation of Transverse Thermal Stresses in Composite Plates Based on First-Order Shear Deformation Theory

    NASA Technical Reports Server (NTRS)

    Rolfes, R.; Noor, A. K.; Sparr, H.

    1998-01-01

    A postprocessing procedure is presented for the evaluation of the transverse thermal stresses in laminated plates. The analytical formulation is based on the first-order shear deformation theory and the plate is discretized by using a single-field displacement finite element model. The procedure is based on neglecting the derivatives of the in-plane forces and the twisting moments, as well as the mixed derivatives of the bending moments, with respect to the in-plane coordinates. The calculated transverse shear stiffnesses reflect the actual stacking sequence of the composite plate. The distributions of the transverse stresses through-the-thickness are evaluated by using only the transverse shear forces and the thermal effects resulting from the finite element analysis. The procedure is implemented into a postprocessing routine which can be easily incorporated into existing commercial finite element codes. Numerical results are presented for four- and ten-layer cross-ply laminates subjected to mechanical and thermal loads.

  18. Shear bond strength of new self-adhesive flowable composite resins.

    PubMed

    Wajdowicz, Michael N; Vandewalle, Kraig S; Means, Mark T

    2012-01-01

    Recently, new self-adhesive flowable composite resin systems have been introduced to the market. These new composite resin systems reportedly bond to dentin and enamel without the application of an adhesive bonding agent. The purpose of this study was to evaluate the shear bond strength to enamel of two new self-adhesive flowable composites with and without the use of an etch-and-rinse bonding agent. The new self-adhesive flowable composites had significantly lower bond strengths to enamel compared to a traditional adhesively bonded flowable composite. Both self-adhesive flowable composites had a significant increase in bond strength to enamel with the use of a phosphoric acid-etch and adhesive bonding agent. PMID:22414513

  19. Testing of fibers reinforced composite vessel by fringes projection and speckle shear interferometry

    NASA Astrophysics Data System (ADS)

    Sainov, Ventseslav; Harizanova, Jana; Ossikovska, Sonja; Van Paepegem, Wim; Degrieck, Joris; Boone, Pierre

    2006-05-01

    Fringes projection and speckle shear interferometry are used for testing of subjected to cycling loading (pressure) composite vessel. As the sensitivity of the applied methods could vary in broad limits in comparison with the other interferometric techniques, the inspection is realized in a wide dynamic range. Two spacing phase stepping fringes projection interferometry is applied for absolute coordinate measurement. Derivatives of in-plane and out-of-the-plane components of the displacement vector over the object surface are obtained by lateral speckle shear interferometry in static loading (pressure). Non-linear mechanical response and fatigue of composite material are clearly detected after cyclic sinusoidal loading by macro measurement using lateral speckle shear interferometry. Fringes projection and speckle-shear interferometry are suitable for shape and normal displacements measurements in a wider dynamic range. The other advantage of the shown methods is connected with the possibility to realize compact and portable devices for in-situ inspection of investigated objects - machine parts and constructions.

  20. Comparison of shear bond strengths of orthodontic brackets bonded with flowable composites.

    PubMed

    Turgut, Melek D; Attar, Nuray; Korkmaz, Yonca; Gokcelik, Aylin

    2011-01-01

    This study evaluated the shear bond strengths of orthodontic brackets bonded to human premolars using five different combinations of flowable composites and one-step self-etching adhesives (n=12): (1) Adper Easy Bond+Filtek Supreme XT Flow; (2) Futurabond NR+Grandio Flow; (3) Clearfil S3 Bond+Clearfil Majesty Flow; (4) AdheSE One+Tetric EvoFlow; and (5) Transbond Plus Self Etching Primer+Transbond XT Light Cure Adhesive. After shear bond strength testing, adhesive remnant index (ARI) scores were given according to the amount of adhesive and resin remaining on the brackets. On shear bond strength, there were no statistically significant differences between Groups 2 and 4 and between Groups 3 and 5 (p>0.05). On ARI scores, the predominant ARI scores in Groups 1, 2, 3, and 5 were 4, 2, 5, and 4 respectively; in Group 4, they were 0 and 4. Results showed that some combinations of flowable composites and self-etching adhesives might not be suitable for orthodontic use due to their low shear bond strengths and high ARI scores -with the latter signaling the risk of damaging the enamel surface during debonding. PMID:21282886

  1. Novel Composites for Wing and Fuselage Applications: Speedy Nonlinear Analysis of Postbuckled Panels in Shear (SNAPPS)

    NASA Technical Reports Server (NTRS)

    Sharp, Dave; Sobel, Larry

    1997-01-01

    A simple and rapid analysis method, consisting of a number of modular, 'strength-of-materials-type' models, is presented for predicting the nonlinear response and stiffener separation of postbuckled, flat, composite, shear panels. The analysis determines the maximum principal tensile stress in the skin surface layer under to toe. Failure is said to occur when this stress reaches the mean transverse tensile strength of the layer. The analysis methodology consists of a number of closed-form equations that can easily be used in a 'hand analysis. For expediency, they have been programmed into a preliminary design code called SNAPPS (Speedy Nonlinear Analysis of Postbuckled Panels in Shear), which rapidly predicts postbuckling response of the panel for each value of the applied shear load. SNAPPS response and failure predictions were found to agree well with test results for three panels with widely different geometries, laminates and stiffnesses. Design guidelines are given for increasing the load-carrying capacity of stiffened, composite shear panels.

  2. Advanced composite stabilizer for Boeing 737 aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Activities related to development of an advanced composites stabilizer for the Boeing 737 commercial transport are reported. Activities include discussion of the design and weight status, stiffness requirements, the finite element model, test programs, quality assurance, and manufacturing producibility studies. Design details of the graphite/epoxy components are virtually complete. Emphasis is placed on the metal and fiberglass trailing edge components. The bending and torsional stiffness properties are satisfactory for both stability/control and for flutter requirements. The finite element model input geometry is revised to reflect the latest changes to production drawings.

  3. Advanced composites wing study program, volume 2

    NASA Technical Reports Server (NTRS)

    Harvey, S. T.; Michaelson, G. L.

    1978-01-01

    The study on utilization of advanced composites in commercial aircraft wing structures was conducted as a part of the NASA Aircraft Energy Efficiency Program to establish, by the mid-1980s, the technology for the design of a subsonic commercial transport aircraft leading to a 40% fuel savings. The study objective was to develop a plan to define the effort needed to support a production commitment for the extensive use of composite materials in wings of new generation aircraft that will enter service in the 1985-1990 time period. Identification and analysis of what was needed to meet the above plan requirements resulted in a program plan consisting of three key development areas: (1) technology development; (2) production capability development; and (3) integration and validation by designing, building, and testing major development hardware.

  4. An experimental and analytical investigation of the rail shear-test method as applied to composite materials

    NASA Technical Reports Server (NTRS)

    Garcia, R.; Mcwithey, R. R.; Weisshaar, T. A.

    1979-01-01

    This report presents the results from an experimental and analytical investigation of the stress distributions occurring in a rail shear test. The effects of non-uniform stresses induced by differential thermal expansion, rail flexibility and specimen aspect ratio on measured shear modulus and ultimate strength of composite laminates are shown. A two-dimensional linearly elastic finite element model was used to analytically determine how various geometric parameters influenced the magnitude and distribution of inplane normal and shear stresses in a tensile rail shear specimen. Rail shear tests were conducted at room temperature and 589 K (600 F) on selected graphite-polyimide composite laminates using two titanium rail configurations. The analysis and test methods are discussed, and the results of the effects of the various parameters on shear modulus and ultimate strength are presented.

  5. In-plane and Interlaminar Shear Strength of a Unidirectional Hi-nicalon Fiber-reinforced Celsian Matrix Composite

    NASA Technical Reports Server (NTRS)

    Uenal, O.; Bansal, N. P.

    2000-01-01

    In-plane and interlaminar shear strength of a unidirectional SiC fiber-reinforced (BaSr)Al2Si2O8 celsian composite were measured by the double-notch shear test method between room temperature and 1200 C. The interlaminar shear strength was lower than the in-plane shear strength at all temperatures. Stress analysis, using finite element modeling, indicated that shear stress concentration was not responsible for the observed difference in strength. Instead, the difference in layer architecture and thus, the favorable alignment of fiber-rich layers with the shear plane in the interlaminar specimens appears to be the reason for the low strength of this composite. A rapid decrease in strength was observed with temperature due to softening of the glassy phase in the material.

  6. Advanced AE Techniques in Composite Materials Research

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    1996-01-01

    Advanced, waveform based acoustic emission (AE) techniques have been successfully used to evaluate damage mechanisms in laboratory testing of composite coupons. An example is presented in which the initiation of transverse matrix cracking was monitored. In these tests, broad band, high fidelity acoustic sensors were used to detect signals which were then digitized and stored for analysis. Analysis techniques were based on plate mode wave propagation characteristics. This approach, more recently referred to as Modal AE, provides an enhanced capability to discriminate and eliminate noise signals from those generated by damage mechanisms. This technique also allows much more precise source location than conventional, threshold crossing arrival time determination techniques. To apply Modal AE concepts to the interpretation of AE on larger composite specimens or structures, the effects of modal wave propagation over larger distances and through structural complexities must be well characterized and understood. To demonstrate these effects, measurements of the far field, peak amplitude attenuation of the extensional and flexural plate mode components of broad band simulated AE signals in large composite panels are discussed. These measurements demonstrated that the flexural mode attenuation is dominated by dispersion effects. Thus, it is significantly affected by the thickness of the composite plate. Furthermore, the flexural mode attenuation can be significantly larger than that of the extensional mode even though its peak amplitude consists of much lower frequency components.

  7. Development of Partially Encased Composite Columns for use in Steel Shear Walls for Seismic Applications

    SciTech Connect

    Driver, Robert G.

    2008-07-08

    Partially encased composite columns consist of a welded thin-plate H-shaped steel section with concrete cast between the flanges. Transverse steel links are welded between the flanges, spaced at regular intervals, to enhance the resistance of the flanges to local buckling. Although they were developed originally to resist gravity loading in mid- and high-rise buildings, they are currently being investigated for applications as the vertical boundary elements in steel shear walls in both low and high seismic zones. The paper provides an overview of several developments from a major ongoing investigation leading up to a recent large-scale test of a steel shear wall that incorporates partially encased composite columns. Key results from the various components of the research program are presented.

  8. Ten Deg Off-Axis Test for Shear Properties in Fiber Composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1977-01-01

    A combined theoretical and experimental investigation was conducted to assess the suitability of the 10 deg off-axis tensile test specimen for the intralaminar shear characterization of unidirectional composites. Composite mechanics, a combined-stress failure criterion, and a finite variation across the specimen width and the relative stress and strain magnitudes at the 10 deg plane. Strain gages were used to measure the strain variation across the specimen width at specimen midlength and near the end tabs. Specimens from Mod-I/epoxy, T-300/epoxy, and S-glass/epoxy were used in the experimental program. It was found that the 10 deg off-axis tensile test specimen is suitable for intralaminar shear characterization, and it is recommended that it should be considered as a possible standard test specimen for such a characterization.

  9. Development of Partially Encased Composite Columns for use in Steel Shear Walls for Seismic Applications

    NASA Astrophysics Data System (ADS)

    Driver, Robert G.

    2008-07-01

    Partially encased composite columns consist of a welded thin-plate H-shaped steel section with concrete cast between the flanges. Transverse steel links are welded between the flanges, spaced at regular intervals, to enhance the resistance of the flanges to local buckling. Although they were developed originally to resist gravity loading in mid- and high-rise buildings, they are currently being investigated for applications as the vertical boundary elements in steel shear walls in both low and high seismic zones. The paper provides an overview of several developments from a major ongoing investigation leading up to a recent large-scale test of a steel shear wall that incorporates partially encased composite columns. Key results from the various components of the research program are presented.

  10. Ten deg off-axis tensile test for intralaminar shear characterization of fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1976-01-01

    A combined theoretical and experimental investigation was conducted to assess the suitability of the 10 deg off-axis tensile test specimen for the intralaminar shear characterization of unidirectional composites. Composite mechanics, a combined-stress failure criterion, and a finite element analysis were used to determine theoretically the stress-strain variation across the specimen width and the relative stress and strain magnitudes at the 10 deg plane. Strain gages were used to measure the strain variation across the specimen width at specimen midlength and near the end tabs. Specimens from Mod-I/epoxy, T-300/epoxy, and S-glass/epoxy were used in the experimental program. It was found that the 10 deg off-axis tensile test specimen is suitable for intralaminar shear characterization and it is recommended that it should be considered as a possible standard test specimen for such a characterization.

  11. Bayesian decision and mixture models for AE monitoring of steel-concrete composite shear walls

    NASA Astrophysics Data System (ADS)

    Farhidzadeh, Alireza; Epackachi, Siamak; Salamone, Salvatore; Whittaker, Andrew S.

    2015-11-01

    This paper presents an approach based on an acoustic emission technique for the health monitoring of steel-concrete (SC) composite shear walls. SC composite walls consist of plain (unreinforced) concrete sandwiched between steel faceplates. Although the use of SC system construction has been studied extensively for nearly 20 years, little-to-no attention has been devoted to the development of structural health monitoring techniques for the inspection of damage of the concrete behind the steel plates. In this work an unsupervised pattern recognition algorithm based on probability theory is proposed to assess the soundness of the concrete infill, and eventually provide a diagnosis of the SC wall’s health. The approach is validated through an experimental study on a large-scale SC shear wall subjected to a displacement controlled reversed cyclic loading.

  12. Effect of surface treatment on micro shear bond strength of two indirect composites

    PubMed Central

    Moezizadeh, Maryam; Ansari, Zahra Jaberi; Fard, Fatemeh Matin

    2012-01-01

    Aim: To determine the effect of surface treatment on micro shear bond strength of two indirect composites. Materials and Methods: Blocks of 2 × 7 × 20 mm dimensions were made from two kinds of resin composites, Gradia and Signum plus. Samples were subjected to secondary curing to complete polymerization. They were divided into five groups: control without any preparation, second group sandblasted with aluminum oxide, third, fourth and fifth groups were lased under a beam of 0.5, 1 and 2 W respectively. Panavia resin cement was placed on the composite blocks using tygon tubes and cured and micro shear bond strength was measured. One sample of each group was observed under electronic microscope. Data was analyzed by two-way ANOVA and Tukey's multiple comparison tests. Results: For Gradia composite, the sandblasted group showed highest strength (25.7±2.9 MPa) followed by the laser beam of 1 W group (with 23.6± 2.8 MPa). In Signum composite, the laser beam of 1 W (21.4±4.2 MPa) showed the highest strength followed by the sandblasted group (with 19.4±3.2 MPa). Conclusion: Surface treatments using sandblast and laser beam of 1W power along with silane are two effective methods to increase the bond strength of composites. PMID:22876007

  13. Shear bond strength of composite resin to titanium according to various surface treatments

    PubMed Central

    Lee, Seung-Yun; Yang, Hong-So; Park, Sang-Won; Park, Ha-Ok; Lim, Hyun-Pil

    2009-01-01

    STATEMENT OF PROBLEM When veneering composite resin-metal restoration is prepared, the fact that bond strength between Ti and composite resin is relatively weak should be considered. PURPOSE The purpose of this study is to evaluate the shear bond strength between the veneering composite resin and commercial pure (CP) Ti / Ti-6Al-4V alloy according to the method of surface treatment. MATERIAL AND METHODS The disks were cast by two types of metal. Their surfaces were treated by sandblasting, metal conditioner, TiN coating and silicoating respectively. After surface treatment, the disks were veneered by composite resin (Tescera™, Bisco, USA) which is 5 mm in diameter and 3 mm in thickness. The specimens were stored in water at 25℃ for 24 hours, and then evaluated for their shear bond strength by universal testing machine (STM-5®, United Calibration, USA). These values were statistically analyzed. RESULTS 1. All methods of surface treatment were used in this study satisfied the requirements of ISO 10477 which is the standard of polymer-based crown and bridge materials. 2. The metal conditioner treated group showed the highest value in shear bond strength of CP Ti, silicoated group, TiN coated group, sandblasted group, in following order. 3. The silicoated group showed the highest value in shear bond strength of Ti-6Al-4V alloy, metal conditioner treated group, sandblasted group, TiN coated group, in following order. CONCLUSION Within the limitations of this study, all methods of surface treatment used in this study are clinically available. PMID:21165258

  14. Bond slip detection of concrete-encased composite structure using shear wave based active sensing approach

    NASA Astrophysics Data System (ADS)

    Zeng, Lei; Parvasi, Seyed Mohammad; Kong, Qingzhao; Huo, Linsheng; Lim, Ing; Li, Mo; Song, Gangbing

    2015-12-01

    Concrete-encased composite structure exhibits improved strength, ductility and fire resistance compared to traditional reinforced concrete, by incorporating the advantages of both steel and concrete materials. A major drawback of this type of structure is the bond slip introduced between steel and concrete, which directly reduces the load capacity of the structure. In this paper, an active sensing approach using shear waves to provide monitoring and early warning of the development of bond slip in the concrete-encased composite structure is proposed. A specimen of concrete-encased composite structure was investigated. In this active sensing approach, shear mode smart aggregates (SAs) embedded in the concrete act as actuators and generate desired shear stress waves. Distributed piezoceramic transducers installed in the cavities of steel plates act as sensors and detect the wave response from shear mode SAs. Bond slip acts as a form of stress relief and attenuates the wave propagation energy. Experimental results from the time domain analysis clearly indicate that the amplitudes of received signal by lead zirconate titanate sensors decreased when bond slip occurred. In addition, a wavelet packet-based analysis was developed to compute the received signal energy values, which can be used to determine the initiation and development of bond slip in concrete-encased composite structure. In order to establish the validity of the proposed method, a 3D finite element analysis of the concrete-steel bond model is further performed with the aid of the commercial finite element package, Abaqus, and the numerical results are compared with the results obtained in experimental study.

  15. Shear strain mediated magneto-electric effects in composites of piezoelectric lanthanum gallium silicate or tantalate and ferromagnetic alloys

    NASA Astrophysics Data System (ADS)

    Sreenivasulu, G.; Qu, P.; Piskulich, E.; Petrov, V. M.; Fetisov, Y. K.; Nosov, A. P.; Qu, Hongwei; Srinivasan, G.

    2014-07-01

    Shear strain mediated magneto-electric (ME) coupling is studied in composites of piezoelectric Y-cut lanthanum gallium silicate (LGS) or tantalate (LGT) and ferromagnetic Fe-Co-V alloys. It is shown that extensional strain does not result in ME effects in these layered composites. Under shear strain generated by an ac and dc bias magnetic fields along the length and width of the sample, respectively, strong ME coupling is measured at low-frequencies and at mechanical resonance. A model is discussed for the ME effects. These composites of Y-cut piezoelectrics and ferromagnetic alloys are of importance for shear strain based magnetic field sensors.

  16. Shear strain mediated magneto-electric effects in composites of piezoelectric lanthanum gallium silicate or tantalate and ferromagnetic alloys

    SciTech Connect

    Sreenivasulu, G.; Piskulich, E.; Srinivasan, G.; Qu, P.; Qu, Hongwei; Petrov, V. M.; Fetisov, Y. K.; Nosov, A. P.

    2014-07-21

    Shear strain mediated magneto-electric (ME) coupling is studied in composites of piezoelectric Y-cut lanthanum gallium silicate (LGS) or tantalate (LGT) and ferromagnetic Fe-Co-V alloys. It is shown that extensional strain does not result in ME effects in these layered composites. Under shear strain generated by an ac and dc bias magnetic fields along the length and width of the sample, respectively, strong ME coupling is measured at low-frequencies and at mechanical resonance. A model is discussed for the ME effects. These composites of Y-cut piezoelectrics and ferromagnetic alloys are of importance for shear strain based magnetic field sensors.

  17. Effect of warm air on the shear bond strength of composite resins.

    PubMed

    Allen, J D; Breeding, L C; Pashley, D H

    1992-04-01

    This investigation evaluated the operating characteristics of a recently introduced tooth dryer and its effect on the bond strength of three composite resins to etched enamel. The effect of varying air pressure, distance from the tip of the tooth dryer, and distance laterally from mid-air stream on temperature were measured using a rapid-response thermocouple. Specimens were subjected to shear forces either immediately after bonding or after 5 days of water storage. The air stream required from 32 to 41 seconds to reach maximal temperature; however, more than 90% of the maximal temperature was obtained in 20 seconds. There was an increase in temperature with increased air pressure and a decrease in temperature with increasing distance from the tip. The temperature dropped rapidly laterally from the center of the air stream. The shear bond strength measurements were significantly higher for the specimens prepared using the tooth dryer for one composite resin tested immediately after bonding; there was no statistically significant difference for the other resins. The effect of warm air on the shear bond strength of composite resins to etched enamel may be dependent on the resin used and the time between bonding and testing.

  18. Life Limiting Behavior in Interlaminar Shear of Continuous Fiber-Reinforced Ceramic Matrix Composites at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Calomino, Anthony M.; Bansal, Narottam P.; Verrilli, Michael J.

    2006-01-01

    Interlaminar shear strength of four different fiber-reinforced ceramic matrix composites was determined with doublenotch shear test specimens as a function of test rate at elevated temperatures ranging from 1100 to 1316 C in air. Life limiting behavior, represented as interlaminar shear strength degradation with decreasing test rate, was significant for 2-D crossplied SiC/MAS-5 and 2-D plain-woven C/SiC composites, but insignificant for 2-D plain-woven SiC/SiC and 2-D woven Sylramic (Dow Corning, Midland, Michigan) SiC/SiC composites. A phenomenological, power-law delayed failure model was proposed to account for and to quantify the rate dependency of interlaminar shear strength of the composites. Additional stress rupture testing in interlaminar shear was conducted at elevated temperatures to validate the proposed model. The model was in good agreement with SiC/MAS-5 and C/SiC composites, but in poor to reasonable agreement with Sylramic SiC/SiC. Constant shear stress-rate testing was proposed as a possible means of life prediction testing methodology for ceramic matrix composites subjected to interlaminar shear at elevated temperatures when short lifetimes are expected.

  19. Effect of different surface treatments on the shear bond strength of nanofilled composite repairs.

    PubMed

    Ahmadizenouz, Ghazaleh; Esmaeili, Behnaz; Taghvaei, Arnica; Jamali, Zahra; Jafari, Toloo; Amiri Daneshvar, Farshid; Khafri, Soraya

    2016-01-01

    Background. Repairing aged composite resin is a challenging process. Many surface treatment options have been proposed to this end. This study evaluated the effect of different surface treatments on the shear bond strength (SBS) of nano-filled composite resin repairs. Methods. Seventy-five cylindrical specimens of a Filtek Z350XT composite resin were fabricated and stored in 37°C distilled water for 24 hours. After thermocycling, the specimens were divided into 5 groups according to the following surface treatments: no treatment (group 1); air abrasion with 50-μm aluminum oxide particles (group 2); irradiation with Er:YAG laser beams (group 3); roughening with coarse-grit diamond bur + 35% phosphoric acid (group 4); and etching with 9% hydrofluoric acid for 120 s (group 5). Another group of Filtek Z350XT composite resin samples (4×6 mm) was fabricated for the measurement of cohesive strength (group 6). A silane coupling agent and an adhesive system were applied after each surface treatment. The specimens were restored with the same composite resin and thermocycled again. A shearing force was applied to the interface in a universal testing machine. Data were analyzed using one-way ANOVA and post hoc Tukey tests (P < 0.05). Results. One-way ANOVA indicated significant differences between the groups (P < 0.05). SBS of controls was significantly lower than the other groups; differences between groups 2, 3, 4, 5 and 6 were not significant. Surface treatment with diamond bur + 35% phosphoric acid resulted in the highest bond strength. Conclusion. All the surface treatments used in this study improved the shear bond strength of nanofilled composite resin used.

  20. Effect of different surface treatments on the shear bond strength of nanofilled composite repairs

    PubMed Central

    Ahmadizenouz, Ghazaleh; Esmaeili, Behnaz; Taghvaei, Arnica; Jamali, Zahra; Jafari, Toloo; Amiri Daneshvar, Farshid; Khafri, Soraya

    2016-01-01

    Background. Repairing aged composite resin is a challenging process. Many surface treatment options have been proposed to this end. This study evaluated the effect of different surface treatments on the shear bond strength (SBS) of nano-filled composite resin repairs. Methods. Seventy-five cylindrical specimens of a Filtek Z350XT composite resin were fabricated and stored in 37°C distilled water for 24 hours. After thermocycling, the specimens were divided into 5 groups according to the following surface treatments: no treatment (group 1); air abrasion with 50-μm aluminum oxide particles (group 2); irradiation with Er:YAG laser beams (group 3); roughening with coarse-grit diamond bur + 35% phosphoric acid (group 4); and etching with 9% hydrofluoric acid for 120 s (group 5). Another group of Filtek Z350XT composite resin samples (4×6 mm) was fabricated for the measurement of cohesive strength (group 6). A silane coupling agent and an adhesive system were applied after each surface treatment. The specimens were restored with the same composite resin and thermocycled again. A shearing force was applied to the interface in a universal testing machine. Data were analyzed using one-way ANOVA and post hoc Tukey tests (P < 0.05). Results. One-way ANOVA indicated significant differences between the groups (P < 0.05). SBS of controls was significantly lower than the other groups; differences between groups 2, 3, 4, 5 and 6 were not significant. Surface treatment with diamond bur + 35% phosphoric acid resulted in the highest bond strength. Conclusion. All the surface treatments used in this study improved the shear bond strength of nanofilled composite resin used. PMID:27092209

  1. Effect of different surface treatments on the shear bond strength of nanofilled composite repairs.

    PubMed

    Ahmadizenouz, Ghazaleh; Esmaeili, Behnaz; Taghvaei, Arnica; Jamali, Zahra; Jafari, Toloo; Amiri Daneshvar, Farshid; Khafri, Soraya

    2016-01-01

    Background. Repairing aged composite resin is a challenging process. Many surface treatment options have been proposed to this end. This study evaluated the effect of different surface treatments on the shear bond strength (SBS) of nano-filled composite resin repairs. Methods. Seventy-five cylindrical specimens of a Filtek Z350XT composite resin were fabricated and stored in 37°C distilled water for 24 hours. After thermocycling, the specimens were divided into 5 groups according to the following surface treatments: no treatment (group 1); air abrasion with 50-μm aluminum oxide particles (group 2); irradiation with Er:YAG laser beams (group 3); roughening with coarse-grit diamond bur + 35% phosphoric acid (group 4); and etching with 9% hydrofluoric acid for 120 s (group 5). Another group of Filtek Z350XT composite resin samples (4×6 mm) was fabricated for the measurement of cohesive strength (group 6). A silane coupling agent and an adhesive system were applied after each surface treatment. The specimens were restored with the same composite resin and thermocycled again. A shearing force was applied to the interface in a universal testing machine. Data were analyzed using one-way ANOVA and post hoc Tukey tests (P < 0.05). Results. One-way ANOVA indicated significant differences between the groups (P < 0.05). SBS of controls was significantly lower than the other groups; differences between groups 2, 3, 4, 5 and 6 were not significant. Surface treatment with diamond bur + 35% phosphoric acid resulted in the highest bond strength. Conclusion. All the surface treatments used in this study improved the shear bond strength of nanofilled composite resin used. PMID:27092209

  2. Influence of Compression and Shear on the Strength of Composite Laminates With Z-Pinned Reinforcement

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin; Krueger, Ronald

    2005-01-01

    The influence of compression and shear loads on the strength of composite laminates with z-pins is evaluated parametrically using a 2D Finite Element Code (FLASH) based on Cosserat couple stress theory. Meshes were generated for three unique combinations of z-pin diameter and density. A laminated plate theory analysis was performed on several layups to determine the bi-axial stresses in the zero degree plies. These stresses, in turn, were used to determine the magnitude of the relative load steps prescribed in the FLASH analyses. Results indicated that increasing pin density was more detrimental to in-plane compression strength than increasing pin diameter. Compression strengths of lamina without z-pins agreed well with a closed form expression derived by Budiansky and Fleck. FLASH results for lamina with z-pins were consistent with the closed form results, and FLASH results without z-pins, if the initial fiber waviness due to z-pin insertion was added to the fiber waviness in the material to yield a total misalignment. Addition of 10% shear to the compression loading significantly reduced the lamina strength compared to pure compression loading. Addition of 50% shear to the compression indicated shear yielding rather than kink band formation as the likely failure mode. Two different stiffener reinforced skin configurations with z-pins, one quasi-isotropic and one orthotropic, were also analyzed. Six unique loading cases ranging from pure compression to compression plus 50% shear were analyzed assuming material fiber waviness misalignment angles of 0, 1, and 2 degrees. Compression strength decreased with increased shear loading for both configurations, with the quasi-isotropic configuration yielding lower strengths than the orthotropic configuration.

  3. Influence of Compression and Shear on the Strength of Composite Laminates with Z-Pinned Reinforcement

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin; Krueger, Ronald

    2005-01-01

    The influence of compression and shear loads on the strength of composite laminates with z-pins is evaluated parametrically using a 2D Finite Element Code (FLASH) based on Cosserat couple stress theory. Meshes were generated for three unique combinations of z-pin diameter and density. A laminated plate theory analysis was performed on several layups to determine the bi-axial stresses in the zero degree plies. These stresses, in turn, were used to determine the magnitude of the relative load steps prescribed in the FLASH analyses. Results indicated that increasing pin density was more detrimental to in-plane compression strength than increasing pin diameter. Compression strengths of lamina without z-pins agreed well with a closed form expression derived by Budiansky and Fleck. FLASH results for lamina with z-pins were consistent with the closed form results, and FLASH results without z-pins, if the initial fiber waviness due to z-pin insertion was added to the fiber waviness in the material to yield a total misalignment. Addition of 10% shear to the compression loading significantly reduced the lamina strength compared to pure compression loading. Addition of 50% shear to the compression indicated shear yielding rather than kink band formation as the likely failure mode. Two different stiffener reinforced skin configurations with z-pins, one quaiisotropic and one orthotropic, were also analyzed. Six unique loading cases ranging from pure compression to compression plus 50% shear were analyzed assuming material fiber waviness misalignment angles of 0, 1, and 2 degrees. Compression strength decreased with increased shear loading for both configurations, with the quasi-isotropic configuration yielding lower strengths than the orthotropic configuration.

  4. Influence of Compression and Shear on the Strength of Composite Laminates with Z-Pinned Reinforcement

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin; Krueger, Ronald

    2005-01-01

    The influence of compression and shear loads on the strength of composite laminates with z-pins is evaluated parametrically using a 2D Finite Element Code (FLASH). Meshes were generated for three unique combinations of z-pin diameter and density. A laminated plate theory analysis was performed on several layups to determine the bi-axial stresses in the zero degree plies. These stresses, in turn, were used to determine the magnitude of the relative load steps prescribed in the FLASH analyses. Results indicated that increasing pin density was more detrimental to in-plane compression strength than increasing pin diameter. FLASH results for lamina with z-pins were consistent with the closed form results, and FLASH results without z-pins, if the initial fiber waviness due to z-pin insertion was added to the fiber waviness in the material to yield a total misalignment. Addition of 10% shear to the compression loading significantly reduced the lamina strength compared to pure compression loading. Addition of 50% shear to the compression indicated shear yielding rather than kink band formation as the likely failure mode. Two different stiffener reinforced skin configurations with z-pins, one quasi-isotropic and one orthotropic, were also analyzed. Six unique loading cases ranging from pure compression to compression plus 50% shear were analyzed assuming material fiber waviness misalignment angles of 0, 1, and 2 degrees. Compression strength decreased with increased shear loading for both configurations, with the quasi-isotropic configuration yielding lower strengths than the orthotropic configuration.

  5. Shear Bond Strength of the Repair Composite Resin to Zirconia Ceramic by Different Surface Treatment

    PubMed Central

    Arami, Sakineh; Hasani Tabatabaei, Masoumeh; Namdar, Fatemeh; Safavi, Nassimeh; Chiniforush, Nasim

    2014-01-01

    Introduction: The purpose of this study is the evaluation of the amount of surface roughness (Ra) of Zirconia Ceramic following different surface treatments as well as the assessment of its shear bond strength to composite resin. Methods: 40 sintered zirconia ceramic block samples were randomly divided in 4 groups of 10 and underwent the following surface treatments: a) Control group without treatment b) Air abrasion with Al2O3 particles (50um) c) Er:YAG laser with 2W power for 10s d) Nd:YAG laser with 1.5W power for 2min Then the mean surface roughness (Ra) was evaluated by profilometer. In the next step, Alloy primer was used on a section of 9mm2 on the samples following the manufacturer’s instructions. After that Clearfil AP-X composite resin in cylinder shape with an internal diameter and height of 3mm were cured on the sections mentioned. At the end, all samples were tested to assess the shear bond strength by the Universal Testing Machine at a speed of 0.5mm/min until fracture occurred. The mean shear bond strengths were calculated and statistically analyzed by One Way ANOVA. Results: ANOVA analysis showed that roughness (Ra) was significantly different between the groups (P≤0.05). Ra was higher in the Nd:YAG group compared to the other groups (P≤0.05). The lower Ra was related to the control group. Air abrasion group showed highest amounts of shear bond strength and Nd:YAG laser group demonstrated lower amounts of shear bond strength (P≤0.05). Conclusion: Various surface treatments are differently effective on bond strength. Air abrasion is the most effective method to condition zirconia ceramic surfaces. PMID:25653817

  6. Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologi

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologies Project - Preliminary Manufacturing Demonstration Articles for Ares V Payload Shroud Barrel Acreage Structure

  7. Probabilistic design of advanced composite structure

    NASA Technical Reports Server (NTRS)

    Gray, P. M.; Riskalla, M. G.

    1992-01-01

    Advanced composite technology offers potentials for sizable improvements in many areas: weight savings, maintainability, durability, and reliability. However, there are a number of inhibitors to these improvements. One of the biggest inhibitors is the imposition of traditional metallic approaches to design of composite structure. This is especially detrimental in composites because new materials technology demands new design approaches. Of particular importance are the decisions made regarding structural criteria. Significant changes cannot be implemented without careful consideration and exploration. This new approach is to implement changes on a controlled, verifiable basis. Probabilistic design is the methodology and the process to accomplish this. Its foundation is to base design criteria and objectives on reliability targets instead of arbitrary factors carried over from metallic structural history. The background is discussed of probabilistic design and the results are presented of a side-by-side comparison to generic aircraft structure designed the 'old' way and the 'new'. Activities are also defined that need to be undertaken to evolve available approaches to probabilistic design followed by summary and recommendations.

  8. Advanced composites for large Navy spacecraft

    NASA Technical Reports Server (NTRS)

    Davis, William E.

    1986-01-01

    An overview is given of work conducted on contract for the Naval Sea Systems Command. The objective of this contract was to provide direction for the development of high modulus graphite reinforced metal matrix composites. These advanced materials can have a significant effect on the performance of a spacecraft before, during and after an evasive maneuver. The work conducted on this program was organized into seven technical tasks. Task 1 was development of a generic Navy spacecraft model. Finite element models of candidate structural designs were developed. In Task 2, the finite-element model(s) of the structure were used to conduct analytical assessments involving conventional materials, resin matrix composites and metal matrix composites (MMC). In Task 3 and 4, MMC material design, fabrication and evaluation was conducted. This consisted of generating material designs and developing a data base for a broad range of graphite reinforced MMC materials. All material was procured according to specifications which set material quality and material property standards. In Task 5, a set of evasive maneuvering requirements were derived and used in Task 6 to conduct analytical simulations. These analytical simulations used current SOA material properties and projected material properties to provide an indication of key payoffs for material development. In Task 7, a set of material development recommendations was generated.

  9. Numerical analysis and parametric studies of the buckling of composite orthotropic compression and shear panels

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Stein, M.

    1975-01-01

    A computer program is presented which was developed for the combined compression and shear of stiffened variable thickness orthotropic composite panels on discrete springs: boundary conditions are general and include elastic boundary restraints. Buckling solutions are obtained by using a newly developed trigonometric finite difference procedure which improves the solution convergence rate over conventional finite difference methods. The classical general shear buckling results which exist only for simply supported panels over a limited range of orthotropic properties, were extended to the complete range of these properties for simply supported panels and, in addition, to the complete range of orthotropic properties for clamped panels. The program was also applied to parametric studies which examine the effect of filament orientation upon the buckling of graphite-epoxy panels. These studies included an examination of the filament orientations which yield maximum shear or compressive buckling strength for panels having all four edges simply supported or clamped over a wide range of aspect ratios. Panels with such orientations had higher buckling loads than comparable, equal weight, thin skinned aluminum panels. Also included among the parameter studies were examinations of combined axial compression and shear buckling and examinations of panels with rotational elastic edge restraints.

  10. Shear bond strength between titanium alloys and composite resin: sandblasting versus fluoride-gel treatment.

    PubMed

    Lim, Bum-Soon; Heo, Seok-Mo; Lee, Yong-Keun; Kim, Cheol-We

    2003-01-15

    The aim of this study was to investigate the effect of fluoride gel treatment on the bond strength between titanium alloys and composite resin, and the effect of NaF solution on the bond strength of titanium alloys. Five titanium alloys and one Co-Cr-Mo alloy were tested. Surface of the alloys were treated with three different methods; SiC polishing paper (No. 2000), sandblasting (50-microm Al2O3), and commercially available acidulated phosphate fluoride gel (F-=1.23%, pH 3.0). After treatment, surfaces of alloy were analyzed by SEM/EDXA. A cylindrical gelatin capsule was filled with a light-curable composite resin. The composite resin capsule was placed on the alloy surface after the application of bonding agent, and the composite resin was light cured for 30 s in four different directions. Shear bond strength was measured with the use of an Instron. Fluoride gel did not affect the surface properties of Co-Cr-Mo alloy and Ni-Ti alloy, but other titanium alloys were strongly affected. Alloys treated with the fluoride gel showed similar bond strengths to the alloys treated with sandblasting. Shear bond strength did not show a significant difference (p<0.05) regardless of treatment time (5, 10, and 20 min) of fluoride gel. After the ultrasonic cleaning subsequent to the fluoride-gel treatment, residues of fluoride ion or any other titanium-fluoride complexes were not detected. NaF solution did not reduce the shear bond strength of titanium alloys. To enhance the bond strength of composite resin to titanium alloys, fluoride-gel treatment may be used as an alternative technique to the sandblasting treatment.

  11. Shear Pressed Aligned Carbon Nanotubes and their use as Composite and Adhesive Interlayers

    NASA Astrophysics Data System (ADS)

    Stahl, James Joseph, III

    The following studies utilize shearing force to consolidate and re-orient multi-walled carbon nanotubes (MWCNT) into a shear pressed sheet (SPS) preform. Carbon nanotube (CNT) array growth and shear pressing angle are studied to improve the quality of SPSs. Heat assisted vacuum infusion is used to form a nano-composite from the SPS preform, and mechanical properties are characterized and compared between non-functionalized and functionalized nano-composite tensile specimens. A novel functionalization technique is applied which rinses SPSs with an acidic wet chemical oxidation treatment of H2SO4 and KMnO4 in order to add sidewall carboxyl groups to the CNTs. This is shown to impart hydrophilicity to the SPS and improves composite modulus by 62%, strain-to-failure 42% and failure stress 113%. Composite laminates and joints are vulnerable to shearing forces which cause delamination in the former and failure in the latter. Damage is initiated and propagated at defects and free edges often due to high peel stress, which is much higher than the shear stress and functions as a tensile opening of the joint just as in Mode I delamination failure of laminate composites. In order to resist failure it is necessary to improve the strain-to-failure of the interphase where a crack propagates without sacrificing strength or modulus of the material, thus toughening the material without impacting the rigidity of the composite. Due to the similarity between peel stress/strain and Mode I delamination, the initiation fracture toughness of a double cantilever beam (DCB) test should provide a good indication of peel toughness at a joint free edge. Many studies have explored the possibility of improving Mode I fracture toughness (G IC) of a composite through locally incorporating a tough material into the interlaminar interphase; this material is termed an interleaf. Common interleaf categories are toughened adhesive, disperse particle, disperse fiber, short fiber nonwoven, and continuous

  12. Shear Bond Strength of Repaired Composites Using Surface Treatments and Repair Materials: An In vitro Study

    PubMed Central

    Hemadri, M; Saritha, G; Rajasekhar, V; Pachlag, K Amit; Purushotham, R; Reddy, Veera Kishore Kumar

    2014-01-01

    Background: Enhancement of bond strength between new and old composite usually requires increased surface roughness of old composite to promote mechanical interlocking and subsequent coating with bonding agents to improve surface wetting and chemical bonding. So this study was carried out to evaluate and compare the effects of different surface treatments and repair materials on the shear bond strength (SBS) of composite repairs The mode of failure of repaired composites whether cohesive or adhesive was also evaluated. Materials and Methods: The substrates for 60 composite specimens were fabricated and aged with water treatment and subjected to various surface treatments. The surface treatment regimens used in the study were: No surface treatment, abraded with diamond bur, air abraded (sandblasted) with 50 µ aluminum oxide particles. Specimens were then repaired with fresh composite using either Clearfil™ repair or all-bond two adhesive systems. Specimens were water stored, thermocycled and tested for SBS using universal testing machine. Fractured specimens were then examined under stereomicroscope to determine the mode of failure. Results: It was clearly showed that surface roughening of the aged composite substrate with air abrasion, followed by the application of Clearfil™ repair adhesive system (Group IIIa) yielded the highest repair bond strength (32.3 ± 2.2 MPa). Conclusion: Surface treatment with air abrasion followed by bonding with Clearfil™ repair adhesive system can be attempted clinically for the repair of composite restorations. PMID:25628478

  13. Response of Damaged and Undamaged Tailored Extension-Shear-Coupled Composite Panels

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.

    2008-01-01

    The results of an analytical and experimental investigation of the response of composite I-stiffener panels with extension-shear coupling are presented. This tailored concept, when used in the panel cover skins of a tiltrotor aircraft wing has the potential for increasing the aeroelastic stability margins and improving the aircraft productivity. The extension-shear coupling is achieved by using unbalanced plus or minus 45 deg. plies in the skin. Experimental and STAGS analysis results are compared for eight I-stiffener panel specimens. The results indicate that the tailored concept would be feasible to use in the wing skin of a tiltrotor aircraft. Evaluation of specimens impacted at an energy level of 500 in.-lbs indicate a minimal loss in stiffness and less than 30 percent loss in strength. Evaluation of specimens with severed center stiffener and adjacent skin indicated a strength loss in excess of 60 percent.

  14. Interfacial shear stress distribution in model composites. I - A Kevlar 49 fibre in an epoxy matrix

    SciTech Connect

    Jahankhani, H.; Galiotis, C. )

    1991-05-01

    The technique of Laser Raman Spectroscopy has been applied in the study of aramid fibers, such as Kevlar 49, and aramid/epoxy interfaces. A linear relationship has been found between Raman frequencies and strain upon loading a single Kevlar 49 filament in air. Model composites of single Kevlar 49 fibers embedded in epoxy resins have been fabricated and subjected to various degrees of mechanical deformation. The transfer lengths for reinforcement have been measured at various levels of applied tensile load and the dependence of transfer length upon applied matrix strain has been established. Finally, by balancing the tensile and the shear forces acting along the interface, the interfacial shear stress (ISS) distribution along the embedded fiber was obtained. 52 refs.

  15. Interlaminar shear test method development for long term durability testing of composites

    NASA Technical Reports Server (NTRS)

    Ifju, Peter G.

    1994-01-01

    The high speed civil transport is a commercial aircraft that is expected to carry 300 passengers at Mach 2.4 over a range of more than 6000 nautical miles. With the existing commercial structural material technology (i.e., aluminum) the performance characteristics of the high speed civil transport would not be realized. Therefore there has been a concerted effort in the development of light weight materials capable of withstanding elevated temperatures for long duration. Thermoplastic composite materials are such candidate materials and the understanding of how these materials perform over the long term under harsh environments is essential to safe and effective design. The matrix dominated properties of thermoplastic composites are most affected by both time and temperature. There is currently an effort to perform short term testing to predict long term behavior of in-plane mechanical properties E22 (transverse modulus of elasticity) and G12 (shear modulus). Out-of-plane properties such as E33, G13, and G23 are inherently more difficult to characterize. This is especially true for the out-of-plane shear modulus G23 and hence there is no existing acceptable standard test method. Since G23 is the most matrix dominated property, it is essential that a test method be developed. A shear test methodology is developed to do just that. The test method, called the double notched specimen, along with the previously developed shear gage was tested at room temperature. Mechanical testing confirmed the attributes of the methodology. A finite element parametric study was conducted for specimen optimization. Moire interferometry, a high sensitivity laser optical method, was used for full-field analysis of the specimen. From this work, material parameters will be determined and thus enable the prediction of long term material behavior of laminates subjected to general loading states.

  16. Advanced Technology Composite Fuselage - Materials and Processes

    NASA Technical Reports Server (NTRS)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  17. Advanced Technology Composite Fuselage-Structural Performance

    NASA Technical Reports Server (NTRS)

    Walker, T. H.; Minguet, P. J.; Flynn, B. W.; Carbery, D. J.; Swanson, G. D.; Ilcewicz, L. B.

    1997-01-01

    Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC). This report addresses the program activities related to structural performance of the selected concepts, including both the design development and subsequent detailed evaluation. Design criteria were developed to ensure compliance with regulatory requirements and typical company objectives. Accurate analysis methods were selected and/or developed where practical, and conservative approaches were used where significant approximations were necessary. Design sizing activities supported subsequent development by providing representative design configurations for structural evaluation and by identifying the critical performance issues. Significant program efforts were directed towards assessing structural performance predictive capability. The structural database collected to perform this assessment was intimately linked to the manufacturing scale-up activities to ensure inclusion of manufacturing-induced performance traits. Mechanical tests were conducted to support the development and critical evaluation of analysis methods addressing internal loads, stability, ultimate strength, attachment and splice strength, and damage tolerance. Unresolved aspects of these performance issues were identified as part of the assessments, providing direction for future development.

  18. Advanced Technology Composite Fuselage: Program Overview

    NASA Technical Reports Server (NTRS)

    Ilcewicz, L. B.; Smith, P. J.; Hanson, C. T.; Walker, T. H.; Metschan, S. L.; Mabson, G. E.; Wilden, K. S.; Flynn, B. W.; Scholz, D. B.; Polland, D. R.; Fredrikson, H. G.; Olson, J. T.; Backman, B. F.

    1997-01-01

    The Advanced Technology Composite Aircraft Structures (ATCAS) program has studied transport fuselage structure with a large potential reduction in the total direct operating costs for wide-body commercial transports. The baseline fuselage section was divided into four 'quadrants', crown, keel, and sides, gaining the manufacturing cost advantage possible with larger panels. Key processes found to have savings potential include (1) skins laminated by automatic fiber placement, (2) braided frames using resin transfer molding, and (3) panel bond technology that minimized mechanical fastening. The cost and weight of the baseline fuselage barrel was updated to complete Phase B of the program. An assessment of the former, which included labor, material, and tooling costs, was performed with the help of design cost models. Crown, keel, and side quadrant cost distributions illustrate the importance of panel design configuration, area, and other structural details. Composite sandwich panel designs were found to have the greatest cost savings potential for most quadrants. Key technical findings are summarized as an introduction to the other contractor reports documenting Phase A and B work completed in functional areas. The current program status in resolving critical technical issues is also highlighted.

  19. Recent advances in magnetostrictive particulate composite technology

    NASA Astrophysics Data System (ADS)

    Pulliam, Wade J.; McKnight, Geoffrey P.; Carman, Gregory P.

    2002-07-01

    Recently, there have been significant advances in using magnetostrictive particles in a polymer matrix; finding uses in many applications, both as an active transducer and a passive damper. Termed magnetostrictive particulate composites (MPC), the material provides capabilities identical or superior to the monolithic material. Fortis Technologies has been pursuing improvements in the application and fabrication of this innovative material. The MPC technology provides a passive, broadband, large temperature range, high stiffness, dampling material to be used where current technologies fall short. Damping applications of this technology include sporting goods, power/hand tools, space launch and satellite design, noise abatement and vibration isolation. Energy absorption of the composites has been measured and is approaching that of the monolithic material. The material can also be actively controlled by a magnetic field, producing a transducer that can be used for sonar applications. The advantage of this technology over those currently in use is the large power density at relatively low frequencies and the ease of fabrication, allowing less expensive and more effective conformal arrays. Effective strain output and piezomagnetic coefficients have been measured, as have its dynamic properties. The results show significant improvement of the strain output and piezomagnetic coefficients, approaching the monolithic material.

  20. Bisimide amine cured epoxy /IME/ resins and composites. II - Ten-degree off-axis tensile and shear properties of Celion 6000/IME composites

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1982-01-01

    Bisimide amines (BIAs), which are presently used as curing agents in a state-of-the-art epoxy resin, are oligomeric and polymeric mixtures. A series of composites consisting of the novel BIA-cured epoxy resin reinforced with Celion 6000 graphite fibers were fabricated and evaluated, and the ten-degree, off-axis uniaxial tensile and shear properties of these composites were determined. The use of the intralaminar shear strain-to-failure was used in the calculation of resin shear strain-to-failure. Study results indicate that several of these novel composite systems exhibit shear strain properties that are superior to those of the control composite system of the present experiments, which employed a sulfone curing agent.

  1. Dependency of Shear Strength on Test Rate in SiC/BSAS Ceramic Matrix Composite at Elevated Temperature

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2003-01-01

    Both interlaminar and in-plane shear strengths of a unidirectional Hi-Nicalon(TM) fiber-reinforced barium strontium aluminosilicate (SiC/BSAS) composite were determined at 1100 C in air as a function of test rate using double notch shear test specimens. The composite exhibited a significant effect of test rate on shear strength, regardless of orientation which was either in interlaminar or in in-plane direction, resulting in an appreciable shear-strength degradation of about 50 percent as test rate decreased from 3.3 10(exp -1) mm/s to 3.3 10(exp -5) mm/s. The rate dependency of composite's shear strength was very similar to that of ultimate tensile strength at 1100 C observed in a similar composite (2-D SiC/BSAS) in which tensile strength decreased by about 60 percent when test rate varied from the highest (5 MPa/s) to the lowest (0.005 MPa/s). A phenomenological, power-law slow crack growth formulation was proposed and formulated to account for the rate dependency of shear strength of the composite.

  2. Modeling shear instability and fracture in dynamically deformed Al/W granular composites

    NASA Astrophysics Data System (ADS)

    Olney, Karl; Benson, David; Nesterenko, Vitali F.

    2012-03-01

    Aluminum/Tungsten granular composites are materials which combine high density and strength with bulk distributed fracture of Al matrix into small particles under impact or shock loading. They are processed using cold and hot isostatic pressing of W particles/rods in the matrix of Al powder. Numerical models were used to elucidate the dynamic behavior of these materials under dynamic conditions simulating low velocity high energy impact in drop weight test (10 m/s). It was demonstrated that arrangement of W components and bonding between Al particles dramatically affect the samples shear localization and mode of fracture of the Al matrix in agreement with experiments.

  3. Postbuckling analysis of shear deformable composite flat panels taking into account geometrical imperfections

    NASA Technical Reports Server (NTRS)

    Librescu, L.; Stein, M.

    1990-01-01

    The effects of initial geometrical imperfections on the postbuckling response of flat laminated composite panels to uniaxial and biaxial compressive loading are investigated analytically. The derivation of the mathematical model on the basis of first-order transverse shear deformation theory is outlined, and numerical results for perfect and imperfect, single-layer and three-layer square plates with free-free, clamped-clamped, or free-clamped edges are presented in graphs and briefly characterized. The present approach is shown to be more accurate than analyses based on the classical Kirchhoff plate model.

  4. Improving the interlaminar shear strength of carbon fiber-epoxy composites through carbon fiber bromination

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Maciag, Carolyn

    1987-01-01

    The use of bromine to improve the interlaminar shear strength of PAN-based carbon fibers was investigated. Composite test specimens fabicated from brominated T-300 fibers and a MY720 matrix exhibited on average a 30% improvement in ILSS over their pristine counterparts. Mass, electrical resistivity, density, contact angle, and scanning Auger microscopy results suggested a mechanism in which the bromine was covalently bonded to the surface of the fiber, and this resulted in an increased van der Waal's adhesion between fiber and matrix.

  5. RC beams shear-strengthened with fabric-reinforced-cementitious-matrix (FRCM) composite

    NASA Astrophysics Data System (ADS)

    Loreto, Giovanni; Babaeidarabad, Saman; Leardini, Lorenzo; Nanni, Antonio

    2015-12-01

    The interest in retrofit/rehabilitation of existing concrete structures has increased due to degradation and/or introduction of more stringent design requirements. Among the externally-bonded strengthening systems fiber-reinforced polymers is the most widely known technology. Despite its effectiveness as a material system, the presence of an organic binder has some drawbacks that could be addressed by using in its place a cementitious binder as in fabric-reinforced cementitious matrix (FRCM) systems. The purpose of this paper is to evaluate the behavior of reinforced concrete (RC) beams strengthened in shear with U-wraps made of FRCM. An extensive experimental program was undertaken in order to understand and characterize this composite when used as a strengthening system. The laboratory results demonstrate the technical viability of FRCM for shear strengthening of RC beams. Based on the experimental and analytical results, FRCM increases shear strength but not proportionally to the number of fabric plies installed. On the other hand, FRCM failure modes are related with a high consistency to the amount of external reinforcement applied. Design considerations based on the algorithms proposed by ACI guidelines are also provided.

