Science.gov

Sample records for advanced composites blends

  1. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    ERIC Educational Resources Information Center

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  2. Flame retarded asphalt blend composition

    SciTech Connect

    Walters, R.B.

    1987-04-21

    This patent describes a flame retarded asphalt composition consisting essentially of a blend of: (a) thermoplastic elastomer modified bitumen; (b) 20-30 wt % inert filler; (c) 1-20 wt % of at least one halogenated flame retardant; and (d) 1-5 wt % of at least one inorganic phosphorus containing compound selected from the group consisting of ammonium phosphate compounds and red phosphorus.

  3. Starch-Poly(Hydroxylalkanoate) Composites and Blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper summarizes research on starch-polyhydroxyalkanoate (PHA) blends and composites. Efforts to increase compatibility, characterize mechanical and biodegradation properties are described. A range of blend products have been prepared including molded plastics, films and foams. Finally, futu...

  4. Advanced materials based on polymer blends/polymer blend nanocomposites

    NASA Astrophysics Data System (ADS)

    Shikaleska, A. V.; Pavlovska, F. P.

    2012-09-01

    Processability, morphology, mechanical properties and rheological behavior of poly(vinylchloride) (PVC)/poly(ethylmethacrylate) (PEMA) blends and PVC/PEMA/montmorillonite (MMT) composites, prepared by melt processing in a brabender mixer, were studied. Samples were characterized using SEM, mechanical testing, DMTA and a parallel plate rheometer. Plastograms show that there is noticeable drop of fusion times and increase in melt viscosity torque of both, polymer blend and polymer blend nanocomposite, in comparison with those of neat PVC. SEM images show that homogenous dispersions are obtained. Tensile tests indicate that PVC/PEMA and PVC/PEMA/MMT samples have greater tensile strength and elastic modulus and lower elongation compared to PVC. When solid viscoelastic properties are considered (DMTA), slightly higher storage moduli are obtained whereas more prominent increase of storage modulus is observed when nanoclay particles are added in a PVC/PEMA matrix. From the calculated area of tandelta peak of all tested samples, nanocomposites exhibit the lowest damping behavior. Oscillatory measurements in a molten state were used for determining the frequency dependencies of storage G' and loss G" moduli. It was found that G" curves of neat PVC lie above those of G' suggesting that PVC behaves like viscoelastic liquid. Similar results, but with significantly higher values of G' and G" over the whole frequency range for PVC/PEMA blends were obtained. Steady shear measurements show that the presence of PEMA and nanoclay particles increases the shear stress and shear viscosity of neat PVC. In order to define the rheological equations of state the three material functions were determined. According to these functions all samples exhibit shear thinning behavior and the curves obey the power law equation. As rheological behaviour was found to be strongly dependent on blend's micro and macro structure and it is one of the main factors defining the end properties, attempt was

  5. Composites and blends from biobased materials

    SciTech Connect

    Kelley, S.S.

    1995-05-01

    The program is focused on the development of composites and blends from biobased materials to use as membranes, high value plastics, and lightweight composites. Biobased materials include: cellulose derivative microporous materials, cellulose derivative copolymers, and cellulose derivative blends. This year`s research focused on developing an improved understanding of the molecular features that cellulose based materials with improved properties for gas separation applications. Novel cellulose ester membrane composites have been developed and are being evaluated under a collaborative research agreement with Dow Chemicals Company.

  6. COMPOSITION CHANGES IN REFRIGERANT BLENDS FOR AUTOMOTIVE AIR CONDITIONING

    EPA Science Inventory

    Three refrigerant blends used to replace CFC-12 in automotive air conditioners were evaluated for composition changes due to typical servicing and leakage. When recommended service procedures were followed, changes in blend compositions were relatively small. Small changes in b...

  7. Composition changes in refrigerant blends for automotive air conditioning

    SciTech Connect

    Jetter, J.J.; Delafield, F.R.; Ng, A.S.; Ratanaphruks, K.; Tufts, M.W.

    1999-07-01

    Three refrigerant blends used to replace the chlorofluorocarbon R-12 in automotive air conditioners were evaluated for composition changes due to typical servicing and leakage. When recommended service procedures were followed, changes in blend compositions were relatively small. Small changes in blend compositions caused no significant changes in refrigeration capacities. However, when recommended procedures were not followed, changes in compositions were relatively large. The amount of change in composition and the resulting effect on performance varied among the three refrigerant blends that were tested. Of the three blends, a quaternary blend containing hydrochlorofluorocarbon R-22 had the greatest changes in composition, while a binary blend containing hydrofluorocarbon R-134a had the smallest changes in composition.

  8. Polymer composites and blends for battery separators: State of the art, challenges and future trends

    NASA Astrophysics Data System (ADS)

    Nunes-Pereira, J.; Costa, C. M.; Lanceros-Méndez, S.

    2015-05-01

    In lithium ion battery systems, the separator plays a key role with respect to device performance. Polymer composites and polymer blends have been frequently used as battery separators due to their suitable properties. This review presents the main issues, developments and characteristics of these polymer composites and blends for battery separator membrane applications. This review is divided into two sections regarding the composition of the materials: polymer composite materials, subdivided according to filler type, and polymer blend materials. For each category the electrolyte solutions, ionic conductivity and other relevant physical-chemical characteristics are described. This review shows the recent advances and opportunities in this area and identifies future trends and challenges.

  9. Probing the microstructure and water phases in composite cement blends

    SciTech Connect

    Gorce, Jean-Philippe . E-mail: j.gorce@sheffield.ac.uk; Milestone, Neil B.

    2007-03-15

    {sup 1}H nuclear magnetic resonance relaxometry has been used in combination with the more conventional techniques of mercury intrusion porosimetry, freeze-drying and thermogravimetric analysis to investigate the evolution of the microstructure and the distribution of water phases in two composite cement blends hydrating over a one year period. These two blends are composed of high substitution of Ordinary Portland Cement (OPC) with Blast Furnace Slag (BFS) at level of 75 wt.% (3:1 blend) and 90 wt.% (9:1 blend). After one year, the 3:1 blend microstructure is characterised by poorly interconnected gel pores filled with about 35 vol.% of water while less than 4 vol.% of water is trapped in remaining capillary pores. The 9:1 blend microstructure is characterised by a network of larger gel and capillary pores filled with about 21 and 22 vol.% of water respectively. Further hydration is ruled out for this blend.

  10. Advanced composites for windmills

    NASA Astrophysics Data System (ADS)

    Bourquardez, G.

    A development status assessment is conducted for advanced composite construction techniques for windmill blade structures which, as in the case of composite helicopter rotors, promise greater reliability, longer service life, superior performance, and lower costs. Composites in wind turbine applications must bear aerodynamic, inertial and gravitational loads in complex interaction cycles. Attention is given to large Darrieus-type vertical axis windmills, to which composite construction methods may offer highly effective pitch-control mechanisms, especially in the 'umbrella' configuration.

  11. Advanced composites X

    SciTech Connect

    1994-12-31

    In the past ten years, high volume, high performance applications of advanced composites in transportation have grown substantially. The 10th annual ASM/ESD Advanced Composites Conference and Exposition presents the latest developments in composite applications and technologies with over 70 papers presented. The conference is organized in tracks covering body, chassis, powertrain and infrastructure applications, material sciences, manufacturing processes and recycling. Polymer composite and metal matrix composite technologies are included throughout. Body sessions feature adhesive bonding, analysis and test methods and crash energy absorption. The Chassis sessions showcase polymer and metal composite applications. The Powertrain/Propulsion track includes emerging materials as well as design and processing case studies. The Materials Science track features papers on new materials, their performance and theoretical treatment. Manufacturing Processes sessions cover process, modelling, fiber preforming and emerging manufacturing methods. The Infrastructure and Recycling track includes a panel discussion of infrastructure applications and technical papers on the recycling of polymer composites and nondestructive testing.

  12. [Advanced Composites Technology Initiatives

    NASA Technical Reports Server (NTRS)

    Julian, Mark R.

    2002-01-01

    This final report closes out the W02 NASA Grant #NCC5-646. The FY02 grant for advanced technology initiatives through the Advanced Composites Technology Institute in Bridgeport, WV, at the Robert C. Byrd Institute (RCBI) Bridgeport Manufacturing Technology Center, is complete; all funding has been expended. RCBI continued to expand access to technology; develop and implement a workforce-training curriculum; improve material development; and provide prototyping and demonstrations of new and advanced composites technologies for West Virginia composites firms. The FY 02 efforts supported workforce development, technical training and the HST development effort of a super-lightweight composite carrier prototype and expanded the existing technical capabilities of the growing aerospace industry across West Virginia to provide additional support for NASA missions. Additionally, the Composites Technology and Training Center was awarded IS0 9001 - 2000 certification and Cleanroom Class 1000 certification during this report period.

  13. Advanced composites technology program

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr.

    1993-01-01

    This paper provides a brief overview of the NASA Advanced Composites Technology (ACT) Program. Critical technology issues that must be addressed and solved to develop composite primary structures for transport aircraft are delineated. The program schedule and milestones are included. Work completed in the first 3 years of the program indicates the potential for achieving composite structures that weigh less and are cost effective relative to conventional aluminum structure. Selected technical accomplishments are noted. Readers who are seeking more in-depth technical information should study the other papers included in these proceedings.

  14. Advanced composites in Japan

    NASA Technical Reports Server (NTRS)

    Diefendorf, R. Judd; Hillig, William G.; Grisaffe, Salvatore J.; Pipes, R. Byron; Perepezko, John H.; Sheehan, James E.

    1994-01-01

    The JTEC Panel on Advanced Composites surveyed the status and future directions of Japanese high-performance ceramic and carbon fibers and their composites in metal, intermetallic, ceramic, and carbon matrices. Because of a strong carbon and fiber industry, Japan is the leader in carbon fiber technology. Japan has initiated an oxidation-resistant carbon/carbon composite program. With its outstanding technical base in carbon technology, Japan should be able to match present technology in the U.S. and introduce lower-cost manufacturing methods. However, the panel did not see any innovative approaches to oxidation protection. Ceramic and especially intermetallic matrix composites were not yet receiving much attention at the time of the panel's visit. There was a high level of monolithic ceramic research and development activity. High temperature monolithic intermetallic research was just starting, but notable products in titanium aluminides had already appeared. Matrixless ceramic composites was one novel approach noted. Technologies for high temperature composites fabrication existed, but large numbers of panels or parts had not been produced. The Japanese have selected aerospace as an important future industry. Because materials are an enabling technology for a strong aerospace industry, Japan initiated an ambitious long-term program to develop high temperature composites. Although just starting, its progress should be closely monitored in the U.S.

  15. Advanced composite fuselage technology

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Smith, Peter J.; Horton, Ray E.

    1993-01-01

    Boeing's ATCAS program has completed its third year and continues to progress towards a goal to demonstrate composite fuselage technology with cost and weight advantages over aluminum. Work on this program is performed by an integrated team that includes several groups within The Boeing Company, industrial and university subcontractors, and technical support from NASA. During the course of the program, the ATCAS team has continued to perform a critical review of composite developments by recognizing advances in metal fuselage technology. Despite recent material, structural design, and manufacturing advancements for metals, polymeric matrix composite designs studied in ATCAS still project significant cost and weight advantages for future applications. A critical path to demonstrating technology readiness for composite transport fuselage structures was created to summarize ATCAS tasks for Phases A, B, and C. This includes a global schedule and list of technical issues which will be addressed throughout the course of studies. Work performed in ATCAS since the last ACT conference is also summarized. Most activities relate to crown quadrant manufacturing scaleup and performance verification. The former was highlighted by fabricating a curved, 7 ft. by 10 ft. panel, with cocured hat-stiffeners and cobonded J-frames. In building to this scale, process developments were achieved for tow-placed skins, drape formed stiffeners, braided/RTM frames, and panel cure tooling. Over 700 tests and supporting analyses have been performed for crown material and design evaluation, including structural tests that demonstrated limit load requirements for severed stiffener/skin failsafe damage conditions. Analysis of tests for tow-placed hybrid laminates with large damage indicates a tensile fracture toughness that is higher than that observed for advanced aluminum alloys. Additional recent ATCAS achievements include crown supporting technology, keel quadrant design evaluation, and

  16. Radiation processing of thermoplastic starch by blending aromatic additives: Effect of blend composition and radiation parameters

    NASA Astrophysics Data System (ADS)

    Khandal, Dhriti; Mikus, Pierre-Yves; Dole, Patrice; Coqueret, Xavier

    2013-03-01

    This paper reports on the effects of electron beam (EB) irradiation on poly α-1,4-glucose oligomers (maltodextrins) in the presence of water and of various aromatic additives, as model blends for gaining a better understanding at a molecular level the modifications occurring in amorphous starch-lignin blends submitted to ionizing irradiation for improving the properties of this type of bio-based thermoplastic material. A series of aromatic compounds, namely p-methoxy benzyl alcohol, benzene dimethanol, cinnamyl alcohol and some related carboxylic acids namely cinnamic acid, coumaric acid, and ferulic acid, was thus studied for assessing the ability of each additive to counteract chain scission of the polysaccharide and induce interchain covalent linkages. Gel formation in EB-irradiated blends comprising of maltodextrin was shown to be dependent on three main factors: the type of aromatic additive, presence of glycerol, and irradiation dose. The chain scission versus grafting phenomenon as a function of blend composition and dose were studied using Size Exclusion Chromatography by determining the changes in molecular weight distribution (MWD) from Refractive Index (RI) chromatograms and the presence of aromatic grafts onto the maltodextrin chains from UV chromatograms. The occurrence of crosslinking was quantified by gel fraction measurements allowing for ranking the cross-linking efficiency of the additives. When applying the method to destructurized starch blends, gel formation was also shown to be strongly affected by the moisture content of the sample submitted to irradiation. The results demonstrate the possibility to tune the reactivity of tailored blend for minimizing chain degradation and control the degree of cross-linking.

  17. Method of forming composite fiber blends

    NASA Technical Reports Server (NTRS)

    McMahon, Paul E. (Inventor); Chung, Tai-Shung (Inventor); Ying, Lincoln (Inventor)

    1989-01-01

    The instant invention involves a process used in preparing fibrous tows which may be formed into polymeric plastic composites. The process involves the steps of (a) forming a tow of strong filamentary materials; (b) forming a thermoplastic polymeric fiber; (c) intermixing the two tows; and (d) withdrawing the intermixed tow for further use.

  18. Characterization of Combinatorial Polymer Blend Composition Gradients by FTIR Microspectroscopy

    PubMed Central

    Eidelman, Naomi; Simon, Carl G.

    2004-01-01

    A new FTIR technique was developed for characterizing thin polymer films used in combinatorial materials science. Fourier transform infrared microspectroscopy mapping technique was used to determine the composition of polymer blend gradients. Composition gradients were made from poly(L-lactic acid) (PLLA) and poly(D,L-lactic acid) (PDLLA) in the form of thin films (6 cm × 2 cm) deposited on IR reflective substrates. Three composition gradient films were prepared and characterized. The results demonstrate the reproducibility and feasibility of a new, high-throughput approach for preparing and characterizing polymer composition gradients. The combination of composition gradient film technology and automated nondestructive FTIR microspectroscopy makes it possible to rapidly and quantitatively characterize polymer composition gradients for use in combinatorial materials science. PMID:27366606

  19. Molecular composites and polymer blends containing ionic polymers

    NASA Astrophysics Data System (ADS)

    Tsou, Li-Chun

    1997-11-01

    Polymer blends are generally immiscible due to the unfavorable thermodynamics of mixing. By the introduction of ion-dipole interaction, mechanical properties of the PPTA anion/polar polymers (such as PVP, PEO and PPrO) molecular composites have been investigated in relation to their miscibility and microstructural morphology. Optical clarity observed in the glassy PPTA anion/PVP system suggest the presence of miscibility, since the refractive indices between the two components are quite different, nsb{PVP} = 1.509 and nsb{PPTA} = 1.644. In general, the difference greater than 0.01 is sufficient to make blends opaque. DSC measurements, showing a composition dependent Tsb{g} and a melting temperature depression, also indicate the miscibility achieved at the molecular level, about 50-100 A. By using the Hoffman-Weeks plot, a negative Flory-Huggins interaction parameter, chi = -1.10, is obtained for the PPTA anion/PEO molecular composites. An irregular spherulitic pattern and a reduced crystal size suggest that PPTA anion is intimately mixed with the amorphous PEO, both inter- and intra-spherulitically. Molecular composites exhibit not only an enhanced tensile strength and modulus, but also a greater fracture toughness, Ksb{IC}, e.g., an 80% increase at a 2 wt% PPTA anion addition. An enhanced tensile strength associated with a reduced crystallinity suggests that PPTA anion is the major contributor to the superior tensile properties instead of the crystalline phase. Upon addition of PPTA anion to PPrO, a slower relaxation rate and a better thermal stability are observed. Significant enhancement is found when the monovalent K salt is replaced with a divalent Ca salt. The molecular reinforcement achieved via ion-dipole interactions is more effective than the rigid filler effect obtained in the non-ionic PPTA/PPrO blend: e.g., a modulus enhancement of 814% vs. 286%, as compared with the value for PPrO. Two phase systems with microphase separation are developed since many

  20. Advanced composite materials and processes

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.

    1991-01-01

    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  1. Advanced organic composite materials for aircraft structures: Future program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  2. Effects of blended-cement paste chemical composition changes on some strength gains of blended-mortars.

    PubMed

    Kirgiz, Mehmet Serkan

    2014-01-01

    Effects of chemical compositions changes of blended-cement pastes (BCPCCC) on some strength gains of blended cement mortars (BCMSG) were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC) were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP) or 6%, 20%, 21%, and 35% brick powder (BP) for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min). Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC) and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS) and flexural strengths (FS) of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2), sodium oxide (Na2O), and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2) at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM) in comparison with reference mortars (RM) at whole cure days as MP up to 6% or BP up to 35% was blended for cement. PMID:24587737

  3. Effects of Blended-Cement Paste Chemical Composition Changes on Some Strength Gains of Blended-Mortars

    PubMed Central

    Kirgiz, Mehmet Serkan

    2014-01-01

    Effects of chemical compositions changes of blended-cement pastes (BCPCCC) on some strength gains of blended cement mortars (BCMSG) were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC) were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP) or 6%, 20%, 21%, and 35% brick powder (BP) for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min). Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC) and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS) and flexural strengths (FS) of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2), sodium oxide (Na2O), and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2) at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM) in comparison with reference mortars (RM) at whole cure days as MP up to 6% or BP up to 35% was blended for cement. PMID:24587737

  4. Electrically Conductive Multiphase Polymer Blend Carbon-Based Composites

    NASA Astrophysics Data System (ADS)

    Brigandi, Paul James

    The use of multiphase polymer blends provides unique morphologies and properties to reduce the percolation concentration and increase conductivity of carbon-based polymer composites. These systems offer improved conductivity, temperature stability and selective distribution of the conductive filler through unique morphologies at significantly lower conductive filler concentration. In this work, the kinetic and thermodynamic effects on a series of multiphase conductive polymer composites were investigated. The polymer blend phase morphology, filler distribution, electrical conductivity, and rheological properties of CB-filled PP/PMMA/EAA conductive polymer composites were determined. Thermodynamic and kinetic parameters were found to influence the morphology development and final composite properties. The morphology and CB distribution were found to be kinetically driven when annealed for a short period of time following the shear-intensive mixing process, whereas the three-phase polymer blend morphology is driven by thermodynamics when given sufficient time under high temperature annealing conditions in the melt state. At short annealing times, the CB distribution was influenced by the compounding sequence where the CB was added after being premixed with one of the polymer phases or directly added to the three phase polymer melt, but again was thermodynamically driven at longer annealing times with the CB migrating to the EAA phase. The resistivity was found to decrease by a statistically significant amount to similar levels for all of the composite systems with increasing annealing time, providing evidence of gradual phase coalescence to a tri-continuous morphology and CB migration. The addition of CB via the PP and EAA masterbatch results in significantly faster percolation and lower resistivity compared to when added direct to the system during compounding after 30 minutes annealing by a statistically significant amount. Dynamic oscillatory shear rheology using

  5. Advanced technology composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Walker, Thomas H.

    1991-01-01

    Work performed during the 25th month on NAS1-18889, Advanced Technology Composite Aircraft Structures, is summarized. The main objective of this program is to develop an integrated technology and demonstrate a confidence level that permits the cost- and weight-effective use of advanced composite materials in primary structures of future aircraft with the emphasis on pressurized fuselages. The period from 1-31 May 1991 is covered.

  6. Advances in Composites Technology

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Dexter, H. B.

    1985-01-01

    A significant level of research is currently focused on the development of tough resins and high strain fibers in an effort to gain improved damage tolerance. Moderate success has been achieved with the development of new resins such as PEEK and additional improvements look promising with new thermoplastic resins. Development of innovative material forms such as 2-D and 3-D woven fabrics and braided structural subelements is also expected to improve damage tolerance and durability of composite hardware. The new thrust in composites is to develop low cost manufacturing and design concepts to lower the cost of composite hardware. Processes being examined include automated material placement, filament winding, pultrusion, and thermoforming. The factory of the future will likely incorporate extensive automation in all aspects of manufacturing composite components.

  7. Effect of Composition and Chain Length on χ Parameter of Polyolefin Blends: A Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Khare, Rajesh; Ravichandran, Ashwin; Chen, Chau-Chyun

    Polymer blends exhibit complex phase behavior which is governed by several factors including temperature, composition and molecular weight of components. The thermodynamics of polymer blends is commonly described using the χ parameter. While variety of experimental studies exist on identifying the factors affecting the χ parameter, a detailed molecular scale understanding of these is a topic of current research. We have studied the effect of blend composition and chain length on χ parameter values for two model polyolefin blends. The blends studied are: polyisobutylene (PIB)/polybutadiene (PBD) and polyethylene (PE)/atactic polypropylene (aPP). Molecular dynamics simulations in combination with the integral equation theory formalism proposed by Schweizer and Curro [Journal of Chemical Physics, 91, 5059 (1989)] are used to determine the χ parameter for these systems and thereby study the effect of blend composition and chain length. The resulting χ parameter values are explained in terms of the molecular structure of these polymeric systems.

  8. Process for preparing composite articles from composite fiber blends

    NASA Technical Reports Server (NTRS)

    McMahon, Paul E. (Inventor); Chung, Tai-Shung (Inventor); Ying, Lincoln (Inventor)

    1989-01-01

    A composite article is prepared by forming a continuous tow of continuous carbon fibers, forming a continuous tow of thermoplastic polymer fibers, uniformly and continuously spreading the thermoplastic polymer fibers to a selected width, uniformly and continuously spreading the carbon fiber tow to a width that is essentially the same as the selected width for the thermoplastic polymer fiber tow, intermixing the tows intimately, uniformly and continuously, in a relatively tension-free state, continuously withdrawing the intermixed tow and applying the tow to a mold and heating the tow.

  9. ISAAC Advanced Composites Research Testbed

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stewart, Brian K.; Martin, Robert A.

    2014-01-01

    The NASA Langley Research Center is acquiring a state-of-art composites fabrication capability to support the Center's advanced research and technology mission. The system introduced in this paper is named ISAAC (Integrated Structural Assembly of Advanced Composites). The initial operational capability of ISAAC is automated fiber placement, built around a commercial system from Electroimpact, Inc. that consists of a multi-degree of freedom robot platform, a tool changer mechanism, and a purpose-built fiber placement end effector. Examples are presented of the advanced materials, structures, structural concepts, fabrication processes and technology development that may be enabled using the ISAAC system. The fiber placement end effector may be used directly or with appropriate modifications for these studies, or other end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.

  10. Effect of blend composition on the morphology and mechanical properties of microfibrillar composites

    NASA Astrophysics Data System (ADS)

    Evstatiev, M.; Fakirov, S.; Friedrich, K.

    1995-03-01

    Various blend compositions of polyethyleneterphthalate (PET) and polyamide 6 (PA 6) were used to prepare microfibrillar composites (MFC's) in form of thin ribbons. Steps for preparation were: (1) blending, (2) extrusion, (3) fibrillation, and (4) isotropization. The latter step was performed at a temperature condition above the melting temperature of PA 6, but below that of PET. In this way PET microfibrils remained as reinforcing elements in the PA 6-matrix. Depending on the actual PET/PA 6 ratio, various fibril arrangements in terms of fibril length and uniformity of fibril distribution could be achieved. A reasonable improvement in mechanical properties was reached already at 30 wt. % PET in PA 6 which was in terms of tensile strength higher than a 30 wt. % short glass fiber filled PA 6 system.

  11. Study of rheological, viscoelastic and vulcanization behavior of sponge EPDM/NR blended nano- composites

    NASA Astrophysics Data System (ADS)

    Arshad Bashir, M.; Shahid, M.; Ahmed, Riaz; Yahya, A. G.

    2014-06-01

    In this research paper the effect of blending ratio of natural rubber (NR) with Ethylene Propylene Diene Monomer (EPDM) were investigated. Different samples of EPDM/NR ratio were prepared to study the variation of NR in EPDM on rheology, curing characteristics, tangent δ, and viscosity variation during vulcanization of sponge nano composites.The main aim of present research is to develop elastomeric based sponge composites with the blending ratio of base elastomers along with the carbon nano particles for high energy absorbing and damping applications. The curing characteristics, rheology and viscoelastic nature of the composite is remarkably influenced with the progressive blending ratio of the base elastomeric matrix.

  12. Low Temperature Fatigue Properties of Advanced Cyanate-Ester Blends after Reactor Irradiation

    NASA Astrophysics Data System (ADS)

    Bittner-Rohrhofer, K.; Humer, K.; Weber, H. W.; Fabian, P. E.; Munshi, N. A.; Feucht, S. W.

    2004-06-01

    Fiber reinforced composites offer a broad spectrum of applications due to their excellent material performance under demanding conditions. Therefore, these materials will also be employed as insulation systems for the superconducting magnets in fusion devices. However, high doses of gamma and neutron irradiation lead to a drastic damage mostly of the organic matrices, such as pure epoxy resins. An improvement of these composites with regard to higher radiation resistance is of special importance to ensure stable coil operation over the plant lifetime. Recently, a series of advanced S2-glass fiber composites was developed, which consist of novel cyanate ester (CE) blends. All systems were irradiated in the TRIGA reactor (Vienna, Austria) to a neutron fluence of 1×1021 and 1×1022 m-2 (E>0.1 MeV), in order to assess the radiation hardness of their ultimate tensile strength. Furthermore, the material performance under cyclic load was investigated by tension-tension fatigue measurements at 77 K in view of the pulsed ITER operating conditions.

  13. Low Temperature Fatigue Properties of Advanced Cyanate-Ester Blends after Reactor Irradiation

    SciTech Connect

    Bittner-Rohrhofer, K.; Humer, K.; Weber, H.W.; Fabian, P.E.; Munshi, N.A.; Feucht, S.W.

    2004-06-28

    Fiber reinforced composites offer a broad spectrum of applications due to their excellent material performance under demanding conditions. Therefore, these materials will also be employed as insulation systems for the superconducting magnets in fusion devices. However, high doses of gamma and neutron irradiation lead to a drastic damage mostly of the organic matrices, such as pure epoxy resins. An improvement of these composites with regard to higher radiation resistance is of special importance to ensure stable coil operation over the plant lifetime. Recently, a series of advanced S2-glass fiber composites was developed, which consist of novel cyanate ester (CE) blends. All systems were irradiated in the TRIGA reactor (Vienna, Austria) to a neutron fluence of 1x1021 and 1x1022 m-2 (E>0.1 MeV), in order to assess the radiation hardness of their ultimate tensile strength. Furthermore, the material performance under cyclic load was investigated by tension-tension fatigue measurements at 77 K in view of the pulsed ITER operating conditions.

  14. Predicting the composition of red wine blends using an array of multicomponent Peptide-based sensors.

    PubMed

    Ghanem, Eman; Hopfer, Helene; Navarro, Andrea; Ritzer, Maxwell S; Mahmood, Lina; Fredell, Morgan; Cubley, Ashley; Bolen, Jessica; Fattah, Rabia; Teasdale, Katherine; Lieu, Linh; Chua, Tedmund; Marini, Federico; Heymann, Hildegarde; Anslyn, Eric V

    2015-01-01

    Differential sensing using synthetic receptors as mimics of the mammalian senses of taste and smell is a powerful approach for the analysis of complex mixtures. Herein, we report on the effectiveness of a cross-reactive, supramolecular, peptide-based sensing array in differentiating and predicting the composition of red wine blends. Fifteen blends of Cabernet Sauvignon, Merlot and Cabernet Franc, in addition to the mono varietals, were used in this investigation. Linear Discriminant Analysis (LDA) showed a clear differentiation of blends based on tannin concentration and composition where certain mono varietals like Cabernet Sauvignon seemed to contribute less to the overall characteristics of the blend. Partial Least Squares (PLS) Regression and cross validation were used to build a predictive model for the responses of the receptors to eleven binary blends and the three mono varietals. The optimized model was later used to predict the percentage of each mono varietal in an independent test set composted of four tri-blends with a 15% average error. A partial least square regression model using the mouth-feel and taste descriptive sensory attributes of the wine blends revealed a strong correlation of the receptors to perceived astringency, which is indicative of selective binding to polyphenols in wine. PMID:26007178

  15. Component morphology, size, and compositional impact on pharmaceutical powder blend flowability

    NASA Astrophysics Data System (ADS)

    Goldfarb, David; Nakagawa, Hirotaka; Conway, Stephen

    2014-11-01

    Through analysis of particle morphology, particle size, and compositional influences, we present experimental case studies revealing unexpected transitions in flowability and cohesion of pharmaceutical powder blends. We explore interactions between the needle-like API (Active Pharmaceutical Ingredient) and the more spherical remaining components (excipients) in the blend to explain these transitions, and optimal concentrations are identified. A range of particle sizes, aspect ratios (for API), and compositions were examined. Surprisingly, under certain conditions, a blend with a low API concentration exhibits less cohesive flowability properties than a placebo blend containing no API. Effective volume and coordination number models are tested by investigation of particle geometry, particle contact, and Van der Waals force factors. These results should translate both to the improved understanding of mixed component morphology systems and to a novel approach towards pharmaceutical product formulation optimization.

  16. Changes in Slagging Behaviour with Composition for Blended Coals

    NASA Astrophysics Data System (ADS)

    Manton, Nicholas J.; Williamson, Jim; Riley, Gerry S.

    Blends of UK coals with either American or South African coals show non-linear behaviour, with enhanced slagging propensity frequently observed with relatively small additions of an overseas coal to a UK coal. The most pronounced increases were observed when a UK coal, high in Fe2O3, was blended with a coal high in CaO. The ability of a Ca-aluminosilicate melt to increase the rate of dissolution of free pyrite from a UK coal would appear to be a significant feature in accounting for the observed phenomena.

  17. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.

  18. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  19. Mechanical properties of melt-processed polymer blend of amorphous corn flour composite filler and styrene-butadiene rubber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The corn flour composite fillers were prepared by blending corn flour with rubber latex, dried, and cryogenically ground into powders, which were then melt-blended with rubber polymers in an internal mixer to form composites with enhanced mechanical properties. The composites prepared with melt-blen...

  20. Preparing composite materials from matrices of processable aromatic polyimide thermoplastic blends

    NASA Technical Reports Server (NTRS)

    Johnston, Norman J. (Inventor); St.clair, Terry L. (Inventor); Baucom, Robert M. (Inventor); Gleason, John R. (Inventor)

    1991-01-01

    Composite materials with matrices of tough, thermoplastic aromatic polyimides are obtained by blending semi-crystalline polyimide powders with polyamic acid solutions to form slurries, which are used in turn to prepare prepregs, the consolidation of which into finished composites is characterized by excellent melt flow during processing.

  1. Advanced Technology Composite Fuselage - Manufacturing

    NASA Technical Reports Server (NTRS)

    Wilden, K. S.; Harris, C. G.; Flynn, B. W.; Gessel, M. G.; Scholz, D. B.; Stawski, S.; Winston, V.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program is to develop the technology required for cost-and weight-efficient use of composite materials in transport fuselage structure. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements, and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of stringer-stiffened and sandwich skin panels. Circumferential and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant-section stiffening elements. Drape forming was chosen for stringers and other stiffening elements cocured to skin structures. Significant process development efforts included AFP, braiding, RTM, autoclave cure, and core blanket fabrication for both sandwich and stiffened-skin structure. Outer-mold-line and inner-mold-line tooling was developed for sandwich structures and stiffened-skin structure. The effect of design details, process control and tool design on repeatable, dimensionally stable, structure for low cost barrel assembly was assessed. Subcomponent panels representative of crown, keel, and side quadrant panels were fabricated to assess scale-up effects and manufacturing anomalies for full-scale structures. Manufacturing database including time studies, part quality, and manufacturing plans were generated to support the development of designs and analytical models to access cost, structural performance, and dimensional tolerance.

  2. Combustion behaviors of a compression-ignition engine fueled with diesel/methanol blends under various fuel delivery advance angles.

    PubMed

    Huang, Zuohua; Lu, Hongbing; Jiang, Deming; Zeng, Ke; Liu, Bing; Zhang, Junqiang; Wang, Xibin

    2004-12-01

    A stabilized diesel/methanol blend was described and the basic combustion behaviors based on the cylinder pressure analysis was conducted in a compression-ignition engine. The study showed that increasing methanol mass fraction of the diesel/methanol blends would increase the heat release rate in the premixed burning phase and shorten the combustion duration of the diffusive burning phase. The ignition delay increased with the advancing of the fuel delivery advance angle for both the diesel fuel and the diesel/methanol blends. For a specific fuel delivery advance angle, the ignition delay increased with the increase of the methanol mass fraction (oxygen mass fraction) in the fuel blends and the behaviors were more obvious at low engine load and/or high engine speed. The rapid burn duration and the total combustion duration increased with the advancing of the fuel delivery advance angle. The centre of the heat release curve was close to the top-dead-centre with the advancing of the fuel delivery advance angle. Maximum cylinder gas pressure increased with the advancing of the fuel delivery advance angle, and the maximum cylinder gas pressure of the diesel/methanol blends gave a higher value than that of the diesel fuel. The maximum mean gas temperature remained almost unchanged or had a slight increase with the advancing of the fuel delivery advance angle, and it only slightly increased for the diesel/methanol blends compared to that of the diesel fuel. The maximum rate of pressure rise and the maximum rate of heat release increased with the advancing of the fuel delivery advance angle of the diesel/methanol blends and the value was highest for the diesel/methanol blends. PMID:15288277

  3. Fabrication and characterization of polymer blends and composites derived from biopolymers

    NASA Astrophysics Data System (ADS)

    Sharma, Suraj

    This research focuses on fabricating blends and composites from natural polymers especially from proteins and natural epoxy, and describing the properties of plastics made from them. Specifically, plastic samples from partially denatured feathermeal and bloodmeal proteins, derived from the animal co-products (rendering) industry, were successfully produced through a compression molding process. The modulus (stiffness) of the material obtained was found to be comparable with that of commercial synthetic materials, such as polystyrene, but was found to have lower toughness characteristics, which is a common phenomenon among plastics produced from animal and plant proteins. Therefore, this study explored blending methods for improving the toughness. Plastic forming conditions for undenatured animal proteins such as chicken egg whites albumin and whey, used as a model, were established to prepare plastics from their blends with animal co-product proteins. The resultant plastic samples from these biomacromolecular blends demonstrated improved mechanical properties that were also compared with the established theoretical models known for polymer blends and composites. Moreover, plastics from albumin of chicken egg whites and human serum have demonstrated their potential in medical applications that require antibacterial properties. Another natural polymer vegetable oil-based epoxy, especially epoxidized linseed oil, showed significant potential to replace petroleum-derived resins for use as a matrix for composites in structural applications. Moreover, the research showed the benefits of ultrasonic curing, which can help in preparing the out-of-autoclave composites.

  4. Advances in the engineering science of immiscible polymer blends: A powder route for delicate polymer precursors and a highly renewable polyamide/terephthalate blend system

    NASA Astrophysics Data System (ADS)

    Giancola, Giorgiana

    Powder processing of thermoplastic polymer composites is an effective way to achieve a high level of component homogenization in raw blends prior to melt processing, thus reducing the thermal and shear stress on the components. Polymer blends can be prepared that would otherwise not be possible due to thermodynamic incompatibility. Evaluation of this concept was conducted by processing PMMA and HDPE micron sized powders which were characterized using DSC and rheology. Optical microscopy and SEM, showed that high-quality, fine domain sized blends can be made by the compression molding process. Silica marker spheres were used to qualitatively assess the level dispersive mixing. EDS chemical analysis was effective in providing image contrast between PMMA and HDPE based on the carbonyl and ester oxygen. EDS image maps, combined with secondary electron images show that compression molding of blended powder precursors produces composites of comparable homogeneity and domain size as extrusion processing. FTIR proved valuable when assessing the intimacy of the constituents at the interface of the immiscible domains. The formation of an in-situ, PMMA nano-network structure resulting from solvent extraction and redeposition using DMF was uniquely found on the surface of these immiscible polymer blends. This work has shown that powder processing of polymers is an effective means to melt processed fragile polymers to high quality blends. Recently, efforts towards the development of sustainable materials have evolved due in part to the increase in price and limited supply of crude oil. Immiscible polymer blending is a paradigm that enables synergistic material performance in certain instances where the composite properties are superior to the sum of the constituents. The addition of PA6,10 to PTT offers an opportunity to increase the bio-based content of PTT while simultaneously maintaining or improving mechanical properties. PA6,10 and PTT are immiscible polymers that can be

  5. Rheology and mechanics of polyether(ether)ketone - Polyetherimide blends for composites in aeronautics

    NASA Astrophysics Data System (ADS)

    Rosa, Mattia; Grassia, Luigi; D'Amore, Alberto; Carotenuto, Claudia; Minale, Mario

    2016-05-01

    In the present work rheological and mechanical properties of PEEK-PEI blends were investigated. Besides the pure components, blends with PEI concentration ranging from 10% to 90% in mass were considered. Oscillatory experiments in controlled atmosphere were conducted at different frequencies and temperatures. The frequency responses at different temperatures allowed using the TTS principle to reconstruct the master curves. All systems showed a shear thinning behavior and a flux index increasing with the percentage of PEI. The zero-shear viscosity was computed with the implementation of the Cross model and showed a decreasing behavior with the percentage of PEI. The relaxation time estimated from the crossover value of storage and loss moduli didn't change significantly with blend composition, suggesting the non-sensibility of the elasticity of the system. Lastly, tensile tests were executed to investigate the dependence of Young modulus in the different blends.

  6. Blending Technology and Face-to-Face: Advanced Students' Choices

    ERIC Educational Resources Information Center

    Trinder, Ruth

    2016-01-01

    It has been suggested that current research in computer-assisted language learning (CALL) should seek to understand the conditions and circumstances that govern students' use of technology (Steel & Levy, 2013). This paper attempts to identify critical factors accounting for student choices, first, by investigating advanced learners' reported…

  7. 3D composites based on the blends of chitosan and collagen with the addition of hyaluronic acid.

    PubMed

    Sionkowska, Alina; Kaczmarek, Beata; Lewandowska, Katarzyna; Grabska, Sylwia; Pokrywczyńska, Marta; Kloskowski, Tomasz; Drewa, Tomasz

    2016-08-01

    3D porous composites based on blends of chitosan, collagen and hyaluronic acid were obtained through the lyophilization process. Mechanical properties, swelling behavior and thermal stability of the blends were studied. Moreover, SEM images were taken and the structure of the blends was studied. Biological properties of the materials obtained were investigated by analyzing of proliferation rate of fibroblast cells incubated with biomaterial extract using MTT assay (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide). The results showed that the properties of 3D composites based on the blends of chitosan and collagen were altered after the addition 1%, 2% and 5% of hyaluronic acid. Mechanical properties and thermal stability of chitosan/collagen blends were improved in the presence of hyaluronic acid in the composite. New 3D materials based on the blends of chitosan, collagen and hyaluronic acid were non-toxic and did not significantly affect cell morphology. PMID:27151670

  8. Thermal properties of hemp fiber filled polyamide 1010 biomass composites and the blend of these composites and polyamide 11 elastomer

    NASA Astrophysics Data System (ADS)

    Nishitani, Yosuke; Mukaida, Jun; Yamanaka, Toshiyuki; Kajiyama, Tetsuto; Kitano, Takeshi

    2016-03-01

    The aim of this study is to improve the performance of all inedible plants-derived materials for new engineering materials such as structural materials and tribomaterials. Thermal properties of hemp fiber filled polyamide 1010 biomass composites and the blend of these composites and plants-derived TPE were investigated experimentally. These biomass composites were extruded by a twin screw extruder and compression or injection molded. Thermal properties such as dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) of these biomass composites were evaluated. It was found that the addition of HF and the blend of bio-TPE with PA1010 have strong influence on the thermal properties such as DMA, TGA and DSC. In particular, HF has a good effect for the improvement of the thermal and mechanical properties. These properties of HF/PA1010/PA11E biomass composites are better than those of HF/PA1010/TPU ones.

  9. Enzymatic degradation behavior of nanoclay reinforced biodegradable PLA/PBSA blend composites.

    PubMed

    Malwela, Thomas; Ray, Suprakas Sinha

    2015-01-01

    Films of a biodegradable PLA/PBSA blend and blend-composites containing 2wt% of C20A, C30B and MEE were prepared by solvent casting and spin coating. The films were incubated in vials containing Tris-HCl buffer with Proteinase K, and their weight losses were measured after enzymatic degradation. The surface morphology before and after degradation tests was studied by SEM and in situ AFM. The results showed that neat PLA had a lower percentage weight loss than neat PBSA, whereas blending them resulted in an increased weight loss. The incorporation of C20A into the as-prepared blend accelerated the degradation rate, whereas C30B and MEE decelerated the degradation rate. Annealing at 70°C reduced the degradation rate of the blend, and the presence of nanoclays further reduced the degradation rates. Annealing at 120°C dramatically decelerated the degradation of the blend, whereas the incorporation of nanoclays accelerated the degradations rates. The enhancement of the degradation rates in the presence of nanoclays indicated that the degradation rates were mainly controlled by the PLA matrix. Thin films were also cast onto a silicon substrate using a spin coater, and enzymatic degradation on the completely crystalline surfaces revealed that enzymatic attack occurred by pitting and surface erosion of the thin films. PMID:25797405

  10. Composition dependence of the interaction parameter in isotopic polymer blends

    SciTech Connect

    Londono, J.D.; Narten, A.H.; Wignall, G.D. ); Honnell, K.G.; Hsieh, E.T.; Johnson, T.W. . Research and Development); Bates, F.S. . Dept. of Chemical Engineering)

    1994-05-09

    Isotopic polymer mixtures lack the structural asymmetries and specific interactions encountered in blends of chemically distinct species. In this respect, they form ideal model systems for exploring the limitations of the widely-used Flory-Huggins (FH) lattice model and for testing and improving new theories of polymer thermodynamics. The FH interaction parameter between deuterium-labeled and unlabeled segments of the same species ([sub [chi]HD]) should in principle be independent of concentration ([phi]), through previous small-angle neutron scattering (SANS) experiments have shown that it exhibits a minimum at [phi] [approximately] 0.5 for poly(vinylethylene) (PVE) and poly(ethylethylene) (PEE). The authors report new data on polyethylene (PE) as a function of molecular weight, temperature (T), and [phi], which show qualitatively similar behavior. However, measurements on [sub [chi]HD]([phi]) for polystyrene (PS) show a maximum at [phi] [approximately]0.5, in contrast to PVE, PEE, and PE. Reproducing the concentration dependence of [phi] in different model isotopic systems should serve as a sensitive test of the way in which theories of polymer thermodynamics can account for the details of the local packing and also the effects of noncombinatorial entropy, which appear to be the main cause of the variation of [sub [chi]HD]([phi]) for PE. These data also serve to quantify the effects of isotopic substitution in SANS experiments on polyolefin blends and thus lay the ground work for definitive studies of the compatibility of branched and linear polyethylenes.

  11. Environmental effects on advanced composites

    NASA Technical Reports Server (NTRS)

    Unnam, J.; Houska, C. R.; Naidu, S. V. N.

    1979-01-01

    The development of titanium matrix composites for elevated temperature applications was investigated. General solutions for treating diffusion in multiphase multicomponent systems were studied. Graphite polyimide composites were characterized with respect to mechanical property degradation by moisture.

  12. Effect of Blend Composition on Binary Organic Solar Cells Using a Low Band Gap Polymer.

    PubMed

    Wright, Matthew; Lin, Rui; Tayebjee, Murad J Y; Yang, Xiaohan; Veettil, Binesh Puthen; Wen, Xiaoming; Uddin, Ashraf

    2015-03-01

    This report investigates the influence of the solution blend composition of binary bulk heterojunction organic solar cells composed of poly(2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H- cyclopenta[2,1-b:3,4-b'dithiophene-2,6-diy

  13. Custom Machines Advance Composite Manufacturing

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Here is a brief list of materials that NASA will not be using to construct spacecraft: wood, adobe, fiberglass, bone. While it might be obvious why these materials would not make for safe space travel, they do share a common characteristic with materials that may well be the future foundation of spacecraft design: They all are composites. Formed of two or more unlike materials - such as cellulose and lignin in the case of wood, or glass fibers and plastic resin in the case of fiberglass-composites provide enhanced mechanical and physical properties through the combination of their constituent materials. For this reason, composites are used in everything from buildings, bathtubs, and countertops to boats, racecars, and sports equipment. NASA continually works to develop new materials to enable future space missions - lighter, less expensive materials that can still withstand the extreme demands of space travel. Composites such as carbon fiber materials offer promising solutions in this regard, providing strength and stiffness comparable to metals like aluminum but with less weight, allowing for benefits like better fuel efficiency and simpler propulsion system design. Composites can also be made fatigue tolerant and thermally stable - useful in space where temperatures can swing hundreds of degrees. NASA has recently explored the use of composites for aerospace applications through projects like the Composite Crew Module (CCM), a composite-constructed version of the aluminum-lithium Multipurpose Crew Capsule. The CCM was designed to give NASA engineers a chance to gain valuable experience developing and testing composite aerospace structures.

  14. Thermal properties of composites with bismaleimide-vinyl poly(styrylpyridine) blends

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.

    1988-01-01

    Thermal properties, flammability, and selected mechanical properties of eight different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement were investigated and compared with the properties of an epoxy composite, MXB 7203. The resin matrices included XU71775/H795, a blend of vinyl poly(styrylpyridine) and bismaleimide; H795, a bismaleimide; Cycom 6162, a phenolic; and PSP 6022M, a poly(styrylpyridine). The graphite fiber was AS-4 used in the form of tape or fabric. It was found that the XU71775/H795 blend with the graphite tape was the optimum design giving the lowest heat release rate, while the control epoxy panel exhibited the highest total heat release and heat release rates, highest smoke and CO evolution, highest mass losses, and lowest oxygen index of all the composites tested.

  15. Thermal properties of composites with bismaleimide-vinyl poly(styrylpyridine) blends

    SciTech Connect

    Kourtides, D.A.

    1988-06-01

    Thermal properties, flammability, and selected mechanical properties of eight different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement were investigated and compared with the properties of an epoxy composite, MXB 7203. The resin matrices included XU71775/H795, a blend of vinyl poly(styrylpyridine) and bismaleimide; H795, a bismaleimide; Cycom 6162, a phenolic; and PSP 6022M, a poly(styrylpyridine). The graphite fiber was AS-4 used in the form of tape or fabric. It was found that the XU71775/H795 blend with the graphite tape was the optimum design giving the lowest heat release rate, while the control epoxy panel exhibited the highest total heat release and heat release rates, highest smoke and CO evolution, highest mass losses, and lowest oxygen index of all the composites tested. 16 references.

  16. [Quantitative analysis of surface composition of polypropylene blends using attenuated total reflectance FTIR spectroscopy].

    PubMed

    Chen, Han-jia; Zhu, Ya-fei; Zhang, Yi; Xu, Jia-rui

    2008-08-01

    The surface composition and structure of solid organic polymers influence many of their properties and applications. Oligomers such as poly(ethylene glycol) (PEG), poly(methyl methacrylate) (PMMA) poly(butyl methacrylate) (PBMA) and their graft copolymers of polybutadiene and polypropylene were used as the macromolecular surface modifiers of polypropylene. The compositions on surface and in bulk of the polypropylene (PP) blends were determined quantitatively using attenuated total reflectance FTIR spectroscopic (ATR-FTIR) technique with a variable-angle multiple-reflection ATR accessory and FTIR measurements, respectively. By validating by Lambert-Beer law, 1103 and 1733 cm(-1) can be used to represent modifiers characteristic absorbance band to determine quantitatively the surface composition of modifiers including poly(ethylene glycol) and carbonyl segment in PP blends, respectively. The determination error can be effectively eliminated by calibrating wavelength and using absorption peak area ratio as the calibrating basis for the quantitative analysis. To minimize the effect of contact between the polymer film and the internal reflection element on the results of absolute absorbance, the technique of "band ratioing" was developed, and it was testified that the error of the peak area ratios of interest can be reduced to 5% or below, which was suitable for ATR-FTIR used as a determining quantitative tool for surface composition. The working curves were then established and used to calculate the composition of the responding functional groups in the film surface of the PP blends. The depth distribution of modifiers on the surface of blend films also can be determined by changing the incident angle of interest on the basis of the equation of the depth of penetration of the excursion wave in ATR spectra. The results indicated that ATR-FTIR can be used to determine quantitatively the surface composition and distribution of modifiers with reproducible and reliable

  17. Research priorities for advanced fibrous composites

    NASA Technical Reports Server (NTRS)

    Baumann, K. J.; Swedlow, J. L.

    1981-01-01

    Priorities for research in advanced laminated fibrous composite materials are presented. Supporting evidence is presented in two bodies, including a general literature survey and a survey of aerospace composite hardware and service experience. Both surveys were undertaken during 1977-1979. Specific results and conclusions indicate that a significant portion of contemporary published research diverges from recommended priorites.

  18. DGEBF epoxy blends for use in the resin impregnation of extremely large composite parts

    SciTech Connect

    Madhukar, M. S.; Martovetsky, N. N.

    2015-01-16

    Large superconducting electromagnets used in fusion reactors utilize a large amount of glass/epoxy composite for electrical insulation and mechanical and thermal strengths. Moreover, the manufacture of these magnets involves wrapping each superconducting cable bundle with dry glass cloth followed by the vacuum-assisted resin transfer molding of the entire magnet. Due to their enormous size (more than 100 tons), it requires more than 40 h for resin impregnation and the subsequent pressure cycles to ensure complete impregnation and removal of any trapped air pockets. Diglycidyl ether of bisphenol F epoxy resin cross-linked with methyltetrahydrophthalic anhydride with an accelerator has been shown to be a good candidate for use in composite parts requiring long impregnation cycles. Viscosity, gel time, and glass transition temperature of four resin-blends of diglycidyl ether of bisphenol F resin system were monitored as a function of time and temperature with an objective to find the blend that provides a working window longer than 40h at low viscosity without lowering its glass transition temperature. A resin-blend in the weight ratios of resin:hardener:accelerator=100:82:0.125 is shown to provide more than 60h at low resin viscosity while maintaining the same glass transition temperature as obtained with previously used resin-blends, based on the results.

  19. DGEBF epoxy blends for use in the resin impregnation of extremely large composite parts

    DOE PAGESBeta

    Madhukar, M. S.; Martovetsky, N. N.

    2015-01-16

    Large superconducting electromagnets used in fusion reactors utilize a large amount of glass/epoxy composite for electrical insulation and mechanical and thermal strengths. Moreover, the manufacture of these magnets involves wrapping each superconducting cable bundle with dry glass cloth followed by the vacuum-assisted resin transfer molding of the entire magnet. Due to their enormous size (more than 100 tons), it requires more than 40 h for resin impregnation and the subsequent pressure cycles to ensure complete impregnation and removal of any trapped air pockets. Diglycidyl ether of bisphenol F epoxy resin cross-linked with methyltetrahydrophthalic anhydride with an accelerator has been shownmore » to be a good candidate for use in composite parts requiring long impregnation cycles. Viscosity, gel time, and glass transition temperature of four resin-blends of diglycidyl ether of bisphenol F resin system were monitored as a function of time and temperature with an objective to find the blend that provides a working window longer than 40h at low viscosity without lowering its glass transition temperature. A resin-blend in the weight ratios of resin:hardener:accelerator=100:82:0.125 is shown to provide more than 60h at low resin viscosity while maintaining the same glass transition temperature as obtained with previously used resin-blends, based on the results.« less

  20. Thermoplastic matrix composites - LARC-TPI, polyimidesulfone and their blends

    NASA Technical Reports Server (NTRS)

    Johnston, Norman J.; St. Clair, Terry L.

    1987-01-01

    Composites were fabricated from unidirectional unsized AS-4 carbon fiber and two baseline polyimides: benzophenone dianhydride-3,3'-diaminodiphenylsulfone (PISO2) and benzophenone dianhydride-3,3'-diaminobenzophenone (LARC-TPI). In addition, each polymer solution prior to prepregging was doped with various amounts of crystalline LARC-TPI powder to enhance melt flow during press molding. The 2:1, 1:1, and 1:2 ratios of crystalline to amorphous resin, respectively, were studied in the LARC-TPI system and the 1:2 ratio in the PISO2 system. Matrix characterization, prepreg fabrication/characterization and composite fabrication and physical/mechanical properties are described. The latter include three point short beam shear and flexure, dry and wet, as well as fracture toughness properties in selected compositions.

  1. Mechanical properties of heterophase polymer blends of cryogenically fractured soy flour composite filler and poly(styrene-butadiene)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reinforcement effect of cryogenically fractured soy Flour composite filler in soft polymer was investigated in this study. Polymer composites were prepared by melt-mixing polymer and soy flour composite fillers in an internal mixer. Soy flour composite fillers were prepared by blending aqueous dis...

  2. Component Dynamics and the Corresponding Compositional Heterogeneity in Bulk and Thin Film Miscible Polymer Blends

    NASA Astrophysics Data System (ADS)

    Yang, Hengxi; Green, Peter

    2014-03-01

    Miscible polymer blends are known to be compositional heterogeneous, due to self-concentration and thermally driven compositional fluctuation. In this work we investigate the segmental dynamics of poly(vinyl methyl ether) (PVME) in miscible polymer blends of polystyrene (PS) and PVME, using broadband dielectric spectroscopy, and manifest the correspondence between the component dynamics and the compositional heterogeneity in miscible blends. A single α-relaxation is observed at high temperatures, T, obeying Vogel-Fulcher relation, whereas two separate relaxations exist at low T. One relaxation, slower and exhibiting a strong T-dependence, is associated with an average local composition with smaller PVME fraction. The other relaxation, known as α'-relaxation, is weakly T-dependent and Arrhenius-like at low T; it reflects the PVME-rich domains within the confines of glassy PS-rich domains. In PVME/PS thin films confined between aluminum (Al) substrates, an additional relaxation process, due to PVME chains that preferentially segregated to Al interfaces, emerges.

  3. Method of forming composite fiber blends and molding same

    NASA Technical Reports Server (NTRS)

    McMahon, Paul E. (Inventor); Chung, Tai-Shung (Inventor)

    1989-01-01

    The instant invention involves a process used in preparing fibrous tows which may be formed into polymeric plastic composites. The process involves the steps of (a) forming a tow of strong filamentary materials; (b) forming a thermoplastic polymeric fiber; (c) intermixing the two tows; and (d) withdrawing the intermixed tow for further use.

  4. Noise and economic characteristics of an advanced blended supersonic transport concept

    NASA Technical Reports Server (NTRS)

    Molloy, J. K.; Grantham, W. D.; Neubauer, M. J., Jr.

    1982-01-01

    Noise and economic characteristics were obtained for an advanced supersonic transport concept that utilized wing body blending, a double bypass variable cycle engine, superplastically formed and diffusion bonded titanium in both the primary and secondary structures, and an alternative interior arrangement that provides increased seating capacity. The configuration has a cruise Mach number of 2.62, provisions for 290 passengers, a mission range of 8.19 Mm (4423 n.mi.), and an average operating cruise lift drag ratio of 9.23. Advanced operating procedures, which have the potential to reduce airport community noise, were explored by using a simulator. Traded jet noise levels of 105.7 and 103.4 EPNdB were obtained by using standard and advanced takeoff operational procedures, respectively. A new method for predicting lateral attenuation was utilized in obtaining these jet noise levels.

  5. Process for preparing tows from composite fiber blends

    NASA Technical Reports Server (NTRS)

    McMahon, Paul (Inventor); Chung, Tai-Shung (Inventor); Ying, Lincoln (Inventor)

    1989-01-01

    A continuous, substantially uniform tow useful in forming composite molded articles is prepared by forming a continuous tow of continuous carbon fibers, forming a continuous tow of thermoplastic polymer fibers to a selected width, uniformly and continuously spreading the carbon fiber two to a width that is essentially the same as the selected width for the thermoplastic polymer fiber tow, intermixing the tows intimately, uniformly and continuously, in a relatively tension-free state, and continuosuly withdrawing the intermixed tow.

  6. High-Strength Composite Fibers from Cellulose-Lignin Blends Regenerated from Ionic Liquid Solution.

    PubMed

    Ma, Yibo; Asaadi, Shirin; Johansson, Leena-Sisko; Ahvenainen, Patrik; Reza, Mehedi; Alekhina, Marina; Rautkari, Lauri; Michud, Anne; Hauru, Lauri; Hummel, Michael; Sixta, Herbert

    2015-12-01

    Composite fibres that contain cellulose and lignin were produced from ionic liquid solutions by dry-jet wet spinning. Eucalyptus dissolving pulp and organosolv/kraft lignin blends in different ratios were dissolved in the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate to prepare a spinning dope from which composite fibres were spun successfully. The composite fibres had a high strength with slightly decreasing values for fibres with an increasing share of lignin, which is because of the reduction in crystallinity. The total orientation of composite fibres and SEM images show morphological changes caused by the presence of lignin. The hydrophobic contribution of lignin reduced the vapour adsorption in the fibre. Thermogravimetric analysis curves of the composite fibres reveal the positive effect of the lignin on the carbonisation yield. Finally, the composite fibre was found to be a potential raw material for textile manufacturing and as a precursor for carbon fibre production. PMID:26542190

  7. EPDM - Silicone blends - a high performance elastomeric composition for automotive applications

    SciTech Connect

    Mitchell, J.M.

    1987-01-01

    Styling and design changes have dramatically altered performance requirements for elastomers. High performance engines with electronic fuel injection have increased temperatures under the hood. Therefore, high performance elastomers are required to meet today's service conditions. New technology has been developed to compatibilize EPDM and silicone into high performance elastomeric compositions. These blends have physical, electrical and mechanical properties, for 175/sup 0/C service. Formulations are discussed for applications which require heat and weather resistance.

  8. Advanced composite airframe program: Today's technology

    NASA Technical Reports Server (NTRS)

    Good, Danny E.; Mazza, L. Thomas

    1988-01-01

    The Advanced Composite Airframe Program (ACAP) was undertaken to demonstrate the advantages of the application of advanced composite materials and structural design concepts to the airframe structure on helicopters designed to stringent military requirements. The primary goals of the program were the reduction of airframe production costs and airframe weight by 17 and 22 percent respectively. The ACAP effort consisted of a preliminary design phase, detail design, and design support testing, full-scale fabrication, laboratory testing, and a ground/flight test demonstration. Since the completion of the flight test demonstration programs follow-on efforts were initiated to more fully evaluate a variety of military characteristics of the composite airframe structures developed under the original ACAP advanced development contracts. An overview of the ACAP program is provided and some of the design features, design support testing, manufacturing approaches, and the results of the flight test evaluation, as well as, an overview of Militarization Test and Evaluation efforts are described.

  9. Effect of strain rate on mechanical properties of melt-processed soy flour composite filler and styrene-butadiene blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymer composites were prepared by melt-mixing polymer and soy flour composite fillers in an internal mixer. Soy flour composite fillers were prepared by blending aqueous dispersion of soy flour with styrene-butadiene rubber latex, dried, and cryogenically ground into powders. Upon crosslinking, th...

  10. Advanced composite stabilizer for Boeing 737 aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Activities related to development of an advanced composites stabilizer for the Boeing 737 commercial transport are reported. Activities include discussion of criteria and objectives, design loads, the fatigue spectrum definition to be used for all spectrum fatigue testing, fatigue analysis, manufacturing producibility studies, the ancillary test program, quality assurance, and manufacturing development.

  11. Advanced composite elevator for Boeing 727 aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Detail design activities are reported for a program to develop an advanced composites elevator for the Boeing 727 commercial transport. Design activities include discussion and results of the ancillary test programs, sustaining efforts, weight status, manufacturing producibility studies, quality assurance development, and production status.

  12. ISAAC - A Testbed for Advanced Composites Research

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stewart, Brian K.; Martin, Robert A.

    2014-01-01

    The NASA Langley Research Center is acquiring a state-of-art composites fabrication environment to support the Center's research and technology development mission. This overall system described in this paper is named ISAAC, or Integrated Structural Assembly of Advanced Composites. ISAAC's initial operational capability is a commercial robotic automated fiber placement system from Electroimpact, Inc. that consists of a multi-degree of freedom commercial robot platform, a tool changer mechanism, and a specialized automated fiber placement end effector. Examples are presented of how development of advanced composite materials, structures, fabrication processes and technology are enabled by utilizing the fiber placement end effector directly or with appropriate modifications. Alternatively, end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.

  13. Lead titanate/cyclic carbonate dependence on ionic conductivity of ferro/acrylate blend polymer composites

    NASA Astrophysics Data System (ADS)

    Jayaraman, R.; Vickraman, P.; Subramanian, N. M. V.; Justin, A. Simon

    2016-05-01

    Impedance, XRD, DSC and FTIR studies had been carried out for PVdF-co-HFP/LIBETI based system for three plasticizer (EC/DMC) - filler (PbTiO3) weight ratios. The enhanced conductivity 4.18 × 10-5 Scm-1 was noted for 57.5 wt% -7.5 wt% plasticizer - filler. while blending PEMA to PVdF-co-HFP respectively 7.5: 22.5 wt % (3/7), 15 wt%: 15 wt % (5/5) and 22.5wt %: 7.5 wt % (7/3), the improved conductivity was noted for 3/7 ratio 1.22 × 10-5 S cm-1 and its temperature dependence abide Arrhenius behavior. The intensity of peaks in XRD diffractogram registered dominance of lead titanate, from 2θ = 10° to 80° and absence of VdF crystallites (α+β phase) was noted. In DSC studies, the presence of the exotherm events, filler effect was distinctively seen exhibiting recrystallization of VdF crystallites. In blending PEMA, however, no trace of exotherms was found suggestive of PEMA better inhibiting recrystallization. FTIR study confirmed molecular interactions of various constituents in the vibrational band 500 - 1000 cm-1 both in pristine PVdF-co-HFP and PEMA blended composites with reference to C-F stretching, C-H stretching and C=O carbonyl bands.

  14. Automotive applications for advanced composite materials

    NASA Technical Reports Server (NTRS)

    Deutsch, G. C.

    1978-01-01

    A description is presented of nonaerospace applications for advanced composite materials with special emphasis on the automotive applications. The automotive industry has to satisfy exacting requirements to reduce the average fuel consumption of cars. A feasible approach to accomplish this involves the development of composites cars with a total weight of 2400 pounds and a fuel consumption of 33 miles per gallon. In connection with this possibility, the automotive companies have started to look seriously at composite materials. The aerospace industry has over the past decade accumulated a considerable data base on composite materials and this is being made available to the nonaerospace sector. However, the automotive companies will place prime emphasis on low cost resins which lend themselves to rapid fabrication techniques.

  15. Effect of carbon black and/or elastomer on thermoplastic elastomer-based blends and composites

    NASA Astrophysics Data System (ADS)

    Yasar, M.; Bayram, G.; Celebi, H.

    2015-05-01

    It was aimed to investigate the effect of carbon black and/or elastomer on the electrical conductivity and mechanical properties of thermoplastic elastomer (TPE). Carbon black (CB) and ethylene-glycidyl methacrylate (E-GMA) were used as additives in the main matrix. The blends and composites were characterized in terms of their electrical conductivity and mechanical properties. CB concentration was varied as 0.5, 1, 3 and 5 wt.%. In order to modify the surface of CB, paraffinic oil and silane coupling agents were used. E-GMA was added to the matrix at 5, 10, 20, and 30 wt.% concentration. In order to prepare ternary composites, 5 wt.% of modified or unmodified carbon black and 10 wt.% of E-GMA were mixed with the TPE matrix. The tensile strength, impact strength and elongation at break values of TPE/CB composites decreased while elastic moduli and electrical conductivities increased with increasing CB concentration. It was observed that the surface modification of CB did not alter the tensile properties significantly. However, impact strength of the composites improved upon modification. For TPE/E-GMA blends, E-GMA addition enhanced the tensile strength and impact strength values of neat TPE. Nevertheless, elongation at break values began to decrease at 10 wt% and higher concentrations of E-GMA. It was observed that CB was more effective than the E-GMA on the mechanical properties of the ternary composites. The addition of 10 wt.% E-GMA increased the electrical resistivity and impact strength values of the ternary composites, as expected.

  16. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  17. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.

  18. Second NASA Advanced Composites Technology Conference

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)

    1992-01-01

    The conference papers are presented. The Advanced Composite Technology (ACT) Program is a major multi-year research initiative to achieve a national goal of technology readiness before the end of the decade. Conference papers recorded results of research in the ACT Program in the specific areas of automated fiber placement, resin transfer molding, textile preforms, and stitching as these processes influence design, performance, and cost of composites in aircraft structures. These papers will also be included in the Ninth Conference Proceedings to be published by the Federal Aviation Administration as a separate document.

  19. NASA Thermographic Inspection of Advanced Composite Materials

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott

    2004-01-01

    As the use of advanced composite materials continues to increase in the aerospace community, the need for a quantitative, rapid, in situ inspection technology has become a critical concern throughout the industry. In many applications it is necessary to monitor changes in these materials over an extended period of time to determine the effects of various load conditions. Additionally, the detection and characterization of defects such as delaminations, is of great concern. This paper will present the application of infrared thermography to characterize various composite materials and show the advantages of different heat source types. Finally, various analysis methodologies used for quantitative material property characterization will be discussed.

  20. Advanced fiber placement of composite fuselage structures

    NASA Technical Reports Server (NTRS)

    Anderson, Robert L.; Grant, Carroll G.

    1991-01-01

    The Hercules/NASA Advanced Composite Technology (ACT) program will demonstrate the low cost potential of the automated fiber placement process. The Hercules fiber placement machine was developed for cost effective production of composite aircraft structures. The process uses a low cost prepreg tow material form and achieves equivalent laminate properties to structures fabricated with prepreg tape layup. Fiber placement demonstrations planned for the Hercules/NASA program include fabrication of stiffened test panels which represent crown, keel, and window belt segments of a typical transport aircraft fuselage.

  1. Advanced composite elevator for Boeing 727 aircraft

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Detail design activities are reported for a program to develop an advanced composites elevator for the Boeing 727 commercial transport. Design activities include discussion of the full scale ground test and flight test activities, the ancillary test programs, sustaining efforts, weight status, and the production status. Prior to flight testing of the advanced composites elevator, ground, flight flutter, and stability and control test plans were reviewed and approved by the FAA. Both the ground test and the flight test were conducted according to the approved plan, and were witnessed by the FAA. Three and one half shipsets have now been fabricated without any significant difficulty being encountered. Two elevator system shipsets were weighed, and results validated the 26% predicted weight reduction. The program is on schedule.

  2. Advanced powder metallurgy aluminum alloys and composites

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  3. Micromechanical Modeling Efforts for Advanced Composites

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Over the past two decades, NASA Lewis Research Center's in-house efforts in analytical modeling for advanced composites have yielded several computational predictive tools. These are, in general, based on simplified micromechanics equations. During the last 3 years, our efforts have been directed primarily toward developing prediction tools for high temperature ceramic matrix composite (CMC's) materials. These materials are being considered for High Speed Research program applications, specifically for combustor liners. In comparison to conventional materials, CMC's offer several advantages: high specific stiffness and strength, and higher toughness and nonbrittle failure in comparison to monolithic ceramics, as well as environmental stability and wear resistance for both roomtemperature and elevated-temperature applications. Under the sponsorship of the High Temperature Engine Materials Program (HITEMP), CMC analytical modeling has resulted in the computational tool Ceramic Matrix Composites Analyzer (CEMCAN).

  4. Development of advanced composite ceramic tool material

    SciTech Connect

    Huang Chuanzhen; Ai Xing

    1996-08-01

    An advanced ceramic cutting tool material has been developed by means of silicon carbide whisker (SiCw) reinforcement and silicon carbide particle (SiCp) dispersion. The material has the advantage of high bending strength and fracture toughness. Compared with the mechanical properties of Al{sub 2}O{sub 3}/SiCp(AP), Al{sub 2}O{sub 3}/SiCw(JX-1), and Al{sub 2}O{sub 3}/SiCp/SiCw(JX-2-I), it confirms that JX-2-I composites have obvious additive effects of both reinforcing and toughening. The reinforcing and toughening mechanisms of JX-2-I composites were studied based on the analysis of thermal expansion mismatch and the observation of microstructure. The cutting performance of JX-2-I composites was investigated primarily.

  5. Reinforcement of metals with advanced filamentary composites

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.; Davis, J. G.; Dexter, H. B.

    1974-01-01

    This paper reviews some recent applications of the concept of reinforcing metal structures with advanced filamentary composites, and presents some results of an experimental investigation of the tensile behavior of aluminum and titanium reinforced with unidirectional boron/epoxy. Results are given for tubular and flat specimens, bonded at either room temperature or elevated temperature. The composite reinforced metals showed increased stiffness over the all-metal counterpart, as predicted by the rule of mixtures, and the results were independent of specimen geometry. The tensile strength of the born/epoxy reinforced metals is shown to be a function of the geometry of the test specimen and the method of bonding the composite to the metal.

  6. Temperature and composition-dependent density of states in organic small-molecule/polymer blend transistors

    NASA Astrophysics Data System (ADS)

    Hunter, Simon; Mottram, Alexander D.; Anthopoulos, Thomas D.

    2016-07-01

    The density of trap states (DOS) in organic p-type transistors based on the small-molecule 2,8-difluoro-5,11-bis(triethylsilylethynyl) anthradithiophene (diF-TES ADT), the polymer poly(triarylamine) and blends thereof are investigated. The DOS in these devices are measured as a function of semiconductor composition and operating temperature. We show that increasing operating temperature causes a broadening of the DOS below 250 K. Characteristic trap depths of ˜15 meV are measured at 100 K, increasing to between 20 and 50 meV at room-temperature, dependent on the semiconductor composition. Semiconductor films with high concentrations of diF-TES ADT exhibit both a greater density of trap states as well as broader DOS distributions when measured at room-temperature. These results shed light on the underlying charge transport mechanisms in organic blend semiconductors and the apparent freezing-out of hole conduction through the polymer and mixed polymer/small molecule phases at temperatures below 225 K.

  7. Advanced composite combustor structural concepts program

    NASA Technical Reports Server (NTRS)

    Sattar, M. A.; Lohmann, R. P.

    1984-01-01

    An analytical study was conducted to assess the feasibility of and benefits derived from the use of high temperature composite materials in aircraft turbine engine combustor liners. The study included a survey and screening of the properties of three candidate composite materials including tungsten reinforced superalloys, carbon-carbon and silicon carbide (SiC) fibers reinforcing a ceramic matrix of lithium aluminosilicate (LAS). The SiC-LAS material was selected as offering the greatest near term potential primarily on the basis of high temperature capability. A limited experimental investigation was conducted to quantify some of the more critical mechanical properties of the SiC-LAS composite having a multidirection 0/45/-45/90 deg fiber orientation favored for the combustor linear application. Rigorous cyclic thermal tests demonstrated that SiC-LAS was extremely resistant to the thermal fatigue mechanisms that usually limit the life of metallic combustor liners. A thermal design study led to the definition of a composite liner concept that incorporated film cooled SiC-LAS shingles mounted on a Hastelloy X shell. With coolant fluxes consistent with the most advanced metallic liner technology, the calculated hot surface temperatures of the shingles were within the apparent near term capability of the material. Structural analyses indicated that the stresses in the composite panels were low, primarily because of the low coefficient of expansion of the material and it was concluded that the dominant failure mode of the liner would be an as yet unidentified deterioration of the composite from prolonged exposure to high temperature. An economic study, based on a medium thrust size commercial aircraft engine, indicated that the SiC-LAS combustor liner would weigh 22.8N (11.27 lb) less and cost less to manufacture than advanced metallic liner concepts intended for use in the late 1980's.

  8. Characterization of composite materials based on cement-ceramic powder blended binder

    NASA Astrophysics Data System (ADS)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  9. Threaded molecular wires as building blocks for advanced polymer blends: WPLEDs, ultra-broadband optical amplifiers, multi color lasers

    NASA Astrophysics Data System (ADS)

    Brovelli, Sergio; Mroz, Marta; Sforazzini, Giuseppe; Virgili, Tersilla; Meinardi, Franco; Paleari, Alberto; Anderson, Harry L.; Lanzani, Guglielmo; Cacialli, Franco

    2011-03-01

    The ability to produce semiconducting polymer blends with white emission spectra, large emission cross sections and broad optical gain is critical to their application in white PLEDs, lasers and broadband amplifiers. Cyclodextrin-encapsulation is an effective means of suppressing detrimental intermolecular interactions, and energy transfer (ET) channels in polymer blends, thus enabling fabrication of white-PLEDs. We show that all such properties combine into a high impact photonic application: ultra-broad optical gain and two-color lasing in a binary polyrotaxane blend. We study the ultrafast photophysics of a blend of a conventional and an encapsulated polyfluorene. The morphology is investigated by microRaman imaging, AFM, and fluorescence lifetime microscopy. We ascribe the ultra-broad optical gain (>850 meV), and the simultaneous ASE for both constituents, to the dual effect of reduced polaron formation and suppressed ET. Our results demonstrate that polyrotaxanes could realistically represent the building blocks for advanced polymer blends with highly controlled optical properties, for applications in solid state lightning, lasers and photovoltaic technologies.

  10. Chemical composition, functional and pasting properties of cassava starch and soy protein concentrate blends.

    PubMed

    Chinma, Chiemela Enyinnaya; Ariahu, Charles Chukwuma; Abu, Joseph Oneh

    2013-12-01

    The chemical, functional and pasting properties of cassava starch and soy protein concentrate blends intended for biofilm processing were studied. Cassava starch and soy protein concentrates were prepared and mixed at different proportions (100: 0%; 90 : 10%; 80 : 20%; 70 : 30%; 60;40% and 50: 50%). Addition of varying levels of soy protein concentrates to cassava starch led to increases in moisture (from 7.10 to 9.17%), protein ( from 0.32 to 79.03%), ash (from 0.45 to 2.67%) and fat (from 0.17 to 0.98%) contents while crude fiber, carbohydrate and amylose contents decreased from ( 1.19 to 0.38%, 90.77 to 57.01% and 29.45 to 23.04%) respectively . Water absorption capacity and swelling power of cassava starch were improved as a result of soy protein concentrate addition while syneresis and solubility value of composite blends were lower than 100% cassava starch. In general, cassava-soy protein concentrate blends formed firmer gels than cassava starch alone. There were significant (p ≤ 0.05) increases in peak viscosity (from 160.12 to 268.32RVU), final viscosity (from 140.41 to 211.08RVU) and pasting temperature (from 71.00 to 72.32 °C ) of cassava starch due to addition of soy protein concentrate. These results suggest that the addition of soy protein concentrate to cassava starch affected the studied functional properties of cassava starch as evidenced by changes such as reduced syneresis, and solubility that are desirable when considering this biopolymer as an edible biofilm. PMID:24426032

  11. Advanced composites wing study program, volume 2

    NASA Technical Reports Server (NTRS)

    Harvey, S. T.; Michaelson, G. L.

    1978-01-01

    The study on utilization of advanced composites in commercial aircraft wing structures was conducted as a part of the NASA Aircraft Energy Efficiency Program to establish, by the mid-1980s, the technology for the design of a subsonic commercial transport aircraft leading to a 40% fuel savings. The study objective was to develop a plan to define the effort needed to support a production commitment for the extensive use of composite materials in wings of new generation aircraft that will enter service in the 1985-1990 time period. Identification and analysis of what was needed to meet the above plan requirements resulted in a program plan consisting of three key development areas: (1) technology development; (2) production capability development; and (3) integration and validation by designing, building, and testing major development hardware.

  12. Creep rupture behavior of unidirectional advanced composites

    NASA Technical Reports Server (NTRS)

    Yeow, Y. T.

    1980-01-01

    A 'material modeling' methodology for predicting the creep rupture behavior of unidirectional advanced composites is proposed. In this approach the parameters (obtained from short-term tests) required to make the predictions are the three principal creep compliance master curves and their corresponding quasi-static strengths tested at room temperature (22 C). Using these parameters in conjunction with a failure criterion, creep rupture envelopes can be generated for any combination of in-plane loading conditions and ambient temperature. The analysis was validated experimentally for one composite system, the T300/934 graphite-epoxy system. This was done by performing short-term creep tests (to generate the principal creep compliance master curves with the time-temperature superposition principle) and relatively long-term creep rupture tensile tests of off-axis specimens at 180 C. Good to reasonable agreement between experimental and analytical results is observed.

  13. Design of electrical conductive composites: tuning the morphology to improve the electrical properties of graphene filled immiscible polymer blends.

    PubMed

    Mao, Cui; Zhu, Yutian; Jiang, Wei

    2012-10-24

    Polystyrene (PS) and poly(methyl methacrylate) (PMMA) blends filled with octadecylamine-functionalized graphene (GE-ODA) have been fabricated to obtain conductive composites with a lower electrical percolation threshold according to the concept of double percolation. The dependence of the electrical properties of the composites on the morphology is examined by changing the proportion of PS and PMMA. Our results reveal that the electrical conductivity of the composites can be optimal when PS and PMMA phases form a cocontinuous structure and GE-ODA nanosheets are selectively located and percolated in the PS phase. For the PS/PMMA blend (50w/50w), the composites exhibit an extremely low electrical percolation threshold (0.5 wt %) because of the formation of a perfect double percolated structure. Moreover, the rheological properties of the composites are also measured to gain a fundamental understanding of the relationship between microstructure and electrical properties. PMID:22950786

  14. Composition Dependency of the Flory-Huggins χ Parameter in Isotopic Polymer Blends

    NASA Astrophysics Data System (ADS)

    Russell, Travis; Edwards, Brian; Khomami, Bamin

    2014-03-01

    Flory-Huggins Theory has been the basis for understanding polymer solvent and blended polymer thermodynamics for much of the last 50 years. Within this theory, a parameter (χ) was developed to account for the energy of dispersion between distinct components. Thin film self-assembly of block copolymers and polymer melts depends critically on this parameter, and in application, χ has generally been assumed to be independent of the concentrations of individual components in the system. However, Small Angle Neutron Scattering data on isotopic polymer blends, such as polyethylene and deuterated polyethylene, have shown a parabolic concentration dependency for χ. In order to better understand the nature of χ and develop more accurate morphological data for polymer systems, an investigation of this concentration dependency was undertaken from both structural (χS) and thermodynamic (χT) theories. Structural calculations for χS were based on the Random Phase Approximation of de Gennes, and thermodynamic information was obtained through integration of the free energy with χT defined using original Flory-Huggins Theory. Comparison of the two theories revealed that while both χS and χT possess a composition dependence, it is not the same. NSF DGE-0801470.

  15. Thin polymer films of block copolymers and blend/nanoparticle composites

    NASA Astrophysics Data System (ADS)

    Kalloudis, Michail

    In this thesis, atomic force microscopy (AFM), transmission electron microscopy (TEM) and optical microscopy techniques were used to investigate systematically the self-assembled nanostructure behaviour of two different types of spin-cast polymer thin films: poly(isoprene-b-ethylene oxide), PI-b-PEO diblock copolymers and [poly(9,9-dioctylfluorene-co-benzothiadiazole)]:poly[9,9- dioctyfluorene-co-N-(4-butylphenyl)-diphenylamine], F8BT:TFB conjugated polymer blends. In the particular case of the polymer blend thin films, the morphology of their composites with cadmium selenide (CdSe) quantum dot (QD) nanoparticles was also investigated. For the diblock copolymer thin films, the behaviour of the nanostructures formed and the wetting behaviour on mica, varying the volume fraction of the PEO block (fPEO) and the average film thickness was explored. For the polymer blend films, the effect of the F8BT/TFB blend ratio (per weight), spin-coating parameters and solution concentration on the phase-separated nanodomains was investigated. The influence of the quantum dots on the phase separation when these were embedded in the F8BT:TFB thin films was also examined. It was found that in the case of PI-b-PEO copolymer thin films, robust nanostructures, which remained unchanged after heating/annealing and/or ageing, were obtained immediately after spin coating on hydrophilic mica substrates from aqueous solutions. The competition and coupling of the PEO crystallisation and the phase separation between the PEO and PI blocks determined the ultimate morphology of the thin films. Due to the great biocompatible properties of the PEO block (protein resistance), robust PEO-based nanostructures find important applications in the development of micro/nano patterns for biological and biomedical applications. It was also found that sub-micrometre length-scale phase-separated domains were formed in F8BT:TFB spin cast thin films. The nanophase-separated domains of F8BT-rich and TFB-rich areas

  16. Study of blend composition of nano silica under the influence of neutron flux

    NASA Astrophysics Data System (ADS)

    Huseynov, Elchin; Garibov, Adil; Mehdiyeva, Ravan

    2014-08-01

    Nano SiO2 compound with 160 m2/g specific surface area and 20 nm sizes has been irradiated continuously with neutron flux up to 20 hours in various periods in TRIGA Mark II type research reactor. The initial activities of different type radionuclides defined in the result of eight day activity analysis changes between wide range of 1,5 kBq- 1,5GBq. In the result of activity analysis carried out after the irradiation, the element content of 0,5% mixture existing in nano SiO2 compound has been defined with radionuclides of relevant element. It has been defined percentage amounts of elements in blend composition according to the performed activities.

  17. Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate).