  6. Shear characterization of unidirectional composites with the off-axis tension test

    NASA Technical Reports Server (NTRS)

    Pindera, M.-J.; Herakovich, C. T.

    1986-01-01

    The influence of end constraints on accurate determination of the intralaminar shear modulus G(12) from an off-axis tension test is examined both analytically and experimentally. The Pagano-Halpin (1968) model is employed to illustrate that, when the effect of end constraints is properly considered, the exact expression for G(12) is obtained. When the effect of end constraints is neglected, expressions for the apparent shear modulus G(12)-asterisk and apparent Young's modulus Exx-asterisk are obtained. Numerical comparison for various off-axis configurations and aspect ratios is carried out using typical material properties for graphite/polyimide unidirectional composites. It is demonstrated that the end-constraint effect influences accurate determination of G(12) more adversely than it affects the laminate Young's modulus E(xx) in the low off-axis range. Experimental results obtained from off-axis tests on unidirectional graphite/polyimide specimens confirm the above. Based on the presented analytical and experimental evidence, the 45-deg off-axis coupon is proposed for the determination of the intralaminar shear modulus G(12).

  7. Evaluation of Shear Bond Strength of Orthodontic Brackets Bonded with Nano-Filled Composites

    PubMed Central

    Chalipa, Javad; Akhondi, Mohammad Sadegh Ahmad; Arab, Sepideh; Kharrazifard, Mohammad Javad; Ahmadyar, Maryam

    2013-01-01

    Objectives: The purpose of this study was to evaluate the shear bond strength (SBS) of orthodontic brackets bonded with two types of nano-composites in comparison to a conventional orthodontic composite. Materials and Methods: Sixty extracted human first premolars were randomly divided into 3 groups each containing 20 teeth. In group I, a conventional orthodontic composite (Transbond XT) was used to bond the brackets, while two nano-composites (Filtek TM Supreme XT and AELITE Aesthetic Enamel) were used in groups II and III respectively. The teeth were stored in distilled water at 37°C for 24 hours, thermocycled in distilled water and debonded with a universal testing machine at a crosshead speed of 1 mm/min. The adhesive remnant index (ARI) was also evaluated using a stereomicroscope. Results: AELITE Aesthetic Enamel nano-composite revealed a SBS value of 8.44±2.09 MPa, which was higher than Transbond XT (6.91±2.13) and Filtek TM Supreme XT (6.04±2.01). Statistical analysis revealed a significant difference between groups II and III (P < 0.05). No significant difference was found between groups I and III, and between groups I and II (P > 0.05). Evaluation of ARI showed that Transbond XT left fewer adhesive remains on teeth after debonding. Conclusion: Results of this study indicate that the aforementioned nano-composites can be successfully used for bonding orthodontic brackets. PMID:24910655

  8. A two-phase composite in simple shear: Effective mechanical anisotropy development and localization potential

    NASA Astrophysics Data System (ADS)

    Dabrowski, M.; Schmid, D. W.; Podladchikov, Y. Y.

    2012-08-01

    We present a combined shape and mechanical anisotropy evolution model for a two-phase inclusion-bearing rock subject to large deformation. A single elliptical inclusion embedded in a homogeneous but anisotropic matrix is used to represent a simplified shape evolution enforced on all inclusions. The mechanical anisotropy develops due to the alignment of elongated inclusions. The effective anisotropy is quantified using the differential effective medium (DEM) approach. The model can be run for any deformation path and an arbitrary viscosity ratio between the inclusion and host phase. We focus on the case of simple shear and weak inclusions. The shape evolution of the representative inclusion is largely insensitive to the anisotropy development and to parameter variations in the studied range. An initial hardening stage is observed up to a shear strain of γ = 1 irrespective of the inclusion fraction. The hardening is followed by a softening stage related to the developing anisotropy and its progressive rotation toward the shear direction. The traction needed to maintain a constant shear rate exhibits a fivefold drop at γ = 5 in the limiting case of an inviscid inclusion. Numerical simulations show that our analytical model provides a good approximation to the actual evolution of a two-phase inclusion-host composite. However, the inclusions develop complex sigmoidal shapes resulting in the formation of an S-C fabric. We attribute the observed drop in the effective normal viscosity to this structural development. We study the localization potential in a rock column bearing varying fraction of inclusions. In the inviscid inclusion case, a strain jump from γ = 3 to γ = 100 is observed for a change of the inclusion fraction from 20% to 33%.

  9. Nondestructive evaluation of advanced ceramic composite materials

    SciTech Connect

    Lott, L.A.; Kunerth, D.C.; Walter, J.B.

    1991-09-01

    Nondestructive evaluation techniques were developed to characterize performance degrading conditions in continuous fiber-reinforced silicon carbide/silicon carbide composites. Porosity, fiber-matrix interface bond strength, and physical damage were among the conditions studied. The material studied is formed by chemical vapor infiltration (CVI) of the matrix material into a preform of woven reinforcing fibers. Acoustic, ultrasonic, and vibration response techniques were studied. Porosity was investigated because of its inherent presence in the CVI process and of the resultant degradation of material strength. Correlations between porosity and ultrasonic attenuation and velocity were clearly demonstrated. The ability of ultrasonic transmission scanning techniques to map variations in porosity in a single sample was also demonstrated. The fiber-matrix interface bond was studied because of its importance in determining the fracture toughness of the material. Correlations between interface bonding and acoustic and ultrasonic properties were observed. These results are presented along with those obtained form acoustic and vibration response measurements on material samples subjected to mechanical impact damage. This is the final report on research sponsored by the US Department of Energy, Fossil Energy Advanced Research and Technology Development Materials Program. 10 refs., 24 figs., 2 tabs.

  10. Free Vibration and Bending Behaviour of CNT Reinforced Composite Plate using Different Shear Deformation Theory

    NASA Astrophysics Data System (ADS)

    Mehar, K.; Panda, S. K.

    2016-02-01

    In the present study, the free vibration and the bending behaviour of carbon nanotube reinforced composite plate are computed using three different shear deformation theories under thermal environment. The material properties of carbon nanotube and matrix are assumed to be temperature-dependent, and the extended rule of mixture is used to compute the effectivematerial properties of the composite plate. The convergence and validity of the present modelalso have been checked by computing the wide variety of the numerical example. The applicability of the proposed higher-order models has been highlighted by solving the wide variety of examples for different geometrical and material parameters underelevated thermal environment.The responses are also examined using the simulation model developed in commercial finite element package (ANSYS).

  11. Statistical shear lag model - unraveling the size effect in hierarchical composites.

    PubMed

    Wei, Xiaoding; Filleter, Tobin; Espinosa, Horacio D

    2015-05-01

    Numerous experimental and computational studies have established that the hierarchical structures encountered in natural materials, such as the brick-and-mortar structure observed in sea shells, are essential for achieving defect tolerance. Due to this hierarchy, the mechanical properties of natural materials have a different size dependence compared to that of typical engineered materials. This study aimed to explore size effects on the strength of bio-inspired staggered hierarchical composites and to define the influence of the geometry of constituents in their outstanding defect tolerance capability. A statistical shear lag model is derived by extending the classical shear lag model to account for the statistics of the constituents' strength. A general solution emerges from rigorous mathematical derivations, unifying the various empirical formulations for the fundamental link length used in previous statistical models. The model shows that the staggered arrangement of constituents grants composites a unique size effect on mechanical strength in contrast to homogenous continuous materials. The model is applied to hierarchical yarns consisting of double-walled carbon nanotube bundles to assess its predictive capabilities for novel synthetic materials. Interestingly, the model predicts that yarn gauge length does not significantly influence the yarn strength, in close agreement with experimental observations. PMID:25684701

  12. Failure Analysis of Discrete Damaged Tailored Extension-Shear-Coupled Stiffened Composite Panels

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.

    2005-01-01

    The results of an analytical and experimental investigation of the failure of composite is tiffener panels with extension-shear coupling are presented. This tailored concept, when used in the cover skins of a tiltrotor aircraft wing has the potential for increasing the aeroelastic stability margins and improving the aircraft productivity. The extension-shear coupling is achieved by using unbalanced 45 plies in the skin. The failure analysis of two tailored panel configurations that have the center stringer and adjacent skin severed is presented. Finite element analysis of the damaged panels was conducted using STAGS (STructural Analysis of General Shells) general purpose finite element program that includes a progressive failure capability for laminated composite structures that is based on point-stress analysis, traditional failure criteria, and ply discounting for material degradation. The progressive failure predicted the path of the failure and maximum load capability. There is less than 12 percent difference between the predicted failure load and experimental failure load. There is a good match of the panel stiffness and strength between the progressive failure analysis and the experimental results. The results indicate that the tailored concept would be feasible to use in the wing skin of a tiltrotor aircraft.

  13. A study of void effects on the interlaminar shear strength of unidirectional graphite fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Frimpong, Stephen

    1990-01-01

    A study was conducted to evaluate the effect of voids on the interlaminar shear strength (ILSS) of a polyimide matrix composite system. The graphite/PRM-15 composite was chosen for study because of the extensive amount of experience that has been amassed in the processing of this material. Composite densities and fiber contents of more than thirty different laminates were measured along with ILSS. Void contents were calculated and the void geometry and distribution were noted using microscopic techniques such as those used in metallography. It was found that there was a good empirical correlation between ILSS and composite density. The most acceptable relationship between the ILSS and density was found to be a power equation which closely resembles theoretically derived expressions. An increase in scatter in the strength data was observed as the void content increased. In laminates with low void content, the void appears to be more segregated in one area of the laminate. It was found that void free composites could be processed in matched metal die molds at pressures greater than 1.4 and less than 6.9 MPa.

  14. Shear bond strength of orthodontic brackets to aged resin composite surfaces: effect of surface conditioning.

    PubMed

    Bayram, Mehmet; Yesilyurt, Cemal; Kusgöz, Adem; Ulker, Mustafa; Nur, Metin

    2011-04-01

    The aim of this study was to investigate the effects of surface conditioning protocols on the shear bond strength (SBS) of metal brackets to aged composite resin surfaces in vitro. Ninety composite resin discs, 6 mm in diameter and 2 mm in height, were prepared and treated with an ageing procedure. After ageing, the specimens were randomly assigned to one of the following groups: (1) control with no surface treatment, (2) 38 per cent phosphoric acid gel, (3) 9.6 per cent hydrofluoric acid gel, (4) airborne aluminium trioxide particle abrasion, (5) sodium bicarbonate particle abrasion, and (6) diamond bur. The metal brackets were bonded to composite surfaces by means of an orthodontic adhesive (Transbond XT). All specimens were stored in water for 1 week at 37°C and then thermocycled (1000 cycles, 5-55°C) prior to SBS testing. SBS values and residual adhesive on the composite surface were evaluated. Analysis of variance showed a significant difference (P = 0.000) between the groups. Group 6 had the highest mean SBS (10.61 MPa), followed by group 4 (10.29 MPa). The results of this study suggest that a clinically acceptable bond strength can be achieved by surface conditioning of aged resin composite via the application of hydrofluoric acid, aluminium trioxide particle abrasion, sodium bicarbonate particle abrasion, or a diamond bur. PMID:20660131

  15. Onset of failure in finitely strained layered composites subjected to combined normal and shear loading

    NASA Astrophysics Data System (ADS)

    Nestorović, M. D.; Triantafyllidis, N.

    2004-04-01

    A limiting factor in the design of fiber-reinforced composites is their failure under axial compression along the fiber direction. These critical axial stresses are significantly reduced in the presence of shear stresses. This investigation is motivated by the desire to study the onset of failure in fiber-reinforced composites under arbitrary multi-axial loading and in the absence of the experimentally inevitable imperfections and finite boundaries. By using a finite strain continuum mechanics formulation for the bifurcation (buckling) problem of a rate-independent, perfectly periodic (layered) solid of infinite extent, we are able to study the influence of load orientation, material properties and fiber volume fraction on the onset of instability in fiber-reinforced composites. Two applications of the general theory are presented in detail, one for a finitely strained elastic rubber composite and another for a graphite-epoxy composite, whose constitutive properties have been determined experimentally. For the latter case, extensive comparisons are made between the predictions of our general theory and the available experimental results as well as to the existing approximate structural theories. It is found that the load orientation, material properties and fiber volume fraction have substantial effects on the onset of failure stresses as well as on the type of the corresponding mode (local or global).

  16. Biofouling of reverse-osmosis membranes under different shear rates during tertiary wastewater desalination: microbial community composition.

    PubMed

    Al Ashhab, Ashraf; Gillor, Osnat; Herzberg, Moshe

    2014-12-15

    We investigated the influence of feed-water shear rate during reverse-osmosis (RO) desalination on biofouling with respect to microbial community composition developed on the membrane surface. The RO membrane biofilm's microbial community profile was elucidated during desalination of tertiary wastewater effluent in a flat-sheet lab-scale system operated under high (555.6 s(-1)), medium (370.4 s(-1)), or low (185.2 s(-1)) shear rates, corresponding to average velocities of 27.8, 18.5, and 9.3 cm s(-1), respectively. Bacterial diversity was highest when medium shear was applied (Shannon-Weaver diversity index H' = 4.30 ± 0.04) compared to RO-membrane biofilm developed under lower and higher shear rates (H' = 3.80 ± 0.26 and H' = 3.42 ± 0.38, respectively). At the medium shear rate, RO-membrane biofilms were dominated by Betaproteobacteria, whereas under lower and higher shear rates, the biofilms were dominated by Alpha- and Gamma- Proteobacteria, and the latter biofilms also contained Deltaproteobacteria. Bacterial abundance on the RO membrane was higher at low and medium shear rates compared to the high shear rate: 8.97 × 10(8) ± 1.03 × 10(3), 4.70 × 10(8) ± 1.70 × 10(3) and 5.72 × 10(6) ± 2.09 × 10(3) copy number per cm(2), respectively. Interestingly, at the high shear rate, the RO-membrane biofilm's bacterial community consisted mainly of populations known to excrete high amounts of extracellular polymeric substances. Our results suggest that the RO-membrane biofilm's community composition, structure and abundance differ in accordance with applied shear rate. These results shed new light on the biofouling phenomenon and are important for further development of antibiofouling strategies for RO membranes. PMID:25262553

  17. Biofouling of reverse-osmosis membranes under different shear rates during tertiary wastewater desalination: microbial community composition.

    PubMed

    Al Ashhab, Ashraf; Gillor, Osnat; Herzberg, Moshe

    2014-12-15

    We investigated the influence of feed-water shear rate during reverse-osmosis (RO) desalination on biofouling with respect to microbial community composition developed on the membrane surface. The RO membrane biofilm's microbial community profile was elucidated during desalination of tertiary wastewater effluent in a flat-sheet lab-scale system operated under high (555.6 s(-1)), medium (370.4 s(-1)), or low (185.2 s(-1)) shear rates, corresponding to average velocities of 27.8, 18.5, and 9.3 cm s(-1), respectively. Bacterial diversity was highest when medium shear was applied (Shannon-Weaver diversity index H' = 4.30 ± 0.04) compared to RO-membrane biofilm developed under lower and higher shear rates (H' = 3.80 ± 0.26 and H' = 3.42 ± 0.38, respectively). At the medium shear rate, RO-membrane biofilms were dominated by Betaproteobacteria, whereas under lower and higher shear rates, the biofilms were dominated by Alpha- and Gamma- Proteobacteria, and the latter biofilms also contained Deltaproteobacteria. Bacterial abundance on the RO membrane was higher at low and medium shear rates compared to the high shear rate: 8.97 × 10(8) ± 1.03 × 10(3), 4.70 × 10(8) ± 1.70 × 10(3) and 5.72 × 10(6) ± 2.09 × 10(3) copy number per cm(2), respectively. Interestingly, at the high shear rate, the RO-membrane biofilm's bacterial community consisted mainly of populations known to excrete high amounts of extracellular polymeric substances. Our results suggest that the RO-membrane biofilm's community composition, structure and abundance differ in accordance with applied shear rate. These results shed new light on the biofouling phenomenon and are important for further development of antibiofouling strategies for RO membranes.

  18. Advanced organic composite materials for aircraft structures: Future program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  19. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites.

    PubMed

    Bekyarova, E; Thostenson, E T; Yu, A; Kim, H; Gao, J; Tang, J; Hahn, H T; Chou, T-W; Itkis, M E; Haddon, R C

    2007-03-27

    We report an approach to the development of advanced structural composites based on engineered multiscale carbon nanotube-carbon fiber reinforcement. Electrophoresis was utilized for the selective deposition of multi- and single-walled carbon nanotubes (CNTs) on woven carbon fabric. The CNT-coated carbon fabric panels were subsequently infiltrated with epoxy resin using vacuum-assisted resin transfer molding (VARTM) to fabricate multiscale hybrid composites in which the nanotubes were completely integrated into the fiber bundles and reinforced the matrix-rich regions. The carbon nanotube/carbon fabric/epoxy composites showed approximately 30% enhancement of the interlaminar shear strength as compared to that of carbon fiber/epoxy composites without carbon nanotubes and demonstrate significantly improved out-of-plane electrical conductivity. PMID:17326671

  20. In-Plane Shear Testing of Medium and High Modulus Woven Graphite Fiber Reinforced/Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Gentz, M.; Armentrout, D.; Rupnowski, P.; Kumosa, L.; Shin, E.; Sutter, J. K.; Kumosa, M.

    2004-01-01

    Iosipescu shear tests were performed at room temperature and at 316 C (600 F) o woven composites with either M40J or M60J graphite fibers and PMR-II-50 polyimide resin matrix. The composites were tested as supplied and after thermo-cycling, with the thermo-cycled composites being tested under dry and wet conditions. Acoustic emission (AE) was monitored during the room and high temperature Iosipescu experiments. The shear stresses at the maximum loads and the shear stresses at the significant onset of AE were determined for the composites as function of temperature and conditioning. The combined effects of thermo-cycling and moisture on the strength and stiffness properties of the composites were evaluated. It was determined that the room and high temperature shear stresses at the maximum loads were unaffected by conditioning. However, at room temperature the significant onset of AE was affected by conditioning; the thermal conditioned wet specimens showed the highest shear stress at the onset of AE followed by thermal-conditioned and then as received specimens. Also, at igh temperature the significant onset of AE occurred in some specimens after the maximum load due to the viscoelastoplastic nature of the matrix material.

  1. Advanced Composite Structures At NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.

    2015-01-01

    Dr. Eldred's presentation will discuss several NASA efforts to improve and expand the use of composite structures within aerospace vehicles. Topics will include an overview of NASA's Advanced Composites Project (ACP), Space Launch System (SLS) applications, and Langley's ISAAC robotic composites research tool.

  2. The Comparison of Shear Bond Strength Between Fibre Reinforced Composite Posts with Three Different Composite Core Materials – An In vitro Study

    PubMed Central

    Anche, Sampath; Kakarla, Pranitha; Kadiyala, Krishna Kishore; Sreedevi, B.; Chiramana, Sandeep; Dev J., Ravi Rakesh; Manne, Sanjay Dutt; G., Deepthi

    2014-01-01

    Aim: The aim of this study is to compare the shear bond strength between fiber reinforced composite post with three different composite core materials. Materials and Methods: The materials used for the study were: 30 maxillary central incisors, pre fabricated fiber reinforced composite post (postec plus posts), Multi-core heavy body, Ti-core, Fluoro-core, Etchant gel, Silane coupling agent, Dentin bonding agent, Standardized gutta percha points, Rely-X dual cure composite resin. A total of 30 human maxillary central incisor were selected for this study. They were divided into three groups of 10 specimens each namely A, B and C. Results: The results obtained were analyzed by using one way analysis (ANOVA) and Tukey Honestly Significant Difference and they showed highest mean shear bond strength for group C when compared with group A and group B. There is no significant difference in the shear bond strength values between group A and group B. Conclusion: The teeth restored with multicore HB showed highest shear bond strength. The teeth restored with Fluoro core showed lowest shear bond strength. No statistically significant difference exists between the shear bond strength values between Ti-core and Fluoro-core. PMID:24596784

  3. Damage and failure mechanisms of a 3-directional carbon/carbon composite under uniaxial tensile and shear loads

    SciTech Connect

    Siron, O.; Lamon, J.

    1998-11-20

    The mechanical behavior of a three-directional carbon/carbon (C/C) composite under tensile and shear loads is investigated in relation with the failure mechanisms and, the fiber architecture. This three-directional C/C composite was produced by Chemical Vapor Infiltration of a needled fiber preform of multiple layers of satin woven tows. The C/C composite exhibited several interesting features including an essentially non-linear stress-strain behavior and permanent deformations. Three families of matrix cracks were identified under tensile and shear loads, including microcracks in the tows, intertow delamination and cracks across the longitudinal tows. It was found that the delamination cracks affect preponderantly the stress-strain behavior and the mechanical properties. Similar features in the mechanical behavior and the failure mechanisms were highlighted under tension and under shear loading.

  4. Quantification of Shear-Relative Asymmetries in Eyewall Slope Using Airborne Doppler Radar Composites

    NASA Astrophysics Data System (ADS)

    Hazelton, A.; Rogers, R.; Hart, R. E.

    2013-12-01

    Recently, it has become apparent that typical methods for analyzing tropical cyclones (TCs), such as track and intensity, are insufficient for evaluating TC structural evolution and numerical model forecasts of that evolution. Many studies have analyzed different metrics related to TC inner-core structure in an attempt to better understand the processes that drive changes in core structure. One important metric related to vertical TC structure is the slope of the eyewall. Hazelton and Hart (2013) discussed azimuthal mean eyewall slope based on radar reflectivity data, and its relationship with TC intensity and core structure. That study also noted significant azimuthal variation in slopes, but did not significantly explore reasons for this variation. Accordingly, in this study, we attempt to quantify the role of vertical wind shear in causing azimuthal variance of slope, using research quality Doppler radar composites from the NOAA Hurricane Research Division (HRD). We analyze the slope of the 20 dBZ surface as in Hazelton and Hart (2013), and also look at azimuthal variation in other measures of eyewall slope, such as the slope of the radius of maximum winds (RMW), which has been analyzed in an azimuthal mean sense by Stern and Nolan (2009), and an angular momentum surface. The shear-relative slopes are quantified by separating the radar data into four quadrants relative to the vertical shear vector: Downshear Left (DSL), Upshear Left (USL), Upshear Right (USR), and Downshear Right (DSR). This follows the method employed in shear-relative analyses of other aspects of TC core structure, such as Rogers et al. (2013) and Reasor et al. (2013). The data suitable for use in this study consist of 36 flights into 15 different TCs (14 Atlantic, 1 Eastern Pacific) between 1997 and 2010. Preliminary results show apparent shear-induced asymmetries in eyewall slope. The slope of the RMW shows an asymmetry due to the tilt of the vortex approximately along the shear vector, with

  5. 3-D shear lag model for the analysis of interface damage in ceramic matrix composites

    SciTech Connect

    Dharani, L.R.; Ji, F.

    1995-12-31

    In this paper a micromechanics analytical model is presented for characterizing the behavior of a unidirectional brittle matrix composite containing initial matrix flaws, specifically, as they approach a fiber-matrix interface. It is contemplated that when a matrix crack impinges on the interface it may go around the fiber or go through the fiber by breaking it or debond the fiber/matrix interface. It has been experimentally observed that the crack front does not remain straight, rather it bows once it impinges on a row of fibers. If a unit cell approach is used, the problem is clearly non-axisymmetric and three-dimensional. Since most of the previous analyses dealing with self-similar cracking and interface debonding have considered axisymmetric cracking or two-dimensional planar geometries, the development of an analytical micromechanics model using a 3-D (non-axisymmetric) formulation is needed. The model is based on the consistent shear lag constitutive relations and does account for the large stiffness of the ceramic matrix. Since the present consistent shear lag model is for Cartesian coordinates, we have first derived the consistent shear lag constitutive relations in cylindrical coordinates. The governing equations are obtained by minimizing the potential energy in which the three displacements are represented by means of finite exponential series. Since the full field stresses and displacements are known, the strain energy release rates for self-similar extension of the matrix crack (Gp) and the interface debonding (Gd) are calculated using the Compliance method. The competition between various failure modes will be assessed based on the above strain energy release rates and the corresponding critical (toughness) values. The type of interfaces addressed include fictional, elastic, and gradient with varying properties (interphase). An extensive parametric study will be presented involving different constitutive properties and interface conditions.

  6. A problem formulation for glideslope tracking in wind shear using advanced robust control techniques

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Chang, B.-C.; Fischl, Robert

    1992-01-01

    A formulation of the longitudinal glideslope tracking of a transport-class aircraft in severe wind shear and turbulence for application to robust control system design is presented. Mathematical wind shear models are incorporated into the vehicle mathematical model, and wind turbulence is modeled as an input disturbance signal. For this problem formulation, the horizontal and vertical wind shear gradients are treated as real uncertain parameters that vary over an entire wind shear profile. The primary objective is to examine the formulation of this problem into an appropriate design format for use in m-synthesis control system design.

  7. Experimental and analytical study on seismic behavior of steel-concrete multienergy dissipation composite shear walls

    NASA Astrophysics Data System (ADS)

    Dong, Hongying; Cao, Wanlin; Wu, Haipeng; Qiao, Qiyun; Yu, Chuanpeng

    2015-03-01

    In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is proposed. In order to study the multi-energy dissipation behavior and restorability after an earthquake, two stages of low cyclic loading tests were carried out on ten test specimens. In the first stage, test on five specimens with different number of SP deep beams was carried out, and the test lasted until the displacement drift reached 2%. In the second stage, thin SPs were welded to both sides of the five specimens tested in the first stage, and the same test was carried out on the repaired specimens (designated as new specimens). The load-bearing capacity, stiffness, ductility, hysteretic behavior and failure characteristics were analyzed for both stages and the results are discussed herein. Extrapolating from these results, strength calculation models and formulas are proposed herein and simulations using ABAQUS carried out; they show good agreement with the test results. The study demonstrates that SRC columns, SP deep beams, concrete wall and energy dissipation strips cooperate well and play an important role in energy dissipation. In addition, this study shows that the shear wall has good recoverability after an earthquake, and that the welding of thin SP's to repair a deformed wall is a practicable technique.

  8. Gluten protein composition in several fractions obtained by shear induced separation of wheat flour.

    PubMed

    van der Zalm, Elizabeth E J; Grabowska, Katarzyna J; Strubel, Maurice; van der Goot, Atze J; Hamer, Rob J; Boom, Remko M

    2010-10-13

    Recently, it was found that applying curvilinear shear flow in a cone-cone shearing device to wheat flour dough induces separation, resulting in a gluten-enriched fraction in the apex of the cone and gluten-depleted fraction at the outer part. This article describes whether fractionation of the various proteineous components occurs during and after separation of Soissons wheat flour. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and size-exclusion high performance liquid chromatography (SE-HPLC) were found to be suitable techniques for this. It is concluded that all protein fractions migrate to the center of the cone as a result of which the composition of the gluten-enriched fraction remains rather similar to that in the original flour. However, the larger glutenin polymer fraction migrated faster, as a result of which the concentration of large polymers was increased with a factor 2.4 compared to that of Soissons flour. The concentration of monomers in the gluten-enriched fraction was decreased to 70% of the original concentration in the original wheat flour.

  9. Exact solutions for coupled free vibrations of tapered shear-flexible thin-walled composite beams

    NASA Astrophysics Data System (ADS)

    Piovan, Marcelo T.; Filipich, Carlos P.; Cortínez, Víctor H.

    2008-09-01

    In this paper, analytical solutions for the free vibration analysis of tapered thin-walled laminated-composite beams with both closed and open cross-sections are developed. The present study is based on a recently developed model that incorporates in a full form the shear flexibility. The model considers shear flexibility due to bending as well as warping related to non-uniform torsion. The theory is briefly reviewed with the aim to present the equilibrium equations, the related boundary conditions and the constitutive equations. The stacking sequences in the panels of the cross-sections are selected in order to behave according to certain elastic coupling features. Typical laminations for a box-beam such as circumferentially uniform stiffness (CUS) or circumferentially asymmetric stiffness (CAS) configurations are adopted. For open cross-sections, special laminations behaving elastically like the CAS and CUS configurations of closed sections are also taken into account. The exact values (i.e. with arbitrary precision) of frequencies are obtained by means of a generalized power series methodology. A recurrence scheme is introduced with the aim to simplify the algebraic manipulation by shrinking the number of unknown variables. A parametric analysis for different taper ratios, slenderness ratios and stacking sequences is performed. Numerical examples are also carried out focusing attention in the validation of the present theory with respect to 2D FEM computational approaches, as well as to serve as quality test and convergence test of former finite elements schemes.

  10. Bioresorbable composite screws manufactured via forging process: pull-out, shear, flexural and degradation characteristics.

    PubMed

    Felfel, R M; Ahmed, I; Parsons, A J; Rudd, C D

    2013-02-01

    Bioresorbable screws have the potential to overcome some of the complications associated with metallic screws currently in use. Removal of metallic screws after bone has healed is a serious issue which can lead to refracture due to the presence of screw holes. Poly lactic acid (PLA), fully 40 mol% P(2)O(5) containing phosphate unidirectional (P40UD) and a mixture of UD and short chopped strand random fibre mats (P40 70%UD/30%RM) composite screws were prepared via forging composite bars. Water uptake and mass loss for the composite screws manufactured increased significantly to ∼1.25% (P=0.0002) and ∼1.1% (P<0.0001), respectively, after 42 days of immersion in PBS at 37 °C. The initial maximum flexural load for P40 UD/RM and P40 UD composite screws was ∼60% (P=0.0047) and ∼100% (P=0.0037) higher than for the PLA screws (∼190 N), whilst the shear load was slightly higher in comparison to PLA (∼2.2 kN). The initial pull-out strengths for the P40 UD/RM and PLA screws were similar whereas that for P40 UD screws was ∼75% higher (P=0.022). Mechanical properties for the composite screws decreased initially after 3 days of immersion and this reduction was ascribed to the degradation of the fibre/matrix interface. After 3 days interval the mechanical properties (flexural, shear and pull-out) maintained their integrity for the duration of the study (at 42 days). This property retention was attributed to the chemical durability of the fibres used and stability of the matrix properties during the degradation process. It was also deemed necessary to enhance the fibre/matrix interface via use of a coupling agent in order to maintain the initial mechanical properties acquired for the required period of time. Lastly, it is also suggested that the degrading reinforcement fibres may have the potential to buffer any acidic products released from the PLA matrix. PMID:23262309

  11. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of several types of graphite/polyimide (GR/PI) bonded and bolted joints is reported. The program consists of two concurrent tasks: (1) design and test of specific built up attachments; and (2) evaluation of standard advanced bonded joint concepts. A data base for the design and analysis of advanced composite joints for use at elevated temperatures (561K (550 deg F)) to design concepts for specific joining applications, and the fundamental parameters controlling the static strength characteristics of such joints are evaluated. Data for design and build GR/PI of lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Results for compression and interlaminar shear strengths of Celion 6000/PMR-15 laminates are given. Static discriminator test results for type 3 and type 4 bonded and bolted joints and final joint designs for TASK 1.4 scale up fabrication and testing are presented.

  12. Advances in thermoplastic matrix composite materials

    SciTech Connect

    Newaz, G.M.

    1989-01-01

    Accounts are given of the development status of thermoplastic composite processing methods, as well as their current thermal and mechanical behavior and delamination properties. Attention is given to the thermoplastic coating of carbon fibers, pultrusion-process modeling, the high temperature behavior of graphite/PEEK, the thermal conductivity of composites for electronic packaging, a FEM analysis of mode I and II thermoplastic-matrix specimens, and reinforcements' resin-impregnation behavior during thermoplastic composite manufacture. Also discussed are the mechanical properties of carbon fiber/PEEK for structural applications, moisture-content mechanical property effects in PPS-matrix composites, the interlaminar fracture toughness of thermoplastic composites, and thermoplastic composite delamination growth under elevated temperature cyclic loading.

  13. Effect of nanocomposite composition on shear and elongational rheological behavior of PLA/MMT hybrids

    NASA Astrophysics Data System (ADS)

    Garofalo, Emilia; Scarfato, Paola; Di Maio, Luciano; Incarnato, Loredana

    2014-05-01

    The present work focuses on the possibility of conveniently tuning materials in PLA based nanocomposites in order to improve their processability in manufacturing processes where extensional flow is mainly involved. Nanocomposites at a constant silicate loading were produced by melt compounding, using a commercial polylactide grade (PLA 4032D) and two different organo-silicates (Cloisite 30B and Nanofil SE3010). A morphological characterization in solid and molten state, realized by TEM investigations and shear rheological measurements, firstly pointed out the influence of composition on the nanostructure of the hybrid systems. All the samples were then submitted to uniaxial stretching and the rheological response of the different nanocomposites was correlated to the initial nanostructure and the different polymer-clay affinity.

  14. Shear-lag analysis of a hybrid, unidirectional composite with fiber damage

    NASA Technical Reports Server (NTRS)

    Goree, J. G.; Dharani, L. R.

    1983-01-01

    Development of a method of analysis capable of predicting accurately the fracture behavior of unidirectional hybrid (buffer strip) composite laminates was studied. Three particular solutions are discussed in detail: broken fibers in a unidirectional half-plane; adjoined half planes of different fiber and matrix properties; and the solution of two half planes bounding a third distinct region of finite width. This finite width region represents a buffer strip and primary attention is given to the potential of this strip to arrest a crack that originates in one of the half planes. A materials modeling approach using the classical shear lag assumption to describe the stress transfer between fibers was analyzed. Explicit fiber and matrix properties of the three regions are retained, and changes in the laminate behavior as a function of the relative material properties, buffer strip width, and initial crack length are discussed.

  15. Modeling shear instability and fracture in dynamically deformed Al/W granular composites

    NASA Astrophysics Data System (ADS)

    Olney, Karl; Benson, David; Nesterenko, Vitali

    2011-06-01

    Aluminum/Tungsten granular composites are materials which combine high density and strength with bulk distributed fracture of Al matrix into small particles under impact or shock loading. They are processed using cold and hot isostatic pressing of W particles/rods in the matrix of Al powder. The presentation will describe modeling of these materials under dynamic conditions simulating low velocity high energy impact in drop weight test (10 m/s) and also behavior following impact with velocities up to 1200 m/s. It will be demonstrated that morphology of W component and bonding between Al particles dramatically affects their strength, shear localization and mode of fracture of Al matrix. The support for this project provided by the Office of Naval Research Multidisciplinary University Research Initiative Award N00014-07-1-0740 (Program Officer Dr. Clifford Bedford).

  16. Advanced resin systems for graphite epoxy composites

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J.; Jayarajan, A.

    1980-01-01

    The value of resin/carbon fiber composites as lightweight structures for aircraft and other vehicle applications is dependent on many properties: environmental stability, strength, toughness, resistance to burning, smoke produced when burning, raw material costs, and complexity of processing. A number of woven carbon fiber and epoxy resin composites were made. The epoxy resin was commercially available tetraglycidylmethylene dianiline. In addition, composites were made using epoxy resin modified with amine and carboxyl terminated butadiene acrylonitrile copolymer. Strength and toughness in flexure as well as oxygen index flammability and NBS smoke chamber tests of the composites are reported.

  17. Advanced composite applications for sub-micron biologically derived microstructures

    NASA Technical Reports Server (NTRS)

    Schnur, J. M.; Price, R. R.; Schoen, P. E.; Bonanventura, Joseph; Kirkpatrick, Douglas

    1991-01-01

    A major thrust of advanced material development is in the area of self-assembled ultra-fine particulate based composites (micro-composites). The application of biologically derived, self-assembled microstructures to form advanced composite materials is discussed. Hollow 0.5 micron diameter cylindrical shaped microcylinders self-assemble from diacetylenic lipids. These microstructures have a multiplicity of potential applications in the material sciences. Exploratory development is proceeding in application areas such as controlled release for drug delivery, wound repair, and biofouling as well as composites for electronic and magnetic applications, and high power microwave cathodes.

  18. The effect of various primers on shear bond strength of zirconia ceramic and resin composite

    PubMed Central

    Sanohkan, Sasiwimol; Kukiattrakoon, Boonlert; Larpboonphol, Narongrit; Sae-Yib, Taewalit; Jampa, Thibet; Manoppan, Satawat

    2013-01-01

    Aims: To determine the in vitro shear bond strengths (SBS) of zirconia ceramic to resin composite after various primer treatments. Materials and Methods: Forty zirconia ceramic (Zeno, Wieland Dental) specimens (10 mm in diameter and 2 mm thick) were prepared, sandblasted with 50 μm alumina, and divided into four groups (n = 10). Three experimental groups were surface treated with three primers; CP (RelyX Ceramic Primer, 3M ESPE), AP (Alloy Primer, Kuraray Medical), and MP (Monobond Plus, Ivoclar Vivadent AG). One group was not treated and served as the control. All specimens were bonded to a resin composite (Filtek Supreme XT, 3M ESPE) cylinder with an adhesive system (Adper Scotchbond Multi-Purpose Plus Adhesive, 3M ESPE) and then stored in 100% humidity at 37°C for 24 h before SBS testing in a universal testing machine. Mean SBS (MPa) were analyzed with one-way analysis of variance (ANOVA) and the Tukey's Honestly Significant Difference (HSD) test (α = 0.05). Results: Group AP yielded the highest mean and standard deviation (SD) value of SBS (16.8 ± 2.5 MPa) and Group C presented the lowest mean and SD value (15.4 ± 1.6 MPa). The SBS did not differ significantly among the groups (P = 0.079). Conclusions: Within the limitations of this study, the SBS values between zirconia ceramic to resin composite using various primers and untreated surface were not significantly different. PMID:24347881

  19. Dynamic analysis of composite beam subjected to harmonic moving load based on the third-order shear deformation theory

    NASA Astrophysics Data System (ADS)

    Rezvanil, Mohammad Javad; Kargarnovin, Mohammad Hossein; Younesian, Davood

    2011-12-01

    The response of an infinite Timoshenko beam subjected to a harmonic moving load based on the thirdorder shear deformation theory (TSDT) is studied. The beam is made of laminated composite, and located on a Pasternak viscoelastic foundation. By using the principle of total minimum potential energy, the governing partial differential equations of motion are obtained. The solution is directed to compute the deflection and bending moment distribution along the length of the beam. Also, the effects of two types of composite materials, stiffness and shear layer viscosity coefficients of foundation, velocity and frequency of the moving load over the beam response are studied. In order to demonstrate the accuracy of the present method, the results TSDT are compared with the previously obtained results based on first-order shear deformation theory, with which good agreements are observed.

  20. Basic failure mechanisms in advanced composites

    NASA Technical Reports Server (NTRS)

    Mullin, J. V.; Mazzio, V. F.; Mehan, R. L.

    1972-01-01

    Failure mechanisms in carbon-epoxy composites are identified as a basis for more reliable prediction of the performance of these materials. The approach involves both the study of local fracture events in model specimens containing small groups of filaments and fractographic examination of high fiber content engineering composites. Emphasis is placed on the correlation of model specimen observations with gross fracture modes. The effects of fiber surface treatment, resin modification and fiber content are studied and acoustic emission methods are applied. Some effort is devoted to analysis of the failure process in composite/metal specimens.

  1. The Advanced Composition Explorer power subsystem

    SciTech Connect

    Panneton, P.E.; Tarr, J.E.; Goliaszewski, L.T.

    1998-07-01

    The Johns Hopkins University Applied Physics Laboratory, under contract with NASA Goddard Space Flight Center, has designed and launched the Advanced Composition Explorer (ACE) spacecraft. ACE is a scientific observatory housing ten instruments, and is located in a halo orbit about the L1 Sun-Earth libration point. ACE is providing real-time solar wind monitoring and data on elemental and isotopic matter of solar and galactic origin. The ACE Electrical Power Subsystem (EPS) is a fault tolerant, solar powered, shunt regulated, direct energy transfer architecture based on the Midcourse Space Experiment (MSX) EPS. The differences are that MSX used oriented solar arrays with a nickel hydrogen-battery defined bus, while ACE uses fixed solar panels with a regulated bus decoupled from its nickel cadmium (NiCd) battery. Also, magnetometer booms are mounted on two of the four ACE solar panels. The required accuracy of the magnetometers impose severe requirements on the magnetic fields induced by the solar array. Other noteworthy features include a solar cell degradation experiment, in-flight battery reconditioning, a battery requalified to a high vibrational environment, and an adjustable bus voltage setpoint. The four solar panels consist of aluminum honeycomb substrates covered with 15.1% efficient silicon cells. The cells are strung using silver interconnects and are back-wired to reduce magnetic emissions below 0.1nT. Pyrotechnic actuated, spring loaded hinges deploy the panels after spacecraft separation from the Delta II launch vehicle. Solar cell experiments on two of the panels track cell performance degradation at L1, and also distinguish any hydrazine impingement degradation which may be caused by the thrusters. Each solar panel uses a digital shunt box, containing blocking diodes and MOSFETs, for short-circuit control of its 5 solar strings. A power box contains redundant analog MOSFET shunts, the 90% efficient boost regulator, and redundant battery chargers

  2. Failure behavior for composite single-bolted joints in double shear tension

    NASA Astrophysics Data System (ADS)

    Tang, Zhanwen; Liu, Hanyang; Yang, Zhiyong; Shi, Hanqiao; Sun, Baogang

    2016-05-01

    In order to improve the reliability and load carrying capacity of composite laminates structures which were lap jointed by bolt, in this paper, the failure strength and failure mode of laminated composite pinned-joints is investigated. To determine the effects of joint geometry and stacking sequence on the bearing strength and damage mode, the multi-scale numerical model combining with the Generalized Method of Cells (GMC) and considering the failure and the damage of constituent materials was created based on the ABAQUS and its user subroutine (USDFLD). A three-dimensional finite element technique was used for the stress analysis. Based on the three-dimensional state of stress of each element, different failure modes were detected by the failure theories of constituent materials, all of which are applied at the fiber, matrix and fiber-matrix interface constituent level. Numerical simulations have been carried out by which edge distance-to-hole diameter ratio, and plate width-to-hole diameter ratio are varied, The composite laminated plates are stacked with the following four different orientations: [+45/-45]2s, [90/+45/-45]s, and [0/90/0]s, the results show that failure mode and bearing strength are closely related to by stacking sequence of plates and geometrical parameters. Finally, the ultimate strength and failure modes of composite bolted joints in static tension double-shear loading conditions are predicted by using the progressive damage method established and the effects of layup and dimension of laminates on the properties of the connection structure were researched in this paper. An excellent agreement is found between data obtained from this study and the experiment.

  3. Film in the Advanced Composition Classroom: A Tapestry of Style

    ERIC Educational Resources Information Center

    Durst, Pearce

    2015-01-01

    This article advances film as worthy of rhetorical inquiry and deserving of more sustained attention in the advanced composition classroom. The first section identifies various approaches to the "language" of film, which can be adopted to navigate the technical, rhetorical, and cultural concerns needed to compose informed multimodal…

  4. Graphite/Polyimide Composites. [conference on Composites for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Dexter, H. B. (Editor); Davis, J. G., Jr. (Editor)

    1979-01-01

    Technology developed under the Composites for Advanced Space Transportation System Project is reported. Specific topics covered include fabrication, adhesives, test methods, structural integrity, design and analysis, advanced technology developments, high temperature polymer research, and the state of the art of graphite/polyimide composites.

  5. Advanced composites: Design and application. Proceedings of the meeting of the Mechanical Failures Prevention Group

    NASA Technical Reports Server (NTRS)

    Shives, T. R.; Willard, W. A.

    1979-01-01

    The design and application of advanced composites is discussed with emphasis on aerospace, aircraft, automotive, marine, and industrial applications. Failure modes in advanced composites are also discussed.

  6. Evaluation of micro-shear bond strength of resin modified glass-ionomer to composite resins using various bonding systems

    PubMed Central

    Kasraie, Shahin; Shokripour, Mohadese; Safari, Mahin

    2013-01-01

    Aim: The aim was to compare the micro-shear bond strength between composite and resin-modified glass-ionomer (RMGI) by different adhesive systems. Materials and Methods: A total of 16 discs of RMGI with a diameter of 15 mm and a thickness of 2 mm were randomly divided into four groups (n = 4). Four cylinders of composite resin (z250) were bonded to the RMGI discs with Single Bond, Clearfil SE Bond and Clearfil S3 Bond in Groups 1-3, respectively. The fourth group was the control. Samples were tested by a mechanical testing machine with a strain rate of 0.5 mm/min. Failure mode was assessed under a stereo-microscope. Results: The means of micro-shear bond strength values for Groups 1-4 were 14.45, 23.49, 16.23 and 5.46 MPa, respectively. Using a bonding agent significantly increased micro-shear bond strength (P = 0.0001). Conclusion: Micro-shear bond strength of RMGI to composite increased significantly with the use of adhesive resin. The bond strength of RMGI to composite resin could vary depending upon the type of adhesive system used. PMID:24347892

  7. Effect of an Extra Hydrophobic Resin Layer on Repair Shear Bond Strength of a Silorane-Based Composite Resin

    PubMed Central

    Mohammadi, Narmin; Bahari, Mahmoud; Kimyai, Soodabeh; Rahbani Nobar, Behnam

    2015-01-01

    Objectives: Composite repair is a minimally invasive and conservative approach. This study aimed to evaluate the effect of an additional hydrophobic resin layer on the repair shear bond strength of a silorane-based composite repaired with silorane or methacrylate-based composite. Materials and Methods: Sixty bar-shaped composite blocks were fabricated and stored in saline for 72 hours. The surface of the samples were roughened by diamond burs and etched with phosphoric acid; then, they were randomly divided into three groups according to the repairing process: Group 1: Silorane composite-silorane bonding agent-silorane composite; group 2: Silorane composite-silorane bonding agent-hydrophobic resin-silorane composite, and group 3: Silorane composite-silorane bonding agent-hydrophobic resin methacrylate-based composite. Repairing composite blocks measured 2.5×2.5×5mm. After repairing, the samples were stored in saline for 24 hours and thermocycled for 1500 cycles. The repair bond strength was measured at a strain rate of 1mm/min. Twenty additional cylindrical composite blocks (diameter: 2.5mm, height: 6mm) were also fabricated for measuring the cohesive strength of silorane-based composite. The data were analyzed using One-way ANOVA and the post hoc Tukey’s test (α=0.05). Results: Cohesive bond strength of silorane composite was significantly higher than the repair bond strengths in other groups (P<0.001). The repair bond strength of group 3 was significantly higher than that of group 1 (P=0.001). Conclusion: Application of an additional hydrophobic resin layer for repair of silorane-based composite with a methacrylate-based composite enhanced the repair shear bond strength. PMID:27559348

  8. A Study on Effect of Surface Treatments on the Shear Bond Strength between Composite Resin and Acrylic Resin Denture Teeth.

    PubMed

    Chatterjee, Nirmalya; Gupta, Tapas K; Banerjee, Ardhendu

    2011-03-01

    Visible light-cured composite resins have become popular in prosthetic dentistry for the replacement of fractured/debonded denture teeth, making composite denture teeth on partial denture metal frameworks, esthetic modification of denture teeth to harmonize with the characteristics of adjacent natural teeth, remodelling of worn occlusal surfaces of posterior denture teeth etc. However, the researches published on the bond strength between VLC composite resins and acrylic resin denture teeth is very limited. The purpose of this study is to investigate the effect of five different methods of surface treatments on acrylic resin teeth on the shear bond strength between light activated composite resin and acrylic resin denture teeth. Ninety cylindrical sticks of acrylic resin with denture teeth mounted atop were prepared. Various treatments were done upon the acrylic resin teeth surfaces. The samples were divided into six groups, containing 15 samples each. Over all the treated and untreated surfaces of all groups, light-cured composite resin was applied. The shear strengths were measured in a Universal Testing Machine using a knife-edge shear test. Data were analyzed using one way analysis of variance (ANOVA) and mean values were compared by the F test. Application of bonding agent with prior treatment of methyl methacrylate on the acrylic resin denture teeth resulted in maximum bond strength with composite resin.

  9. Mechanically fastened composite laminates subjected to combined bearing-bypass and shear loading

    NASA Technical Reports Server (NTRS)

    Madenci, Erdogan

    1993-01-01

    Bolts and rivets provide a means of load transfer in the construction of aircraft. However, they give rise to stress concentrations and are often the source and location of static and fatigue failures. Furthermore, fastener holes are prone to cracks during take-off and landing. These cracks present the most common origin of structural failures in aircraft. Therefore, accurate determination of the contact stresses associated with such loaded holes in mechanically fastened joints is essential to reliable strength evaluation and failure prediction. As the laminate is subjected to loading, the contact region, whose extent is not known, develops between the fastener and the hole boundary through this contact region, which consists of slip and no-slip zones due to friction. The presence of the unknown contact stress distribution over the contact region between the pin and the composite laminate, material anisotropy, friction between the pin and the laminate, pin-hole clearance, combined bearing-bypass and shear loading, and finite geometry of the laminate result in a complex non-linear problem. In the case of bearing-bypass loading in compression, this non-linear problem is further complicated by the presence of dual contact regions. Previous research concerning the analysis of mechanical joints subjected to combined bearing-bypass and shear loading is non-existent. In the case of bearing-bypass loading only, except for the study conducted by Naik and Crews (1991), others employed the concept of superposition which is not valid for this non-linear problem. Naik and Crews applied a linear finite element analysis with conditions along the pin-hole contact region specified as displacement constraint equations. The major shortcoming of this method is that the variation of the contract region as a function of the applied load should be known a priori. Also, their analysis is limited to symmetric geometry and material systems, and frictionless boundary conditions. Since the

  10. The Effect of Fracture Filler Composition on the Parameters of Shear Deformation Regime

    NASA Astrophysics Data System (ADS)

    Pavlov, D.; Ostapchuk, A.; Batuhtin, I.

    2015-12-01

    Geomechanical models of different slip mode nucleation and transformation can be developed basing on laboratory experiments, in which regularities of shear deformation of gouge-filled faults are studied. It's known that the spectrum of possible slip modes is defined by both macroscopic deformation characteristics of the fault and mesoscale structure of fault filler. Small variations of structural parameters of the filler may lead to a radical change of slip mode [1, 2]. This study presents results of laboratory experiments investigating regularities of shear deformation of discontinuities filled with multicomponent granular material. Qualitative correspondence between experimental results and natural phenomena is detected. The experiments were carried out in the classical "slider model" statement. A granite block slides under shear load on a granite substrate. The contact gap between rough surfaces was filled with a discrete material, which simulated the principal slip zone of a fault. The filler components were quartz sand, salt, glass beads, granite crumb, corundum, clay and pyrophyllite. An entire spectrum of possible slip modes was obtained - from stable slip to slow-slip events and to regular stick-slip with various coseismic displacements realized per one act of instability. Mixing several components in different proportions, it became possible to trace the gradual transition from stable slip to regular stick-slip, from slow-slip events to fast-slip events. Depending on specific filler component content, increasing the portion of one of the components may lead to both a linear and a non-linear change of slip event moment (a laboratory equivalent of the seismic moment). For different filler compositions durations of equal-moment events may differ by more than two orders of magnitude. The findings can be very useful for developing geomechnical models of nucleation and transformation of different slip modes observed at natural faults. The work was supported by

  11. Trapped rubber processing for advanced composites

    NASA Technical Reports Server (NTRS)

    Marra, P. J.

    1976-01-01

    Trapped rubber processing is a molding technique for composites in which precast silicone rubber is placed within a closed cavity where it thermally expands against the composite's surface supported by the vessel walls. The method has been applied by the Douglas Aircraft Company, under contract to NASA-Langley, to the design and fabrication of 10 DC-10 graphite/epoxy upper aft rudder assemblies. A three-bay development tool form mold die has been designed and manufactured, and tooling parameters have been established. Fabrication procedures include graphite layup, assembly of details in the tool, and a cure cycle. The technique has made it possible for the cocured fabrication of complex primary box structures otherwise impracticable via standard composite material processes.

  12. Aeroelastic behavior of composite helicopter rotor blades with advanced geometry tips

    SciTech Connect

    Friedmann, P.P.; Yuan, K.A.

    1995-12-31

    A new structural and aeroelastic model capable of representing the aeroelastic stability and response of composite helicopter rotor blades with advanced geometry tips is presented. Where it is understood that advanced geometry tips are blade tips having sweep, anhedral and taper in the outboard 10% segment of the blade. The blade is modeled by beam finite elements. A single element is used to represent the swept tip. The nonlinear equations of motion are derived using the Hamilton`s principle and are based on moderate deflection theory. Thus, the nonlinearities are of the geometric type. The important structural blade attributes captured by the model are arbitrary cross-sectional shape, general anisotropic material behavior, transverse shear and out-of-plane warping. The aerodynamic loads are based on quasi-steady Greenberg theory with reverse flow effects, using an implicit formulation. The nonlinear aeroelastic response of the blade is obtained from a fully coupled propulsive trim/aeroelastic response analysis. Aeroelastic stability is obtained from linearizing the equations of motion about the steady state response of the blade and using Floquet theory. Numerical results for the aeroelastic stability and response of a hingeless composite blade with two cell type cross section are presented, together with vibratory hub shears and moments. The influence of ply orientation and tip sweep is clearly illustrated by the results.