    PubMed

    Lei, Yong; Wu, Qinglin

    2010-05-01

    High-melting-temperature poly(ethylene terephthalate) (PET) was successfully introduced into wood plastic composites through a two-step reactive extrusion technology. Wood flour was added into pre-prepared PET/high density polyethylene (HDPE) microfibrillar blends (MFBs) in the second extrusion at the temperature for processing HDPE. Addition of 25% in situ formed PET microfibers obviously increased the mechanical properties of HDPE, and more significant enhancement by the in situ formed recycled PET microfibers was observed for the recycled HDPE. Adding 2% E-GMA improved the compatibility between matrix and microfibers in MFBs, resulting further enhanced mechanical properties. The subsequent addition of 40% wood flour did not influence the size and morphology of PET microfibers, and improved the comprehensive mechanical properties of MFBs. The wood flour increased the crystallinity level of HDPE in the compatibilized MFB in which PET phase did not crystallize. The storage modulus of MFB was greatly improved by wood flour. PMID:20100654

  18. Effect of platy and tubular nanoclays on behaviour of biodegradable PCL/PLA blend and related microfibrillar composites

    NASA Astrophysics Data System (ADS)

    Kelnar, Ivan; Kratochvíl, Jaroslav

    2016-05-01

    Blending of ductile poly(ɛ-caprolactone) (PCL) and rigid polylactic acid (PLA) is a promising way to tailor biodegradable materials with broad range of properties. But the mutual incompatibility of both polyesters leads to compromised behaviour only. Alternative to PCL/PLA blends is application of PLA in the form of short fibres, however, difficult dispergation of flexible fibres including their poor adhesion and limited processing is a significant restriction. More effective is in situ formation of polymeric fibre-reinforced materials using microfibrillar composites (MFC) concept based on melt- or cold-drawing of a polymer blend. Important advantage of MFC is efficient dispersion and bonding of in-situ formed reinforcing fibres This work deals with combination of structure-directing and reinforcing effects of montmorillonite (oMMT) and halloysite nanotubes (HNT) in the PCL/PLA 80/20 blend with in-situ formation of PLA fibrils in the PCL matrix. In the resulting microfibrillar composite, reinforcement by rigid PLA fibrils is combined with strengthening of both components by the nanofiller (NF). Moreover, PLA fibrils formation via melt-drawing is only possible after nanofiller addition due to favourable affecting of rheological parameters of the polymer components. The structure-properties relationship and complex effect of NF on microfibrillar composite performance, causing e.g., quite comparable parameters of both microfibrillar composites in spite of lower reinforcing effect of halloysite nanotubes on components, are discussed.

  19. Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications.

    PubMed

    Jithendra, Panneerselvam; Rajam, Abraham Merlin; Kalaivani, Thambiran; Mandal, Asit Baran; Rose, Chellan

    2013-08-14

    Collagen-Chitosan (COL-CS) scaffolds supplemented with different concentrations (0.1-0.5%) of aloe vera (AV) were prepared and tested in vitro for their possible application in tissue engineering. After studying the microstructure and mechanical properties of all the composite preparations, a 0.2% AV blended COL-CS scaffold was chosen for further studies. Scaffolds were examined by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and thermogravimetry analysis (TGA) to understand the intermolecular interactions and their influence on the thermal property of the complex composite. Swelling property in phosphate buffered saline (pH 7.4) and in vitro biodegradability by collagenase digestion method were monitored to assess the stability of the scaffold in a physiological medium in a hydrated condition, and to assay its resistance against enzymatic forces. The scanning electron microscope (SEM) image of the scaffold samples showed porous architecture with gradual change in their morphology and reduced tensile properties with increasing aloe vera concentration. The FTIR spectrum revealed the overlap of the AV absorption peak with the absorption peak of COL-CS. The inclusion of AV to COL-CS increased the thermal stability as well as hydrophilicity of the scaffolds. Cell culture studies on the scaffold showed enhanced growth and proliferation of fibroblasts (3T3L1) without exhibiting any toxicity. Also, normal cell morphology and proliferation were observed by fluorescence microscopy and SEM. The rate of cell growth in the presence/absence of aloe vera in the scaffolds was in the order: COL-CS-AV > COL-CS > TCP (tissue culture polystyrene plate). These results suggested that the aloe vera gel-blended COL-CS scaffolds could be a promising candidate for tissue engineering applications. PMID:23838342

  20. Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologi

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologies Project - Preliminary Manufacturing Demonstration Articles for Ares V Payload Shroud Barrel Acreage Structure

  1. Advanced composites for large Navy spacecraft

    NASA Technical Reports Server (NTRS)

    Davis, William E.

    1986-01-01

    An overview is given of work conducted on contract for the Naval Sea Systems Command. The objective of this contract was to provide direction for the development of high modulus graphite reinforced metal matrix composites. These advanced materials can have a significant effect on the performance of a spacecraft before, during and after an evasive maneuver. The work conducted on this program was organized into seven technical tasks. Task 1 was development of a generic Navy spacecraft model. Finite element models of candidate structural designs were developed. In Task 2, the finite-element model(s) of the structure were used to conduct analytical assessments involving conventional materials, resin matrix composites and metal matrix composites (MMC). In Task 3 and 4, MMC material design, fabrication and evaluation was conducted. This consisted of generating material designs and developing a data base for a broad range of graphite reinforced MMC materials. All material was procured according to specifications which set material quality and material property standards. In Task 5, a set of evasive maneuvering requirements were derived and used in Task 6 to conduct analytical simulations. These analytical simulations used current SOA material properties and projected material properties to provide an indication of key payoffs for material development. In Task 7, a set of material development recommendations was generated.

  2. Preparation and characterization of PVP-PVA-ZnO blend polymer nano composite films

    NASA Astrophysics Data System (ADS)

    Divya, S.; Saipriya, G.; Hemalatha, J.

    2016-05-01

    Flexible self-standing films of PVP-PVA blend composites are prepared by using ZnO as a nano filler at different concentrations. The structural, compositional, morphological and optical studies made with the help of X-ray diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Scanning electron microscope (SEM), Atomic Force Microscopy (AFM), Ultraviolet-visible spectroscopy (UV-vis) and Photoluminescence (PL) spectra are presented in this paper. The results of XRD indicate that ZnO nanoparticles are formed with hexagonal phase in the polymeric matrix. SEM images show the dispersion of ZnO nano filler in the polymer matrix. UV-vis spectra reveal that the absorption peak is centered around 235nm and 370nm for the nano composite films. The blue shift is observed with decrease in the concentration of the nano filler. PL spectra shows the excitation wavelength is given at 320nm.The emission peaks were observed at 383 nm ascribing to the electronic transitions between valence band and conduction band and the peak at 430 nm.

  3. Composite blend polymer membranes with increased proton selectivity and lifetime for vanadium redox flow batteries

    SciTech Connect

    Chen, Dongyang; Kim, Soowhan; Sprenkle, Vincent L.; Hickner, Michael A.

    2013-06-01

    Composite membranes based on sulfonated fluorinated poly(arylene ether) (SFPAE) and poly(vinylidene fluoride-co-hexafluoropropene) (P(VDF-co-HFP)) were prepared with various contents of P(VDF-co-HFP) for vanadium redox flow battery (VRFB) applications. The compatibility and interaction of SFPAE and P(VDF-co-HFP) were characterized by atomic force microscopy, differential scanning calorimetry, and Fourier transform infrared spectroscopy. The water uptake, mechanical properties, thermal property, proton conductivity, VO2+ permeability and cell performance of the composite membranes were investigated in detail and compared to the pristine SFPAE membrane. It was found that SFPAE had good compatibility with P(VDF-co-HFP) and the incorporation of P(VDF-co-HFP) increased the mechanical properties, thermal property, and proton selectivity of the materials effectively. An SFPAE composite membrane with 10 wt.% P(VDF-co-HFP) exhibited a 44% increase in VRFB cell lifetime as compared to a cell with a pure SFPAE membrane. Therefore, the P(VDF-co-HFP) blending approach is a facile method for producing low-cost, high-performance VRFB membranes.

  4. Advanced Technology Composite Fuselage-Structural Performance

    NASA Technical Reports Server (NTRS)

    Walker, T. H.; Minguet, P. J.; Flynn, B. W.; Carbery, D. J.; Swanson, G. D.; Ilcewicz, L. B.

    1997-01-01

    Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC). This report addresses the program activities related to structural performance of the selected concepts, including both the design development and subsequent detailed evaluation. Design criteria were developed to ensure compliance with regulatory requirements and typical company objectives. Accurate analysis methods were selected and/or developed where practical, and conservative approaches were used where significant approximations were necessary. Design sizing activities supported subsequent development by providing representative design configurations for structural evaluation and by identifying the critical performance issues. Significant program efforts were directed towards assessing structural performance predictive capability. The structural database collected to perform this assessment was intimately linked to the manufacturing scale-up activities to ensure inclusion of manufacturing-induced performance traits. Mechanical tests were conducted to support the development and critical evaluation of analysis methods addressing internal loads, stability, ultimate strength, attachment and splice strength, and damage tolerance. Unresolved aspects of these performance issues were identified as part of the assessments, providing direction for future development.

  5. Advanced Technology Composite Fuselage - Materials and Processes

    NASA Technical Reports Server (NTRS)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  6. Advanced Technology Composite Fuselage: Program Overview

    NASA Technical Reports Server (NTRS)

    Ilcewicz, L. B.; Smith, P. J.; Hanson, C. T.; Walker, T. H.; Metschan, S. L.; Mabson, G. E.; Wilden, K. S.; Flynn, B. W.; Scholz, D. B.; Polland, D. R.; Fredrikson, H. G.; Olson, J. T.; Backman, B. F.

    1997-01-01

    The Advanced Technology Composite Aircraft Structures (ATCAS) program has studied transport fuselage structure with a large potential reduction in the total direct operating costs for wide-body commercial transports. The baseline fuselage section was divided into four 'quadrants', crown, keel, and sides, gaining the manufacturing cost advantage possible with larger panels. Key processes found to have savings potential include (1) skins laminated by automatic fiber placement, (2) braided frames using resin transfer molding, and (3) panel bond technology that minimized mechanical fastening. The cost and weight of the baseline fuselage barrel was updated to complete Phase B of the program. An assessment of the former, which included labor, material, and tooling costs, was performed with the help of design cost models. Crown, keel, and side quadrant cost distributions illustrate the importance of panel design configuration, area, and other structural details. Composite sandwich panel designs were found to have the greatest cost savings potential for most quadrants. Key technical findings are summarized as an introduction to the other contractor reports documenting Phase A and B work completed in functional areas. The current program status in resolving critical technical issues is also highlighted.

  7. Polyimide Matrix composites: Polyimidesulfone/LARC-TPI (1:1) blend

    NASA Technical Reports Server (NTRS)

    Johnston, Norman J.; St.clair, Terry L.; Baucom, Robert M.; Towell, Timothy W.

    1989-01-01

    Polyimide matrix composites were fabricated from unidirectional unsized AS-4 carbon fiber and a doped 1:1 blend of two polyimides: benzophenone dianhydride-3,3'-diamino diphenylsulfone (PISO2) and benzophenone dianhydride-3,3'-diamino benzophenone (LARC-TPI). To enhance melt flow properties, the molecular weight of the PISO2 was controlled by end-capping with phthalic anhydride and addition of 5 percent by weight p-phenylene diamine-phthalic anhydride bisamic acid dopant. Prepreg was drum-wound using a diglyme slurry comprised of the soluble polyamideacid of PISO2, the soluble bisamideacid of the dopant, and the insoluble imidized LARC-TPI powder. Melt flow studies with a rotary rheometer and parallel plate plastometer on neat resin and prepreg helped develop an optimum cure cycle. Composite mechanical properties at room and elevated temperatures, dry and moisture-saturated, were evaluated, including short beam shear strength and flexure, tensile, shear, and compression properties. Two 18 in. x 24 in. skin-stringer panels were fabricated, one of which was tested in compression to failure.

  8. Studies of noise transmission in advanced composite material structures

    NASA Technical Reports Server (NTRS)

    Roussos, L. A.; Mcgary, M. C.; Powell, C. A.

    1983-01-01

    Noise characteristics of advanced composite material fuselages were discussed from the standpoints of applicable research programs and noise transmission theory. Experimental verification of the theory was also included.

  9. Effect of elongational flow on immiscible polymer blend/nanoparticle composites: a molecular dynamics study.

    PubMed

    Shebert, George L; Lak Joo, Yong

    2016-07-13

    Using coarse-grained nonequilibrium molecular dynamics, the dynamics of a blend of the equal ratio of immiscible polymers mixed with nanoparticles (NP) are simulated. The simulations are conducted under planar elongational flow, which affects the dispersion of the NPs and the self-assembly morphology. The goal of this study is to investigate the effect of planar elongational flow on the nanocomposite blend system as well as to thoroughly compare the blend to an analogous symmetric block copolymer (BCP) system to understand the role of the polymer structure on the morphology and NP dispersion. Two types of spherical NPs are considered: (1) selective NPs that are attracted to one of the polymer components and (2) nonselective NPs that are neutral to both components. A comparison of the blend and BCP systems reveals that for selective NP, the blend system shows a much broader NP distribution in the selective phase than the BCP phase. This is due to a more uniform distribution of polymer chain ends throughout the selective phase in the blend system than the BCP system. For nonselective NP, the blend and BCP systems show similar results for low elongation rates, but the NP peak in the BCP system broadens as elongation rates approach the order-disorder transition. In addition, the presence of NP is found to affect the morphology transitions of both the blend and BCP systems, depending on the NP type. PMID:27356215

  10. Impact of fatty ester composition on low temperature properties of biodiesel-petroleum diesel blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several biodiesel fuels along with neat fatty acid methyl esters (FAMEs) commonly encountered in biodiesel were blended with ultra-low sulfur diesel (ULSD) fuel at low blend levels permitted by ASTM D975 (B1-B5) and cold flow properties such as cloud point (CP), cold filter plugging point (CFPP), an...

  11. Enhanced proton conductivity by the influence of modified montmorillonite on poly (vinyl alcohol) based blend composite membranes

    NASA Astrophysics Data System (ADS)

    Palani, P. Bahavan; Abidin, K. Sainul; Kannan, R.; Rajashabala, S.; Sivakumar, M.

    2016-05-01

    The highest proton conductivity value of 0.0802 Scm-1 is obtained at 6wt% of protonated MMT added to the PVA/PEG blends. The polymer blend composite membranes are prepared with varied concentration of Poly vinyl alcohol (PVA), Poly ethylene glycol (PEG) and Montmorillonite (MMT) by solution casting method. The Na+ MMT was modified (protonated) to H+ MMT with ion exchange process. The prepared membranes were characterized by using TGA, FTIR, XRD, Ion Exchange Capacity, Water/Methanol uptake, swelling ratio and proton conductivity. The significant improvements in the hydrolytic stability were observed. In addition, thermal stability of the composite membranes were improved and controlled by the addition of MMT. All the prepared membranes are shown appreciable values of proton conductivity at room temperature with 100% relative humidity.

  12. Advanced tow placement of composite fuselage structure

    NASA Technical Reports Server (NTRS)

    Anderson, Robert L.; Grant, Carroll G.

    1992-01-01

    The Hercules NASA ACT program was established to demonstrate and validate the low cost potential of the automated tow placement process for fabrication of aircraft primary structures. The program is currently being conducted as a cooperative program in collaboration with the Boeing ATCAS Program. The Hercules advanced tow placement process has been in development since 1982 and was developed specifically for composite aircraft structures. The second generation machine, now in operation at Hercules, is a production-ready machine that uses a low cost prepreg tow material form to produce structures with laminate properties equivalent to prepreg tape layup. Current program activities are focused on demonstration of the automated tow placement process for fabrication of subsonic transport aircraft fuselage crown quadrants. We are working with Boeing Commercial Aircraft and Douglas Aircraft during this phase of the program. The Douglas demonstration panels has co-cured skin/stringers, and the Boeing demonstration panel is an intricately bonded part with co-cured skin/stringers and co-bonded frames. Other aircraft structures that were evaluated for the automated tow placement process include engine nacelle components, fuselage pressure bulkheads, and fuselage tail cones. Because of the cylindrical shape of these structures, multiple parts can be fabricated on one two placement tool, thus reducing the cost per pound of the finished part.

  13. Fracture mechanics and statistical modeling of ternary blends of polylactide/ethylene-acrylate copolymer /wood-flour composites

    NASA Astrophysics Data System (ADS)

    Afrifah, Kojo Agyapong

    This study examined the mechanisms of toughening the brittle bio-based poly(lactic acid) (PLA) with a biodegradable rubbery impact modifier to develop biodegradable and cost effective PLA/wood-flour composites with improved impact strength, toughness, high ductility, and flexibility. Semicrystalline and amorphous PLA grades were impact modified by melt blending with an ethylene-acrylate copolymer (EAC) impact modifier. EAC content was varied to study the effectiveness and efficiency of the impact modifier in toughening the semicrystalline and amorphous grades of the PLA. Impact strength was used to assess the effectiveness and efficiency of the EAC in toughening the blends, whereas the toughening mechanisms were determined with the phase morphologies and the miscibilities of the blends. Subsequent tensile property analyses were performed on the most efficiently toughened PLA grade. Composites were made from PLA, wood flour of various particle sizes, and EAC. Using two-level factorial design the interaction between wood flour content, wood flour particle size, and EAC content and its effect on the mechanical properties of the PLA/wood-flour composites was statistically studied. Numerical optimization was also performed to statistically model and optimize material compositions to attain mechanical properties for the PLA/wood-flour composites equivalent to at least those of unfilled PLA. The J-integral method of fracture mechanics was applied to assess the crack initiation (Jin) and complete fracture (J f) energies of the composites to account for imperfections in the composites and generate data useful for engineering designs. Morphologies of the fractured surfaces of the composites were analyzed to elucidate the failure and toughening mechanisms of the composites. The EAC impact modifier effectively improved the impact strength of the PLA/EAC blends, regardless of the PLA type. However, the EAC was more efficient in the semicrystalline grades of PLA compared to the

  14. Photo-Curable Polymer Blend Dielectrics for Advancing Organic Field-Effect Transistor Applications

    SciTech Connect

    S Kim; K Hong; M Jang; J Jang; J Anthony; H Yang; C Park

    2011-12-31

    A solution method of photo-curable and -patternable polymer gate dielectrics was introduced by using blend solutions of poly(4-dimethylsilyl styrene) (PDMSS) and poly(melamine-co-formaldehyde) acrylate (PMFA). The fabrication was optimized to produce a smooth hydrophobic gate dielectric with good insulating and solvent-resistant properties. On the optimized PDMSS/PMFA blend gate dielectric, pentacene could grow into highly ordered structure, showing high electric performances for the resulting OFETs, as well as PTCDI-C13 and TES-ADT.

  15. Advanced thermoset resins for fire-resistant composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1979-01-01

    The thermal and flammability properties of some thermoset polymers and composites are described. The processing and evaluation of composites fabricated from currently used resins and advanced fire-resistant resins are also described. Laboratory test methodology used to qualify candidate composite materials includes thermochemical characterization of the polymeric compounds and evaluation of the glass reinforced composites for flammability and smoke evolution. The use of these test methods will be discussed in comparing advanced laminating resins and composites consisting of modified epoxies, phenolics and bismaleimide, with conventional baseline materials consisting of epoxy.

  16. Advanced Composite Structures At NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.

    2015-01-01

    Dr. Eldred's presentation will discuss several NASA efforts to improve and expand the use of composite structures within aerospace vehicles. Topics will include an overview of NASA's Advanced Composites Project (ACP), Space Launch System (SLS) applications, and Langley's ISAAC robotic composites research tool.

  17. Application of Image And X-Ray Microtomography Technique To Quantify Filler Distribution In Thermoplastic-Natural Rubber Blend Composites

    SciTech Connect

    Ahmad, Sahrim; Rasid, Rozaidi; Mouad, A. T.; Aziz Mohamed, A.; Abdullah, Jaafar; Dahlan, M.; Mohamad, Mahathir; Jamro, Rafhayudi; Hamzah Harun, M.; Yazid, Hafizal; Abdullah, W. Saffiey W.

    2010-01-05

    X-ray microtomography and ImageJ 1.39 u is used as a tool to quantify volume percentage of B{sub 4}C as fillers in thermoplastic-natural rubber blend composites. The use of percentage of area occupied by fillers as obtain from ImageJ from the microtomography sliced images enables the proposed technique to easily obtain the amount volume percentage of B{sub 4}C in the composite non-destructively. Comparison with other technique such as density measurement and chemical analysis proves the proposed technique as one of the promising approach.

  18. Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends.

    PubMed

    Liu, H; Wu, Q; Zhang, Q

    2009-12-01

    Banana fiber (BaF)-filled composites based on high density polyethylene (HDPE)/Nylon-6 blends were prepared via a two-step extrusion method. Maleic anhydride grafted styrene/ethylene-butylene/styrene triblock polymer (SEBS-g-MA) and maleic anhydride grafted polyethylene (PE-g-MA) were used to enhance impact performance and interfacial bonding between BaF and the resins. Mechanical, crystallization/melting, thermal stability, water absorption, and morphological properties of the composites were investigated. In the presence of SEBS-g-MA, better strengths and moduli were found for HDPE/Nylon-6 based composites compared with corresponding HDPE based composites. At a fixed weight ratio of PE-g-MA to BaF, an increase of BaF loading up to 48.2 wt.% led to a continuous improvement in moduli and flexural strength of final composites, while impact toughness was lowered gradually. Predicted tensile modulus by the Hones-Paul model for three-dimensional random fiber orientation agreed well with experimental data at the BaF loading of 29.3 wt.%. However, the randomly-oriented fiber models underestimated experimental data at higher fiber levels. It was found that the presence of SEBS-g-MA had a positive influence on reinforcing effect of the Nylon-6 component in the composites. Thermal analysis results showed that fractionated crystallization of the Nylon-6 component in the composites was induced by the addition of both SEBS-g-MA and PE-g-MA. Thermal stability of both composite systems differed slightly, except an additional decomposition peak related to the minor Nylon-6 for the composites from the HDPE/Nylon-6 blends. In the presence of SEBS-g-MA, the addition of Nylon-6 and increased BaF loading level led to an increase in the water absorption value of the composites. PMID:19574041

  19. Host Plant Odors Represent Immiscible Information Entities - Blend Composition and Concentration Matter in Hawkmoths

    PubMed Central

    Haverkamp, Alexander; Hansson, Bill S.; Knaden, Markus

    2013-01-01

    Host plant choice is of vital importance for egg laying herbivorous insects that do not exhibit brood care. Several aspects, including palatability, nutritional quality and predation risk, have been found to modulate host preference. Olfactory cues are thought to enable host location. However, experimental data on odor features that allow choosing among alternative hosts while still in flight are not available. It has previously been shown that M. sexta females prefer Datura wrightii compared to Nicotiana attenuata. The bouquet of the latter is more intense and contains compounds typically emitted by plants after feeding-damage to attract the herbivore’s enemies. In this wind tunnel study, we offered female gravid hawkmoths (Manduca sexta) odors from these two ecologically relevant, attractive, non-flowering host species. M. sexta females preferred surrogate leaves scented with vegetative odors form both host species to unscented control leaves. Given a choice between species, females preferred the odor bouquet emitted by D. wrightii to that of N. attenuata. Harmonizing, i.e. adjusting, volatile intensity to similar levels did not abolish but significantly weakened this preference. Superimposing, i.e. mixing, the highly attractive headspaces of both species, however, abolished discrimination between scented and non-scented surrogate leaves. Beyond ascertaining the role of blend composition in host plant choice, our results raise the following hypotheses. (i) The odor of a host species is perceived as a discrete odor ‘Gestalt’, and its core properties are lost upon mixing two attractive scents (ii). Stimulus intensity is a secondary feature affecting olfactory-based host choice (iii). Constitutively smelling like a plant that is attracting herbivore enemies may be part of a plant’s strategy to avoid herbivory where alternative hosts are available to the herbivore. PMID:24116211

  20. Permeability of water and oleic acid in composite films of phase separated polypropylene and cellulose stearate blends.

    PubMed

    Krasnou, Illia; Gårdebjer, Sofie; Tarasova, Elvira; Larsson, Anette; Westman, Gunnar; Krumme, Andres

    2016-11-01

    Cellulose esters with long carbon side chains (e.g. stearate) were produced via a homogenous reaction in ionic liquids. The degree of substitution was calculated to approximately 2. The melt rheology was studied for the pure cellulose esters but also combinations of the esters and polypropylene to study the processability of a blended composite material. It was shown that the compatibility between the two components was weak, which resulted in a phase-separated composite material. The morphology and permeability of water and oleic acid of the composite films were studied and it was shown that the water permeability decreased upon addition of the cellulose ester to the polymer. The permeability of oleic acid was however unchanged, which is most probable a result of high solubility in the cellulose ester rich domains of the composites. Also, the following hypothesis is stated: cellulose stearate influence the polypropylene crystallization process by decreasing the size of spherulites. PMID:27516292

  1. Particulate matter, carbon emissions and elemental compositions from a diesel engine exhaust fuelled with diesel-biodiesel blends

    NASA Astrophysics Data System (ADS)

    Ashraful, A. M.; Masjuki, H. H.; Kalam, M. A.

    2015-11-01

    A comparative morphological analysis was performed on the exhaust particles emitted from a CI engine using different blending ratios of palm biodiesel at several operating conditions. It was observed from this experiment; peak particle concentration for PB10 at 1200 rpm is 1.85E + 02 and at 1500 rpm is 2.12E + 02. A slightly smaller amount of volatile material has found from the biodiesel samples compared to the diesel fuel sample. Thermogravimetric analysis (TGA) showed that the amount of volatile material in the soot from biodiesel fuels was slightly lower than that of diesel fuel. PB20 biodiesel blends reduced maximum 11.26% of volatile matter from the engine exhaust, while PB10 biodiesel blend reduced minimum 5.53% of volatile matter. On the other hand, the amount of fixed carbon from the biodiesel samples was slightly higher than diesel fuel. Analysis of carbon emissions, palm biodiesel (PB10) reduced elemental carbon (EC) was varies 0.75%-18%, respectively. Similarly, the emission reduction rate for PB20 was varies 11.36%-23.46% respectively. While, organic carbon (OC) emission rates reduced for PB20 was varied 13.7-49% respectively. Among the biodiesel blends, PB20 exhibited highest oxygen (O), sulfur (S) concentration and lowest silicon (Si) and iron (Fe) concentration. Scanning electron microscope (SEM) images for PB20 showed granular structure particulates with bigger grain sizes compared to diesel. Particle diameter increased under the 2100-2400 rpm speed condition and it was 8.70% higher compared to the low speed conditions. Finally, the results indicated that the composition and degree of unsaturation of the methyl ester present in biodiesel, play an important role in the chemical composition of particulate matter emissions.

  2. Advanced composite applications for sub-micron biologically derived microstructures

    NASA Technical Reports Server (NTRS)

    Schnur, J. M.; Price, R. R.; Schoen, P. E.; Bonanventura, Joseph; Kirkpatrick, Douglas

    1991-01-01

    A major thrust of advanced material development is in the area of self-assembled ultra-fine particulate based composites (micro-composites). The application of biologically derived, self-assembled microstructures to form advanced composite materials is discussed. Hollow 0.5 micron diameter cylindrical shaped microcylinders self-assemble from diacetylenic lipids. These microstructures have a multiplicity of potential applications in the material sciences. Exploratory development is proceeding in application areas such as controlled release for drug delivery, wound repair, and biofouling as well as composites for electronic and magnetic applications, and high power microwave cathodes.

  3. Preparation, Fabrication, and Evaluation of Advanced Polymeric and Composite Materials

    NASA Technical Reports Server (NTRS)

    Orwoll, Robert A.

    1997-01-01

    The thesis titles are given below: physical and mechanical behavior of amorphous poly(arylene ether-co-imidasole)s and poly(arylene ether-co-imidasole) modification epoxies; the requirements of patentability as applied to the chemical arts; fabrication of thermoplastic polymer composite ribbon; blend of reactive diluents with phenylethynyl-terminated arylene ether oligomers; the synthesis, characterization, and application of ether-containing polyimides; the synthesis of reflective and electrically conductive polyimide films via an in-situ self-metalization procedure using silver (I) complexes; the thermal cure of phenylethynyl terminated polyimides and selected model compounds; and the synthesis, characterization, and molecular modeling of cyclic arylene ether oligomers.

  4. Rheological properties of PP/CaCO3 micron-nano composite blends processing based on elongation rheology via vane extruder

    NASA Astrophysics Data System (ADS)

    Benhao, Kang; Rongyuan, Chen; Guizhen, Zhang; Zhitao, Yang; Jinping, Qu

    2016-03-01

    This work aimed to study, for the first time, the rheological properties of the melt blending of PP/micron-CaCO3 and PP/nano-CaCO3 composite processing based on elongation rheology by a novel vane extruder to toughen PP. The rheological behavior of the blends was studied by capillary rheometer. The results show that: PP/CaCO3 Micron-nano copolymer blends are pseudo plastic fluid. The apparent viscosity initially increases with the increasing of feller. The change of the apparent viscosity also depends on the filler type which proves difference when the blends are on the low shear rate. When the shear rate is low, the apparent shear viscosity of micron-nano composite material is more sensitive to shear rate. For PP/micron-CaCO3 composite blend, the non-Newtonian index shows a trend of gradually increasing. In PP/nano-CaCO3 composite blend, the non-Newtonian index changed little in general with the increase of nano-filler content.

  5. In situ modulation of the vertical distribution in a blend of P3HT and PC60BM via the addition of a composition gradient inducer

    NASA Astrophysics Data System (ADS)

    Moon, Byung Joon; Lee, Gang-Young; Im, Min Jeong; Song, Seulki; Park, Taiho

    2014-01-01

    2,2,3,3,4,4,4-Heptafluoro-N-phenyl-butyr-amide (F-ADD) was synthesized and shown to induce a composition gradient in a blend of P3HT and PC60BM. The addition of small amounts (ca. 0.5 wt%) of F-ADD modulated the chemical distribution in the blend along the vertical direction by controlling the blend component interface energy through selective interactions between F-ADD and PC60BM. A homogeneous compositional distribution along the vertical direction in the nanostructured bulk heterojunction (BHJ) increased the interfacial area, which shortened the exciton path length to the donor-acceptor interface and improved the photovoltaic performance.2,2,3,3,4,4,4-Heptafluoro-N-phenyl-butyr-amide (F-ADD) was synthesized and shown to induce a composition gradient in a blend of P3HT and PC60BM. The addition of small amounts (ca. 0.5 wt%) of F-ADD modulated the chemical distribution in the blend along the vertical direction by controlling the blend component interface energy through selective interactions between F-ADD and PC60BM. A homogeneous compositional distribution along the vertical direction in the nanostructured bulk heterojunction (BHJ) increased the interfacial area, which shortened the exciton path length to the donor-acceptor interface and improved the photovoltaic performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05312a

  6. Advanced textile structural composites -- status and outlook

    SciTech Connect

    Arendts, F.J.; Drechsler, K.; Brandt, J.

    1993-12-31

    Composites with 3D woven, braided or knitted fiber reinforcement offer a high potential for the cost-effective manufacturing of structures featuring an interesting mechanical performance, for example with regard to damage tolerance or energy absorption capability. In this paper, the properties of various textile structural composites with regard to stiffness, strength, damage tolerance, energy absorption capability as well as the respective manufacturing processes (RTM or thermoplastic hybrid-yarn technique) are presented in comparison to conventional ud tape based composites. The influence of the fiber architecture on the mechanical performance (tensile stiffness and strength, compression strength, interlaminar shear strength, compression strength after impact, fracture mechanical properties, through-penetration resistance) of monolithic and composite sandwich structures has been evaluated in an experimental study. It has been shown that composites involving new 3D weavings with minimum fiber crimp can compete with tape-based laminates as far as stiffness and strength are concerned. Using knittings makes it possible to manufacture composites having superior through-penetration resistance. The specific feature of the 3D braiding process is the ability to produce complex shaped structures having a high degree of freedom with regard to fiber geometry. Finally, the application of various textile structural composites will be presented on the basis of three demonstrator components (automotive engine mount, aircraft leading edge and motor cycle helmet), and the potential for further developments will be discussed.

  7. Mechanics of advanced fiber reinforced lattice composites

    NASA Astrophysics Data System (ADS)

    Fan, Hua-Lin; Zeng, Tao; Fang, Dai-Ning; Yang, Wei

    2010-12-01

    Fiber reinforced lattice composites are light-weight attractive due to their high specific strength and specific stiffness. In the past 10 years, researchers developed three-dimensional (3D) lattice trusses and two-dimensional (2D) lattice grids by various methods including interlacing, weaving, interlocking, filament winding and molding hot-press. The lattice composites have been applied in the fields of radar cross-section reduction, explosive absorption and heat-resistance. In this paper, topologies of the lattice composites, their manufacturing routes, as well as their mechanical and multifunctional applications, were surveyed.

  8. Basic failure mechanisms in advanced composites

    NASA Technical Reports Server (NTRS)

    Mullin, J. V.; Mazzio, V. F.; Mehan, R. L.

    1972-01-01

    Failure mechanisms in carbon-epoxy composites are identified as a basis for more reliable prediction of the performance of these materials. The approach involves both the study of local fracture events in model specimens containing small groups of filaments and fractographic examination of high fiber content engineering composites. Emphasis is placed on the correlation of model specimen observations with gross fracture modes. The effects of fiber surface treatment, resin modification and fiber content are studied and acoustic emission methods are applied. Some effort is devoted to analysis of the failure process in composite/metal specimens.

  9. The Advanced Composition Explorer power subsystem

    SciTech Connect

    Panneton, P.E.; Tarr, J.E.; Goliaszewski, L.T.

    1998-07-01

    The Johns Hopkins University Applied Physics Laboratory, under contract with NASA Goddard Space Flight Center, has designed and launched the Advanced Composition Explorer (ACE) spacecraft. ACE is a scientific observatory housing ten instruments, and is located in a halo orbit about the L1 Sun-Earth libration point. ACE is providing real-time solar wind monitoring and data on elemental and isotopic matter of solar and galactic origin. The ACE Electrical Power Subsystem (EPS) is a fault tolerant, solar powered, shunt regulated, direct energy transfer architecture based on the Midcourse Space Experiment (MSX) EPS. The differences are that MSX used oriented solar arrays with a nickel hydrogen-battery defined bus, while ACE uses fixed solar panels with a regulated bus decoupled from its nickel cadmium (NiCd) battery. Also, magnetometer booms are mounted on two of the four ACE solar panels. The required accuracy of the magnetometers impose severe requirements on the magnetic fields induced by the solar array. Other noteworthy features include a solar cell degradation experiment, in-flight battery reconditioning, a battery requalified to a high vibrational environment, and an adjustable bus voltage setpoint. The four solar panels consist of aluminum honeycomb substrates covered with 15.1% efficient silicon cells. The cells are strung using silver interconnects and are back-wired to reduce magnetic emissions below 0.1nT. Pyrotechnic actuated, spring loaded hinges deploy the panels after spacecraft separation from the Delta II launch vehicle. Solar cell experiments on two of the panels track cell performance degradation at L1, and also distinguish any hydrazine impingement degradation which may be caused by the thrusters. Each solar panel uses a digital shunt box, containing blocking diodes and MOSFETs, for short-circuit control of its 5 solar strings. A power box contains redundant analog MOSFET shunts, the 90% efficient boost regulator, and redundant battery chargers

  10. Basic failure mechanisms in advanced composites

    NASA Technical Reports Server (NTRS)

    Mullin, J. V.; Mazzio, V. F.; Mehan, R. L.

    1971-01-01

    Fundamental failure mechanisms in carbon-epoxy composites were studied for more reliable prediction of the performance of these materials. Single and multiple fiber specimens were tested under tensile loads, and the sequence of failure events was observed. Parameters such as resin crack sensitivity, fiber surface treatment and variations in fibers from batch to batch are being evaluated. The analysis of bulk composite fracture processes using acoustic emission techniques is being studied in order to correlate microscopic observations with bulk composite behavior. Control of the fracture process through matrix and interface modification is being attempted, and study of failure processes in composite/metal specimens is being conducted. Most of the studies involved DEN 438 epoxy novolac as the matrix, but some experiments are now underway using the higher temperature resin ERLA 4617.

  11. Flat tensile specimen design for advanced composites

    NASA Technical Reports Server (NTRS)

    Worthem, Dennis W.

    1990-01-01

    Finite element analyses of flat, reduced gage section tensile specimens with various transition region contours were performed. Within dimensional constraints, such as maximum length, tab region width, gage width, gage length, and minimum tab length, a transition contour radius of 41.9 cm produced the lowest stress values in the specimen transition region. The stresses in the transition region were not sensitive to specimen material properties. The stresses in the tab region were sensitive to specimen composite and/or tab material properties. An evaluation of stresses with different specimen composite and tab material combinations must account for material nonlinearity of both the tab and the specimen composite. Material nonlinearity can either relieve stresses in the composite under the tab or elevate them to cause failure under the tab.

  12. Graphite/Polyimide Composites. [conference on Composites for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Dexter, H. B. (Editor); Davis, J. G., Jr. (Editor)

    1979-01-01

    Technology developed under the Composites for Advanced Space Transportation System Project is reported. Specific topics covered include fabrication, adhesives, test methods, structural integrity, design and analysis, advanced technology developments, high temperature polymer research, and the state of the art of graphite/polyimide composites.

  13. Film in the Advanced Composition Classroom: A Tapestry of Style

    ERIC Educational Resources Information Center

    Durst, Pearce

    2015-01-01

    This article advances film as worthy of rhetorical inquiry and deserving of more sustained attention in the advanced composition classroom. The first section identifies various approaches to the "language" of film, which can be adopted to navigate the technical, rhetorical, and cultural concerns needed to compose informed multimodal…

  14. B4C/Ni Composite Coatings Prepared by Cold Spray of Blended or CVD-Coated Powders

    NASA Astrophysics Data System (ADS)

    Feng, C.; Guipont, V.; Jeandin, M.; Amsellem, O.; Pauchet, F.; Saenger, R.; Bucher, S.; Iacob, C.

    2012-06-01

    In this work, the microstructures of B4C/Ni coatings by cold spray with blends or chemical vapor deposited (CVD) Ni-coated powders were investigated and compared. Powder blends with Ni powder and fine or coarse B4C powders were prepared for various B4C content ranging from 54 to 87 vol.% (equal to 25-65 wt.%). Three CVD Ni-coated B4C powder batches were also synthesized with various B4C content using the fine B4C as core particles. Ni-coated powders and both types of cold sprayed coating microstructures with blends or coated powders were investigated by optical and scanning electron microscopy. Further quantitative image analysis was carried out on scanning electron microscopy (SEM) images to measure the B4C content within the coating regarding the influence of the nominal content in the feedstock for each coating type. Both types exhibited fine fragments and unfragmented B4C, but coatings with CVD-coated powders had many more unfragmented particles. Moreover, the higher levels for both B4C (44.0 ± 4.1 vol.%) and coating microhardness (429 ± 41 HV0.5) were obtained in case of the CVD-coated powders. However, it was assessed that the highest microhardness was not obtained for the highest B4C content. This questionable result is discussed with regard to the fully original composite microstructure obtained from CVD Ni-coated B4C powder.

  15. Prediction of metallurgical coke strength from the petrographic composition of coal blends

    SciTech Connect

    Sutcu, H.; Toroglu, I.; Piskin, S.

    2009-07-01

    Turkey, especially Zonguldak on the West Coast of Black Sea region, has large reserves of bituminous coal that can be used either directly or in blends with other coals for metallurgical coke production. It is possible to predict the coking properties of these coals by petrographic analysis. In this study, semi- and non-coking coals were blended with coking bituminous coals in varying proportions and an estimation was made as to their stability factors through petrographic techniques. It was established that semi- and non-coking bituminous coals could be used in the production of metallurgical coke.

  16. Advanced composites: Design and application. Proceedings of the meeting of the Mechanical Failures Prevention Group

    NASA Technical Reports Server (NTRS)

    Shives, T. R.; Willard, W. A.

    1979-01-01

    The design and application of advanced composites is discussed with emphasis on aerospace, aircraft, automotive, marine, and industrial applications. Failure modes in advanced composites are also discussed.

  17. Using an academic-community partnership model and blended learning to advance community health nursing pedagogy.

    PubMed

    Ezeonwu, Mabel; Berkowitz, Bobbie; Vlasses, Frances R

    2014-01-01

    This article describes a model of teaching community health nursing that evolved from a long-term partnership with a community with limited existing health programs. The partnership supported RN-BSN students' integration in the community and resulted in reciprocal gains for faculty, students and community members. Community clients accessed public health services as a result of the partnership. A blended learning approach that combines face-to-face interactions, service learning and online activities was utilized to enhance students' learning. Following classroom sessions, students actively participated in community-based educational process through comprehensive health needs assessments, planning and implementation of disease prevention and health promotion activities for community clients. Such active involvement in an underserved community deepened students' awareness of the fundamentals of community health practice. Students were challenged to view public health from a broader perspective while analyzing the impacts of social determinants of health on underserved populations. Through asynchronous online interactions, students synthesized classroom and community activities through critical thinking. This paper describes a model for teaching community health nursing that informs students' learning through blended learning, and meets the demands for community health nursing services delivery. PMID:24720659

  18. Trapped rubber processing for advanced composites

    NASA Technical Reports Server (NTRS)

    Marra, P. J.