  13. Advanced Composition and the Computerized Library.

    ERIC Educational Resources Information Center

    Hult, Christine

    1989-01-01

    Discusses four kinds of computerized access tools: online catalogs; computerized reference; online database searching; and compact disks and read only memory (CD-ROM). Examines how these technologies are changing research. Suggests how research instruction in advanced writing courses can be refocused to include the new technologies. (RS)

  14. Advances in the history of composite resins.

    PubMed

    Minguez, Nieves; Ellacuria, Joseba; Soler, José Ignacio; Triana, Rodrigo; Ibaseta, Guillermo

    2003-11-01

    The use of composite resins as direct restoration material in posterior teeth has demonstrated a great increase, due to esthetic requirements and the controversy regarding the mercury content in silver amalgams. In this article, we have reviewed the composition modifications which have occurred in materials based on resins since their introduction over a half a century ago which have enabled great improvements in their physical and mechanical properties. Likewise, we have highlighted current lines of research, centered on finding the ideal material for replacing silver amalgam as a direct filling material.

  15. Electron processing of fibre-reinforced advanced composites

    NASA Astrophysics Data System (ADS)

    Singh, Ajit; Saunders, Chris B.; Barnard, John W.; Lopata, Vince J.; Kremers, Walter; McDougall, Tom E.; Chung, Minda; Tateishi, Miyoko

    1996-08-01

    Advanced composites, such as carbon-fibre-reinforced epoxies, are used in the aircraft, aerospace, sporting goods, and transportation industries. Though thermal curing is the dominant industrial process for advanced composites, electron curing of similar composites containing acrylated epoxy matrices has been demonstrated by our work. The main attraction of electron processing technology over thermal technology is the advantages it offers which include ambient temperature curing, reduced curing times, reduced volatile emissions, better material handling, and reduced costs. Electron curing technology allows for the curing of many types of products, such as complex shaped, those containing different types of fibres, and up to 15 cm thick. Our work has been done principally with the AECL's 10 MeV, 1 kW electron accelerator; we have also done some comparative work with an AECL Gammacell 220. In this paper we briefly review our work on the various aspects of electron curing of advanced composites and their properties.

  16. Investigation of the shear thinning behavior of epoxy resins for utilization in vibration assisted liquid composite molding processes

    NASA Astrophysics Data System (ADS)

    Meier, R.; Kirdar, C.; Rudolph, N.; Zaremba, S.; Drechsler, K.

    2014-05-01

    Efficient production and consumption of energy are of greatest importance for contemporary industries and their products. This has led to an increasing application of lightweight materials in general and of Carbon Fiber Reinforced Plastics (CFRP) in particular. However, broader application of CFRP is often limited by high costs and manual labor production processes. These constraints are addressed by Liquid Composite Molding (LCM) processes. In LCM a dry fibrous preform is placed into a cavity and infiltrated mostly by thermoset resins; epoxy resins are wide spread in CFRP applications. One crucial parameter for a fast mold filling is the viscosity of the resin, which is affected by the applied shear rates as well as temperature and curing time. The work presented focuses on the characterization of the shear thinning behavior of epoxy resins. Furthermore, the correlation with the conditions in vibration assisted LCM processes, where additional shear rates are created during manufacture, is discussed. Higher shear rates result from high frequencies and/or high amplitudes of the vibration motions which are created by a vibration engine mounted on the mold. In rheological investigations the shear thinning behavior of a representative epoxy resin is studied by means of rotational and oscillatory experiments. Moreover, possible effects of shear rates on the chemical curing reaction are studied. Here, the time for gelation is measured for different levels of shear rates in a pre-shearing phase. Based on the rheological studies, the beneficial effect of vibration assistance in LCM processes with respect to mold filling can further be predicted and utilized.

  17. Effect of various intraoral repair systems on the shear bond strength of composite resin to zirconia

    PubMed Central

    Han, In-Hae; Kang, Dong-Wan; Chung, Chae-Heon; Choe, Han-Cheol

    2013-01-01

    PURPOSE This study compared the effect of three intraoral repair systems on the bond strength between composite resin and zirconia core. MATERIALS AND METHODS Thirty zirconia specimens were divided into three groups according to the repair method: Group I- CoJet™ Repair System (3M ESPE) [chairside silica coating with 30 µm SiO2 + silanization + adhesive]; Group II- Ceramic Repair System (Ivoclar Vivadent) [etching with 37% phosphoric acid + Zirconia primer + adhesive]; Group III- Signum Zirconia Bond (Heraus) [Signum Zirconia Bond I + Signum Zirconia Bond II]. Composite resin was polymerized on each conditioned specimen. The shear bond strength was tested using a universal testing machine, and fracture sites were examined with FE-SEM. Surface morphology and wettability after surface treatments were examined additionally. The data of bond strengths were statistically analyzed with one-way ANOVA and Tamhane post hoc test (α=.05). RESULTS Increased surface roughness and the highest wettability value were observed in the CoJet sand treated specimens. The specimens treated with 37% phosphoric acid and Signum Zirconia Bond I did not show any improvement of surface irregularity, and the lowest wettability value were found in 37% phosphoric acid treated specimens. There was no significant difference in the bond strengths between Group I (7.80 ± 0.76 MPa) and III (8.98 ± 1.39 MPa). Group II (3.21 ± 0.78 MPa) showed a significant difference from other groups (P<.05). CONCLUSION The use of Intraoral silica coating system and the application of Signum Zirconia Bond are effective for increasing the bond strength of composite resin to zirconia. PMID:24049565

  18. Compositional layering within the large low shear-wave velocity provinces (LLSVPs) in the lower mantle

    NASA Astrophysics Data System (ADS)

    Ballmer, Maxim; Lekic, Vedran; Schumacher, Lina; Ito, Garrett; Thomas, Christine

    2016-04-01

    Seismic tomography reveals two antipodal LLSVPs in the Earth's mantle, each extending from the core-mantle boundary (CMB) up to ~1000 km depth. The LLSVPs are thought to host primordial mantle materials that bear witness of early-Earth processes, and/or subducted basalt that has accumulated in the mantle over billions of years. A compositional distinction between the LLSVPs and the ambient mantle is supported by anti-correlation of bulk-sound and shear-wave velocity (Vs) anomalies as well as abrupt lateral gradients in Vs along LLSVP margins. Both of these observations, however, are mainly restricted to the LLSVP bottom domains (2300~2900 km depth), or hereinafter referred to as "deep distinct domains" (DDD). Seismic sensitivity calculations suggest that DDDs are more likely to be composed of primordial mantle material than of basaltic material. On the other hand, the seismic signature of LLSVP shallow domains (1000~2300 km depth) is consistent with a basaltic composition, though a purely thermal origin cannot be ruled out. Here, we explore the dynamical, seismological, and geochemical implications of the hypothesis that the LLSVPs are compositionally layered with a primordial bottom domain (or DDD) and a basaltic shallow domain. We test this hypothesis using 2D thermochemical mantle-convection models. Depending on the density difference between primordial and basaltic materials, the materials either mix or remain separate as they join to form thermochemical piles in the deep mantle. Separation of both materials within these piles provides an explanation for LLSVP seismic properties, including substantial internal vertical gradients in Vs observed at 400-700 km height above the CMB, as well as out-of-plane reflections on LLSVP sides over a range of depths. Predicted geometry of thermochemical piles is compared to LLSVP and DDD shapes as constrained by seismic cluster analysis. Geodynamic models predict short-lived "secondary" plumelets to rise from LLSVP roofs and

  19. Combustion synthesis of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Moore, John J.

    1993-01-01

    Self-propagating high temperature (combustion) synthesis (SHS), has been investigated as a means of producing both dense and expanded (foamed) ceramic and ceramic-metal composites, ceramic powders and whiskers. Several model exothermic combustion synthesis reactions were used to establish the importance of certain reaction parameters, e.g., stoichiometry, green density, combustion mode, particle size, etc. on the control of the synthesis reaction, product morphology and properties. The use of an in situ liquid infiltration technique and the effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e., solids, liquids and gases, with varying physical properties e.g., volatility and thermal conductivity, on the microstructure and morphology of synthesized composite materials is discussed. Conducting the combustion synthesis reaction in a reactive gas environment to take advantage of the synergistic effects of combustion synthesis and vapor phase transport is also examined.

  20. Recent Advances in Composite Damage Mechanics

    NASA Technical Reports Server (NTRS)

    Reifsnider, Ken; Case, Scott; Iyengar, Nirmal

    1996-01-01

    The state of the art and recent developments in the field of composite material damage mechanics are reviewed, with emphasis on damage accumulation. The kinetics of damage accumulation are considered with emphasis on the general accumulation of discrete local damage events such as single or multiple fiber fractures or microcrack formation. The issues addressed include: how to define strength in the presence of widely distributed damage, and how to combine mechanical representations in order to predict the damage tolerance and life of engineering components. It is shown that a damage mechanics approach can be related to the thermodynamics of the damage accumulation processes in composite laminates subjected to mechanical loading and environmental conditions over long periods of time.

  1. Composites for Advanced Space Transportation Systems (CASTS)

    NASA Technical Reports Server (NTRS)

    Davis, J. G., Jr. (Compiler)

    1979-01-01

    A summary is given of the in-house and contract work accomplished under the CASTS Project. In July 1975 the CASTS Project was initiated to develop graphite fiber/polyimide matrix (GR/PI) composite structures with 589K (600 F) operational capability for application to aerospace vehicles. Major tasks include: (1) screening composites and adhesives, (2) developing fabrication procedures and specifications, (3) developing design allowables test methods and data, and (4) design and test of structural elements and construction of an aft body flap for the Space Shuttle Orbiter Vehicle which will be ground tested. Portions of the information are from ongoing research and must be considered preliminary. The CASTS Project is scheduled to be completed in September 1983.

  2. Advanced pressurized water reactor for improved resource utilization, part II - composite advanced PWR concept

    SciTech Connect

    Turner, S.E.; Gurley, M.K.; Kirby, K.D.; Mitchell, W III

    1981-09-15

    This report evaluates the enhanced resource utilization in an advanced pressurized water reactor (PWR) concept using a composite of selected improvements identified in a companion study. The selected improvements were in the areas of reduced loss of neutrons to control poisons, reduced loss of neutrons in leakage from the core, and improved blanket/reflector concepts. These improvements were incorporated into a single composite advanced PWR. A preliminary assessment of resource requirements and costs and impact on safety are presented.

  3. Advances in Computational Stability Analysis of Composite Aerospace Structures

    SciTech Connect

    Degenhardt, R.; Araujo, F. C. de

    2010-09-30

    European aircraft industry demands for reduced development and operating costs. Structural weight reduction by exploitation of structural reserves in composite aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis of real structures under realistic loading conditions. This paper presents different advances from the area of computational stability analysis of composite aerospace structures which contribute to that field. For stringer stiffened panels main results of the finished EU project COCOMAT are given. It investigated the exploitation of reserves in primary fibre composite fuselage structures through an accurate and reliable simulation of postbuckling and collapse. For unstiffened cylindrical composite shells a proposal for a new design method is presented.

  4. JTEC panel report on advanced composites in Japan

    NASA Technical Reports Server (NTRS)

    Diefendorf, R. J.; Grisaffe, S. J.; Hillig, W. B.; Perepezko, J. H.; Pipes, R. B.; Sheehan, J. E.

    1991-01-01

    The JTEC Panel on Advanced Composites visited Japan and surveyed the status and future directions of Japanese high performance ceramic and carbon fibers and their composites in metal, intermetallic, ceramic and carbon matrices. The panel's interests included not only what composite systems were chosen, but also how these systems were developed. A strong carbon and fiber industry makes Japan the leader in carbon fiber technology. Japan has initiated an oxidation resistant carbon/carbon composite program. The goals for this program are ambitious, and it is just starting, but its progress should be closely monitored in the United States.

  5. Application of advanced shearing techniques to the calibration of autocollimators with small angle generators and investigation of error sources.

    PubMed

    Yandayan, T; Geckeler, R D; Aksulu, M; Akgoz, S A; Ozgur, B

    2016-05-01

    The application of advanced error-separating shearing techniques to the precise calibration of autocollimators with Small Angle Generators (SAGs) was carried out for the first time. The experimental realization was achieved using the High Precision Small Angle Generator (HPSAG) of TUBITAK UME under classical dimensional metrology laboratory environmental conditions. The standard uncertainty value of 5 mas (24.2 nrad) reached by classical calibration method was improved to the level of 1.38 mas (6.7 nrad). Shearing techniques, which offer a unique opportunity to separate the errors of devices without recourse to any external standard, were first adapted by Physikalisch-Technische Bundesanstalt (PTB) to the calibration of autocollimators with angle encoders. It has been demonstrated experimentally in a clean room environment using the primary angle standard of PTB (WMT 220). The application of the technique to a different type of angle measurement system extends the range of the shearing technique further and reveals other advantages. For example, the angular scales of the SAGs are based on linear measurement systems (e.g., capacitive nanosensors for the HPSAG). Therefore, SAGs show different systematic errors when compared to angle encoders. In addition to the error-separation of HPSAG and the autocollimator, detailed investigations on error sources were carried out. Apart from determination of the systematic errors of the capacitive sensor used in the HPSAG, it was also demonstrated that the shearing method enables the unique opportunity to characterize other error sources such as errors due to temperature drift in long term measurements. This proves that the shearing technique is a very powerful method for investigating angle measuring systems, for their improvement, and for specifying precautions to be taken during the measurements.

  6. Measurement of In-Plane Shear Strength of Carbon/Carbon Composites by Compression of Double-Notched Specimens

    NASA Astrophysics Data System (ADS)

    Yan, K. F.; Zhang, C. Y.; Qiao, S. R.; Song, C. Z.; Han, D.; Li, M.

    2012-01-01

    The compression of a double-notched specimen was used to determine the in-plane shear strength (IPSS) of a carbon/carbon composite in the paper. The effects of the notch distance ( L), thickness ( T), and notch width ( W) and supporting jig on the IPSS of the double-notched specimens were investigated numerically and experimentally. The fracture surfaces were examined by a scanning electron microscope. It was found that the IPSS varied with L. Thin specimen yielded low strength. W has little effect on IPSS. The main failure modes include the matrix shear cracking, delamination, fracture and pullout of fibers or fiber bundles. Meanwhile, a supporting jig can provide lateral support and prevent buckling, therefore lead to the failure in a shear mode.

  7. Radiation processing of carbon fibre-reinforced advanced composites

    NASA Astrophysics Data System (ADS)

    Singh, Ajit

    2001-12-01

    Carbon fibre-reinforced advanced composites are being used for a variety of structural applications, because of their useful mechanical properties, including high strength-to-weight ratio and corrosion resistance. Thermal curing of composite products results in internal stresses, due to the mismatch of the coefficients of expansion of the tools and the composite products. Because radiation curing can be done at ambient temperatures, the possibility that the residual stresses might be absent, or much lower in the radiation-cured products, originally led to the start of work on radiation curing of advanced composites at AECL's Whiteshell Laboratories in Pinawa, Canada, in 1985. Research work during the last two decades has shown that advanced composites can be radiation-cured with electron beams or γ radiation. Many of the advantages of radiation curing, as compared to thermal curing, which include curing at ambient temperature, reduced curing time, improved resin stability and reduced volatile emissions, have now been demonstrated. The initial work focussed on electron curing of acrylated epoxy matrices. Since then, procedures have been developed to radiation cure conventional aerospace epoxies, as well. Electron beam cured advanced composites are now being developed for use in the aircraft and aerospace industry. Repair of advanced composite structures is also possible using radiation curing technology. Radiation curing work is continuing at Pinawa and has also been done by Aerospatiale, who have facilities for electron curing composite rocket motor casings and by Chappas and co-workers who have electron cured part of a boat hull. In this paper, the work done on this emerging new technology by the various groups is briefly reviewed.

  8. Stiffening of short small-size circular composite steel-concrete columns with shear connectors.

    PubMed

    Younes, Sherif M; Ramadan, Hazem M; Mourad, Sherif A

    2016-05-01

    An experimental program was conducted to investigate the effect of shear connectors' distribution and method of load application on load-displacement relationship and behavior of thin-walled short concrete-filled steel tube (CFT) columns when subjected to axial load. The study focused on the compressive strength of the CFT columns and the efficiency of the shear stud in distribution of the load between the concrete core and steel tube. The study showed that the use of shear connectors enhanced slightly the axial capacity of CFT columns. It is also shown that shear connectors have a great effect on load distribution between the concrete and steel tubes.

  9. Stiffening of short small-size circular composite steel–concrete columns with shear connectors

    PubMed Central

    Younes, Sherif M.; Ramadan, Hazem M.; Mourad, Sherif A.

    2015-01-01

    An experimental program was conducted to investigate the effect of shear connectors’ distribution and method of load application on load–displacement relationship and behavior of thin-walled short concrete-filled steel tube (CFT) columns when subjected to axial load. The study focused on the compressive strength of the CFT columns and the efficiency of the shear stud in distribution of the load between the concrete core and steel tube. The study showed that the use of shear connectors enhanced slightly the axial capacity of CFT columns. It is also shown that shear connectors have a great effect on load distribution between the concrete and steel tubes. PMID:27222757

  10. Vibration and damping of laminated, composite-material plates including thickness-shear effects

    NASA Technical Reports Server (NTRS)

    Bert, C. W.; Siu, C. C.

    1972-01-01

    An analytical investigation of sinusoidally forced vibration of laminated, anisotropic plates including bending-stretching coupling, thickness-shear flexibility, all three types of inertia effects, and material damping is presented. In the analysis the effects of thickness-shear deformation are considered by the use of a shear correction factor K, analogous to that used by Mindlin for homogeneous plates. Two entirely different approaches for calculating the thickness-shear factor for a laminate are presented. Numerical examples indicate that the value of K depends on the layer properties and the stacking sequence of the laminate.

  11. Picture frame shear tests on woven textile composite reinforcements with controlled pretension

    NASA Astrophysics Data System (ADS)

    Willems, An; Lomov, Stepan V.; Verpoest, Ignaas; Vandepitte, Dirk

    2007-04-01

    This paper presents in-plane shear tests on a picture frame of a glass-PP textile weave in three different biaxial tensile states. Aim of these tests is to study the influence of tensile load in the yarn direction on the shear resistance for this textile family and the repeatability of the current test method. Digital image correlation (DIC) is used to assess the local deformation of the fabric during the shear tests. The shear deformation of the fabric deviates significantly from the frame shear, but is not affected by the tensile state. During the shear deformation sideways sliding of the yarns and an overall rigid body rotation take place. Despite the ill-conditioned nature of the shear test, significant tensile-shear interaction was observed. However, it is difficult to assess the importance of this interaction as large data scatter exists between shear tests performed according to different test methods (frame and fabric size, clamping and sample preparation) or by different labs.

  12. Effects of vacancy defects on the interfacial shear strength of carbon nanotube reinforced polymer composite.

    PubMed

    Chowdhury, Sanjib Chandra; Okabe, Tomonaga; Nishikawa, Masaaki

    2010-02-01

    We investigate the effects of the vacancy defects (i.e., missing atoms) in carbon nanotubes (CNTs) on the interfacial shear strength (ISS) of the CNT-polyethylene composite with the molecular dynamics simulation. In the simulation, the crystalline polyethylene matrix is set up in a hexagonal array with the polymer chains parallel to the CNT axis. Vacancy defects in the CNT are introduced by removing the corresponding atoms from the pristine CNT (i.e., CNT without any defect). Three patterns of vacancy defects with three different sizes are considered. Two types of interfaces, with and without cross-links between the CNT and the matrix are also considered here. Polyethylene chains are used as cross-links between the CNT and the matrix. The Brenner potential is used for the carbon-carbon interaction in the CNT, while the polymer is modeled by a united-atom potential. The nonbonded van der Waals interaction between the CNT and the polymer matrix and within the polymer matrix itself is modeled with the Lennard-Jones potential. To determine the ISS, we conduct the CNT pull-out from the polymer matrix and the ISS has been estimated with the change of total potential energy of the CNT-polymer system. The simulation results reveal that the vacancy defects significantly influence the ISS. Moreover, the simulation clarifies that CNT breakage occurs during the pull-out process for large size vacancy defect which ultimately reduces the reinforcement. PMID:20352712

  13. Shear bond strength of fibre-reinforced composite nets using two different adhesive systems.

    PubMed

    Sfondrini, Maria Francesca; Cacciafesta, Vittorio; Scribante, Andrea

    2011-02-01

    The purpose of this study was to evaluate the effect of two different adhesive systems (Tetric Flow and Transbond XT) in combination with fibre-reinforced composites (FRC) net (Ever Stick) on the shear bond strength (SBS) of orthodontic brackets. Eighty bovine permanent mandibular incisors were randomly divided into four equal groups. Stainless steel maxillary central incisor brackets with a 0.018 inch slot (DB Leone) were bonded to the teeth using the two different adhesive systems. Fifty per cent of the brackets were bonded without and 50 per cent with a FRC net under the bracket base. After bonding, all samples were stored in distilled water at room temperature for 24 hours and subsequently tested for SBS. Analysis of variance indicated significant differences among the various groups. Brackets bonded with FRC nets under the base showed a significantly lower SBS than those bonded without nets (P < 0.05). Moreover, teeth bonded with Transbond XT showed a significantly higher SBS than the other groups. Additionally, significant differences in debond locations [adhesive remnant index (ARI) score] were found among the various groups. Transbond XT can successfully be used for direct bonding of FRC nets, thus improving their SBS values. PMID:20573712

  14. Pore fluid pressure and shear behavior in debris flows of different compositions

    NASA Astrophysics Data System (ADS)

    Kaitna, Roland; Palucis, Marisa; Yohannes, Bereket; Hill, Kimberly; Dietrich, William

    2016-04-01

    Debris flows are mixtures of sediment and water that can have a wide range of different grain size distributions and water contents. The composition of the material is expected to have a strong effect on the development of pore fluid pressures in excess to hydrostatic, which in turn might affect the internal deformation behavior. We present a set of large scale experiments with debris flow mixtures of different compositions in a 4-m diameter rotating drum. Longitudinal profiles of basal fluid pressure and normal stress were measured and a probe to determine fluid pressure at different depths within the flow was developed and tested. Additionally we determined vertical profiles of mean particle velocities in the flow interior by measuring small variations of conductivity of the passing material and calculating the time lag between signals from two independent measurements at a small, known distance apart. Mean values of basal pore fluid pressure range from hydrostatic pressure for gravel-water flows to nearly complete liquefaction for muddy mixtures having a wide grain size distribution. The data indicate that the presence of fines dampens fluctuations of normalized fluid pressure and normal stress and concentrates shear at the base. The mobility of grain-fluid flows is strongly enhanced by a combination of fines in suspension as part of the interstitial fluid and a wide grain size distribution. Excess fluid pressure may arise from fluid displacement by converging grains at the front of the flow and the slow settling of grains through a highly viscous non-Newtonian fluid. Our findings support the need for pore pressure evolution and diffusion equations in debris flow models as they depend on particle size distributions. This study contributes to the understanding of the production of excess fluid pressure in grain fluid mixtures and may guide the development of constitutive models that describe natural events.

  15. Effect of mesh distortion on the accuracy of transverse shear stresses and their sensitivity coefficients in multilayered composites

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Kim, Yong H.

    1995-01-01

    A study is made of the effect of mesh distortion on the accuracy of transverse shear stresses and their first-order and second-order sensitivity coefficients in multilayered composite panels subjected to mechanical and thermal loads. The panels are discretized by using a two-field degenerate solid element, with the fundamental unknowns consisting of both displacement and strain components, and the displacement components having a linear variation throughout the thickness of the laminate. A two-step computational procedure is used for evaluating the transverse shear stresses. In the first step, the in-plane stresses in the different layers are calculated at the numerical quadrature points for each element. In the second step, the transverse shear stresses are evaluated by using piecewise integration, in the thickness direction, of the three-dimensional equilibrium equations. The same procedure is used for evaluating the sensitivity coefficients of transverse shear stresses. Numerical results are presented showing no noticeable degradation in the accuracy of the in-plane stresses and their sensitivity coefficients with mesh distortion. However, such degradation is observed for the transverse shear stresses and their sensitivity coefficients. The standard of comparison is taken to be the exact solution of the three-dimensional thermoelasticity equations of the panel.

  16. Process simulation for advanced composites production

    SciTech Connect

    Allendorf, M.D.; Ferko, S.M.; Griffiths, S.

    1997-04-01

    The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coating techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.

  17. Improvement in endothelial cell adhesion and retention under physiological shear stress using a laminin–apatite composite layer on titanium

    PubMed Central

    He, Fupo; Wang, Xiupeng; Maruyama, Osamu; Kosaka, Ryo; Sogo, Yu; Ito, Atsuo; Ye, Jiandong

    2013-01-01

    Apatite (Ap), laminin–apatite composite (L5Ap, L10Ap, L20Ap and L40Ap) and albumin–apatite (AlbAp) composite layers were prepared on titanium (Ti) using a supersaturated calcium phosphate solution supplemented with laminin (0, 5, 10, 20 and 40 μg ml−1) or albumin (800 μg ml−1). With an increase in the concentrations of laminin in the supersaturated calcium phosphate solutions, the amounts of laminin immobilized on the Ti increased. The number of human umbilical vein endothelial cells (HUVECs) adhered to the laminin–apatite composite layers were remarkably higher than those to the untreated Ti, Ap layer and AlbAp composite layer. The number of cells adhered to the L40Ap was 4.3 times the untreated Ti. Moreover, cells adhered to the laminin–apatite composite layers showed significantly higher cell retention under the physiological shear stress for 1 h and 2 h than those to the untreated Ti, Ap layer and AlbAp composite layer. The number of cells remaining on the L40Ap under the physiological shear stress for 2 h was 9.5 times that of the untreated Ti. The laminin–apatite composite layer is a promising interfacial layer for endothelialization of blood-contacting materials. PMID:23407573

  18. Effect of three different antioxidants on the shear bond strength of composite resin to bleached enamel: An in vitro study

    PubMed Central

    Subramonian, Rajalekshmy; Mathai, Vijay; Christaine Angelo, Jeya Balaji Mano; Ravi, Jotish

    2015-01-01

    Objective: The effect of 10% sodium ascorbate, 10% grape seed extract, and 10% pine bark extract on the shear bond strength of composite resin to bleached enamel was evaluated. Materials and Methods: Ninety recently extracted human premolars were divided into six groups of 15 teeth each. Except Group I (negative control), the labial enamel surface of all specimens in the other groups were bleached with 37.5% hydrogen peroxide. After bleaching, Group II specimens were stored in artificial saliva for 3weeks before composite bonding. Immediately following bleaching; Groups III, IV, and V specimens were treated with antioxidants 10% sodium ascorbate, 10% grape seed extract, and 10% pine bark extract, respectively, for 10 min and bonded with composite resin. In Group VI (positive control), the composite bonding was done immediately after bleaching. All specimens were stored in deionized water for 24 h at 37΀C before shear bond strength testing. The data obtained were tabulated and statistically analyzed using analysis of variance (ANOVA) and Duncan's multiple range test. Results: The unbleached teeth showed the highest shear bond strength followed by the bleached teeth treated with the antioxidant 10% pine bark extract. Conclusion: Within the limitations of this study, it was observed that the use of antioxidants effectively reversed the compromised bond strength of bleached enamel. Among the antioxidants, 10% pine bark extract application after bleaching showed better bond strength. PMID:25829695

  19. Effect of oil type and fatty acid composition on dynamic and steady shear rheology of vegetable oils.

    PubMed

    Yalcin, Hasan; Toker, Omer Said; Dogan, Mahmut

    2012-01-01

    In this study, effect of fatty acid composition on dynamic and steady shear rheology of oils was studied. For this aim, different types of vegetable oils (soybean, sunflower, olive, hazelnut, cottonseed and canola), were used. Rheological properties of oil samples were identified by rheometer (Thermo-Haake) at 25°C and fatty acid composition of oils was determined by GC (Agilent 6890). Steady shear rheological properties of oil samples were measured at shear rate range of 0.1-100 s⁻¹. Viscosity of olive, hazelnut, cottonseed, canola, soybean and sunflower was 61.2 mPa.s, 59.7 mPa.s, 57.3 mPa.s, 53.5 mPa.s, 48.7 mPa.s and 48.2 mPa.s, respectively. There was a significant difference between viscosity of oils except soybean and sunflower. As a result it was seen that there was a correlation between viscosity and monounsaturated (R=0.89), polyunsaturated (R=-0.97) fatty acid composition of oils, separately. Equation was found to predict viscosity of the oils based on mono and polyunsaturation composition of oils. In addition the dynamic rheological properties of oils were also examined. G', G'' and tan δ (G''/G') values were measured at 0.3 Pa (in viscoelastic region) and 0.1-1 Hz. As a result of multiple regression analysis another equations were found between tan δ, viscosity and polyunsaturated fatty acids.

  20. Implementation of Improved Transverse Shear Calculations and Higher Order Laminate Theory Into Strain Rate Dependent Analyses of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Lin-Fa; Kim, Soo; Chattopadhyay, Aditi; Goldberg, Robert K.

    2004-01-01

    A numerical procedure has been developed to investigate the nonlinear and strain rate dependent deformation response of polymer matrix composite laminated plates under high strain rate impact loadings. A recently developed strength of materials based micromechanics model, incorporating a set of nonlinear, strain rate dependent constitutive equations for the polymer matrix, is extended to account for the transverse shear effects during impact. Four different assumptions of transverse shear deformation are investigated in order to improve the developed strain rate dependent micromechanics model. The validities of these assumptions are investigated using numerical and theoretical approaches. A method to determine through the thickness strain and transverse Poisson's ratio of the composite is developed. The revised micromechanics model is then implemented into a higher order laminated plate theory which is modified to include the effects of inelastic strains. Parametric studies are conducted to investigate the mechanical response of composite plates under high strain rate loadings. Results show the transverse shear stresses cannot be neglected in the impact problem. A significant level of strain rate dependency and material nonlinearity is found in the deformation response of representative composite specimens.

  1. Advances in very lightweight composite mirror technology

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Bowers, Charles W.; Content, David A.; Marzouk, Marzouk; Romeo, Robert C.

    2000-09-01

    We report progress in the development of very lightweight (< 5 kg/m2) mirrors made by replication using graphite fiber cyanate ester resin composites. The replication process is optimized to significantly improve the surface smoothness and figure quality. Achievements include near- diffraction-limited optical performance [< 1/20 wave root mean square (rms) at 632.8 nm] in replica flats, fractional wave rms performance in curved mirrors at 90% pupil, and almost exact reproduction of the surface microroughness of the mandrel. The curved mirrors typically show some edge roll off and several waves (rms optical) of astigmatism, coma, and third-order spherical aberration. These are indications of thermal contraction in an inhomogeneous medium. This inhomogeneity is due to a systematic radial variation in density and fiber/resin ratio induced in composite plies when draped around a small and highly curved mandrel. The figure accuracy is expected to improve with larger size optics and in mirrors with longer radii of curvature. Nevertheless, the present accuracy figure is sufficient for using postfiguring techniques such as ion milling to achieve diffraction-limited performances at optical and UV wavelengths. We demonstrate active figure control using a simple apparatus of low-mass, low-force actuators to correct astigmatism. The optimized replication technique is applied to the fabrication of a 0.6-m-diam mirror with an areal density of 3.2 kg/m2. Our result demonstrates that the very lightweight, large-aperture construction used in radio telescopes can now be applied to optical telescopes.

  2. A Multi-scale Refined Zigzag Theory for Multilayered Composite and Sandwich Plates with Improved Transverse Shear Stresses

    NASA Technical Reports Server (NTRS)

    Iurlaro, Luigi; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander

    2013-01-01

    The Refined Zigzag Theory (RZT) enables accurate predictions of the in-plane displacements, strains, and stresses. The transverse shear stresses obtained from constitutive equations are layer-wise constant. Although these transverse shear stresses are generally accurate in the average, layer-wise sense, they are nevertheless discontinuous at layer interfaces, and thus they violate the requisite interlaminar continuity of transverse stresses. Recently, Tessler applied Reissner's mixed variational theorem and RZT kinematic assumptions to derive an accurate and efficient shear-deformation theory for homogeneous, laminated composite, and sandwich beams, called RZT(m), where "m" stands for "mixed". Herein, the RZT(m) for beams is extended to plate analysis, where two alternative assumptions for the transverse shear stresses field are examined: the first follows Tessler's formulation, whereas the second is based on Murakami's polynomial approach. Results for elasto-static simply supported and cantilever plates demonstrate that Tessler's formulation results in a powerful and efficient structural theory that is well-suited for the analysis of multilayered composite and sandwich panels.

  3. Recent advancement in optical fiber sensing for aerospace composite structures

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Takeda, Nobuo

    2013-12-01

    Optical fiber sensors have attracted considerable attention in health monitoring of aerospace composite structures. This paper briefly reviews our recent advancement mainly in Brillouin-based distributed sensing. Damage detection, life cycle monitoring and shape reconstruction systems applicable to large-scale composite structures are presented, and new technical concepts, "smart crack arrester" and "hierarchical sensing system", are described as well, highlighting the great potential of optical fiber sensors for the structural health monitoring (SHM) field.

  4. Third NASA Advanced Composites Technology Conference, volume 1, part 1

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)

    1993-01-01

    This document is a compilation of papers presented at the Third NASA Advanced Composites Technology (ACT) Conference. The ACT Program is a major multi-year research initiative to achieve a national goal of technology readiness before the end of the decade. Conference papers recorded results of research in the ACT Program in the specific areas of automated fiber placement, resin transfer molding, textile preforms, and stitching as these processes influence design, performance, and cost of composites in aircraft structures. Papers sponsored by the Department of Defense on the Design and Manufacturing of Low Cost Composites (DMLCC) are also included in Volume 2 of this document.

  5. Boron/aluminum graphite/resin advanced fiber composite hybrids

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1975-01-01

    Fabrication feasibility and potential of an adhesively bonded metal and resin matrix fiber-composite hybrid are determined as an advanced material for aerospace and other structural applications. The results show that using this hybrid concept makes possible a composite design which, when compared with nonhybrid composites, has greater transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for predicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.

  6. Characterization of mechanical and thermal properties of advanced composite pultrusions. Final report

    SciTech Connect

    Vaughan, J.G.; Roux, J.A.; Mantena, P.R.

    1995-08-01

    This report summarizes the work performed by the Composite Materials Group at the University of Mississippi to characterize the mechanical and thermal properties of pultruded advanced composite materials. Considerable progress has been made on characterizing the effects of pultrusion process variables on the structural/dynamic and thermal properties of a mono-fiber type graphite-epoxy composite material system. The effects of process parameters on the mechanical properties of a mono-fiber type fiberglass-epoxy were also investigated and correlated with the degree of cure using differential scanning calorimetry (DSC) studies. The mechanical properties and the failure mechanisms of these hybrids were compared with those of the mono-fiber type glass/epoxy and graphite/epoxy pultruded composites. The static properties examined were flexural strength and modulus, short-beam shear strength and tensile strength. For the dynamic (modulus and damping) studies, the impulse frequency response technique was used for exciting the flat specimens into flexural, and the round specimens into torsional, modes of vibration using appropriately designed test fixtures. The results of these tests demonstrate the potential for the cost-effective production of stiff, light and well damped composite products having a number of practical applications. A three-dimensional numerical model which utilizes a fixed control volume based finite difference approach was also developed to predict the axial, radial and circumferential temperature and degree of cure profiles, which were found to be in close agreement with experimental results.

  7. Shear bond strengths of an indirect composite layering material to a tribochemically silica-coated zirconia framework material.

    PubMed

    Iwasaki, Taro; Komine, Futoshi; Fushiki, Ryosuke; Kubochi, Kei; Shinohara, Mitsuyo; Matsumura, Hideo

    2016-01-01

    This study evaluated shear bond strengths of a layering indirect composite material to a zirconia framework material treated with tribochemical silica coating. Zirconia disks were divided into two groups: ZR-PRE (airborne-particle abrasion) and ZR-PLU (tribochemical silica coating). Indirect composite was bonded to zirconia treated with one of the following primers: Clearfil Ceramic Primer (CCP), Clearfil Mega Bond Primer with Clearfil Porcelain Bond Activator (MGP+Act), ESPE-Sil (SIL), Estenia Opaque Primer, MR. Bond, Super-Bond PZ Primer Liquid A with Liquid B (PZA+PZB), and Super-Bond PZ Primer Liquid B (PZB), or no treatment. Shear bond testing was performed at 0 and 20,000 thermocycles. Post-thermocycling shear bond strengths of ZR-PLU were higher than those of ZR-PRE in CCP, MGP+Act, SIL, PZA+PZB, and PZB groups. Application of silane yielded better durable bond strengths of a layering indirect composite material to a tribochemically silica-coated zirconia framework material. PMID:27252003

  8. Effect of low-velocity or ballistic impact damage on the strength of thin composite and aluminum shear panels

    NASA Technical Reports Server (NTRS)

    Farley, G. L.

    1985-01-01

    Impact tests were conducted on shear panels fabricated from 6061-T6 aluminum and from woven fabric prepreg of Du Pont Kevlara fiber/epoxy resin and graphite fiber/epoxy resin. The shear panels consisted of three different composite laminates and one aluminum material configuration. Three panel aspect ratios were evaluated for each material configuration. Composite panels were impacted with a 1.27-cm (0.05-in) diameter aluminum sphere at low velocities of 46 m/sec (150 ft/sec) and 67 m/sec (220 ft/sec). Ballistic impact conditions consisted of a tumbled 0.50-caliber projectile impacting loaded composite and aluminum shear panels. The results of these tests indicate that ballistic threshold load (the lowest load which will result in immediate failure upon penetration by the projectile) varied between 0.44 and 0.61 of the average failure load of undamaged panels. The residual strengths of the panels after ballistic impact varied between 0.55 and 0.75 of the average failure strength of the undamaged panels. The low velocity impacts at 67 m/sec (220 ft/sec) caused a 15 to 20 percent reduction in strength, whereas the impacts at 46 m/sec (150 ft/sec) resulted in negligible strength loss. Good agreement was obtained between the experimental failure strengths and the predicted strength with the point stress failure criterion.

  9. Research priorities and history of advanced composite compression testing

    NASA Technical Reports Server (NTRS)

    Baumann, K. J.

    1981-01-01

    Priorities for standard compression testing research in advanced laminated fibrous composite materials are presented along with a state of the art survey (completed in 1979) including history and commentary on industrial test methods. Historically apparent research priorities and consequent (lack of) progress are supporting evidence for newly derived priorities.

  10. Interfacial shear behavior of sapphire-reinforced NiAl composites

    NASA Technical Reports Server (NTRS)

    Moose, C. A.; Koss, D. A.; Hellmann, J. R.

    1990-01-01

    The interfacial shear behavior in near-equiatomic NiAl reinforced by sapphire filaments has been examined at room temperature using a fiber pushout test technique. The load-displacement data indicate a large variability in the initial interface failure stress, although reverse push behavior indicates a comparatively constant interfacial sliding friction stress. The observed behavior suggests that the presence of asperities on the fiber surfaces and nonuniformities in fiber diameter require constrained plastic flow within the NiAl matrix in order for interfacial shear to occur. The location, shape, severity, and distribution of fiber asperities as well as the uniformity of fiber diameter are critical to the interfacial shear process.

  11. Ductility of Advanced High-Strength Steel in the Presence of a Sheared Edge

    NASA Astrophysics Data System (ADS)

    Ruggles, Tim; Cluff, Stephen; Miles, Michael; Fullwood, David; Daniels, Craig; Avila, Alex; Chen, Ming

    2016-07-01

    The ductility of dual-phase (DP) 980 and transformation-induced plasticity (TRIP) assisted bainitic ferritic (TBF) 980 steels was studied in the presence of a sheared edge. Specimens were tested in uniaxial tension in a standard test frame as well as in situ in the scanning electron microscope (SEM). Incremental tensile straining was done in the SEM with images taken at each strain increment. Then digital image correlation (DIC) was used to compute the effective strain at the level of the individual phases in the microstructure. Shear banding across multiple phases was seen in strained TBF specimens, while the DP specimens exhibited more of a patchwork strain pattern, with high strains concentrated in ferrite and low strains observed in the martensite. Two-point statistics were applied to the strain data from the DIC work and the corresponding microstructure images to evaluate the effect of phase hardness on localization and fracture. It was observed that the DP 980 material had a greater tendency for localization around hard phases compared to the TBF 980. This at least partially explains the greater ductility of the TBF material, especially in specimens where a sheared edge was present.

  12. Analyses of Failure Mechanisms and Residual Stresses in Graphite/Polyimide Composites Subjected to Shear Dominated Biaxial Loads

    NASA Technical Reports Server (NTRS)

    Kumosa, M.; Predecki, P. K.; Armentrout, D.; Benedikt, B.; Rupnowski, P.; Gentz, M.; Kumosa, L.; Sutter, J. K.

    2002-01-01

    This research contributes to the understanding of macro- and micro-failure mechanisms in woven fabric polyimide matrix composites based on medium and high modulus graphite fibers tested under biaxial, shear dominated stress conditions over a temperature range of -50 C to 315 C. The goal of this research is also to provide a testing methodology for determining residual stress distributions in unidirectional, cross/ply and fabric graphite/polyimide composites using the concept of embedded metallic inclusions and X-ray diffraction (XRD) measurements.

  13. Longitudinal splitting in epoxy and K-polymer composites - Shear lag analysis including the effect of fiber bridging

    NASA Technical Reports Server (NTRS)

    Nairn, John A.; Liu, Siulie; Chen, Hsichieh; Wedgewood, Alan R.

    1991-01-01

    The shear-lag model used previously by Nairn (1988) to derive a fracture mechanics analysis of longitudinal splitting in double-edge notched unidirectional composites was used to investigate the effect of fibers bridging across the longitudinal split in these composites. Using the new analysis, the longitudinal splitting fracture toughness, G(Lc), was determined for Hercules AS4/3501-6 graphite/epoxy laminates and for K-polymer based laminates containing Magnamite IM-6 as the graphite reinforcing fiber. Results show that the inclusion of the fiber bridging in the fracture analysis significantly affects the reported fracture toughness.

  14. Development of Metal Matrix Composites for NASA'S Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    The state-of-the-art development of several aluminum and copper based Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The presentation's goal is to provide an overview of NASA-Marshall Space Flight Center's planned and on-going activities in MMC for advanced liquid rocket engines such as the X-33 vehicle's Aerospike and X-34 Fastrac engine. The focus will be on lightweight and environmental compatibility with oxygen and hydrogen of key MMC materials, within each NASA's new propulsion application, that will provide a high payoff for NASA's reusable launch vehicle systems and space access vehicles. Advanced MMC processing techniques such as plasma spray, centrifugal casting, pressure infiltration casting will be discussed. Development of a novel 3D printing method for low cost production of composite preform, and functional gradient MMC to enhanced rocket engine's dimensional stability will be presented.

  15. Mishap risk control for advanced aerospace/composite materials

    NASA Technical Reports Server (NTRS)

    Olson, John M.

    1994-01-01

    Although advanced aerospace materials and advanced composites provide outstanding performance, they also present several unique post-mishap environmental, safety, and health concerns. The purpose of this paper is to provide information on some of the unique hazards and concerns associated with these materials when damaged by fire, explosion, or high-energy impact. Additionally, recommended procedures and precautions are addressed as they pertain to all phases of a composite aircraft mishap response, including fire-fighting, investigation, recovery, clean-up, and guidelines are general in nature and not application-specific. The goal of this project is to provide factual and realistic information which can be used to develop consistent and effective procedures and policies to minimize the potential environmental, safety, and health impacts of a composite aircraft mishap response effort.

  16. Methods and Compositions Based on Culturing Microorganisms in Low Sedimental Fluid Shear Conditions

    NASA Technical Reports Server (NTRS)

    Ott, C. Mark; Nickerson, Cheryl A.; Wilson, James W.; Sarker, Shameema; Nauman, Eric A.; Schurr, Michael J.; Nelman-Gonzalez, Mayra A.

    2012-01-01

    The benefits of applying a low sedimental fluid shear environment to manipulate microorganisms were examined. Microorganisms obtained from a low sedimental fluid shear culture, which exhibit modified phenotypic and molecular genetic characteristics, are useful for the development of novel and improved diagnostics, therapeutics, vaccines, and bio-industrial products. Furthermore, application of low sedimental fluid conditions to microorganisms permits identification of molecules uniquely expressed under these conditions, providing a basis for the design of new therapeutic targets.

  17. Effect of Different Anti-Oxidants on Shear Bond Strength of Composite Resins to Bleached Human Enamel

    PubMed Central

    Saladi, Hari Krishna; Bollu, Indira Priyadarshini; Burla, Devipriya; Ballullaya, Srinidhi Vishnu; Devalla, Srihari; Maroli, Sohani; Jayaprakash, Thumu

    2015-01-01

    Introduction The bond strength of the composite to the bleached enamel plays a very important role in the success and longevity of an aesthetic restoration. Aim The aim of this study was to compare and evaluate the effect of Aloe Vera with 10% Sodium Ascorbate on the Shear bond strength of composite resin to bleached human enamel. Materials and Methods Fifty freshly extracted human maxillary central incisors were selected and divided into 5 groups. Group I and V are unbleached and bleached controls groups respectively. Group II, III, IV served as experimental groups. The labial surfaces of groups II, III, IV, V were treated with 35% Carbamide Peroxide for 30mins. Group II specimens were subjected to delayed composite bonding. Group III and IV specimens were subjected to application of 10% Sodium Ascorbate and leaf extract of Aloe Vera following the Carbamide Peroxide bleaching respectively. Specimens were subjected to shear bond strength using universal testing machine and the results were statistically analysed using ANOVA test. Tukey (HSD) Honest Significant Difference test was used to comparatively analyse statistical differences between the groups. A p-value <0.05 is taken as statistically significant. Results The mean shear bond strength values of Group V showed significantly lower bond strengths than Groups I, II, III, IV (p-value <0.05). There was no statistically significant difference between the shear bond strength values of groups I, II, III, IV. Conclusion Treatment of the bleached enamel surface with Aloe Vera and 10% Sodium Ascorbate provided consistently better bond strength. Aloe Vera may be used as an alternative to 10% Sodium Ascorbate. PMID:26674656

  18. Micromechanical and in situ shear testing of Al–SiC nanolaminate composites in a transmission electron microscope (TEM)

    SciTech Connect

    Mayer, Carl; Li, Nan; Mara, Nathan Allan; Chawla, Nikhilesh

    2014-11-07

    Nanolaminate composites show promise as high strength and toughness materials. Still, due to the limited volume of these materials, micron scale mechanical testing methods must be used to determine the properties of these films. To this end, a novel approach combining a double notch shear testing geometry and compression with a flat punch in a nanoindenter was developed to determine the mechanical properties of these films under shear loading. To further elucidate the failure mechanisms under shear loading, in situ TEM experiments were performed using a double notch geometry cut into the TEM foil. Aluminum layer thicknesses of 50nm and 100nm were used to show the effect of constraint on the deformation. Higher shear strength was observed in the 50 nm sample (690±54 MPa) compared to the 100 nm sample (423±28.7 MPa). Additionally, failure occurred along the Al-SiC interface in the 50 nm sample as opposed to failure within the Al layer in the 100 nm sample.

  19. Micromechanical and in situ shear testing of Al–SiC nanolaminate composites in a transmission electron microscope (TEM)

    DOE PAGES

    Mayer, Carl; Li, Nan; Mara, Nathan Allan; Chawla, Nikhilesh

    2014-11-07

    Nanolaminate composites show promise as high strength and toughness materials. Still, due to the limited volume of these materials, micron scale mechanical testing methods must be used to determine the properties of these films. To this end, a novel approach combining a double notch shear testing geometry and compression with a flat punch in a nanoindenter was developed to determine the mechanical properties of these films under shear loading. To further elucidate the failure mechanisms under shear loading, in situ TEM experiments were performed using a double notch geometry cut into the TEM foil. Aluminum layer thicknesses of 50nm andmore » 100nm were used to show the effect of constraint on the deformation. Higher shear strength was observed in the 50 nm sample (690±54 MPa) compared to the 100 nm sample (423±28.7 MPa). Additionally, failure occurred along the Al-SiC interface in the 50 nm sample as opposed to failure within the Al layer in the 100 nm sample.« less

  20. Single crystal piezoelectric composites for advanced NDT ultrasound

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoning; Snook, Kevin; Hackenberger, Wesley S.; Geng, Xuecang

    2007-04-01

    In this paper, the design, fabrication and characterization of PMN-PT single crystal/epoxy composites are reported for NDT ultrasound transducers. Specifically, 1-3 PMN-PT/epoxy composites with center frequencies of 5 MHz - 40 MHz were designed and fabricated using either the dice-and-fill method or a photolithography based micromachining process. The measured electromechanical coefficients for composites with frequency of 5 MHz - 15 MHz were about 0.78-0.83, and the coupling coefficients for composites with frequencies of 25 MHz- 40 MHz were about 0.71-0.72. The dielectric loss remains low (< 0.05). These properties hold promise for advanced NDT ultrasound applications.

  1. 21st century market opportunities for advanced fibers and composites

    SciTech Connect

    Segal, C.L.

    1996-07-01

    High-strength, high-modulus fibers based upon either carbon, organic polymers, or ceramics are relatively new materials. Full-scale commercial production of these fibers began within the last 25 years. Current sales of advanced fibers are measured in thousands of tons per year, not in hundreds of thousands of tons per year, as are sales of glass structural fibers. Selling prices are measured in tens of dollars per pound as compared to dollars per pound for glass fiber. Therefore, advanced fibers must still be considered as specialty materials that will be selected based only upon their high performance. While much thanks is due to the aerospace and sporting goods industries for keeping the interest in advanced fibers and composites alive, it is generally agreed that the market will not grow (and prices will not decline) until these fibers are accepted in the industrial market. This presentation identifies industrial market opportunities for advanced fibers and composites in the next century, which is actually tomorrow in the time-line from the beginning of commercialization of advanced fibers. Specific, potential applications are cited, and the estimated volumes and values of these application given. 3 tabs.

  2. Hydrogen bonds, interfacial stiffness moduli, and the interlaminar shear strength of carbon fiber-epoxy matrix composites

    NASA Astrophysics Data System (ADS)

    Cantrell, John H.

    2015-03-01

    The chemical treatment of carbon fibers used in carbon fiber-epoxy matrix composites greatly affects the fraction of hydrogen bonds (H-bonds) formed at the fiber-matrix interface. The H-bonds are major contributors to the fiber-matrix interfacial shear strength and play a direct role in the interlaminar shear strength (ILSS) of the composite. The H-bond contributions τ to the ILSS and magnitudes KN of the fiber-matrix interfacial stiffness moduli of seven carbon fiber-epoxy matrix composites, subjected to different fiber surface treatments, are calculated from the Morse potential for the interactions of hydroxyl and carboxyl acid groups formed on the carbon fiber surfaces with epoxy receptors. The τ calculations range from 7.7 MPa to 18.4 MPa in magnitude, depending on fiber treatment. The KN calculations fall in the range (2.01 - 4.67) ×1017 N m-3. The average ratio KN/|τ| is calculated to be (2.59 ± 0.043) × 1010 m-1 for the seven composites, suggesting a nearly linear connection between ILSS and H-bonding at the fiber-matrix interfaces. The linear connection indicates that τ may be assessable nondestructively from measurements of KN via a technique such as angle beam ultrasonic spectroscopy.

  3. Hydrogen bonds, interfacial stiffness moduli, and the interlaminar shear strength of carbon fiber-epoxy matrix composites

    SciTech Connect

    Cantrell, John H.

    2015-03-15

    The chemical treatment of carbon fibers used in carbon fiber-epoxy matrix composites greatly affects the fraction of hydrogen bonds (H-bonds) formed at the fiber-matrix interface. The H-bonds are major contributors to the fiber-matrix interfacial shear strength and play a direct role in the interlaminar shear strength (ILSS) of the composite. The H-bond contributions τ to the ILSS and magnitudes K{sub N} of the fiber-matrix interfacial stiffness moduli of seven carbon fiber-epoxy matrix composites, subjected to different fiber surface treatments, are calculated from the Morse potential for the interactions of hydroxyl and carboxyl acid groups formed on the carbon fiber surfaces with epoxy receptors. The τ calculations range from 7.7 MPa to 18.4 MPa in magnitude, depending on fiber treatment. The K{sub N} calculations fall in the range (2.01 – 4.67) ×10{sup 17} N m{sup −3}. The average ratio K{sub N}/|τ| is calculated to be (2.59 ± 0.043) × 10{sup 10} m{sup −1} for the seven composites, suggesting a nearly linear connection between ILSS and H-bonding at the fiber-matrix interfaces. The linear connection indicates that τ may be assessable nondestructively from measurements of K{sub N} via a technique such as angle beam ultrasonic spectroscopy.

  4. Characterization and development of materials for advanced textile composites

    NASA Technical Reports Server (NTRS)

    Hartness, J. Timothy; Greene, Timothy L.; Taske, Leo E.

    1993-01-01

    Work ongoing under the NASA Langley - Advanced Composite Technology (ACT) program is discussed. The primary emphasis of the work centers around the development and characterization of graphite fiber that has been impregnated with an epoxy powder. Four epoxies have been characterized in towpreg form as to their weaveability and braidability. Initial mechanical properties have been generated on each resin system. These include unidirectional as well as 8-harness satin cloth. Initial 2D and 3D weaving and braiding trials will be reported on as well as initial efforts to develop towpreg suitable for advanced tow placement.

  5. In-Situ Investigation of Advanced Structural Coatings and Composites

    NASA Technical Reports Server (NTRS)

    Ustundag, Ersan

    2003-01-01

    The premise of this project is a comprehensive study that involves the in-situ characterization of advanced coatings and composites by employing both neutron and x-ray diffraction techniques in a complementary manner. The diffraction data would then be interpreted and used in developing or validating advanced micromechanics models with life prediction capability. In the period covered by this report, basic work was conducted to establish the experimental conditions for various specimens and techniques. In addition, equipment was developed that will allow the in-situ studies under a range of conditions (stress, temperature, atmosphere, etc.).

  6. Fatigue Damage Mechanisms in Advanced Hybrid Titanium Composite Laminates

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven; Rhymer, Donald W.; St.Clair, Terry L. (Technical Monitor)

    2000-01-01

    Hybrid Titanium Composite Laminates (HTCL) are a type of hybrid composite laminate with promise for high-speed aerospace applications, specifically designed for improved damage tolerance and strength at high-temperature (350 F, 177 C). However, in previous testing, HTCL demonstrated a propensity to excessive delamination at the titanium/PMC interface following titanium cracking. An advanced HTCL has been constructed with an emphasis on strengthening this interface, combining a PETI-5/IM7 PMC with Ti-15-3 foils prepared with an alkaline-perborate surface treatment. This paper discusses how the fatigue capabilities of the "advanced" HTCL compare to the first generation HTCL which was not modified for interface optimization, in both tension-tension (R = 0.1) and tension-compression (R=-0.2). The advanced HTCL under did not demonstrate a significant improvement in fatigue life, in either tension-tension or tension-compression loading. However, the advanced HTCL proved much more damage tolerant. The R = 0.1 tests revealed the advanced HTCL to increase the fatigue life following initial titanium ply damage up to 10X that of the initial HTCL at certain stress levels. The damage progression following the initial ply damage demonstrated the effect of the strengthened PMC/titanium interface. Acetate film replication of the advanced HTCL edges showed a propensity for some fibers in the adjacent PMC layers to fail at the point of titanium crack formation, suppressing delamination at the Ti/PMC interface. The inspection of failure surfaces validated these findings, revealing PMC fibers bonded to the majority of the titanium surfaces. Tension compression fatigue (R = -0.2) demonstrated the same trends in cycles between initial damage and failure, damage progression, and failure surfaces. Moreover, in possessing a higher resistance to delamination, the advanced HTCL did not exhibit buckling following initial titanium ply cracking under compression unlike the initial HTCL.

  7. Effect of Matrix Modification on Interlaminar Shear Strength of Glass Fibre Reinforced Epoxy Composites at Cryogenic Temperature

    NASA Astrophysics Data System (ADS)

    Wu, Zhixiong; Li, Jingwen; Huang, Chuanjun; Li, Laifeng

    In order to investigate the effect of the matrix variability on the interlaminar shear strength (ILSS) of glass fiber reinforced composites at 77K, three kinds of modifiers were employed to diethyl toluene diamine (DETD) cured diglycidyl ether of bisphenol F (DGEBF) epoxy resin system. The woven glass fiber reinforced composites were fabricated by vacuum pressure impregnation (VPI). The ILSS at 77 K was studied and the results indicated that introduction of modifiers used in this study can enhance the ILSS of composite at 77 K. A maximum of 14.87% increase was obtained by addition of 10 wt% IPBE into the epoxy matrix. Furthermore, scanning electron microscopy (SEM) was used to investigate the fracture mechanism and strengthening effect.

  8. Review on advanced composite materials boring mechanism and tools

    NASA Astrophysics Data System (ADS)

    Shi, Runping; Wang, Chengyong

    2010-12-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  9. Review on advanced composite materials boring mechanism and tools

    NASA Astrophysics Data System (ADS)

    Shi, Runping; Wang, Chengyong

    2011-05-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  10. Composite transport wing technology development: Design development tests and advanced structural concepts

    NASA Technical Reports Server (NTRS)

    Griffin, Charles F.; Harvill, William E.

    1988-01-01

    Numerous design concepts, materials, and manufacturing methods were investigated for the covers and spars of a transport box wing. Cover panels and spar segments were fabricated and tested to verify the structural integrity of design concepts and fabrication techniques. Compression tests on stiffened panels demonstrated the ability of graphite/epoxy wing upper cover designs to achieve a 35 percent weight savings compared to the aluminum baseline. The impact damage tolerance of the designs and materials used for these panels limits the allowable compression strain and therefore the maximum achievable weight savings. Bending and shear tests on various spar designs verified an average weight savings of 37 percent compared to the aluminum baseline. Impact damage to spar webs did not significantly degrade structural performance. Predictions of spar web shear instability correlated well with measured performance. The structural integrity of spars manufactured by filament winding equalled or exceeded those fabricated by hand lay-up. The information obtained will be applied to the design, fabrication, and test of a full-scale section of a wing box. When completed, the tests on the technology integration box beam will demonstrate the structural integrity of an advanced composite wing design which is 25 percent lighter than the metal baseline.

  11. Experimental analysis of in plane shear behaviour of woven composite reinforcements. Influence of tensions

    NASA Astrophysics Data System (ADS)

    Launay, Jean; Hivet, Gilles; Vu Duong, Ahn; Boisse, Philippe

    2007-04-01

    Two tests are mainly used to identify the shear behavior of fabrics. The "picture frame" which uses a lozenge framework made of four rigid and articulated bars and the "bias test" which is a tensile test on a sample with initially a 45° angle between the yarns and the edges. The picture frame test is the more commonly used because the whole specimen is theoretically in a pure shear state. Nevertheless the absence of tension in the woven reinforcement supposes a perfect alignment of fibres and positioning of the clamping point with regards to the framework articulations. In addition, it is often necessary in practice to impose an initial tension which is not quantified and whose consequences are ignored in the classical picture frame test. An experimental device making it possible to measure the tensions during the test is carried out. Different types of teste on different fabrics have been performed. Results presented here concern a twintex fabric that has been selected for a shear benchmark Thanks to this device, it is shown that tensions play an important role in plane shear behaviour.

  12. Effect of Er:YAG Laser on Shear Bond Strength of Composite to Enamel and Dentin of Primary Teeth

    PubMed Central

    Bahrololoomi, Zahra; Kabudan, Mona; Gholami, Leila

    2015-01-01

    Objectives: Bond strength of composite resin to enamel and dentin of primary teeth is lower than that to permanent teeth; therefore, it may compromise the adhesive bonding. New methods, such as laser application have been recently introduced for tooth preparation. The purpose of this study was to evaluate the effect of tooth preparation with bur and Er:YAG laser on shear bond strength of composite to enamel and dentin of primary teeth. Materials and Methods: Seventy-five primary molar teeth were collected and 150 specimens were obtained by mesiodistal sectioning of each tooth. In each of the enamel and dentin groups, the teeth were randomly assigned to 3 subgroups with the following preparations: bur preparation + etching (37% H3PO4), laser preparation + etching, and laser preparation without etching. Single Bond adhesive and Z250 composite were applied to all samples. After thermocycling, the shear bond strength testing was preformed using the Instron Testing Machine. Data were analysed using SPSS-17 and two-way ANOVA. Results: The bond strength of enamel specimens was significantly higher than that of dentin specimens, except for the laser-non-etched groups. The enamel and dentin laser-non-etched groups had no significant difference in bond strength. In both enamel and dentin groups, bur preparation + etching yielded the highest bond strength, followed by laser preparation + etching, and the laser preparation without etching yielded the lowest bond strength (P < 0.001). Conclusion: In both enamel and dentin groups, laser preparation caused lower shear bond strength compared to bur preparation. PMID:26622267

  13. Shear Wave Velocity Structure of Southern African Crust: Evidence for Compositional Heterogeneity within Archaean and Proterozoic Terrains

    SciTech Connect

    Kgaswane, E M; Nyblade, A A; Julia, J; Dirks, P H H M; Durrheim, R J; Pasyanos, M E

    2008-11-11

    Crustal structure in southern Africa has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities for 89 broadband seismic stations spanning much of the Precambrian shield of southern Africa. 1-D shear wave velocity profiles obtained from the inversion yield Moho depths that are similar to those reported in previous studies and show considerable variability in the shear wave velocity structure of the lower part of the crust between some terrains. For many of the Archaean and Proterozoic terrains in the shield, S velocities reach 4.0 km/s or higher over a substantial part of the lower crust. However, for most of the Kimberley terrain and adjacent parts of the Kheis Province and Witwatersrand terrain, as well as for the western part of the Tokwe terrain, mean shear wave velocities of {le} 3.9 km/s characterize the lower part of the crust along with slightly ({approx}5 km) thinner crust. These findings indicate that the lower crust across much of the shield has a predominantly mafic composition, except for the southwest portion of the Kaapvaal Craton and western portion of the Zimbabwe Craton, where the lower crust is intermediate-to-felsic in composition. The parts of the Kaapvaal Craton underlain by intermediate-to-felsic lower crust coincide with regions where Ventersdorp rocks have been preserved, and thus we suggest that the intermediate-to-felsic composition of the lower crust and the shallower Moho may have resulted from crustal melting during the Ventersdorp tectonomagmatic event at c. 2.7 Ga and concomitant crustal thinning caused by rifting.

  14. On the Mechanical Behavior of Advanced Composite Material Structures

    NASA Astrophysics Data System (ADS)

    Vinson, Jack

    During the period between 1993 and 2004, the author, as well as some colleagues and graduate students, had the honor to be supported by the Office of Naval Research to conduct research in several aspects of the behavior of structures composed of composite materials. The topics involved in this research program were numerous, but all contributed to increasing the understanding of how various structures that are useful for marine applications behaved. More specifically, the research topics focused on the reaction of structures that were made of fiber reinforced polymer matrix composites when subjected to various loads and environmental conditions. This included the behavior of beam, plate/panel and shell structures. It involved studies that are applicable to fiberglass, graphite/carbon and Kevlar fibers imbedded in epoxy, polyester and other polymeric matrices. Unidirectional, cross-ply, angle ply, and woven composites were involved, both in laminated, monocoque as well as in sandwich constructions. Mid-plane symmetric as well as asymmetric laminates were studied, the latter involving bending-stretching coupling and other couplings that only can be achieved with advanced composite materials. The composite structures studied involved static loads, dynamic loading, shock loading as well as thermal and hygrothermal environments. One major consideration was determining the mechanical properties of composite materials subjected to high strain rates because the mechanical properties vary so significantly as the strain rate increases. A considerable number of references are cited for further reading and study for those interested.

  15. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  16. Third NASA Advanced Composites Technology Conference, volume 1, part 2

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)

    1993-01-01

    This document is a compilation of papers presented at the Third NASA Advanced Composites Technology (ACT) Conference held at Long Beach, California, 8-11 June 1992. The ACT Program is a major multi-year research initiative to achieve a national goal of technology readiness before the end of the decade. Conference papers recorded results of research in the ACT Program in the specific areas of automated fiber placement, resin transfer molding, textile preforms, and stitching as these processes influence design, performance, and cost of composites in aircraft structures. Papers sponsored by the Department of Defense on the Design and Manufacturing of Low Cost Composites (DMLCC) are also included in Volume 2 of this document.

  17. Composite intermediate case manufacturing scale-up for advanced engines

    NASA Technical Reports Server (NTRS)

    Ecklund, Rowena H.

    1992-01-01

    This Manufacturing Technology for Propulsion Program developed a process to produce a composite intermediate case for advanced gas turbine engines. The method selected to manufacture this large, complex part uses hard tooling for surfaces in the airflow path and trapped rubber to force the composite against the mold. Subelements were manufactured and tested to verify the selected design, tools, and processes. The most significant subelement produced was a half-scale version of a composite intermediate case. The half-scale subelement maintained the geometry and key dimensions of the full-scale case, allowing relevant process development and structural verification testing to be performed on the subelement before manufacturing the first full-scale case.

  18. Boron/aluminum-graphite/resin advanced fiber composite hybrids

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1974-01-01

    An investigation was conducted to determine the fabrication feasibility and to assess the potential of adhesively-bonded metal and resin matrix fiber composite hybrids as an advanced material, for aerospace and other structural applications. The results of fabrication studies and of evaluation of physical and mechanical properties show that using this hybrid concept it is possible to design a composite which, when compared to nonhybrid composites, has improved transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for perdicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.

  19. Finite element stress analysis of a notched coupon specimen for in-plane shear behaviour of composites

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.; Bergner, H. W., Jr.

    1980-01-01

    The results of a linear elastic, plane stress finite element investigation of the stress distribution in a double V-notched coupon specimen are presented for an isotropic material (steel) and five graphite/polyimide laminates: (0), (90), (0/90)s, (plus or minus 45)s and (0/90/plus or minus 45)s. Stress contours, stress profiles, and stress concentration factors are presented for specimens loaded through rigid fixtures. It is shown that the finite element analysis predicts a region of essentially uniform pure shear in the central portion of the specimen for all laminates considered. Stress concentrations vary considerably with laminate configuration. The influences of elastic fixtures and thermal stresses on the stress distribution in (0) laminates are also investigated. The (0) laminate is predicted to exhibit maximum pure shear in the center of the test section for both rigid and elastic fixtures. It is concluded that the specimen is a practicable candidate for use as a composite shear specimen.

  20. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.

    PubMed

    Villegas, Irene F; Palardy, Genevieve

    2016-02-11

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints.

  1. Shear Bond Strengths of Methacrylate- and Silorane-based Composite Resins to Feldspathic Porcelain using Different Adhesive Systems.

    PubMed

    Mohammadi, Narmin; Shakur Shahabi, Maryam; Kimyai, Soodabeh; Pournagi Azar, Fatemeh; Ebrahimi Chaharom, Mohammad Esmaeel

    2015-01-01

    Background and aims. Use of porcelain as inlays, laminates and metal-ceramic and all-ceramic crowns is common in modern dentistry. The high cost of ceramic restorations, time limitations and difficulty of removing these restorations result in delays in replacing fractured restorations; therefore, their repair is indicated. The aim of the present study was to compare the shear bond strengths of two types of composite resins (methacrylate-based and silorane-based) to porcelain, using three adhesive types. Materials and methods. A total of 156 samples of feldspathic porcelain surfaces were prepared with air-abrasion and randomly divided into 6 groups (n=26). In groups 1-3, Z250 composite resin was used to repair porcelain samples with Ad-per Single Bond 2 (ASB), Clearfil SE Bond (CSB) and Silorane Adhesive (SA) as the bonding systems, afterapplication of silane, respectively. In groups 4-6, the same adhesives were used in the same manner with Filtek Silorane composite resin. Finally, the shear bond strengths of the samples were measured. Two-way ANOVA and post hoc Tukey tests were used to compare bond strengths between the groups with different adhesives at P<0.05. Results. There were significant differences in the mean bond strength values in terms of the adhesive type (P<0.001). In addition, the interactive effect of the adhesive type and composite resin type had no significant effect on bond strength (P=0.602). Conclusion. The results of the present study showed the highest repair bond strength values to porcelain with both composite resin types with the application of SA and ASB. PMID:26697151

  2. Shear Bond Strengths of Methacrylate- and Silorane-based Composite Resins to Feldspathic Porcelain using Different Adhesive Systems

    PubMed Central

    Mohammadi, Narmin; Shakur Shahabi, Maryam; Kimyai, Soodabeh; Pournagi Azar, Fatemeh; Ebrahimi Chaharom, Mohammad Esmaeel

    2015-01-01

    Background and aims. Use of porcelain as inlays, laminates and metal-ceramic and all-ceramic crowns is common in modern dentistry. The high cost of ceramic restorations, time limitations and difficulty of removing these restorations result in delays in replacing fractured restorations; therefore, their repair is indicated. The aim of the present study was to compare the shear bond strengths of two types of composite resins (methacrylate-based and silorane-based) to porcelain, using three adhesive types. Materials and methods. A total of 156 samples of feldspathic porcelain surfaces were prepared with air-abrasion and randomly divided into 6 groups (n=26). In groups 1-3, Z250 composite resin was used to repair porcelain samples with Ad-per Single Bond 2 (ASB), Clearfil SE Bond (CSB) and Silorane Adhesive (SA) as the bonding systems, afterapplication of silane, respectively. In groups 4-6, the same adhesives were used in the same manner with Filtek Silorane composite resin. Finally, the shear bond strengths of the samples were measured. Two-way ANOVA and post hoc Tukey tests were used to compare bond strengths between the groups with different adhesives at P<0.05. Results. There were significant differences in the mean bond strength values in terms of the adhesive type (P<0.001). In addition, the interactive effect of the adhesive type and composite resin type had no significant effect on bond strength (P=0.602). Conclusion. The results of the present study showed the highest repair bond strength values to porcelain with both composite resin types with the application of SA and ASB. PMID:26697151

  3. Shear bond strength of resin composite bonded with two adhesives: Influence of Er: YAG laser irradiation distance

    PubMed Central

    Shirani, Farzaneh; Birang, Reza; Malekipour, Mohammad Reza; Hourmehr, Zahra; Kazemi, Shantia

    2014-01-01

    Background: Dental surfaces prepared with different Er:YAG laser distance may have different characteristics compared with those prepared with conventional instruments. The aim of this study was to investigate the effect of Er:YAG laser irradiation distance from enamel and dentin surfaces on the shear bond strength of composite with self-etch and etch and rinse bonding systems compared with conventional preparation method. Materials and Methods: Two hundred caries-free human third molars were randomly divided into twenty groups (n = 10). Ten groups were designated for enamel surface (E1-E10) and ten for dentin surface (D1-D10). Er: YAG laser (2940 nm) was used on the E1-E8 (240 mJ, 25 Hz) and D1-D8 (140 mJ, 30 Hz) groups at four different distances of 0.5 (standard), 2, 4 and 11 mm. Control groups (E9, E10, D9 and D10) were ground with medium grit diamond bur. The enamel and dentin specimens were divided into two subgroups that were bonded with either Single Bond or Clearfil SE Bond. Resin composite (Z100) was dispensed on prepared dentin and enamel. The shear bond strengths were tested using a universal testing machine. Data were analyzed by SPSS12 statistical software using three way analysis of variance, Tukey and independent t-test. P < 0.05 was considered as significant. Results: There was a significant difference between enamel and dentin substrates (P < 0.001) and between lased and un-lased groups; the un-lased group had significantly higher bond strength (P < 0.001). Shear bond strength increased significantly with an increase in the laser irradiation distance (P < 0.05) on enamel surfaces (in both bonding agent subgroups) and on dentin surfaces (in the Single Bond subgroup). Conclusion: Laser irradiation decreases shear bond strength. Irradiation distance affects shear bond strength and increasing the distance would decrease the negative effects of laser irradiation. PMID:25540665

  4. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  5. Analyses of Failure Mechanisms in Woven Graphite/Polyimide Composites with Medium and High Modulus Graphite Fibers Subjected to In-Plane Shear

    NASA Technical Reports Server (NTRS)

    Kumosa, M.; Armentrout, D.; Rupnowski, P.; Kumosa, L.; Shin, E.; Sutter, J. K.

    2003-01-01

    The application of the Iosipescu shear test for the room and high temperature failure analyses of the woven graphite/polyimide composites with the medium (T-650) and igh (M40J and M60J) modulus graphite fibers is discussed. The M40J/PMR-II-50 and M60J/PMR-II-50 composites were tested as supplied and after thermal conditioning. The effect of temperature and conditioning on the initiation of intralaminar damage and the shear strength of the composites was established.

  6. Influence of interfacial shear strength on the mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1990-01-01

    The influence of fiber/matrix interface microstructure and interfacial shear strength on the mechanical properties of a fiber-reinforced ceramic composite was evaluated. The composite consisted of approximately 30 vol percent uniaxially aligned 142 microns diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix (SiC/RBSN). The interface microstructure was varied by controlling the composite fabrication conditions and by heat treating the composite in an oxidizing environment. Interfacial shear strength was determined by the matrix crack spacing method. The results of microstructural examination indicate that the carbon-rich coating provided with the as-produced SiC fibers was stable in composites fabricated at 1200 C in a nitrogen or in a nitrogen plus 4 percent hydrogen mixture for 40 hr. However this coating degraded in composites fabricated at 1350 C in N2 + 4 percent H2 for 40 and 72 hr and also in composites heat treated in an oxidizing environment at 600 C for 100 hr after fabrication at 1200 C in a nitrogen. It was determined that degradation occurred by carbon removal which in turn had a strong influence on interfacial shear strength and other mechanical properties. Specifically, as the carbon coating was removed, the composite interfacial shear strength, primary elastic modulus, first matrix cracking stress, and ultimate tensile strength decreased, but the first matrix cracking strain remained nearly the same.

  7. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  8. Mechanical Behaviour of Woven Graphite/Polyimide Composites with Medium and High Modulus Graphite Fibers Subjected to Biaxial Shear Dominated Loads

    NASA Technical Reports Server (NTRS)

    Kumose, M.; Gentz, M.; Rupnowski, P.; Armentrout, D.; Kumosa, L.; Shin, E.; Sutter, J. K.

    2003-01-01

    A major limitation of woven fiber/polymer matrix composite systems is the inability of these materials to resist intralaminar and interlaminar damage initiation and propagation under shear-dominated biaxial loading conditions. There are numerous shear test methods for woven fabric composites, each with its own advantages and disadvantages. Two techniques, which show much potential, are the Iosipescu shear and +/- 45 deg tensile tests. In this paper, the application of these two tests for the room and high temperature failure analyses of woven graphite/polyimide composites is briefly evaluated. In particular, visco-elastic micro, meso, and macro-stress distributions in a woven eight harness satin (8HS) T650/PMR-15 composite subjected to these two tests are presented and their effect on the failure process of the composite is evaluated. Subsequently, the application of the Iosipescu tests to the failure analysis of woven composites with medium (T650) and high (M40J and M60J) modulus graphite fibers and PMR-15 and PMR-II-50 polyimide resins is discussed. The composites were tested as-supplied and after thermal conditioning. The effect of temperature and thermal conditioning on the initiation of intralaminar damage and the shear strength of the composites was established.

  9. Probabilistic Evaluation of Advanced Ceramic Matrix Composite Structures

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Chamis, Christos C.

    2003-01-01

    The objective of this report is to summarize the deterministic and probabilistic structural evaluation results of two structures made with advanced ceramic composites (CMC): internally pressurized tube and uniformly loaded flange. The deterministic structural evaluation includes stress, displacement, and buckling analyses. It is carried out using the finite element code MHOST, developed for the 3-D inelastic analysis of structures that are made with advanced materials. The probabilistic evaluation is performed using the integrated probabilistic assessment of composite structures computer code IPACS. The affects of uncertainties in primitive variables related to the material, fabrication process, and loadings on the material property and structural response behavior are quantified. The primitive variables considered are: thermo-mechanical properties of fiber and matrix, fiber and void volume ratios, use temperature, and pressure. The probabilistic structural analysis and probabilistic strength results are used by IPACS to perform reliability and risk evaluation of the two structures. The results will show that the sensitivity information obtained for the two composite structures from the computational simulation can be used to alter the design process to meet desired service requirements. In addition to detailed probabilistic analysis of the two structures, the following were performed specifically on the CMC tube: (1) predicted the failure load and the buckling load, (2) performed coupled non-deterministic multi-disciplinary structural analysis, and (3) demonstrated that probabilistic sensitivities can be used to select a reduced set of design variables for optimization.

  10. 24% Indigenously Prepared Ethylene Diamine Tetra Acetic Acid Compared to Self-Etching Adhesives and their Effect on Shear Bond Strength of Composites in Primary Teeth: An In-vitro Study

    PubMed Central

    Nagar, Priya; Tandil, Yogesh L.; T.P., Chandru; Gupta, Anamika; Kalaria, Devendra; Kumar, Prafful

    2015-01-01

    Background: Over the years, it has been known that 34% phosphoric acid is the benchmark in etchants with the best shear bond strength shown with composites in primary teeth. However, with latest technological advancements and innovations, in order to reduce the number of steps and less damage to the tooth structure, non-rinse conditioner (NRC) & Single-Etch and various other etchants have been tried and tested. These etchants have been found to have shear bond strength comparable to phosphoric acid. In this study, indigenously prepared 24% ethylenediaminetetraacetic acid (EDTA) has been compared with established etchants, as to prove if their shear bond strength was closely related. As it is a well-known fact that EDTA could be less damaging to the enamel during etching and hence can be an alternative for etching of primary teeth. Materials and Methods: For the study 60 caries-free primary molars were used, they were sectioned in the middle, after making area for bonding; the marked area was then etched using different etchants for 30 s. Each of the teeth was then rinsed and bonded with composite resin and thermocycling was done. Shear bond strength testing was done on the composite using Universal Testing Machine. Results: Results of the study showed that phosphoric acid showed the highest bond strength, closely followed by Single Etch (Adper Prompt) and NRC, then by EDTA. Conclusions: About 24% EDTA can be another comparable replacement for phosphoric acid if used with a Single Etch Primer, like Prime and Bond NT on primary teeth. 34% phosphoric acid has the highest bond strength values with composite resin. Single etch followed by NRC has the second and third highest bond strength values, which are comparable to phosphoric acid. PMID:26464540

  11. Development of Metal Matrix Composites for NASA's Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, J.; Elam, S.

    2001-01-01

    The state-of-the-art development of several Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The goal is to provide an overview of NASA-Marshall Space Flight Center's on-going activities in MMC components for advanced liquid rocket engines such as the X-33 vehicle's Aerospike engine and X-34's Fastrac engine. The focus will be on lightweight, low cost, and environmental compatibility with oxygen and hydrogen of key MMC materials, within each of NASA's new propulsion application, that will provide a high payoff for NASA's Reusable Launch Vehicles and space access vehicles. In order to fabricate structures from MMC, effective joining methods must be developed to join MMC to the same or to different monolithic alloys. Therefore, a qualitative assessment of MMC's welding and joining techniques will be outlined.

  12. First NASA Advanced Composites Technology Conference, Part 2

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)

    1991-01-01

    Presented here is a compilation of papers presented at the first NASA Advanced Composites Technology (ACT) Conference held in Seattle, Washington, from 29 Oct. to 1 Nov. 1990. The ACT program is a major new multiyear research initiative to achieve a national goal of technology readiness before the end of the decade. Included are papers on materials development and processing, innovative design concepts, analysis development and validation, cost effective manufacturing methodology, and cost tracking and prediction procedures. Papers on major applications programs approved by the Department of Defense are also included.

  13. Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1990-01-01

    Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.

  14. Acoustic emission studies of large advanced composite rocket motor cases.

    NASA Technical Reports Server (NTRS)

    Robinson, E. Y.

    1973-01-01

    Acoustic emission (AE) patterns were measured during pressure testing of advanced composite rocket motor cases made of boron/epoxy and graphite/epoxy. Both accelerometers and high frequency AE transducers were used, and both frequency spectrum and amplitude distribution were studied. The AE patterns suggest that precursor emission might be used in certain cases to anticipate failure. The technique of hold-cycle AE monitoring was also evaluated and could become a valuable decision gate for test continuation/termination. Data presented show similarity of accelerometers and AE transducer responses despite the different frequency response, and suggest that structural AE phenomena are broadband.

  15. Advanced composites sizing guide for preliminary weight estimates

    NASA Astrophysics Data System (ADS)

    Burns, J. W.

    During the preliminary design and proposal phases, it is necessary for the mass properties engineer to make weight estimates that require preliminary rough estimates to improve or verify Level I and Level II estimates and to support trade studies for various types of construction, materials substitution, wing t/c, and design criteria changes. The purpose of this paper is to provide a simple and easy to understand, preliminary sizing guide and present some numeric examples that will aid the mass properties engineer that is inexperienced with advanced composites analysis.

  16. Micromechanical characterization of nonlinear behavior of advanced polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Chen, J. L.; Sun, C. T.

    1994-01-01

    Due to the presence of curing stresses and oriented crystalline structures in the matrix of polymer matrix fiber composites, the in situ nonlinear properties of the matrix are expected to be rather different from those of the bulk resin. A plane stress micromechanical model was developed to retrieve the in situ elastic-plastic properties of Narmco 5260 and Amoco 8320 matrices from measured elastic-plastic properties of IM7/5260 and IM7/8320 advance composites. In the micromechanical model, the fiber was assumed to be orthotropically elastic and the matrix to be orthotropic in elastic and plastic properties. The results indicate that both in situ elastic and plastic properties of the matrices are orthotropic.

  17. Experimental, numerical, and analytical studies on the seismic response of steel-plate concrete (SC) composite shear walls

    NASA Astrophysics Data System (ADS)

    Epackachi, Siamak

    The seismic performance of rectangular steel-plate concrete (SC) composite shear walls is assessed for application to buildings and mission-critical infrastructure. The SC walls considered in this study were composed of two steel faceplates and infill concrete. The steel faceplates were connected together and to the infill concrete using tie rods and headed studs, respectively. The research focused on the in-plane behavior of flexure- and flexure-shear-critical SC walls. An experimental program was executed in the NEES laboratory at the University at Buffalo and was followed by numerical and analytical studies. In the experimental program, four large-size specimens were tested under displacement-controlled cyclic loading. The design variables considered in the testing program included wall thickness, reinforcement ratio, and slenderness ratio. The aspect ratio (height-to-length) of the four walls was 1.0. Each SC wall was installed on top of a re-usable foundation block. A bolted baseplate to RC foundation connection was used for all four walls. The walls were identified to be flexure- and flexure-shear critical. The progression of damage in the four walls was identical, namely, cracking and crushing of the infill concrete at the toes of the walls, outward buckling and yielding of the steel faceplates near the base of the wall, and tearing of the faceplates at their junctions with the baseplate. A robust finite element model was developed in LS-DYNA for nonlinear cyclic analysis of the flexure- and flexure-shear-critical SC walls. The DYNA model was validated using the results of the cyclic tests of the four SC walls. The validated and benchmarked models were then used to conduct a parametric study, which investigated the effects of wall aspect ratio, reinforcement ratio, wall thickness, and uniaxial concrete compressive strength on the in-plane response of SC walls. Simplified analytical models, suitable for preliminary analysis and design of SC walls, were

  18. Composite Fan Blade Design for Advanced Engine Concepts

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Kuguoglu, Latife H.; Chamis, Christos C.

    2004-01-01

    The aerodynamic and structural viability of composite fan blades of the revolutionary Exo-Skeletal engine are assessed for an advanced subsonic mission using the NASA EST/BEST computational simulation system. The Exo-Skeletal Engine (ESE) calls for the elimination of the shafts and disks completely from the engine center and the attachment of the rotor blades in spanwise compression to a rotating casing. The fan rotor overall adiabatic efficiency obtained from aerodynamic analysis is estimated at 91.6 percent. The flow is supersonic near the blade leading edge but quickly transitions into a subsonic flow without any turbulent boundary layer separation on the blade. The structural evaluation of the composite fan blade indicates that the blade would buckle at a rotor speed that is 3.5 times the design speed of 2000 rpm. The progressive damage analysis of the composite fan blade shows that ply damage is initiated at a speed of 4870 rpm while blade fracture takes place at 7640 rpm. This paper describes and discusses the results for the composite blade that are obtained from aerodynamic, displacement, stress, buckling, modal, and progressive damage analyses. It will be demonstrated that a computational simulation capability is readily available to evaluate new and revolutionary technology such as the ESE.

  19. Advanced Technology Composite Fuselage - Repair and Damage Assessment Supporting Maintenance

    NASA Technical Reports Server (NTRS)

    Flynn, B. W.; Bodine, J. B.; Dopker, B.; Finn, S. R.; Griess, K. H.; Hanson, C. T.; Harris, C. G.; Nelson, K. M.; Walker, T. H.; Kennedy, T. C.; Nahan, M. F.

    1997-01-01

    Under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC), Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure. Included in the study is the incorporation of maintainability and repairability requirements of composite primary structure into the design. This contractor report describes activities performed to address maintenance issues in composite fuselage applications. A key aspect of the study was the development of a maintenance philosophy which included consideration of maintenance issues early in the design cycle, multiple repair options, and airline participation in design trades. Fuselage design evaluations considered trade-offs between structural weight, damage resistance/tolerance (repair frequency), and inspection burdens. Analysis methods were developed to assess structural residual strength in the presence of damage, and to evaluate repair design concepts. Repair designs were created with a focus on mechanically fastened concepts for skin/stringer structure and bonded concepts for sandwich structure. Both a large crown (skintstringer) and keel (sandwich) panel were repaired. A compression test of the keel panel indicated the demonstrated repairs recovered ultimate load capability. In conjunction with the design and manufacturing developments, inspection methods were investigated for their potential to evaluate damaged structure and verify the integrity of completed repairs.

  20. Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application. Phase 2: summary report: Shear web component fabrication

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.; Smith, D. D.; Zimmerman, D. K.

    1973-01-01

    The fabrication of two shear web test elements and three large scale shear web test components are reported. In addition, the fabrication of test fixtures for the elements and components is described. The center-loaded beam test fixtures were configured to have a test side and a dummy or permanent side. The test fixtures were fabricated from standard extruded aluminum sections and plates and were designed to be reuseable.

  1. Strength and fatigue behaviour of 2D-carbon/carbon composites under shear conditions

    SciTech Connect

    Fend, T.; Goering, J.

    1994-12-31

    In this study flexural tests under cyclic shear loads (R>O) were performed with different two dimensional reinforced carbon/carbon materials, produced under different processing conditions. During fatigue testing a continuous increase of damage density (characterized via stiffness degradation) was observed, caused by the {open_quotes}wear out{close_quotes} of graphite matrix carbon (characterized via energy absorption in load-deflection hysteresis loops) which eventually leads to a time-dependent failure. This study includes SEM fractography and a microstructural accessment by TEM.

  2. Design synthesis of a boron/epoxy reinforced metal shear web.

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.

    1972-01-01

    An advanced composite shear web design concept has been developed for the Space Shuttle Orbiter main engine thrust beam structure. Various web concepts were synthesized by a computer-aided adaptive random search procedure. A practical concept is identified having a titanium-clad, boron/epoxy plate with vertical boron/epoxy reinforced stiffeners. Baseline composite and titanium shear resistant designs are compared; the composite concept is 28% lighter than the titanium web. Element test results show the metal cladding effectively reinforces critical composite load transfer and fastener hole areas making the composite web concept practical for other shear structure applications.-

  3. Effect of different adhesives combined with two resin composite cements on shear bond strength to polymeric CAD/CAM materials.

    PubMed

    Bähr, Nora; Keul, Christine; Edelhoff, Daniel; Eichberger, Marlis; Roos, Malgorzata; Gernet, Wolfgang; Stawarczyk, Bogna

    2013-01-01

    This study tested the impact of different adhesives and resin composite cements on shear bond strength (SBS) to polymethyl methacrylate (PMMA)- and composite-based CAD/CAM materials. SBS specimens were fabricated and divided into five main groups (n=30/group) subject to conditioning: 1. Monobond Plus/Heliobond (MH), 2. Visio.link (VL), 3. Ambarino P60 (AM), 4. exp. VP connect (VP), and 5. no conditioning-control group (CG). All cemented specimens using a. Clearfil SA Cement and b. Variolink II were stored in distilled water for 24 h at 37 °C. Additionally, one half of the specimens were thermocycled for 5,000 cycles (5 °C/55 °C, dwell time 20 s). SBS was measured; data were analyzed using descriptive statistics, four- and one-way ANOVA, unpaired two-sample t-test and Chi(2)-test. CAD/CAM materials without additional adhesives showed no bond to resin composite cements. Highest SBS showed VL with Variolink II on composite-based material, before and after thermocycling.

  4. Shear Bond Strength of Calcium Enriched Mixture Cement and Mineral Trioxide Aggregate to Composite Resin with Two Different Adhesive Systems

    PubMed Central

    Savadi Oskoee, Siavash; Bahari, Mahmoud; Kimyai, Soodabeh; Motahhari, Paria; Eghbal, Mohammad Jafar; Asgary, Saeed

    2014-01-01

    Objective: Immediate restoration after vital pulp therapy is essential in order to create and maintain effective coronal seal. Purpose of Study: The aim of this study was to evaluate the shear bond strength of recently used pulp capping materials: white mineral trioxide aggregate (MTA), and calcium enriched mixture cement (CEM) to composite resin with the use of etch-and-rinse and self-etch adhesive systems and compare them with the bond strength of commonly used resin modified glass ionomer (RMGI) cement. Materials and Methods: Forty specimens from each test material were fabricated, measuring 4 mm in diameter and 2 mm in depth. The specimens of each material were divided into 2 groups of 20 specimens according to the adhesive system (Single Bond vs. Clearfil SE Bond) used for bonding of resin composite. The shear bond strength values were measured at a crosshead speed of 1.0 mm/min and fractured surfaces were examined. Data were analyzed using two-way ANOVA and a post hoc Tukey’s test (P<0.05). Results: Analysis of data showed a significantly higher bond strength for RMGI compared to MTA and CEM (P<0.001); however, no significant differences were observed in the bond strength values of MTA and CEM (P=0.9). Furthermore, there were no significant differences in relation to the type of the adhesive system irrespective of the type of the material used (P=0.95) All the failures were of cohesive type in RMGI, MTA and CEM. Conclusion: Bond strength of RMGI cement to composite resin was higher than that of MTA or CEM cement irrespective of the type of the adhesive system. PMID:25628696

  5. Comparison of single pot and multiphase high shear wet granulation processes related to excipient composition.

    PubMed

    Giry, K; Viana, M; Genty, M; Louvet, F; Désiré, A; Wüthrich, P; Chulia, D

    2009-10-01

    At present time, industrial production imperatives can require the transposition of a formulation from one equipment to another. In order to evaluate the impact of such a switch on the properties of granules and tablets, investigations were undertaken on formulations manufactured both in a single pot mixer-granulator-dryer (high shear granulator with in situ double jacket vacuum drying) and in a multiphase equipment (high shear granulator/fluid bed dryer). Principal component analysis highlighted the major contribution of the binder ratio on granule size distribution, flow and packing ability whereas the relative ratio of mannitol and lactose, used as fillers, mainly impacted on compressibility and tablet cohesion. In the studied domain, the lubricant ratio did not explain the considered responses. Statistical analysis (comparison of means, analysis of variance and PCA) showed that both processes led to products with similar characteristics which demonstrated the ability of the processes to produce granules with close quality. However, Fielder/Niro granule characteristic data were found to be more dispersed, thus demonstrating a higher sensitivity of the multiphase process to formulation changes. Technological properties of granules and tablets were found to be maintained or improved therefore securing the switch from single pot to multiphase equipments. PMID:19130608

  6. Ultrasonics transduction in metallic and composite structures for structural health monitoring using extensional and shear horizontal piezoelectric wafer active sensors

    NASA Astrophysics Data System (ADS)

    Abdelrahman, Ayman Kamal

    Structural health monitoring (SHM) is crucial for monitoring structures performance, detecting the initiation of flaws and damages, and predicting structural life span. The dissertation emphasizes on developing analytical and numerical models for ultrasonics transduction between piezoelectric wafer active sensors (PWAS), and metallic and composite structures. The first objective of this research is studying the power and energy transduction between PWAS and structure for the aim of optimizing guided waves mode tuning and PWAS electromechanical (E/M) impedance for power-efficient SHM systems. Analytical models for power and energy were developed based on exact Lamb wave solution with application on multimodal Lamb wave situations that exist at high excitation frequencies and/or relatively thick structures. Experimental validation was conducted using Scanning Laser Doppler Vibrometer. The second objective of this work focuses on shear horizontal (SH) PWAS which are poled in thickness-shear direction (d35 mode). Analytical and finite element predictive models of the E/M impedance of free and bonded SH-PWAS were developed. Next, the wave propagation method has been considered for isotropic materials. Finally, the power and energy of SH waves were analytically modeled and a MATLAB graphical user interface (GUI) was developed for determining phase and group velocities, mode shapes, and energy of SH waves. The third objective focuses on guided wave propagation in composites. The transfer matrix method (TMM) has been used to calculate dispersion curves of guided waves in composites. TMM suffers numerical instability at high frequency-thickness values, especially in multilayered composites. A method of using stiffness matrix method was investigated to overcome instability. A procedure of using combined stiffness transfer matrix method (STMM) was presented and coded in MATLAB. This was followed by a comparative study between commonly used methods for the calculation of

  7. Applications for thermal NDT on advanced composites in aerospace structures

    NASA Astrophysics Data System (ADS)

    Baughman, Steve R.

    1998-03-01

    Following several years of investigating active thermal imaging techniques, Lockheed Martin Aeronautical Systems Company (LMASC) has introduced a portable, time-dependent thermography (TDT) system into the production inspection environment. Originally pursued as a rapid, non-contacting, nondestructive evaluation (NDE) tool for inspecting large surface areas, the TDT system has proven most useful as a rapid verification tool on advanced composite assemblies. TDT is a relatively new NDE methodology as compared to conventional ultrasonic and radiography testing. SEveral technical issues are being addressed as confidence in the system's capabilities increase. These include inspector training and certification, system sensitivity assessments, and test results interpretation. Starting in 1991, LMASC began a beta-site evaluation of a prototype TDT system developed by the Institute of Manufacturing Research at Wayne State University. This prototype was the forerunner of the current production system, which is offered commercially as a fully integrated thermal NDE system. Applications investigated to data include quality assurance of advanced aerospace composite structures/assemblies for disbonds/voids between skin and core. TDT has a number of advantages over traditional NDT methods. The process of acquiring thermal images is fast, and can decrease inspection time required to locate suspect areas. The system also holds promise for depot level inspections due to its portability. This paper describes a systematic approach to implementing TDT into the production inspection arena.

  8. The effects of different surface treatments on the shear bond strength of composite resin to machined titanium

    NASA Astrophysics Data System (ADS)

    Aljadi, Mohammad

    Purpose: The purpose of this study was to evaluate the shear bond strength between machined titanium and composite resin using different surface treatments. Materials and Methods: Titanium (Ti-6Al-4V) specimens were ground with 600 grit SiC paper and randomly divided into 6 groups (n=20/group). Group #1 (Control): samples were sandblasted with 110 microm Al2 O3 for 10 sec. Group #2 (Rocatec): samples were treated with the Rocatec system following the manufacturer's directions but the silanization step was eliminated. Group #3 (Silano Pen): samples were treated with the Silano Pen system. Group #4 (H2SO4 etched): samples were sandblasted with 110 microm Al2O3 for 10 sec and etched with 48% H2SO4 for 60 minutes at 60 oC. Group#5 (acid etching + Rocatec): samples received both treatments as described in Groups 4 and 2, respectively. Group #6 (acid etching + Silano Pen): samples received both treatments as described in Groups 4 and 3, respectively. Composite was bonded to the treated titanium surface, half of the specimens from each group (n=10/group) were subjected to thermocycling, and the samples were tested for shear bond strength in a universal testing machine. Representative samples from each group were evaluated with SEM. Results: Two-way ANOVA revealed that there were significant differences (p < 0.05) in bond strength between the six groups of surface treatment and that thermocycling significantly decreased shear bond strength. There was no significant interaction (p = 0.07) between surface treatment and thermocycling status. With regard to the effect of surface treatment, a Tukey Post Hoc test showed that groups 3 (Silano Pen) and 6 (Silano Pen + H2SO4) showed significantly (p < 0.05) greater bond strengths compared to the rest of the groups. There was no significant difference in the bond strength between the four other groups. Conclusion: 1) Silano Pen is effective in improving the bond strength of titanium to composite resin. 2) The silanization step in

  9. Mechanical properties of alumina-PEEK unidirectional composite - Compression, shear, and tension

    NASA Technical Reports Server (NTRS)

    Kriz, R. D.; Mccolskey, J. D.

    1990-01-01

    An Al2O3 (alumina)-fiber composite with high strain to failure was fabricated with a thermal plastic PEEK (poly-ether-ether-ketone). The Al2O3-PEEK composite shows a marked improvement over thermally setting composite in that it absorbs 150 percent more elastic-strain energy at 76 K than at room temperature. This increase in fracture toughness at low temperatures can provide improved fatigue performance for thermal isolation straps at low temperature. Other mechanical property results suggest improvements for applications where graphite-epoxy materials are presently being used at low temperatures and where light weight is not a critical issue.

  10. Shear wave velocity structure of the lower crust in southern Africa: Evidence for compositional heterogeneity within Archaean and Proterozoic terrains

    NASA Astrophysics Data System (ADS)

    Kgaswane, Eldridge M.; Nyblade, Andrew A.; Juliã, Jordi; Dirks, Paul H. G. M.; Durrheim, Raymond J.; Pasyanos, Michael E.

    2009-12-01

    The nature of the lower crust across the southern African shield has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities for 89 broadband seismic stations located in Botswana, South Africa and Zimbabwe. For large parts of both Archaean and Proterozoic terrains, the velocity models obtained from the inversions show shear wave velocities ≥4.0 km/s below ˜20-30 km depth, indicating a predominantly mafic lower crust. However, for much of the Kimberley terrain and adjacent parts of the Kheis Province and Witwatersrand terrain in South Africa, as well as for the western part of the Tokwe terrain in Zimbabwe, shear wave velocities of ≤3.9 km/s are found below ˜20-30 km depth, indicating an intermediate-to-felsic lower crust. The areas of intermediate-to-felsic lower crust in South Africa coincide with regions where Ventersdorp rocks have been preserved, suggesting that the more evolved composition of the lower crust may have resulted from crustal reworking and extension during the Ventersdorp tectonomagmatic event at c. 2.7 Ga.

  11. A Numerical Simulation of Time-Dependent Interface Failure Under Shear and Compressive Loads in Single-Fiber Composites

    NASA Astrophysics Data System (ADS)

    Koyanagi, Jun; Yoshimura, Akinori; Kawada, Hiroyuki; Aoki, Yuichiro

    2010-02-01

    We performed a numerical simulation of a time-dependent interfacial failure accompanied by a fiber failure, and examined their evolution under shear and compressive loads in single-fiber composites. The compressive load on the interface consists of Poisson’s contraction for matrix resin subjected to longitudinal tensile load. As time progresses, compressive stress at the interface in the fiber radial direction relaxes under the constant longitudinal tensile strain condition for the specimen, directly causing the relaxation of the interface frictional stress. This relaxation facilitates the failure of the interface. In this analysis, a specific criterion for interface failure is applied; apparent interfacial shear strength is enhanced by compressive stress, which is referred as quasi-parabolic criterion in the present study. The results of the stress recovery profile around the fiber failure and the interfacial debonding length as a function of time simulated by the finite element analysis employing the criterion are very similar to experimental results obtained using micro-Raman spectroscopy.

  12. Micromechanics Based Design/Analysis Codes for Advanced Composites

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Murthy, Pappu L. N.; Gyekenyesi, John P.

    2002-01-01

    Advanced high temperature Ceramic Matrix Composites (CMC) hold an enormous potential for use in aero and space related applications specifically for propulsion system components. Consequently, this has led to a multitude of research activities pertaining to fabrication, testing and modeling of these materials. The efforts directed at the development of ceramic matrix composites have focused primarily on improving the properties of the constituents as individual phases. It has, however, become increasingly clear that for CMC to be successfully employed in high temperature applications, research and development efforts should also focus on optimizing the synergistic performance of the constituent phases within the as-produced microstructure of the complex shaped CMC part. Despite their attractive features, the introduction of these materials in a wide spectrum of applications has been excruciatingly slow. The reasons are the high costs associated with the manufacturing and a complete experimental testing and characterization of these materials. Often designers/analysts do not have a consistent set of necessary properties and design allowables to be able to confidently design and analyze structural components made from these composites. Furthermore, the anisotropy of these materials accentuates the burden both on the test engineers and the designers by requiring a vastly increased amount of data/characterization compared to conventional materials.

  13. Short-wavelength buckling and shear failures for compression-loaded composite laminates. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Shuart, M. J.

    1985-01-01

    The short-wavelength buckling (or the microbuckling) and the interlaminar and inplane shear failures of multi-directional composite laminates loaded in uniaxial compression are investigated. A laminate model is presented that idealizes each lamina. The fibers in the lamina are modeled as a plate, and the matrix in the lamina is modeled as an elastic foundation. The out-of-plane w displacement for each plate is expressed as a trigonometric series in the half-wavelength of the mode shape for laminate short-wavelength buckling. Nonlinear strain-displacement relations are used. The model is applied to symmetric laminates having linear material behavior. The laminates are loaded in uniform end shortening and are simply supported. A linear analysis is used to determine the laminate stress, strain, and mode shape when short-wavelength buckling occurs. The equations for the laminate compressive stress at short-wavelength buckling are dominated by matrix contributions.

  14. Comparison of Shear Bond Strength of Composite to Stainless Steel Crowns Using Two Mechanical Surface Treatments and Two Bonding Systems

    PubMed Central

    Ghadimi, Sara; Heidari, Alireza

    2016-01-01

    Objectives: This study aimed to compare the shear bond strength (SBS) of composite to stainless steel crowns (SSC) using two mechanical surface treatments (MSTs) and two bonding systems. Materials and Methods: Eighty-four SSCs were divided into six groups of 14; Group1: No MST+Scotchbond Universal adhesive (N+U), Group 2: Surface roughening by a diamond bur+Scotchbond Universal adhesive (R+U), Group 3: Sandblasting+Scotchbond Universal adhesive (S+U), Group 4: No MST+Alloy Primer+Clearfil SE Primer and Bond (N+A), Group 5: Surface roughening by a diamond bur+Alloy Primer+Clearfil SE Primer and Bond (R+A), Group 6: Sandblasting+Alloy Primer+Clearfil SE Primer and Bond (S+A). After MST and bonding procedure, composite cylinders were bonded to the lingual surface of SSCs, then the SBS of composite to SSCs was measured using a universal testing machine following thermocycling. Results: The SBS of groups R+U and S+U was significantly higher than that of group N+U. No significant difference was noted in SBS of groups R+U and S+U. The SBS of group S+A was significantly higher than that of groups N+A and R+A. No significant difference was noted in the SBS of groups N+A and R+A (P>0.05). Conclusions: In Scotchbond Universal adhesive groups, sandblasting and surface roughening by diamond bur significantly increased the SBS of composite to SSCs compared to no MST. In Alloy Primer groups, sandblasting significantly increased the SBS of composite to SSC compared to surface roughening with diamond bur and no MST. PMID:27536330

  15. Effect of different thickness h-BN coatings on interface shear strength of quartz fiber reinforced Sisbnd Osbnd Csbnd N composite

    NASA Astrophysics Data System (ADS)

    Wang, Shubin; Zheng, Yu

    2014-02-01

    Hexagonal boron nitride (h-BN) coatings with different thickness were prepared on quartz fibers to improve mechanical properties of quartz fiber reinforced Sisbnd Osbnd Csbnd N composite. Scanning electron microscopy (SEM), push-out test and single edge notched beam (SENB) in three point bending test were employed to study morphology, interface shear strength and fracture toughness of the composite. The results showed that h-BN coatings changed the crack growth direction and weaken the interface shear strength efficiently. When the h-BN coating was 308.2 nm, the interface shear strength was about 5.2 MPa, which was about one-quarter of that of the sample without h-BN coatings. After the heating process for obtaining composite, the h-BN nanometer-sized grains would grow up to micron-sized hexagonal grains. Different thickness h-BN coatings had different structure. When the coatings were relatively thin, the hexagonal grains were single layer structure, and when the coatings were thicker, the hexagonal grains were multiple layer structure. This multiple layer interface phase would consume more power of cracks, thus interface shear strength of the composite decreased steadily with the increasing of h-BN coatings thickness. When the coating thickness was 238.8 nm, KIC reaches the peak value 3.8 MPa m1/2, which was more than two times of that of composites without h-BN coatings.

  16. Custom Analog VLSI for the Advanced Composition Explorer (ACE)

    NASA Astrophysics Data System (ADS)

    Cook, W. R.; Cummings, A.; Keeman, B.; Mewaldt, R. A.; Aalami, D.; Kleinfelder, S. A.; Marshall, J. H.

    1993-11-01

    Two custom analog VLSI chips are currently in development for scientific payloads of NASA's Advanced Composition Explorer. One chip will be fabricated in the radiation hard 1.2 um CMOS process of the United Technologies Microelectronics Center (UlMC), and will contain 16 complete discriminator/12 bit pulse-height-analysis chains for the readout of heavy ion Si strip detectors. The second chip will be fabricated by Harris Semiconductor in their dielectrically isolated bipolar VHF process. This chip will contain the active elements of a single precision pulse-height-analysis chain and several precision discriminator chains. The chips designed in this effort and the techniques employed are expected to be applicable in science payloads of future missions, especially those which place extraordinary premiums on weight, power, and/or performance.