    1976-01-01

    Trapped rubber processing is a molding technique for composites in which precast silicone rubber is placed within a closed cavity where it thermally expands against the composite's surface supported by the vessel walls. The method has been applied by the Douglas Aircraft Company, under contract to NASA-Langley, to the design and fabrication of 10 DC-10 graphite/epoxy upper aft rudder assemblies. A three-bay development tool form mold die has been designed and manufactured, and tooling parameters have been established. Fabrication procedures include graphite layup, assembly of details in the tool, and a cure cycle. The technique has made it possible for the cocured fabrication of complex primary box structures otherwise impracticable via standard composite material processes.

  19. Advanced Composition and the Computerized Library.

    ERIC Educational Resources Information Center

    Hult, Christine

    1989-01-01

    Discusses four kinds of computerized access tools: online catalogs; computerized reference; online database searching; and compact disks and read only memory (CD-ROM). Examines how these technologies are changing research. Suggests how research instruction in advanced writing courses can be refocused to include the new technologies. (RS)

  20. Advanced Composition: English as a Second Language.

    ERIC Educational Resources Information Center

    Sarantos, R. L.

    This course is designed for advanced students to enable them to express themselves in writing with native proficiency comparable to North American students of similar educational levels by providing activities specifically geared to the elimination of interfering features of language in the mother tongue. Students learn to produce outlines,…

  1. Evaluation of composites made from blends of cotton burs, cotton stalks, kenaf, flax, and southern pine: Heat treatments to improve physical and mechanical properties and rot resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted on composite board blends of cotton burs (B), cotton stalks (S), kenaf (K), flax, (F), and southern yellow pine (P). The composite boards were subjected to heat treatments and rot resistance testing. Heat treatments consisted of heating fibers either pre- or post-board fab...

  2. Evaluation of various heat treatments to improve physical and mechanical properties of composites made from cotton burs, cotton stalks, kenaf, flax, and southern pine blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies evaluating physical and mechanical properties of composites produced from blends of cotton carpel (burs), cotton stalks, kenaf, and southern yellow pine indicated water absorption and thickness swell properties higher than composites made from 100% southern yellow pine. In the previ...

  3. Biodegradable Composites Based on Starch/EVOH/Glycerol Blends and Coconut Fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unripe coconut fibers were used as fillers in a biodegradable polymer matrix of starch/Ethylene vinyl alcohol (EVOH)/glycerol. The effects of fiber content on the mechanical, thermal and structural properties were evaluated. The addition of coconut fiber into starch/EVOH/glycerol blends reduced the ...

  4. Composites for Advanced Space Transportation Systems (CASTS)

    NASA Technical Reports Server (NTRS)

    Davis, J. G., Jr. (Compiler)

    1979-01-01

    A summary is given of the in-house and contract work accomplished under the CASTS Project. In July 1975 the CASTS Project was initiated to develop graphite fiber/polyimide matrix (GR/PI) composite structures with 589K (600 F) operational capability for application to aerospace vehicles. Major tasks include: (1) screening composites and adhesives, (2) developing fabrication procedures and specifications, (3) developing design allowables test methods and data, and (4) design and test of structural elements and construction of an aft body flap for the Space Shuttle Orbiter Vehicle which will be ground tested. Portions of the information are from ongoing research and must be considered preliminary. The CASTS Project is scheduled to be completed in September 1983.

  5. Combustion synthesis of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Moore, John J.

    1993-01-01

    Self-propagating high temperature (combustion) synthesis (SHS), has been investigated as a means of producing both dense and expanded (foamed) ceramic and ceramic-metal composites, ceramic powders and whiskers. Several model exothermic combustion synthesis reactions were used to establish the importance of certain reaction parameters, e.g., stoichiometry, green density, combustion mode, particle size, etc. on the control of the synthesis reaction, product morphology and properties. The use of an in situ liquid infiltration technique and the effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e., solids, liquids and gases, with varying physical properties e.g., volatility and thermal conductivity, on the microstructure and morphology of synthesized composite materials is discussed. Conducting the combustion synthesis reaction in a reactive gas environment to take advantage of the synergistic effects of combustion synthesis and vapor phase transport is also examined.

  6. Recent Advances in Composite Damage Mechanics

    NASA Technical Reports Server (NTRS)

    Reifsnider, Ken; Case, Scott; Iyengar, Nirmal

    1996-01-01

    The state of the art and recent developments in the field of composite material damage mechanics are reviewed, with emphasis on damage accumulation. The kinetics of damage accumulation are considered with emphasis on the general accumulation of discrete local damage events such as single or multiple fiber fractures or microcrack formation. The issues addressed include: how to define strength in the presence of widely distributed damage, and how to combine mechanical representations in order to predict the damage tolerance and life of engineering components. It is shown that a damage mechanics approach can be related to the thermodynamics of the damage accumulation processes in composite laminates subjected to mechanical loading and environmental conditions over long periods of time.

  7. Blast protection of infrastructure using advanced composites

    NASA Astrophysics Data System (ADS)

    Brodsky, Evan

    This research was a systematic investigation detailing the energy absorption mechanisms of an E-glass web core composite sandwich panel subjected to an impulse loading applied orthogonal to the facesheet. Key roles of the fiberglass and polyisocyanurate foam material were identified, characterized, and analyzed. A quasi-static test fixture was used to compressively load a unit cell web core specimen machined from the sandwich panel. The web and foam both exhibited non-linear stress-strain responses during axial compressive loading. Through several analyses, the composite web situated in the web core had failed in axial compression. Optimization studies were performed on the sandwich panel unit cell in order to maximize the energy absorption capabilities of the web core. Ultimately, a sandwich panel was designed to optimize the energy dissipation subjected to through-the-thickness compressive loading.

  8. Marine applications for advanced composite materials

    SciTech Connect

    Hihara, L.H.; Bregman, R.; Takahashi, P.K.

    1993-12-31

    Very large floating structures (VLFSs) may one day be essential to the study and utilization of the ocean. Some possible applications for VLFSs are ocean ranching homeports. observatories for ocean research, seabed mineral refineries, energy generation platforms. and waste management facilities. A VLFS that is in the conceptual phase, and may one day be based off the coast of Hawaii, has been named Blue Revolution. Candidate materials for Blue Revolution were identified based on criteria of rigidity, strength, and weight. Priority was given to materials that could be used to construct lightweight VLFSs. Major static forces were considered in this preliminary analysis. The best materials were identified as those having low values of density/modulus ({rho}/E) and density/strength ({rho}/{sigma}). Concrete, metal alloys, organic-matrix composites (OMCs), and metal-matrix composites (MMCs) were evaluated. OMCs and MMCs were generally the best materials based on their very low {rho}/E and {rho}/{sigma} values.

  9. Hepatoprotective Activity of Herbal Composition SAL, a Standardize Blend Comprised of Schisandra chinensis, Artemisia capillaris, and Aloe barbadensis.

    PubMed

    Yimam, Mesfin; Jiao, Ping; Moore, Breanna; Hong, Mei; Cleveland, Sabrina; Chu, Min; Jia, Qi; Lee, Young-Chul; Kim, Hyun-Jin; Nam, Jeong-Bum; Kim, Mi-Ran; Hyun, Eu-Jin; Jung, Gayoung; Do, Seon Gil

    2016-01-01

    Some botanicals have been reported to possess antioxidative activities acting as scavengers of free radicals rendering their usage in herbal medicine. Here we describe the potential use of "SAL," a standardized blend comprised of three extracts from Schisandra chinensis, Artemisia capillaris, and Aloe barbadensis, in mitigating chemically induced acute liver toxicities. Acetaminophen and carbon tetrachloride induced acute liver toxicity models in mice were utilized. Hepatic functional tests from serum collected at T24 and hepatic glutathione and superoxide dismutases from liver homogenates were evaluated. Histopathology analysis and merit of blending 3 standardized extracts were also confirmed. Statistically significant and dose-correlated inhibitions in serum ALT ranging from 52.5% (p = 0.004) to 34.6% (p = 0.05) in the APAP and 46.3% (p < 0.001) to 29.9% (p = 0.02) in the CCl4 models were observed for SAL administered at doses of 400-250 mg/kg. Moreover, SAL resulted in up to 60.6% and 80.2% reductions in serums AST and bile acid, respectively. The composition replenished depleted hepatic glutathione in association with an increase of hepatic superoxide dismutase. Unexpected synergistic protection from liver damage was also observed. Therefore, the composition SAL could be potentially utilized as an effective hepatic-detoxification agent for the protection from liver damage. PMID:27066270

  10. Hepatoprotective Activity of Herbal Composition SAL, a Standardize Blend Comprised of Schisandra chinensis, Artemisia capillaris, and Aloe barbadensis

    PubMed Central

    Yimam, Mesfin; Jiao, Ping; Moore, Breanna; Hong, Mei; Cleveland, Sabrina; Chu, Min; Jia, Qi; Lee, Young-Chul; Kim, Hyun-Jin; Nam, Jeong-Bum; Kim, Mi-Ran; Hyun, Eu-Jin; Jung, Gayoung; Do, Seon Gil

    2016-01-01

    Some botanicals have been reported to possess antioxidative activities acting as scavengers of free radicals rendering their usage in herbal medicine. Here we describe the potential use of “SAL,” a standardized blend comprised of three extracts from Schisandra chinensis, Artemisia capillaris, and Aloe barbadensis, in mitigating chemically induced acute liver toxicities. Acetaminophen and carbon tetrachloride induced acute liver toxicity models in mice were utilized. Hepatic functional tests from serum collected at T24 and hepatic glutathione and superoxide dismutases from liver homogenates were evaluated. Histopathology analysis and merit of blending 3 standardized extracts were also confirmed. Statistically significant and dose-correlated inhibitions in serum ALT ranging from 52.5% (p = 0.004) to 34.6% (p = 0.05) in the APAP and 46.3% (p < 0.001) to 29.9% (p = 0.02) in the CCl4 models were observed for SAL administered at doses of 400–250 mg/kg. Moreover, SAL resulted in up to 60.6% and 80.2% reductions in serums AST and bile acid, respectively. The composition replenished depleted hepatic glutathione in association with an increase of hepatic superoxide dismutase. Unexpected synergistic protection from liver damage was also observed. Therefore, the composition SAL could be potentially utilized as an effective hepatic-detoxification agent for the protection from liver damage. PMID:27066270

  11. JTEC panel report on advanced composites in Japan

    NASA Technical Reports Server (NTRS)

    Diefendorf, R. J.; Grisaffe, S. J.; Hillig, W. B.; Perepezko, J. H.; Pipes, R. B.; Sheehan, J. E.

    1991-01-01

    The JTEC Panel on Advanced Composites visited Japan and surveyed the status and future directions of Japanese high performance ceramic and carbon fibers and their composites in metal, intermetallic, ceramic and carbon matrices. The panel's interests included not only what composite systems were chosen, but also how these systems were developed. A strong carbon and fiber industry makes Japan the leader in carbon fiber technology. Japan has initiated an oxidation resistant carbon/carbon composite program. The goals for this program are ambitious, and it is just starting, but its progress should be closely monitored in the United States.

  12. Advances in Computational Stability Analysis of Composite Aerospace Structures

    SciTech Connect

    Degenhardt, R.; Araujo, F. C. de

    2010-09-30

    European aircraft industry demands for reduced development and operating costs. Structural weight reduction by exploitation of structural reserves in composite aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis of real structures under realistic loading conditions. This paper presents different advances from the area of computational stability analysis of composite aerospace structures which contribute to that field. For stringer stiffened panels main results of the finished EU project COCOMAT are given. It investigated the exploitation of reserves in primary fibre composite fuselage structures through an accurate and reliable simulation of postbuckling and collapse. For unstiffened cylindrical composite shells a proposal for a new design method is presented.

  13. Molecular weight dependent vertical composition profiles of PCDTBT:PC71BM blends for organic photovoltaics

    PubMed Central

    Kingsley, James W.; Marchisio, Pier Paolo; Yi, Hunan; Iraqi, Ahmed; Kinane, Christy J.; Langridge, Sean; Thompson, Richard L.; Cadby, Ashley J.; Pearson, Andrew J.; Lidzey, David G.; Jones, Richard A. L.; Parnell, Andrew J.

    2014-01-01

    We have used Soxhlet solvent purification to fractionate a broad molecular weight distribution of the polycarbazole polymer PCDTBT into three lower polydispersity molecular weight fractions. Organic photovoltaic devices were made using a blend of the fullerene acceptor PC71BM with the molecular weight fractions. An average power conversion efficiency of 5.89% (peak efficiency of 6.15%) was measured for PCDTBT blend devices with a number average molecular weight of Mn = 25.5 kDa. There was significant variation between the molecular weight fractions with low (Mn = 15.0 kDa) and high (Mn = 34.9 kDa) fractions producing devices with average efficiencies of 5.02% and 3.70% respectively. Neutron reflectivity measurements on these polymer:PC71BM blend layers showed that larger molecular weights leads to an increase in the polymer enrichment layer thickness at the anode interface, this improves efficiency up to a limiting point where the polymer solubility causes a reduction of the PCDTBT concentration in the active layer. PMID:24924096

  14. Molecular weight dependent vertical composition profiles of PCDTBT:PC71BM blends for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Kingsley, James W.; Marchisio, Pier Paolo; Yi, Hunan; Iraqi, Ahmed; Kinane, Christy J.; Langridge, Sean; Thompson, Richard L.; Cadby, Ashley J.; Pearson, Andrew J.; Lidzey, David G.; Jones, Richard A. L.; Parnell, Andrew J.

    2014-06-01

    We have used Soxhlet solvent purification to fractionate a broad molecular weight distribution of the polycarbazole polymer PCDTBT into three lower polydispersity molecular weight fractions. Organic photovoltaic devices were made using a blend of the fullerene acceptor PC71BM with the molecular weight fractions. An average power conversion efficiency of 5.89% (peak efficiency of 6.15%) was measured for PCDTBT blend devices with a number average molecular weight of Mn = 25.5 kDa. There was significant variation between the molecular weight fractions with low (Mn = 15.0 kDa) and high (Mn = 34.9 kDa) fractions producing devices with average efficiencies of 5.02% and 3.70% respectively. Neutron reflectivity measurements on these polymer:PC71BM blend layers showed that larger molecular weights leads to an increase in the polymer enrichment layer thickness at the anode interface, this improves efficiency up to a limiting point where the polymer solubility causes a reduction of the PCDTBT concentration in the active layer.

  15. Molecular weight dependent vertical composition profiles of PCDTBT:PC₇₁BM blends for organic photovoltaics.

    PubMed

    Kingsley, James W; Marchisio, Pier Paolo; Yi, Hunan; Iraqi, Ahmed; Kinane, Christy J; Langridge, Sean; Thompson, Richard L; Cadby, Ashley J; Pearson, Andrew J; Lidzey, David G; Jones, Richard A L; Parnell, Andrew J

    2014-01-01

    We have used Soxhlet solvent purification to fractionate a broad molecular weight distribution of the polycarbazole polymer PCDTBT into three lower polydispersity molecular weight fractions. Organic photovoltaic devices were made using a blend of the fullerene acceptor PC₇₁BM with the molecular weight fractions. An average power conversion efficiency of 5.89% (peak efficiency of 6.15%) was measured for PCDTBT blend devices with a number average molecular weight of Mn = 25.5 kDa. There was significant variation between the molecular weight fractions with low (Mn = 15.0 kDa) and high (Mn = 34.9 kDa) fractions producing devices with average efficiencies of 5.02% and 3.70% respectively. Neutron reflectivity measurements on these polymer:PC₇₁BM blend layers showed that larger molecular weights leads to an increase in the polymer enrichment layer thickness at the anode interface, this improves efficiency up to a limiting point where the polymer solubility causes a reduction of the PCDTBT concentration in the active layer. PMID:24924096

  16. Ceramic matrix composites -- Advanced high-temperature structural materials

    SciTech Connect

    Lowden, R.A.; Ferber, M.K.; Hellmann, J.R.; Chawla, K.K.; DiPietro, S.G.

    1995-10-01

    This symposium on Ceramic Matrix Composites: Advanced High-Temperature Structural Materials was held at the 1994 MRS Fall Meeting in Boston, Massachusetts on November 28--December 2. The symposium was sponsored by the Department of Energy`s Office of Industrial Technology`s Continuous Fiber Ceramic Composites Program, the Air Force Office of Scientific Research, and NASA Lewis Research Center. Among the competing materials for advanced, high-temperature applications, ceramic matrix composites are leading candidates. The symposium was organized such that papers concerning constituents--fibers and matrices--were presented first, followed by composite processing, modeling of mechanical behavior, and thermomechanical testing. More stable reinforcements are necessary to enhance the performance and life of fiber-reinforced ceramic composites, and to ensure final acceptance of these materials for high-temperature applications. Encouraging results in the areas of polymer-derived SiC fibers and single crystal oxide filaments were given, suggesting composites with improved thermomechanical properties and stability will be realized in the near future. The significance of the fiber-matrix interface in the design and performance of these materials is evident. Numerous mechanical models to relate interface properties to composite behavior, and interpret test methods and data, were enthusiastically discussed. One issue of great concern for any advanced material for use in extreme environments is stability. This theme arose frequently throughout the symposium and was the topic of focus on the final day. Fifty nine papers have been processed separately for inclusion on the data base.

  17. Advanced composite vertical fin for L-1011 aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.

    1984-01-01

    The structural box of the L-1011 vertical fin was redesigned using advanced composite materials. The box was fabricated and ground tested to verify the structural integrity. This report summarizes the complete program starting with the design and analysis and proceeds through the process development ancillary test program production readiness verification testing, fabrication of the full-scale fin boxes and the full-scale ground testing. The program showed that advanced composites can economically and effectively be used in the design and fabrication of medium primary structures for commercial aircraft. Static-strength variability was demonstrated to be comparable to metal structures and the long term durability of advanced composite components was demonstrated.

  18. Process simulation for advanced composites production

    SciTech Connect

    Allendorf, M.D.; Ferko, S.M.; Griffiths, S.

    1997-04-01

    The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coating techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.

  19. Advanced composite polymer electrolyte fuel cell membranes

    SciTech Connect

    Wilson, M.S.; Zawodzinski, T.A.; Gottesfeld, S.; Kolde, J.A.; Bahar, B.

    1995-09-01

    A new type of reinforced composite perfluorinated polymer electrolyte membrane, GORE-SELECT{trademark} (W.L. Gore & Assoc.), is characterized and tested for fuel cell applications. Very thin membranes (5-20 {mu}m thick) are available. The combination of reinforcement and thinness provides high membrane, conductances (80 S/cm{sup 2} for a 12 {mu}m thick membrane at 25{degrees}C) and improved water distribution in the operating fuel cell without sacrificing longevity or durability. In contrast to nonreinforced perfluorinated membranes, the x-y dimensions of the GORE-SELECT membranes are relatively unaffected by the hydration state. This feature may be important from the viewpoints of membrane/electrode interface stability and fuel cell manufacturability.

  20. Recent advancement in optical fiber sensing for aerospace composite structures

    NASA Astrophysics Data System (ADS)

    Minakuchi, Shu; Takeda, Nobuo

    2013-12-01

    Optical fiber sensors have attracted considerable attention in health monitoring of aerospace composite structures. This paper briefly reviews our recent advancement mainly in Brillouin-based distributed sensing. Damage detection, life cycle monitoring and shape reconstruction systems applicable to large-scale composite structures are presented, and new technical concepts, "smart crack arrester" and "hierarchical sensing system", are described as well, highlighting the great potential of optical fiber sensors for the structural health monitoring (SHM) field.

  1. Melt-based compression-molded scaffolds from chitosan-polyester blends and composites: Morphology and mechanical properties.

    PubMed

    Correlo, V M; Boesel, L F; Pinho, E; Costa-Pinto, A R; Alves da Silva, M L; Bhattacharya, M; Mano, J F; Neves, N M; Reis, R L

    2009-11-01

    Blends of chitosan and synthetic aliphatic polyesters (polybutylene succinate, polybutylene succinate adipate, polycaprolactone, and polybutylene terepthalate adipate) were compounded with and without hydroxyapatite, a bioactive mineral filler known to enhance osteoconduction. The blends and composites were compression molded with two different granulometric salt sizes (63-125 microm and 250-500 microm) having different levels of salt content (60, 70, and 80%) by weight. By leaching the salt particles, it was possible to produce porous scaffolds with distinct morphologies. The relationship between scaffold morphology and mechanical properties was evaluated using scanning electron microscopy, microcomputed tomography, compression testing, differential scanning calorimetry, small-angle X-ray scattering (SAXS), and wide-angle X-ray scattering. The produced scaffolds are characterized by having different morphologies depending on the average particle size and the amount of NaCl used. Specimens with higher porosity level have a less organized pore structure but increased interconnectivity of the pores. The stress-strain curve under compression displayed a linear elasticity followed by a plateau whose characteristics depend on the scaffold polymer composition. A decrease in the salt particle size used to create the porosity caused in general a decrease in the mechanical properties of the foams. Composites with hydroxyapatite had a sharp reduction in yield stress, modulus, and strain at break. The melting temperature decreased with increased chitosan content. SAXS results indicate no preferential crystalline orientation in the scaffolds. Cytotoxicity evaluation were carried out using standard tests (accordingly to ISO/EN 10993 part 5 guidelines), namely MTS test with a 24-h extraction period, revealing that L929 cells had comparable metabolic activities to that obtained for the negative control. PMID:18985771

  2. Alignment and composition of laminin–polycaprolactone nanofiber blends enhance peripheral nerve regeneration

    PubMed Central

    Neal, Rebekah A.; Tholpady, Sunil S.; Foley, Patricia L.; Swami, Nathan; Ogle, Roy C.; Botchwey, Edward A.

    2012-01-01

    Peripheral nerve transection occurs commonly in traumatic injury, causing deficits distal to the injury site. Conduits for repair currently on the market are hollow tubes; however, they often fail due to slow regeneration over long gaps. To facilitate increased regeneration speed and functional recovery, the ideal conduit should provide biochemically relevant signals and physical guidance cues, thus playing an active role in regeneration. To that end, laminin and laminin–polycaprolactone (PCL) blend nanofibers were fabricated to mimic peripheral nerve basement membrane. In vitro assays established 10% (wt) laminin content is sufficient to retain neurite-promoting effects of laminin. In addition, modified collector plate design to introduce an insulating gap enabled the fabrication of aligned nanofibers. The effects of laminin content and fiber orientation were evaluated in rat tibial nerve defect model. The lumens of conduits were filled with nanofiber meshes of varying laminin content and alignment to assess changes in motor and sensory recovery. Retrograde nerve conduction speed at 6 weeks was significantly faster in animals receiving aligned nanofiber conduits than in those receiving random nanofiber conduits. Animals receiving nanofiber-filled conduits showed some conduction in both anterograde and retrograde directions, whereas in animals receiving hollow conduits, no impulse conduction was detected. Aligned PCL nanofibers significantly improved motor function; aligned laminin blend nanofibers yielded the best sensory function recovery. In both cases, nanofiber-filled conduits resulted in better functional recovery than hollow conduits. These studies provide a firm foundation for the use of natural–synthetic blend electrospun nanofibers to enhance existing hollow nerve guidance conduits. PMID:22106069

  3. Boron/aluminum graphite/resin advanced fiber composite hybrids

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1975-01-01

    Fabrication feasibility and potential of an adhesively bonded metal and resin matrix fiber-composite hybrid are determined as an advanced material for aerospace and other structural applications. The results show that using this hybrid concept makes possible a composite design which, when compared with nonhybrid composites, has greater transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for predicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.

  4. Third NASA Advanced Composites Technology Conference, volume 1, part 1

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)

    1993-01-01

    This document is a compilation of papers presented at the Third NASA Advanced Composites Technology (ACT) Conference. The ACT Program is a major multi-year research initiative to achieve a national goal of technology readiness before the end of the decade. Conference papers recorded results of research in the ACT Program in the specific areas of automated fiber placement, resin transfer molding, textile preforms, and stitching as these processes influence design, performance, and cost of composites in aircraft structures. Papers sponsored by the Department of Defense on the Design and Manufacturing of Low Cost Composites (DMLCC) are also included in Volume 2 of this document.

  5. Composites of multi-walled carbon nanotubes with polypropylene and thermoplastic olefin blends prepared by melt compounding

    NASA Astrophysics Data System (ADS)

    Petrie, Kyle G.

    Composites of multi-walled carbon nanotubes (MWCNTs) with polypropylene (PP) and thermoplastic olefins (TPOs) were prepared by melt compounding. Two non-covalent functionalization methods were employed to improve nanotube dispersion and the resulting composite properties are reported. The first functionalization approach involved partial coating of the surface of the nanotubes with a hyperbranched polyethylene (HBPE). MWCNT functionalization with HBPE was only moderately successful in breaking up the large aggregates that formed upon melt mixing with PP. In spite of the formation of large aggregates, the samples were conductive above a percolation threshold of 7.3 wt%. MWCNT functionalization did not disrupt the electrical conductivity of the nanotubes. The composite strength was improved with addition of nanotubes, but ductility was severely compromised because of the existence of aggregates. The second method involved PP matrix functionalization with aromatic moieties capable of pi-pi interaction with MWCNT sidewalls. Various microscopy techniques revealed the addition of only 25 wt% of PP-g-pyridine (Py) to the neat PP was capable of drastically reducing nanotube aggregate size and amount. Raman spectroscopy confirmed improved polymer/nanotube interaction with the PP-g-Py matrix. Electrical percolation threshold was obtained at a MWCNT loading of approximately 1.2 wt%. Electrical conductivity on the order of 10 -2 S/m was achieved, suggesting possible use in semi-conducting applications. Composite strength was improved upon addition of MWCNTs. The matrix functionalization with Py resulted in a significant improvement in composite ductility when filled with MWCNTs in comparison to its maleic anhydride (MA) counterpart. Preliminary investigations suggest that the use of alternating current (AC) electric fields may be effective in aligning nanotubes in PP to reduce the filler loading required for electrical percolation. Composites containing MWCNT within PP

  6. Research priorities and history of advanced composite compression testing

    NASA Technical Reports Server (NTRS)

    Baumann, K. J.

    1981-01-01

    Priorities for standard compression testing research in advanced laminated fibrous composite materials are presented along with a state of the art survey (completed in 1979) including history and commentary on industrial test methods. Historically apparent research priorities and consequent (lack of) progress are supporting evidence for newly derived priorities.

  7. ADVANCED COMPOSITES TECHNOLOGY CASE STUDY AT NASA LANGLEY RESEARCH CENTER

    EPA Science Inventory

    Under the Chesapeake Bay Agreement, NASA-LaRC is a member of the Tidewater Interagency Pollution Prevention Program (TIPPP). t NASA-LaRC, a technique for producing advanced composite materials without the use of solvents has been developed. his assessment was focused on the produ...

  8. Development of Metal Matrix Composites for NASA'S Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    The state-of-the-art development of several aluminum and copper based Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The presentation's goal is to provide an overview of NASA-Marshall Space Flight Center's planned and on-going activities in MMC for advanced liquid rocket engines such as the X-33 vehicle's Aerospike and X-34 Fastrac engine. The focus will be on lightweight and environmental compatibility with oxygen and hydrogen of key MMC materials, within each NASA's new propulsion application, that will provide a high payoff for NASA's reusable launch vehicle systems and space access vehicles. Advanced MMC processing techniques such as plasma spray, centrifugal casting, pressure infiltration casting will be discussed. Development of a novel 3D printing method for low cost production of composite preform, and functional gradient MMC to enhanced rocket engine's dimensional stability will be presented.

  9. Mishap risk control for advanced aerospace/composite materials

    NASA Technical Reports Server (NTRS)

    Olson, John M.

    1994-01-01

    Although advanced aerospace materials and advanced composites provide outstanding performance, they also present several unique post-mishap environmental, safety, and health concerns. The purpose of this paper is to provide information on some of the unique hazards and concerns associated with these materials when damaged by fire, explosion, or high-energy impact. Additionally, recommended procedures and precautions are addressed as they pertain to all phases of a composite aircraft mishap response, including fire-fighting, investigation, recovery, clean-up, and guidelines are general in nature and not application-specific. The goal of this project is to provide factual and realistic information which can be used to develop consistent and effective procedures and policies to minimize the potential environmental, safety, and health impacts of a composite aircraft mishap response effort.

  10. Proximate composition and selected functional properties of African breadfruit and sweet potato flour blends.

    PubMed

    Akubor, P I

    1997-01-01

    Full-fat African breadfruit flour was used to replace 30, 40, 50, 60 and 70% of sweet potato flour. The chemical composition and functional properties of composite flours showed that they contain more protein, fat, and ash and less carbohydrate than sweet potato flour. With increasing level of supplementation of breadfruit, ash, protein and fat contents increased while carbohydrate decreased. The composite flours possessed higher water absorption than sweet potato flour. The water absorption capacity increased from 20% for sweet potato flour to the range of 85-120% for composite flours. The oil absorption capacities for some composite flours were higher than that for sweet potato but less than that of breadfruit. Composite flours had good foaming capacity but lacked foaming stability. The bulk density of the composite flours was found to be low which will be an advantage in the preparation of weaning food formulations. PMID:9498694

  11. Design of aromatic thermosetting copolyester compositions and blends for thin film applications

    NASA Astrophysics Data System (ADS)

    Xu, Kun

    This thesis is devoted to the development, synthesis, properties, and applications of aromatic thermosetting copolyester (ATSP) and multicomponent systems of ATSP and polyimide thin films. Originally, ATSP was developed as a high performance structural polymer. One drawback to this system is the inability to prepare uniform thin films from NMP solutions of ATSP oligomers. To be used in thin film applications, the synthesis and curing of ATSP oligomers are optimized, permitting formation of uniform thin films. The optimized ATSP thin films display sharp improvements in their dielectric properties. Two thin film applications have been investigated. One, because foaming can reduce the dielectric constant, the possibility of foaming ATSP using the reaction byproduct during curing is an attractive concept in developing ATSP as a low k dielectric. To this end, the nature of pore formation was investigated and avenues of research for producing foamed ATSP with controlled pore morphology are suggested. Second, the application of ATSP as a sub-micrometer adhesive in solid-state integration of microelectronic devices is explored. In this study we characterize the adhesion mechanism between ATSP and polyimide using DSIMS and demonstrate the effectiveness of this solid state integration technique in a mesoscopic device. In addition, two approaches have been taken to design multi-component systems of ATSP and polyimide thin films with the aim of obtaining optimized properties from the combination of both polymers. In the first approach, thin film blends of ATSP and polyimide have been prepared. Emphasis is placed on the study of the phase separation and surface segregation behavior using a combination of techniques including DSIMS, 3He NRA and AFM. A remarkable yet stable five-layered lamellar structure has been observed in a thin film blend of ATSP and polyimide, representing the first observation of surface directed spinodal decomposition in a thin film blend of high

  12. Tailoring thermal expansion in metal matrix composites blended by antiperovskite manganese nitrides exhibiting giant negative thermal expansion

    NASA Astrophysics Data System (ADS)

    Takenaka, K.; Hamada, T.; Kasugai, D.; Sugimoto, N.

    2012-10-01

    We controlled thermal expansion of metal matrix composites (MMCs) that had been blended using antiperovskite manganese nitrides with giant negative thermal expansion (NTE). The NTE of the manganese nitrides, which is isotopic, is greater than -30 ppm K-1 in α (coefficient of linear thermal expansion), which is several or ten times as large as that of conventional NTE materials. These advantages of nitrides are desirable for practical application as a thermal-expansion compensator, which can suppress thermal expansion of various materials including metals and even plastics. Powder metallurgy using pulsed electric current sintering enables us to reduce temperatures and times for fabrication of MMCs. Consequently, chemical reactions between matrix (Al, Ti, Cu) and filler can be controlled and even high-melting-point metals can be used as a matrix. Thermal expansion of these MMCs is tunable across widely various α values, even negative ones, with high reproducibility. These composites retain a certain amount of voids. Formation of rich and stable interfacial bonding, overcoming large mismatch in thermal expansion, remains as a problem that is expected to hinder better composite performance.

  13. Tamarindus indica pectin blend film composition for coating tablets with enhanced adhesive force strength.

    PubMed

    Khurana, Rajneet; Singh, Kuldeep; Sapra, Bharti; Tiwary, A K; Rana, Vikas

    2014-02-15

    Tablet coating is the most useful method to improve tablet texture, odour and mask taste. Thus, the present investigation was aimed at developing an industrially acceptable aqueous tablet coating material. The physico-chemical, electrical and SEM investigations ensures that blending of Tamarindus indica (Linn.) pectin (TP) with chitosan gives water resistant film texture. Therefore, CH-TP (60:40) spray coated tablets were prepared. The evaluation of CH-TP coated tablets showed enhanced adhesive force strength (between tablet surface to coat) and negligible cohesive force strength (between two tablets) both evaluated using texture analyzer. The comparison of CH-TP coated tablets with Eudragit coated tablets further supported superiority of the former material. Thus, the findings pointed towards the potential of CH-TP for use as a tablet coating material in food as well as pharmaceutical industry. PMID:24507255

  14. Property tuning of poly(lactic acid)/cellulose bio-composites through blending with modified ethylene-vinyl acetate copolymer.

    PubMed

    Pracella, Mariano; Haque, Md Minhaz-Ul; Paci, Massimo; Alvarez, Vera

    2016-02-10

    The effect of addition of an ethylene-vinyl acetate copolymer modified with glycidyl methacrylate (EVA-GMA) on the structure and properties of poly(lactic acid) (PLA) composites with cellulose micro fibres (CF) was investigated. Binary (PLA/CF) and ternary (PLA/EVA-GMA/CF) composites obtained by melt mixing in Brabender mixer were analysed by SEM, POM, WAXS, DSC, TGA and tensile tests. The miscibility and morphology of PLA/EVA-GMA blends were first examined as a function of composition: a large rise of PLA spherulite growth rate in the blends was discovered with increasing the EVA-GMA content (0-30 wt%) in the isothermal crystallization both from the melt and the solid state. PLA/EVA-GMA/CF ternary composites displayed improved adhesion and dispersion of fibres into the matrix as compared to PLA/CF system. Marked changes of thermodynamic and tensile parameters, as elastic modulus, strength and elongation at break were observed for the composites, depending on blend composition, polymer miscibility and fibre-matrix chemical interactions at the interface. PMID:26686158

  15. In-Situ Investigation of Advanced Structural Coatings and Composites

    NASA Technical Reports Server (NTRS)

    Ustundag, Ersan

    2003-01-01

    The premise of this project is a comprehensive study that involves the in-situ characterization of advanced coatings and composites by employing both neutron and x-ray diffraction techniques in a complementary manner. The diffraction data would then be interpreted and used in developing or validating advanced micromechanics models with life prediction capability. In the period covered by this report, basic work was conducted to establish the experimental conditions for various specimens and techniques. In addition, equipment was developed that will allow the in-situ studies under a range of conditions (stress, temperature, atmosphere, etc.).

  16. Characterization and development of materials for advanced textile composites

    NASA Technical Reports Server (NTRS)

    Hartness, J. Timothy; Greene, Timothy L.; Taske, Leo E.

    1993-01-01

    Work ongoing under the NASA Langley - Advanced Composite Technology (ACT) program is discussed. The primary emphasis of the work centers around the development and characterization of graphite fiber that has been impregnated with an epoxy powder. Four epoxies have been characterized in towpreg form as to their weaveability and braidability. Initial mechanical properties have been generated on each resin system. These include unidirectional as well as 8-harness satin cloth. Initial 2D and 3D weaving and braiding trials will be reported on as well as initial efforts to develop towpreg suitable for advanced tow placement.

  17. CAD/CAM of braided preforms for advanced composites

    NASA Astrophysics Data System (ADS)

    Yang, Gui; Pastore, Christopher; Tsai, Yung Jia; Soebroto, Heru; Ko, Frank

    A CAD/CAM system for braiding to produce preforms for advanced textile structural composites is presented in this paper. The CAD and CAM systems are illustrated in detail. The CAD system identifies the fiber placement and orientation needed to fabricate a braided structure over a mandrel, for subsequent composite formation. The CAM system uses the design parameters generated by the CAD system to control the braiding machine. Experimental evidence demonstrating the success of combining these two technologies to form a unified CAD/CAM system for the manufacture of braided fabric preforms with complex structural shapes is presented.

  18. Fatigue Damage Mechanisms in Advanced Hybrid Titanium Composite Laminates

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven; Rhymer, Donald W.; St.Clair, Terry L. (Technical Monitor)

    2000-01-01

    Hybrid Titanium Composite Laminates (HTCL) are a type of hybrid composite laminate with promise for high-speed aerospace applications, specifically designed for improved damage tolerance and strength at high-temperature (350 F, 177 C). However, in previous testing, HTCL demonstrated a propensity to excessive delamination at the titanium/PMC interface following titanium cracking. An advanced HTCL has been constructed with an emphasis on strengthening this interface, combining a PETI-5/IM7 PMC with Ti-15-3 foils prepared with an alkaline-perborate surface treatment. This paper discusses how the fatigue capabilities of the "advanced" HTCL compare to the first generation HTCL which was not modified for interface optimization, in both tension-tension (R = 0.1) and tension-compression (R=-0.2). The advanced HTCL under did not demonstrate a significant improvement in fatigue life, in either tension-tension or tension-compression loading. However, the advanced HTCL proved much more damage tolerant. The R = 0.1 tests revealed the advanced HTCL to increase the fatigue life following initial titanium ply damage up to 10X that of the initial HTCL at certain stress levels. The damage progression following the initial ply damage demonstrated the effect of the strengthened PMC/titanium interface. Acetate film replication of the advanced HTCL edges showed a propensity for some fibers in the adjacent PMC layers to fail at the point of titanium crack formation, suppressing delamination at the Ti/PMC interface. The inspection of failure surfaces validated these findings, revealing PMC fibers bonded to the majority of the titanium surfaces. Tension compression fatigue (R = -0.2) demonstrated the same trends in cycles between initial damage and failure, damage progression, and failure surfaces. Moreover, in possessing a higher resistance to delamination, the advanced HTCL did not exhibit buckling following initial titanium ply cracking under compression unlike the initial HTCL.

  19. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    SciTech Connect

    James E. Francfort

    2003-11-01

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

  20. Polypropylene/glass fiber hierarchical composites incorporating inorganic fullerene-like nanoparticles for advanced technological applications.

    PubMed

    Díez-Pascual, Ana M; Naffakh, Mohammed

    2013-10-01

    Novel isotactic polypropylene (iPP)/glass fiber (GF) laminates reinforced with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles as environmentally friendly fillers have been successfully fabricated by simple melt-blending and fiber impregnation in a hot-press without the addition of any compatibilizer. The influence of IF-WS2 concentration on the morphology, viscosity. and thermal and mechanical behavior of the hierarchical composites has been investigated. Results revealed an unprecedented 62 °C increase in the degradation temperature of iPP/GF upon addition of only 4.0 wt % IF-WS2. The coexistence of both micro- and nanoscale fillers resulted in synergistic effects on enhancing the stiffness, strength, crystallinity, thermal stability, glass transition (Tg) and heat distortion temperature (HDT) of the matrix. The approach used in this work is an efficient, versatile, scalable and economic strategy to improve the mechanical and thermal behavior of GF-reinforced thermoplastics with a view to extend their use in advanced technological applications. This new type of composite materials shows great potential to improve the efficiency and sustainability of many forms of transport. PMID:24015820

  1. High resolution computed tomography of advanced composite and ceramic materials

    NASA Technical Reports Server (NTRS)

    Yancey, R. N.; Klima, S. J.

    1991-01-01

    Advanced composite and ceramic materials are being developed for use in many new defense and commercial applications. In order to achieve the desired mechanical properties of these materials, the structural elements must be carefully analyzed and engineered. A study was conducted to evaluate the use of high resolution computed tomography (CT) as a macrostructural analysis tool for advanced composite and ceramic materials. Several samples were scanned using a laboratory high resolution CT scanner. Samples were also destructively analyzed at the locations of the scans and the nondestructive and destructive results were compared. The study provides useful information outlining the strengths and limitations of this technique and the prospects for further research in this area.

  2. Review on advanced composite materials boring mechanism and tools

    NASA Astrophysics Data System (ADS)

    Shi, Runping; Wang, Chengyong

    2010-12-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  3. Review on advanced composite materials boring mechanism and tools

    NASA Astrophysics Data System (ADS)

    Shi, Runping; Wang, Chengyong

    2011-05-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  4. Fabrication and evaluation of advanced titanium and composite structural panels

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Hoffman, E. L.; Payne, L.; Carter, A. L.

    1976-01-01

    Advanced manufacturing methods for titanium and composite material structures are being developed and evaluated. The focus for the manufacturing effort is the fabrication of full-scale structural panels which replace an existing shear panel on the upper wing surface of the NASA YF-12 aircraft. The program involves design, fabrication, ground testing, and Mach 3 flight service of full-scale structural panels and laboratory testing of representative structural element specimens.

  5. [Emitting characteristics and carrier composite regions variety of the blend of terbium complex and poly-n-vinylcarbazole].