  17. Advanced composite aileron for L-1011 transport aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Design and evaluation of alternate concepts for the major subcomponents of the advanced composite aileron (ACA) was completed. From this array of subcomponents, aileron assemblies were formulated and evaluated. Based on these analyses a multirib assembly with graphite tape/syntactic core covers, a graphite tape front spar, and a graphite fabric rib was selected for development. A weight savings of 29.1 percent (40.8 pounds per aileron) is predicted. Engineering cost analyses indicate that the production cost of the ACA will be 7.3 percent less than the current aluminum aileron. Fabrication, machining, and testing of the material evaluation specimens for the resin screening program was completed. The test results lead to the selection of Narmco 5208 resin for the ACA. Other activities completed include: the detailed design of the ACA, construction of a three dimensional finite element model for structural analysis, and formulation of detail plans for material verification and process development.

  18. Advanced composite aileron for L-1011 transport aircraft: Aileron manufacture

    NASA Technical Reports Server (NTRS)

    Dunning, E. G.; Cobbs, W. L.; Legg, R. L.

    1981-01-01

    The fabrication activities of the Advanced Composite Aileron (ACA) program are discussed. These activities included detail fabrication, manufacturing development, assembly, repair and quality assurance. Five ship sets of ailerons were manufactured. The detail fabrication effort of ribs, spar and covers was accomplished on male tools to a common cure cycle. Graphite epoxy tape and fabric and syntactic epoxy materials were utilized in the fabrication. The ribs and spar were net cured and required no post cure trim. Material inconsistencies resulted in manufacturing development of the front spar during the production effort. The assembly effort was accomplished in subassembly and assembly fixtures. The manual drilling system utilized a dagger type drill in a hydraulic feed control hand drill. Coupon testing for each detail was done.

  19. Structural Assessment of Advanced Composite Tow-Steered Shells

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stanford, Bret K.; Hrinda, Glenn A.; Wang, Zhuosong; Martin, Robert a.; Kim, H. Alicia

    2013-01-01

    The structural performance of two advanced composite tow-steered shells, manufactured using a fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles vary continuously around the shell circumference from 10 degrees on the shell crown and keel, to 45 degrees on the shell sides. The two shells differ in that one shell has the full 24-tow course applied during each pass of the fiber placement system, while the second shell uses the fiber placement system s tow drop/add capability to achieve a more uniform shell wall thickness. The shells are tested in axial compression, and estimates of their prebuckling axial stiffnesses and bifurcation buckling loads are predicted using linear finite element analyses. These preliminary predictions compare well with the test results, with an average agreement of approximately 10 percent.

  20. Advanced Measurements of Silicon Carbide Ceramic Matrix Composites

    SciTech Connect

    Farhad Farzbod; Stephen J. Reese; Zilong Hua; Marat Khafizov; David H. Hurley

    2012-08-01

    Silicon carbide (SiC) is being considered as a fuel cladding material for accident tolerant fuel under the Light Water Reactor Sustainability (LWRS) Program sponsored by the Nuclear Energy Division of the Department of Energy. Silicon carbide has many potential advantages over traditional zirconium based cladding systems. These include high melting point, low susceptibility to corrosion, and low degradation of mechanical properties under neutron irradiation. In addition, ceramic matrix composites (CMCs) made from SiC have high mechanical toughness enabling these materials to withstand thermal and mechanical shock loading. However, many of the fundamental mechanical and thermal properties of SiC CMCs depend strongly on the fabrication process. As a result, extrapolating current materials science databases for these materials to nuclear applications is not possible. The “Advanced Measurements” work package under the LWRS fuels pathway is tasked with the development of measurement techniques that can characterize fundamental thermal and mechanical properties of SiC CMCs. An emphasis is being placed on development of characterization tools that can used for examination of fresh as well as irradiated samples. The work discuss in this report can be divided into two broad categories. The first involves the development of laser ultrasonic techniques to measure the elastic and yield properties and the second involves the development of laser-based techniques to measurement thermal transport properties. Emphasis has been placed on understanding the anisotropic and heterogeneous nature of SiC CMCs in regards to thermal and mechanical properties. The material properties characterized within this work package will be used as validation of advanced materials physics models of SiC CMCs developed under the LWRS fuels pathway. In addition, it is envisioned that similar measurement techniques can be used to provide process control and quality assurance as well as measurement of

  1. Conceptual design study of advanced acoustic-composite nacelles

    NASA Technical Reports Server (NTRS)

    Nordstrom, K. E.; Marsh, A. H.; Sargisson, D. F.

    1975-01-01

    Conceptual studies were conducted to assess the impact of incorporating advanced technologies in the nacelles of a current wide-bodied transport and an advanced technology transport. The improvement possible in the areas of fuel consumption, flyover noise levels, airplane weight, manufacturing costs, and airplane operating cost were evaluated for short and long-duct nacelles. Use of composite structures for acoustic duct linings in the fan inlet and exhaust ducts was considered as well as for other nacelle components. For the wide-bodied transport, the use of a long-duct nacelle with an internal mixer nozzle in the primary exhaust showed significant improvement in installed specific fuel consumption and airplane direct operating costs compared to the current short-duct nacelle. The long-duct mixed-flow nacelle is expected to achieve significant reductions in jet noise during takeoff and in turbo-machinery noise during landing approach. Recommendations were made of the technology development needed to achieve the potential fuel conservation and noise reduction benefits.

  2. A Community of Composition Theorists and Researchers: Collaborative Research and Theory Building in an Advanced Composition Course.

    ERIC Educational Resources Information Center

    Griffith, Kevin

    An advanced composition curriculum was designed for a class of 20 juniors and seniors, and because of the constraints of a university grant with which it was associated, the majority of assignments had to be collaborative. The subject of investigation was composition. That is, the students were challenged to do what composition researchers and…

  3. Atmosphere composition monitor for space station and advanced missions application

    SciTech Connect

    Wynveen, R.A.; Powell, F.T.

    1987-01-01

    Long-term human occupation of extraterrestrial locations may soon become a reality. The National Aeronautics and Space Administration (NASA) has recently completed the definition and preliminary design of the low earth orbit (LEO) space station. They are now currently moving into the detailed design and fabrication phase of this space station and are also beginning to analyze the requirements of several future missions that have been identified. These missions include, for example, Lunar and Mars sorties, outposts, bases, and settlements. A requirement of both the LEO space station and future missions are environmental control and life support systems (ECLSS), which provide a comfortable environment for humans to live and work. The ECLSS consists of several major systems, including atmosphere revitalization system (ARS), atmosphere pressure and composition control system, temperature and humidity control system, water reclamation system, and waste management system. Each of these major systems is broken down into subsystems, assemblies, units, and instruments. Many requirements and design drivers are different for the ECLSS of the LEO space station and the identified advanced missions (e.g., longer mission duration). This paper discusses one of the ARS assemblies, the atmosphere composition monitor assembly (ACMA), being developed for the LEO space station and addresses differences that will exist for the ACMA of future missions.

  4. Steady-state creep of bent reinforced metal-composite plates with consideration of their reduced resistance to transverse shear. 1. Deformation model

    NASA Astrophysics Data System (ADS)

    Yankovskii, A. P.

    2014-05-01

    The problem of deformation of reinforced metal-composite plates is formulated in rectangular Cartesian coordinates using the second version of Timoshenko theory and taking into account the reduced transverse shear resistance of the plates under steady-state creep conditions. A similar model problem of axisymmetric bending of reinforced plates is considered in polar coordinates.

  5. An investigation of crack growth at interfaces in bimaterials and composites using a consistent shear-lag model

    SciTech Connect

    Popejoy, D.B.

    1992-01-01

    The problem of a crack impinging upon an interface between dissimilar materials is studied using a Consistent Shear-Lag (COSL) model. The goal is to determine whether the crack will penetrate the interface or be deflected into it. Since the stress and displacement fields in the vicinity of the interface usually create computational difficulties, especially when the elastic moduli vary greatly, the COSL model is modified to include an interlayer region at the interface to act as a buffer. The energy release rates for both doubly-deflected and penetrating cracks are determined. The effect of elastic mismatch on the energy release rates, and hence on the mode of crack extension, is investigated. These results compare favorably with analytical solutions for similar bimaterial problems. When applied to composite materials, this model shows that the fiber volume fraction has little effect on the ratio of energy release rates. To account for the possibility of flaws and imperfections within composites, the previous formulation is modified to include a crack impinging upon an initially debonded zone. Proximity of the crack tip to the debond is very important in predicting the mode of crack growth.

  6. Effect of hydrofluoric acid etching on shear bond strength of an indirect resin composite to an adhesive cement.

    PubMed

    Hori, Sayaka; Minami, Hiroyuki; Minesaki, Yoshito; Matsumura, Hideo; Tanaka, Takuo

    2008-07-01

    This study evaluated the effect of 1% hydrofluoric acid (HF) treatment on the bonding of an adhesive cement (Panavia F 2.0) to an indirect resin composite (Estenia C&B). Pairs of composite disks (10 and 8 mm in diameter by 3 mm thickness) were prepared. Adhesive surfaces were pretreated with either airborne particle abrasion or HF etching before being soaked for 30 seconds, five minutes or 10 minutes, with or without application of silane coupling agent. Adhesive specimens were fabricated by cementing a pair of treated disks. Shear bond strength was determined before and after 50,000 times of thermocycling (4 and 60 degrees C). All data were statistically analyzed using two-way ANOVA and Bonferroni's test (a=0.05). Bond strength achieved with five minutes of HF etching (18.3+/-1.1 MPa) was significantly higher (P=0.0025) than that obtained with airborne particle abrasion followed by application of silane coupling agent (14.3+/-1.8 MPa) after thermocycling.

  7. Role of multiwalled carbon nanotube in interlaminar shear strength of epoxy/glass fiber/multi walled carbon nanotube hybrid composites

    NASA Astrophysics Data System (ADS)

    Srinivasan Chandrasekaran, Vasan Churchill

    2011-12-01

    The motivation of this thesis is to investigate the role of multi-walled carbon nanotube (MWCNT) in enhancing the interlaminar shear strength (ILSS) of hybrid composites. The objective of this thesis is to understand the relationships between processing history, material variability, matrix properties, glass fiber/matrix interface properties and their correlations with interlaminar shear strength of hybrid composites. The interlaminar shear strength (ILSS) of hybrid composites made from glass fiber and multi-walled carbon nanotube (MWCNT) modified epoxy is compared with that for unmodified epoxy/glass fiber composites (control). By combining the techniques of high speed mechanical stirring and ultrasonic agitation, 0.5% MWCNT by weight were dispersed in epoxy to prepare a suspension. Composites were manufactured by both injection double vacuum-assisted resin transfer molding (IDVARTM) and the flow flooding chamber (FFC) methods. Compression shear tests (CST) were conducted on the manufactured samples to determine the ILSS. The effect of processing history and batch-to-batch variability of materials---glass fiber preform, resin and carbon nanotubes---on the ILSS of samples made by both techniques was investigated. Statistical comparison of the measured ILSS values for hybrid composites with the control specimens clearly show that hybrid composites made by the FFC process resulted in significant ILSS enhancement relative to the control and the IDVARTM specimens. After it was established that the FFC process improved the ILSS, the effect of functionalizing the nanotubes was explored. Multi walled carbon nanotubes (MWCNT) were oxidized by acid treatment and heated with triethylene tetra amine (TETA) to obtain amino functionalized MWCNTs (f-MWCNT). Hybrid composites with f-MWCNTs were manufactured using FFC technique and control samples were fabricated using the same E-Glass fiber mat and unmodified epoxy resin subjected to the same processing history. CST results show

  8. Effect of preliminary treatment of the dentin surface on the shear bond strength of resin composite to dentin.

    PubMed

    Pilo, R; Cardash, H S; Oz-Ari, B; Ben-Amar, A

    2001-01-01

    This study evaluated the effect of two dentin disinfectants (Consepsis, Tubulicid), one aqueous HEMA solution (Aqua Prep), a combination of Aqua Prep and Tubulicid and an air abrasion treatment (50 microns aluminum oxide) on the shear bond strength (SBS) of two acetone-based single bottle adhesives (One Step and Prime & Bond 2.1). The occlusal surfaces of 167 freshly extracted human third molars were ground flat to expose the dentin, then polished with a 600 grit-polishing disc. The teeth were randomly assigned to 12 test groups (two bonding agents, six pretreatment protocols). The exposed dentin was etched with 35% phosphoric acid for 20 seconds, rinsed and briefly (1-2 seconds) air dried. Six pretreatment protocols were then applied. The air abrasion groups were exceptional, as etching was carried out only after pretreatment. One Step, or Prime & Bond 2.1 was applied according to the manufacturer's instructions. Cylinders of Z-100 composite were bonded to the flat dentin surfaces by transparent gelatin capsules. Specimens were thermocycled in water baths between 5 degrees and 55 degrees C, then sheared in an Instron Testing Machine. One-way and two-way ANOVA and Tukey HSD post-hoc tests were used for statistical analysis. In the One Step group, Consepsis yielded a significantly higher SBS (17.8 MPa) than air abrasion (9.5 MPa), Control (11.8 MPa) and Aqua Prep + Tubilicid (11.9 MPa), and a comparable SBS with Tubilicid (12.5 MPa) and Aqua Prep (14.8 MPa). In the Prime & Bond 2.1 group, Aqua Prep (24.9 MPa) showed a significantly higher SBS than all other groups: air abrasion (9.3 MPa), Control (9.97 MPa), Tubilicid (12.2 MPa), Consepsis (13.0 MPa) and Tubilicid + Aqua Prep (13.3 MPa).

  9. Interface shear strength and fracture behaviour of porous glass-fibre-reinforced composite implant and bone model material.

    PubMed

    Nganga, Sara; Ylä-Soininmäki, Anne; Lassila, Lippo V J; Vallittu, Pekka K

    2011-11-01

    Glass-fibre-reinforced composites (FRCs) are under current investigation to serve as durable bone substitute materials in load-bearing orthopaedic implants and bone implants in the head and neck area. The present form of biocompatible FRCs consist of non-woven E-glass-fibre tissues impregnated with varying amounts of a non-resorbable photopolymerisable bifunctional polymer resin with equal portions of both bis-phenyl-A-glycidyl dimethacrylate (BisGMA) and triethyleneglycol dimethacrylate (TEGDMA). FRCs with a total porosity of 10-70 vol% were prepared, more than 90 vol% of which being functional (open pores), and the rest closed. The pore sizes were greater than 100 μm. In the present study, the push-out test was chosen to analyse the shear strength of the interface between mechanically interlocked gypsum and a porous FRC implant structure. Gypsum was used as a substitute material for natural bone. The simulative in vitro experiments revealed a significant rise of push-out forces to the twofold level of 1147 ± 271 N for an increase in total FRC porosity of 43%. Pins, intended to model the initial mechanical implant fixation, did not affect the measured shear strength of the gypsum-FRC interface, but led to slightly more cohesive fracture modes. Fractures always occurred inside the gypsum, it having lower compressive strength than the porous FRC structures. Therefore, the largest loads were restricted by the brittleness of the gypsum. Increases of the FRC implant porosity tended to lead to more cohesive fracture modes and higher interfacial fracture toughness. Statistical differences were confirmed using the Kruskal-Wallis test. The differences between the modelled configuration showing gypsum penetration into all open pores and the real clinical situation with gradual bone ingrowth has to be considered. PMID:22098879

  10. Interface shear strength and fracture behaviour of porous glass-fibre-reinforced composite implant and bone model material.

    PubMed

    Nganga, Sara; Ylä-Soininmäki, Anne; Lassila, Lippo V J; Vallittu, Pekka K

    2011-11-01

    Glass-fibre-reinforced composites (FRCs) are under current investigation to serve as durable bone substitute materials in load-bearing orthopaedic implants and bone implants in the head and neck area. The present form of biocompatible FRCs consist of non-woven E-glass-fibre tissues impregnated with varying amounts of a non-resorbable photopolymerisable bifunctional polymer resin with equal portions of both bis-phenyl-A-glycidyl dimethacrylate (BisGMA) and triethyleneglycol dimethacrylate (TEGDMA). FRCs with a total porosity of 10-70 vol% were prepared, more than 90 vol% of which being functional (open pores), and the rest closed. The pore sizes were greater than 100 μm. In the present study, the push-out test was chosen to analyse the shear strength of the interface between mechanically interlocked gypsum and a porous FRC implant structure. Gypsum was used as a substitute material for natural bone. The simulative in vitro experiments revealed a significant rise of push-out forces to the twofold level of 1147 ± 271 N for an increase in total FRC porosity of 43%. Pins, intended to model the initial mechanical implant fixation, did not affect the measured shear strength of the gypsum-FRC interface, but led to slightly more cohesive fracture modes. Fractures always occurred inside the gypsum, it having lower compressive strength than the porous FRC structures. Therefore, the largest loads were restricted by the brittleness of the gypsum. Increases of the FRC implant porosity tended to lead to more cohesive fracture modes and higher interfacial fracture toughness. Statistical differences were confirmed using the Kruskal-Wallis test. The differences between the modelled configuration showing gypsum penetration into all open pores and the real clinical situation with gradual bone ingrowth has to be considered.

  11. Design procedures for Strain Hardening Cement Composites (SHCC) and measurement of their shear properties by mechanical and 2-D Digital Image Correlation (DIC) method

    NASA Astrophysics Data System (ADS)

    Aswani, Karan

    The main objective of this study is to investigate the behaviour and applications of strain hardening cement composites (SHCC). Application of SHCC for use in slabs of common configurations was studied and design procedures are prepared by employing yield line theory and integrating it with simplified tri-linear model developed in Arizona State University by Dr. Barzin Mobasher and Dr. Chote Soranakom. Intrinsic material property of moment-curvature response for SHCC was used to derive the relationship between applied load and deflection in a two-step process involving the limit state analysis and kinematically admissible displacements. For application of SHCC in structures such as shear walls, tensile and shear properties are necessary for design. Lot of research has already been done to study the tensile properties and therefore shear property study was undertaken to prepare a design guide. Shear response of textile reinforced concrete was investigated based on picture frame shear test method. The effects of orientation, volume of cement paste per layer, planar cross-section and volume fraction of textiles were investigated. Pultrusion was used for the production of textile reinforced concrete. It is an automated set-up with low equipment cost which provides uniform production and smooth final surface of the TRC. A 3-D optical non-contacting deformation measurement technique of digital image correlation (DIC) was used to conduct the image analysis on the shear samples by means of tracking the displacement field through comparison between the reference image and deformed images. DIC successfully obtained full-field strain distribution, displacement and strain versus time responses, demonstrated the bonding mechanism from perspective of strain field, and gave a relation between shear angle and shear strain.

  12. Interlaminar shear strength and thermo-mechanical properties of nano-enhanced composite materials under thermal shock

    NASA Astrophysics Data System (ADS)

    Gkikas, G.; Douka, D.-D.; Barkoula, N.-M.; Paipetis, A. S.

    2013-04-01

    The introduction of nanoscaled reinforcement in otherwise conventional fiber reinforced composite materials has opened an exciting new area in composites research. The unique properties of these materials combined with the design versatility of fibrous composites may offer both enhanced mechanical properties and multiple functionalities which has been a focus area of the aerospace technology on the last decades. Due to unique properties of carbon nanofillers such as huge aspect ratio, extremely large specific surface area as well as high electrical and thermal conductivity, Carbon Nanotubes have benn investigated as multifunvtional materials for electrical, thermal and mechanical applications. In this study, MWCNTs were incorporated in a typical epoxy system using a sonicator. The volume of the nanoreinforcement was 0.5 % by weight. Two different levels of sonication amplitude were used, 50% and 100% respectively. After the sonication, the hardener was introduced in the epoxy, and the system was cured according to the recommended cycle. For comparison purposes, specimens from neat epoxy system were prepared. The thermomechanical properties of the materials manufactured were investigated using a Dynamic Mechanical Analyser. The exposed specimens were subjected to thermal shock. Thermal cycles from +30 °C to -30 °C were carried out and each cycle lasted 24 hours. The thermomechanical properties were studied after 30 cycles . Furthermore, the epoxy systems prepared during the first stage of the study were used for the manufacturing of 16 plies quasi isotropic laminates CFRPs. The modified CFRPs were subjected to thermal shock. For comparison reasons unmodified CFRPs were manufactured and subjected to the same conditions. In addition, the interlaminar shear strength of the specimens was studied using 3-point bending tests before and after the thermal shock. The effect of the nanoreinforcement on the environmental degradation is critically assessed.

  13. Development of Stitched Composite Structure for Advanced Aircraft

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn; Przekop, Adam; Rouse, Marshall; Lovejoy, Andrew; Velicki, Alex; Linton, Kim; Wu, Hsi-Yung; Baraja, Jaime; Thrash, Patrick; Hoffman, Krishna

    2015-01-01

    NASA has created the Environmentally Responsible Aviation Project to develop technologies which will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company are working together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composites. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. With the PRSEUS concept, through-the-thickness stitches are applied through dry fabric prior to resin infusion, and replace fasteners throughout each integral panel. Through-the-thickness reinforcement at discontinuities, such as along flange edges, has been shown to suppress delamination and turn cracks, which expands the design space and leads to lighter designs. The pultruded rod provides stiffening away from the more vulnerable skin surface and improves bending stiffness. A series of building blocks were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. These building blocks addressed tension, compression, and pressure loading conditions. The emphasis of the development work has been to assess the loading capability, damage arrestment features, repairability, post-buckling behavior, and response of PRSEUS flat panels to out-of plane pressure loading. The results of this building-block program from coupons through an 80%-scale pressure box have demonstrated the viability of a PRSEUS center body for the Hybrid Wing Body (HWB) transport aircraft. This development program shows that the PRSEUS benefits are also applicable to traditional tube-andwing aircraft, those of advanced configurations, and other

  14. A shear deformable theory of laminated composite shallow shell-type panels and their response analysis. I - Free vibration and buckling

    NASA Technical Reports Server (NTRS)

    Librescu, L.; Khdeir, A. A.; Frederick, D.

    1989-01-01

    This paper deals with the substantiation of a shear deformable theory of cross-ply laminated composite shallow shells. While the developed theory preserves all the advantages of the first order transverse shear deformation theory it succeeds in eliminating some of its basic shortcomings. The theory is further employed in the analysis of the eigenvibration and static buckling problems of doubly curved shallow panels. In this context, the state space concept is used in conjunction with the Levy method, allowing one to analyze these problems in a unified manner, for a variety of boundary conditions. Numerical results are presented and some pertinent conclusions are formulated.

  15. Comparative Study of the Shear Bond Strength of Flowable Composite in Permanent Teeth Treated with Conventional Bur and Contact or Non-Contact Er:YAG Laser

    PubMed Central

    Parhami, Parisa; Pourhashemi, Seyed Jalal; Ghandehari, Mehdi; Mighani, Ghasem; Chiniforush, Nasim

    2014-01-01

    Introduction: The aim of this study was to evaluate and compare the in vitro effect of the Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser with different radiation distances and high-speed rotary treatment on the shear bond strength of flowable composite to enamel of human permanent posterior teeth. Methods: freshly extracted human molar teeth with no caries or other surface defects were used in this study (n=45). The teeth were randomly divided into 3 groups. Group 1: treated with non-contact Er:YAG Laser and etched with Er:YAG laser, Group 2: treated with contact Er:YAG Laser and etched with Er:YAG laser, Group 3 (control): treated with diamond fissure bur and etched with acid phosphoric 37%. Then the adhesive was applied on the surafces of the teeth and polymerized using a curing light appliance. Resin cylinders were fabricated from flowable composite. Shear bond strength was tested at a crosshead speed of 0.5 mm/min. Results: The amount of Shear Bond Strength (SBS) in the 3 treatment groups was not the same (P<0.05).The group in which enamel surfaces were treated with diamond fissure bur and etched with acid (conrtol group) had the highest mean shear bond strength (19.92±4.76) and the group in which the enamel surfaces were treated with contact Er:YAG laser and etched with Er:YAG laser had the lowest mean shear bond strength (10.89±2.89). Mann-whitney test with adjusted P-value detected significant difference in shear bond strength between the control group and the other 2 groups (P < 0.05). Conclusion: It was concluded that both contact and non-contact Er:YAG laser treatment reduced shear bond strength of flowable resin composite to enamel in comparison with conventional treatment with high speed rotary. Different Er:YAG laser distance irradiations did not influence the shear bond strength of flowable composite to enamel. PMID:25653813

  16. Effect of Surface Treatment with Er;Cr:YSSG, Nd:YAG, and CO2 Lasers on Repair Shear Bond Strength of a Silorane-based Composite Resin

    PubMed Central

    Alizadeh Oskoee, Parnian; Mohammadi, Narmin; Ebrahimi Chaharom, Mohammad Esmaeel; Kimyai, Soodabeh; Pournaghi Azar, Fatemeh; Rikhtegaran, Sahand; Shojaeei, Maryam

    2013-01-01

    Background and aims. The aim of the present study was to compare the effect ofsurface treatment with Er; Cr:YSSG, Nd:YAG, and CO2 lasers on repair shear bond strength of a silorane-based composite resin. Materials and methods. Sixty eight cylindrical samples of a silorane-based composite resin (Filtek Silorane) were pre-pared and randomly divided into 4 groups as follows: group 1: without surface treatment; groups 2, 3 and 4 with surface treatments using Er; Cr:YSSG, Nd:YAG, and CO2 lasers, respectively. A positive control group (group 5) was assigned in order to measure cohesive strength. Repair shear bond strength values were measured and data was analyzed using one-way ANOVA and a post hoc Tukey test at a significance level of α=0.05. Results. There were statistically significant differences in repair shear bond strength values between group 2 and other groups (P < 0.05); and between group 1and groups 3and 4 (P < 0.001); however, there were no significant differences be-tween groups 3 and 4 (P = 0.91). Conclusion. The repair shear bond strength of silorane-based composite resin was acceptable by surface treatment with lasers PMID:23875082

  17. Microstructure and Shear Strength in Brazing Joint of Mo-Cu Composite with 304 Stainless Steel by Ni-Cr-P Filler Metal

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Wang, Jiteng; Li, Yajiang; Zheng, Deshuang

    2015-07-01

    The brazing of Mo-Cu composite and 304 stainless steel was carried out in vacuum with Ni-Cr-P filler metal at 980 °C for 20 min. Microstructure in Mo-Cu/304 stainless steel joint was investigated by field-emission scanning electron microscope (FE-SEM) with energy dispersive spectrometer (EDS) and shear strength was measured by shearing test. The results indicate that shear strength of the Mo-Cu/304 stainless steel joint is about 155 MPa. There forms eutectic structure of γ-Ni solid solution with Ni3P in the braze seam. Ni-Cu(Mo) and Ni-Fe solid solution are at the interface beside Mo-Cu composite and 304 stainless steel, respectively. Shear fracture exhibits mixed ductile-brittle fracture feature with trans-granular fracture, ductile dimples and tearing edges. Fracture originates from the interface between brazing seam and Mo-Cu composite and it propagates to the braze seam due to the formation of brittle Ni5P2 and Cr3P precipitation.

  18. Shear bond strength of a new self-adhering flowable composite resin for lithium disilicate-reinforced CAD/CAM ceramic material

    PubMed Central

    Sancakli, Hande Sar; Sancakli, Erkan; Eren, Meltem Mert; Ozel, Sevda; Yucel, Taner; Yildiz, Esra

    2014-01-01

    PURPOSE The purpose of this study was to evaluate and compare the effects of different surface pretreatment techniques on the surface roughness and shear bond strength of a new self-adhering flowable composite resin for use with lithium disilicate-reinforced CAD/CAM ceramic material. MATERIALS AND METHODS A total of one hundred thirty lithium disilicate CAD/CAM ceramic plates with dimensions of 6 mm × 4 mm and 3 mm thick were prepared. Specimens were then assigned into five groups (n=26) as follows: untreated control, coating with 30 µm silica oxide particles (Cojet™ Sand), 9.6% hydrofluoric acid etching, Er:YAG laser irradiation, and grinding with a high-speed fine diamond bur. A self-adhering flowable composite resin (Vertise Flow) was applied onto the pre-treated ceramic plates using the Ultradent shear bond Teflon mold system. Surface roughness was measured by atomic force microscopy. Shear bond strength test were performed using a universal testing machine at a crosshead speed of 1 mm/min. Surface roughness data were analyzed by one-way ANOVA and the Tukey HSD tests. Shear bond strength test values were analyzed by Kruskal-Wallis and Mann-Whitney U tests at α=.05. RESULTS Hydrofluoric acid etching and grinding with high-speed fine diamond bur produced significantly higher surface roughness than the other pretreatment groups (P<.05). Hydrofluoric acid etching and silica coating yielded the highest shear bond strength values (P<.001). CONCLUSION Self-adhering flowable composite resin used as repair composite resin exhibited very low bond strength irrespective of the surface pretreatments used. PMID:25551002

  19. Imperfection Insensitivity Analyses of Advanced Composite Tow-Steered Shells

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Farrokh, Babak; Stanford, Bret K.; Weaver, Paul M.

    2016-01-01

    Two advanced composite tow-steered shells, one with tow overlaps and another without overlaps, were previously designed, fabricated and tested in end compression, both without cutouts, and with small and large cutouts. In each case, good agreement was observed between experimental buckling loads and supporting linear bifurcation buckling analyses. However, previous buckling tests and analyses have shown historically poor correlation, perhaps due to the presence of geometric imperfections that serve as failure initiators. For the tow-steered shells, their circumferential variation in axial stiffness may have suppressed this sensitivity to imperfections, leading to the agreement noted between tests and analyses. To investigate this further, a numerical investigation was performed in this study using geometric imperfections measured from both shells. Finite element models of both shells were analyzed first without, and then, with measured imperfections that were then, superposed in different orientations around the shell longitudinal axis. Small variations in both the axial prebuckling stiffness and global buckling load were observed for the range of imperfections studied here, which suggests that the tow steering, and resulting circumferentially varying axial stiffness, may result in the test-analysis correlation observed for these shells.

  20. Advanced Ceramic Matrix Composites (CMCs) for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2005-01-01

    Advanced ceramic matrix composites (CMCs) are enabling materials for a number of demanding applications in aerospace, energy, and nuclear industries. In the aerospace systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, vanes, nozzle components, nose cones, leading edges of reentry vehicles, and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters, and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. In the last few years, a number of CMC components have been developed and successfully tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. They include robust fabrication and manufacturing, assembly and integration, coatings, property modeling and life prediction, design codes and databases, repair and refurbishment, and cost. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, a number of examples of successful CMC component development and testing will be provided. In addition, critical need for robust manufacturing, joining and assembly technologies in successful implementation of these systems will be discussed.

  1. Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index Composites

    USGS Publications Warehouse

    ,

    2005-01-01

    The Advanced Very High Resolution Radiometer (AVHRR) is a broad-band scanner with four to six bands, depending on the model. The AVHRR senses in the visible, near-, middle-, and thermal- infrared portions of the electromagnetic spectrum. This sensor is carried on a series of National Oceanic and Atmospheric Administration (NOAA) Polar Orbiting Environmental Satellites (POES), beginning with the Television InfraRed Observation Satellite (TIROS-N) in 1978. Since 1989, the United States Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) has been mapping the vegetation condition of the United States and Alaska using satellite information from the AVHRR sensor. The vegetation condition composites, more commonly called greenness maps, are produced every week using the latest information on the growth and condition of the vegetation. One of the most important aspects of USGS greenness mapping is the historical archive of information dating back to 1989. This historical stretch of information has allowed the USGS to determine a 'normal' vegetation condition. As a result, it is possible to compare the current week's vegetation condition with normal vegetation conditions. An above normal condition could indicate wetter or warmer than normal conditions, while a below normal condition could indicate colder or dryer than normal conditions. The interpretation of departure from normal will depend on the season and geography of a region.

  2. Experimental Classical Flutter Reesults of a Composite Advanced Turboprop Model

    NASA Technical Reports Server (NTRS)

    Mehmed, O.; Kaza, K. R. V.

    1986-01-01

    Experimental results are presented that show the effects of blade pitch angle and number of blades on classical flutter of a composite advanced turboprop (propfan) model. An increase in the number of blades on the rotor or the blade pitch angle is destablizing which shows an aerodynamic coupling or cascade effect between blades. The flutter came in suddenly and all blades vibrated at the same frequency but at different amplitudes and with a common predominant phase angle between consecutive blades. This further indicates aerodynamic coupling between blades. The flutter frequency was between the first two blade normal modes, signifying an aerodynamic coupling between the normal modes. Flutter was observed at all blade pitch angles from small to large angles-of-attack of the blades. A strong blade response occurred, for four blades at the two-per-revolution (2P) frequency, when the rotor speed was near the crossing of the flutter mode frequency and the 2P order line. This is because the damping is low near the flutter condition and the interblade phase angle of the flutter mode and the 2P response are the same.

  3. Role of Mechanics of Textile Preform Composites in the NASA Advanced Composites Technology Program

    SciTech Connect

    Harris, C.E.; Poe, C.C. Jr.

    1995-10-01

    The Advanced Composites Technology Program was initiated by NASA as a partnership with the United States aeronautical industry in fiscal year 1989. The broad objective of the Program was to develop the technology to design and manufacture cost-effective and structurally optimized light-weight composite airframe primary structure. Phase A of the Program, 1989-1991, focused on the identification and evaluation of innovative manufacturing technologies and structural concepts. At the end of Phase A, the leading wing and fuselage design concepts were down-selected for further development in Phase B of the Program, 1992-1995. Three major fabrication technologies emerged from Phase A. These three approaches were the stitched dry preform, textile preform, and automated tow placement manufacturing methods. Each method emphasized rapid fiber placement, near net-shape preform fabrication, part count minimization, and matching the technologies to the specific structural configurations and requirements. The objective of Phase B was to continue the evolution of design concepts using the concurrent engineering process, down-select to the leading structural concept, and design, build, and test subscale components. Phase C of the ACT Program, 1995-2002, is a critical element of the NASA Advanced Subsonic Technology Program and has been approved for implementation beginning in 1995. The objective of Phase C is to design, build, and test major components of the airframe to demonstrate the technology readiness for applications in the next generation subsonic commercial transport aircraft. Part of the technology readiness demonstration will include a realistic comparison of manufacturing costs and an increased confidence in the ability to accurately estimate the costs of composite structure. The Program Plan calls for the structural components to be a complete fuselage barrel with a window-belt and a wing box at the wing/fuselage intersection.

  4. A simulation study on the combined effects of nanotube shape and shear flow on the electrical percolation thresholds of carbon nanotube/polymer composites

    NASA Astrophysics Data System (ADS)

    Eken, A. E.; Tozzi, E. J.; Klingenberg, D. J.; Bauhofer, W.

    2011-04-01

    Here we investigate the combined effects of carbon nanotube (CNT) properties such as aspect ratio, curvature, and tunneling length and shear rate on the microstructure and electrical conductivities of CNT/polymer composites using fiber-level simulations. Electrical conductivities are calculated using a resistor network algorithm. Results for percolation thresholds in static systems agree with predictions and experimental measurements. We show that imposed shear flow can decrease the electrical percolation threshold by facilitating the formation of conductive aggregates. In agreement with previous research, we find that lower percolation thresholds are obtained for nanotubes with high aspect ratio. Our results also show that an increase in the curvature of nanotubes can make more agglomeration and reduce the percolation threshold in sheared suspensions.

  5. Buckling of Carbon Nanotube-Reinforced Polymer Laminated Composite Materials Subjected to Axial Compression and Shear Loadings

    NASA Technical Reports Server (NTRS)

    Riddick, J. C.; Gates, T. S.; Frankland, S.-J. V.

    2005-01-01

    A multi-scale method to predict the stiffness and stability properties of carbon nanotube-reinforced laminates has been developed. This method is used in the prediction of the buckling behavior of laminated carbon nanotube-polyethylene composites formed by stacking layers of carbon nanotube-reinforced polymer with the nanotube alignment axes of each layer oriented in different directions. Linking of intrinsic, nanoscale-material definitions to finite scale-structural properties is achieved via a hierarchical approach in which the elastic properties of the reinforced layers are predicted by an equivalent continuum modeling technique. Solutions for infinitely long symmetrically laminated nanotube-reinforced laminates with simply-supported or clamped edges subjected to axial compression and shear loadings are presented. The study focuses on the influence of nanotube volume fraction, length, orientation, and functionalization on finite-scale laminate response. Results indicate that for the selected laminate configurations considered in this study, angle-ply laminates composed of aligned, non-functionalized carbon nanotube-reinforced lamina exhibit the greatest buckling resistance with 1% nanotube volume fraction of 450 nm uniformly-distributed carbon nanotubes. In addition, hybrid laminates were considered by varying either the volume fraction or nanotube length through-the-thickness of a quasi-isotropic laminate. The ratio of buckling load-to-nanotube weight percent for the hybrid laminates considered indicate the potential for increasing the buckling efficiency of nanotube-reinforced laminates by optimizing nanotube size and proportion with respect to laminate configuration.

  6. Impact of E × B flow shear on turbulence and resulting power fall-off width in H-mode plasmas in experimental advanced superconducting tokamak

    SciTech Connect

    Yang, Q. Q. Zhong, F. C. E-mail: fczhong@dhu.edu.cn; Jia, M. N.; Xu, G. S. E-mail: fczhong@dhu.edu.cn; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Li, Y. L.; Liu, J. B.

    2015-06-15

    The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E×B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E×B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.

  7. Impact of E × B flow shear on turbulence and resulting power fall-off width in H-mode plasmas in experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Yang, Q. Q.; Xu, G. S.; Zhong, F. C.; Wang, L.; Wang, H. Q.; Chen, R.; Yan, N.; Liu, S. C.; Chen, L.; Jia, M. N.; Li, Y. L.; Liu, J. B.

    2015-06-01

    The power fall-off width in the H-mode scrape-off layer (SOL) in tokamaks shows a strong inverse dependence on the plasma current, which was noticed by both previous multi-machine scaling work [T. Eich et al., Nucl. Fusion 53, 093031 (2013)] and more recent work [L. Wang et al., Nucl. Fusion 54, 114002 (2014)] on the Experimental Advanced Superconducting Tokamak. To understand the underlying physics, probe measurements of three H-mode discharges with different plasma currents have been studied in this work. The results suggest that a higher plasma current is accompanied by a stronger E × B shear and a shorter radial correlation length of turbulence in the SOL, thus resulting in a narrower power fall-off width. A simple model has also been applied to demonstrate the suppression effect of E × B shear on turbulence in the SOL and shows relatively good agreement with the experimental observations.

  8. Evaluation of bisphenol E cyanate ester for the resin-injection repair of advanced composites

    NASA Astrophysics Data System (ADS)

    Lio, Wilber Yaote

    Polymer matrix composites (PMCs) are susceptible to impacts that often result in microcracks and delaminations that can greatly reduce their mechanical integrity. Current injection repair techniques are limited to low glass transition temperature (Tg) composites due to the temperature and viscosity limitations of current repair resins. Bisphenol E cyanate ester (BECy) has both a high Tg and low prepolymer viscosity that makes it an ideal resin for the injection repair of high temperature PMCs. In addition, alumina nanoparticles have been shown to increase the strengths of some adhesives as well as impart shear thinning properties in suspension; both of which are desirable effects for injection repair. Lap shear tests were performed to evaluate adhesive properties of BECy and BECy-alumina nanocomposites. Effects of substrate, temperature, nanoparticle loading, and moisture were investigated. A resin-injection process was developed and the efficiency of BECy in repairing bismaleimide-carbon fiber composite plates was studied through ultrasonic evaluation and compression-after-impact tests.

  9. Nondestructive Evaluation of Advanced Fiber Reinforced Polymer Matrix Composites: A Technology Assessment

    NASA Technical Reports Server (NTRS)

    Yolken, H. Thomas; Matzkanin, George A.

    2009-01-01

    Because of their increasing utilization in structural applications, the nondestructive evaluation (NDE) of advanced fiber reinforced polymer composites continues to receive considerable research and development attention. Due to the heterogeneous nature of composites, the form of defects is often very different from a metal and fracture mechanisms are more complex. The purpose of this report is to provide an overview and technology assessment of the current state-of-the-art with respect to NDE of advanced fiber reinforced polymer composites.

  10. Use of micro-tomography for validation of method to identify interfacial shear strength from tensile tests of short regenerated cellulose fibre composites

    NASA Astrophysics Data System (ADS)

    Hajlane, A.; Miettinen, A.; Madsen, B.; Beauson, J.; Joffe, R.

    2016-07-01

    The interfacial shear strength of short regenerated cellulose fibre/polylactide composites was characterized by means of an industry-friendly adhesion test method. The interfacial shear strength was back-calculated from the experimental tensile stress-strain curves of composites by using a micro-mechanical model. The parameters characterizing the microstructure of the composites, e.g. fibre length and orientation distributions, used as input in the model were obtained by micro-tomography. The investigation was carried out on composites with untreated and surface treated fibres with various fibre weight contents (5wt%, 10wt%, and 15wt% for untreated fibres, and 15wt% for treated fibres). The properties of fibres were measured by an automated single fibre tensile test method. Based on these results, the efficiency of the fibre treatment to improve fibre/matrix adhesion is evaluated, and the applicability of the method to measure the interfacial shear strength is discussed. The results are compared with data from previous work, and with other results from the literature.

  11. Can Suspended Iron-Alloy Droplets Explain the Origin, Composition and Properties of Large Low Shear Velocity Provinces?

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Dorfman, S. M.; Labidi, J.; Zhang, S.; Manga, M.; Stixrude, L. P.; McDonough, W. F.; Williams, Q. C.

    2014-12-01

    The enigmatic large low shear velocity provinces (LLSVPs) identified by seismic tomography at the base of the Earth's mantle have been proposed to be reservoirs of primordial mantle composition tapped by hot spot volcanism. The LLSVPs are characterized by anomalously low shear wave speed, VS, slightly elevated bulk sound speed, VB, and high density, ρ, in piles as thick as 1000 km above the core-mantle boundary. This combination of properties could be explained by a few percent dense melt, but the solidus of the lower mantle silicate and oxide assemblage may be too high to produce melt over the large extent of these regions. Iron-rich sulfur-bearing alloy may be molten at the conditions of the LLSVPs and ~1-2% of this component could satisfy both constraints on VS and ρ. An Fe alloy phase in the LLSVPs also has the potential to explain geochemical anomalies associated with hot spot volcanism, and its existence can be constrained by geochemical mass balance. Primordial noble gases such as 3He would be preferentially dissolved in Fe-rich melt rather than crystalline silicates. The reconstructed abundances of the moderately siderophile/chalcophile elements S, Cu and Pb in iron-alloy-bearing LLSVPs do not exceed predicted losses from volatilization, though this depends on the S-content of the alloy. The alloy phase would also be expected to incorporate W, and W isotope anomalies associated with hot spots are thus expected to have important implications for the timing of LLSVP formation. We have developed a model, via CIDER-2014, for the origin and properties of LLSVPs incorporating geochemistry, mineral physics, and fluid dynamic constraints on the generation, capture, and thermoelastic properties of Fe-rich melt droplets. The solidification of a basal magma ocean would produce both solid silicates and metallic melt. The bulk of the alloy generated by this process would sink to merge with the core. However, once the density of the remnant liquid exceeds that of the

  12. Flutter study of an advanced composite wing with external stores

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Rivera, Jose A., Jr.; Nagaraja, K. S.

    1987-01-01

    A flutter test using a scaled model of an advanced composite wing for a Navy attack aircraft has been conducted in the NASA Langley Research Center Transonic Dynamics Tunnel. The model was a wall-mounted half-span wing with a semi-span of 6.63 ft. The wing had an aspect ratio of 5.31, taper ratio of 0.312, and quarter-chord sweep of 25 degrees. The model was supported in a manner that simulated the load path in the carry-through structure of the aircraft and the symmetric boundary condition at the fuselage centerline. The model was capable of carrying external stores from three pylon locations on the wing. Flutter tests were conducted for the wing with and without external stores. No flutter was encountered for the clean wing at test conditions which simulated the scaled airplane operating envelope. Flutter boundaries were obtained for several external store configurations. The flutter boundaries for the fuel tanks were nearly Mach number independent (occurring at constant dynamic pressure). To study the aerodynamic effect of the fuel tank stores, pencil stores (slender cylindrical rods) which had the same mass and pitch and yaw inertia as the fuel tanks were tested on the model. These pencil store configurations exhibited a transonic dip in the flutter dynamic pressure, indicating that the aerodynamic effect of the actual fuel tanks on flutter was significant. Several flutter analyses methods were used in an attempt to predict the flutter phenomenon exhibited during the wind-tunnel test. The analysis gave satisfactory predictions of flutter for the pencil store configurations, but unsatisfactory correlation for the actual fuel tank configurations.

  13. Influence of helium atoms on the shear behavior of the fiber/matrix interphase of SiC/SiC composite

    NASA Astrophysics Data System (ADS)

    Jin, Enze; Du, Shiyu; Li, Mian; Liu, Chen; He, Shihong; He, Jian; He, Heming

    2016-10-01

    Silicon carbide has many attractive properties and the SiC/SiC composite has been considered as a promising candidate for nuclear structural materials. Up to now, a computational investigation on the properties of SiC/SiC composite varying in the presence of nuclear fission products is still missing. In this work, the influence of He atoms on the shear behavior of the SiC/SiC interphase is investigated via Molecular Dynamics simulation following our recent paper. Calculations are carried out on three dimensional models of graphite-like PyC/SiC interphase and amorphous PyC/SiC interphase with He atoms in different regions (the SiC region, the interface region and the PyC region). In the graphite-like PyC/SiC interphase, He atoms in the SiC region have little influence on the shear strength of the material, while both the shear strength and friction strength may be enhanced when they are in the PyC region. Low concentration of He atoms in the interface region of the graphite-like PyC/SiC interphase increases the shear strength, while there is a reduction of shear strength when the He concentration is high due to the switch of sliding plane. In the amorphous PyC/SiC interphase, He atoms can cause the reduction of the shear strength regardless of the regions that He atoms are located. The presence of He atoms may significantly alter the structure of SiC/SiC in the interface region. The influence of He atoms in the interface region is the most significant, leading to evident shear strength reduction of the amorphous PyC/SiC interphase with increasing He concentration. The behaviors of the interphases at different temperatures are studied as well. The dependence of the shear strengths of the two types of interphases on temperatures is studied as well. For the graphite-like PyC/SiC interphase, it is found strongly related to the regions He atoms are located. Combining these results with our previous study on pure SiC/SiC system, we expect this work may provide new insight

  14. Fuselage structure using advanced technology fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Robinson, R. K.; Tomlinson, H. M. (Inventor)

    1982-01-01

    A fuselage structure is described in which the skin is comprised of layers of a matrix fiber reinforced composite, with the stringers reinforced with the same composite material. The high strength to weight ratio of the composite, particularly at elevated temperatures, and its high modulus of elasticity, makes it desirable for use in airplane structures.

  15. Aromatic/aliphatic diamine derivatives for advanced compositions and polymers

    NASA Technical Reports Server (NTRS)

    Delozier, Donovan M. (Inventor); Watson, Kent A. (Inventor); Connell, John W. (Inventor); Smith, Jr., Joseph G. (Inventor)

    2010-01-01

    Novel compositions of matter comprise certain derivatives of 9,9-dialkyl fluorene diamine (AFDA). The resultant compositions, whether compositions of matter or monomers that are subsequently incorporated into a polymer, are unique and useful in a variety of applications. Useful applications of AFDA-based material include heavy ion radiation shielding components and components of optical and electronic devices.

  16. Effects of different fluorination routes on aramid fiber surface structures and interlaminar shear strength of its composites

    NASA Astrophysics Data System (ADS)

    Gao, Jie; Dai, Yunyang; Wang, Xu; Huang, Jieyang; Yao, Jin; Yang, Jin; Liu, Xiangyang

    2013-04-01

    Poly-p-phenylene-benzimidazole-terephthalamide (PBIA) fiber was surface modified by direct fluorination under three different routes. The fiber was dried under vacuum to remove physisorbed water trapped on it and then fluorinated by the fluorine and oxygen gases or by the fluorine gas only. Results show that the interlaminar shear strength (ILSS) value of these two kinds of fluorinated fiber reinforced epoxy resin was 43.9 MPa and 51.0 MPa, which was improved about 14.0% and 32.5% compared with that of the virgin fiber (38.5 MPa), respectively. In the third route, the fiber was fluorinated by the fluorine and oxygen gases without removing physisorbed water, and the ILSS value decreased for nearly 31.2%, i.e. from 38.5 MPa to 26.5 MPa. X-ray photoelectron spectroscopy (XPS) showed that oxygen-containing and fluorine-containing chemical groups were introduced onto the fiber surface after fluorination, providing a stronger chemical bonding to polymeric matrices. Scanning electronic microscopy (SEM) indicated that the surface morphology of the fluorinated PBIA fiber varied with the different fluorination routes. A mass of compact micro groove structures was formed by the route that the fiber was dried to remove physisorbed water and then fluorinated with fluorine gas only. And these structures would markedly improve the ILSS of the composites. But, a mass of unstable flake surface structures was formed by the route that the fiber was fluorinated with the fluorine and oxygen gases without removing physisorbed water. And these structures would be the weak interface between the fiber and matrix and decrease the ILSS, even a lot of polar chemical groups were bonded onto the fiber surface as well.

  17. Research on the exploitation of advanced composite materials to lightly loaded structures

    NASA Technical Reports Server (NTRS)

    Mar, J. W.

    1976-01-01

    The objective was to create a sailplane which could fly in weaker thermals than present day sailplanes (by being lighter) and to fly in stronger thermals than present sailplanes (by carrying more water ballast). The research was to tackle the interaction of advanced composites and the aerodynamic performance, the interaction of fabrication procedures and the advanced composites, and the interaction of advanced composites and the design process. Many pieces of the overall system were investigated but none were carried to the resolution required for engineering application. Nonetheless, interesting and useful results were obtained and are here reported.

  18. Advanced composites - An assessment of the future. [for use in aerospace technology

    NASA Technical Reports Server (NTRS)

    Harris, L. A.

    1976-01-01

    An assessment concerning the possibilities of a use of advanced composites in aerospace and space technology identified a lack of confidence and high cost as the major factors inhibiting composite applications. Attention is given to the present employment of composites and plans for its future use in the Army, Navy, and Air Force. Various programs conducted by NASA are concerned with the development of a technological base for the extended use of advanced composites in aerospace and space applications. A future commercial transport is considered in which virtually the entire airframe could be of advanced composites. The attitude of aircraft manufacturers, engine manufacturers, airlines, spacecraft users, and material suppliers with regard to an employment of composites is also examined.

  19. Overview of bacterial cellulose composites: a multipurpose advanced material.

    PubMed

    Shah, Nasrullah; Ul-Islam, Mazhar; Khattak, Waleed Ahmad; Park, Joong Kon

    2013-11-01

    Bacterial cellulose (BC) has received substantial interest owing to its unique structural features and impressive physico-mechanical properties. BC has a variety of applications in biomedical fields, including use as biomaterial for artificial skin, artificial blood vessels, vascular grafts, scaffolds for tissue engineering, and wound dressing. However, pristine BC lacks certain properties, which limits its applications in various fields; therefore, synthesis of BC composites has been conducted to address these limitations. A variety of BC composite synthetic strategies have been developed based on the nature and relevant applications of the combined materials. BC composites are primarily synthesized through in situ addition of reinforcement materials to BC synthetic media or the ex situ penetration of such materials into BC microfibrils. Polymer blending and solution mixing are less frequently used synthetic approaches. BC composites have been synthesized using numerous materials ranging from organic polymers to inorganic nanoparticles. In medical fields, these composites are used for tissue regeneration, healing of deep wounds, enzyme immobilization, and synthesis of medical devices that could replace cardiovascular and other connective tissues. Various electrical products, including biosensors, biocatalysts, E-papers, display devices, electrical instruments, and optoelectronic devices, are prepared from BC composites with conductive materials. In this review, we compiled various synthetic approaches for BC composite synthesis, classes of BC composites, and applications of BC composites. This study will increase interest in BC composites and the development of new ideas in this field.

  20. Steady-state creep of bent reinforced metal-composite plates with consideration of their reduced resistance to transverse shear 2. Analysis of calculated results

    NASA Astrophysics Data System (ADS)

    Yankovskii, A. P.

    2014-07-01

    Deformation of annular plates with different structures of helical reinforcement is studied. It is demonstrated that the use of the classical theory for calculating steady-state creep for thick reinforced plates subjected to bending leads to underprediction of the compliance of thin-walled metal-composite structures. It is also shown that there are significant shear strain rates in the binder of such plates, which has to be taken into account and which is mainly responsible for creep strain accumulation. Results calculated by two different models, which take into account the composite structure, are compared.

  1. Steady-shear rheological properties of graphene-reinforced epoxy resin for manufacturing of aerospace composite films

    NASA Astrophysics Data System (ADS)

    Clausi, Marialaura; Santonicola, M. Gabriella; Laurenzi, Susanna

    2016-05-01

    The aim of this work is to analyze the steady-shear rheological behavior and the absolute viscosity of epoxy matrix reinforced with graphene nanoplatelets (xGnP) before cure. Three different grades of xGnP (grades C, M and H) were dispersed homogenously at different weight percentages (wt%) into the epoxy matrix, ranging from 0.5 to 5 wt%. It is found that nanocomposite fluids with xGnP-C exhibit a Newtonian behavior at shear rate in the range 0.1-100 s-1, conversely, nanocomposite fluids with xGnP of grade M and H exhibit a shear-thinning behavior with the increase of nanoplatelet loading. Results from this analysis indicate how the steady shear rheological properties of the nano-reinforced polymer fluids depend on the geometrical characteristics of the graphene nanoplatelets.

  2. FIBER-TEX 1992: The Sixth Conference on Advanced Engineering Fibers and Textile Structures for Composites

    NASA Technical Reports Server (NTRS)

    Buckley, John D. (Editor)

    1993-01-01

    The FIBER-TEX 1992 proceedings contain the papers presented at the conference held on 27-29 Oct. 1992 at Drexel University. The conference was held to create a forum to encourage an interrelationship of the various disciplines involved in the fabrication of materials, the types of equipment, and the processes used in the production of advanced composite structures. Topics discussed were advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, and the latest requirements for the use of textiles in the production of composite materials and structures as related to global activities focused on textile structural composites.

  3. The brittle-viscous-plastic evolution of shear bands in the South Armorican Shear Zone

    NASA Astrophysics Data System (ADS)

    Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.; Lexa, Ondrej; Milke, Ralf

    2014-05-01

    Shear bands are microscale shear zones that obliquely crosscut an existing anisotropy such as a foliation. The resulting S-C fabrics are characterized by angles lower than 45° and the C plane parallel to shear zone boundaries. The S-C fabrics typically occur in granitoids deformed at greenschist facies conditions in the vicinity of major shear zones. Despite their long recognition, mechanical reasons for localization of deformation into shear bands and their evolution is still poorly understood. In this work we focus on microscale characterization of the shear bands in the South Armorican Shear Zone, where the S-C fabrics were first recognized by Berthé et al. (1979). The initiation of shear bands in the right-lateral South Armorican Shear Zone is associated with the occurrence of microcracks crosscutting the recrystallized quartz aggregates that define the S fabric. In more advanced stages of shear band evolution, newly formed dominant K-feldspar, together with plagioclase, muscovite and chlorite occur in the microcracks, and the shear bands start to widen. K-feldspar replaces quartz by progressively bulging into the grain boundaries of recrystallized quartz grains, leading to disintegration of quartz aggregates and formation of fine-grained multiphase matrix mixture. The late stages of shear band development are marked by interconnection of fine-grained white mica into a band that crosscuts the original shear band matrix. In its extremity, the shear band widening may lead to the formation of ultramylonites. With the increasing proportion of shear band matrix from ~1% to ~12%, the angular relationship between S and C fabrics increases from ~30° to ~40°. The matrix phases within shear bands show differences in chemical composition related to distinct evolutionary stages of shear band formation. The chemical evolution is well documented in K-feldspar, where the albite component is highest in porphyroclasts within S fabric, lower in the newly formed grains within

  4. ADVANCED COMPOSITE WIND TURBINE BLADE DESIGN BASED ON DURABILITY AND DAMAGE TOLERANCE

    SciTech Connect

    Galib Abumeri; Frank Abdi

    2012-02-16

    The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints and closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite

  5. Comparison of shear bond strength of composite resin to enamel surface with laser etching versus acid etching: An in vitro evaluation

    PubMed Central

    Hoshing, Upendra A; Patil, Suvarna; Medha, Ashish; Bandekar, Siddhesh Dattatray

    2014-01-01

    Introduction: The aim of the study is in vitro evaluation of the shear bond strength of composite resin bonded to enamel which is pretreated using acid etchant and Er,Cr:Ysgg. Materials and Methods: 40 extracted human teeth were divided in two groups of 20 each (Groups A and B). In Group A, prepared surface of enamel was etched using 37% phosphoric acid (Scotchbond, 3M). In Group B, enamel was surface treated by a an Er, Cr: YSGG laser system (Waterlase MD, Biolase Technology Inc., San Clemente, CA, USA) operating at a wavelength of 2,780 nm and having a pulse duration of 140-200 microsecond with a repetition rate of 20 Hz and 40 Hz. Bonding agent ((Scotchbond Multipurpose, 3M) was applied over the test areas on 20 samples of Groups A and B each, and light cured. Composite resin (Ceram X duo Nanoceramic restorative, Densply) was applied onto the test areas as a 3 × 3 mm diameter bid, and light cured. The samples were tested for shear bond strength. Results: Mean shear bond strength for acid-etched enamel (26.41 ± 0.66MPa, range 25.155 to 27.150 MPa) was significantly higher (P < 0.01) than for laser-etched enamel (16.23 ± 0.71MPa, range 15.233 to 17.334 MPa). Conclusions: For enamel surface, mean shear bond strength of bonded composite obtained after laser etching were significantly lower than those obtained after acid etching. PMID:25125842

  6. Shear/Defocus Sensitivity of the Mid Infrared Channel (MIR) of the Composite Infrared Spectrometer (CIRS) for the Cassini Mission to Saturn

    NASA Technical Reports Server (NTRS)

    Martino, Anthony J.; Hagopian, John G.; Losch, Patricia; Crooke, Julie

    1998-01-01

    The Composite Infrared Spectrometer (CIRS) of the Cassini mission to Saturn has two interferometers covering the far infrared and mid infrared wavelength region. The mid infrared wavelength interferometer has a focal plane consisting of a germanium focus lens and HgCdTe array. System level calibration of the CIRS Flight Unit indicated a discrepancy between the expected and actual signal levels. Testing on the CIRS breadboard and Engineering Unit indicated that defocus of the germanium lens could significantly reduce the modulation efficiency of the interferometer in the presence of a moderate degree of wavefront shear. Defocus of the lens in the focal plane was of concern because of the temperature dependence of the index of refraction of germanium and our nominal operation temperature of 170 K. The shear/defocus interaction was extensively investigated and correlated to a newly developed analytical model, It was eventually determined that the CIRS instrument was in focus, had no appreciable wavefront shear and was operating near theoretical limits. The shear/defocus effect is however, of considerable interest, since it has not been described in previous literature on interferometers.

  7. The effects of neutron irradiation on shear properties at the monolayered PyC and the multilayered PyC/SiC interfaces of SiC/SiC composites

    SciTech Connect

    Nozawa, Takashi; Katoh, Yutai; Snead, Lance Lewis

    2007-01-01

    The effect of neutron irradiation on mechanical properties at the fiber/matrix interface of SiC/SiC composites was evaluated. The materials investigated were Hi-Nicalon Type-S fiber reinforced chemically vapor infiltrated SiC matrix composites with varied interphases: monolayered pyrolytic carbon (PyC) or multilayered PyC/SiC. The neutron fluence was 7.7 1025 n/m2 (E>0.1 MeV), and the irradiation temperature was 800 C. Interfacial shear properties were evaluated by the fiber push-out test method. A modified shear-lag model was applied to analyze the interfacial shear parameters. Test results indicate that the interfacial debond shear strength and the interfacial friction stress for the multilayer composites were significantly degraded by irradiation. Nevertheless, the multilayer composites retained sufficient interfacial shear properties so that overall composite strength after neutron irradiation was unaffected. The actual mechanism of interphase property decrease for the multilayer composites is unknown. The interfacial shear properties of the irradiated monolayer composites contrarily appear unaffected.

  8. “Evaluation of shear bond strength of a composite resin to white mineral trioxide aggregate with three different bonding systems”-An in vitro analysis

    PubMed Central

    Patil, Anand C.

    2016-01-01

    Background Mineral trioxide aggregate (MTA) is a biomaterial that has been investigated for endodontic applications. With the increased use of MTA in pulp capping, pulpotomy, perforation repair, apexification and obturation, the material that would be placed over MTA as a final restoration is an important matter. As composite resins are one of the most widely used final restorative materials, this study was conducted to evaluate the shear bond strength of a composite resin to white mineral trioxide aggregate (WMTA) using three different bonding systems namely the two-step etch and rinse adhesive, the self-etching primer and the All-in-one system. Material and Methods Forty five specimens of white MTA (Angelus) were prepared and randomly divided into three groups of 15 specimens each depending on the bonding systems used respectively. In Group A, a Two-step etch and rinse adhesive or ‘total-etch adhesive’, Adper Single Bond 2 (3M/ESPE) and Filtek Z350 (3M ESPE, St Paul, MN) were placed over WMTA. In group B, a Two-step self-etching primer system, Clearfil SE Bond (Kuraray, Medical Inc) and Filtek Z350 were used. In Group C, an All-in-one system, G Bond (GC corporation, Tokyo, Japan) and Filtek Z350 were used. The shear bond strength was measured for all the specimens. The data obtained was subjected to One way Analysis of Variance (ANOVA) and Scheffe’s post hoc test. Results The results suggested that the Two-step etch and rinse adhesive when used to bond a composite resin to white MTA gave better bond strength values and the All-in-one exhibited the least bond strength values. Conclusions The placement of composite used with a Two-step etch and rinse adhesive over WMTA as a final restoration may be appropriate. Key words:Composite resins, dentin bonding agents, mineral trioxide aggregate, shear bond strength. PMID:27398177

  9. Advanced SiC composites for fusion applications

    SciTech Connect

    Snead, L.L.; Schwarz, O.J.

    1995-04-01

    This is a short review of the motivation for and progress in the development of ceramic matrix composites for fusion. Chemically vapor infiltrated silicon carbide (SiC) composites have been fabricated from continuous fibers of either SiC or graphite and tested for strength and thermal conductivity. Of significance is the the Hi-Nicalon{trademark} SiC based fiber composite has superior unirradiated properties as compared to the standard Nicalon grade. Based on previous results on the stability of the Hi-Nicalon fiber, this system should prove more resistant to neutron irradiation. A graphite fiber composite has been fabricated with very good mechnical properties and thermal conductivity an order of magnitude higher than typical SiC/SiC composites.

  10. Bending and Shear Behavior of Pultruded Glass Fiber Reinforced Polymer Composite Beams With Closed and Open Sections

    NASA Astrophysics Data System (ADS)

    Estep, Daniel Douglas

    Several advantages, such as high strength-to-weight ratio, high stiffness, superior corrosion resistance, and high fatigue and impact resistance, among others, make FRPs an attractive alternative to conventional construction materials for use in developing new structures as well as rehabilitating in-service infrastructure. As the number of infrastructure applications using FRPs grows, the need for the development of a uniform Load and Resistance Factor Design (LRFD) approach, including design procedures and examples, has become paramount. Step-by-step design procedures and easy-to-use design formulas are necessary to assure the quality and safety of FRP structural systems by reducing the possibility of design and construction errors. Since 2008, the American Society of Civil Engineers (ASCE), in coordination with the American Composites Manufacturers Association (ACMA), has overseen the development of the Pre-Standard for Load and Resistance Factor Design (LRFD) of Pultruded Fiber Reinforced Polymer (FRP) Structures using probability-based limit states design. The fifth chapter of the pre-standard focuses on the design of members in flexure and shear under different failure modes, where the current failure load prediction models proposed within have been shown to be highly inaccurate based on experimental data and evaluation performed by researchers at the West Virginia University Constructed Facilities Center. A new prediction model for determining the critical flexural load capacity of pultruded GFRP square and rectangular box beams is presented within. This model shows that the type of failure can be related to threshold values of the beam span-to-depth ratio (L/h) and total flange width-to-thickness ratio (bf /t), resulting in three governing modes of failure: local buckling failure in the compression flange (4 ≤ L/h < 6), combined strain failure at the web-flange junction (6 ≤ L/h ≤ 10), and bending failure in the tension flange (10 < L/h ≤ 42

  11. Evaluation of shear bond strength of two resin-based composites and glass ionomer cement to pure tricalcium silicate-based cement (Biodentine®)

    PubMed Central

    CANTEKİN, Kenan; AVCİ, Serap

    2014-01-01

    Objectives Tricalcium silicate is the major constituent phase in mineral trioxide aggregate (MTA). It is thus postulated that pure tricalcium silicate can replace the Portland cement component of MTA. The aim of this study was to evaluate bond strength of methacrylate-based (MB) composites, silorane-based (SB) composites, and glass ionomer cement (GIC) to Biodentine® and mineral trioxide aggregate (MTA). Material and Methods Acrylic blocks (n=90, 2 mm high, 5 mm diameter central hole) were prepared. In 45 of the samples, the holes were fully filled with Biodentine® and in the other 45 samples, the holes were fully filled with MTA. The Biodentine® and the MTA samples were randomly divided into 3 subgroups of 15 specimens each: Group-1: MB composite; Group-2: SB composite; and Group-3: GIC. For the shear bond strength (SBS) test, each block was secured in a universal testing machine. Results The highest (17.7±6.2 MPa) and the lowest (5.8±3.2 MPa) bond strength values were recorded for the MB composite-Biodentine® and the GIC-MTA, respectively. Although the MB composite showed significantly higher bond strength to Biodentine (17.7±6.2) than it did to MTA (8.9±5.7) (p<0.001), the SB composite (SB and MTA=7.4±3.3; SB and Biodentine®=8.0±3,6) and GIC (GIC and MTA=5.8±3.2; GIC and Biodentine=6.7±2.6) showed similar bond strength performance with MTA compared with Biodentine (p=0.73 and p=0.38, respectively). Conclusions The new pure tricalcium-based pulp capping, repair, and endodontic material showed higher shear bond scores compared to MTA when used with the MB composite. PMID:25141202

  12. Recent advances in the sensitivity analysis for the thermomechanical postbuckling of composite panels

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1995-01-01

    Three recent developments in the sensitivity analysis for thermomechanical postbuckling response of composite panels are reviewed. The three developments are: (1) effective computational procedure for evaluating hierarchical sensitivity coefficients of the various response quantities with respect to the different laminate, layer, and micromechanical characteristics; (2) application of reduction methods to the sensitivity analysis of the postbuckling response; and (3) accurate evaluation of the sensitivity coefficients to transverse shear stresses. Sample numerical results are presented to demonstrate the effectiveness of the computational procedures presented. Some of the future directions for research on sensitivity analysis for the thermomechanical postbuckling response of composite and smart structures are outlined.

  13. Recent advances in the sensitivity analysis for the thermomechanical postbuckling of composite panels

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.

    1995-04-01

    Three recent developments in the sensitivity analysis for thermomechanical postbuckling response of composite panels are reviewed. The three developments are: (1) effective computational procedure for evaluating hierarchical sensitivity coefficients of the various response quantities with respect to the different laminate, layer, and micromechanical characteristics; (2) application of reduction methods to the sensitivity analysis of the postbuckling response; and (3) accurate evaluation of the sensitivity coefficients to transverse shear stresses. Sample numerical results are presented to demonstrate the effectiveness of the computational procedures presented. Some of the future directions for research on sensitivity analysis for the thermomechanical postbuckling response of composite and smart structures are outlined.

  14. Advanced composites: Fabrication processes for selected resin matrix materials

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    This design note is based on present state of the art for epoxy and polyimide matrix composite fabrication technology. Boron/epoxy and polyimide and graphite/epoxy and polyimide structural parts can be successfully fabricated. Fabrication cycles for polyimide matrix composites have been shortened to near epoxy cycle times. Nondestructive testing has proven useful in detecting defects and anomalies in composite structure elements. Fabrication methods and tooling materials are discussed along with the advantages and disadvantages of different tooling materials. Types of honeycomb core, material costs and fabrication methods are shown in table form for comparison. Fabrication limits based on tooling size, pressure capabilities and various machining operations are also discussed.

  15. Advanced composites: Environmental effects on selected resin matrix materials

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    The effects that expected space flight environment has upon the mechanical properties of epoxy and polyimide matrix composites were analyzed. Environmental phenomena covered water immersion, high temperature aging, humidity, lightning strike, galvanic action, electromagnetic interference, thermal shock, rain and sand erosion, and thermal/vacuum outgassing. The technology state-of-the-art for graphite and boron reinforced epoxy and polyimide matrix materials is summarized to determine the relative merit of using composites in the space shuttle program. Resin matrix composites generally are affected to some degree by natural environmental phenomena with polyimide resin matrix materials less affected than epoxies.

  16. Chemical and sulphur isotope compositions of pyrite in the Jaduguda U (-Cu-Fe) deposit, Singhbhum shear zone, eastern India: Implications for sulphide mineralization

    NASA Astrophysics Data System (ADS)

    Pal, Dipak C.; Sarkar, Surajit; Mishra, Biswajit; Sarangi, A. K.

    2011-06-01

    The Jaduguda U (-Cu-Fe) deposit in the Singhbhum shear zone has been the most productive uranium deposit in India. Pyrite occurs as disseminated grains or in sulphide stringers and veins in the ore zone. Veins, both concordant and discordant to the pervasive foliation, are mineralogically either simple comprising pyrite ± chalcopyrite or complex comprising pyrite + chalcopyrite + pentlandite + millerite. Nickel-sulphide minerals, though fairly common in concordant veins, are very rare in the discordant veins. Pyrite in Ni-sulphide association is commonly replaced by pentlandite at the grain boundary or along micro-cracks. Based on concentrations of Co and Ni, pyrite is classified as: type-A - high Co (up to 30800 ppm), no/low Ni; type-B - moderate Co (up to 16500 ppm) and moderate to high Ni (up to 32700 ppm); type-C - no/low Co and high Ni (up to 43000 ppm); type-D - neither Co nor Ni. Textural and compositional data of pyrites suggest that the hydrothermal fluid responsible for pre-/early-shearing mineralization evolved from Co-rich to Ni-rich and the late-/post-shearing fluid was largely depleted in minor elements. Sulphur isotope compositions of pyrite mostly furnish positive values ranging between -0.33 and 12.06‰. Composite samples of pyrites with only type-A compositions and mixed samples of type-A and type-B are consistently positive. However, pyrite with mixed type-A and type-C and pyrite with type-D compositions have negative values but close to 0‰. By integrating minor element and sulphur isotope compositions of pyrite in conjunction with other published data on the Jaduguda deposit, it is proposed that reduced sulphur for the precipitation of most pyrites (type-A, type-B) was likely derived from isotopically heavy modified seawater. However, some later sulphur might be magmatic in origin remobilized from existing sulphides in the mafic volcanic rocks in the shear zone.

  17. Shear-lag analysis of fiber push-out (indentation) tests for estimating interfacial friction stress in ceramic-matrix composites

    SciTech Connect

    Shetty, D.K.

    1988-02-01

    A shear-lag analysis is presented for estimating sliding friction stress at fiber-matrix interfaces in ceramic-matrix composites using the single-fiber push-out test. The analysis includes an approximate correction for the increased interfacial compression and, therefore, the interfacial friction stress arising from the transverse (Poisson) expansion of the fibers subjected to the compressive load. An exponential decrease of the interfacial shear stress along the fiber length is predicted. This result is similar to the results of a finite-element analysis reported in the literature. The analysis also provides a basis for the experimental determination of a coefficient of interfacial friction (..mu..) and a residual interfacial compression (sigma/sub O/). It is shown that the sliding friction stress (tau/sub f/=..mu..sigma/sub O/) can be overestimated if the transverse expansion of the fibers is not taken into account.

  18. Advanced aerospace composite material structural design using artificial intelligent technology

    SciTech Connect

    Sun, S.H.; Chen, J.L.; Hwang, W.C.

    1993-12-31

    Due to the complexity in the prediction of property and behavior, composite material has not substituted for metal widely yet, though it has high specific-strength and high specific-modulus that are more important in the aerospace industry. In this paper two artificial intelligent techniques, the expert systems and neural network technology, were introduced to the structural design of composite material. Expert System which has good ability in symbolic processing can helps us to solve problem by saving experience and knowledge. It is, therefore, a reasonable way to combine expert system technology to tile composite structural design. The development of a prototype expert system to help designer during the process of composite structural design is presented. Neural network is a network similar to people`s brain that can simulate the thinking way of people and has the ability of learning from the training data by adapting the weights of network. Because of the bottleneck in knowledge acquisition processes, the application of neural network and its learning ability to strength design of composite structures are presented. Some examples are in this paper to demonstrate the idea.

  19. Effect of particle size and distribution of the sizing agent on the carbon fibers surface and interfacial shear strength (IFSS) of its composites

    NASA Astrophysics Data System (ADS)

    Zhang, R. L.; Liu, Y.; Huang, Y. D.; Liu, L.

    2013-12-01

    Effect of particle size and distribution of the sizing agent on the performance of carbon fiber and carbon fiber composites has been investigated. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to characterize carbon fiber surface topographies. At the same time, the single fiber strength and Weibull distribution were also studied in order to investigate the effect of coatings on the fibers. The interfacial shear strength and hygrothermal aging of the carbon fiber/epoxy resin composites were also measured. The results indicated that the particle size and distribution is important for improving the surface of carbon fibers and its composites performance. Different particle size and distribution of sizing agent has different contribution to the wetting performance of carbon fibers. The fibers sized with P-2 had higher value of IFSS and better hygrothermal aging resistant properties.

  20. Investigation of fatigue strength of multilayer advanced fiber composites

    NASA Technical Reports Server (NTRS)

    Thornton, H. R.; Kozik, T. J.

    1974-01-01

    The analytical characterization of a multilayer fiber composite plate (without hole) was accomplished for both static and dynamic loading conditions using the finite difference technique. Thornel 300/5208 composites with and without holes were subjected to static and tensile fatigue testing. Five (5) fiber orientations were submitted to test. Tensile fatigue testing also included three (3) loading conditions and two (2) frequencies. The low-cycle test specimens demonstrated a shorter tensile fatigue life than the high-cycle test specimens. Failure surfaces demonstrated effect of testing conditions. Secondary failure mechanisms, such as: delamination, fiber breakage, and edge fiber delamination were present. Longitudinal delamination between plies also occurred in these specimens.

  1. Summary of recent design studies of advanced acoustic-composite nacelles

    NASA Technical Reports Server (NTRS)

    Norton, H. T., Jr.

    1975-01-01

    The results are summarized of recent NASA-sponsored studies of advanced acoustic-composite nacelles. Conceptual nacelle designs for current wide-bodied transports and for advanced technology transports, intended for operational use in the mid-1980's, were studied by Lockheed-California Company and the Douglas Aircraft Company. These studies were conducted with the objective of achieving significant reductions in community noise and/or fuel consumption with minimum penalties in airplane weights, cost, and operating expense. The results indicate that the use of advanced composite materials offer significant potential weight and cost savings and result in reduced fuel consumption and noise when applied to nacelles. The most promising concept for realizing all of these benefits was a long duct, mixed flow acoustic composite nacelle with advanced acoustic liners.

  2. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds under Lap Shear Loading Conditions

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-06-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS) under lap shear loading condition. DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. Static weld strength tests using lap shear samples were performed on the joint populations with various fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with conventionally required fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 welds under lap shear loading. Moreover, failure mode has strong influence on weld peak load and energy absorption for all the DP800 welds and the TRIP800 small welds: welds failed in pullout mode have statistically higher strength and energy absorption than those failed in interfacial fracture mode. For TRIP800 welds above the critical fusion zone level, the influence of weld failure modes on peak load and energy absorption diminishes. Scatter plots of peak load and energy absorption versus weld fusion zone size were then constructed, and the results indicate that fusion zone size is the most critical factor in weld quality in terms of peak load and energy absorption for both DP800 and TRIP800 spot welds.

  3. Advanced Modeling Strategies for the Analysis of Tile-Reinforced Composite Armor

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Chen, Tzi-Kang

    1999-01-01

    A detailed investigation of the deformation mechanisms in tile-reinforced armored components was conducted to develop the most efficient modeling strategies for the structural analysis of large components of the Composite Armored Vehicle. The limitations of conventional finite elements with respect to the analysis of tile-reinforced structures were examined, and two complementary optimal modeling strategies were developed. These strategies are element layering and the use of a tile-adhesive superelement. Element layering is a technique that uses stacks of shear deformable shell elements to obtain the proper transverse shear distributions through the thickness of the laminate. The tile-adhesive superelement consists of a statically condensed substructure model designed to take advantage of periodicity in tile placement patterns to eliminate numerical redundancies in the analysis. Both approaches can be used simultaneously to create unusually efficient models that accurately predict the global response by incorporating the correct local deformation mechanisms.

  4. Advanced Nano-Composites for Increased Energy Efficiency

    SciTech Connect

    2009-05-01

    This factsheet describes a research project whose goal is to increase energy efficiency and operating lifetime of wear-intensive industrial components and systems by developing and commercializing a family of ceramic-based monolithic composites that have shown remarkable resistance to wear in laboratory tests.

  5. Resin transfer molding for advanced composite primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Markus, Alan; Palmer, Ray

    1991-01-01

    Resin Transfer Molding (RTM) has been identified by Douglas Aircraft Company (DAC) and industry to be one of the promising processes being developed today which can break the cost barrier of implementing composite primary structures into a commercial aircraft production environment. The RTM process developments and scale-up plans Douglas Aircrart will be conducting under the NASA ACT contract are discussed.

  6. Musical Composition and Creativity in an Advanced Software Environment

    ERIC Educational Resources Information Center

    Reynolds, Nicholas

    2002-01-01

    This paper serves as a brief description of research into the use of professional level music software as a learning tool for creativity and composition by primary school children. The research formed the basis of a Master of Information Technology in Education degree at the University of Melbourne. The paper examines the physical environment, the…

  7. Reported Usage and Perceived Value of Advanced Placement English Language and Composition Curricular Requirements by High School and College Assessors of the Essay Portion of the English Language and Composition Advanced Placement Exam

    ERIC Educational Resources Information Center

    Holifield-Scott, April

    2011-01-01

    A study was conducted to determine the extent to which high school and college/university Advanced Placement English Language and Composition readers value and implement the curricular requirements of Advanced Placement English Language and Composition. The participants were 158 readers of the 2010 Advanced Placement English Language and…

  8. Development of Curved-Plate Elements for the Exact Buckling Analysis of Composite Plate Assemblies Including Transverse-Shear Effects

    NASA Technical Reports Server (NTRS)

    McGowan, David M.

    1999-01-01

    The analytical formulation of curved-plate non-linear equilibrium equations including transverse-shear-deformation effects is presented. A unified set of non-linear strains that contains terms from both physical and tensorial strain measures is used. Linearized, perturbed equilibrium equations (stability equations) that describe the response of the plate just after buckling occurs are derived. These equations are then modified to allow the plate reference surface to be located a distance z(sub c) from the centroidal surface. The implementation of the new theory into the VICONOPT exact buckling and vibration analysis and optimum design computer program is described. The terms of the plate stiffness matrix using both classical plate theory (CPT) and first-order shear-deformation plate theory (SDPT) are presented. The effects of in-plane transverse and in-plane shear loads are included in the in-plane stability equations. Numerical results for several example problems with different loading states are presented. Comparisons of analyses using both physical and tensorial strain measures as well as CPT and SDPT are made. The computational effort required by the new analysis is compared to that of the analysis currently in the VICONOPT program. The effects of including terms related to in-plane transverse and in-plane shear loadings in the in-plane stability equations are also examined. Finally, results of a design-optimization study of two different cylindrical shells subject to uniform axial compression are presented.

  9. Physics and control of ELMing H-mode negative-central-shear advanced tokamak ITER scenario based on experimental profiles from DIII-D

    NASA Astrophysics Data System (ADS)

    Lao, L. L.; Chan, V. S.; Chu, M. S.; Evans, T.; Humphreys, D. A.; Leuer, J. A.; Mahdavi, M. A.; Petrie, T. W.; Snyder, P. B.; St. John, H. E.; Staebler, G. M.; Stambaugh, R. D.; Taylor, T. S.; Turnbull, A. D.; West, W. P.; Brennan, D. P.

    2003-10-01

    Key DIII-D advanced tokamak (AT) experimental and modelling results are applied to examine the physics and control issues for ITER to operate in a negative central shear (NCS) AT scenario. The effects of a finite edge pressure pedestal and current density are included based on the DIII-D experimental profiles. Ideal and resistive stability analyses demonstrate that feedback control of resistive wall modes by rotational drive or flux conserving intelligent coils is crucial for these AT configurations to operate at attractive bgrN values in the range 3.0-3.5. Vertical stability and halo current analyses show that reliable disruption mitigation is essential and mitigation control using an impurity gas can significantly reduce the local mechanical stress to an acceptable level. Core transport and turbulence analyses indicate that control of the rotational shear profile is essential to reduce the pedestal temperature required for high bgr. Consideration of edge stability and core transport suggests that a sufficiently wide pedestal is necessary for the projected fusion performance. Heat flux analyses indicate that, with core-only radiation enhancement, the outboard peak divertor heat load is near the design limit of 10 MW m-2. Detached operation may be necessary to reduce the heat flux to a more manageable level. Evaluation of the ITER pulse length using a local step response approach indicates that the 3000 s ITER long-pulse scenario is probably both necessary and sufficient for demonstration of local current profile control.

  10. Design and Manufacturing of a Novel Shear Thickening Fluid Composite (STFC) with Enhanced out-of-Plane Properties and Damage Suppression

    NASA Astrophysics Data System (ADS)

    Pinto, F.; Meo, M.

    2016-09-01

    The ability to absorb a large amount of energy during an impact event without generating critical damages represents a key feature of new generation composite systems. Indeed, the intrinsic layered nature of composite materials allows the embodiment of specific hybrid plies within the stacking sequence that can be exploited to increase impact resistance and damping of the entire structure without dramatic weight increase. This work is based on the development of an impact-resistant hybrid composite obtained by including a thin layer of Non-Newtonian silica based fluid in a carbon fibres reinforced polymer (CFRP) laminate. This hybrid phase is able to respond to an external solicitation by activating an order-disorder transition that thickens the fluid increasing its viscosity, hence dissipating the energy impact without any critical failure. Several Shear Thickening Fluids (STFs) were manufactured by changing the dimensions of the particles that constitute the disperse phase and their concentrations into the continuous phase. The dynamic viscosity of the different STFs was evaluated via rheometric tests, observing both shear thinning and shear thickening effects depending on the concentration of silica particles. The solutions were then embedded as an active layer within the stacking sequence to manufacture the hybrid CFRP laminates with different embedded STFs. Free vibration tests were carried out in order to assess the damping properties of the different laminates, while low velocity impact tests were used to evaluate their impact properties. Results indicate that the presence of the non-Newtonian fluid is able to absorb up to 45 % of the energy during an impact event for impacts at 2.5 m/s depending on the different concentrations and particles dimensions. These results were confirmed via C-Scan analyses to assess the extent of the internal delamination.

  11. Recent Advances and Developments in Composite Dental Restorative Materials

    PubMed Central

    Cramer, N.B.; Stansbury, J.W.; Bowman, C.N.

    2011-01-01

    Composite dental restorations represent a unique class of biomaterials with severe restrictions on biocompatibility, curing behavior, esthetics, and ultimate material properties. These materials are presently limited by shrinkage and polymerization-induced shrinkage stress, limited toughness, the presence of unreacted monomer that remains following the polymerization, and several other factors. Fortunately, these materials have been the focus of a great deal of research in recent years with the goal of improving restoration performance by changing the initiation system, monomers, and fillers and their coupling agents, and by developing novel polymerization strategies. Here, we review the general characteristics of the polymerization reaction and recent approaches that have been taken to improve composite restorative performance. PMID:20924063

  12. Advanced composite fiber/metal pressure vessels for aircraft applications

    NASA Astrophysics Data System (ADS)

    Papanicolopoulos, Aleck

    1993-06-01

    Structural Composites Industries has developed, qualified, and delivered a number of high performance carbon epoxy overwrapped/seamless aluminum liner pressure vessels for use in military aircraft where low weight, low cost, high operating pressure and short lead time are the primary considerations. This paper describes product design, development, and qualification for a typical program. The vessel requirements included a munitions insensitivity criterion as evidenced by no fragmentation following impact by a .50 cal tumbling bullet. This was met by the development of a carbon-Spectra hybrid composite overwrap on a thin-walled seamless aluminum liner. The same manufacturing, inspection, and test processes that are used to produce lightweight, thin walled seamless aluminum lined carbon/epoxy overwrapped pressure vessels for satellite and other space applications were used to fabricate this vessel. This report focuses on the results of performance in the qualification testing.

  13. Recent advances and developments in composite dental restorative materials.

    PubMed

    Cramer, N B; Stansbury, J W; Bowman, C N

    2011-04-01

    Composite dental restorations represent a unique class of biomaterials with severe restrictions on biocompatibility, curing behavior, esthetics, and ultimate material properties. These materials are presently limited by shrinkage and polymerization-induced shrinkage stress, limited toughness, the presence of unreacted monomer that remains following the polymerization, and several other factors. Fortunately, these materials have been the focus of a great deal of research in recent years with the goal of improving restoration performance by changing the initiation system, monomers, and fillers and their coupling agents, and by developing novel polymerization strategies. Here, we review the general characteristics of the polymerization reaction and recent approaches that have been taken to improve composite restorative performance. PMID:20924063

  14. Advanced composite vertical stabilizer for DC-10 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stephens, C. O.

    1978-01-01

    The structural design configuration for the Composite Vertical Stabilizer is described and the structural design, analysis, and weight activities are presented. The status of fabrication and test activities for the development test portion of the program is described. Test results are presented for the skin panels, spar web, spar cap to cover, and laminate properties specimens. Engineering drawings of vertification test panels and root fittings, rudder support specimens, titanium fittings, and rear spar specimen analysis models are included.

  15. In-vitro comparison of the effect of different bonding strategies on the micro-shear bond strength of a silorane-based composite resin to dentin

    PubMed Central

    Samimi, Pouran; Alizadeh, Vahid; Fathpour, Kamyar; Mazaheri, Hamid; Mortazavi, Vajihosadat

    2016-01-01

    Background: The current study evaluated the micro-shear bond strengths of a new low-shrinkage composite resin to dentin. Materials and Methods: In this in-vitro study, 70 extracted premolars were assigned to one of seven groups (n = 10): Group 1: OptiBond Solo Plus (Opt; Kerr); Group 2: SE Bond (SE; Kuraray); Group 3: Silorane System Adhesive (SSA; 3M ESPE); Group 4: OptiBond Solo Plus + LS Bond (Opt LS); Group 5: SE Bond + LS Bond (SE LS); Group 6: OptiBond Solo Plus (Opt Po); and Group 7: SE Bond (SE Po). Occlusal dentin was exposed and restored with Filtek LS (3M ESPE) in groups 1 to 5 and Point 4 (Kerr) in groups 6 and 7. After thermocycling (1000 cycles at 5/55΀C), micro-shear bond test was carried out to measure the bond strengths. The results were submitted to analysis of variance and post hoc Tukeytests (P < 0.05). Results: Two-way ANOVA showed no significant differences between the two types of composite resin (P = 0.187), between bonding agents (P = 0.06) and between composite resin and bonding agents (P = 0.894). Because P value of bonding agents was near the significance level, one-way ANOVA was used separately between the two composite groups. This analysis showed significant differences between silorane composite resin groups (P = 0.045) and Tukey test showed a significant difference between Groups 4 and 5 (P = 0.03). Conclusion: The application of total-etch and self-etch methacrylate-based adhesives with and without use of a hydrophobic resin coating resulted in acceptable bond strengths. PMID:27076826

  16. Effect of surface treatments on shear bond strength of resin composite bonded to CAD/CAM resin-ceramic hybrid materials

    PubMed Central

    Güngör, Merve Bankoğlu; Bal, Bilge Turhan; Ünver, Senem; Doğan, Aylin

    2016-01-01

    PURPOSE The purpose of this study was to assess the effect of surface treatments on shear bond strength of resin composite bonded to thermocycled and non-thermocycled CAD/CAM resin-ceramic hybrid materials. MATERIALS AND METHODS 120 specimens (10×10×2 mm) from each material were divided into 12 groups according to different surface treatments in combination with thermal aging procedures. Surface treatment methods were airborne-particle abrasion (abraded with 50 micron alumina particles), dry grinding (grinded with 125 µm grain size bur), and hydrofluoric acid (9%) and silane application. According to the thermocycling procedure, the groups were assigned as non-thermocycled, thermocycled after packing composites, and thermocycled before packing composites. The average surface roughness of the non-thermocycled specimens were measured after surface treatments. After packing composites and thermocycling procedures, shear bond strength (SBS) of the specimens were tested. The results of surface roughness were statistically analyzed by 2-way Analysis of Variance (ANOVA), and SBS results were statistically analyzed by 3-way ANOVA. RESULTS Surface roughness of GC were significantly lower than that of LU and VE (P<.05). The highest surface roughness was observed for dry grinding group, followed by airborne particle abraded group (P<.05). Comparing the materials within the same surface treatment method revealed that untreated surfaces generally showed lower SBS values. The values of untreated LU specimens showed significantly different SBS values compared to those of other surface treatment groups (P<.05). CONCLUSION SBS was affected by surface treatments. Thermocycling did not have any effect on the SBS of the materials except acid and silane applied GC specimens, which were subjected to thermocycling before packing of the composite resin. PMID:27555894

  17. FIBER-TEX 1991: The Fifth Conference on Advanced Engineering Fibers and Textile Structures for Composites

    NASA Technical Reports Server (NTRS)

    Buckley, John D. (Editor)

    1992-01-01

    This document is a compilation of papers presented at a joint NASA/North Carolina State University/DoD/Clemson University/Drexel University conference on Fibers, Textile Technology, and Composites Structures held at the College of Textiles Building on Centennial Campus of North Carolina State University, Raleigh, North Carolina on October 15-17, 1991. Conference papers presented information on advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, pultruded composites, and the latest requirements for the use of textiles in the production of composite materials and structures.

  18. An advanced higher-order theory for laminated composite plates with general lamination angles

    NASA Astrophysics Data System (ADS)

    Wu, Zhen; Zhu, Hong; Chen, Wan-Ji

    2011-10-01

    This paper proposes a higher-order shear deformation theory to predict the bending response of the laminated composite and sandwich plates with general lamination configurations. The proposed theory a priori satisfies the continuity conditions of transverse shear stresses at interfaces. Moreover, the number of unknown variables is independent of the number of layers. The first derivatives of transverse displacements have been taken out from the inplane displacement fields, so that the C0 shape functions are only required during its finite element implementation. Due to C0 continuity requirements, the proposed model can be conveniently extended for implementation in commercial finite element codes. To verify the proposed theory, the fournode C0 quadrilateral element is employed for the interpolation of all the displacement parameters defined at each nodal point on the composite plate. Numerical results show that following the proposed theory, simple C0 finite elements could accurately predict the interlaminar stresses of laminated composite and sandwich plates directly from a constitutive equation, which has caused difficulty for the other global higher order theories.

  19. Advanced ultrasonic testing of complex shaped composite structures

    NASA Astrophysics Data System (ADS)

    Dolmatov, D.; Zhvyrblya, V.; Filippov, G.; Salchak, Y.; Sedanova, E.

    2016-06-01

    Due to the wide application of composite materials it is necessary to develop unconventional quality control techniques. One of the methods that can be used for this purpose is ultrasonic tomography. In this article an application of a robotic ultrasonic system is considered. Precise positioning of the robotic scanner and path generating are defined as ones of the most important aspects. This study proposes a non-contact calibration method of a robotic ultrasonic system. Path of the scanner requires a 3D model of controlled objects which are created in accordance with the proposed algorithm. The suggested techniques are based on implementation of structured light method.

  20. Advances in PAS-2 thermoplastic prepregs and composites

    SciTech Connect

    Lee, D.M.; Register, D.F.; Lindstrom, M.R.; Campbell, R.W.

    1988-04-01

    A family of polyarylene sulfide polymers is being developed as thermoplastic engineering resins. These resins have high temperature mechanical performance, good mechanical strength, and good solvent resistance. The newest member of this family of resins is PAS-2 amorphous polyarylene sulfide. One potential application for this amorphous resin is as a matrix for high performance composites. The amorphous polyarylene sulfide resin has been formed into unidirectional prepreg tapes. These tapes have been molded into laminates of excellent quality. Recently, new levels of performance in mechanical properties and processing have been achieved.

  1. Preparation, Fabrication, and Evaluation of Advanced Polymeric and Composite Materials

    NASA Technical Reports Server (NTRS)

    Orwoll, Robert A.

    1997-01-01

    The thesis titles are given below: physical and mechanical behavior of amorphous poly(arylene ether-co-imidasole)s and poly(arylene ether-co-imidasole) modification epoxies; the requirements of patentability as applied to the chemical arts; fabrication of thermoplastic polymer composite ribbon; blend of reactive diluents with phenylethynyl-terminated arylene ether oligomers; the synthesis, characterization, and application of ether-containing polyimides; the synthesis of reflective and electrically conductive polyimide films via an in-situ self-metalization procedure using silver (I) complexes; the thermal cure of phenylethynyl terminated polyimides and selected model compounds; and the synthesis, characterization, and molecular modeling of cyclic arylene ether oligomers.

  2. Recent advances on polyoxometalate-based molecular and composite materials.

    PubMed

    Song, Yu-Fei; Tsunashima, Ryo

    2012-11-21

    Polyoxometalates (POMs) are a subset of metal oxides with unique physical and chemical properties, which can be reliably modified through various techniques and methods to develop sophisticated materials and devices. In parallel with the large number of new crystal structures reported in the literature, the application of these POMs towards multifunctional materials has attracted considerable attention. This critical review summarizes recent progress on POM-based molecular and composite materials, and particularly highlights the emerging areas that are closely related to surface, electronic, energy, environment, life science, etc. (171 references). PMID:22850732

  3. Innovative fabrication processing of advanced composite materials concepts for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Kassapoglou, Christos; Dinicola, Al J.; Chou, Jack C.

    1992-01-01

    The autoclave based THERM-X(sub R) process was evaluated by cocuring complex curved panels with frames and stiffeners. The process was shown to result in composite parts of high quality with good compaction at sharp radius regions and corners of intersecting parts. The structural properties of the postbuckled panels fabricated were found to be equivalent to those of conventionally tooled hand laid-up parts. Significant savings in bagging time over conventional tooling were documented. Structural details such as cocured shear ties and embedded stiffener flanges in the skin were found to suppress failure modes such as failure at corners of intersecting members and skin stiffeners separation.

  4. Application of advanced material systems to composite frame elements

    NASA Technical Reports Server (NTRS)

    Llorente, Steven; Minguet, Pierre; Fay, Russell; Medwin, Steven

    1992-01-01

    A three phase program has been conducted to investigate DuPont's Long Discontinuous Fiber (LDF) composites. Additional tests were conducted to compare LDF composites against toughened thermosets and a baseline thermoset system. Results have shown that the LDF AS4/PEKK offers improved interlaminar (flange bending) strength with little reduction in mechanical properties due to the discontinuous nature of the fibers. In the third phase, a series of AS4/PEKK LDF C-section curved frames (representing a typical rotorcraft light frame) were designed, manufactured and tested. Specimen reconsolidation after 'stretch forming' and frame thickness were found to be key factors in this light frame's performance. A finite element model was constructed to correlate frame test results with expected strain levels determined from material property tests. Adequately reconsolidated frames performed well and failed at strain levels at or above baseline thermoset material test strains. Finally a cost study was conducted which has shown that the use of LDF for this frame would result in a significant cost savings, for moderate to large lot sizes compared with the hand lay-up of a thermoset frame.

  5. Recent advances in active fiber composites for structural control

    NASA Astrophysics Data System (ADS)

    Bent, Aaron A.; Pizzochero, Alessandro E.

    2000-06-01

    Active Fiber Composites (AFCs) provide a novel method for large scale actuation and sensing in active structures. The composite comprises unidirectionally aligned piezoelectric fibers, a resin matrix system, and interdigital electrode. AFCs have demonstrated distinct advantages over current monolithic piezoceramic actuators, including: higher planar actuation strain, tailorable orthotropic actuation, robustness to damage, conformability to curved surfaces, and potential for large area distributed actuation/sensing system. This manuscript focuses on recent developments in three key areas. The first area describes the completion of a standard AFC baseline material. The baseline AFC consists of 5.5mil diameter PZT-5A fibers laminated with an epoxy film adhesive and silver screen-printed electrodes. A scalable fabrication process based on lamination industry equipment has been implemented. Baseline AFC performance has been characterized, including free strains and blocked force. The send area describes continued work in developing optimized geometry/materials for future AFCs. AFC performance and efficiency can be affected significantly by changes in electrode pitch and fiber diameter and/or cross- sectional geometry. Various improved design have been identified. Third is review of application demonstration that exploit the benefits of AFCs to solve structural control problems.

  6. Advances in Moire interferometry for thermal response of composites

    NASA Technical Reports Server (NTRS)

    Brooks, E. W., Jr.; Herakovich, C. T.; Post, D.; Hyer, M. W.

    1982-01-01

    An experimental technique for the precise measurement of the thermal response of both sides of a laminated composite coupon specimen uses Moire interferometry with fringe multiplication which yields a sensitivity of 833 nm (32.8 micro in.) per fringe. The reference gratings used are virtual gratings and are formed by partially mirrorized glass prisms in close proximity to the specimen. Results are compared with both results obtained from tests which used Moire interferometry on one side of composite laminates, and with those predicted by classical lamination theory. The technique is shown to be capable of producing the sensitivity and accuracy necessary to measure a wide range of thermal responses and to detect small side to side variations in the measured response. Tests were conducted on four laminate configurations of T300/5208 graphite epoxy over a temperature range of 297 K (75 F) to 422 K (300 F). The technique presented allows for the generation of reference gratings for temperature regimes well outside that used in these tests.

  7. Status of Advanced Stitched Unitized Composite Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Velicki, Alex

    2013-01-01

    NASA has created the Environmentally Responsible Aviation (ERA) Project to explore and document the feasibility, benefits and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise levels. The primary structural concept being developed under the ERA project in the Airframe Technology element is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. This paper describes how researchers at NASA and The Boeing Company are working together to develop fundamental PRSEUS technologies that could someday be implemented on a transport size aircraft with high aspect ratio wings or unconventional shapes such as a hybrid wing body airplane design.

  8. Advanced resin systems and 3D textile preforms for low cost composite structures

    NASA Technical Reports Server (NTRS)

    Shukla, J. G.; Bayha, T. D.

    1993-01-01

    Advanced resin systems and 3D textile preforms are being evaluated at Lockheed Aeronautical Systems Company (LASC) under NASA's Advanced Composites Technology (ACT) Program. This work is aimed towards the development of low-cost, damage-tolerant composite fuselage structures. Resin systems for resin transfer molding and powder epoxy towpreg materials are being evaluated for processability, performance and cost. Three developmental epoxy resin systems for resin transfer molding (RTM) and three resin systems for powder towpregging are being investigated. Various 3D textile preform architectures using advanced weaving and braiding processes are also being evaluated. Trials are being conducted with powdered towpreg, in 2D weaving and 3D braiding processes for their textile processability and their potential for fabrication in 'net shape' fuselage structures. The progress in advanced resin screening and textile preform development is reviewed here.

  9. Advanced composite aileron for L-1011 transport aircraft, task 1

    NASA Technical Reports Server (NTRS)

    Griffin, C. F.; Fogg, L. D.; Stone, R. L.; Dunning, E. G.

    1978-01-01

    Structural design and maintainability criteria were established and used as a guideline for evaluating a variety of configurations and materials for each of the major subcomponents. From this array of subcomponent designs, several aileron assemblies were formulated and analyzed. The selected design is a multirib configuration with sheet skin covers mechanically fastened to channel section ribs and spars. Qualitative analysis of currently available composite material systems led to the selection of three candidate materials on which comparative structural tests were conducted to measure the effects of environment and impact damage on mechanical property retention. In addition, each system was evaluated for producibility characteristics. From these tests, Thornel 300/5208 unidirectional tape was selected for the front spar and covers, and Thornel 300 fabric/5208 was chosen for the ribs.

  10. Damage Prediction Models for Advanced Materials and Composites

    NASA Technical Reports Server (NTRS)

    Xie, Ming; Ahmad, Jalees; Grady, Joseph E. (Technical Monitor)

    2005-01-01

    In the present study, the assessment and evaluation of various acoustic tile designs were conducted using three-dimensional finite element analysis, which included static analysis, thermal analysis and modal analysis of integral and non-integral tile design options. Various benchmark specimens for acoustic tile designs, including CMC integral T-joint and notched CMC plate, were tested in both room and elevated temperature environment. Various candidate ceramic matrix composite materials were used in the numerical modeling and experimental study. The research effort in this program evolved from numerical modeling and concept design to a combined numerical analysis and experimental study. Many subjects associated with the design and performance of the acoustic tile in jet engine exhaust nozzle have been investigated.

  11. Durability Characterization of Advanced Polymeric Composites at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Gates, T. S.

    2001-01-01

    The next generation of reusable launch vehicles will require technology development in several key areas. Of these key areas, the development of polymeric composite cryogenic fuel tanks promises to present one of the most difficult technical challenges. It is envisioned that a polymer matrix composite (PMC) tank would be a large shell structure capable of containing cryogenic fuels and carrying a range of structural loads. The criteria that will be imposed on such a design include reduced weight, conformal geometry, and impermeability. It is this last criterion, impermeability, that will provide the focus of this paper. The essence of the impermeability criterion is that the tank remains leak free throughout its design lifetime. To address this criterion, one of the first steps is to conduct a complete durability assessment of the PMC materials. At Langley Research Center, a durability assessment of promising new polyimide-based PMCs is underway. This durability program has focused on designing a set of critical laboratory experiments that will determine fundamental material properties under combined thermal-mechanical loading at cryogenic temperatures. The test program provides measurements of lamina and laminate properties, including strength, stiffness, and fracture toughness. The performance of the PMC materials is monitored as a function of exposure conditions and aging time. Residual properties after exposure are measured at cryogenic temperatures and provide quantitative values of residual strength and stiffness. Primary degradation mechanisms and the associated damage modes are measured with both destructive and nondestructive techniques. In addition to mechanical properties, a range of physical properties, such as weight, glass transition, and crack density, are measured and correlated with the test conditions. This paper will report on the progress of this research program and present critical results and illustrative examples of current findings.

  12. Advanced composite structural concepts and material technologies for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony

    1991-01-01

    Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.

  13. Polymer, metal and ceramic matrix composites for advanced aircraft engine applications

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.

    1985-01-01

    Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  14. Polymer, metal, and ceramic matrix composites for advanced aircraft engine applications

    SciTech Connect

    Mc Daniels, D.L.; Serafini, T.T.; Di Carlo, J.A.

    1986-06-01

    Advanced aircraft engine research within NASA Lewis focuses on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  15. Advanced glucose biosensing and nano-composite research

    NASA Astrophysics Data System (ADS)

    Uba, Humphreys Douglas I.

    The fascinating and enhanced properties of carbon nanotubes (CNTs) have been of intense interest since their discovery. This is primarily due to their exceptional mechanical , electrical, and thermal properties , as well as their many and varied applications in modern industries such as in fuel cells, sensors, reinforced composites, electromagnetic interference shielding applications, actuators and fabrication of sophisticated nanostructures. During the production of CNTs, there are associated impurities such as metal nanoparticle and carbonaceous impurities. There are different types of CNTs such as single-walled nanotubes (SWNTs), double-walled nanotubes (DWNTs) and multi-walled nanotubes (MWNTs). In this study, XD-grade CNTs (XD) was used. XD is a mixture of SWNTs, DWNTs and MWNTs. The focus of this study was primarily geared toward the purification and application of CNTs. Two generally accepted cycles of purification were followed, purification under oxygen environment and purification under oxygen/argon mixture environment. XD was purified to different extents by oxidation and acid wash. The raw and purified CNTs were compounded into Epikote 862 and Epikure W epoxy resin to prepare composite materials and also in the biosensor studies. The CNTs and composite materials were characterized by means of thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and transimssion electron microscopy (TEM). It was discovered that, excessive purification would not lead to further removal of metal residues; instead, it could result in disruption of the structure and property of CNTs. The use of CNTs as fillers was found to hinder the epoxy curing in general, and the removal of metal impurities seemed to worsen the situation. This would imply that the metal residue might catalyze the epoxy curing to a certain degree while the increased viscosity should be the primary reason for the slowed curing. An electrochemical

  16. Impact of leachate composition on the advanced oxidation treatment.

    PubMed

    Oulego, Paula; Collado, Sergio; Laca, Adriana; Díaz, Mario

    2016-01-01

    Advanced oxidation processes (AOPs) are gaining importance as an alternative to the biological or physicochemical treatments for the management of leachates. In this work, it has been studied the effect of the characteristics of the leachate (content in humic acids, landfill age and degree of stabilization) on the wet oxidation process and final quality of the treated effluent. A high concentration of humic acids in the leachate had a positive effect on the COD removal because this fraction is more easily oxidizable. Additionally, it has been demonstrated that the simultaneous presence of humic acid and the intermediates generated during the oxidation process improved the degradation of this acid, since such intermediates are stronger initiators of free radicals than the humic acid itself. Similar values of COD removals (49% and 51%) and biodegradability indices (0.30 and 0.35) were observed, after 8 h of wet oxidation, for the stabilised leachate (biologically pretreated) and the raw one, respectively. Nevertheless, final colour removal was much higher for the stabilised leachate, achieving values up to 91%, whereas for the raw one only 56% removal was attained for the same reaction time. Besides, wet oxidation treatment was more efficient for the young leachate than for the old one, with final COD conversions of 60% and 37%, respectively. Eventually, a triangular "three-lump" kinetic model, which considered direct oxidation to CO2 and partial oxidation through intermediate compounds, was here proposed.