    PubMed

    Cheng, Bao-mei; Deng, Zhen-bo; Liang, Chun-jun; Xu, Deng-hui; Wang, Rui-fen

    2007-02-01

    A new rare earth complex TbGd(BA)6(bipy)2 was synthesized, which was used as an emitting material in electroluminescence. By doping with poly-N-vinylcarbazole (PVK), the stability and conductivity of terbium complex were improved. The photoluminescence of PVK, terbium complex and their blend indicated that energy transfer from PVK to terbium complex occurred. In the present paper, single-, double- and multi-layer devices were fabricated. In the double-layer devices, holes and electrons were recombined at the interface of emitting layer (EML) and electron transporting layer (ETL). With increasing the thickness of Alq3, especially at highly electric field, carrier composite region transferred closely to ETL. However, in multi-layer devices, carrier composite region was restricted at the interface of emitting layer and holes blocking layer (HBL) due to high HOMO level of BCP. Enhancing electric field, emission from terbium complex was getting saturation gradually and weak emission from PVK was observed. From the optimized multi-layer device, bright and green emission from terbium complex was obtained with the highest EL brightness of the device of 213 cd x m(-2) at 13.5 V. PMID:17514942

  6. Effects of biochar blends on microbial community composition in two coastal plain soils

    EPA Science Inventory

    The amendment of soil with biochar has been demonstrated to have an effect not only on the soil physicochemical properties, but also on soil microbial community composition and activity. Previous reports have demonstrated significant impacts on soil microbial community structure....

  7. Optimization of Blended Wing Body Composite Panels Using Both NASTRAN and Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.

    2006-01-01

    The blended wing body (BWB) is a concept that has been investigated for improving the performance of transport aircraft. A trade study was conducted by evaluating four regions from a BWB design characterized by three fuselage bays and a 400,000 lb. gross take-off weight (GTW). This report describes the structural optimization of these regions via computational analysis and compares them to the baseline designs of the same construction. The identified regions were simplified for use in the optimization. The regions were represented by flat panels having appropriate classical boundary conditions and uniform force resultants along the panel edges. Panel-edge tractions and internal pressure values applied during the study were those determined by nonlinear NASTRAN analyses. Only one load case was considered in the optimization analysis for each panel region. Optimization was accomplished using both NASTRAN solution 200 and Genetic Algorithm (GA), with constraints imposed on stress, buckling, and minimum thicknesses. The NASTRAN optimization analyses often resulted in infeasible solutions due to violation of the constraints, whereas the GA enforced satisfaction of the constraints and, therefore, always ensured a feasible solution. However, both optimization methods encountered difficulties when the number of design variables was increased. In general, the optimized panels weighed less than the comparable baseline panels.

  8. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  9. Boron/aluminum-graphite/resin advanced fiber composite hybrids

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1974-01-01

    An investigation was conducted to determine the fabrication feasibility and to assess the potential of adhesively-bonded metal and resin matrix fiber composite hybrids as an advanced material, for aerospace and other structural applications. The results of fabrication studies and of evaluation of physical and mechanical properties show that using this hybrid concept it is possible to design a composite which, when compared to nonhybrid composites, has improved transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for perdicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.

  10. Third NASA Advanced Composites Technology Conference, volume 1, part 2

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)

    1993-01-01

    This document is a compilation of papers presented at the Third NASA Advanced Composites Technology (ACT) Conference held at Long Beach, California, 8-11 June 1992. The ACT Program is a major multi-year research initiative to achieve a national goal of technology readiness before the end of the decade. Conference papers recorded results of research in the ACT Program in the specific areas of automated fiber placement, resin transfer molding, textile preforms, and stitching as these processes influence design, performance, and cost of composites in aircraft structures. Papers sponsored by the Department of Defense on the Design and Manufacturing of Low Cost Composites (DMLCC) are also included in Volume 2 of this document.

  11. Boron/aluminum-graphite/resin advanced fiber composite hybrids

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1974-01-01

    An investigation was conducted to determine the fabrication feasibility and to assess the potential of adhesively-bonded metal and resin matrix fiber composite hybrids as an advanced material, for aerospace and other structural applications. The results of fabrication studies and of evaluation of physical and mechanical properties show that using this hybrid concept it is possible to design a composite which, when compared to nonhybrid composites, has improved transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for predicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.

  12. Composite intermediate case manufacturing scale-up for advanced engines

    NASA Technical Reports Server (NTRS)

    Ecklund, Rowena H.

    1992-01-01

    This Manufacturing Technology for Propulsion Program developed a process to produce a composite intermediate case for advanced gas turbine engines. The method selected to manufacture this large, complex part uses hard tooling for surfaces in the airflow path and trapped rubber to force the composite against the mold. Subelements were manufactured and tested to verify the selected design, tools, and processes. The most significant subelement produced was a half-scale version of a composite intermediate case. The half-scale subelement maintained the geometry and key dimensions of the full-scale case, allowing relevant process development and structural verification testing to be performed on the subelement before manufacturing the first full-scale case.

  13. Performance Properties of Graphite Reinforced Composites with Advanced Resin Matrices

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1980-01-01

    This article looks at the effect of different resin matrices on thermal and mechanical properties of graphite composites, and relates the thermal and flammability properties to the anaerobic char yield of the resins. The processing parameters of graphite composites utilizing graphite fabric and epoxy or other advanced resins as matrices are presented. Thermoset resin matrices studied were: aminecured polyfunctional glycidyl aminetype epoxy (baseline), phenolicnovolac resin based on condensation of dihydroxymethyl-xylene and phenol cured with hexamine, two types of polydismaleimide resins, phenolic resin, and benzyl resin. The thermoplastic matrices studied were polyethersulfone and polyphenylenesulfone. Properties evaluated in the study included anaerobic char yield, limiting oxygen index, smoke evolution, moisture absorption, and mechanical properties at elevated temperatures including tensile, compressive, and short-beam shear strengths. Generally, it was determined that graphite composites with the highest char yield exhibited optimum fire-resistant properties.

  14. Advanced composite combustor structural concepts program. Final Report

    SciTech Connect

    Sattar, M.A.; Lohmann, R.P.

    1984-12-01

    An analytical study was conducted to assess the feasibility of and benefits derived from the use of high temperature composite materials in aircraft turbine engine combustor liners. The study included a survey and screening of the properties of three candidate composite materials including tungsten reinforced superalloys, carbon-carbon and silicon carbide (SiC) fibers reinforcing a ceramic matrix of lithium aluminosilicate (LAS). The SiC-LAS material was selected as offering the greatest near term potential primarily on the basis of high temperature capability. A limited experimental investigation was conducted to quantify some of the more critical mechanical properties of the SiC-LAS composite having a multidirection 0/45/-45/90 deg fiber orientation favored for the combustor linear application. Rigorous cyclic thermal tests demonstrated that SiC-LAS was extremely resistant to the thermal fatigue mechanisms that usually limit the life of metallic combustor liners. A thermal design study led to the definition of a composite liner concept that incorporated film cooled SiC-LAS shingles mounted on a Hastelloy X shell. With coolant fluxes consistent with the most advanced metallic liner technology, the calculated hot surface temperatures of the shingles were within the apparent near term capability of the material. Structural analyses indicated that the stresses in the composite panels were low, primarily because of the low coefficient of expansion of the material and it was concluded that the dominant failure mode of the liner would be an as yet unidentified deterioration of the composite from prolonged exposure to high temperature. An economic study, based on a medium thrust size commercial aircraft engine, indicated that the SiC-LAS combustor liner would weigh 22.8N (11.27 lb) less and cost less to manufacture than advanced metallic liner concepts intended for use in the late 1980's.

  15. Processing and characterization of solid and microcellular biobased and biodegradable PHBV-based polymer blends and composites

    NASA Astrophysics Data System (ADS)

    Javadi, Alireza

    will not only reduce cost but also improve processability due to the use of supercritical fluid. Various material properties of the solid (without the foaming agent) and microcellular components (with foaming agent) made of PHBV-based polymer blends or composites were investigated including static mechanical properties (tensile testing), dynamic mechanical properties (dynamic mechanical analysis), thermal properties (differential scanning calorimetry and thermo gravimetric analysis), crystallinity(wide angle X-ray scattering analysis), and morphology (scanning electron microscopy and transmission electron microscopy). The composition-processing-structure-property relationship of these solid and microcellular components were established.

  16. Effects of biochar blends on microbial community composition in two Coastal Plain soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The amendment of soil with biochar has been demonstrated to have an effect not only on the soil physicochemical properties, but also on soil microbial community composition and activity. Previous reports have demonstrated both positive and negative effects on soil microbial communities. These effect...

  17. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  18. Probabilistic Evaluation of Advanced Ceramic Matrix Composite Structures

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Chamis, Christos C.

    2003-01-01

    The objective of this report is to summarize the deterministic and probabilistic structural evaluation results of two structures made with advanced ceramic composites (CMC): internally pressurized tube and uniformly loaded flange. The deterministic structural evaluation includes stress, displacement, and buckling analyses. It is carried out using the finite element code MHOST, developed for the 3-D inelastic analysis of structures that are made with advanced materials. The probabilistic evaluation is performed using the integrated probabilistic assessment of composite structures computer code IPACS. The affects of uncertainties in primitive variables related to the material, fabrication process, and loadings on the material property and structural response behavior are quantified. The primitive variables considered are: thermo-mechanical properties of fiber and matrix, fiber and void volume ratios, use temperature, and pressure. The probabilistic structural analysis and probabilistic strength results are used by IPACS to perform reliability and risk evaluation of the two structures. The results will show that the sensitivity information obtained for the two composite structures from the computational simulation can be used to alter the design process to meet desired service requirements. In addition to detailed probabilistic analysis of the two structures, the following were performed specifically on the CMC tube: (1) predicted the failure load and the buckling load, (2) performed coupled non-deterministic multi-disciplinary structural analysis, and (3) demonstrated that probabilistic sensitivities can be used to select a reduced set of design variables for optimization.

  19. On fracture phenomena in advanced fiber composite materials.

    NASA Technical Reports Server (NTRS)

    Konish, H. J., Jr.; Swedlow, J. L.; Cruse, T. A.

    1972-01-01

    The extension of linear elastic fracture mechanics (LEFM) from metallic alloys to advanced fiber composite laminates is considered. LEFM is shown to be valid for both isotropic and anisotropic homogeneous continua; the applicability of LEFM to advanced fiber composites is thus dependent on the validity of a homogeneous model of such materials. An experimental program to determine the validity of such a model for graphite/epoxy laminates is reviewed. Such laminates are found to have an apparent fracture toughness, from which it is inferred that a homogeneous material model is valid for the particular specimen geometry and composite laminates considered. Strain energy release rates are calculated from the experimentally determined fracture toughness of the various laminates. These strain energy release rates are found to lie in one of two groups, depending upon whether crack extension required fiber failure or matrix failure. The latter case is further investigated. It is concluded that matrix failure is governed by the tensile stress normal to the crack path.

  20. A dimensionally stable and fast-discharging graphite-silicon composite Li-ion battery anode enabled by electrostatically self-assembled multifunctional polymer-blend coating.

    PubMed

    Li, Fu-Sheng; Wu, Yu-Shiang; Chou, Jackey; Wu, Nae-Lih

    2015-05-18

    A high-performance graphite-Si composite anode for Li-ion batteries containing Si nanoparticles (NPs) attached onto graphite microparticles was synthesized by adopting a polymer-blend of poly(diallyl dimethyl-ammonium chloride) and poly(sodium 4-styrenesulfonate). The polymer-blend enabled uniform distribution of Si NPs during synthesis and served as a robust artificial solid-electrolyte interphase that substantially enhanced the cycle stability and rate performance of the composite electrode. The electrode exhibited a specific capacity of 450 mA h g(-1), 96% capacity retention at a 10 C-rate, 95% retention after 200 cycles, and the same electrode expansion behavior as a pristine graphite electrode. PMID:25656469

  1. Effects of TiO2 addition on ionic conductivity of PVC/PEMA blend based composite polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Subban, R. H. Y.; Sukri, Nursyazwani

    2015-08-01

    PVC/PEMA blend based polymer electrolytes with lithium bistrifluoromethane sulfonimide (LiN(CF3SO2)2) and PVC/PEMA/(LiN(CF3SO2)2-TiO2 films were prepared by solution cast technique. The sample containing 35 wt. % LiN(CF3SO2)2 exhibited the highest conductivity of 1.75 × 10-5 Scm-1. The conductivity of the sample increased to 2.12 × 10-5 Scm-1 and 4.61 × 10-5 Scm-1 when 4 wt. % and 10 wt. % of titanium dioxide (TiO2) was added to the sample at 65 wt. % PVC/PEMA-35 wt. % LiN(CF3SO2)2 composition respectively. The low increase in conductivity is attributed to two competing factors: increase in crystallinity as accounted by X-Ray diffraction (XRD) and decrease in glass transition temperature as accounted by differential scanning calorimetry (DSC).

  2. Effects of TiO{sub 2} addition on ionic conductivity of PVC/PEMA blend based composite polymer electrolyte

    SciTech Connect

    Subban, R. H. Y.; Sukri, Nursyazwani

    2015-08-28

    PVC/PEMA blend based polymer electrolytes with lithium bistrifluoromethane sulfonimide (LiN(CF{sub 3}SO{sub 2}){sub 2}) and PVC/PEMA/(LiN(CF{sub 3}SO{sub 2}){sub 2}-TiO{sub 2} films were prepared by solution cast technique. The sample containing 35 wt. % LiN(CF{sub 3}SO{sub 2}){sub 2} exhibited the highest conductivity of 1.75 × 10{sup −5} Scm{sup −1}. The conductivity of the sample increased to 2.12 × 10{sup −5} Scm{sup −1} and 4.61 × 10{sup −5} Scm{sup −1} when 4 wt. % and 10 wt. % of titanium dioxide (TiO{sub 2}) was added to the sample at 65 wt. % PVC/PEMA-35 wt. % LiN(CF{sub 3}SO{sub 2}){sub 2} composition respectively. The low increase in conductivity is attributed to two competing factors: increase in crystallinity as accounted by X-Ray diffraction (XRD) and decrease in glass transition temperature as accounted by differential scanning calorimetry (DSC)

  3. Chemical composition, starch digestibility and antioxidant capacity of tortilla made with a blend of quality protein maize and black bean.

    PubMed

    Grajales-García, Eva M; Osorio-Díaz, Perla; Goñi, Isabel; Hervert-Hernández, Deisy; Guzmán-Maldonado, Salvador H; Bello-Pérez, Luis A

    2012-01-01

    Tortilla and beans are the basic components in the diet of people in the urban and rural areas of Mexico. Quality protein maize is suggested for tortilla preparation because it presents an increase in lysine and tryptophan levels. Beans contain important amounts of dietary fiber. The objective of this study was to prepare tortilla with bean and assesses the chemical composition, starch digestibility and antioxidant capacity using a quality protein maize variety. Tortilla with bean had higher protein, ash, dietary fiber and resistant starch content, and lower digestible starch than control tortilla. The hydrolysis rate (60 to 50%) and the predicted glycemic index (88 to 80) of tortilla decreased with the addition of bean in the blend. Extractable polyphenols and proanthocyanidins were higher in the tortilla with bean than control tortilla. This pattern produced higher antioxidant capacity of tortilla with bean (17.6 μmol Trolox eq/g) than control tortilla (7.8 μmol Trolox eq/g). The addition of bean to tortilla modified the starch digestibility and antioxidant characteristics of tortilla, obtaining a product with nutraceutical characteristics. PMID:22312252

  4. Chemical Composition, Starch Digestibility and Antioxidant Capacity of Tortilla Made with a Blend of Quality Protein Maize and Black Bean

    PubMed Central

    Grajales-García, Eva M.; Osorio-Díaz, Perla; Goñi, Isabel; Hervert-Hernández, Deisy; Guzmán-Maldonado, Salvador H.; Bello-Pérez, Luis A.

    2012-01-01

    Tortilla and beans are the basic components in the diet of people in the urban and rural areas of Mexico. Quality protein maize is suggested for tortilla preparation because it presents an increase in lysine and tryptophan levels. Beans contain important amounts of dietary fiber. The objective of this study was to prepare tortilla with bean and assesses the chemical composition, starch digestibility and antioxidant capacity using a quality protein maize variety. Tortilla with bean had higher protein, ash, dietary fiber and resistant starch content, and lower digestible starch than control tortilla. The hydrolysis rate (60 to 50%) and the predicted glycemic index (88 to 80) of tortilla decreased with the addition of bean in the blend. Extractable polyphenols and proanthocyanidins were higher in the tortilla with bean than control tortilla. This pattern produced higher antioxidant capacity of tortilla with bean (17.6 μmol Trolox eq/g) than control tortilla (7.8 μmol Trolox eq/g). The addition of bean to tortilla modified the starch digestibility and antioxidant characteristics of tortilla, obtaining a product with nutraceutical characteristics. PMID:22312252

  5. Producibility aspects of advanced composites for an L-1011 Aileron

    NASA Technical Reports Server (NTRS)

    Van Hamersveld, J.; Fogg, L. D.

    1976-01-01

    The design of advanced composite aileron suitable for long-term service on transport aircraft includes Kevlar 49 fabric skins on honeycomb sandwich covers, hybrid graphite/Kevlar 49 ribs and spars, and graphite/epoxy fittings. Weight and cost savings of 28 and 20 percent, respectively, are predicted by comparison with the production metallic aileron. The structural integrity of the design has been substantiated by analysis and static tests of subcomponents. The producibility considerations played a key role in the selection of design concepts with potential for low-cost production. Simplicity in fabrication is a major factor in achieving low cost using advanced tooling and manufacturing methods such as net molding to size, draping, forming broadgoods, and cocuring components. A broadgoods dispensing machine capable of handling unidirectional and bidirectional prepreg materials in widths ranging from 12 to 42 inches is used for rapid layup of component kits and covers. Existing large autoclaves, platen presses, and shop facilities are fully exploited.

  6. Analysis and design of advanced composite bounded joints

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1974-01-01

    Advances in the analysis of adhesive-bonded joints are presented with particular emphasis on advanced composite structures. The joints analyzed are of double-lap, single-lap, scarf, stepped-lap and tapered-lap configurations. Tensile, compressive, and in-plane shear loads are covered. In addition to the usual geometric variables, the theory accounts for the strength increases attributable to adhesive plasticity (in terms of the elastic-plastic adhesive model) and the joint strength reductions imposed by imbalances between the adherends. The solutions are largely closed-form analytical results, employing iterative solutions on a digital computer for the more complicated joint configurations. In assessing the joint efficiency, three potential failure modes are considered. These are adherend failure outside the joint, adhesive failure in shear, and adherend interlaminar tension failure (or adhesive failure in peel). Each mode is governed by a distinct mathematical analysis and each prevails throughout different ranges of geometric sizes and proportions.

  7. Development of Metal Matrix Composites for NASA's Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, J.; Elam, S.

    2001-01-01

    The state-of-the-art development of several Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The goal is to provide an overview of NASA-Marshall Space Flight Center's on-going activities in MMC components for advanced liquid rocket engines such as the X-33 vehicle's Aerospike engine and X-34's Fastrac engine. The focus will be on lightweight, low cost, and environmental compatibility with oxygen and hydrogen of key MMC materials, within each of NASA's new propulsion application, that will provide a high payoff for NASA's Reusable Launch Vehicles and space access vehicles. In order to fabricate structures from MMC, effective joining methods must be developed to join MMC to the same or to different monolithic alloys. Therefore, a qualitative assessment of MMC's welding and joining techniques will be outlined.

  8. Micromechanical characterization of nonlinear behavior of advanced polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Chen, J. L.; Sun, C. T.

    1994-01-01

    Due to the presence of curing stresses and oriented crystalline structures in the matrix of polymer matrix fiber composites, the in situ nonlinear properties of the matrix are expected to be rather different from those of the bulk resin. A plane stress micromechanical model was developed to retrieve the in situ elastic-plastic properties of Narmco 5260 and Amoco 8320 matrices from measured elastic-plastic properties of IM7/5260 and IM7/8320 advance composites. In the micromechanical model, the fiber was assumed to be orthotropically elastic and the matrix to be orthotropic in elastic and plastic properties. The results indicate that both in situ elastic and plastic properties of the matrices are orthotropic.

  9. Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1990-01-01

    Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.

  10. Advanced composites in sailplane structures: Application and mechanical properties

    NASA Technical Reports Server (NTRS)

    Muser, D.

    1979-01-01

    Advanced Composites in sailplanes mean the use of carbon and aramid fibers in an epoxy matrix. Weight savings were in the range of 8 to 18% in comparison with glass fiber structures. The laminates will be produced by hand-layup techniques and all material tests were done with these materials. These values may be used for calculation of strength and stiffness, as well as for comparison of the materials to get a weight-optimum construction. Proposals for material-optimum construction are mentioned.

  11. Environment enhanced fatigue of advanced aluminum alloys and composites

    NASA Technical Reports Server (NTRS)

    Slavik, Donald C.; Gangloff, Richard P.

    1990-01-01

    The objective is to characterize and understand the environmental fatigue crack propagation behavior of advanced, high stiffness and strength, aluminum alloys and metal matrix composites. Those gases and aqueous electrolytes which are capable of producing atomic hydrogen by reactions on clean crack surfaces are emphasized. Characterizations of the behavior of new materials are sought to provide data for damage tolerant component life prediction. Mechanistic models are sought for crack tip damage processes which are generally applicable to structural aluminum alloys. Such models will enable predictions of cracking behavior outside of the data, metallurgical improvements in material cracking resistance, and insight on hydrogen compatibility.

  12. First NASA Advanced Composites Technology Conference, Part 2

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)

    1991-01-01

    Presented here is a compilation of papers presented at the first NASA Advanced Composites Technology (ACT) Conference held in Seattle, Washington, from 29 Oct. to 1 Nov. 1990. The ACT program is a major new multiyear research initiative to achieve a national goal of technology readiness before the end of the decade. Included are papers on materials development and processing, innovative design concepts, analysis development and validation, cost effective manufacturing methodology, and cost tracking and prediction procedures. Papers on major applications programs approved by the Department of Defense are also included.

  13. Advanced composite vertical stabilizer for DC-10 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stephens, C. O.

    1979-01-01

    Structural design, tooling, fabrication, and test activities are reported for a program to develop an advanced composite vertical stabilizer (CVS) for the DC 10 Commercial Transport Aircraft. Structural design details are described and the status of structural and weight analyses are reported. A structural weight reduction of 21.7% is currently predicted. Test results are discussed for sine wave stiffened shear webs containing representative of the CVS spar webs and for lightning current transfer and tests on a panel representative of the CVS skins.

  14. Advanced Technology Composite Fuselage - Repair and Damage Assessment Supporting Maintenance

    NASA Technical Reports Server (NTRS)

    Flynn, B. W.; Bodine, J. B.; Dopker, B.; Finn, S. R.; Griess, K. H.; Hanson, C. T.; Harris, C. G.; Nelson, K. M.; Walker, T. H.; Kennedy, T. C.; Nahan, M. F.

    1997-01-01

    Under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC), Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure. Included in the study is the incorporation of maintainability and repairability requirements of composite primary structure into the design. This contractor report describes activities performed to address maintenance issues in composite fuselage applications. A key aspect of the study was the development of a maintenance philosophy which included consideration of maintenance issues early in the design cycle, multiple repair options, and airline participation in design trades. Fuselage design evaluations considered trade-offs between structural weight, damage resistance/tolerance (repair frequency), and inspection burdens. Analysis methods were developed to assess structural residual strength in the presence of damage, and to evaluate repair design concepts. Repair designs were created with a focus on mechanically fastened concepts for skin/stringer structure and bonded concepts for sandwich structure. Both a large crown (skintstringer) and keel (sandwich) panel were repaired. A compression test of the keel panel indicated the demonstrated repairs recovered ultimate load capability. In conjunction with the design and manufacturing developments, inspection methods were investigated for their potential to evaluate damaged structure and verify the integrity of completed repairs.

  15. Composite Fan Blade Design for Advanced Engine Concepts

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Kuguoglu, Latife H.; Chamis, Christos C.

    2004-01-01

    The aerodynamic and structural viability of composite fan blades of the revolutionary Exo-Skeletal engine are assessed for an advanced subsonic mission using the NASA EST/BEST computational simulation system. The Exo-Skeletal Engine (ESE) calls for the elimination of the shafts and disks completely from the engine center and the attachment of the rotor blades in spanwise compression to a rotating casing. The fan rotor overall adiabatic efficiency obtained from aerodynamic analysis is estimated at 91.6 percent. The flow is supersonic near the blade leading edge but quickly transitions into a subsonic flow without any turbulent boundary layer separation on the blade. The structural evaluation of the composite fan blade indicates that the blade would buckle at a rotor speed that is 3.5 times the design speed of 2000 rpm. The progressive damage analysis of the composite fan blade shows that ply damage is initiated at a speed of 4870 rpm while blade fracture takes place at 7640 rpm. This paper describes and discusses the results for the composite blade that are obtained from aerodynamic, displacement, stress, buckling, modal, and progressive damage analyses. It will be demonstrated that a computational simulation capability is readily available to evaluate new and revolutionary technology such as the ESE.

  16. Effect of blend ratio and pH on the physical properties of edible composite films prepared from silver carp surimi and skin gelatin.

    PubMed

    Tao, Zhong; Weng, Wu-Yin; Cao, Min-Jie; Liu, Guang-Ming; Su, Wen-Jin; Osako, Kazufumi; Tanaka, Munehiko

    2015-03-01

    The effect of blend ratio and pH on the physical properties of surimi-gelatin composite films was investigated. Tensile strength (TS), film water solubility and soluble proteins of composite films increased with the increasing proportion of gelatin, while elongation at break (EAB) decreased. The TS of neutral films with the same ratio of surimi and gelatin were lowest, while increased at acidic or alkaline conditions. Similar tendency was also found in protein solubility and surface hydrophobicity of the film-forming solutions. On the other hand, the film water solubility and soluble proteins of neutral composite films were higher than those of acidic and alkaline films. Furthermore, it was revealed that the dissolved surimi and gelatin proteins could form strong composite films, which were insoluble in water. These results suggested that dissolved proteins were mainly involved in the formation of surimi-gelatin composite films. PMID:25745232

  17. Vibroacoustic behavior and noise control studies of advanced composite structures

    NASA Astrophysics Data System (ADS)

    Li, Deyu

    The research presented in this thesis is devoted to the problems of sound transmission and noise transmission control for advanced composite payload fairings. There are two advanced composite fairings under study. The first is a tapered, cylindrical advanced grid-stiffened composite fairing, and the second is a cylindrical ChamberCore composite fairing. A fully coupled mathematical model for characterizing noise transmission into a finite elastic cylindrical structure with application to the ChamberCore fairing is developed. It combines advantages of wave radiation principles and structural-acoustic modal interaction, and provides an ideal noise transmission model that can be extended to other finite cylindrical structures. Structural-acoustic dynamic parameters of the two fairings are obtained using a combination of numerical, analytical, and experimental approaches. An in-situ method for experimentally characterizing sound transmission into the fairings called noise reduction spectrum (NRS) is developed based on noise reduction. The regions of interest in the NRS curves are identified and verified during a passive control investigation, where various fill materials are added into wall-chambers of the ChamberCore fairing. Both Helmholtz resonators (HRs) and long T-shaped acoustic resonators (ARs) are also used to successfully control noise transmission into the ChamberCore fairing. In the process, an accurate model for the resonant frequency calculation and design of cylindrical HRs is derived. Further, a novel and more general model for the design of multi-modal, long, T-shaped ARs is developed, including three new end-correction equations that are validated experimentally. The control results show that noise attenuation is significant in the controlled modes, and the control is also observed in some modes that are not targeted, due to acoustic modal coupling via the structure. Helmholtz resonators are found to produce between 2.0 and 7.7 dB increase in NRS in

  18. Effect of blending Jersey and Holstein-Friesian milk on Cheddar cheese processing, composition, and quality.

    PubMed

    Bland, J H; Grandison, A S; Fagan, C C

    2015-01-01

    The effect of Jersey milk use solely or at different inclusion rates in Holstein-Friesian milk on Cheddar cheese production was investigated. Cheese was produced every month over a year using nonstandardized milk consisting of 0, 25, 50, 75, and 100% Jersey milk in Holstein-Friesian milk in a 100-L vat. Actual, theoretical, and moisture-adjusted yield increased linearly with percentage of Jersey milk. This was also associated with increased fat and protein recoveries and lower yield of whey. The composition of whey was also affected by the percentage of Jersey milk, with lower whey protein and higher whey lactose and solids. Cutting time was lower when Jersey milk was used, but the cutting to milling time was higher because of slower acidity development. Hence, overall cheesemaking time was not affected by the use of Jersey milk. Using Jersey milk increased cheese fat content in autumn, winter, and spring and decreased cheese moisture in spring and summer. Cheese protein, salt, and pH levels were not affected. Cheese was analyzed for texture and color, and it was professionally graded at 3 and 8mo. The effect of Jersey on cheese sensory quality was an increase in cheese yellowness during summer and a higher total grading score at 3mo in winter; no other difference in cheese quality was found. The study indicates that using Jersey milk is a valid method of improving Cheddar cheese yield. PMID:25465548

  19. Micromechanics Based Design/Analysis Codes for Advanced Composites

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Murthy, Pappu L. N.; Gyekenyesi, John P.

    2002-01-01

    Advanced high temperature Ceramic Matrix Composites (CMC) hold an enormous potential for use in aero and space related applications specifically for propulsion system components. Consequently, this has led to a multitude of research activities pertaining to fabrication, testing and modeling of these materials. The efforts directed at the development of ceramic matrix composites have focused primarily on improving the properties of the constituents as individual phases. It has, however, become increasingly clear that for CMC to be successfully employed in high temperature applications, research and development efforts should also focus on optimizing the synergistic performance of the constituent phases within the as-produced microstructure of the complex shaped CMC part. Despite their attractive features, the introduction of these materials in a wide spectrum of applications has been excruciatingly slow. The reasons are the high costs associated with the manufacturing and a complete experimental testing and characterization of these materials. Often designers/analysts do not have a consistent set of necessary properties and design allowables to be able to confidently design and analyze structural components made from these composites. Furthermore, the anisotropy of these materials accentuates the burden both on the test engineers and the designers by requiring a vastly increased amount of data/characterization compared to conventional materials.

  20. A study of performance and emission characteristics of computerized CI engine with composite biodiesel blends as fuel at various injection pressures

    NASA Astrophysics Data System (ADS)

    Yogish, H.; Chandarshekara, K.; Pramod Kumar, M. R.

    2013-09-01

    Transesterified vegetable oils are becoming increasingly important as alternative fuels for diesel engines due to several advantages. Biodiesel is a renewable, inexhaustible and green fuel. This paper presents the various properties of the oils derived from Jatropha and Pongamia, their mixes and biodiesels derived from the mixes. An innovative lab scale reactor was designed and developed for biodiesel production from mixed vegetable oils and used for the study of optimization of biodiesel yield [1]. Also, the analysis of data of experimental investigations carried out on a 3.75 kW computerized CI engine at injection pressures of 160 and 180 bar with methyl esters of mixed Jatropha and Pongamia in various proportions are also presented. The brake thermal efficiency for biodiesel blends was found to be higher than that of petrodiesel at various loading conditions. In case of Composite biodiesel blended fuels, the exhaust gas temperature increased with increase in load and the amount of composite biodiesel. The highest exhaust gas temperature was observed as 213 °C for biodiesel among the five loading conditions. When petrodiesel was used the exhaust gas temperature was observed to be 220 °C. The CO2, CO, HC and NOx emissions from the biodiesel blends were lower than that of petrodiesel.

  1. Surface composition of biopolymer blends Biospan-SP/Phenoxy and Biospan-F/Phenoxy observed with SFG, XPS, and contact angle goniometry

    SciTech Connect

    Chen, Z.; Eppler, A.S.; Shen, Y.R.; Somorjai, G.A.; Ward, R.; Tian, Y.

    1999-04-15

    The surface compositions of two biopolymer blends, Biospan-SP/Phenoxy (BSP/PHE) and Biospan-F/Phenoxy (BF/PHE), have been studied using sum frequency generation (SFG), X-ray photoemission spectroscopy (XPS), and contact angle goniometry. BSP and BF are polyurethanes capped with poly(dimethylsiloxane) (PDMS) and fluoroalkyl (-(-CF{sub 2}-){sub n}-) as end groups, respectively. With contact angle goniometry, the surface tensions of pure BSP, BF, and PHE were found to be 26, 16, and 45 dyne/cm. For each of the blends, the polymer component with a lower surface concentration of the surface-active component increases sharply as its bulk concentration increases. For BSP/PHE (and BF/PHE) in air, the surface of the polymer blend is fully covered by BSP (and BF) at a bulk concentration of 3.5 wt % (and 1 wt %). The contact angle measurements and the XPS studies yield compatible results. Comparison of results for BSP/PHE, BS/PHE (published before), and BF/PHE polymer blends shows that the lower the surface energy of the surface-active component (surface tension: BF < BS < BSP), the easier it is for the component to segregate to the surface (the minimum bulk concentration to saturate the surface is BF (1 wt %) < BS (1.7 wt %) < BSP (3.5 wt %)). After exposure to water, SFG spectra indicate that the surface layer of a polymer blend could be restructured. For BSP (3.5 wt %)/PHE, the hydrophobic end groups of BSP submerge while the hydrophilic polyurethane backbone emerges. For BF (1 wt %)/PHE, PHE emerges at the surface after exposure to water, but for BF (5 wt %)/PHE, the BF component dominates the surface in both air and water. Their results demonstrate the bifunctionality of polymer blends and show that the surface chemistry of polymer blends may be dominated by a minor component, while the mechanical stability of the polymer is controlled by the major component.

  2. Advanced Constituents and Processes for Ceramic Composite Engine Components

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.; Bhatt, R. T.

    2004-01-01

    The successful replacement of metal alloys by ceramic matrix composites (CMC) in hot-section engine components will depend strongly on optimizing the processes and properties of the CMC microstructural constituents so that they can synergistically provide the total CMC system with improved temperature capability and with the key properties required by the components for long-term structural service. This presentation provides the results of recent activities at NASA aimed at developing advanced silicon carbide (Sic) fiber-reinforced hybrid Sic matrix composite systems that can operate under mechanical loading and oxidizing conditions for hundreds of hours at 2400 and 2600 F, temperatures well above current metal capability. These SiC/SiC composite systems are lightweight (-30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive engine environments. It is shown that the improved temperature capability of the SiC/SiC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays high thermal stability, creep resistance, rupture resistance, and thermal conductivity, and possesses an in-situ grown BN surface layer for added environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics. Further capability is then derived by using chemical vapor infiltration (CVI) to form the initial portion of the hybrid Sic matrix. Because of its high creep resistance and thermal conductivity, the CVI Sic matrix is a required base constituent for all the high temperature SiC/SiC systems. By subsequently thermo- mechanical-treating the CMC preform, which consists of the S ylramic-iBN fibers and CVI Sic matrix, process-related defects in the matrix are removed, further improving matrix and CMC creep resistance and conductivity.

  3. Advances in electromagnetic models for three-dimensional nondestructive evaluation of advanced composites

    NASA Astrophysics Data System (ADS)

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.

    2016-02-01

    In past work we have developed a rigorous electromagnetic model and an inversion algorithm for the three-dimensional NDE of advanced composite materials. This approach extends Victor Technologies' work in eddy-current NDE of conventional metals, and allows one to determine in localized regions the fiber-resin ratio in graphite-epoxy, and to determine those anomalies, e.g., delaminations, broken fibers, moisture content, etc., that can be reconstructed by our inversion method. In developing the model, we applied rigorous electromagnetic theory to determine a Green's function for a slab of anisotropic composite material, and then determine the integral relations for the forward and inverse problems using the Green's function. In addition, we have given examples of the solution of forward and inverse problems using these algorithms.

  4. Advanced composite aileron for L-1011 transport aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Design and evaluation of alternate concepts for the major subcomponents of the advanced composite aileron (ACA) was completed. From this array of subcomponents, aileron assemblies were formulated and evaluated. Based on these analyses a multirib assembly with graphite tape/syntactic core covers, a graphite tape front spar, and a graphite fabric rib was selected for development. A weight savings of 29.1 percent (40.8 pounds per aileron) is predicted. Engineering cost analyses indicate that the production cost of the ACA will be 7.3 percent less than the current aluminum aileron. Fabrication, machining, and testing of the material evaluation specimens for the resin screening program was completed. The test results lead to the selection of Narmco 5208 resin for the ACA. Other activities completed include: the detailed design of the ACA, construction of a three dimensional finite element model for structural analysis, and formulation of detail plans for material verification and process development.

  5. Advanced composite aileron for L-1011 transport aircraft: Aileron manufacture

    NASA Technical Reports Server (NTRS)

    Dunning, E. G.; Cobbs, W. L.; Legg, R. L.

    1981-01-01

    The fabrication activities of the Advanced Composite Aileron (ACA) program are discussed. These activities included detail fabrication, manufacturing development, assembly, repair and quality assurance. Five ship sets of ailerons were manufactured. The detail fabrication effort of ribs, spar and covers was accomplished on male tools to a common cure cycle. Graphite epoxy tape and fabric and syntactic epoxy materials were utilized in the fabrication. The ribs and spar were net cured and required no post cure trim. Material inconsistencies resulted in manufacturing development of the front spar during the production effort. The assembly effort was accomplished in subassembly and assembly fixtures. The manual drilling system utilized a dagger type drill in a hydraulic feed control hand drill. Coupon testing for each detail was done.

  6. Structural Assessment of Advanced Composite Tow-Steered Shells

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stanford, Bret K.; Hrinda, Glenn A.; Wang, Zhuosong; Martin, Robert a.; Kim, H. Alicia

    2013-01-01

    The structural performance of two advanced composite tow-steered shells, manufactured using a fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles vary continuously around the shell circumference from 10 degrees on the shell crown and keel, to 45 degrees on the shell sides. The two shells differ in that one shell has the full 24-tow course applied during each pass of the fiber placement system, while the second shell uses the fiber placement system s tow drop/add capability to achieve a more uniform shell wall thickness. The shells are tested in axial compression, and estimates of their prebuckling axial stiffnesses and bifurcation buckling loads are predicted using linear finite element analyses. These preliminary predictions compare well with the test results, with an average agreement of approximately 10 percent.

  7. Advanced Measurements of Silicon Carbide Ceramic Matrix Composites

    SciTech Connect

    Farhad Farzbod; Stephen J. Reese; Zilong Hua; Marat Khafizov; David H. Hurley

    2012-08-01

    Silicon carbide (SiC) is being considered as a fuel cladding material for accident tolerant fuel under the Light Water Reactor Sustainability (LWRS) Program sponsored by the Nuclear Energy Division of the Department of Energy. Silicon carbide has many potential advantages over traditional zirconium based cladding systems. These include high melting point, low susceptibility to corrosion, and low degradation of mechanical properties under neutron irradiation. In addition, ceramic matrix composites (CMCs) made from SiC have high mechanical toughness enabling these materials to withstand thermal and mechanical shock loading. However, many of the fundamental mechanical and thermal properties of SiC CMCs depend strongly on the fabrication process. As a result, extrapolating current materials science databases for these materials to nuclear applications is not possible. The “Advanced Measurements” work package under the LWRS fuels pathway is tasked with the development of measurement techniques that can characterize fundamental thermal and mechanical properties of SiC CMCs. An emphasis is being placed on development of characterization tools that can used for examination of fresh as well as irradiated samples. The work discuss in this report can be divided into two broad categories. The first involves the development of laser ultrasonic techniques to measure the elastic and yield properties and the second involves the development of laser-based techniques to measurement thermal transport properties. Emphasis has been placed on understanding the anisotropic and heterogeneous nature of SiC CMCs in regards to thermal and mechanical properties. The material properties characterized within this work package will be used as validation of advanced materials physics models of SiC CMCs developed under the LWRS fuels pathway. In addition, it is envisioned that similar measurement techniques can be used to provide process control and quality assurance as well as measurement of

  8. Conceptual design study of advanced acoustic-composite nacelles

    NASA Technical Reports Server (NTRS)

    Nordstrom, K. E.; Marsh, A. H.; Sargisson, D. F.

    1975-01-01

    Conceptual studies were conducted to assess the impact of incorporating advanced technologies in the nacelles of a current wide-bodied transport and an advanced technology transport. The improvement possible in the areas of fuel consumption, flyover noise levels, airplane weight, manufacturing costs, and airplane operating cost were evaluated for short and long-duct nacelles. Use of composite structures for acoustic duct linings in the fan inlet and exhaust ducts was considered as well as for other nacelle components. For the wide-bodied transport, the use of a long-duct nacelle with an internal mixer nozzle in the primary exhaust showed significant improvement in installed specific fuel consumption and airplane direct operating costs compared to the current short-duct nacelle. The long-duct mixed-flow nacelle is expected to achieve significant reductions in jet noise during takeoff and in turbo-machinery noise during landing approach. Recommendations were made of the technology development needed to achieve the potential fuel conservation and noise reduction benefits.

  9. Factors Affecting Fiber Design and Selection for Advanced Ceramic Composites

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.

    1998-01-01

    Structural Ceramic Matrix Composites (CMC) have the potential for application in the hot sections of a variety of advanced propulsion and power systems. It is therefore necessary to have a general understanding of the key properties of CMC and Reinforcing Fibers. This need is complicated by the wide variety of application conditions and structural requirements for which CMC's will be used, and the proprietary concerns of the design engineers. CMC's, to be successful, must display properties which are competitive with the currently used high temperature structural materials: (i.e., Iron and Nickel based superalloys, tough monolithic ceramics, and carbon/carbon composites.) Structural CMC offers several areas of competition: (1) performance, (i.e., strength and strength retention, creep resistance, and thermal conductivity), (2) reliability (i.e., environmental durability, and damage tolerance) and (3) processing (i.e., capability for varying sizes and shapes, and cost effective fabrication). The presentation further discusses, and illustrates with fiber and CMC data the key fiber properties and processes which strongly affect each CMC area of competition. The presentation further discusses the current knowledge of the important factors which control the key fiber properties. A design guidelines for the optimum fiber characteristics is developed, and the currently available fibers are compared against those guidelines.

  10. Atmosphere composition monitor for space station and advanced missions application

    SciTech Connect

    Wynveen, R.A.; Powell, F.T.

    1987-01-01

    Long-term human occupation of extraterrestrial locations may soon become a reality. The National Aeronautics and Space Administration (NASA) has recently completed the definition and preliminary design of the low earth orbit (LEO) space station. They are now currently moving into the detailed design and fabrication phase of this space station and are also beginning to analyze the requirements of several future missions that have been identified. These missions include, for example, Lunar and Mars sorties, outposts, bases, and settlements. A requirement of both the LEO space station and future missions are environmental control and life support systems (ECLSS), which provide a comfortable environment for humans to live and work. The ECLSS consists of several major systems, including atmosphere revitalization system (ARS), atmosphere pressure and composition control system, temperature and humidity control system, water reclamation system, and waste management system. Each of these major systems is broken down into subsystems, assemblies, units, and instruments. Many requirements and design drivers are different for the ECLSS of the LEO space station and the identified advanced missions (e.g., longer mission duration). This paper discusses one of the ARS assemblies, the atmosphere composition monitor assembly (ACMA), being developed for the LEO space station and addresses differences that will exist for the ACMA of future missions.

  11. Critical Composition of the β Form of Poly(vinylidene fluoride) in Miscible Crystalline/Crystalline Blends.

    PubMed

    Wang, Bin; Yin, Ming; Lv, Ruihua; Na, Bing; Zhu, Yun; Liu, Hesheng

    2015-11-01

    Crystallization and the polymorphic transition of poly(vinylidene fluoride) (PVDF) in its miscible blends with poly(butylene succinate) (PBS) from the melt has been investigated. The presence of a miscible PBS component lowers the crystallization temperature and the melting point of the PVDF component in the blends. It becomes more significant above a critical PBS content between 40 and 50 wt % where PVDF chains are dispersed in the matrix composed by PBS chains. On the other hand, the β form of the PVDF component can be induced at low temperatures, which also has a transition at the critical PBS content. PMID:26458222

  12. Blended Learning

    ERIC Educational Resources Information Center

    Imbriale, Ryan

    2013-01-01

    Teachers always have been and always will be the essential element in the classroom. They can create magic inside four walls, but they have never been able to create learning environments outside the classroom like they can today, thanks to blended learning. Blended learning allows students and teachers to break free of the isolation of the…

  13. Blended Learning

    ERIC Educational Resources Information Center

    Tucker, Catlin; Umphrey, Jan

    2013-01-01

    Catlin Tucker, author of "Blended Learning in Grades 4-12," is an English language arts teacher at Windsor High School in Sonoma County, CA. In this conversation with "Principal Leadership," she defines blended learning as a formal education program in which a student is engaged in active learning in part online where they…

  14. Development of Stitched Composite Structure for Advanced Aircraft

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn; Przekop, Adam; Rouse, Marshall; Lovejoy, Andrew; Velicki, Alex; Linton, Kim; Wu, Hsi-Yung; Baraja, Jaime; Thrash, Patrick; Hoffman, Krishna

    2015-01-01

    NASA has created the Environmentally Responsible Aviation Project to develop technologies which will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company are working together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composites. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. With the PRSEUS concept, through-the-thickness stitches are applied through dry fabric prior to resin infusion, and replace fasteners throughout each integral panel. Through-the-thickness reinforcement at discontinuities, such as along flange edges, has been shown to suppress delamination and turn cracks, which expands the design space and leads to lighter designs. The pultruded rod provides stiffening away from the more vulnerable skin surface and improves bending stiffness. A series of building blocks were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. These building blocks addressed tension, compression, and pressure loading conditions. The emphasis of the development work has been to assess the loading capability, damage arrestment features, repairability, post-buckling behavior, and response of PRSEUS flat panels to out-of plane pressure loading. The results of this building-block program from coupons through an 80%-scale pressure box have demonstrated the viability of a PRSEUS center body for the Hybrid Wing Body (HWB) transport aircraft. This development program shows that the PRSEUS benefits are also applicable to traditional tube-andwing aircraft, those of advanced configurations, and other

  15. Low-speed wind-tunnel tests of a large scale blended arrow advanced supersonic transport model having variable cycle engines and vectoring exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Parlett, L. P.; Shivers, J. P.

    1976-01-01

    A low-speed wind-tunnel investigation was conducted in a full-scale tunnel to determine the performance and static stability and control characteristics of a large-scale model of a blended-arrow advanced supersonic transport configuration incorporating variable-cycle engines and vectoring exhaust nozzles. Configuration variables tested included: (1) engine mode (cruise or low-speed), (2) engine exit nozzle deflection, (3) leading-edge flap geometry, and (4) trailing-edge flap deflection. Test variables included values of C sub micron from 0 to 0.38, values of angle of attack from -10 degrees to 30 degrees, values of angle of sideslip, from -5 degrees to 5 degrees, and values of Reynolds number, from 3.5 million to 6.8 million.

  16. Electromechanically active polymer blends for actuation

    NASA Astrophysics Data System (ADS)

    Su, Ji; Ounaies, Zoubeida; Harrison, Joycelyn S.; Bar-Cohen, Yoseph; Leary, Sean P.

    2000-06-01

    Actuator mechanisms that are lightweight, durable, and efficient are needed to support telerobotic requirements, for future NASA missions. In this work, we present a series of electromechanically active polymer blends that can potentially be used as actuators for a variety of applications. This polymer blend combines an electrostrictive graft-elastomer with a ferroelectric poly (vinylidene fluoride-trifluoroethylene) polymer. Mechanical and piezoelectric properties of the blends as a function of temperature, frequency and relative composition of the two constituents in the blends have been studied. Electric field induced strain response of the blend films has also been studied as a function of the relative composition. A bending actuator device was developed incorporating the use of the polymer blend materials. The results and the possible effects of the combination of piezoelectricity and electrostriction in a material system are presented and discussed. This type of analysis may enable the design of blend compositions with optimal strain, mechanical, and dielectric properties for specific actuator applications.

  17. Experimental Classical Flutter Reesults of a Composite Advanced Turboprop Model

    NASA Technical Reports Server (NTRS)

    Mehmed, O.; Kaza, K. R. V.

    1986-01-01

    Experimental results are presented that show the effects of blade pitch angle and number of blades on classical flutter of a composite advanced turboprop (propfan) model. An increase in the number of blades on the rotor or the blade pitch angle is destablizing which shows an aerodynamic coupling or cascade effect between blades. The flutter came in suddenly and all blades vibrated at the same frequency but at different amplitudes and with a common predominant phase angle between consecutive blades. This further indicates aerodynamic coupling between blades. The flutter frequency was between the first two blade normal modes, signifying an aerodynamic coupling between the normal modes. Flutter was observed at all blade pitch angles from small to large angles-of-attack of the blades. A strong blade response occurred, for four blades at the two-per-revolution (2P) frequency, when the rotor speed was near the crossing of the flutter mode frequency and the 2P order line. This is because the damping is low near the flutter condition and the interblade phase angle of the flutter mode and the 2P response are the same.

  18. Imperfection Insensitivity Analyses of Advanced Composite Tow-Steered Shells

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Farrokh, Babak; Stanford, Bret K.; Weaver, Paul M.

    2016-01-01

    Two advanced composite tow-steered shells, one with tow overlaps and another without overlaps, were previously designed, fabricated and tested in end compression, both without cutouts, and with small and large cutouts. In each case, good agreement was observed between experimental buckling loads and supporting linear bifurcation buckling analyses. However, previous buckling tests and analyses have shown historically poor correlation, perhaps due to the presence of geometric imperfections that serve as failure initiators. For the tow-steered shells, their circumferential variation in axial stiffness may have suppressed this sensitivity to imperfections, leading to the agreement noted between tests and analyses. To investigate this further, a numerical investigation was performed in this study using geometric imperfections measured from both shells. Finite element models of both shells were analyzed first without, and then, with measured imperfections that were then, superposed in different orientations around the shell longitudinal axis. Small variations in both the axial prebuckling stiffness and global buckling load were observed for the range of imperfections studied here, which suggests that the tow steering, and resulting circumferentially varying axial stiffness, may result in the test-analysis correlation observed for these shells.

  19. Advanced Ceramic Matrix Composites (CMCs) for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2005-01-01

    Advanced ceramic matrix composites (CMCs) are enabling materials for a number of demanding applications in aerospace, energy, and nuclear industries. In the aerospace systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, vanes, nozzle components, nose cones, leading edges of reentry vehicles, and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters, and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. In the last few years, a number of CMC components have been developed and successfully tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. They include robust fabrication and manufacturing, assembly and integration, coatings, property modeling and life prediction, design codes and databases, repair and refurbishment, and cost. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, a number of examples of successful CMC component development and testing will be provided. In addition, critical need for robust manufacturing, joining and assembly technologies in successful implementation of these systems will be discussed.

  20. Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index Composites

    USGS Publications Warehouse

    U.S. Geological Survey

    2005-01-01

    The Advanced Very High Resolution Radiometer (AVHRR) is a broad-band scanner with four to six bands, depending on the model. The AVHRR senses in the visible, near-, middle-, and thermal- infrared portions of the electromagnetic spectrum. This sensor is carried on a series of National Oceanic and Atmospheric Administration (NOAA) Polar Orbiting Environmental Satellites (POES), beginning with the Television InfraRed Observation Satellite (TIROS-N) in 1978. Since 1989, the United States Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) has been mapping the vegetation condition of the United States and Alaska using satellite information from the AVHRR sensor. The vegetation condition composites, more commonly called greenness maps, are produced every week using the latest information on the growth and condition of the vegetation. One of the most important aspects of USGS greenness mapping is the historical archive of information dating back to 1989. This historical stretch of information has allowed the USGS to determine a 'normal' vegetation condition. As a result, it is possible to compare the current week's vegetation condition with normal vegetation conditions. An above normal condition could indicate wetter or warmer than normal conditions, while a below normal condition could indicate colder or dryer than normal conditions. The interpretation of departure from normal will depend on the season and geography of a region.

  1. Resin transfer molding for advanced composite primary wing and fuselage structures

    NASA Technical Reports Server (NTRS)

    Markus, Alan

    1992-01-01

    The stitching and resin transfer molding (RTM) processes developed at Douglas Aircraft Co. are successfully demonstrating significant cost reductions with good damage tolerance properties. These attributes were identified as critical to application of advanced composite materials to commercial aircraft primary structures. The RTM/stitching developments, cost analyses, and test results are discussed of the NASA Advanced Composites Technology program.

  2. Role of Mechanics of Textile Preform Composites in the NASA Advanced Composites Technology Program

    SciTech Connect

    Harris, C.E.; Poe, C.C. Jr.

    1995-10-01

    The Advanced Composites Technology Program was initiated by NASA as a partnership with the United States aeronautical industry in fiscal year 1989. The broad objective of the Program was to develop the technology to design and manufacture cost-effective and structurally optimized light-weight composite airframe primary structure. Phase A of the Program, 1989-1991, focused on the identification and evaluation of innovative manufacturing technologies and structural concepts. At the end of Phase A, the leading wing and fuselage design concepts were down-selected for further development in Phase B of the Program, 1992-1995. Three major fabrication technologies emerged from Phase A. These three approaches were the stitched dry preform, textile preform, and automated tow placement manufacturing methods. Each method emphasized rapid fiber placement, near net-shape preform fabrication, part count minimization, and matching the technologies to the specific structural configurations and requirements. The objective of Phase B was to continue the evolution of design concepts using the concurrent engineering process, down-select to the leading structural concept, and design, build, and test subscale components. Phase C of the ACT Program, 1995-2002, is a critical element of the NASA Advanced Subsonic Technology Program and has been approved for implementation beginning in 1995. The objective of Phase C is to design, build, and test major components of the airframe to demonstrate the technology readiness for applications in the next generation subsonic commercial transport aircraft. Part of the technology readiness demonstration will include a realistic comparison of manufacturing costs and an increased confidence in the ability to accurately estimate the costs of composite structure. The Program Plan calls for the structural components to be a complete fuselage barrel with a window-belt and a wing box at the wing/fuselage intersection.

  3. Effect of nanoclay loading on the thermal and mechanical properties of biodegradable polylactide/poly[(butylene succinate)-co-adipate] blend composites.

    PubMed

    Ojijo, Vincent; Sinha Ray, Suprakas; Sadiku, Rotimi

    2012-05-01

    Polylactide/poly[(butylene succinate)-co-adipate] (PLA/PBSA)-organoclay composites were prepared via melt compounding in a batch mixer. The weight ratio of PLA to PBSA was kept at 70:30, while the weight fraction of the organoclay was varied from 0 to 9%. Small angle X-ray scattering patterns showed slightly better dispersion in PBSA than PLA, and there was a tendency of the silicate layers to delaminate in PBSA at low clay content. Thermal analysis revealed that crystallinity was dependent on the clay content as well its localization within the composite. On the other hand, thermal stability marginally improved for composites with <2 wt % clay content in contrast to the deterioration observed in composites with clay content >2 wt %. Tensile properties showed dependence on clay content and localization. Composite with 2 wt % clay content showed slight improvement in elongation at break. Overall, the optimum property was found for a composite with 2 wt % of the organoclay. This paper therefore has demonstrated the significance of the clay content and localization on the properties of the PLA/PBSA blends. PMID:22496491

  4. Nondestructive Evaluation of Advanced Fiber Reinforced Polymer Matrix Composites: A Technology Assessment

    NASA Technical Reports Server (NTRS)

    Yolken, H. Thomas; Matzkanin, George A.

    2009-01-01

    Because of their increasing utilization in structural applications, the nondestructive evaluation (NDE) of advanced fiber reinforced polymer composites continues to receive considerable research and development attention. Due to the heterogeneous nature of composites, the form of defects is often very different from a metal and fracture mechanisms are more complex. The purpose of this report is to provide an overview and technology assessment of the current state-of-the-art with respect to NDE of advanced fiber reinforced polymer composites.

  5. Glutaraldehyde-chitosan and poly (vinyl alcohol) blends, and fluorescence of their nano-silica composite films.

    PubMed

    Hu, Huawen; Xin, John H; Hu, Hong; Chan, Allan; He, Liang

    2013-01-01

    In this study, a commercial chitosan cross-linked with glutaraldehyde (GA-chitosan) having the autofluorescent property was effectively blended with a poly (vinyl alcohol) (PVA) matrix, in the formation of a transparent and fluorescent blend film. The fluorescent efficiency of the film was enhanced with red-shifted emission band by increasing the concentrations of the GA-chitosan and decreasing the PVA crystallinity. It was found that the incorporation of silica nanoparticles could further decrease the PVA crystallinity, enhance the fluorescent efficiency, and largely redshift the emission band, as compared with the neat GA-chitosan-PVA blend film. This fluorescent property could be finely tuned by careful doping of the silica nanoparticles and change of the PVA crystallinity. These phenomena could be reasonably explained by high extent of isolation of the fluorophores, increase of the stiffness of the fluorescent conjugated planar structure, and further decrease of the PVA crystallinity. In addition, the introduction of the nano-silica could improve the water and heat resistances of the GA-chitosan-PVA based silica nanocomposites. PMID:23044137

  6. Flutter study of an advanced composite wing with external stores

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Rivera, Jose A., Jr.; Nagaraja, K. S.

    1987-01-01

    A flutter test using a scaled model of an advanced composite wing for a Navy attack aircraft has been conducted in the NASA Langley Research Center Transonic Dynamics Tunnel. The model was a wall-mounted half-span wing with a semi-span of 6.63 ft. The wing had an aspect ratio of 5.31, taper ratio of 0.312, and quarter-chord sweep of 25 degrees. The model was supported in a manner that simulated the load path in the carry-through structure of the aircraft and the symmetric boundary condition at the fuselage centerline. The model was capable of carrying external stores from three pylon locations on the wing. Flutter tests were conducted for the wing with and without external stores. No flutter was encountered for the clean wing at test conditions which simulated the scaled airplane operating envelope. Flutter boundaries were obtained for several external store configurations. The flutter boundaries for the fuel tanks were nearly Mach number independent (occurring at constant dynamic pressure). To study the aerodynamic effect of the fuel tank stores, pencil stores (slender cylindrical rods) which had the same mass and pitch and yaw inertia as the fuel tanks were tested on the model. These pencil store configurations exhibited a transonic dip in the flutter dynamic pressure, indicating that the aerodynamic effect of the actual fuel tanks on flutter was significant. Several flutter analyses methods were used in an attempt to predict the flutter phenomenon exhibited during the wind-tunnel test. The analysis gave satisfactory predictions of flutter for the pencil store configurations, but unsatisfactory correlation for the actual fuel tank configurations.

  7. Aromatic/aliphatic diamine derivatives for advanced compositions and polymers

    NASA Technical Reports Server (NTRS)

    Delozier, Donovan M. (Inventor); Watson, Kent A. (Inventor); Connell, John W. (Inventor); Smith, Jr., Joseph G. (Inventor)

    2010-01-01

    Novel compositions of matter comprise certain derivatives of 9,9-dialkyl fluorene diamine (AFDA). The resultant compositions, whether compositions of matter or monomers that are subsequently incorporated into a polymer, are unique and useful in a variety of applications. Useful applications of AFDA-based material include heavy ion radiation shielding components and components of optical and electronic devices.

  8. Research on the exploitation of advanced composite materials to lightly loaded structures

    NASA Technical Reports Server (NTRS)

    Mar, J. W.

    1976-01-01

    The objective was to create a sailplane which could fly in weaker thermals than present day sailplanes (by being lighter) and to fly in stronger thermals than present sailplanes (by carrying more water ballast). The research was to tackle the interaction of advanced composites and the aerodynamic performance, the interaction of fabrication procedures and the advanced composites, and the interaction of advanced composites and the design process. Many pieces of the overall system were investigated but none were carried to the resolution required for engineering application. Nonetheless, interesting and useful results were obtained and are here reported.

  9. Supplementation with a proprietary blend of ancient peat and apple extract may improve body composition without affecting hematology in resistance-trained men.

    PubMed

    Joy, Jordan M; Falcone, Paul H; Vogel, Roxanne M; Mosman, Matt M; Kim, Michael P; Moon, Jordan R

    2015-11-01

    Adenosine-5'-triphosphate (ATP) is primarily known as a cellular source of energy. Increased ATP levels may have the potential to enhance body composition. A novel, proprietary blend of ancient peat and apple extracts has been reported to increase ATP levels, potentially by enhancing mitochondrial ATP production. Therefore, the purpose of this investigation was to determine the supplement's effects on body composition when consumed during 12 weeks of resistance training. Twenty-five healthy, resistance-trained, male subjects (age, 27.7 ± 4.8 years; height, 176.0 ± 6.5 cm; body mass, 83.2 ± 12.1 kg) completed this study. Subjects supplemented once daily with either 1 serving (150 mg) of a proprietary blend of ancient peat and apple extracts (TRT) or placebo (PLA). Supervised resistance training consisted of 8 weeks of daily undulating periodized training followed by a 2-week overreach and a 2-week taper phase. Body composition was assessed using dual-energy X-ray absorptiometry and ultrasound at weeks 0, 4, 8, 10, and 12. Vital signs and blood markers were assessed at weeks 0, 8, and 12. Significant group × time (p < 0.05) interactions were present for ultrasound-determined cross-sectional area, which increased in TRT (+0.91 cm(2)) versus PLA (-0.08 cm(2)), as well as muscle thickness (TRT: +0.46; PLA: +0.04 cm). A significant group × time (p < 0.05) interaction existed for creatinine (TRT: +0.06; PLA: +0.15 mg/dL), triglycerides (TRT: +24.1; PLA: -20.2 mg/dL), and very-low-density lipoprotein (TRT: +4.9; PLA: -3.9 mg/dL), which remained within clinical ranges. Supplementation with a proprietary blend of ancient peat and apple extracts may enhance resistance training-induced skeletal muscle hypertrophy without affecting fat mass or blood chemistry in healthy males. PMID:26489051

  10. Green emitting phosphors and blends thereof

    DOEpatents

    Setlur, Anant Achyut; Siclovan, Oltea Puica; Nammalwar, Prasanth Kumar; Sathyanarayan, Ramesh Rao; Porob, Digamber G.; Chandran, Ramachandran Gopi; Heward, William Jordan; Radkov, Emil Vergilov; Briel, Linda Jane Valyou

    2010-12-28

    Phosphor compositions, blends thereof and light emitting devices including white light emitting LED based devices, and backlights, based on such phosphor compositions. The devices include a light source and a phosphor material as described. Also disclosed are phosphor blends including such a phosphor and devices made therefrom.

  11. FIBER-TEX 1992: The Sixth Conference on Advanced Engineering Fibers and Textile Structures for Composites

    NASA Technical Reports Server (NTRS)

    Buckley, John D. (Editor)

    1993-01-01

    The FIBER-TEX 1992 proceedings contain the papers presented at the conference held on 27-29 Oct. 1992 at Drexel University. The conference was held to create a forum to encourage an interrelationship of the various disciplines involved in the fabrication of materials, the types of equipment, and the processes used in the production of advanced composite structures. Topics discussed were advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, and the latest requirements for the use of textiles in the production of composite materials and structures as related to global activities focused on textile structural composites.

  12. Gluten-free snacks using plantain-chickpea and maize blend: chemical composition, starch digestibility, and predicted glycemic index.

    PubMed

    Flores-Silva, Pamela C; Rodriguez-Ambriz, Sandra L; Bello-Pérez, Luis A

    2015-05-01

    An increase in celiac consumers has caused an increasing interest to develop good quality gluten-free food products with high nutritional value. Snack foods are consumed worldwide and have become a normal part of the eating habits of the celiac population making them a target to improve their nutritive value. Extrusion and deep-frying of unripe plantain, chickpea, and maize flours blends produced gluten-free snacks with high dietary fiber contents (13.7-18.2 g/100 g) and low predicted glycemic index (28 to 35). The gluten-free snacks presented lower fat content (12.7 to 13.6 g/100 g) than those reported in similar commercial snacks. The snack with the highest unripe plantain flour showed higher slowly digestible starch (11.6 and 13.4 g/100 g) than its counterpart with the highest chickpea flour level (6 g/100 g). The overall acceptability of the gluten-free snacks was similar to that chili-flavored commercial snack. It was possible to develop gluten-free snacks with high dietary fiber content and low predicted glycemic index with the blend of the 3 flours, and these gluten-free snacks may also be useful as an alternative to reduce excess weight and obesity problems in the general population and celiac community. PMID:25866197

  13. An Investigation of Some Advanced Skills of Composition.

    ERIC Educational Resources Information Center

    Das, Bikram K.

    1978-01-01

    A study was conducted to investigate: (1) what linguistic and mental abilities are involved in composition; (2) to what extent undergraduate students in India possess these abilities, in English and in their native language; and (3) to what extent these abilities are being taught. The major portion of the paper discusses the nature of composition,…

  14. Advanced SiC composites for fusion applications

    SciTech Connect

    Snead, L.L.; Schwarz, O.J.

    1995-04-01

    This is a short review of the motivation for and progress in the development of ceramic matrix composites for fusion. Chemically vapor infiltrated silicon carbide (SiC) composites have been fabricated from continuous fibers of either SiC or graphite and tested for strength and thermal conductivity. Of significance is the the Hi-Nicalon{trademark} SiC based fiber composite has superior unirradiated properties as compared to the standard Nicalon grade. Based on previous results on the stability of the Hi-Nicalon fiber, this system should prove more resistant to neutron irradiation. A graphite fiber composite has been fabricated with very good mechnical properties and thermal conductivity an order of magnitude higher than typical SiC/SiC composites.

  15. Recent advances in research on carbon nanotube-polymer composites.

    PubMed

    Byrne, Michele T; Gun'ko, Yurii K

    2010-04-18

    Carbon nanotubes (CNTs) demonstrate remarkable electrical, thermal, and mechanical properties, which allow a number of exciting potential applications. In this article, we review the most recent progress in research on the development of CNT-polymer composites, with particular attention to their mechanical and electrical (conductive) properties. Various functionalization and fabrication approaches and their role in the preparation of CNT-polymer composites with improved mechanical and electrical properties are discussed. We tabulate the most recent values of Young's modulus and electrical conductivities for various CNT-polymer composites and compare the effectiveness of different processing techniques. Finally, we give a future outlook for the development of CNT-polymer composites as potential alternative materials for various applications, including flexible electrodes in displays, electronic paper, antistatic coatings, bullet-proof vests, protective clothing, and high-performance composites for aircraft and automotive industries. PMID:20496401

  16. Structural design and stress analysis program for advanced composite filament-wound axisymmetric pressure vessels (COMTANK)

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.

    1972-01-01

    Computer program has been specifically developed to handle, in an efficient and cost effective manner, planar wound pressure vessels fabricated of either boron-epoxy or graphite-epoxy advanced composite materials.

  17. Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Friedrich, Klaus; Almajid, Abdulhakim A.

    2013-04-01

    Composite materials, in most cases fiber reinforced polymers, are nowadays used in many applications in which light weight and high specific modulus and strength are critical issues. The constituents of these materials and their special advantages relative to traditional materials are described in this paper. Further details are outlined regarding the present markets of polymer composites in Europe, and their special application in the automotive industry. In particular, the manufacturing of parts from thermoplastic as well as thermosetting, short and continuous fiber reinforced composites is emphasized.

  18. Advanced composites: Fabrication processes for selected resin matrix materials

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    This design note is based on present state of the art for epoxy and polyimide matrix composite fabrication technology. Boron/epoxy and polyimide and graphite/epoxy and polyimide structural parts can be successfully fabricated. Fabrication cycles for polyimide matrix composites have been shortened to near epoxy cycle times. Nondestructive testing has proven useful in detecting defects and anomalies in composite structure elements. Fabrication methods and tooling materials are discussed along with the advantages and disadvantages of different tooling materials. Types of honeycomb core, material costs and fabrication methods are shown in table form for comparison. Fabrication limits based on tooling size, pressure capabilities and various machining operations are also discussed.

  19. Advanced composites: Environmental effects on selected resin matrix materials

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    The effects that expected space flight environment has upon the mechanical properties of epoxy and polyimide matrix composites were analyzed. Environmental phenomena covered water immersion, high temperature aging, humidity, lightning strike, galvanic action, electromagnetic interference, thermal shock, rain and sand erosion, and thermal/vacuum outgassing. The technology state-of-the-art for graphite and boron reinforced epoxy and polyimide matrix materials is summarized to determine the relative merit of using composites in the space shuttle program. Resin matrix composites generally are affected to some degree by natural environmental phenomena with polyimide resin matrix materials less affected than epoxies.

  20. Inspection of composite materials with an advanced ultrasonic flaw detector

    NASA Astrophysics Data System (ADS)

    Yamamoto, W.

    The structures and shapes of the composite material products are described. Methods of ultrasonic wave detection are described. New damage detection equipment for laminate and honeycomb structures is addressed.

  1. Advanced Ceramic Matrix Composites with Multifunctional and Hybrid Structures

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Morscher, Gregory N.

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, and nuclear industries. Potential composite applications differ in their requirements for thickness. For example, many space applications such as "nozzle ramps" or "heat exchangers" require very thin (< 1 mm) structures whereas turbine blades would require very thick parts (> or = 1 cm). Little is known about the effect of thickness on stress-strain behavior or the elevated temperature tensile properties controlled by oxidation diffusion. In this study, composites consisting of woven Hi-Nicalon (trademark) fibers a carbon interphase and CVI SiC matrix were fabricated with different numbers of plies and thicknesses. The effect of thickness on matrix crack formation, matrix crack growth and diffusion kinetics will be discussed. In another approach, hybrid fiber-lay up concepts have been utilized to "alloy" desirable properties of different fiber types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the C(sub I)-SiC and SiC(sub f)-SiC composite systems. CVI SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon (trademark)) layers were fabricated. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear properties of these composites at different temperatures will also be presented. Other design and implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  2. Recent advances in bonded composite repair technology for metallic aircraft components

    SciTech Connect

    Baker, A.A.; Chester, R.J.

    1993-12-31

    Advanced fiber composites such as boron/epoxy can be employed as adhesively bonded patches to repair or to reinforce metallic aerospace components. This approach provides many advantages over conventional mechanically fastened metallic patches, including improved fatigue behavior, reduced corrosion and easy conformance to complex aerodynamic contours. Bonded composite repairs have been shown to provide high levels of bond durability under aircraft operating conditions. The recent application of bonded composite repairs to military and civil aircraft is described.

  3. An integrated theory for predicting the hydrothermomechanical response of advanced composite structural components

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1977-01-01

    A theory is developed for predicting the hydrothermomechanical response of advanced composite structural components. The combined hydrothermal effects on the mechanical properties of unidirectional composites loaded along the material axis and off-axis, and of angleplied laminates are also evaluated. The materials investigated consist of neat PR-288 epoxy matrix resin and an AS-type graphite fiber/PR-288 resin unidirectional composite.

  4. High temperature composites for advanced missile and space transportation systems

    NASA Technical Reports Server (NTRS)

    Mccleskey, S. F.; Cushman, J. B.; Skoumal, D. E.

    1982-01-01

    A study has been conducted to characterize a state-of-the-art graphite/polyimide composite system by determining mechanical and thermophysical properties of selected laminates over a temperature range of -250 F to 600 F. The material studied was Celion 3000/PMR-15. Material property data obtained from testing included tension, compression and shear strengths, and coefficient of thermal expansion. Environmental conditions examined were: as cured/post-cured, isothermal aged at 600 F, thermal cycled from -250 F to 600 F, and moisture conditioned. This study has provided an initial data base on a graphite/polyimide composite system capable of operating in 500/600 F applications.

  5. Investigation of fatigue strength of multilayer advanced fiber composites

    NASA Technical Reports Server (NTRS)

    Thornton, H. R.; Kozik, T. J.

    1974-01-01

    The analytical characterization of a multilayer fiber composite plate (without hole) was accomplished for both static and dynamic loading conditions using the finite difference technique. Thornel 300/5208 composites with and without holes were subjected to static and tensile fatigue testing. Five (5) fiber orientations were submitted to test. Tensile fatigue testing also included three (3) loading conditions and two (2) frequencies. The low-cycle test specimens demonstrated a shorter tensile fatigue life than the high-cycle test specimens. Failure surfaces demonstrated effect of testing conditions. Secondary failure mechanisms, such as: delamination, fiber breakage, and edge fiber delamination were present. Longitudinal delamination between plies also occurred in these specimens.

  6. Resin transfer molding for advanced composite primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Markus, Alan; Palmer, Ray

    1991-01-01

    Resin Transfer Molding (RTM) has been identified by Douglas Aircraft Company (DAC) and industry to be one of the promising processes being developed today which can break the cost barrier of implementing composite primary structures into a commercial aircraft production environment. The RTM process developments and scale-up plans Douglas Aircrart will be conducting under the NASA ACT contract are discussed.

  7. Musical Composition and Creativity in an Advanced Software Environment

    ERIC Educational Resources Information Center

    Reynolds, Nicholas

    2002-01-01

    This paper serves as a brief description of research into the use of professional level music software as a learning tool for creativity and composition by primary school children. The research formed the basis of a Master of Information Technology in Education degree at the University of Melbourne. The paper examines the physical environment, the…

  8. Advanced Nano-Composites for Increased Energy Efficiency

    SciTech Connect

    2009-05-01

    This factsheet describes a research project whose goal is to increase energy efficiency and operating lifetime of wear-intensive industrial components and systems by developing and commercializing a family of ceramic-based monolithic composites that have shown remarkable resistance to wear in laboratory tests.

  9. Reported Usage and Perceived Value of Advanced Placement English Language and Composition Curricular Requirements by High School and College Assessors of the Essay Portion of the English Language and Composition Advanced Placement Exam

    ERIC Educational Resources Information Center

    Holifield-Scott, April

    2011-01-01

    A study was conducted to determine the extent to which high school and college/university Advanced Placement English Language and Composition readers value and implement the curricular requirements of Advanced Placement English Language and Composition. The participants were 158 readers of the 2010 Advanced Placement English Language and…

  10. Energy transfer based photoluminescence properties of co-doped (Er3+ + Pr3+): PEO + PVP blended polymer composites for photonic applications

    NASA Astrophysics Data System (ADS)

    Naveen Kumar, K.; Kang, Misook; Bhaskar Kumar, G.; Ratnakaram, Y. C.

    2016-04-01

    Er3+, Pr3+ singly doped and co-doped PEO + PVP polymer composites have been synthesized by conventional solution casting method. The structural analysis has been carried out for all these polymer composites from XRD analysis. Raman spectral studies confirm the ion-polymer interactions and polymer complex formation. Thermal properties of pure polymer film has also been clearly elucidated by TG/DTA profiles. Well defined optical absorption bands pertaining to Er3+ and Pr3+ are observed in the absorption spectral profile and these bands are assigned with corresponding electronic transitions. The polymer films containing singly doped Er3+ and Pr3+ ions have displayed green and red emissions at 510 nm (2H11/2 → 4I15/2) and 688 nm (3P0 → 3F3) respectively under UV excitation source. Comparing the emission spectra of singly Er3+ and co-doped Er3+ + Pr3+: PEO + PVP polymer films, a significant red emission pertaining to Pr3+ions is remarkably enhanced in co-doped polymer system. This could be ascribed to possible energy transfer from Er3+ to Pr3+ in co-doped polymer system. The energy transfer mechanism is clearly demonstrated using their emission performances, overlapped spectral profiles and also life time decay dynamics. Thus, it could be suggested that Er3+: PEO + PVP, Pr3+: PEO + PVP and (Er3+ + Pr3+): PEO + PVP blended polymer films are potential materials for several photonic applications.

  11. Hydroprocessing of sunflower oil-gas oil blends over sulfided Ni-Mo-Al-zeolite beta composites.

    PubMed

    Sankaranarayanan, T M; Banu, M; Pandurangan, A; Sivasanker, S

    2011-11-01

    Mixtures of sunflower oil and a straight run gas oil in the diesel fuel range were hydroprocessed over sulfided NiO(3%)-MoO3(12%)-γ-Al2O3 incorporating 0, 15 or 30 wt.% zeolite beta (BEA). The studies were carried out at 320-350 °C; 30-60 bars, and weight hourly space velocities (WHSV), 1-4 h(-1). Catalyst containing 30% BEA achieved nearly 100 % conversion of the vegetable oil into hydrocarbons at 330 °C, 60 bars and a WHSV of 2 h(-1) compared to 95.5% by the Ni-Mo-γ-alumina catalyst without BEA. Hydroprocessing with blends containing oleic acid revealed that the catalysts were able to transform the acid into hydrocarbons. An analysis of the ratios of the n-C18 and n-C17 paraffins formed from the vegetable oil at different process conditions revealed that the catalyst containing 15% BEA was most active for hydrodeoxygenation. The gas oil-hydrodesulfurization activity of the Ni-Mo-Al2O3 was enhanced by the addition of BEA by more than 10%. PMID:21945166

  12. Advanced composite fiber/metal pressure vessels for aircraft applications

    NASA Astrophysics Data System (ADS)

    Papanicolopoulos, Aleck

    1993-06-01

    Structural Composites Industries has developed, qualified, and delivered a number of high performance carbon epoxy overwrapped/seamless aluminum liner pressure vessels for use in military aircraft where low weight, low cost, high operating pressure and short lead time are the primary considerations. This paper describes product design, development, and qualification for a typical program. The vessel requirements included a munitions insensitivity criterion as evidenced by no fragmentation following impact by a .50 cal tumbling bullet. This was met by the development of a carbon-Spectra hybrid composite overwrap on a thin-walled seamless aluminum liner. The same manufacturing, inspection, and test processes that are used to produce lightweight, thin walled seamless aluminum lined carbon/epoxy overwrapped pressure vessels for satellite and other space applications were used to fabricate this vessel. This report focuses on the results of performance in the qualification testing.

  13. Recent Advances and Developments in Composite Dental Restorative Materials

    PubMed Central

    Cramer, N.B.; Stansbury, J.W.; Bowman, C.N.

    2011-01-01

    Composite dental restorations represent a unique class of biomaterials with severe restrictions on biocompatibility, curing behavior, esthetics, and ultimate material properties. These materials are presently limited by shrinkage and polymerization-induced shrinkage stress, limited toughness, the presence of unreacted monomer that remains following the polymerization, and several other factors. Fortunately, these materials have been the focus of a great deal of research in recent years with the goal of improving restoration performance by changing the initiation system, monomers, and fillers and their coupling agents, and by developing novel polymerization strategies. Here, we review the general characteristics of the polymerization reaction and recent approaches that have been taken to improve composite restorative performance. PMID:20924063

  14. SRM nozzle design breakthroughs with advanced composite materials

    NASA Astrophysics Data System (ADS)

    Berdoyes, Michel

    1993-06-01

    The weight reduction-related performance and cost of the Space Shuttle's Solid Rocket Motor (SRM) units' critical nozzle components are undergoing revolutionary improvements through the use of 3D-woven carbon/carbon and carbon/alumina composite materials. These can be used to fabricate the SRM's nozzle throat nondegradable insulators, thermostructural insulator, and exit cones. Additional developments are noted among nozzle-related structural components for additional rocket propulsion systems, including a three-piece extendible nozzle.

  15. Advanced composite vertical stabilizer for DC-10 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stephens, C. O.

    1978-01-01

    The structural design configuration for the Composite Vertical Stabilizer is described and the structural design, analysis, and weight activities are presented. The status of fabrication and test activities for the development test portion of the program is described. Test results are presented for the skin panels, spar web, spar cap to cover, and laminate properties specimens. Engineering drawings of vertification test panels and root fittings, rudder support specimens, titanium fittings, and rear spar specimen analysis models are included.

  16. FIBER-TEX 1991: The Fifth Conference on Advanced Engineering Fibers and Textile Structures for Composites

    SciTech Connect

    Buckley, J.D.

    1992-10-01

    This document is a compilation of papers presented at a joint NASA/North Carolina State University/DoD/Clemson University/Drexel University conference on Fibers, Textile Technology, and Composites Structures held at the College of Textiles Building on Centennial Campus of North Carolina State University, Raleigh, North Carolina on October 15-17, 1991. Conference papers presented information on advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, pultruded composites, and the latest requirements for the use of textiles in the production of composite materials and structures. Separate abstracts have been prepared for papers in this report.

  17. FIBER-TEX 1991: The Fifth Conference on Advanced Engineering Fibers and Textile Structures for Composites

    NASA Technical Reports Server (NTRS)

    Buckley, John D. (Editor)

    1992-01-01

    This document is a compilation of papers presented at a joint NASA/North Carolina State University/DoD/Clemson University/Drexel University conference on Fibers, Textile Technology, and Composites Structures held at the College of Textiles Building on Centennial Campus of North Carolina State University, Raleigh, North Carolina on October 15-17, 1991. Conference papers presented information on advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, pultruded composites, and the latest requirements for the use of textiles in the production of composite materials and structures.

  18. Composite magnetostrictive materials for advanced automotive magnetomechanical sensors

    NASA Astrophysics Data System (ADS)

    McCallum, R. W.; Dennis, K. W.; Jiles, D. C.; Snyder, J. E.; Chen, Y. H.

    2001-04-01

    In this paper we present the development of a composite magnetostrictive material for automotive applications. The material is based on cobalt ferrite, CoOṡFe2O3, and contains a small fraction of metallic matrix phase that serves both as a liquid-phase sintering aid during processing and enhances the mechanical properties over those of a simple sintered ferrite ceramic. In addition the metal matrix makes it possible to braze the material, making the assembly of a sensor relatively simple. The material exhibits good sensitivity and should have high corrosion resistance, while at the same time it is low in cost.

  19. Advanced ultrasonic testing of complex shaped composite structures

    NASA Astrophysics Data System (ADS)

    Dolmatov, D.; Zhvyrblya, V.; Filippov, G.; Salchak, Y.; Sedanova, E.

    2016-06-01

    Due to the wide application of composite materials it is necessary to develop unconventional quality control techniques. One of the methods that can be used for this purpose is ultrasonic tomography. In this article an application of a robotic ultrasonic system is considered. Precise positioning of the robotic scanner and path generating are defined as ones of the most important aspects. This study proposes a non-contact calibration method of a robotic ultrasonic system. Path of the scanner requires a 3D model of controlled objects which are created in accordance with the proposed algorithm. The suggested techniques are based on implementation of structured light method.

  20. Advanced refractory metals and composites for extraterrestrial power systems

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Grobstein, Toni L.

    1990-01-01

    Concepts for future space power systems include nuclear and focused solar heat sources coupled to static and dynamic power-conversion devices; such systems must be designed for service lives as long as 30 years, despite service temperatures of the order of 1600 K. Materials are a critical technology-development factor in such aspects of these systems as reactor fuel containment, environmental protection, power management, and thermal management. Attention is given to the prospective performance of such refractory metals as Nb, W, and Mo alloys, W fiber-reinforced Nb-matrix composites, and HfC precipitate-strengthened W-Re alloys.