  17. Robust Joining and Integration of Advanced Ceramics and Composites: Challenges, Opportunities, and Realities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2006-01-01

    Advanced ceramics and fiber reinforced composites are under active consideration for use in a wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite components require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition, these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in advanced ceramics and ceramic matrix composites will be presented. Silicon carbide based advanced ceramics and fiber reinforced composites in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology. In addition, some examples of metal-ceramic brazing will also be presented. Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and composites will be reported. Various joint design philosophies and design issues in joining of ceramics and composites will be discussed.

  18. Properties of fiber composites for advanced flywheel energy storage devices

    SciTech Connect

    DeTeresa, S J; Groves, S E

    2001-01-12

    The performance of commercial high-performance fibers is examined for application to flywheel power supplies. It is shown that actual delivered performance depends on multiple factors such as inherent fiber strength, strength translation and stress-rupture lifetime. Experimental results for recent stress-rupture studies of carbon fibers will be presented and compared with other candidate reinforcement materials. Based on an evaluation of all of the performance factors, it is concluded that carbon fibers are preferred for highest performance and E-glass fibers for lowest cost. The inferior performance of the low-cost E-glass fibers can be improved to some extent by retarding the stress-corrosion of the material due to moisture and practical approaches to mitigating this corrosion are discussed. Many flywheel designs are limited not by fiber failure, but by matrix-dominated failure modes. Unfortunately, very few experimental results for stress-rupture under transverse tensile loading are available. As a consequence, significant efforts are made in flywheel design to avoid generating any transverse tensile stresses. Recent results for stress-rupture of a carbon fiber/epoxy composite under transverse tensile load reveal that these materials are surprisingly durable under the transverse loading condition and that some radial tensile stress could be tolerated in flywheel applications.

  19. Fatigue characterization of advanced carbon-carbon composites

    NASA Technical Reports Server (NTRS)

    Mahfuz, Hassan; Das, Partha S.; Jeelani, Shaik; Baker, Dean M.; Johnson, Sigured A.

    1992-01-01

    Response of quasi-isotropic laminates of SiC coated Carbon-Carbon (C/C) composites under flexural fatigue are investigated at room temperature. Virgin as well as mission cycled specimens are tested to study the effects of thermal and pressure cycling on the fatigue performance of C/C. Tests were conducted in three point bending with a stress ratio of 0.2 and frequency of 1 Hz. Fatigue strength of C/C has been found to be considerably high - approximately above 85 percent of the ultimate flexural strength. The fatigue strength appears to be decreasing with the increase in the number of mission cycling of the specimens. This lower strength with the mission cycled specimens is attributed to the loss of interfacial bond strength due to thermal and pressure cycling of the material. C/C is also found to be highly sensitive to the applied stress level during cyclic loading, and this sensitivity is observed to increase with the mission cycling. Weibull characterization on the fatigue data has been performed, and the wide scatter in the Weibull distribution is discussed. Fractured as well as untested specimens were C-scanned, and the progressive damage growth during fatigue is presented.

  20. Criteria for initiation of delamination in quasi-static punch-shear tests of a carbon-fiber composite material.

    SciTech Connect

    Chin, Eric Brian; English, Shawn Allen; Briggs, Timothy

    2015-09-01

    V arious phenomenological delamination initiation criteria are analyzed in quasi - static punch - shear tests conducted on six different geometries. These six geometries are modeled and analyzed using elastic, large - deformation finite element analysis. Analysis output is post - processed to assess different delamination initiation criteria, and their applicability to each of the geometries. These criteria are compared to test results to assess whether or not they are appropriate based on what occurred in testing. Further, examinations of CT scans and ultrasonic images o f test specimens are conducted in the appendix to determine the sequence of failure in each test geometry.

  1. Multiscale Modeling of Inclusions and Precipitation Hardening in Metal Matrix Composites: Application to Advanced High-Strength Steels

    SciTech Connect

    Askari, Hesam A.; Zbib, Hussein M.; Sun, Xin

    2013-06-30

    In this study, the strengthening effect of inclusions and precipitates in metals is investigated within a multiscale approach that utilizes models at various length scales, namely, Molecular Mechanics (MM), discrete Dislocation Dynamics (DD), and an Eigenstrain Inclusion Method (EIM). Particularly, precipitates are modeled as hardsoft particles whose stress fields interact with dislocations. The stress field resulting from the elastic mismatch between the particles and the matrix is accounted for through the EIM. While the MM method is employed for the purpose of developing rules for DD for short range interaction between a single dislocation and an inclusion, the DD method is used to predict the strength of the composite resulting from the interaction between ensembles of dislocations and particles. As an application to this method, the mechanical behavior of Advanced High Strength Steel (AHSS) is investigated and the results are then compared to the experimental data. The results show that the finely dispersive precipitates can strengthen the material by pinning the dislocations up to a certain shear stress and retarding the recovery, as well as annihilation of dislocations. The DD results show that strengthening due to nano sized particles is a function of the density and size of the precipitates. This size effect is then explained using a mechanistic model developed based on dislocation-particle interaction.

  2. A study on the utilization of advanced composites in commercial aircraft wing structure: Executive summary

    NASA Technical Reports Server (NTRS)

    Watts, D. J.

    1978-01-01

    The overall wing study objectives are to study and plan the effort by commercial transport aircraft manufacturers to accomplish the transition from current conventional materials and practices to extensive use of advanced composites in wings of aircraft that will enter service in the 1985-1990 time period. Specific wing study objectives are to define the technology and data needed to support an aircraft manufacturer's commitment to utilize composites primary wing structure in future production aircraft and to develop plans for a composite wing technology program which will provide the needed technology and data.

  3. A study on the utilization of advanced composites in commercial aircraft wing structure

    NASA Technical Reports Server (NTRS)

    Watts, D. J.

    1978-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composite materials in the wing structure of future production aircraft. The study accomplished the following: (1) definition of acceptance factors, (2) identification of technology issues, (3) evaluation of six candidate wing structures, (4) evaluation of five program options, (5) definition of a composite wing technology development plan, (6) identification of full-scale tests, (7) estimation of program costs for the total development plan, (8) forecast of future utilization of composites in commercial transport aircraft and (9) identification of critical technologies for timely program planning.

  4. Variation in Content Coverage by Classroom Composition: An Analysis of Advanced Math Course Content

    ERIC Educational Resources Information Center

    Covay, Elizabeth

    2011-01-01

    Everyone knows that there is racial inequality in achievement returns from advanced math; however, they do not know why black students and white students taking the same level of math courses are not leaving with the same or comparable skill levels. To find out, the author examines variation in course coverage by the racial composition of the…

  5. The Irony and the Ecstasy: How Holden Caulfield Helped My Advanced Composition Students Find Their Voices.

    ERIC Educational Resources Information Center

    Huff, Linda

    An instructor of an advanced composition course (adapted from one taught by James Seitz at the University of Pittsburgh) at the University of California Riverside took her students through a series of reading and writing assignments that asked them to "engage in a wide variety of prose styles and...consider what style suggests about language,…

  6. Advanced modeling of thermal NDT problems: from buried landmines to defects in composites

    NASA Astrophysics Data System (ADS)

    Vavilov, Vladimir P.; Burleigh, Douglas D.; Klimov, Alexey G.

    2002-03-01

    Advanced thermal models that can be used in the detection of buried landmines and the TNDT (thermographic nondestructive testing) of composites are discussed. The interdependence between surface temperature signals and various complex parameters, such as surface and volumetric moisture, the shape of a heat pulse, material anisotropy, etc., is demonstrated.

  7. English 354: Advanced Composition Writing Ourselves/Communities into Public Conversations

    ERIC Educational Resources Information Center

    Goodburn, Amy; Camp, Heather

    2004-01-01

    English 354: Advanced Composition is a required course for undergraduate majors in English, broadcast journalism, criminal justice, and pre-service English education, among others, at the University of Nebraska-Lincoln, a research-one land-grant institution with a student population of about 24,000. English 354 focuses on "intensive study and…

  8. Evaluation of Advanced Composite Structures Technologies for Application to NASA's Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.

    2008-01-01

    AS&M performed a broad assessment survey and study to establish the potential composite materials and structures applications and benefits to the Constellation Program Elements. Trade studies were performed on selected elements to determine the potential weight or performance payoff from use of composites. Weight predictions were made for liquid hydrogen and oxygen tanks, interstage cylindrical shell, lunar surface access module, ascent module liquid methane tank, and lunar surface manipulator. A key part of this study was the evaluation of 88 different composite technologies to establish their criticality to applications for the Constellation Program. The overall outcome of this study shows that composites are viable structural materials which offer from 20% to 40% weight savings for many of the structural components that make up the Major Elements of the Constellation Program. NASA investment in advancing composite technologies for space structural applications is an investment in America's Space Exploration Program.

  9. Study on utilization of advanced composites in fuselage structures of large transports

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Thomson, L. W.; Wilson, R. D.

    1985-01-01

    The potential for utilizing advanced composites in fuselage structures of large transports was assessed. Six fuselage design concepts were selected and evaluated in terms of structural performance, weight, and manufacturing development and costs. Two concepts were selected that merit further consideration for composite fuselage application. These concepts are: (1) a full depth honeycomb design with no stringers, and (2) an I section stringer stiffened laminate skin design. Weight reductions due to applying composites to the fuselages of commercial and military transports were calculated. The benefits of applying composites to a fleet of military transports were determined. Significant technology issues pertinent to composite fuselage structures were identified and evaluated. Program plans for resolving the technology issues were developed.

  10. Evaluation of Shear Bond Strength of Methacrylate- and Silorane-based Composite Resin Bonded to Resin-Modified Glass-ionomer Containing Micro- and Nano-hydroxyapatite

    PubMed Central

    Sharafeddin, Farahnaz; Moradian, Marzie; Motamedi, Mehran

    2016-01-01

    Statement of the Problem The adhesion of resin-modified glass-ionomer (RMGI) to composite resin has a very important role in the durability of sandwich restorations. Hydroxyapatite is an excellent candidate as a filler material for improving the mechanical properties of glass ionomer cement. Purpose The aim of this study was to assess the effect of adding micro- and nano-hydroxyapatite (HA) powder to RMGI on the shear bond strength (SBS) of nanofilled and silorane-based composite resins bonded to RMGI containing micro- and nano-HA. Materials and Method Sixty cylindrical acrylic blocks containing a hole of 5.5×2.5 mm (diameter × height) were prepared and randomly divided into 6 groups as Group 1 with RMGI (Fuji II LC) plus Adper Single Bond/Z350 composite resin (5.5×3.5 mm diameter × height); Group 2 with RMGI containing 25 wt% of micro-HA plus Adper Single Bond/Z350 composite resin; Group3 with RMGI containing 25 wt% of nano-HA plus Adper Single Bond/Z350 composite resin; Group 4 with RMGI plus P90 System Adhesive/P90 Filtek composite resin (5.5×3.5 mm diameter × height); Group 5 with RMGI containing 25 wt% of micro-HA plus P90 System Adhesive/P90Filtek composite resin; and Group 6 with RMGI containing 25 wt% of nano-HA plus P90 System Adhesive/P90 Filtek composite resin. The specimens were stored in water (37° C, 1 week) and subjected to 1000 thermal cycles (5°C/55°C). SBS test was performed by using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed by two-way ANOVA and Tukey test (p< 0.05). Results There were significant differences between groups 1 and 4 (RMGI groups, p= 0.025), and groups 3 and 6 (RMGI+ nano-HA groups, p= 0.012). However, among Z350 and P90 specimens, no statistically significant difference was detected in the SBS values (p= 0.19, p= 0.083, respectively). Conclusion RMGI containing HA can improve the bond strength to methacrylate-based in comparison to silorane-based composite resins. Meanwhile, RMGI

  11. Advanced composite structural concepts and materials technologies for primary aircraft structures: Advanced material concepts

    NASA Technical Reports Server (NTRS)

    Lau, Kreisler S. Y.; Landis, Abraham L.; Chow, Andrea W.; Hamlin, Richard D.

    1993-01-01

    To achieve acceptable performance and long-term durability at elevated temperatures (350 to 600 F) for high-speed transport systems, further improvements of the high-performance matrix materials will be necessary to achieve very long-term (60,000-120,000 service hours) retention of mechanical properties and damage tolerance. This report emphasizes isoimide modification as a complementary technique to semi-interpenetrating polymer networks (SIPN's) to achieve greater processibility, better curing dynamics, and possibly enhanced thermo-mechanical properties in composites. A key result is the demonstration of enhanced processibility of isoimide-modified linear and thermo-setting polyimide systems.

  12. Comparison of Blepharoptosis Correction Using Müller-aponeurosis Composite Flap Advancement and Frontalis Muscle Transfer

    PubMed Central

    Ramadhan, Anwar; Han, Dong Gil; Shim, Jeong Su; Lee, Yong Jig; Ha, Won Ho; Lee, Byung Kwon

    2014-01-01

    Background: Treatments for severe blepharoptosis are well documented and include the most common operations for restoring upper eyelid ptosis, which are levator surgery and frontal muscle transfers; however, the choice of treatment is still controversial. There are different approaches to the restoration of upper eyelid ptosis, and the choice will be based on ptosis severity and the surgeon’s skill and experience. Methods: Two hundred and fourteen patients presenting with a levator function of between 2 and 4 mm received ptosis correction between 1991 and 2010 at our clinic. Of these, 71 patients underwent Müller aponeurosis composite flap advancement for correction of 89 eyelids, and frontalis muscle transfer was performed on 143 patients (217 eyelids). Postoperative results were evaluated with an average follow-up period of 23 months. Results: The preoperative average for marginal reflex distance (MRD1) in the Müller aponeurosis composite flap advancement group was 1.25 mm, and in the frontal muscle transfer group, it was 0.59 mm. The area of corneal exposure (ACE) was 57.2% in the Müller aponeurosis composite flap advancement group and 53.6% in the frontal muscle transfer group. The postoperative average distance was not significantly different for the 2 techniques. In the Müller aponeurosis composite flap advancement group, MRD1 was 2.7 mm and ACE was improved to 73.5%. In the frontal muscle transfer group, MRD1 was 2.3 mm and ACE was 71.2%. Undercorrection and eyelid asymmetry were the most frequently observed postoperative complications for both techniques. Conclusions: In our study, we confirmed that Müller aponeurosis composite flap advancement and the frontalis transfer technique are both effective in the correction of severe blepharoptosis; our results showed no significant differences between the 2 techniques. PMID:25426383

  13. Influence of Cr and W alloying on the fiber-matrix interfacial shear strength in cast and directionally solidified sapphire NiAl composites

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Tiwari, R.; Tewari, S. N.

    1995-01-01

    Sapphire-reinforced NiAl matrix composites with chromium or tungsten as alloying additions were synthesized using casting and zone directional solidification (DS) techniques and characterized by a fiber pushout test as well as by microhardness measurements. The sapphire-NiAl(Cr) specimens exhibited an interlayer of Cr rich eutectic at the fiber-matrix interface and a higher interfacial shear strength compared to unalloyed sapphire-NiAl specimens processed under identical conditions. In contrast, the sapphire-NiAl(W) specimens did not show interfacial excess of tungsten rich phases, although the interfacial shear strength was high and comparable to that of sapphire-NiAl(Cr). The postdebond sliding stress was higher in sapphire-NiAl(Cr) than in sapphire-NiAl(W) due to interface enrichment with chromium particles. The matrix microhardness progressively decreased with increasing distance from the interface in both DS NiAl and NiAl(Cr) specimens. The study highlights the potential of casting and DS techniques to improve the toughness and strength of NiAl by designing dual-phase microstructures in NiAl alloys reinforced with sapphire fibers.

  14. Influence of transverse-shear and large-deformation effects on the low-speed impact response of laminated composite plates

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Starnes, James H., Jr.; Prasad, Chunchu B.

    1993-01-01

    An analytical procedure is presented for determining the transient response of simply supported, rectangular laminated composite plates subjected to impact loads from airgun-propelled or dropped-weight impactors. A first-order shear-deformation theory is included in the analysis to represent properly any local short-wave-length transient bending response. The impact force is modeled as a locally distributed load with a cosine-cosine distribution. A double Fourier series expansion and the Timoshenko small-increment method are used to determine the contact force, out-of-plane deflections, and in-plane strains and stresses at any plate location due to an impact force at any plate location. The results of experimental and analytical studies are compared for quasi-isotropic laminates. The results indicate that using the appropriate local force distribution for the locally loaded area and including transverse-shear-deformation effects in the laminated plate response analysis are important. The applicability of the present analytical procedure based on small deformation theory is investigated by comparing analytical and experimental results for combinations of quasi-isotropic laminate thicknesses and impact energy levels. The results of this study indicate that large-deformation effects influence the response of both 24- and 32-ply laminated plates, and that a geometrically nonlinear analysis is required for predicting the response accurately.

  15. Free vibration of generally-laminated, shear-deformable, composite rectangular plates using a spline Rayleigh-Ritz method

    NASA Astrophysics Data System (ADS)

    Dawe, D. J.; Wang, S.

    A Rayleigh-Ritz method is presented for predicting the natural frequencies of flat rectangular laminates which can have arbitrary lay-up. The effects of through-thickness shear deformation are included in the analysis. The displacement field utilizes B-spline functions in what has been referred to in earlier work as a B(k,k-1)-spline Rayleigh-Ritz method and the approach is versatile in the specification of boundary conditions. The results of a number of applications are presented in the form of studies showing the convergence of frequency values with increase in the number of spline sections used. The analysis procedure is seen to have good convergence characteristics when dealing with laminates of thin and thick geometry.

  16. Joining and Assembly of Silicon Carbide-based Advanced Ceramics and Composites for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2004-01-01

    Silicon carbide based advanced ceramics and fiber reinforced composites are under active consideration for use in wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite component require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing o high temperature joints in ceramic matrix composites will be presented. Silicon carbide based advanced ceramics (CVD and hot pressed), and C/SiC and SiC/SiC composites, in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology (ARCJoinT). Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and CVI and melt infiltrated SiC matrix composites will,be reported. Various joint design philosophies and design issues in joining of ceramics and composites well be discussed.

  17. Recent advances and issues in development of silicon carbide composites for fusion applications

    NASA Astrophysics Data System (ADS)

    Nozawa, T.; Hinoki, T.; Hasegawa, A.; Kohyama, A.; Katoh, Y.; Snead, L. L.; Henager, C. H., Jr.; Hegeman, J. B. J.

    2009-04-01

    Radiation-resistant advanced silicon carbide (SiC/SiC) composites have been developed as a promising candidate of the high-temperature operating advanced fusion reactor. With the completion of the 'proof-of-principle' phase in development of 'nuclear-grade' SiC/SiC composites, the R&D on SiC/SiC composites is shifting toward the more pragmatic phase, i.e., industrialization of component manufactures and data-basing. In this paper, recent advances and issues in (1) development of component fabrication technology including joining and functional coating, e.g., a tungsten overcoat as a plasma facing barrier, (2) recent updates in characterization of non-irradiated properties, e.g., strength anisotropy and chemical compatibility with solid lithium-based ceramics and lead-lithium liquid metal breeders, and (3) irradiation effects are specifically reviewed. Importantly high-temperature neutron irradiation effects on microstructural evolution, thermal and electrical conductivities and mechanical properties including the fiber/matrix interfacial strength are specified under various irradiation conditions, indicating seemingly very minor influence on the composite performance in the design temperature range.

  18. Recent advances and issues in development of silicon carbide composites for fusion applications

    SciTech Connect

    Nozawa, Takashi; Hinoki, Tatsuya; Hasegawa, Akira; Kohyama, Akira; Katoh, Yutai; Snead, Lance Lewis; HenagerJr., Charles H.; Hegeman, Hans

    2009-01-01

    Radiation-resistant advanced silicon carbide (SiC/SiC) composites have been developed as a promising candidate of the high-temperature operating advanced fusion reactor. With the completion of the 'proof-of-principle' phase in development of 'nuclear-grade' SiC/SiC composites, the R&D on SiC/SiC composites is shifting toward the more pragmatic phase, i.e., industrialization of component manufactures and data-basing. In this paper, recent advances and issues in (1) development of component fabrication technology including joining and functional coating, e.g., a tungsten overcoat as a plasma facing barrier, (2) recent updates in characterization of non-irradiated properties, e.g., strength anisotropy and chemical compatibility with solid lithium-based ceramics and lead-lithium liquid metal breeders, and (3) irradiation effects are specifically reviewed. Importantly high-temperature neutron irradiation effects on microstructural evolution, thermal and electrical conductivities and mechanical properties including the fiber/matrix interfacial strength are specified under various irradiation conditions, indicating seemingly very minor influence on the composite performance in the design temperature range.

  19. Modeling Creep Effects in Advanced SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Lang, Jerry; DiCarlo, James

    2006-01-01

    Because advanced SiC/SiC composites are projected to be used for aerospace components with large thermal gradients at high temperatures, efforts are on-going at NASA Glenn to develop approaches for modeling the anticipated creep behavior of these materials and its subsequent effects on such key composite properties as internal residual stress, proportional limit stress, ultimate tensile strength, and rupture life. Based primarily on in-plane creep data for 2D panels, this presentation describes initial modeling progress at applied composite stresses below matrix cracking for some high performance SiC/SiC composite systems recently developed at NASA. Studies are described to develop creep and rupture models using empirical, mechanical analog, and mechanistic approaches, and to implement them into finite element codes for improved component design and life modeling

  20. Design development of an advanced composite aileron. [graphite-epoxy structure for L-1011

    NASA Technical Reports Server (NTRS)

    Griffin, C. F.

    1979-01-01

    This paper summarizes the design development of an advanced composite inboard aileron for the L-1011 commercial transport aircraft. Design details of the composite aileron are reported. Results of tests which substantiate the structural integrity of the design are also presented. The composite aileron is a multi-rib assembly with graphite/epoxy tape-syntactic core sandwich covers, a graphite/epoxy tape front spar, and graphite/epoxy fabric ribs. This structure is a direct replacement for the current metal aileron with a weight savings of 28.7 percent (40.3 lb.). Engineering cost estimates indicate that the composite structure will be cost competitive with the metal structure it is replacing.

  1. Study of mould design and forming process on advanced polymer-matrix composite complex structure

    NASA Astrophysics Data System (ADS)

    Li, S. J.; Zhan, L. H.; Bai, H. M.; Chen, X. P.; Zhou, Y. Q.

    2015-07-01

    Advanced carbon fibre-reinforced polymer-matrix composites are widely applied to aviation manufacturing field due to their outstanding performance. In this paper, the mould design and forming process of the complex composite structure were discussed in detail using the hat stiffened structure as an example. The key issues of the moulddesign were analyzed, and the corresponding solutions were also presented. The crucial control points of the forming process such as the determination of materials and stacking sequence, the temperature and pressure route of the co-curing process were introduced. In order to guarantee the forming quality of the composite hat stiffened structure, a mathematical model about the aperture of rubber mandrel was introduced. The study presented in this paper may provide some actual references for the design and manufacture of the important complex composite structures.

  2. Investigation of the relations between neat resin and advanced composite mechanical properties. Volume 1: Results

    NASA Technical Reports Server (NTRS)

    Zimmerman, R. S.; Adams, D. F.; Walrath, D. E.

    1984-01-01

    A detailed evaluation of one untoughened epoxy baseline resin and three toughened epoxy resin systems was performed. The Hercules 3502, 2220-1, and 2220-3, and Ciba-Geigy Fibredux 914 resin systems were supplied in the uncured state by NASA-Langley and cast into thin flat specimens and round dogbone specimens. Tensile and torsional shear measurements were performed at three temperatures and two moisture conditions. Coefficients of thermal expansion and moisture expansion were also measured. Extensive scanning electron microscopic examination of fracture surfaces was performed, to permit the correlation of observed failure modes with the environmental conditions under which the various specimens were tested. A micromechanics analysis was used to predict the unidirectional composite response under the various test conditions, using the neat resin experimental results as the required input data. Mechanical and physical test results, the scanning electron microscope observations, and the analytical predictions were then correlated.

  3. Investigation of the relations between resin and advanced composite mechanical properties. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Zimmerman, R. S.; Adams, D. F.; Walrath, D. E.

    1984-01-01

    One untoughened epoxy baseline resin and three toughened epoxy resin systems were evaluated. The Hercules 3502, 2220-1, and 2220-3, and Ciba-Geigy Fibredux 914 resin systems were supplied in the uncured state by NASA-Langley and cast into thin flat specimens and round dogbone specimens. Tensile and torsional shear measurements were performed at three temperatures and two moisture conditions. Coefficients of thermal expansion and moisture expansion were also measured. Extensive scanning electron microscopic examination of fracture surfaces was performed to permit the correlation of observed failure modes with the environmental conditions under which the various specimens were tested. A micromechanics analysis was used to predict the unidirectional composite response under the various test conditions, incorporating the neat resin experimental results as the required input data. The mechanical and physical test results, the scanning electron microscope observations, and the analytical predictions were then correlated.

  4. Advanced Multifunctional Properties of Aligned Carbon Nanotube-Epoxy Composites from Carbon Nanotube Aerogel Method

    NASA Astrophysics Data System (ADS)

    Tran, Thang; Liu, Peng; Fan, Zeng; Ngern, Nigel; Duong, Hai

    2015-03-01

    Unlike previous methods of making carbon nanotube (CNT) thin films, aligned CNT thin films in this work are synthesized directly from CNT aerogels in a CVD process. CH4/H2/He gases and ferrocene/thiophene catalysts are mixed and reacted in the reactor at 1200 °C to form CNT aerogel socks. By pulling out the socks with a metal rod, CNT thin films with 15-nm diameter MWNTs are aligned and produced continuously at a speed of a few meters per minute. The number of the aligned CNT thin film layers/ thickness can also be controlled well. The as-synthesized aligned CNT films are further condensed by acetone spray and post-treated by UV light. The aligned CNT films without any above post-treatment have a high electrical conductivity of 400S/cm. We also develop aligned CNT-epoxy composites by infiltrating epoxy into the above aligned CNT thin films using Vacuum Assisted Resin Transfer Molding (VARTM) method. Our cost-effective fabrication method of the aligned CNT films is more advanced for developing the composites having CNT orientation control. The mechanical, electrical and optical properties of the aligned CNT epoxy composites are measured. About 2% of the aligned CNTs can enhance significantly the electrical conductivity and hardness of aligned CNT-epoxy composite films. Effects of morphologies, volume fraction, and alignment of the CNTs on the advanced multifunctional properties of the aligned CNT-epoxy composites are also quantified.

  5. Recent advances in lightweight, filament-wound composite pressure vessel technology

    NASA Technical Reports Server (NTRS)

    Lark, R. F.

    1977-01-01

    A review of recent advances is presented for lightweight, high performance composite pressure vessel technology that covers the areas of design concepts, fabrication procedures, applications, and performance of vessels subjected to single cycle burst and cyclic fatigue loading. Filament wound fiber/epoxy composite vessels were made from S glass, graphite, and Kevlar 49 fibers and were equipped with both structural and nonstructural liners. Pressure vessels structural efficiencies were attained which represented weight savings, using different liners, of 40 to 60 percent over all titanium pressure vessels. Significant findings in each area are summarized.

  6. Integrated Design for Manufacturing of Braided Preforms for Advanced Composites Part I: 2D Braiding

    NASA Astrophysics Data System (ADS)

    Gao, Yan Tao; Ko, Frank K.; Hu, Hong

    2013-12-01

    This paper presents a 2D braiding design system for advanced textile structural composites was based on dynamic models. A software package to assist in the design of braided preform manufacturing has been developed. The package allows design parameters (machine speeds, fiber volume fraction, tightness factor, etc.) to be easily obtained and the relationships between said parameters to be demonstrated graphically. The fabirc geometry model (FGM) method was adopted to evaluate the mechanical properties of the composites. Experimental evidence demonstrates the success of the use of dynamic models in the design software for the manufacture of braided fabric preforms.

  7. Displaying Composite and Archived Soundings in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Volkmer, Matthew R.; Blottman, Peter F.; Sharp, David W.

    2008-01-01

    This presentation describes work done by the Applied Meteorology Unit (AMU) to add composite soundings to the Advanced Weather Interactive Processing System (AWIPS). This allows National Weather Service (NWS) forecasters to compare the current atmospheric state with climatology. In a previous task, the AMU created composite soundings for four rawinsonde observation stations in Florida, for each of eight flow regimes. The composite soundings were delivered to the NWS Melbourne (MLB) office for display using the NSHARP software program. NWS MLB requested that the AMU make the composite soundings available for display in AWIPS. The AMU first created a procedure to customize AWIPS so composite soundings could be displayed. A unique four-character identifier was created for each of the 32 composite soundings. The AMIU wrote a Tool Command Language/Tool Kit (TclITk) software program to convert the composite soundings from NSHARP to Network Common Data Form (NetCDF) format. The NetCDF files were then displayable by AWIPS.

  8. Influence of Different Power Outputs of Er:YAG Laser on Shear Bond Strength of a Resin Composite to Feldspathic Porcelain

    PubMed Central

    Sadeghi, Mostafa; Davari, Abdolrahim; Abolghasami Mahani, Amin; Hakimi, Hamid

    2015-01-01

    Statement of the Problem Porcelain may fracture or chip if exposed to any traumas and can be repaired by using a resin composite. Purpose This study was aimed to evaluate the influences of Er:YAG laser on shear bond strength (SBS) of resin composite to feldspathic porcelain. Materials and Method Seventy-two porcelain blocks were divided into six groups (n=12): G1: no treatment (control group); G2: 9% hydrofluoric acid (HF); G3-6 were separately irradiated with Er:YAG laser using four energy parameters: 2W, 100mj (G3); 3W, 150mj (G4); 4W, 200mj (G5) and 5W, 250mj (G6), respectively; and 20 Hz frequency in long-pulse mode. After silane treatment, a resin composite rod was bonded to each of the porcelain block. The SBS was measured following storage and thermocycling. Data were analyzed by one-way ANOVA, Tamhane and Chi-Square tests. Results The highest SBS (12.29±3.04 MPa) was obtained with HF (G2). The lowest SBS (2.23±0.60 MPa) was observed in G4, followed by G3 (1.96±0.76 MPa). G6 had a significantly higher SBS (8.00±2.22 MPa) than other laser irradiation groups. Conclusion Although, Er:YAG laser irradiation at 5W, 250mJ/20 Hz was effective in promoting adhesion of resin composite to feldspathic porcelain compared with the control group, it cannot be used as a safe alternative method to HF acid. Laser irradiation with the evaluated parameters in this study does not promote an effective adhesion on porcelain surface to create adequate bond for clinical use. PMID:25759855

  9. Advanced Compositional Analysis of Nanoparticle-polymer Composites Using Direct Fluorescence Imaging.

    PubMed

    Crick, Colin R; Noimark, Sacha; Peveler, William J; Bear, Joseph C; Ivanov, Aleksandar P; Edel, Joshua B; Parkin, Ivan P

    2016-01-01

    The fabrication of polymer-nanoparticle composites is extremely important in the development of many functional materials. Identifying the precise composition of these materials is essential, especially in the design of surface catalysts, where the surface concentration of the active component determines the activity of the material. Antimicrobial materials which utilize nanoparticles are a particular focus of this technology. Recently swell encapsulation has emerged as a technique for inserting antimicrobial nanoparticles into a host polymer matrix. Swell encapsulation provides the advantage of localizing the incorporation to the external surfaces of materials, which act as the active sites of these materials. However, quantification of this nanoparticle uptake is challenging. Previous studies explore the link between antimicrobial activity and surface concentration of the active component, but this is not directly visualized. Here we show a reliable method to monitor the incorporation of nanoparticles into a polymer host matrix via swell encapsulation. We show that the surface concentration of CdSe/ZnS nanoparticles can be accurately visualized through cross-sectional fluorescence imaging. Using this method, we can quantify the uptake of nanoparticles via swell encapsulation and measure the surface concentration of encapsulated particles, which is key in optimizing the activity of functional materials. PMID:27500449

  10. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1995-01-01

    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  11. Review of the Shearing Process for Sheet Steels and Its Effect on Sheared-Edge Stretching

    NASA Astrophysics Data System (ADS)

    Levy, B. S.; Van Tyne, C. J.

    2012-07-01

    Failure in sheared-edge stretching often limits the use of advanced high-strength steel sheets in automotive applications. The present study analyzes data in the literature from laboratory experiments on both the shearing process and the characteristics of sheared edges. Shearing produces a surface with regions of rollover, burnish, fracture, and burr. The effect of clearance and tensile strength on the shear face characteristics is quantified. Higher strength, lower ductility steels exhibit an increase in percent fracture region. The shearing process also creates a zone of deformation adjacent to the shear face called the shear-affected zone (SAZ). From an analysis of data in the literature, it is concluded that deformation in the SAZ is the dominant factor in controlling failure during sheared-edge stretching. The characteristics of the shear face are generally important for failures during sheared-edge stretching only as there is a correlation between the characteristics of the shear face and the characteristics of the SAZ. The effect of the shear burr on shear-edge stretching is also related to a correlation with the characteristics of the SAZ. In reviewing the literature, many shearing variables that could affect sheared-edge stretching limits are not identified or if identified, not quantified. It is likely that some of these variables could affect subsequent sheared-edge stretching limits.

  12. Advanced composite elevator for Boeing 727 aircraft. Volume 1: Technical summary

    NASA Technical Reports Server (NTRS)

    Chovil, D. V.; Harvey, S. T.; Mccarty, J. E.; Desper, O. E.; Jamison, E. S.; Syder, H.

    1981-01-01

    The design, development, analysis, and testing activities and results that were required to produce five and one-half shipsets of advanced composite elevators for Boeing 727 aircraft are summarized. During the preliminary design period, alternative concepts were developed. After selection of the best design, detail design and basic configuration improvements were evaluated. Five and one-half shipsets were manufactured. All program goals (except competitive cost demonstration) were accomplished when our design met or exceeded all requirements, criteria, and objectives.

  13. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender

    2014-01-01

    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  14. Stress analysis of advanced attack helicopter composite main rotor blade root end lug

    NASA Technical Reports Server (NTRS)

    Baker, D. J.

    1982-01-01

    Stress analysis of the Advanced Attack Helicopter (AAH) composite main rotor blade root end lug is described. The stress concentration factor determined from a finite element analysis is compared to an empirical value used in the lug design. The analysis and test data indicate that the stress concentration is primarily a function of configuration and independent of the range of material properties typical of Kevlar-49/epoxy and glass epoxy.

  15. Effects of hydrogen peroxide pretreatment and heat activation of silane on the shear bond strength of fiber-reinforced composite posts to resin cement

    PubMed Central

    Shin, Tae-Bong; Lee, Joo-Hee; Ahn, Kang-Min; Kim, Tae-Hyung

    2016-01-01

    PURPOSE To evaluate the effects of hydrogen peroxide pretreatment and heat activation of silane on the shear bond strength of fiber-reinforced composite posts to resin cement. MATERIALS AND METHODS The specimens were prepared to evaluate the bond strength of epoxy resin-based fiber posts (D.T. Light-Post) to dual-curing resin cement (RelyX U200). The specimens were divided into four groups (n=18) according to different surface treatments: group 1, no treatment; group 2, silanization; group 3, silanization after hydrogen peroxide etching; group 4, silanization with warm drying at 80℃ after hydrogen peroxide etching. After storage of the specimens in distilled water at 37℃ for 24 hours, the shear bond strength (in MPa) between the fiber post and resin cement was measured using a universal testing machine. The fractured surface of the fiber post was examined using scanning electron microscopy. Data were analyzed using one-way ANOVA and post-hoc analysis with Tukey's HSD test (α=0.05). RESULTS Silanization of the fiber post (Group 2) significantly increased the bond strength in comparison with the non treated control (Group 1) (P<.05). Heat drying after silanization also significantly increased the bond strength (Group 3 and 4) (P<.05). However, no effect was determined for hydrogen peroxide etching before applying silane agent (Group 2 and 3) (P>.05). CONCLUSION Fiber post silanization and subsequent heat treatment (80℃) with warm air blower can be beneficial in clinical post cementation. However, hydrogen peroxide etching prior to silanization was not effective in this study. PMID:27141252

  16. Annual Conference on Composites and Advanced Ceramic Materials, 11th, Cocoa Beach, FL, Jan. 18-23, 1987, Proceedings

    SciTech Connect

    Not Available

    1987-08-01

    The present conference on advanced ceramic materials discusses topics in the fields of NDE, coating/joining/tribology techniques, fracture and interface phenomena, whisker- and particulate-reinforced composites, fiber and whisker properties, SiC and Si/sub 3/N/sub 4/, glass/glass-ceramic matrix composites, alumina-matrix composites, ceramic materials for space structures, and SiC- and Si/sub 3/N/sub 4/-matrix composites. Attention is given to ceramic characterization by thermal wave imaging, an advanced ceramic-to-metal joining process, the fracture modes of brittle-matrix unidirectional composites, the oxidation of SiC-containing composites, particulate matter in SiC whiskers, corrosion reactions in SiC ceramics, melt-infiltrated ceramic-matrix composites, environmental effects in toughened ceramics, and a ceramic composite heat exchanger.

  17. Study of the costs and benefits of composite materials in advanced turbofan engines

    NASA Technical Reports Server (NTRS)

    Steinhagen, C. A.; Stotler, C. L.; Neitzel, R. E.

    1974-01-01

    Composite component designs were developed for a number of applicable engine parts and functions. The cost and weight of each detail component was determined and its effect on the total engine cost to the aircraft manufacturer was ascertained. The economic benefits of engine or nacelle composite or eutectic turbine alloy substitutions was then calculated. Two time periods of engine certification were considered for this investigation, namely 1979 and 1985. Two methods of applying composites to these engines were employed. The first method just considered replacing an existing metal part with a composite part with no other change to the engine. The other method involved major engine redesign so that more efficient composite designs could be employed. Utilization of polymeric composites wherever payoffs were available indicated that a total improvement in Direct Operating Cost (DOC) of 2.82 to 4.64 percent, depending on the engine considered, could be attained. In addition, the percent fuel saving ranged from 1.91 to 3.53 percent. The advantages of using advanced materials in the turbine are more difficult to quantify but could go as high as an improvement in DOC of 2.33 percent and a fuel savings of 2.62 percent. Typically, based on a fleet of one hundred aircraft, a percent savings in DOC represents a savings of four million dollars per year and a percent of fuel savings equals 23,000 cu m (7,000,000 gallons) per year.

  18. Study of utilization of advanced composites in fuselage structures of large transports

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.; Campion, M. C.; Pei, G.

    1984-01-01

    The effort required by the transport aircraft manufacturers to support the introduction of advanced composite materials into the fuselage structure of future commercial and military transport aircraft is investigated. Technology issues, potential benefits to military life cycle costs and commercial operating costs, and development plans are examined. The most urgent technology issues defined are impact dynamics, acoustic transmission, pressure containment and damage tolerance, post-buckling, cutouts, and joints and splices. A technology demonstration program is defined and a rough cost and schedule identified. The fabrication and test of a full-scale fuselage barrel section is presented. Commercial and military benefits are identified. Fuselage structure weight savings from use of advanced composites are 16.4 percent for the commercial and 21.8 percent for the military. For the all-composite airplanes the savings are 26 percent and 29 percent, respectively. Commercial/operating costs are reduced by 5 percent for the all-composite airplane and military life cycle costs by 10 percent.

  19. The Influence of SiC on the Ablation Response of Advanced Refractory Composite Materials

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey D.; Rasky, Daniel J. (Technical Monitor)

    1994-01-01

    In continuing our studies of advanced refractory composite materials we have recently completed an arc-jet test series of a diverse group of ceramics and ceramic matrix composites. The compositions range from continuous fiber reinforced ceramics to monoliths. Many of these materials contain SiC and one objective of this test series was to identify the influence of SiC oxidation mechanisms on material performance. Hence the arc heater was operated at two conditions; one in which the passive oxidation of SiC would be dominant and the other where the active oxidation of SiC would be dominant. It is shown here that the active oxidation mechanism of SiC does not dominate material performance when it is present at levels equal to or below 20 volume percent.

  20. Time-temperature-stress capabilities of composite materials for advanced supersonic technology application, phase 1

    NASA Technical Reports Server (NTRS)

    Kerr, J. R.; Haskins, J. F.

    1980-01-01

    Implementation of metal and resin matrix composites into supersonic vehicle usage is contingent upon accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive service data, laboratory replication of the flight service will provide the most rapid method of documenting the airworthiness of advanced composite systems. A program in progress to determine the time temperature stress capabilities of several high temperature composite materials includes thermal aging, environmental aging, fatigue, creep, fracture, and tensile tests as well as real time flight simulation exposure. The program has two parts. The first includes all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continues these tests up to 50,000 cumulative hours. Results are presented of the 10,000 hour phase, which has now been completed.

  1. MRS International Meeting on Advanced Materials, 1st, Tokyo, Japan, June 2, 3, 1988, Proceedings. Volume 4 - Composites corrosion/Coating of advanced materials

    SciTech Connect

    Kimura, Shiushichi; Kobayashi, Akira; Nii, Kazuyoshi; Saito, Yasutoshi; Umekawa, Sokichi.

    1989-01-01

    The present conference on metal-matrix composites (MMCs) and ceramic-matrix composites (CMCs) discusses electrodeposited C/Cu MMCs, the quasi-liquid hot press method for SiC/Al composites, die-cast MMCs for tribological applications, the solidification-processing of monotectic alloy matrix composites, the fracture of SiC whisker-reinforced Al-alloy MMCs, the elastic constants of a graphite/magnesium composite, and an elastoplastic analysis of metal/plastic/metal sandwich plates in three-point bending. Also discussed are the fabrication of diamond particle-dispersed glass composites in space, heat-resistant graphite fiber-reinforced phosphate ceramic CMCs, the high-temperature creep of SiC-reinforced alumina CMCs, flexible carbon fiber-reinforced exfoliated graphite composites, and the application of advanced CMCs to advanced railway systems, the corrosion and oxidation of SiC, Si{sub 3}N{sub 4}, and other structural ceramics, corrosion properties of advanced alloys, and novel coating systems for advanced materials.

  2. Reduced toxicity polyester resins and microvascular pre-preg tapes for advanced composites manufacturing

    NASA Astrophysics Data System (ADS)

    Poillucci, Richard

    Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an

  3. Shear debonding behavior of a carbon-coated interface in a tungsten fiber-reinforced tungsten matrix composite

    NASA Astrophysics Data System (ADS)

    Du, J.; Höschen, T.; Rasinski, M.; You, J.-H.

    2011-10-01

    One of the crucial issues related to structural application of tungsten for fusion reactor components is its brittleness. To improve tungsten toughness we explored a novel toughening method based on W fiber reinforcement. The idea is to utilize the effective energy dissipation caused by controlled cracking and friction at fiber/matrix interfaces. To realize this, the interfaces need to be engineered by means of adequate coating. In this work we investigated fracture behavior of a carbon-coated (0.6 μm) interface in a single-filament mini-composite using fiber push-out test. The composite was fabricated by CVD process. Mechanical parameters were determined by fitting the related theoretical models with the experimental data. Calibrated fracture energy and debonding strength was 7.4 J/m 2 and 285 MPa, respectively. This fracture energy value satisfied the theoretical criterion of controlled crack deflection. The result of the carbon coating was compared to the case of uncoated interface which exhibited stronger friction.

  4. The Effect of Aloe Vera, Pomegranate Peel, Grape Seed Extract, Green Tea, and Sodium Ascorbate as Antioxidants on the Shear Bond Strength of Composite Resin to Home-bleached Enamel

    PubMed Central

    Sharafeddin, Farahnaz; Farshad, Farnaz

    2015-01-01

    Statement of the Problem Immediate application of bonding agent to home- bleached enamel leads to significant reduction in the shear bond strength of composite resin due to the residual oxygen. Different antioxidant agents may overcome this problem. Purpose This study aimed to assess the effect of different antioxidants on the shear bond strength of composite resin to home-bleached. Materials and Method Sixty extracted intact human incisors were embedded in cylindrical acrylic resin blocks (2.5×1.5 cm), with the coronal portion left out of the block. After bleaching the labial enamel surface with 15% carbamide peroxide, they were randomly divided into 6 groups (n=10). Before performing composite resin restoration by using a cylindrical Teflon mold (5×2 mm), each group was treated with one of the following antioxidants: 10% sodium ascorbate solution, 10% pomegranate peel solution, 10% grape seed extract, 5% green tea extract, and aloe vera leaf gel. One group was left untreated as the control. The shear bond strength of samples was tested under a universal testing machine (ZwickRoell Z020). The shear bond strength data were analyzed by one-way ANOVA and post hoc Tukey tests (p< 0.05). Results No significant difference existed between the control and experimental groups. Moreover, there was no statistically significant difference between the effects of different antioxidants on the shear bond strength of bleached enamel. Conclusion Different antioxidants used in this study had the same effect on the shear bond strength of home-bleached enamel, and none of them caused a statistically significant increase in its value. PMID:26636116

  5. Advances in Ceramic Matrix Composite Blade Damping Characteristics for Aerospace Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Min, James B.; Harris, Donald L.; Ting, J. M.

    2011-01-01

    For advanced aerospace propulsion systems, development of ceramic matrix composite integrally-bladed turbine disk technology is attractive for a number of reasons. The high strength-to-weight ratio of ceramic composites helps to reduce engine weight and the one-piece construction of a blisk will result in fewer parts count, which should translate into reduced operational costs. One shortcoming with blisk construction, however, is that blisks may be prone to high cycle fatigue due to their structural response to high vibration environments. Use of ceramic composites is expected to provide some internal damping to reduce the vibratory stresses encountered due to unsteady flow loads through the bladed turbine regions. A goal of our research was to characterize the vibration viscous damping behavior of C/SiC composites. The vibration damping properties were measured and calculated. Damping appeared to decrease with an increase in the natural frequency. While the critical damping amount of approximately 2% is required for typical aerospace turbomachinery engines, the C/SiC damping at high frequencies was less than 0.2% from our study. The advanced high-performance aerospace propulsion systems almost certainly will require even more damping than what current vehicles require. A purpose of this paper is to review some work on C/SiC vibration damping by the authors for the NASA CMC turbine blisk development program and address an importance of the further investigation of the blade vibration damping characteristics on candidate CMC materials for the NASA s advanced aerospace turbomachinery engine systems.

  6. Mechanical behaviour of advanced composite laminates embedded with carbon nanotubes: review

    NASA Astrophysics Data System (ADS)

    Xie, Guanyan; Zhou, Gang; Bao, Xujin

    2009-07-01

    Embedding carbon nanotubes (CNTs) in load-bearing composite laminate hosts and thereby turning them into nanolaminates is a rapidly emerging field and has tremendous potential in enhancing mechanical performance of host laminates. This state-of-the-art review intends to provide physical insight into the understanding of enhancing mechanisms of processed and controlled CNTs in nano-laminates. It focuses on four aspects: (1) physical characteristics of CNTs including CNT length, diameter and weight percentage; (2) processing and control techniques of CNTs in fabrication of nano-laminates including distribution, dispersion and orientation controls of CNTs; (3) mechanical properties along with their testing methods including tension, in-plane compression, interlaminar shear (ILS), flexure, mode I and mode II fracture toughness as well as compression-after-impact (CAI); and (4) post-mortem microscopic corroborative evidence after mechanical testing. As this review indicates, selective and uniform production of CNTs with specific dimensions and physical properties has yet to be achieved on a consistent basis. There is little control over CNT orientations in most fabrication processes of nano-laminates except for some cases associated with chemical vapour deposition (CVD). There are only two reports on the in-plane compression and there is none on in-plane shear. For reinforcement-dominated mechanical properties such as tension and flexure, there is little enhancement as reported. However, substantial enhancement in in-plane compression strength was reported. For matrix-dominated mechanical properties such as ILS strength and mode-I and mode-II fracture toughness, significant enhancement, albeit with substantially varying degrees, has been reported. In the meanwhile, the lack of consistent characterisation in those properties was also noticeable. Post-mortem microscopic corroborative evidence was very limited.

  7. Advances in SiC/SiC Composites for Aero-Propulsion

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.

    2013-01-01

    In the last decade, considerable progress has been made in the development and application of ceramic matrix composites consisting of silicon carbide (SiC) based matrices reinforced by small-diameter continuous-length SiC-based fibers. For example, these SiC/SiC composites are now in the early stages of implementation into hot-section components of civil aero-propulsion gas turbine engines, where in comparison to current metallic components they offer multiple advantages due to their lighter weight and higher temperature structural capability. For current production-ready SiC/SiC, this temperature capability for long time structural applications is 1250 degC, which is better than 1100 degC for the best metallic superalloys. Foreseeing that even higher structural reliability and temperature capability would continue to increase the advantages of SiC/SiC composites, progress in recent years has also been made at NASA toward improving the properties of SiC/SiC composites by optimizing the various constituent materials and geometries within composite microstructures. The primary objective of this chapter is to detail this latter progress, both fundamentally and practically, with particular emphasis on recent advancements in the materials and processes for the fiber, fiber coating, fiber architecture, and matrix, and in the design methods for incorporating these constituents into SiC/SiC microstructures with improved thermo-structural performance.

  8. NiAl-Base Composite Containing High Volume Fraction of AIN Particulate for Advanced Engines

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Whittenberger, J. D.; Lowell, C. E.; Garg, A.

    1995-01-01

    Cryomilling of prealloyed NiAl containing 53 at. % AJ was carried out to achieve high nitrogen levels. The consolidation of cryomilled powder by extrusion or hot pressing/ hot isostatic pressing resulted in a fully dense NiAl-base composite containing 30 vol. % of inhomogeneously distributed, nanosized AIN particulate. The NiAl-30AIN composite exhibited the highest compression yield strengths at all temperatures between 300 and 1300 K as compared with other compositions of NiAl-AIN composite. The NiAl-30AIN specimens tested under compressive creep loading between 1300 and 1500 K also exhibited the highest creep resistance with very little surface oxidation indicating also their superior elevated temperature oxidation resistance. In the high stress exponent regime, the strength is proportional to the square root of the AIN content and in the low stress exponent regime, the influence of AIN content on strength appears to be less dramatic. The specific creep strength of this material at 1300 K is superior to a first generation Ni-base single crystal superalloy. The improvements in elevated temperature creep strength and oxidation resistance have been achieved without sacrificing the room temperature fracture toughness of the NiAl-base material. Based on its attractive combination of properties, the NiAl-30AIN composite is a potential candidate for advanced engine applications,

  9. Joining and Integration of Advanced Carbon-Carbon Composites to Metallic Systems for Thermal Management Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.

    2008-01-01

    Recent research and development activities in joining and integration of carbon-carbon (C/C) composites to metals such as Ti and Cu-clad-Mo for thermal management applications are presented with focus on advanced brazing techniques. A wide variety of carbon-carbon composites with CVI and resin-derived matrices were joined to Ti and Cu-clad Mo using a number of active braze alloys. The brazed joints revealed good interfacial bonding, preferential precipitation of active elements (e.g., Ti) at the composite/braze interface. Extensive braze penetration of the inter-fiber channels in the CVI C/C composites was observed. The chemical and thermomechanical compatibility between C/C and metals at elevated temperatures is assessed. The role of residual stresses and thermal conduction in brazed C/C joints is discussed. Theoretical predictions of the effective thermal resistance suggest that composite-to-metal brazed joints may be promising for lightweight thermal management applications.

  10. A Study of the Utilization of Advanced Composites in Fuselage Structures of Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Watts, D. J.; Sumida, P. T.; Bunin, B. L.; Janicki, G. S.; Walker, J. V.; Fox, B. R.

    1985-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composites in the future production of fuselage structure in large transport aircraft. Fuselage structures of six candidate airplanes were evaluated for the baseline component. The MD-100 was selected on the basis of its representation of 1990s fuselage structure, an available data base, its impact on the schedule and cost of the development program, and its availability and suitability for flight service evaluation. Acceptance criteria were defined, technology issues were identified, and a composite fuselage technology development plan, including full-scale tests, was identified. The plan was based on composite materials to be available in the mid to late 1980s. Program resources required to develop composite fuselage technology are estimated at a rough order of magnitude to be 877 man-years exclusive of the bird strike and impact dynamic test components. A conceptual composite fuselage was designed, retaining the basic MD-100 structural arrangement for doors, windows, wing, wheel wells, cockpit enclosure, major bulkheads, etc., resulting in a 32 percent weight savings.

  11. Lateral shear interferometry with holo shear lens

    NASA Astrophysics Data System (ADS)

    Joenathan, C.; Mohanty, R. K.; Sirohi, R. S.

    1984-12-01

    A simple method for obtaining lateral shear using holo shear lenses (HSL) has been discussed. This simple device which produces lateral shears in the orthogonal directions has been used for lens testing. The holo shear lens is placed at or near the focus of the lens to be tested. It has also been shown that HSL can be used in speckle shear interferometry as it performs both the functions of shearing and imaging.

  12. Badhwar-O'Neil 2007 Galactic Cosmic Ray (GCR) Model Using Advanced Composition Explorer (ACE) Measurements for Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    ONeill, P. M.

    2007-01-01

    Advanced Composition Explorer (ACE) satellite measurements of the galactic cosmic ray flux and correlation with the Climax Neutron Monitor count over Solar Cycle 23 are used to update the Badhwar O'Neill Galactic Cosmic Ray (GCR) model.