  1. Advances in Moire interferometry for thermal response of composites

    NASA Technical Reports Server (NTRS)

    Brooks, E. W., Jr.; Herakovich, C. T.; Post, D.; Hyer, M. W.

    1982-01-01

    An experimental technique for the precise measurement of the thermal response of both sides of a laminated composite coupon specimen uses Moire interferometry with fringe multiplication which yields a sensitivity of 833 nm (32.8 micro in.) per fringe. The reference gratings used are virtual gratings and are formed by partially mirrorized glass prisms in close proximity to the specimen. Results are compared with both results obtained from tests which used Moire interferometry on one side of composite laminates, and with those predicted by classical lamination theory. The technique is shown to be capable of producing the sensitivity and accuracy necessary to measure a wide range of thermal responses and to detect small side to side variations in the measured response. Tests were conducted on four laminate configurations of T300/5208 graphite epoxy over a temperature range of 297 K (75 F) to 422 K (300 F). The technique presented allows for the generation of reference gratings for temperature regimes well outside that used in these tests.

  2. Application of advanced material systems to composite frame elements

    NASA Technical Reports Server (NTRS)

    Llorente, Steven; Minguet, Pierre; Fay, Russell; Medwin, Steven

    1992-01-01

    A three phase program has been conducted to investigate DuPont's Long Discontinuous Fiber (LDF) composites. Additional tests were conducted to compare LDF composites against toughened thermosets and a baseline thermoset system. Results have shown that the LDF AS4/PEKK offers improved interlaminar (flange bending) strength with little reduction in mechanical properties due to the discontinuous nature of the fibers. In the third phase, a series of AS4/PEKK LDF C-section curved frames (representing a typical rotorcraft light frame) were designed, manufactured and tested. Specimen reconsolidation after 'stretch forming' and frame thickness were found to be key factors in this light frame's performance. A finite element model was constructed to correlate frame test results with expected strain levels determined from material property tests. Adequately reconsolidated frames performed well and failed at strain levels at or above baseline thermoset material test strains. Finally a cost study was conducted which has shown that the use of LDF for this frame would result in a significant cost savings, for moderate to large lot sizes compared with the hand lay-up of a thermoset frame.

  3. Status of Advanced Stitched Unitized Composite Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Velicki, Alex

    2013-01-01

    NASA has created the Environmentally Responsible Aviation (ERA) Project to explore and document the feasibility, benefits and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise levels. The primary structural concept being developed under the ERA project in the Airframe Technology element is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. This paper describes how researchers at NASA and The Boeing Company are working together to develop fundamental PRSEUS technologies that could someday be implemented on a transport size aircraft with high aspect ratio wings or unconventional shapes such as a hybrid wing body airplane design.

  4. Effect of photoinitiator concentration on marginal and internal adaptation of experimental composite blends photocured by modulated methods

    PubMed Central

    Alonso, Roberta Caroline Bruschi; de Souza-Júnior, Eduardo José Carvalho; Dressano, Diogo; de Araújo, Giovana Albamonte Spagnolo; Rodriguez, José Manuel Ces; Hipólito, Vinícius Di; Anauate-Netto, Camillo; Puppin-Rontani, Regina Maria; Sinhoreti, Mario Alexandre Coelho

    2013-01-01

    Objective: The aim of this study was to evaluate the influence of photoinitiator concentration on marginal and internal adaptation of composites photocured by modulated methods. Materials and Methods: Composites based on BisGMA/triethylene glycol dimethacrylate and 65 wt% of filler were prepared with different concentrations of camphorquinone/amine (C1-0.5%, C2-1%, C3-1.5%). Cavities were prepared (3 mm × 3 mm × 2 mm) on the buccal surface of 120 bovine incisors and the adhesive system Adper Single Bond 2 was applied following manufactures instruction. Specimens were then distributed according to type of composite (C1, C2, C3) and photoactivation method (high-intensity – 750 mW/cm2 for 40 s; low intensity – 150 mW/cm2 for 200 s; soft-start – 150 mW/cm2 for 10 s + 750 mW/cm2 for 38 s; pulse-delay – 150 mW/cm2 for 10 s + 3 min dark + 750 mW/cm2 for 38 s). Superficial and internal margins were analyzed by scanning electron microscopy, using the epoxy replica technique. The length of gaps was expressed as a percentage of the total length of the margins. Data were submitted to two-way analysis of variance and Tukey's test (α =0.05). Results: Modulated curing methods did not influence gap formation regarding both superficial and internal adaptation. The composite with the lower initiator concentration (C1) presented higher gap formation when compared with those with higher concentrations (C2 and C3). Conclusion: Modulated photoactivation methods did not reduce gap formation for the experimental composite restorations evaluated. However, higher photoinitiator concentrations promote better marginal seal. PMID:24966715

  5. Advanced resin systems and 3D textile preforms for low cost composite structures

    NASA Technical Reports Server (NTRS)

    Shukla, J. G.; Bayha, T. D.

    1993-01-01

    Advanced resin systems and 3D textile preforms are being evaluated at Lockheed Aeronautical Systems Company (LASC) under NASA's Advanced Composites Technology (ACT) Program. This work is aimed towards the development of low-cost, damage-tolerant composite fuselage structures. Resin systems for resin transfer molding and powder epoxy towpreg materials are being evaluated for processability, performance and cost. Three developmental epoxy resin systems for resin transfer molding (RTM) and three resin systems for powder towpregging are being investigated. Various 3D textile preform architectures using advanced weaving and braiding processes are also being evaluated. Trials are being conducted with powdered towpreg, in 2D weaving and 3D braiding processes for their textile processability and their potential for fabrication in 'net shape' fuselage structures. The progress in advanced resin screening and textile preform development is reviewed here.

  6. Damage Prediction Models for Advanced Materials and Composites

    NASA Technical Reports Server (NTRS)

    Xie, Ming; Ahmad, Jalees; Grady, Joseph E. (Technical Monitor)

    2005-01-01

    In the present study, the assessment and evaluation of various acoustic tile designs were conducted using three-dimensional finite element analysis, which included static analysis, thermal analysis and modal analysis of integral and non-integral tile design options. Various benchmark specimens for acoustic tile designs, including CMC integral T-joint and notched CMC plate, were tested in both room and elevated temperature environment. Various candidate ceramic matrix composite materials were used in the numerical modeling and experimental study. The research effort in this program evolved from numerical modeling and concept design to a combined numerical analysis and experimental study. Many subjects associated with the design and performance of the acoustic tile in jet engine exhaust nozzle have been investigated.

  7. Advanced composite aileron for L-1011 transport aircraft, task 1

    NASA Technical Reports Server (NTRS)

    Griffin, C. F.; Fogg, L. D.; Stone, R. L.; Dunning, E. G.

    1978-01-01

    Structural design and maintainability criteria were established and used as a guideline for evaluating a variety of configurations and materials for each of the major subcomponents. From this array of subcomponent designs, several aileron assemblies were formulated and analyzed. The selected design is a multirib configuration with sheet skin covers mechanically fastened to channel section ribs and spars. Qualitative analysis of currently available composite material systems led to the selection of three candidate materials on which comparative structural tests were conducted to measure the effects of environment and impact damage on mechanical property retention. In addition, each system was evaluated for producibility characteristics. From these tests, Thornel 300/5208 unidirectional tape was selected for the front spar and covers, and Thornel 300 fabric/5208 was chosen for the ribs.

  8. Durability Characterization of Advanced Polymeric Composites at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Gates, T. S.

    2001-01-01

    The next generation of reusable launch vehicles will require technology development in several key areas. Of these key areas, the development of polymeric composite cryogenic fuel tanks promises to present one of the most difficult technical challenges. It is envisioned that a polymer matrix composite (PMC) tank would be a large shell structure capable of containing cryogenic fuels and carrying a range of structural loads. The criteria that will be imposed on such a design include reduced weight, conformal geometry, and impermeability. It is this last criterion, impermeability, that will provide the focus of this paper. The essence of the impermeability criterion is that the tank remains leak free throughout its design lifetime. To address this criterion, one of the first steps is to conduct a complete durability assessment of the PMC materials. At Langley Research Center, a durability assessment of promising new polyimide-based PMCs is underway. This durability program has focused on designing a set of critical laboratory experiments that will determine fundamental material properties under combined thermal-mechanical loading at cryogenic temperatures. The test program provides measurements of lamina and laminate properties, including strength, stiffness, and fracture toughness. The performance of the PMC materials is monitored as a function of exposure conditions and aging time. Residual properties after exposure are measured at cryogenic temperatures and provide quantitative values of residual strength and stiffness. Primary degradation mechanisms and the associated damage modes are measured with both destructive and nondestructive techniques. In addition to mechanical properties, a range of physical properties, such as weight, glass transition, and crack density, are measured and correlated with the test conditions. This paper will report on the progress of this research program and present critical results and illustrative examples of current findings.

  9. Use of advanced composite pipe technology to design seawater systems on open type offshore production platforms

    SciTech Connect

    Lea, R.H.; Griffin, S.A.; Pang, S.S.; Cundy, V.A.

    1993-12-31

    Since the 1950`s composite pipe has been considered a viable alternative to carbon steel, stainless steel and copper-nickel pipe in sea water applications. The most obvious benefit of utilizing composite pipe for offshore applications is its excellent corrosion resistance. Case histories exceeding twenty years have been reported in the Gulf of Mexico. A typical example is a water flood system installed by Exxon in block 16 in 1970. In order to utilize composite piping systems for offshore applications more extensively, design procedures, failure criteria, new advanced pipe design, and fire characteristics have been identified. This information can assist the engineer in working within the guidelines established by major industrial groups and regulatory bodies such as The International Maritime Organization, Health Safety Executive, Norwegian Petroleum Directorate and The American Petroleum Directorate. The results of this program has led to the installation of over 3,660 m of advanced composite pipe on the new Corvette Class coastal destroyer.

  10. Polymer, metal and ceramic matrix composites for advanced aircraft engine applications

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.

    1985-01-01

    Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  11. Advanced composite structural concepts and material technologies for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony

    1991-01-01

    Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.

  12. Advanced thermoplastic composites: An attractive new material for usage in highly loaded vehicle components

    SciTech Connect

    Mehn, R.; Seidl, F.; Peis, R.; Heinzmann, D.; Frei, P.

    1995-10-01

    Beside the lightweight potential and further well known advantages of advanced composite materials, continuous fiber reinforced thermoplastics employed in vehicle structural parts especially offer short manufacturing cycle times and an additional economically viable manufacturing process. Presenting a frame structure concept for two highly loaded vehicle parts, a safety seat and a side door, numerous features concerning the choice of suitable composite materials, design aspects, investigations to develop a thermoforming technique, mature for a series production of vehicle parts, are discussed.

  13. High performance fibers for structurally reliable metal and ceramic composites. [advanced gas turbine engine materials

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1984-01-01

    Very few of the commercially available high performance fibers with low densities, high Young's moduli, and high tensile strengths possess all the necessary property requirements for providing either metal matrix composites (MMC) or ceramic matrix composites (CMC) with high structural reliability. These requirements are discussed in general and examples are presented of how these property guidelines are influencing fiber evaluation and improvement studies at NASA aimed at developing structurally reliable MMC and CMC for advanced gas turbine engines.

  14. Advances in the Use of Thermography to Inspect Composite Tanks for Liquid Fuel Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lansing, Matthew D.; Russell, Samuel S.; Walker, James L.; Jones, Clyde S. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of advances in the use of thermography to inspect composite tanks for liquid fuel propulsion systems. Details are given on the thermographic inspection system, thermographic analysis method (includes scan and defect map, method of inspection, and inclusions, ply wrinkle, and delamination defects), graphite composite cryogenic feedline (including method, image map, and deep/shallow inclusions and resin rich area defects), and material degradation nondestructive evaluation.

  15. Advanced glucose biosensing and nano-composite research

    NASA Astrophysics Data System (ADS)

    Uba, Humphreys Douglas I.

    The fascinating and enhanced properties of carbon nanotubes (CNTs) have been of intense interest since their discovery. This is primarily due to their exceptional mechanical , electrical, and thermal properties , as well as their many and varied applications in modern industries such as in fuel cells, sensors, reinforced composites, electromagnetic interference shielding applications, actuators and fabrication of sophisticated nanostructures. During the production of CNTs, there are associated impurities such as metal nanoparticle and carbonaceous impurities. There are different types of CNTs such as single-walled nanotubes (SWNTs), double-walled nanotubes (DWNTs) and multi-walled nanotubes (MWNTs). In this study, XD-grade CNTs (XD) was used. XD is a mixture of SWNTs, DWNTs and MWNTs. The focus of this study was primarily geared toward the purification and application of CNTs. Two generally accepted cycles of purification were followed, purification under oxygen environment and purification under oxygen/argon mixture environment. XD was purified to different extents by oxidation and acid wash. The raw and purified CNTs were compounded into Epikote 862 and Epikure W epoxy resin to prepare composite materials and also in the biosensor studies. The CNTs and composite materials were characterized by means of thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and transimssion electron microscopy (TEM). It was discovered that, excessive purification would not lead to further removal of metal residues; instead, it could result in disruption of the structure and property of CNTs. The use of CNTs as fillers was found to hinder the epoxy curing in general, and the removal of metal impurities seemed to worsen the situation. This would imply that the metal residue might catalyze the epoxy curing to a certain degree while the increased viscosity should be the primary reason for the slowed curing. An electrochemical

  16. Blending Creativity, Science and Drama

    ERIC Educational Resources Information Center

    Nicholas, Howard; Ng, Wan

    2008-01-01

    Blending the arts into students' learning of science concepts through role-play and drama is unusual pedagogy in schools. For seven Australian Year Five students seeking extended learning, advanced scientific concepts were learned during the creative process of script writing and production of a science play called "Hectic Electric". A mentor and…

  17. Impact of leachate composition on the advanced oxidation treatment.

    PubMed

    Oulego, Paula; Collado, Sergio; Laca, Adriana; Díaz, Mario

    2016-01-01

    Advanced oxidation processes (AOPs) are gaining importance as an alternative to the biological or physicochemical treatments for the management of leachates. In this work, it has been studied the effect of the characteristics of the leachate (content in humic acids, landfill age and degree of stabilization) on the wet oxidation process and final quality of the treated effluent. A high concentration of humic acids in the leachate had a positive effect on the COD removal because this fraction is more easily oxidizable. Additionally, it has been demonstrated that the simultaneous presence of humic acid and the intermediates generated during the oxidation process improved the degradation of this acid, since such intermediates are stronger initiators of free radicals than the humic acid itself. Similar values of COD removals (49% and 51%) and biodegradability indices (0.30 and 0.35) were observed, after 8 h of wet oxidation, for the stabilised leachate (biologically pretreated) and the raw one, respectively. Nevertheless, final colour removal was much higher for the stabilised leachate, achieving values up to 91%, whereas for the raw one only 56% removal was attained for the same reaction time. Besides, wet oxidation treatment was more efficient for the young leachate than for the old one, with final COD conversions of 60% and 37%, respectively. Eventually, a triangular "three-lump" kinetic model, which considered direct oxidation to CO2 and partial oxidation through intermediate compounds, was here proposed. PMID:26517790

  18. A study on the spectroscopic, energy band, and optoelectronic properties of α,ω-dihexylsexithiophene/tris(8-hydroxyquinolinate) gallium blends; DH6T/Gaq3 composite system.

    PubMed

    Muhammad, Fahmi F; Yahya, Mohd Yazid; Ketuly, Kamal Aziz; Muhammad, Abdulkader Jaleel; Sulaiman, Khaulah

    2016-12-01

    In this work the optical response, spectroscopic behaviour, and optoelectronic properties of solution and solid state composite systems based on α,ω-dihexylsexithiophene/tris(8-hydroxyquinolinate) gallium (DH6T/Gaq3) are studied upon the incorporation of different molar percentages of Gaq3. UV-vis, PL, FTIR spectrophotometers and SEM technique were utilized to perform the investigations. The results showed a reduced energy band (Eg) (from 2.33eV to 1.83eV) and a broadened absorption spectrum for the blend system when 29.8% molar of Gaq3 was incorporated. These were attributed to the enhanced intermolecular interactions that are brought about by the increased strength of π-π overlap between the molecular moieties. A mathematical formula was developed to interpret the non-monotonic change occurred in Eg, while numerical calculations have been made to assign the type and nature of the electronic transitions governing the spectroscopic behaviour of the system. The results were elaborated and comprehensively discussed in terms of the exciton generation, energy band theory, molecular interactions, and spatial geometry. PMID:27372510

  19. Robust Joining and Integration of Advanced Ceramics and Composites: Challenges, Opportunities, and Realities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2006-01-01

    Advanced ceramics and fiber reinforced composites are under active consideration for use in a wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite components require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition, these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in advanced ceramics and ceramic matrix composites will be presented. Silicon carbide based advanced ceramics and fiber reinforced composites in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology. In addition, some examples of metal-ceramic brazing will also be presented. Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and composites will be reported. Various joint design philosophies and design issues in joining of ceramics and composites will be discussed.

  20. Properties of fiber composites for advanced flywheel energy storage devices

    SciTech Connect

    DeTeresa, S J; Groves, S E

    2001-01-12

    The performance of commercial high-performance fibers is examined for application to flywheel power supplies. It is shown that actual delivered performance depends on multiple factors such as inherent fiber strength, strength translation and stress-rupture lifetime. Experimental results for recent stress-rupture studies of carbon fibers will be presented and compared with other candidate reinforcement materials. Based on an evaluation of all of the performance factors, it is concluded that carbon fibers are preferred for highest performance and E-glass fibers for lowest cost. The inferior performance of the low-cost E-glass fibers can be improved to some extent by retarding the stress-corrosion of the material due to moisture and practical approaches to mitigating this corrosion are discussed. Many flywheel designs are limited not by fiber failure, but by matrix-dominated failure modes. Unfortunately, very few experimental results for stress-rupture under transverse tensile loading are available. As a consequence, significant efforts are made in flywheel design to avoid generating any transverse tensile stresses. Recent results for stress-rupture of a carbon fiber/epoxy composite under transverse tensile load reveal that these materials are surprisingly durable under the transverse loading condition and that some radial tensile stress could be tolerated in flywheel applications.

  1. Performance and stability of advanced monolithic and fiber reinforced composite candle filters during PCFBC operation

    SciTech Connect

    Alvin, M.A.

    1996-12-31

    Advanced clay bonded silicon carbide, alumina/mullite and CVI-SiC fiber reinforced composite porous ceramic candle filters have been identified for use in pressurized circulating fluidized-bed combustion (PCFBC) systems where operating temperatures approach 870--900 C. In this paper the author will discuss the performance of these filter elements, and explore the response and stability of the advanced filter materials after 540 hours of operation in Foster Wheeler`s PCFBC system in Karhula, Finland. The potential use of the advanced filter materials for extended operating life in high temperature, pressurized, coal-fired process applications will also be addressed.

  2. Automated Propellant Blending

    NASA Technical Reports Server (NTRS)

    Hohmann, Carl W. (Inventor); Harrington, Douglas W. (Inventor); Dutton, Maureen L. (Inventor); Tipton, Billy Charles, Jr. (Inventor); Bacak, James W. (Inventor); Salazar, Frank (Inventor)

    2000-01-01

    An automated propellant blending apparatus and method that uses closely metered addition of countersolvent to a binder solution with propellant particles dispersed therein to precisely control binder precipitation and particle aggregation is discussed. A profile of binder precipitation versus countersolvent-solvent ratio is established empirically and used in a computer algorithm to establish countersolvent addition parameters near the cloud point for controlling the transition of properties of the binder during agglomeration and finishing of the propellant composition particles. The system is remotely operated by computer for safety, reliability and improved product properties, and also increases product output.

  3. Automated Propellant Blending

    NASA Technical Reports Server (NTRS)

    Hohmann, Carl W. (Inventor); Harrington, Douglas W. (Inventor); Dutton, Maureen L. (Inventor); Tipton, Billy Charles, Jr. (Inventor); Bacak, James W. (Inventor); Salazar, Frank (Inventor)

    1999-01-01

    An automated propellant blending apparatus and method uses closely metered addition of countersolvent to a binder solution with propellant particles dispersed therein to precisely control binder precipitation and particle aggregation. A profile of binder precipitation versus countersolvent-solvent ratio is established empirically and used in a computer algorithm to establish countersolvent addition parameters near the cloud point for controlling the transition of properties of the binder during agglomeration and finishing of the propellant composition particles. The system is remotely operated by computer for safety, reliability and improved product properties, and also increases product output.

  4. A study on the utilization of advanced composites in commercial aircraft wing structure

    NASA Technical Reports Server (NTRS)

    Watts, D. J.

    1978-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composite materials in the wing structure of future production aircraft. The study accomplished the following: (1) definition of acceptance factors, (2) identification of technology issues, (3) evaluation of six candidate wing structures, (4) evaluation of five program options, (5) definition of a composite wing technology development plan, (6) identification of full-scale tests, (7) estimation of program costs for the total development plan, (8) forecast of future utilization of composites in commercial transport aircraft and (9) identification of critical technologies for timely program planning.

  5. A study on the utilization of advanced composites in commercial aircraft wing structure: Executive summary

    NASA Technical Reports Server (NTRS)

    Watts, D. J.

    1978-01-01

    The overall wing study objectives are to study and plan the effort by commercial transport aircraft manufacturers to accomplish the transition from current conventional materials and practices to extensive use of advanced composites in wings of aircraft that will enter service in the 1985-1990 time period. Specific wing study objectives are to define the technology and data needed to support an aircraft manufacturer's commitment to utilize composites primary wing structure in future production aircraft and to develop plans for a composite wing technology program which will provide the needed technology and data.

  6. Variation in Content Coverage by Classroom Composition: An Analysis of Advanced Math Course Content

    ERIC Educational Resources Information Center

    Covay, Elizabeth

    2011-01-01

    Everyone knows that there is racial inequality in achievement returns from advanced math; however, they do not know why black students and white students taking the same level of math courses are not leaving with the same or comparable skill levels. To find out, the author examines variation in course coverage by the racial composition of the…

  7. Study on utilization of advanced composites in fuselage structures of large transports

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Thomson, L. W.; Wilson, R. D.

    1985-01-01

    The potential for utilizing advanced composites in fuselage structures of large transports was assessed. Six fuselage design concepts were selected and evaluated in terms of structural performance, weight, and manufacturing development and costs. Two concepts were selected that merit further consideration for composite fuselage application. These concepts are: (1) a full depth honeycomb design with no stringers, and (2) an I section stringer stiffened laminate skin design. Weight reductions due to applying composites to the fuselages of commercial and military transports were calculated. The benefits of applying composites to a fleet of military transports were determined. Significant technology issues pertinent to composite fuselage structures were identified and evaluated. Program plans for resolving the technology issues were developed.

  8. Evaluation of Advanced Composite Structures Technologies for Application to NASA's Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.

    2008-01-01

    AS&M performed a broad assessment survey and study to establish the potential composite materials and structures applications and benefits to the Constellation Program Elements. Trade studies were performed on selected elements to determine the potential weight or performance payoff from use of composites. Weight predictions were made for liquid hydrogen and oxygen tanks, interstage cylindrical shell, lunar surface access module, ascent module liquid methane tank, and lunar surface manipulator. A key part of this study was the evaluation of 88 different composite technologies to establish their criticality to applications for the Constellation Program. The overall outcome of this study shows that composites are viable structural materials which offer from 20% to 40% weight savings for many of the structural components that make up the Major Elements of the Constellation Program. NASA investment in advancing composite technologies for space structural applications is an investment in America's Space Exploration Program.

  9. Novel multifunctional pharmaceutical excipients derived from microcrystalline cellulose-starch microparticulate composites prepared by compatibilized reactive polymer blending.

    PubMed

    Builders, Philip F; Bonaventure, Agbo M; Tiwalade, Adelakun; Okpako, Larry C; Attama, Anthony A

    2010-03-30

    The choice of excipients remains a critical factor in pharmaceutical formulations. Microcrystalline cellulose-maize starch composites (MCC-Mst) have been prepared by mixing colloidal dispersions of microcrystalline cellulose (MCC) with 10% (w/w) of chemically gelatinized maize starch (Mst) at controlled temperature conditions for use as multifunctional excipients with direct compression and enhanced disintegration abilities. The novel excipient was evaluated for its direct compression and enhanced disintegrant properties and the result compared with the properties of the individual components. Some of its physicochemical and thermal properties were also determined together with effects of freeze-thaw cycles of processing on the functional and physicochemical properties. The scanning electron micrograph (SEM) shows that the particles of the MCC-Mst were irregular in shape and multiparticulate with a marked degree of asperity. The indirect assessment of the powder flow properties as determined by Carr's compressibility index and angle of repose showed that the MCC-Mst possesses better flow compared with MCC and Mst. MCC-Mst is moderately hygroscopic and shows a Type III moisture sorption isotherm. The FT-IR spectra and DSC thermograms of the composite were different from those of MCC and Mst. The hardness of aspirin tablets was enhanced by incorporating MCC-Mst and MCC, but was reduced by Mst. While the tablets prepared with MCC-Mst and Mst disintegrated within 7min, aspirin compacts devoid of any excipient and those prepared with MCC did not disintegrate even after 2h. Acetaminophen compacts prepared with MCC and MCC-Mst showed similar compact hardness characteristics and loading properties. The loading capacity of the different samples of the composite decreased with increase in the freeze-thaw cycles. The loading capacity of the different materials as assessed by their compact hardness efficiency can be represented as follows (MCC>T0>T1>T4>T3>T2>Mst). Generally

  10. Oxidative stability, chemical composition and organoleptic properties of seinat (Cucumis melo var. tibish) seed oil blends with peanut oil from China.

    PubMed

    Siddeeg, Azhari; Xia, Wenshui

    2015-12-01

    Seinat seed oil was blended with peanut oil for the enhancement of stability and chemical characteristics of the blend. The physicochemical properties (relative density, refractive index, free fatty acids, saponification value, iodine value and peroxide value) of seinat seed and peanut oil blends in ratios 95:5, 85:15, 30:70 and 50:50 proportions were evaluated, as well as oxidative stability index, deferential scanning calorimetric (DSC) characteristics and tocopherols content. Results of oil blend showed that there was no negative effect by the addition of seinat seed oil to peanut oil and also had decreased percentages of all saturated fatty acids except stearic acid, conversely, increased the levels of unsaturated fatty acids. As for the sensory evaluation, the panelist results showed that seinat seed oil blends had no significant differences (p < 0.05) in all attributes except the purity. The results indicated that the blending of seinat seed oil with peanut oil had also increased the stability and tocopherols content. As Sudan is the first producer of seinat oil, blending of seinat seed oil with traditional oil like quality, and may decrease the consumption of other expensive edible oils. PMID:26604391

  11. Advanced composite structural concepts and materials technologies for primary aircraft structures: Advanced material concepts

    NASA Technical Reports Server (NTRS)

    Lau, Kreisler S. Y.; Landis, Abraham L.; Chow, Andrea W.; Hamlin, Richard D.

    1993-01-01

    To achieve acceptable performance and long-term durability at elevated temperatures (350 to 600 F) for high-speed transport systems, further improvements of the high-performance matrix materials will be necessary to achieve very long-term (60,000-120,000 service hours) retention of mechanical properties and damage tolerance. This report emphasizes isoimide modification as a complementary technique to semi-interpenetrating polymer networks (SIPN's) to achieve greater processibility, better curing dynamics, and possibly enhanced thermo-mechanical properties in composites. A key result is the demonstration of enhanced processibility of isoimide-modified linear and thermo-setting polyimide systems.

  12. Raman Microimaging of Polymer Blends

    NASA Astrophysics Data System (ADS)

    Song, Guanghua; Waldek Zerda, Tadeusz

    2001-10-01

    Raman microimaging was used to estimate the effect of the silica filler on phase separation in polymer blends composed of brominated poly(isobutylene-co-para-methylstyrene)(BIMS),natural rubber, synthetic rubber, and cis-1-4-polybutadiene(BR).the domain sizes,relative concentration of polymer components within domains ,and distribution of particulate silica filler and zinc stearate curative were characterized for blends of different compositions and history of aging treatments. The presence of increased concentrations of precipitated silica results in better polymer morphology since domain sizes are reduced.

  13. Joining and Assembly of Silicon Carbide-based Advanced Ceramics and Composites for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2004-01-01

    Silicon carbide based advanced ceramics and fiber reinforced composites are under active consideration for use in wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite component require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing o high temperature joints in ceramic matrix composites will be presented. Silicon carbide based advanced ceramics (CVD and hot pressed), and C/SiC and SiC/SiC composites, in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology (ARCJoinT). Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and CVI and melt infiltrated SiC matrix composites will,be reported. Various joint design philosophies and design issues in joining of ceramics and composites well be discussed.

  14. Copper Multiwall Carbon Nanotubes and Copper-Diamond Composites for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Ellis, Dave L.; Smelyanskiy, Vadim; Foygel, Michael; Singh, Jogender; Rape, Aaron; Vohra, Yogesh; Thomas, Vinoy; Li, Deyu; Otte, Kyle

    2013-01-01

    This paper reports on the research effort to improve the thermal conductivity of the copper-based alloy NARloy-Z (Cu-3 wt.%Ag-0.5 wt.% Zr), the state-of-the-art alloy used to make combustion chamber liners in regeneratively-cooled liquid rocket engines, using nanotechnology. The approach was to embed high thermal conductivity multiwall carbon nanotubes (MWCNTs) and diamond (D) particles in the NARloy-Z matrix using powder metallurgy techniques. The thermal conductivity of MWCNTs and D have been reported to be 5 to 10 times that of NARloy-Z. Hence, 10 to 20 vol. % MWCNT finely dispersed in NARloy-Z matrix could nearly double the thermal conductivity, provided there is a good thermal bond between MWCNTs and copper matrix. Quantum mechanics-based modeling showed that zirconium (Zr) in NARloy-Z should form ZrC at the MWCNT-Cu interface and provide a good thermal bond. In this study, NARloy-Z powder was blended with MWCNTs in a ball mill, and the resulting mixture was consolidated under high pressure and temperature using Field Assisted Sintering Technology (FAST). Microstructural analysis showed that the MWCNTs, which were provided as tangles of MWCNTs by the manufacturer, did not detangle well during blending and formed clumps at the prior particle boundaries. The composites made form these powders showed lower thermal conductivity than the base NARloy-Z. To eliminate the observed physical agglomeration, tangled multiwall MWCNTs were separated by acid treatment and electroless plated with a thin layer of chromium to keep them separated during further processing. Separately, the thermal conductivities of MWCNTs used in this work were measured, and the results showed very low values, a major factor in the low thermal conductivity of the composite. On the other hand, D particles embedded in NARloy-Z matrix showed much improved thermal conductivity. Elemental analysis showed migration of Zr to the NARloy-Z-D interface to form ZrC, which appeared to provide a low contact

  15. Copper-Multiwall Carbon Nanotubes and Copper-Diamond Composites for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Ellis, Dave L.; Smelyanskiy, Vadim; Foygel, Michael; Rape, Aaron; Singh, Jogender; Vohra, Yogesh K.; Thomas, Vinoy; Otte, Kyle G.; Li, Deyu

    2013-01-01

    This paper reports on the research effort to improve the thermal conductivity of the copper-based alloy NARloy-Z (Cu-3 wt.%Ag-0.5 wt.% Zr), the state-of-the-art alloy used to make combustion chamber liners in regeneratively-cooled liquid rocket engines, using nanotechnology. The approach was to embed high thermal conductivity multiwall carbon nanotubes (MWCNTs) and diamond (D) particles in the NARloy-Z matrix using powder metallurgy techniques. The thermal conductivity of MWCNTs and D have been reported to be 5 to 10 times that of NARloy-Z. Hence, 10 to 20 vol. % MWCNT finely dispersed in NARloy-Z matrix could nearly double the thermal conductivity, provided there is a good thermal bond between MWCNTs and copper matrix. Quantum mechanics-based modeling showed that zirconium (Zr) in NARloy-Z should form ZrC at the MWCNT-Cu interface and provide a good thermal bond. In this study, NARloy-Z powder was blended with MWCNTs in a ball mill, and the resulting mixture was consolidated under high pressure and temperature using Field Assisted Sintering Technology (FAST). Microstructural analysis showed that the MWCNTs, which were provided as tangles of MWCNTs by the manufacturer, did not detangle well during blending and formed clumps at the prior particle boundaries. The composites made form these powders showed lower thermal conductivity than the base NARloy-Z. To eliminate the observed physical agglomeration, tangled multiwall MWCNTs were separated by acid treatment and electroless plated with a thin layer of chromium to keep them separated during further processing. Separately, the thermal conductivities of MWCNTs used in this work were measured, and the results showed very low values, a major factor in the low thermal conductivity of the composite. On the other hand, D particles embedded in NARloy-Z matrix showed much improved thermal conductivity. Elemental analysis showed migration of Zr to the NARloy-Z-D interface to form ZrC, which appeared to provide a low contact

  16. MIT/Marine Industry Collegium Opportunity Brief: Advanced composites for offshore structures. Held in Cambridge, Massachusetts on October 30-31, 1991

    SciTech Connect

    Moore, J.

    1991-01-01

    Synopses of Presentations: An Overview of Advanced Structural Composites for Offshore Structures; High-Performance Composites for Deepwater Risers; Failure and Damage Mechanisms in Composites; Environmental Degradation of Composites; Composites Manufacturing; Steel-Concrete-Steel Sandwich Composite Construction for Permanently Floating Platforms; High-Strength Cement Composites for Marine Applications; Minimum Weight Design of Foam Core Sandwich Panels; Design of Fiber Reinforced Brittle and Quasi-Brittle Matrix Composites for Marine Applications; Offshore Applications and Requirements for Use of Advanced Composites; Polymer Composites in Structures; Non-Conventional Profiles of Composites for Structural Applications; Composite in Construction Require a Structural Design System; Economic Evaluation of Composites for Offshore Use.

  17. Thermal composition fluctuations near the isotropic Lifshitz critical point in a ternary mixture of a homopolymer blend and diblock copolymer

    NASA Astrophysics Data System (ADS)

    Schwahn, Dietmar; Mortensen, Kell; Frielinghaus, Henrich; Almdal, Kristoffer; Kielhorn, Lars

    2000-03-01

    We have studied thermal composition fluctuations of a ternary symmetric homopolymer/diblock copolymer system of PEE/PDMS/PEE-PDMS [PEE and PDMS being poly(ethyl ethylene) and poly(dimethyl siloxane), respectively] in its disordered state with small angle neutron scattering for concentration Φ of diblocks up to 15%. The phase diagram shows three characteristic regimes; (1) below the Lifshitz concentration ΦLL≅9%; (2) in the very near vicinity of the Lifshitz concentration; and (3) above ΦLL. In the regime (1) of low diblock content the maximum neutron intensity is obtained at Q=0 and phase separation into macroscopic large domains is observed at low temperatures. With increasing diblock content the thermal fluctuations indicate a crossover from 3d-Ising to isotropic Lifshitz critical behavior with critical exponents of the susceptibility γ=(1.62±0.01) and correlation length ν=(0.99±0.04) appreciably larger than in the 3d-Ising case. In the structure factor this crossover is accompanied by a strong reduction of the Q2 term leading to the dominance of the Q4 term; the restoring force of the thermal fluctuations is strongly reduced as the Q2 term is proportional to the surface energy. Near the Lifshitz critical temperature a further crossover was observed leading to the appreciably larger critical exponents γ=(2.44±0.08) and ν=(1.22±0.08) and a stabilization of the disordered regime visible through a decrease of the phase boundary by nearly 10 K. This crossover is interpreted by the formation of fluctuation induced inhomogeneous diblock distribution at the interface of the thermal fluctuations. (2) In the intermediate regime between 9% and 12% diblock content the Lifshitz line was crossed twice upon increasing the temperature from low to high temperatures; at low and high temperatures the structure factor S(Q) shows diblock character (maximum of S(Q) at Q≠0) while at intermediate temperature blendlike character (maximum of S(Q) at Q=0). At low

  18. Study of mould design and forming process on advanced polymer-matrix composite complex structure

    NASA Astrophysics Data System (ADS)

    Li, S. J.; Zhan, L. H.; Bai, H. M.; Chen, X. P.; Zhou, Y. Q.

    2015-07-01

    Advanced carbon fibre-reinforced polymer-matrix composites are widely applied to aviation manufacturing field due to their outstanding performance. In this paper, the mould design and forming process of the complex composite structure were discussed in detail using the hat stiffened structure as an example. The key issues of the moulddesign were analyzed, and the corresponding solutions were also presented. The crucial control points of the forming process such as the determination of materials and stacking sequence, the temperature and pressure route of the co-curing process were introduced. In order to guarantee the forming quality of the composite hat stiffened structure, a mathematical model about the aperture of rubber mandrel was introduced. The study presented in this paper may provide some actual references for the design and manufacture of the important complex composite structures.

  19. Modeling Creep Effects in Advanced SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Lang, Jerry; DiCarlo, James

    2006-01-01

    Because advanced SiC/SiC composites are projected to be used for aerospace components with large thermal gradients at high temperatures, efforts are on-going at NASA Glenn to develop approaches for modeling the anticipated creep behavior of these materials and its subsequent effects on such key composite properties as internal residual stress, proportional limit stress, ultimate tensile strength, and rupture life. Based primarily on in-plane creep data for 2D panels, this presentation describes initial modeling progress at applied composite stresses below matrix cracking for some high performance SiC/SiC composite systems recently developed at NASA. Studies are described to develop creep and rupture models using empirical, mechanical analog, and mechanistic approaches, and to implement them into finite element codes for improved component design and life modeling

  20. Recent advances in lightweight, filament-wound composite pressure vessel technology

    NASA Technical Reports Server (NTRS)

    Lark, R. F.

    1977-01-01

    A review of recent advances is presented for lightweight, high performance composite pressure vessel technology that covers the areas of design concepts, fabrication procedures, applications, and performance of vessels subjected to single cycle burst and cyclic fatigue loading. Filament wound fiber/epoxy composite vessels were made from S glass, graphite, and Kevlar 49 fibers and were equipped with both structural and nonstructural liners. Pressure vessels structural efficiencies were attained which represented weight savings, using different liners, of 40 to 60 percent over all titanium pressure vessels. Significant findings in each area are summarized.

  1. Modeling and response analysis of thin-walled beam structures constructed of advanced composite materials

    SciTech Connect

    Song, O.

    1990-01-01

    Thin-walled beam structures are adopted as structural members in various fields of modern technology including aeronautical/aerospacial, naval, mechanical and civil ones. With the advent of advanced composite material systems, there is a vital need to reformulate the classical theory of thin-walled beams in a wide framework. In this dissertation, the aeroelastic divergence instability of aircraft wings modeled as thin-walled beams as well as the eigenfrequency problem of cantilevered composite thin-walled beams of closed cross-section are considered in the framework of a refined theory incorporating non-classical effects.

  2. Integrated Design for Manufacturing of Braided Preforms for Advanced Composites Part I: 2D Braiding

    NASA Astrophysics Data System (ADS)

    Gao, Yan Tao; Ko, Frank K.; Hu, Hong

    2013-12-01

    This paper presents a 2D braiding design system for advanced textile structural composites was based on dynamic models. A software package to assist in the design of braided preform manufacturing has been developed. The package allows design parameters (machine speeds, fiber volume fraction, tightness factor, etc.) to be easily obtained and the relationships between said parameters to be demonstrated graphically. The fabirc geometry model (FGM) method was adopted to evaluate the mechanical properties of the composites. Experimental evidence demonstrates the success of the use of dynamic models in the design software for the manufacture of braided fabric preforms.

  3. Displaying Composite and Archived Soundings in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Volkmer, Matthew R.; Blottman, Peter F.; Sharp, David W.

    2008-01-01

    This presentation describes work done by the Applied Meteorology Unit (AMU) to add composite soundings to the Advanced Weather Interactive Processing System (AWIPS). This allows National Weather Service (NWS) forecasters to compare the current atmospheric state with climatology. In a previous task, the AMU created composite soundings for four rawinsonde observation stations in Florida, for each of eight flow regimes. The composite soundings were delivered to the NWS Melbourne (MLB) office for display using the NSHARP software program. NWS MLB requested that the AMU make the composite soundings available for display in AWIPS. The AMU first created a procedure to customize AWIPS so composite soundings could be displayed. A unique four-character identifier was created for each of the 32 composite soundings. The AMIU wrote a Tool Command Language/Tool Kit (TclITk) software program to convert the composite soundings from NSHARP to Network Common Data Form (NetCDF) format. The NetCDF files were then displayable by AWIPS.