  13. Full-scale testing, production and cost analysis data for the advanced composite stabilizer for Boeing 737 aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parson, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1982-01-01

    The development, testing, production activities, and associated costs that were required to produce five-and-one-half advanced-composite stabilizer shipsets for Boeing 737 aircraft are defined and discussed.

  14. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gong, Chunli; Xue, Zhigang; Wen, Sheng; Ye, Yunsheng; Xie, Xiaolin

    2016-06-01

    In the past two decades, LiFePO4 has undoubtly become a competitive candidate for the cathode material of the next-generation LIBs due to its abundant resources, low toxicity and excellent thermal stability, etc. However, the poor electronic conductivity as well as low lithium ion diffusion rate are the two major drawbacks for the commercial applications of LiFePO4 especially in the power energy field. The introduction of highly graphitized advanced carbon materials, which also possess high electronic conductivity, superior specific surface area and excellent structural stability, into LiFePO4 offers a better way to resolve the issue of limited rate performance caused by the two obstacles when compared with traditional carbon materials. In this review, we focus on advanced carbon materials such as one-dimensional (1D) carbon (carbon nanotubes and carbon fibers), two-dimensional (2D) carbon (graphene, graphene oxide and reduced graphene oxide) and three-dimensional (3D) carbon (carbon nanotubes array and 3D graphene skeleton), modified LiFePO4 for high power lithium ion batteries. The preparation strategies, structure, and electrochemical performance of advanced carbon/LiFePO4 composite are summarized and discussed in detail. The problems encountered in its application and the future development of this composite are also discussed.

  15. Recent advances and issues in development of silicon carbide composites for fusion applications

    SciTech Connect

    Nozawa, T.; Hinoki, Tetsuya; Hasegawa, Akira; Kohyama, Akira; Katoh, Yutai; Snead, Lance L.; Henager, Charles H.; Hegeman, Hans

    2009-04-30

    Radiation-resistant advanced silicon carbide composites (SiC/SiC) have been developed as a promising candidate of the high-temperature operating advanced fusion DEMO reactor. With the completion of the “proof-of-principle” phase in development of “nuclear-grade” SiC/SiC, the R&D on SiC/SiC is shifting toward the more pragmatic phase, i.e., industrialization of component manufactures and data-basing. In this paper, recent advances and issues in 1) development of component fabrication technology including joining and functional coating, e.g., a tungsten overcoat as a plasma facing barrier, 2) recent updates in characterization of non-irradiated properties, e.g., strength anisotropy and chemical compatibility with solid lithium-based ceramics and lead-lithium liquid metal breeders, and 3) irradiation effects were specifically reviewed. Importantly high-temperature neutron irradiation effects on microstructural evolution, thermal and electrical conductivities and mechanical properties including the fiber/matrix interfacial strength were specified under various irradiation conditions, indicating seemingly very minor influence on the composite performance in the design temperature range.

  16. Time-temperature-stress capabilities of composite materials for advanced supersonic technology application

    NASA Technical Reports Server (NTRS)

    Kerr, James R.; Haskins, James F.

    1987-01-01

    Advanced composites will play a key role in the development of the technology for the design and fabrication of future supersonic vehicles. However, incorporating the material into vehicle usage is contingent on accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive data, laboratory replication of the flight service will provide the most rapid method to document the airworthiness of advanced composite systems. Consequently, a laboratory program was conducted to determine the time-temperature-stress capabilities of several high temperature composites. Tests included were thermal aging, environmental aging, fatigue, creep, fracture, tensile, and real-time flight simulation exposure. The program had two phases. The first included all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continued these tests up to 50,000 cumulative hours. This report presents the results of the Phase 1 baseline and 10,000-hr aging and flight simulation studies, the Phase 2 50,000-hr aging studies, and the Phase 2 flight simulation tests, some of which extended to almost 40,000 hours.

  17. Propagation of shear bands in Ti{sub 66.1}Cu{sub 8}Ni{sub 4.8}Sn{sub 7.2}Nb{sub 13.9} nanostructure-dendrite composite during deformation

    SciTech Connect

    Kim, K.B.; Das, J.; Baier, F.; Eckert, J.

    2005-04-25

    During deformation of Ti{sub 66.1}Cu{sub 8}Ni{sub 4.8}Sn{sub 7.2}Nb{sub 13.9} nanostructure-dendrite composite, primary and secondary shear bands form under perpendicular orientation. Detailed investigation of the microstructure of deformed specimens reveals deformed body-centered-cubic (bcc) {beta}-Ti dendrites forming a stepped morphology at the interfaces between the bcc {beta}-Ti dendrites and the nanostructured matrix, consisting of hexagonal close packed (hcp) {alpha}-Ti and body-centered-tetragonal (bct) Ti{sub 2}Cu phases. In the nanostructured matrix, the primary shear bands pass through coherent grain boundaries between the hcp {alpha}-Ti and the bct Ti{sub 2}Cu phases. In contrast, the secondary shear bands in the nanostructured matrix are arrested by sandwiched nanoscale grains of the hcp {alpha}-Ti and bct Ti{sub 2}Cu phases.

  18. Apparatus for shearing spent nuclear fuel assemblies

    DOEpatents

    Weil, Bradley S.; Metz, III, Curtis F.

    1980-01-01

    A method and apparatus are described for shearing spent nuclear fuel assemblies of the type comprising an array of fuel pins disposed within an outer metal shell or shroud. A spent fuel assembly is first compacted in a known manner and then incrementally sheared using fixed and movable shear blades having matched laterally projecting teeth which slidably intermesh to provide the desired shearing action. Incremental advancement of the fuel assembly after each shear cycle is limited to a distance corresponding to the lateral projection of the teeth to ensure fuel assembly breakup into small uniform segments which are amenable to remote chemical processing.

  19. Assessment of the Shear Bond Strength between Nanofilled Composite Bonded to Glass-ionomer Cement Using Self-etch Adhesive with Different pHs and Total-Etch Adhesive

    PubMed Central

    Sharafeddin, Farahnaz; Choobineh, Mohammad Mehdi

    2016-01-01

    Statement of the Problem In the sandwich technique, the undesirable bond between the composite resin and glass-ionomer cement (GIc) is one of the most important factors which lead to the failure of restoration. Total-etch and self-etch adhesives may improve the bond strength based on their pH. Purpose The purpose of this study was to evaluate the shear bond strength between the nanofilled composite resin and GIc using different adhesives. Materials and Method In this experimental study, 40 specimens (6×6mm) in 4 groups (n=10) were prepared in acrylic mold. Each specimen contained conventional GI ChemFil Superior with a height of 3mm, bonded to Z350 composite resin with a height measured 3mm. In order to bond the composite to the GI, the following adhesives were used, respectively: A: mild Clearfil SE Bond self-etch (pH=2), B: intermediate OptiBond self-etch (pH=1.4), C: strong Adper Prompt L-Pop (pH=1), and D: Adper Single Bond 2 total-etch (pH=7.2). The shear bond strength was measured by using universal testing machine with a crosshead speed of 1mm/min. One-way ANOVA and Tukey’s test were used to analyze the data (p< 0.05). Results The shear bond strength in group A was significantly higher than group B (p= 0.002), C (p< 0.001), and D (p< 0.001). Moreover, the shear bond strength of groups A and B (self-etch) was significantly different from group D (total-etch) (p< 0.001); and C (self-etch) with D (p= 0.024). Conclusion The results of this study showed that applying the mild self-etch adhesive between the composite and the GIc results in stronger shear bond strength compared to intermediate and strong self-etch adhesives. Moreover, the self-etch adhesive increased the shear bond strength between composite resin and GIc more significantly than total-etch adhesive. PMID:26966701

  20. Titanium and advanced composite structures for a supersonic cruise arrow wing configuration

    NASA Technical Reports Server (NTRS)

    Turner, M. J.; Hoy, J. M.

    1976-01-01

    Structural design studies were made, based on current technology and on an estimate of technology to be available in the mid 1980's, to assess the relative merits of structural concepts and materials for an advanced arrow wing configuration cruising at Mach 2.7. Preliminary studies were made to insure compliance of the configuration with general design criteria, integrate the propulsion system with the airframe, and define an efficient structural arrangement. Material and concept selection, detailed structural analysis, structural design and airplane mass analysis were completed based on current technology. Based on estimated future technology, structural sizing for strength and a preliminary assessment of the flutter of a strength designed composite structure were completed. An advanced computerized structural design system was used, in conjunction with a relatively complex finite element model, for detailed analysis and sizing of structural members.

  1. Techniques for measurement of the thermal expansion of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.

    1989-01-01

    Techniques available to measure small thermal displacements in flat laminates and structural tubular elements of advanced composite materials are described. Emphasis is placed on laser interferometry and the laser interferometric dilatometer system used at the National Aeronautics and Space Administration (NASA) Langley Research Center. Thermal expansion data are presented for graphite-fiber reinforced 6061 and 2024 aluminum laminates and for graphite fiber reinforced AZ91 C and QH21 A magnesium laminates before and after processing to minimize or eliminate thermal strain hysteresis. Data are also presented on the effects of reinforcement volume content on thermal expansion of silicon-carbide whisker and particulate reinforced aluminum.

  2. Recent advances in lightweight, filament-wound composite pressure vessel technology

    NASA Technical Reports Server (NTRS)

    Lark, R. F.

    1977-01-01

    A review of recent advances is presented for lightweight, high-performance composite pressure vessel technology that covers the areas of design concepts, fabrication procedures, applications, and performance of vessels subjected to single-cycle burst and cyclic fatigue loading. Filament-wound fiber/epoxy composite vessels were made from S-glass, graphite, and Kevlar 49 fibers and were equipped with both structural and nonstructural liners. Pressure vessel structural efficiencies were attained which represented weight savings, using different liners, of 40 to 60 percent over all-titanium pressure vessels. Significant findings in each area are summarized including data from current NASA-Lewis Research Center contractual and in-house programs.

  3. Study on utilization of advanced composites in commercial aircraft wing structures. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Ostrom, R. B.; Cardinale, S. V.

    1978-01-01

    The effort required by commercial transport manufacturers to accomplish the transition from current construction materials and practices to extensive use of composites in aircraft wings was investigated. The engineering and manufacturing disciplines which normally participate in the design, development, and production of an aircraft were employed to ensure that all of the factors that would enter a decision to commit to production of a composite wing structure were addressed. A conceptual design of an advanced technology reduced energy aircraft provided the framework for identifying and investigating unique design aspects. A plan development effort defined the essential technology needs and formulated approaches for effecting the required wing development. The wing development program plans, resource needs, and recommendations are summarized.

  4. Advanced Composites: Mechanical Properties and Hardware Programs for Selected Resin Matrix Materials. [considering space shuttle applications

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    This design note presents typical mechanical properties tabulated from industrial and governmental agencies' test programs. All data are correlated to specific products and all of the best known products are presented. The data include six epoxies, eight polyimides and one polyquinoxaline matrix material. Bron and graphite are the fiber reinforcements. Included are forty-two summaries of advanced (resin matrix) composite programs in existence in the United States. It is concluded that the selection of appropriate matrices, the geometric manner in which the fibers are incorporated in the matrix and the durability of the bond between fiber and matrix establish the end properties of the composite material and the performance of the fabricated structure.

  5. Carbon fibers: Thermochemical recovery from advanced composite materials and activation to an adsorbent

    NASA Astrophysics Data System (ADS)

    Staley, Todd Andrew

    This research addresses an expanding waste disposal problem brought about by the increasing use of advanced composite materials, and the lack of technically and environmentally viable recycling methods for these materials. A thermochemical treatment process was developed and optimized for the recycling of advanced composite materials. Counter-current gasification was employed for the treatment of carbon fiber reinforced-epoxy resin composite wastes. These materials were treated, allowing the reclamation of the material's valuable components. As expected in gasification, the organic portion of the waste was thermochemically converted to a combustible gas with small amounts of organic compounds that were identified by GC/MS. These compounds were expected based on data in the literature. The composites contain 70% fiber reinforcement, and gasification yielded approximately 70% recovered fibers, representing nearly complete recovery of fibers from the waste. Through SEM and mechanical testing, the recovered carbon fibers were found to be structurally and mechanically intact, and amenable to re-use in a variety of applications, some of which were identified and tested. In addition, an application was developed for the carbon fiber component of the waste, as an activated carbon fiber adsorbent for the treatment of wastewaters. This novel class of adsorbent was found to have adsorption rates, for various organic molecules, up to a factor of ten times those of commercial granular activated carbon, and adsorption capacities similar to conventional activated carbons. Overall, the research addresses an existing environmental waste problem, employing a thermochemical technique to recycle and reclaim the waste. Components of the reclaimed waste material are then employed, after further modification, to address other existing and potential environmental waste problems.

  6. A hybrid method for damage detection and quantification in advanced X-COR composite structures

    NASA Astrophysics Data System (ADS)

    Neerukatti, Rajesh Kumar; Rajadas, Abhishek; Borkowski, Luke; Chattopadhyay, Aditi; Huff, Daniel W.

    2016-04-01

    Advanced composite structures, such as foam core carbon fiber reinforced polymer composites, are increasingly being used in applications which require high strength, high in-plane and flexural stiffness, and low weight. However, the presence of in situ damage due to manufacturing defects and/or service conditions can complicate the failure mechanisms and compromise their strength and reliability. In this paper, the capability of detecting damages such as delaminations and foam-core separations in X-COR composite structures using non-destructive evaluation (NDE) and structural health monitoring (SHM) techniques is investigated. Two NDE techniques, flash thermography and low frequency ultrasonics, were used to detect and quantify the damage size and locations. Macro fiber composites (MFCs) were used as actuators and sensors to study the interaction of Lamb waves with delaminations and foam-core separations. The results indicate that both flash thermography and low frequency ultrasonics were capable of detecting damage in X-COR sandwich structures, although low frequency ultrasonic methods were capable of detecting through thickness damages more accurately than flash thermography. It was also observed that the presence of foam-core separations significantly changes the wave behavior when compared to delamination, which complicates the use of wave based SHM techniques. Further, a wave propagation model was developed to model the wave interaction with damages at different locations on the X-COR sandwich plate.

  7. Robust Joining and Integration Technologies for Advanced Metallic, Ceramic, and Composite Systems

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, Tarah; Morscher, Gregory N.; Halbig, Michael H.; Asthana, Rajiv

    2006-01-01

    Robust integration and assembly technologies are critical for the successful implementation of advanced metallic, ceramic, carbon-carbon, and ceramic matrix composite components in a wide variety of aerospace, space exploration, and ground based systems. Typically, the operating temperature of these components varies from few hundred to few thousand Kelvin with different working times (few minutes to years). The wide ranging system performance requirements necessitate the use of different integration technologies which includes adhesive bonding, low temperature soldering, active metal brazing, diffusion bonding, ARCJoinT, and ultra high temperature joining technologies. In this presentation, a number of joining examples and test results will be provided related to the adhesive bonding and active metal brazing of titanium to C/C composites, diffusion bonding of silicon carbide to silicon carbide using titanium interlayer, titanium and hastelloy brazing to silicon carbide matrix composites, and ARCJoinT joining of SiC ceramics and SiC matrix composites. Various issues in the joining of metal-ceramic systems including thermal expansion mismatch and resulting residual stresses generated during joining will be discussed. In addition, joint design and testing issues for a wide variety of joints will be presented.

  8. Advanced Woven SiC/SiC Composites for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2007-01-01

    The temperature, stress, and environmental conditions of many gas turbine, hypersonic, and even nuclear applications make the use of woven SiC/SiC composites an attractive enabling material system. The development in SiC/SiC composites over the past few years has resulted in significant advances in high temperature performance so that now these materials are being pursued for several turbine airfoil and reusable hypersonic applications. The keys to maximizing stress capability and maximizing temperature capability will be outlined for SiC/SiC. These include the type of SiC fiber, the fiber-architecture, and the matrix processing approach which leads to a variety of matrix compositions and structure. It will also be shown that a range of mechanical, thermal, and permeability properties can be attained and tailored depending on the needs of an application. Finally, some of the remaining challenges will be discussed in order for the use of these composite systems to be fully realized.

  9. Advances in Composite Reflectors: From X-Ray to Radio Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Connell, S. J.; Abusafieh, A. A.; Mehle, G. V.; Sheikh, D. A.; Giles, D. C.

    2000-12-01

    In recent years, Composite Optics, Inc. (COI) has made significant advances in the use of graphite fiber reinforced composite (GFRC) materials for astronomical instrument applications. The inherent low density, high stiffness, and thermal stability makes GFRC a natural candidate for many astronomy applications. In order to reap these inherent benefits in astronomical applications, basic research has focused on material and process improvement. This has been accompanied by the design, fabrication, and test of several prototype reflectors that cover a broad wavelength spectrum of astronomical interests. The results of, and applications for, these efforts are summarized in the following list. X-Ray Carrier Shell: Innovative composite process yields accuracy and moisture stability. Demonstrated by vacuum optical test of 6" Wolter-I shell. Applicable to Con-X, etc. Lightweight Mirror Substrate for Visible Astronomy: Composite/glass hybrid design. Areal density < 15 kg/m2. Demonstrated by cryo-optical test (to 35K) of 1.6m NMSD mirror. Applicable to NGST, etc. Polishable Composite Facesheet: Glass-like coating applied to composite. Polishable by conventional methods. Multiple six-inch substrates polished to 20 angstroms. Technology will enable future 5 kg/m2 visible to UV optics. 10 kg/m2 Submillimeter Reflector: Apertures to 5m possible with economical, all-composite mirror design, diffraction limited at 80 microns. Demonstrated with cryo-optical test (to 70K) of FIRST 2-meter prototype mirror. Applicable to FIRST and other IR astronomy. Large, Ultra-Stable Optical Support Structure: Uniform and near-zero CTE over broad dimensions. Demonstrated with cryo-optical test of 2-meter FIRST prototype. Applicable to NGST, SIM, LISSA. Ground Based Radio Telescope Reflector: Low-cost, accurate, stable, durable all-composite design for support structure & reflective surface. Demonstrated via fab & test of 3m adjustable and 5m static prototypes. Applicable to LMT, ALMA, etc. These

  10. Recent advances in ionic polymer conductor composite materials as distributed nanosensors, nanoactuators, and artificial muscles (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Shahinpoor, Mohsen

    2005-05-01

    Recent advances in ionic polymer conductor composites (IPCC) and ionic polymer metal composites (IPMC) as biomimetic distributed nanosensors, nanoactuators, nanotransducers and artificial muscles are briefly discussed in this paper. These advances include brief reproduction of some of these advances that appeared in a new book and a recent set of 4 review articles published in the International Journal of Smart Materials and Structures, advances in manufacturing, force optimization, modeling and simulation and new products developed by Environmental Robots Incorporated, as well as numerous potential applications using Ionic Polymer-Metal Composites (IPMC's) as distributed nanosensors, nanotransducers, nanoactuators and artificial muscles. It is certainly clear that the extent of applications of IPCC's and IPMC's go beyond the scope of this paper or the space allocated to this paper. However, this paper will present the breadth and the depth of all such applications of IPCC's and IPMC's as biomimetic robotic distributed nanosensors, nanoactuators, nanotransducers and artificial/synthetic muscles.

  11. Advances in SiC/SiC Composites for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.

    2006-01-01

    In recent years, supported by a variety of materials development programs, NASA Glenn Research Center has significantly increased the thermostructural capability of SiC/SiC composite materials for high-temperature aerospace applications. These state-of-the-art advances have occurred in every key constituent of the composite: fiber, fiber coating, matrix, and environmental barrier coating, as well as processes for forming the fiber architectures needed for complex-shaped components such as turbine vanes for gas turbine engines. This presentation will briefly elaborate on the nature of these advances in terms of performance data and underlying mechanisms. Based on a list of first-order property goals for typical high-temperature applications, key data from a variety of laboratory tests are presented which demonstrate that the NASA-developed constituent materials and processes do indeed result in SiC/SiC systems with the desired thermal and structural capabilities. Remaining process and microstructural issues for further property enhancement are discussed, as well as on-going approaches at NASA to solve these issues. NASA efforts to develop physics-based property models that can be used not only for component design and life modeling, but also for constituent material and process improvement will also be discussed.

  12. Improve the performance of coated cemented hip stem through the advanced composite materials.

    PubMed

    Hedia, H S; Fouda, N

    2015-01-01

    Design of hip joint implant using functionally graded material (FGM) (advanced composite material) has been used before through few researches. It gives great results regarding the stress distribution along the implant and bone interfaces. However, coating of orthopaedic implants has been widely investigated through many researches. The effect of using advanced composite stem material, which mean by functionally graded stem material, in the total hip replacement coated with the most common coated materials has not been studied yet. Therefore, this study investigates the effect of utilizing these two concepts together; FGM and coating, in designing new stem material. It is concluded that the optimal FGM cemented stem is consisting from titanium at the upper stem layers graded to collagen at a lower stem layers. This optimal graded stem coated with hydroxyapatite found to reduce stress shielding by 57% compared to homogenous titanium stem coated with hydroxyapatite. However, the optimal functionally graded stem coated with collagen reduced the stress shielding by 51% compared to homogenous titanium stem coated with collagen.

  13. Improve the performance of coated cemented hip stem through the advanced composite materials.

    PubMed

    Hedia, H S; Fouda, N

    2015-01-01

    Design of hip joint implant using functionally graded material (FGM) (advanced composite material) has been used before through few researches. It gives great results regarding the stress distribution along the implant and bone interfaces. However, coating of orthopaedic implants has been widely investigated through many researches. The effect of using advanced composite stem material, which mean by functionally graded stem material, in the total hip replacement coated with the most common coated materials has not been studied yet. Therefore, this study investigates the effect of utilizing these two concepts together; FGM and coating, in designing new stem material. It is concluded that the optimal FGM cemented stem is consisting from titanium at the upper stem layers graded to collagen at a lower stem layers. This optimal graded stem coated with hydroxyapatite found to reduce stress shielding by 57% compared to homogenous titanium stem coated with hydroxyapatite. However, the optimal functionally graded stem coated with collagen reduced the stress shielding by 51% compared to homogenous titanium stem coated with collagen. PMID:26407117

  14. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development and flight evaluation of an advanced composite empennage component is presented. The recommended concept for the covers is graphite-epoxy hats bonded to a graphite-epoxy skin. The hat flare-out has been eliminated, instead the hat is continuous into the joint. The recommended concept for the spars is graphite-epoxy caps and a hybrid of Kevlar-49 and graphite-epoxy in the spar web. The spar cap, spar web stiffeners for attaching the ribs, and intermediate stiffeners are planned to be fabricated as a unit. Access hole in the web will be reinforced with a donut type, zero degree graphite-epoxy wound reinforcement. The miniwich design concept in the upper three ribs originally proposed is changed to a graphite-epoxy stiffened solid laminate design concept. The recommended configuration for the lower seven ribs remains as graphite-epoxy caps with aluminum cruciform diagonals. The indicated weight saving for the current advanced composite vertical fin configuration is 20.2% including a 24 lb growth allowance. The project production cost saving is approximately 1% based on a cumulative average of 250 aircraft and including only material, production labor, and quality assurance costs.

  15. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration, task 3

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A structural design study was conducted to assess the relative merits of structural concepts using advanced composite materials for an advanced supersonic aircraft cruising at Mach 2.7. The configuration and structural arrangement developed during Task I and II of the study, was used as the baseline configuration. Allowable stresses and strains were established for boron and advanced graphite fibers based on projected fiber properties available in the next decade. Structural concepts were designed and analyzed using graphite polyimide and boron polyimide, applied to stiffened panels and conventional sandwich panels. The conventional sandwich panels were selected as the structural concept to be used on the wing structure. The upper and lower surface panels of the Task I arrow wing were redesigned using high-strength graphite polyimide sandwich panels over the titanium spars and ribs. The ATLAS computer system was used as the basis for stress analysis and resizing the surface panels using the loads from the Task II study, without adjustment for change in aeroelastic deformation. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter speed was increased to that of the titanium wing, with a weight penalty less than that of the metallic airplane.

  16. Extension-torsion coupling behavior of advanced composite tilt-rotor blades

    NASA Technical Reports Server (NTRS)

    Kosmatka, J. B.

    1989-01-01

    An analytic model was developed to study the extension-bend-twist coupling behavior of an advanced composite helicopter or tilt-rotor blade. The outer surface of the blade is defined by rotating an arbitrary cross section about an initial twist axis. The cross section can be nonhomogeneous and composed of generally anisotropic materials. The model is developed based upon a three dimensional elasticity approach that is recast as a coupled two-dimensional boundary value problem defined in a curvilinear coordinate system. Displacement solutions are written in terms of known functions that represent extension, bending, and twisting and unknown functions for local cross section deformations. The unknown local deformation functions are determined by applying the principle of minimum potential energy to the discretized two-dimensional cross section. This is an application of the Ritz method, where the trial function family is the displacement field associated with a finite element (8-node isoparametric quadrilaterals) representation of the section. A computer program was written where the cross section is discretized into 8-node quadrilateral subregions. Initially the program was verified using previously published results (both three-dimensional elasticity and technical beam theory) for pretwisted isotropic bars with an elliptical cross section. In addition, solid and thin-wall multi-cell NACA-0012 airfoil sections were analyzed to illustrate the pronounced effects that pretwist, initial twist axis location, and spar location has on coupled behavior. Currently, a series of advanced composite airfoils are being modeled in order to assess how the use of laminated composite materials interacts with pretwist to alter the coupling behavior of the blade. These studies will investigate the use of different ply angle orientations and the use of symmetric versus unsymmetric laminates.

  17. Evaluation of the composition of the binder bridges in matrix granules prepared with a small-scale high-shear granulator.

    PubMed

    Bajdik, János; Baki, Gabriella; Szent-Királlyi, Zsuzsanna; Knop, Klaus; Kleinebudde, Peter; Pintye-Hódi, Klára

    2008-11-01

    The aim of this work was to evaluate the binder bridges which can form in hydrophilic matrix granules prepared with a small-scale high-shear granulator. Matrices contained hydroxypropyl methylcellulose (HPMC) as a matrix-forming agent, together with lactose monohydrate and microcrystalline cellulose as filler. Water was used as granulating liquid. A 2(4) full factorial design was used to evaluate the effects of the operational parameters (impeller speed, chopper speed, dosing speed and wet massing time) on the granulation process. The temperature of the sample increased relevantly during the preparation in the small-scale apparatus. The same setup induced different temperature increases for different amounts of powder. This alteration enhances the solubility of lactose and decreases that of HPMC, and thus the quantities of the dissolved components can vary. Accordingly, changes in composition of the binder bridge can occur. Since exact determination of the dissolution of these materials during granulation is difficult, the consequences of the changes in solubility were examined. Differential scanning calorimetry (DSC), thermomechanical analysis (TMA) and X-ray diffraction (XRD) measurements were made to evaluate the films prepared from liquids with different ratios of soluble materials. The DSC and XRD measurements confirmed that the lactose lost its crystalline state in the film. The TMA tests revealed that increase of the quantity of lactose in the film decreased the glass transition temperature of the film; this may be attributed to the interaction of the additives. At a lactose content of 37.5%, a second glass transition appeared. This phenomenon may be indicative of a separate amorphous lactose phase. PMID:18774256

  18. The effect of various sandblasting conditions on surface changes of dental zirconia and shear bond strength between zirconia core and indirect composite resin

    PubMed Central

    Su, Naichuan; Yue, Li; Liao, Yunmao; Liu, Wenjia; Zhang, Hai; Li, Xin

    2015-01-01

    PURPOSE To measure the surface loss of dental restorative zirconia and the short-term bond strength between an indirect composite resin (ICR) and zirconia ceramic after various sandblasting processes. MATERIALS AND METHODS Three hundred zirconia bars were randomly divided into 25 groups according to the type of sandblasting performed with pressures of 0.1, 0.2, 0.4 and 0.6 MPa, sandblasting times of 7, 14 and 21 seconds, and alumina powder sizes of 50 and 110 µm. The control group did not receive sandblasting. The volume loss and height loss on zirconia surface after sandblasting and the shear bond strength (SBS) between the sandblasted zirconia and ICR after 24-h immersion were measured for each group using multivariate analysis of variance (ANOVA) and Least Significance Difference (LSD) test (α=.05). After sandblasting, the failure modes of the ICR/zirconia surfaces were observed using scanning electron microscopy. RESULTS The volume loss and height loss were increased with higher sandblasting pressure and longer sandblasting treatment, but they decreased with larger powder size. SBS was significantly increased by increasing the sandblasting time from 7 seconds to 14 seconds and from 14 seconds to 21 seconds, as well as increasing the size of alumina powder from 50 µm to 110 µm. SBS was significantly increased from 0.1 MPa to 0.2 MPa according to the size of alumina powder. However, the SBSs were not significantly different with the sandblasting pressure of 0.2, 0.4 and 0.6 MPa. The possibilities of the combination of both adhesive failure and cohesive failure within the ICR were higher with the increases in bonding strength. CONCLUSION Based on the findings of this study, sandblasting with alumina particles at 0.2 MPa, 21 seconds and the powder size of 110 µm is recommended for dental applications to improve the bonding between zirconia core and ICR. PMID:26140173

  19. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites.

    PubMed

    Lee, Koon-Yang; Buldum, Gizem; Mantalaris, Athanasios; Bismarck, Alexander

    2014-01-01

    Bacterial cellulose (BC) nanofibers are one of the stiffest organic materials produced by nature. It consists of pure cellulose without the impurities that are commonly found in plant-based cellulose. This review discusses the metabolic pathways of cellulose-producing bacteria and the genetic pathways of Acetobacter xylinum. The fermentative production of BC and the bioprocess parameters for the cultivation of bacteria are also discussed. The influence of the composition of the culture medium, pH, temperature, and oxygen content on the morphology and yield of BC are reviewed. In addition, the progress made to date on the genetic modification of bacteria to increase the yield of BC and the large-scale production of BC using various bioreactors, namely static and agitated cultures, stirred tank, airlift, aerosol, rotary, and membrane reactors, is reviewed. The challenges in commercial scale production of BC are thoroughly discussed and the efficiency of various bioreactors is compared. In terms of the application of BC, particular emphasis is placed on the utilization of BC in advanced fiber composites to manufacture the next generation truly green, sustainable and renewable hierarchical composites.

  20. Structural Framework for Flight: NASA's Role in Development of Advanced Composite Materials for Aircraft and Space Structures

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.; Davis, John G., Jr.; Johnston, Norman J.; Pipes, R. Byron; McGuire, Jack F.

    2011-01-01

    This serves as a source of collated information on Composite Research over the past four decades at NASA Langley Research Center, and is a key reference for readers wishing to grasp the underlying principles and challenges associated with developing and applying advanced composite materials to new aerospace vehicle concepts. Second, it identifies the major obstacles encountered in developing and applying composites on advanced flight vehicles, as well as lessons learned in overcoming these obstacles. Third, it points out current barriers and challenges to further application of composites on future vehicles. This is extremely valuable for steering research in the future, when new breakthroughs in materials or processing science may eliminate/minimize some of the barriers that have traditionally blocked the expanded application of composite to new structural or revolutionary vehicle concepts. Finally, a review of past work and identification of future challenges will hopefully inspire new research opportunities and development of revolutionary materials and structural concepts to revolutionize future flight vehicles.

  1. Shear Bond Strength of Superficial, Intermediate and Deep Dentin In Vitro with Recent Generation Self-etching Primers and Single Nano Composite Resin

    PubMed Central

    Singh, Kulshrest; Naik, Rajaram; Hegde, Srinidhi; Damda, Aftab

    2015-01-01

    Background: This in vitro study is intended to compare the shear bond strength of recent self-etching primers to superficial, intermediate, and deep dentin levels. Materials and Methods: All teeth were sectioned at various levels and grouped randomly into two experimental groups and two control groups having three subgroups. The experimental groups consisted of two different dentin bonding system. The positive control group consisted of All Bond 2 and the negative control group was without the bonding agent. Finally, the specimens were subjected to shear bond strength study under Instron machine. The maximum shear bond strengths were noted at the time of fracture. The results were statistically analyzed. Results: Comparing the shear bond strength values, All Bond 2 (Group III) demonstrated fairly higher bond strength values at different levels of dentin. Generally comparing All Bond 2 with the other two experimental groups revealed highly significant statistical results. Conclusion: In the present investigation with the fourth generation, higher mean shear bond strength values were recorded compared with the self-etching primers. When intermediate dentin shear bond strength was compared with deep dentin shear bond strength statistically significant results were found with Clearfil Liner Bond 2V, All Bond 2 and the negative control. There was a statistically significant difference in shear bond strength values both with self-etching primers and control groups (fourth generation bonding system and without bonding system) at superficial, intermediate, and deep dentin. There was a significant fall in bond strength values as one reaches deeper levels of dentin from superficial to intermediate to deep. PMID:26225101

  2. An in vitro evaluation of the effect of sandblasting and laser surface treatment on the shear bond strength of a composite resin to the facial surface of primary anterior stainless steel crowns

    PubMed Central

    Nandlal, Bhojraj

    2015-01-01

    Objectives: The present study was conducted to evaluate the optimal method of enhancing the bond strength of a composite resin to the facial surface of the primary anterior stainless steel crowns using various surface treatments namely Nd: YAG laser surface treatment, sandblasting , alloy primer application and no surface treatment. Study Design: The study sample consisted of 60 primary anterior stainless steel crowns (UnitekTM size R 4), with 15 samples randomly divided into the 4 study groups, embedded in acrylic blocks. The facial surface of these surface treated crowns was utilized as the bonding surface to which 2.5mm diameter composite resin cylinders were bonded for the evaluation of the shear bond strength. Shear bond strength measurements were made using a universal testing machine utilizing a shearing blade (jig).The mode of failure at composite-metal interface was determined using a Stereomicroscope at 10 X magnification. Results: The mean bond strength values obtained for surface treatment of Nd: YAG laser surface treated, Sandblasting ,Alloy Primer and No surface treatments were 17.01±.92 , 13.18 ± .73, 7.46 ± .70 and 7.33 ± .77 MPa respectively. The obtained bond strength values were subjected to a one way ANOVA and a Scheffe’s post-hoc comparison test. The results of the present study indicated that Laser surface treatment of the facial surface of the crowns enhanced the bond strength of the composite resin significantly compared to the other groups. Conclusions: Nd: YAG laser surface treatment produced an excellent surface roughness and obtained the highest shear bond strength values suggestive for recommendation as an optimal surface treatment to be used to enhance the resin-metal bond at the interface of the composite resin and the facial surface of primary anterior stainless steel crowns for the purpose of chairside veneering. Key words:Nd: YAG laser treatment, Sandblasting, Primary anterior stainless steel crown, Chairside veneering

  3. Advanced 3D Ni(OH)2/CNT Gel Composite Electrodes for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Cheng, Hanlin; Duong, Hai Minh

    2015-03-01

    In order to enhance the performance of supercapacitors, advanced 3D Porous CNT/Ni(OH)2 gel composite electrodes are developed in this work. Compared with previously reported graphene gel supercapacitors, our electrodes using 1D CNTs have smaller diffusion resistance due to a shorter ion transport path. The developed 3D xerogel composite electrodes demonstrate the success of a careful engineered guest/host materials interface. Initially, the CNT gels are coated on the nickel foam to form a 3D scaffold, which serves as a microscopic electrical conductive network. Then Ni(OH)2 are incorporated using a traditional electrodeposition method. In this work, two types of the 3D CNT-coated nickel foams are investigated. The gels can be used directly as hydrogels or dried in air to form xerogels. Both hydrogels and xerogels present 3D tangled CNT networks. It shows that the hydrogel composite electrodes with unbundled CNTs, though presenting high capacitances of 1400 F/g at low discharge rate, possess lower capacitances at higher discharge rate and a poor cycling performance of less than 23% retention. In contrast, the xerogel composite electrodes can overcome these limitations in terms of a satisfied discharge performance of 1200 F/g and a good cycling retention more than 85% due to a stronger Ni(OH)2/CNT interface. The CNT bundles in the xerogel electrodes formed during the drying process can give a flat surface with small curvature, which facilitate the Ni(OH)2 nucleation and growth. Thanks for the support from the A star R-265-000-424-305.

  4. Advanced imaging techniques for assessment of structure, composition and function in biofilm systems.

    PubMed

    Neu, Thomas R; Manz, Bertram; Volke, Frank; Dynes, James J; Hitchcock, Adam P; Lawrence, John R

    2010-04-01

    Scientific imaging represents an important and accepted research tool for the analysis and understanding of complex natural systems. Apart from traditional microscopic techniques such as light and electron microscopy, new advanced techniques have been established including laser scanning microscopy (LSM), magnetic resonance imaging (MRI) and scanning transmission X-ray microscopy (STXM). These new techniques allow in situ analysis of the structure, composition, processes and dynamics of microbial communities. The three techniques open up quantitative analytical imaging possibilities that were, until a few years ago, impossible. The microscopic techniques represent powerful tools for examination of mixed environmental microbial communities usually encountered in the form of aggregates and films. As a consequence, LSM, MRI and STXM are being used in order to study complex microbial biofilm systems. This mini review provides a short outline of the more recent applications with the intention to stimulate new research and imaging approaches in microbiology.

  5. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration

    NASA Technical Reports Server (NTRS)

    Turner, M. J.; Grande, D. L.

    1978-01-01

    Based on estimated graphite and boron fiber properties, allowable stresses and strains were established for advanced composite materials. Stiffened panel and conventional sandwich panel concepts were designed and analyzed, using graphite/polyimide and boron/polyimide materials. The conventional sandwich panel was elected as the structural concept for the modified wing structure. Upper and lower surface panels of the arrow wing structure were then redesigned, using high strength graphite/polyimide sandwich panels, retaining the titanium spars and ribs from the prior study. The ATLAS integrated analysis and design system was used for stress analysis and automated resizing of surface panels. Flutter analysis of the hybrid structure showed a significant decrease in flutter speed relative to the titanium wing design. The flutter speed was increased to that of the titanium design by selective increase in laminate thickness and by using graphite fibers with properties intermediate between high strength and high modulus values.

  6. Experimental method for determination of bending and torsional rigidities of advanced composite laminates

    SciTech Connect

    Maeda, Takenori

    1995-11-01

    This paper presents an experimental method for the determination of the bending and torsional rigidities of advanced fiber composite laminates with the aid of laser holographic interferometry. The proposed method consists of a four-point bending test and a resonance test. The bending rigidity ratio (D{sub 12}/D{sub 22}) can be determined from the fringe patterns of the four-point bending test. The bending rigidities (D{sub 11} and D{sub 22}) and the torsional rigidity (D{sub 66}) are calculated from the natural frequencies of cantilever plates of the resonance test. The test specimens are carbon/epoxy cross-ply laminates. The adequacy of the experimental method is confirmed by comparing the measured rigidities with the theoretical values obtained from classical lamination theory (CLT) by using the measured tensile properties. The results show that the present method can be used to evaluate the rigidities of orthotropic laminates with reasonably good accuracy.

  7. Advanced Cosmic-ray Composition Experiment for Space Station: ISS accommodation study

    NASA Astrophysics Data System (ADS)

    Wefel, John P.; ACCESS Accommodation Study Team

    1999-01-01

    ACCESS-Advanced Cosmic-ray Composition Experiment for Space Station-was selected as a new Mission Concept under NRA 96-OSS-03, with the goal of combining calorimeter and transition radiation techniques to provide measurements of cosmic rays from Hydrogen through Nickel up to energies approaching the ``knee'' in the cosmic ray all particle spectrum, plus providing measurements of the Z>28 (Ultra-Heavy) nuclei at all energies. An instrument to perform such an investigation is undergoing an ISS/STS Accommodation Study at JSC. The instrument concept, the mission plan, and the accommodation issues for an ISS attached payload which include, in part, the carrier, ISS Site, thermal control, power, data and operations are described and the current status of these issues, for an ACCESS Mission, is summarized.

  8. On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    2003-01-01

    A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.

  9. Advances in the Lightweight Air-Liquid Composite Heat Exchanger Development for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Johnston, J. Chris; Haas, Daniel

    2011-01-01

    An advanced, lightweight composite modular Air/Liquid (A/L) Heat Exchanger (HX) Prototype for potential space exploration thermal management applications was successfully designed, manufactured, and tested. This full-scale Prototype consisting of 19 modules, based on recommendations from its predecessor Engineering Development unit (EDU) but with improved thermal characteristics and manufacturability, was 11.2 % lighter than the EDU and achieves potentially a 42.7% weight reduction from the existing state-of-the-art metallic HX demonstrator. However, its higher pressure drop (0.58 psid vs. 0.16 psid of the metal HX) has to be mitigated by foam material optimizations and design modifications including a more systematic air channel design. Scalability of the Prototype design was validated experimentally by comparing manufacturability and performance between the 2-module coupon and the 19-module Prototype. The Prototype utilized the thermally conductive open-cell carbon foam material but with lower density and adopted a novel high-efficiency cooling system with significantly increased heat transfer contact surface areas, improved fabricability and manufacturability compared to the EDU. Even though the Prototype was required to meet both the thermal and the structural specifications, accomplishing the thermal requirement was a higher priority goal for this first version. Overall, the Prototype outperformed both the EDU and the corresponding metal HX, particularly in terms of specific heat transfer, but achieved 93.4% of the target. The next generation Prototype to achieve the specification target, 3,450W would need 24 core modules based on the simple scaling factor. The scale-up Prototype will weigh about 14.7 Kg vs. 21.6 Kg for the metal counterpart. The advancement of this lightweight composite HX development from the original feasibility test coupons to EDU to Prototype is discussed in this paper.

  10. Development, Implementation and Application of Micromechanical Analysis Tools for Advanced High Temperature Composites

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document contains the final report to the NASA Glenn Research Center (GRC) for the research project entitled Development, Implementation, and Application of Micromechanical Analysis Tools for Advanced High-Temperature Composites. The research supporting this initiative has been conducted by Dr. Brett A. Bednarcyk, a Senior Scientist at OM in Brookpark, Ohio from the period of August 1998 to March 2005. Most of the work summarized herein involved development, implementation, and application of enhancements and new capabilities for NASA GRC's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) software package. When the project began, this software was at a low TRL (3-4) and at release version 2.0. Due to this project, the TRL of MAC/GMC has been raised to 7 and two new versions (3.0 and 4.0) have been released. The most important accomplishments with respect to MAC/GMC are: (1) A multi-scale framework has been built around the software, enabling coupled design and analysis from the global structure scale down to the micro fiber-matrix scale; (2) The software has been expanded to analyze smart materials; (3) State-of-the-art micromechanics theories have been implemented and validated within the code; (4) The damage, failure, and lifing capabilities of the code have been expanded from a very limited state to a vast degree of functionality and utility; and (5) The user flexibility of the code has been significantly enhanced. MAC/GMC is now the premier code for design and analysis of advanced composite and smart materials. It is a candidate for the 2005 NASA Software of the Year Award. The work completed over the course of the project is summarized below on a year by year basis. All publications resulting from the project are listed at the end of this report.

  11. Computed Turbulent Free Shear Flow Of Air

    NASA Technical Reports Server (NTRS)

    Viegas, J. R.; Rubesin, M. W.

    1992-01-01

    Standard k-epsilon model of turbulence yields fairly accurate results. Symposium paper discusses numerical simulation of turbulent free shear flow of nonreacting compressible fluid. Ability to compute such flows essential to advances in design.

  12. Radiological study on newly developed composite corn advance lines in Malaysia

    NASA Astrophysics Data System (ADS)

    Adekunle Olatunji, Michael; Bemigho Uwatse, Onosohwo; Uddin Khandaker, Mayeen; Amin, Y. M.; Faruq, G.

    2014-12-01

    Owing to population growth, there has been high demand for food across the world, and hence, different agricultural activities such as use of phosphate fertilizers, recycling of organic matters, etc, have been deployed to increase crop yields. In Malaysia, a total of nine composite corn advance lines have been developed at the Institute of Biological Sciences, University of Malaya and are being grown under different conditions with a bid to meet the average daily human need for energy and fiber intake. To this end, the knowledge of radioactivity levels in these corn advance lines are of paramount importance for the estimation of possible radiological hazards due to its consumption. Hence, the radioactivity concentrations of 226Ra, 228Ra and 40K in the corn have been determined using HPGe γ-ray spectrometry. The activity concentrations in the corn ranged from 0.05 to 19.18 Bq kg-1 for 226Ra, from 0.10 to 3.22 Bq kg-1 for 228Ra and from 26.4 to 129 Bq kg-1 for 40K. In order to ascertain the radiological safety of the population regarding maize consumption, the daily intakes of these radionuclides as well as the annual effective dose were estimated. The total effective dose obtained due to the ingestion of radionuclides via maize consumption is 15.39 μSv y-1, which is less than the international recommendations.

  13. Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion

    NASA Technical Reports Server (NTRS)

    Hanley, David; Carella, John

    1999-01-01

    This document, submitted by AlliedSignal Engines (AE), a division of AlliedSignal Aerospace Company, presents the program final report for the Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion in compliance with data requirements in the statement of work, Contract No. NAS3-97003. This document includes: 1 -Technical Summary: a) Component Design, b) Manufacturing Process Selection, c) Vendor Selection, and d) Testing Validation: 2-Program Conclusion and Perspective. Also, see the Appendix at the back of this report. This report covers the program accomplishments from December 1, 1996, to August 24, 1998. The Advanced High Temperature PMC's for Gas Turbine Engines Program Expansion was a one year long, five task technical effort aimed at designing, fabricating and testing a turbine engine component using NASA's high temperature resin system AMB-21. The fiber material chosen was graphite T650-35, 3K, 8HS with UC-309 sizing. The first four tasks included component design and manufacturing, process selection, vendor selection, component fabrication and validation testing. The final task involved monthly financial and technical reports.

  14. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    SciTech Connect

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  15. The effects of curcumin (diferuloylmethane) on body composition of patients with advanced pancreatic cancer

    PubMed Central

    Parsons, Henrique A.; Baracos, Vickie E.; Hong, David S.; Abbruzzese, James; Bruera, Eduardo; Kurzrock, Razelle

    2016-01-01

    Background Curcumin is a natural product that is often explored by patients with cancer. Weight loss due to fat and muscle depletion is a hallmark of pancreatic cancer and is associated with worse outcomes. Studies of curcumin's effects on muscularity show conflicting results in animal models. Methods and results Retrospective matched 1:2 case-control study to evaluate the effects of curcumin on body composition (determined by computerized tomography) of 66 patients with advanced pancreatic cancer (22 treated,44 controls). Average age (SEM) was 63(1.8) years, 30/66(45%) women, median number of prior therapies was 2, median (IQR) time from advanced pancreatic cancer diagnosis to baseline image was 7(2-13.5) months (p>0.2, all variables). All patients lost weight (3.3% and 1.3%, treated vs. control, p=0.13). Treated patients lost more muscle (median [IQR] percent change −4.8[−9.1,-0.1] vs. −0.05%[−4.2, 2.6] in controls,p<0.001) and fat (median [IQR] percent change −6.8%[−15,-0.6] vs. −4.0%[−7.6, 1.3] in controls,p=0.04). Subcutaneous fat was more affected in the treated patients. Sarcopenic patients treated with curcumin(n=15) had survival of 169(115-223) days vs. 299(229-369) sarcopenic controls(p=0.024). No survival difference was found amongst non-sarcopenic patients. Conclusions Patients with advanced pancreatic cancer treated with curcumin showed significantly greater loss of subcutaneous fat and muscle than matched untreated controls. PMID:26934122

  16. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft. Phase 1: Engineering development

    NASA Technical Reports Server (NTRS)

    Ary, A.; Axtell, C.; Fogg, L.; Jackson, A.; James, A. M.; Mosesian, B.; Vanderwier, J.; Vanhamersveld, J.

    1976-01-01

    The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes the front and rear spars. Various design options were evaluated to arrive at a configuration which would offer the highest potential for satisfying program objectives. The preferred configuration selected consists of a hat-stiffened cover with molded integrally stiffened spars, aluminum trussed composite ribs, and composite miniwich web ribs with integrally molded caps. Material screening tests were performed to select an advanced composite material system for the Advanced Composite Vertical Fin (ACFV) that would meet the program requirements from the standpoint of quality, reproducibility, and cost. Preliminary weight and cost analysis were made, targets established, and tracking plans developed. These include FAA certification, ancillary test program, quality control, and structural integrity control plans.

  17. Preparing GMAT for Operational Maneuver Planning of the Advanced Composition Explorer (ACE)

    NASA Technical Reports Server (NTRS)

    Qureshi, Rizwan Hamid; Hughes, Steven P.

    2014-01-01

    The General Mission Analysis Tool (GMAT) is an open-source space mission design, analysis and trajectory optimization tool. GMAT is developed by a team of NASA, private industry, public and private contributors. GMAT is designed to model, optimize and estimate spacecraft trajectories in flight regimes ranging from low Earth orbit to lunar applications, interplanetary trajectories and other deep space missions. GMAT has also been flight qualified to support operational maneuver planning for the Advanced Composition Explorer (ACE) mission. ACE was launched in August, 1997 and is orbiting the Sun-Earth L1 libration point. The primary science objective of ACE is to study the composition of both the solar wind and the galactic cosmic rays. Operational orbit determination, maneuver operations and product generation for ACE are conducted by NASA Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF). This paper discusses the entire engineering lifecycle and major operational certification milestones that GMAT successfully completed to obtain operational certification for the ACE mission. Operational certification milestones such as gathering of the requirements for ACE operational maneuver planning, gap analysis, test plans and procedures development, system design, pre-shadow operations, training to FDF ACE maneuver planners, shadow operations, Test Readiness Review (TRR) and finally Operational Readiness Review (ORR) are discussed. These efforts have demonstrated that GMAT is flight quality software ready to support ACE mission operations in the FDF.

  18. Polypropylene/glass fiber hierarchical composites incorporating inorganic fullerene-like nanoparticles for advanced technological applications.

    PubMed

    Díez-Pascual, Ana M; Naffakh, Mohammed

    2013-10-01

    Novel isotactic polypropylene (iPP)/glass fiber (GF) laminates reinforced with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles as environmentally friendly fillers have been successfully fabricated by simple melt-blending and fiber impregnation in a hot-press without the addition of any compatibilizer. The influence of IF-WS2 concentration on the morphology, viscosity. and thermal and mechanical behavior of the hierarchical composites has been investigated. Results revealed an unprecedented 62 °C increase in the degradation temperature of iPP/GF upon addition of only 4.0 wt % IF-WS2. The coexistence of both micro- and nanoscale fillers resulted in synergistic effects on enhancing the stiffness, strength, crystallinity, thermal stability, glass transition (Tg) and heat distortion temperature (HDT) of the matrix. The approach used in this work is an efficient, versatile, scalable and economic strategy to improve the mechanical and thermal behavior of GF-reinforced thermoplastics with a view to extend their use in advanced technological applications. This new type of composite materials shows great potential to improve the efficiency and sustainability of many forms of transport. PMID:24015820

  19. Conceptual design study of advanced acoustic composite nacelle. [for achieving reductions in community noise and operating expense

    NASA Technical Reports Server (NTRS)

    Goodall, R. G.; Painter, G. W.

    1975-01-01

    Conceptual nacelle designs for wide-bodied and for advanced-technology transports were studied with the objective of achieving significant reductions in community noise with minimum penalties in airplane weight, cost, and in operating expense by the application of advanced composite materials to nacelle structure and sound suppression elements. Nacelle concepts using advanced liners, annular splitters, radial splitters, translating centerbody inlets, and mixed-flow nozzles were evaluated and a preferred concept selected. A preliminary design study of the selected concept, a mixed flow nacelle with extended inlet and no splitters, was conducted and the effects on noise, direct operating cost, and return on investment determined.

  20. Displaying Composite and Archived Soundings in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Volkmer, Matthew R.; Blottman, Peter F.; Sharp, David W.

    2008-01-01

    In a previous task, the Applied Meteorology Unit (AMU) developed spatial and temporal climatologies of lightning occurrence based on eight atmospheric flow regimes. The AMU created climatological, or composite, soundings of wind speed and direction, temperature, and dew point temperature at four rawinsonde observation stations at Jacksonville, Tampa, Miami, and Cape Canaveral Air Force Station, for each of the eight flow regimes. The composite soundings were delivered to the National Weather Service (NWS) Melbourne (MLB) office for display using the National version of the Skew-T Hodograph analysis and Research Program (NSHARP) software program. The NWS MLB requested the AMU make the composite soundings available for display in the Advanced Weather Interactive Processing System (AWIPS), so they could be overlaid on current observed soundings. This will allow the forecasters to compare the current state of the atmosphere with climatology. This presentation describes how the AMU converted the composite soundings from NSHARP Archive format to Network Common Data Form (NetCDF) format, so that the soundings could be displayed in AWl PS. The NetCDF is a set of data formats, programming interfaces, and software libraries used to read and write scientific data files. In AWIPS, each meteorological data type, such as soundings or surface observations, has a unique NetCDF format. Each format is described by a NetCDF template file. Although NetCDF files are in binary format, they can be converted to a text format called network Common data form Description Language (CDL). A software utility called ncgen is used to create a NetCDF file from a CDL file, while the ncdump utility is used to create a CDL file from a NetCDF file. An AWIPS receives soundings in Binary Universal Form for the Representation of Meteorological data (BUFR) format (http://dss.ucar.edu/docs/formats/bufr/), and then decodes them into NetCDF format. Only two sounding files are generated in AWIPS per day. One