  4. Advanced Compositional Analysis of Nanoparticle-polymer Composites Using Direct Fluorescence Imaging.

    PubMed

    Crick, Colin R; Noimark, Sacha; Peveler, William J; Bear, Joseph C; Ivanov, Aleksandar P; Edel, Joshua B; Parkin, Ivan P

    2016-01-01

    The fabrication of polymer-nanoparticle composites is extremely important in the development of many functional materials. Identifying the precise composition of these materials is essential, especially in the design of surface catalysts, where the surface concentration of the active component determines the activity of the material. Antimicrobial materials which utilize nanoparticles are a particular focus of this technology. Recently swell encapsulation has emerged as a technique for inserting antimicrobial nanoparticles into a host polymer matrix. Swell encapsulation provides the advantage of localizing the incorporation to the external surfaces of materials, which act as the active sites of these materials. However, quantification of this nanoparticle uptake is challenging. Previous studies explore the link between antimicrobial activity and surface concentration of the active component, but this is not directly visualized. Here we show a reliable method to monitor the incorporation of nanoparticles into a polymer host matrix via swell encapsulation. We show that the surface concentration of CdSe/ZnS nanoparticles can be accurately visualized through cross-sectional fluorescence imaging. Using this method, we can quantify the uptake of nanoparticles via swell encapsulation and measure the surface concentration of encapsulated particles, which is key in optimizing the activity of functional materials. PMID:27500449

  5. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1995-01-01

    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  6. The Advanced Composition Explorer is placed atop its Delta II launcher at Pad 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Advanced Composition Explorer (ACE) spacecraft is placed atop its launch vehicle at Launch Complex 17A. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 24, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA.

  7. Advanced composite elevator for Boeing 727 aircraft. Volume 1: Technical summary

    NASA Technical Reports Server (NTRS)

    Chovil, D. V.; Harvey, S. T.; Mccarty, J. E.; Desper, O. E.; Jamison, E. S.; Syder, H.

    1981-01-01

    The design, development, analysis, and testing activities and results that were required to produce five and one-half shipsets of advanced composite elevators for Boeing 727 aircraft are summarized. During the preliminary design period, alternative concepts were developed. After selection of the best design, detail design and basic configuration improvements were evaluated. Five and one-half shipsets were manufactured. All program goals (except competitive cost demonstration) were accomplished when our design met or exceeded all requirements, criteria, and objectives.

  8. Stress analysis of advanced attack helicopter composite main rotor blade root end lug

    NASA Technical Reports Server (NTRS)

    Baker, D. J.

    1982-01-01

    Stress analysis of the Advanced Attack Helicopter (AAH) composite main rotor blade root end lug is described. The stress concentration factor determined from a finite element analysis is compared to an empirical value used in the lug design. The analysis and test data indicate that the stress concentration is primarily a function of configuration and independent of the range of material properties typical of Kevlar-49/epoxy and glass epoxy.

  9. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender

    2014-01-01

    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  10. Elastohydrodynamic study of vegetable oil-polyalphaolefin blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two polyalphaolefins (PAOs), of higher and lower viscosity than vegetable oils, were used to make binary blends of varying compositions with soybean and canola oils. The pure oils and the blends were used in viscosity and film thickness investigations. The effect of composition and temperature on ...

  11. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of several types of graphite/polyimide (GR/PI) bonded and bolted joints is reported. The program consists of two concurrent tasks: (1) design and test of specific built up attachments; and (2) evaluation of standard advanced bonded joint concepts. A data base for the design and analysis of advanced composite joints for use at elevated temperatures (561K (550 deg F)) to design concepts for specific joining applications, and the fundamental parameters controlling the static strength characteristics of such joints are evaluated. Data for design and build GR/PI of lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Results for compression and interlaminar shear strengths of Celion 6000/PMR-15 laminates are given. Static discriminator test results for type 3 and type 4 bonded and bolted joints and final joint designs for TASK 1.4 scale up fabrication and testing are presented.

  12. Annual Conference on Composites and Advanced Ceramic Materials, 11th, Cocoa Beach, FL, Jan. 18-23, 1987, Proceedings

    SciTech Connect

    Not Available

    1987-08-01

    The present conference on advanced ceramic materials discusses topics in the fields of NDE, coating/joining/tribology techniques, fracture and interface phenomena, whisker- and particulate-reinforced composites, fiber and whisker properties, SiC and Si/sub 3/N/sub 4/, glass/glass-ceramic matrix composites, alumina-matrix composites, ceramic materials for space structures, and SiC- and Si/sub 3/N/sub 4/-matrix composites. Attention is given to ceramic characterization by thermal wave imaging, an advanced ceramic-to-metal joining process, the fracture modes of brittle-matrix unidirectional composites, the oxidation of SiC-containing composites, particulate matter in SiC whiskers, corrosion reactions in SiC ceramics, melt-infiltrated ceramic-matrix composites, environmental effects in toughened ceramics, and a ceramic composite heat exchanger.

  13. Study of the costs and benefits of composite materials in advanced turbofan engines

    NASA Technical Reports Server (NTRS)

    Steinhagen, C. A.; Stotler, C. L.; Neitzel, R. E.

    1974-01-01

    Composite component designs were developed for a number of applicable engine parts and functions. The cost and weight of each detail component was determined and its effect on the total engine cost to the aircraft manufacturer was ascertained. The economic benefits of engine or nacelle composite or eutectic turbine alloy substitutions was then calculated. Two time periods of engine certification were considered for this investigation, namely 1979 and 1985. Two methods of applying composites to these engines were employed. The first method just considered replacing an existing metal part with a composite part with no other change to the engine. The other method involved major engine redesign so that more efficient composite designs could be employed. Utilization of polymeric composites wherever payoffs were available indicated that a total improvement in Direct Operating Cost (DOC) of 2.82 to 4.64 percent, depending on the engine considered, could be attained. In addition, the percent fuel saving ranged from 1.91 to 3.53 percent. The advantages of using advanced materials in the turbine are more difficult to quantify but could go as high as an improvement in DOC of 2.33 percent and a fuel savings of 2.62 percent. Typically, based on a fleet of one hundred aircraft, a percent savings in DOC represents a savings of four million dollars per year and a percent of fuel savings equals 23,000 cu m (7,000,000 gallons) per year.

  14. Validation of an Advanced Material Model for Simulating the Impact and Shock Response of Composite Materials

    NASA Astrophysics Data System (ADS)

    Clegg, Richard A.; Hayhurst, Colin J.; Nahme, Hartwig

    2002-07-01

    Composite materials are now commonly used as ballistic and hypervelocity protection materials and the demand for simulation of impact on these materials is increasing. A new material model specifically designed for the shock response of anisotropic materials has been developed and implemented in the hydrocode AUTODYN. The model allows for the representation of non-linear shock effects in combination with anisotropic material stiffness and damage. The coupling of the equation of state and anisotropic response is based on the methodology proposed by Anderson et al. [2]. An overview of the coupled formulation is described in order to point out the important assumptions, key innovations and basic theoretical framework. The coupled model was originally developed by Century Dynamics and Fhg-EMI for assessing the hypervelocity impact response of composite satellite protection systems [1]. It was also identified that the developed model should also offer new possibilities and capabilities for modelling modern advanced armour materials. Validation of the advanced composite model is firstly shown via simulations of uniaxial strain flyer plate experiments on aramid and polyethylene fibre composite systems. Finally, practical application of the model as implemented in AUTODYN is demonstrated through the simulation of ballistic and hypervelocity impact events. Comparison with experiment is given where possible.

  15. Study of utilization of advanced composites in fuselage structures of large transports

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.; Campion, M. C.; Pei, G.

    1984-01-01

    The effort required by the transport aircraft manufacturers to support the introduction of advanced composite materials into the fuselage structure of future commercial and military transport aircraft is investigated. Technology issues, potential benefits to military life cycle costs and commercial operating costs, and development plans are examined. The most urgent technology issues defined are impact dynamics, acoustic transmission, pressure containment and damage tolerance, post-buckling, cutouts, and joints and splices. A technology demonstration program is defined and a rough cost and schedule identified. The fabrication and test of a full-scale fuselage barrel section is presented. Commercial and military benefits are identified. Fuselage structure weight savings from use of advanced composites are 16.4 percent for the commercial and 21.8 percent for the military. For the all-composite airplanes the savings are 26 percent and 29 percent, respectively. Commercial/operating costs are reduced by 5 percent for the all-composite airplane and military life cycle costs by 10 percent.

  16. Time-temperature-stress capabilities of composite materials for advanced supersonic technology application, phase 1

    NASA Technical Reports Server (NTRS)

    Kerr, J. R.; Haskins, J. F.

    1980-01-01

    Implementation of metal and resin matrix composites into supersonic vehicle usage is contingent upon accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive service data, laboratory replication of the flight service will provide the most rapid method of documenting the airworthiness of advanced composite systems. A program in progress to determine the time temperature stress capabilities of several high temperature composite materials includes thermal aging, environmental aging, fatigue, creep, fracture, and tensile tests as well as real time flight simulation exposure. The program has two parts. The first includes all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continues these tests up to 50,000 cumulative hours. Results are presented of the 10,000 hour phase, which has now been completed.

  17. Controlling exfoliation in order to minimize damage during dispersion of long SWCNTs for advanced composites

    PubMed Central

    Yoon, Howon; Yamashita, Motoi; Ata, Seisuke; Futaba, Don N.; Yamada, Takeo; Hata, Kenji

    2014-01-01

    We propose an approach to disperse long single-wall carbon nanotubes (SWCNTs) in a manner that is most suitable for the fabrication of high-performance composites. We compare three general classes of dispersion mechanisms, which encompass 11 different dispersion methods, and we have dispersed long SWCNTs, short multi-wall carbon nanotubes, and short SWCNTs in order to understand the most appropriate dispersion methods for the different types of CNTs. From this study, we have found that the turbulent flow methods, as represented by the Nanomizer and high-pressure jet mill methods, produced unique and superior dispersibility of long SWCNTs, which was advantageous for the fabrication of highly conductive composites. The results were interpreted to imply that the biaxial shearing force caused an exfoliation effect to disperse the long SWCNTs homogeneously while suppressing damage. A conceptual model was developed to explain this dispersion mechanism, which is important for future work on advanced CNT composites. PMID:24469607

  18. Advanced leading edge thermal-structure concept. Direct bond reusable surface insulation to a composite structure

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Figueroa, H.; Coe, C. F.; Kuo, C. P.

    1984-01-01

    An advanced leading-edge concept was analyzed using the space shuttle leading edge system as a reference model. The comparison indicates that a direct-bond system utilizing a high temperature (2700 F) fibrous refractory composite insulation tile bonded to a high temperature (PI/graphite) composite structure can result in a weight savings of up to 800 lb. The concern that tile damage or loss during ascent would result in adverse entry aerodynamics if a leading edge tile system were used is addressed. It was found from experiment that missing tiles (as many as 22) on the leading edge would not significantly affect the basic force-and-moment aerodynamic coefficients. Additionally, this concept affords a degree of redundancy to a thermal protection system in that the base structure (being a composite material) ablates and neither melts nor burns through when subjected to entry heating in the event tiles are actually lost or damaged during ascent.

  19. The Influence of SiC on the Ablation Response of Advanced Refractory Composite Materials

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey D.; Rasky, Daniel J. (Technical Monitor)

    1994-01-01

    In continuing our studies of advanced refractory composite materials we have recently completed an arc-jet test series of a diverse group of ceramics and ceramic matrix composites. The compositions range from continuous fiber reinforced ceramics to monoliths. Many of these materials contain SiC and one objective of this test series was to identify the influence of SiC oxidation mechanisms on material performance. Hence the arc heater was operated at two conditions; one in which the passive oxidation of SiC would be dominant and the other where the active oxidation of SiC would be dominant. It is shown here that the active oxidation mechanism of SiC does not dominate material performance when it is present at levels equal to or below 20 volume percent.

  20. MRS International Meeting on Advanced Materials, 1st, Tokyo, Japan, June 2, 3, 1988, Proceedings. Volume 4 - Composites corrosion/Coating of advanced materials

    SciTech Connect

    Kimura, Shiushichi; Kobayashi, Akira; Nii, Kazuyoshi; Saito, Yasutoshi; Umekawa, Sokichi.

    1989-01-01

    The present conference on metal-matrix composites (MMCs) and ceramic-matrix composites (CMCs) discusses electrodeposited C/Cu MMCs, the quasi-liquid hot press method for SiC/Al composites, die-cast MMCs for tribological applications, the solidification-processing of monotectic alloy matrix composites, the fracture of SiC whisker-reinforced Al-alloy MMCs, the elastic constants of a graphite/magnesium composite, and an elastoplastic analysis of metal/plastic/metal sandwich plates in three-point bending. Also discussed are the fabrication of diamond particle-dispersed glass composites in space, heat-resistant graphite fiber-reinforced phosphate ceramic CMCs, the high-temperature creep of SiC-reinforced alumina CMCs, flexible carbon fiber-reinforced exfoliated graphite composites, and the application of advanced CMCs to advanced railway systems, the corrosion and oxidation of SiC, Si{sub 3}N{sub 4}, and other structural ceramics, corrosion properties of advanced alloys, and novel coating systems for advanced materials.

  1. Reduced toxicity polyester resins and microvascular pre-preg tapes for advanced composites manufacturing

    NASA Astrophysics Data System (ADS)

    Poillucci, Richard

    Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an

  2. Advances in Ceramic Matrix Composite Blade Damping Characteristics for Aerospace Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Min, James B.; Harris, Donald L.; Ting, J. M.

    2011-01-01

    For advanced aerospace propulsion systems, development of ceramic matrix composite integrally-bladed turbine disk technology is attractive for a number of reasons. The high strength-to-weight ratio of ceramic composites helps to reduce engine weight and the one-piece construction of a blisk will result in fewer parts count, which should translate into reduced operational costs. One shortcoming with blisk construction, however, is that blisks may be prone to high cycle fatigue due to their structural response to high vibration environments. Use of ceramic composites is expected to provide some internal damping to reduce the vibratory stresses encountered due to unsteady flow loads through the bladed turbine regions. A goal of our research was to characterize the vibration viscous damping behavior of C/SiC composites. The vibration damping properties were measured and calculated. Damping appeared to decrease with an increase in the natural frequency. While the critical damping amount of approximately 2% is required for typical aerospace turbomachinery engines, the C/SiC damping at high frequencies was less than 0.2% from our study. The advanced high-performance aerospace propulsion systems almost certainly will require even more damping than what current vehicles require. A purpose of this paper is to review some work on C/SiC vibration damping by the authors for the NASA CMC turbine blisk development program and address an importance of the further investigation of the blade vibration damping characteristics on candidate CMC materials for the NASA s advanced aerospace turbomachinery engine systems.

  3. Blending Gyro Signals To Improve Control Stability

    NASA Technical Reports Server (NTRS)

    Lee, J. F. L.

    1986-01-01

    Interference by structural vibrations reduced by adding signals from spatially separated gyros. Technique involves blending signals from rate gyroscopes located at different parts of structure to obtain composite signal that more nearly represents rotation of entire structure. Aircraft vibrations perpendicular to pitch axis contribute to rotations sensed by pitch-rate gyros. Proper blending of signals from gyros suppress contribution of dominant vibrational mode. Most likely applications of concept are flight-control systems for aircraft.

  4. Wetting induced instabilities in miscible polymer blends

    NASA Astrophysics Data System (ADS)

    Clarke, Nigel; Thomas, Katherine; Steiner, Ullrich; Poetes, Rosa; Morariu, Mihai

    2011-03-01

    The behaviour of miscible blends of polystyrene (PS)/poly(vinyl methyl ether)(PVME) of varying compositions has been investigated at temperatures where PS and PVME are miscible. The PVME is seen to enrich the polymer-air surface, forming a layer with a width that is comparable to the correlation length. Further heating close to the demixing temperature results in the formation of a capillary instabilities at the polymer surface exhibiting a spinodal-like pattern with a characteristic wavelength that depends on the blend composition. Formation of these instabilities is seen for all blend compositions. We propose that these wetting induced instabilities result from coupled height and composition fluctuations in the PVME enriched surface layer, driving the build-up of long wavelength fluctuations.

  5. A Study of the Utilization of Advanced Composites in Fuselage Structures of Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Watts, D. J.; Sumida, P. T.; Bunin, B. L.; Janicki, G. S.; Walker, J. V.; Fox, B. R.

    1985-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composites in the future production of fuselage structure in large transport aircraft. Fuselage structures of six candidate airplanes were evaluated for the baseline component. The MD-100 was selected on the basis of its representation of 1990s fuselage structure, an available data base, its impact on the schedule and cost of the development program, and its availability and suitability for flight service evaluation. Acceptance criteria were defined, technology issues were identified, and a composite fuselage technology development plan, including full-scale tests, was identified. The plan was based on composite materials to be available in the mid to late 1980s. Program resources required to develop composite fuselage technology are estimated at a rough order of magnitude to be 877 man-years exclusive of the bird strike and impact dynamic test components. A conceptual composite fuselage was designed, retaining the basic MD-100 structural arrangement for doors, windows, wing, wheel wells, cockpit enclosure, major bulkheads, etc., resulting in a 32 percent weight savings.

  6. Advances in SiC/SiC Composites for Aero-Propulsion

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.

    2013-01-01

    In the last decade, considerable progress has been made in the development and application of ceramic matrix composites consisting of silicon carbide (SiC) based matrices reinforced by small-diameter continuous-length SiC-based fibers. For example, these SiC/SiC composites are now in the early stages of implementation into hot-section components of civil aero-propulsion gas turbine engines, where in comparison to current metallic components they offer multiple advantages due to their lighter weight and higher temperature structural capability. For current production-ready SiC/SiC, this temperature capability for long time structural applications is 1250 degC, which is better than 1100 degC for the best metallic superalloys. Foreseeing that even higher structural reliability and temperature capability would continue to increase the advantages of SiC/SiC composites, progress in recent years has also been made at NASA toward improving the properties of SiC/SiC composites by optimizing the various constituent materials and geometries within composite microstructures. The primary objective of this chapter is to detail this latter progress, both fundamentally and practically, with particular emphasis on recent advancements in the materials and processes for the fiber, fiber coating, fiber architecture, and matrix, and in the design methods for incorporating these constituents into SiC/SiC microstructures with improved thermo-structural performance.

  7. Joining and Integration of Advanced Carbon-Carbon Composites to Metallic Systems for Thermal Management Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.

    2008-01-01

    Recent research and development activities in joining and integration of carbon-carbon (C/C) composites to metals such as Ti and Cu-clad-Mo for thermal management applications are presented with focus on advanced brazing techniques. A wide variety of carbon-carbon composites with CVI and resin-derived matrices were joined to Ti and Cu-clad Mo using a number of active braze alloys. The brazed joints revealed good interfacial bonding, preferential precipitation of active elements (e.g., Ti) at the composite/braze interface. Extensive braze penetration of the inter-fiber channels in the CVI C/C composites was observed. The chemical and thermomechanical compatibility between C/C and metals at elevated temperatures is assessed. The role of residual stresses and thermal conduction in brazed C/C joints is discussed. Theoretical predictions of the effective thermal resistance suggest that composite-to-metal brazed joints may be promising for lightweight thermal management applications.

  8. NiAl-Base Composite Containing High Volume Fraction of AIN Particulate for Advanced Engines

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Whittenberger, J. D.; Lowell, C. E.; Garg, A.

    1995-01-01

    Cryomilling of prealloyed NiAl containing 53 at. % AJ was carried out to achieve high nitrogen levels. The consolidation of cryomilled powder by extrusion or hot pressing/ hot isostatic pressing resulted in a fully dense NiAl-base composite containing 30 vol. % of inhomogeneously distributed, nanosized AIN particulate. The NiAl-30AIN composite exhibited the highest compression yield strengths at all temperatures between 300 and 1300 K as compared with other compositions of NiAl-AIN composite. The NiAl-30AIN specimens tested under compressive creep loading between 1300 and 1500 K also exhibited the highest creep resistance with very little surface oxidation indicating also their superior elevated temperature oxidation resistance. In the high stress exponent regime, the strength is proportional to the square root of the AIN content and in the low stress exponent regime, the influence of AIN content on strength appears to be less dramatic. The specific creep strength of this material at 1300 K is superior to a first generation Ni-base single crystal superalloy. The improvements in elevated temperature creep strength and oxidation resistance have been achieved without sacrificing the room temperature fracture toughness of the NiAl-base material. Based on its attractive combination of properties, the NiAl-30AIN composite is a potential candidate for advanced engine applications,

  9. Effective Blended Learning Techniques

    ERIC Educational Resources Information Center

    Gill, Deborah

    2009-01-01

    Blended learning is becoming more prevalent in higher education courses. Reasons for blending range from accommodating more students to improving the quality of courses offered. The purpose of this paper is twofold: (1) to discuss student attitudes towards blended courses versus face-to-face versus completely online courses, and (2) to consider…

  10. Full-scale testing, production and cost analysis data for the advanced composite stabilizer for Boeing 737 aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parson, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1982-01-01

    The development, testing, production activities, and associated costs that were required to produce five-and-one-half advanced-composite stabilizer shipsets for Boeing 737 aircraft are defined and discussed.

  11. Badhwar-O'Neil 2007 Galactic Cosmic Ray (GCR) Model Using Advanced Composition Explorer (ACE) Measurements for Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    ONeill, P. M.

    2007-01-01

    Advanced Composition Explorer (ACE) satellite measurements of the galactic cosmic ray flux and correlation with the Climax Neutron Monitor count over Solar Cycle 23 are used to update the Badhwar O'Neill Galactic Cosmic Ray (GCR) model.

  12. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gong, Chunli; Xue, Zhigang; Wen, Sheng; Ye, Yunsheng; Xie, Xiaolin

    2016-06-01

    In the past two decades, LiFePO4 has undoubtly become a competitive candidate for the cathode material of the next-generation LIBs due to its abundant resources, low toxicity and excellent thermal stability, etc. However, the poor electronic conductivity as well as low lithium ion diffusion rate are the two major drawbacks for the commercial applications of LiFePO4 especially in the power energy field. The introduction of highly graphitized advanced carbon materials, which also possess high electronic conductivity, superior specific surface area and excellent structural stability, into LiFePO4 offers a better way to resolve the issue of limited rate performance caused by the two obstacles when compared with traditional carbon materials. In this review, we focus on advanced carbon materials such as one-dimensional (1D) carbon (carbon nanotubes and carbon fibers), two-dimensional (2D) carbon (graphene, graphene oxide and reduced graphene oxide) and three-dimensional (3D) carbon (carbon nanotubes array and 3D graphene skeleton), modified LiFePO4 for high power lithium ion batteries. The preparation strategies, structure, and electrochemical performance of advanced carbon/LiFePO4 composite are summarized and discussed in detail. The problems encountered in its application and the future development of this composite are also discussed.

  13. Time-temperature-stress capabilities of composite materials for advanced supersonic technology application

    NASA Technical Reports Server (NTRS)

    Kerr, James R.; Haskins, James F.

    1987-01-01

    Advanced composites will play a key role in the development of the technology for the design and fabrication of future supersonic vehicles. However, incorporating the material into vehicle usage is contingent on accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive data, laboratory replication of the flight service will provide the most rapid method to document the airworthiness of advanced composite systems. Consequently, a laboratory program was conducted to determine the time-temperature-stress capabilities of several high temperature composites. Tests included were thermal aging, environmental aging, fatigue, creep, fracture, tensile, and real-time flight simulation exposure. The program had two phases. The first included all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continued these tests up to 50,000 cumulative hours. This report presents the results of the Phase 1 baseline and 10,000-hr aging and flight simulation studies, the Phase 2 50,000-hr aging studies, and the Phase 2 flight simulation tests, some of which extended to almost 40,000 hours.

  14. Effect of irradiation on the prevulcanized latex/low nitrosamines latex blends

    SciTech Connect

    Ibrahim, Pairu; Zin, Wan Manshol Wan; Daik, Rusli

    2015-09-25

    Radiation Prevulcanized Natural Rubber Latex (RVNRL) was blended with Low Nitrosamines Latex (LNL) at different composition ratio. Methyl Metachrylate (MMA) was added for grafting onto the blended latex. Blended latex was subjected to gamma irradiation at various doses up to 8kGy. The mechanical properties and FTIR analysis were investigated as a function of the blended composition and irradiation dose. It was found that blending at specific ratio and gamma irradiation at specific dose led to significant improvement on the properties of the latex. The optimum mechanical properties was attained at a total blending ratio of 70% RVNRL and 30% of LNL.

  15. Titanium and advanced composite structures for a supersonic cruise arrow wing configuration

    NASA Technical Reports Server (NTRS)

    Turner, M. J.; Hoy, J. M.

    1976-01-01

    Structural design studies were made, based on current technology and on an estimate of technology to be available in the mid 1980's, to assess the relative merits of structural concepts and materials for an advanced arrow wing configuration cruising at Mach 2.7. Preliminary studies were made to insure compliance of the configuration with general design criteria, integrate the propulsion system with the airframe, and define an efficient structural arrangement. Material and concept selection, detailed structural analysis, structural design and airplane mass analysis were completed based on current technology. Based on estimated future technology, structural sizing for strength and a preliminary assessment of the flutter of a strength designed composite structure were completed. An advanced computerized structural design system was used, in conjunction with a relatively complex finite element model, for detailed analysis and sizing of structural members.

  16. Low-speed wind-tunnel tests of a one-tenth-scale model of a blended-arrow advanced supersonic transport. [conducted in Langley full-scale tunnel

    NASA Technical Reports Server (NTRS)

    Lemore, H. C.; Parett, L. P.

    1975-01-01

    Tests were conducted in the Langley full scale tunnel to determine the low-speed aerodynamic characteristics of a 1/10 scale model of a blended-arrow advanced supersonic transport. Tests were made for the clean configuration and a high-lift configuration with several combinations of leading- and trailing-edge flaps deflected for providing improved lift and longitudinal stability in the landing and takeoff modes. The tests were conducted for a range of angles of attack from about -6 deg to 30 deg, sideslip angles from -5 deg to 10 deg, and for Reynolds numbers from 6.78 x 1,000,000 to 13.85 x 1,000,000 corresponding to test velocities of 41 knots to 85 knots, respectively.

  17. Validation of an Advanced Material Model for Simulating the Impact and Shock Response of Composite Materials

    NASA Astrophysics Data System (ADS)

    Clegg, Richard A.; Hayhurst, Colin J.; Nahme, Hartwig

    2001-06-01

    Validation of an advanced continuum based numerical model for the simulation of the shock response of composite materials during high rate transient dynamic loading is described. The constitutive model, implemented in AUTODYN-2D and 3D, allows for the representation of non-linear shock effects in combination with orthotropic stiffness and damage. Simulations of uniaxial flyer plate experiments on aramid and polyethylene fibre composite systems are presented and compared with experiment. The continuum model is shown to reproduce well the experimental VISAR velocity traces at the rear surface of the targets. Finally, practical application of the model as implemented in AUTODYN is demonstrated through the simulation of ballistic and hypervelocity impact events. Comparison with experiment is given where possible.

  18. Advanced Composites: Mechanical Properties and Hardware Programs for Selected Resin Matrix Materials. [considering space shuttle applications

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    This design note presents typical mechanical properties tabulated from industrial and governmental agencies' test programs. All data are correlated to specific products and all of the best known products are presented. The data include six epoxies, eight polyimides and one polyquinoxaline matrix material. Bron and graphite are the fiber reinforcements. Included are forty-two summaries of advanced (resin matrix) composite programs in existence in the United States. It is concluded that the selection of appropriate matrices, the geometric manner in which the fibers are incorporated in the matrix and the durability of the bond between fiber and matrix establish the end properties of the composite material and the performance of the fabricated structure.

  19. Recent advances in lightweight, filament-wound composite pressure vessel technology

    NASA Technical Reports Server (NTRS)

    Lark, R. F.

    1977-01-01

    A review of recent advances is presented for lightweight, high-performance composite pressure vessel technology that covers the areas of design concepts, fabrication procedures, applications, and performance of vessels subjected to single-cycle burst and cyclic fatigue loading. Filament-wound fiber/epoxy composite vessels were made from S-glass, graphite, and Kevlar 49 fibers and were equipped with both structural and nonstructural liners. Pressure vessel structural efficiencies were attained which represented weight savings, using different liners, of 40 to 60 percent over all-titanium pressure vessels. Significant findings in each area are summarized including data from current NASA-Lewis Research Center contractual and in-house programs.

  20. Study on utilization of advanced composites in commercial aircraft wing structures. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Ostrom, R. B.; Cardinale, S. V.

    1978-01-01

    The effort required by commercial transport manufacturers to accomplish the transition from current construction materials and practices to extensive use of composites in aircraft wings was investigated. The engineering and manufacturing disciplines which normally participate in the design, development, and production of an aircraft were employed to ensure that all of the factors that would enter a decision to commit to production of a composite wing structure were addressed. A conceptual design of an advanced technology reduced energy aircraft provided the framework for identifying and investigating unique design aspects. A plan development effort defined the essential technology needs and formulated approaches for effecting the required wing development. The wing development program plans, resource needs, and recommendations are summarized.

  1. An eddy-current model for three-dimensional nondestructive evaluation of advanced composites

    NASA Astrophysics Data System (ADS)

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.

    2015-03-01

    We have developed a rigorous electromagnetic model and an inversion algorithm for the three-dimensional NDE of advanced composite materials. This approach extends Victor Technologies' work in eddy-current NDE of conventional metals, and allows one to determine in localized regions the fiber-resin ratio in graphite-epoxy, and to determine those anomalies, e.g., delaminations, broken fibers, moisture content, etc., that can be reconstructed by our inversion method. In developing the model, we apply rigorous electromagnetic theory to determine a Green's function for a slab of anisotropic composite material, and then determine the integral relations for the forward and inverse problems using the Green's function. We will give examples of the solution of forward problems using this model.

  2. Environment enhanced fatigue of advanced aluminum alloys and metal matrix composites

    NASA Technical Reports Server (NTRS)

    Slavik, Donald C.; Gangloff, Richard P.

    1991-01-01

    The environmental fatigue crack propagation behavior of advanced Al-Li-Cu based alloys and metal matrix composites is being characterized. Aqueous NaCl and water vapor, which produce atomic hydrogen by reactions on clean crack surfaces, are emphasized. The effects of environment sensitive crack closure, stress ratio, and precipitate microstructure are assessed. Mechanistic models are sought for intrinsic crack tip damage processes to enable predictions of cracking behavior outside of the data, metallurgical improvements in material cracking resistance, and insight on hydrogen compatibility.

  3. APL workers install CRIS on the Advanced Composition Explorer (ACE) in SAEF-2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Workers from the Johns Hopkins University's Applied Physics Laboratory (APL) install the Cosmic Ray Isotope Spectrometer (CRIS) on the Advanced Composition Explorer (ACE) spacecraft in KSC's Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). From left, are Al Sadilek, Marcos Gonzalez and Cliff Willey. CRIS is one of nine instruments on ACE, which will investigate the origin and evolution of solar phenomenon, the formation of the solar corona, solar flares and the acceleration of the solar wind. ACE was developed for NASA by the APL. The spacecraft is scheduled to be launched Aug. 21 aboard a two-stage Delta II 7920-8 rocket from Space Launch Complex 17, Pad A.

  4. Techniques for measurement of the thermal expansion of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.

    1989-01-01

    Techniques available to measure small thermal displacements in flat laminates and structural tubular elements of advanced composite materials are described. Emphasis is placed on laser interferometry and the laser interferometric dilatometer system used at the National Aeronautics and Space Administration (NASA) Langley Research Center. Thermal expansion data are presented for graphite-fiber reinforced 6061 and 2024 aluminum laminates and for graphite fiber reinforced AZ91 C and QH21 A magnesium laminates before and after processing to minimize or eliminate thermal strain hysteresis. Data are also presented on the effects of reinforcement volume content on thermal expansion of silicon-carbide whisker and particulate reinforced aluminum.

  5. Development of damped metal-matrix composites for advanced structural applications. Technical report

    SciTech Connect

    Updike, C.A.; Bhagat, R.B.

    1990-04-01

    The development of damped metal matrix composite structures for advanced applications has been investigated by the use of two different approaches: (1) the development of metal matrix composites with high intrinsic damping compared to that of the matrix material, and (2) the development of coated metal matrix composites with high structural damping compared to that of the composite substrates. The two different approaches are analyzed in terms of their potential for improved damping and feasibility for structural applications. Damping was measured by the transverse vibration of free-free beams using the bandwidth technique by a laser vibrometer under ambient conditions. The damping measurements were made over a wide range of frequencies (.7 kHz to 25.6 kHz) at low strain amplitudes (10 to the -10 power to 10 to the -7 power). Materials investigated for their tensile stiffness, strength, and damping performance include mechanically alloyed (MA) Aluminum-Magnesium, SiC(p)/Aluminum-Copper (MA), SiC(p)/AL, AL2O3(p)/AL, SiC(W)/AL, planar random Gr/AL, unidirectional Gr/AL and unidirectional SiC(Nicalon)/AL composites. The effects of coatings of high damping metals (nitinol and incramute) on 6061-T6 AL and AL2O3(p)/AL substrates have also been studied. The AL-Mg (MA), SiC(p)/AL (MA), SiC(W)/AL and th AL2O3(p)/AL composites show no significant improvement in damping compared with that of the 6061-T6 AL.

  6. Carbon fibers: Thermochemical recovery from advanced composite materials and activation to an adsorbent

    NASA Astrophysics Data System (ADS)

    Staley, Todd Andrew

    This research addresses an expanding waste disposal problem brought about by the increasing use of advanced composite materials, and the lack of technically and environmentally viable recycling methods for these materials. A thermochemical treatment process was developed and optimized for the recycling of advanced composite materials. Counter-current gasification was employed for the treatment of carbon fiber reinforced-epoxy resin composite wastes. These materials were treated, allowing the reclamation of the material's valuable components. As expected in gasification, the organic portion of the waste was thermochemically converted to a combustible gas with small amounts of organic compounds that were identified by GC/MS. These compounds were expected based on data in the literature. The composites contain 70% fiber reinforcement, and gasification yielded approximately 70% recovered fibers, representing nearly complete recovery of fibers from the waste. Through SEM and mechanical testing, the recovered carbon fibers were found to be structurally and mechanically intact, and amenable to re-use in a variety of applications, some of which were identified and tested. In addition, an application was developed for the carbon fiber component of the waste, as an activated carbon fiber adsorbent for the treatment of wastewaters. This novel class of adsorbent was found to have adsorption rates, for various organic molecules, up to a factor of ten times those of commercial granular activated carbon, and adsorption capacities similar to conventional activated carbons. Overall, the research addresses an existing environmental waste problem, employing a thermochemical technique to recycle and reclaim the waste. Components of the reclaimed waste material are then employed, after further modification, to address other existing and potential environmental waste problems.

  7. Review of status and potential of tungsten-wire: Superalloy composites for advanced gas turbine engine blades

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.

    1972-01-01

    The current status of development of refractory-wire-superalloy composites and the potential for their application to turbine blades in land-based power generation and advanced aircraft engines are reviewed. The data indicate that refractory-wire-superalloy composites have application as turbine blades at temperatures of 2200 F and above.

  8. Application of advanced composites to helicopter airframe structures. [CH-53 D materials

    NASA Technical Reports Server (NTRS)

    Rich, M. J.; Ridgley, G. F.; Lowry, D. W.

    1974-01-01

    The present work outlines a study whose objective was to assess the possible use of advanced composite materials to helicopter fuselage structure. The study used the CH-53D as a baseline design for comparison of composite with current conventional construction. Boron/epoxy and graphite/epoxy appeared to be the prime candidate materials for the major portion of the primary structure, while Kevlar-49/epoxy was the prime candidate material for secondary structure. A single-laminate shear-carrying skin combined with stringers and frames in an all-molded construction was considered the most promising concept for the airframe shell construction; foam-stabilized graphite/epoxy stringer was considered the prime concept for stringer construction. Shell construction and assembly concepts are discussed, and comparison of weight and material between current CH-53D airframe and the composite airframe shows that the latter may represent an 18% weight saving. Based on a fleet requirement of 600 vehicles, the operating cost for a fleet of helicopters constructed with the composite material airframe flying 500 hours a year per aircraft over a ten-year service life was calculated, indicating a $337,000 saving per helicopter.

  9. Robust Joining and Integration Technologies for Advanced Metallic, Ceramic, and Composite Systems

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, Tarah; Morscher, Gregory N.; Halbig, Michael H.; Asthana, Rajiv

    2006-01-01

    Robust integration and assembly technologies are critical for the successful implementation of advanced metallic, ceramic, carbon-carbon, and ceramic matrix composite components in a wide variety of aerospace, space exploration, and ground based systems. Typically, the operating temperature of these components varies from few hundred to few thousand Kelvin with different working times (few minutes to years). The wide ranging system performance requirements necessitate the use of different integration technologies which includes adhesive bonding, low temperature soldering, active metal brazing, diffusion bonding, ARCJoinT, and ultra high temperature joining technologies. In this presentation, a number of joining examples and test results will be provided related to the adhesive bonding and active metal brazing of titanium to C/C composites, diffusion bonding of silicon carbide to silicon carbide using titanium interlayer, titanium and hastelloy brazing to silicon carbide matrix composites, and ARCJoinT joining of SiC ceramics and SiC matrix composites. Various issues in the joining of metal-ceramic systems including thermal expansion mismatch and resulting residual stresses generated during joining will be discussed. In addition, joint design and testing issues for a wide variety of joints will be presented.

  10. A hybrid method for damage detection and quantification in advanced X-COR composite structures

    NASA Astrophysics Data System (ADS)

    Neerukatti, Rajesh Kumar; Rajadas, Abhishek; Borkowski, Luke; Chattopadhyay, Aditi; Huff, Daniel W.

    2016-04-01

    Advanced composite structures, such as foam core carbon fiber reinforced polymer composites, are increasingly being used in applications which require high strength, high in-plane and flexural stiffness, and low weight. However, the presence of in situ damage due to manufacturing defects and/or service conditions can complicate the failure mechanisms and compromise their strength and reliability. In this paper, the capability of detecting damages such as delaminations and foam-core separations in X-COR composite structures using non-destructive evaluation (NDE) and structural health monitoring (SHM) techniques is investigated. Two NDE techniques, flash thermography and low frequency ultrasonics, were used to detect and quantify the damage size and locations. Macro fiber composites (MFCs) were used as actuators and sensors to study the interaction of Lamb waves with delaminations and foam-core separations. The results indicate that both flash thermography and low frequency ultrasonics were capable of detecting damage in X-COR sandwich structures, although low frequency ultrasonic methods were capable of detecting through thickness damages more accurately than flash thermography. It was also observed that the presence of foam-core separations significantly changes the wave behavior when compared to delamination, which complicates the use of wave based SHM techniques. Further, a wave propagation model was developed to model the wave interaction with damages at different locations on the X-COR sandwich plate.

  11. Advances in Composite Reflectors: From X-Ray to Radio Wave Astronomy

    NASA Astrophysics Data System (ADS)

    Connell, S. J.; Abusafieh, A. A.; Mehle, G. V.; Sheikh, D. A.; Giles, D. C.

    2000-12-01

    In recent years, Composite Optics, Inc. (COI) has made significant advances in the use of graphite fiber reinforced composite (GFRC) materials for astronomical instrument applications. The inherent low density, high stiffness, and thermal stability makes GFRC a natural candidate for many astronomy applications. In order to reap these inherent benefits in astronomical applications, basic research has focused on material and process improvement. This has been accompanied by the design, fabrication, and test of several prototype reflectors that cover a broad wavelength spectrum of astronomical interests. The results of, and applications for, these efforts are summarized in the following list. X-Ray Carrier Shell: Innovative composite process yields accuracy and moisture stability. Demonstrated by vacuum optical test of 6" Wolter-I shell. Applicable to Con-X, etc. Lightweight Mirror Substrate for Visible Astronomy: Composite/glass hybrid design. Areal density < 15 kg/m2. Demonstrated by cryo-optical test (to 35K) of 1.6m NMSD mirror. Applicable to NGST, etc. Polishable Composite Facesheet: Glass-like coating applied to composite. Polishable by conventional methods. Multiple six-inch substrates polished to 20 angstroms. Technology will enable future 5 kg/m2 visible to UV optics. 10 kg/m2 Submillimeter Reflector: Apertures to 5m possible with economical, all-composite mirror design, diffraction limited at 80 microns. Demonstrated with cryo-optical test (to 70K) of FIRST 2-meter prototype mirror. Applicable to FIRST and other IR astronomy. Large, Ultra-Stable Optical Support Structure: Uniform and near-zero CTE over broad dimensions. Demonstrated with cryo-optical test of 2-meter FIRST prototype. Applicable to NGST, SIM, LISSA. Ground Based Radio Telescope Reflector: Low-cost, accurate, stable, durable all-composite design for support structure & reflective surface. Demonstrated via fab & test of 3m adjustable and 5m static prototypes. Applicable to LMT, ALMA, etc. These

  12. Improve the performance of coated cemented hip stem through the advanced composite materials.

    PubMed

    Hedia, H S; Fouda, N

    2015-01-01

    Design of hip joint implant using functionally graded material (FGM) (advanced composite material) has been used before through few researches. It gives great results regarding the stress distribution along the implant and bone interfaces. However, coating of orthopaedic implants has been widely investigated through many researches. The effect of using advanced composite stem material, which mean by functionally graded stem material, in the total hip replacement coated with the most common coated materials has not been studied yet. Therefore, this study investigates the effect of utilizing these two concepts together; FGM and coating, in designing new stem material. It is concluded that the optimal FGM cemented stem is consisting from titanium at the upper stem layers graded to collagen at a lower stem layers. This optimal graded stem coated with hydroxyapatite found to reduce stress shielding by 57% compared to homogenous titanium stem coated with hydroxyapatite. However, the optimal functionally graded stem coated with collagen reduced the stress shielding by 51% compared to homogenous titanium stem coated with collagen. PMID:26407117

  13. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development and flight evaluation of an advanced composite empennage component is presented. The recommended concept for the covers is graphite-epoxy hats bonded to a graphite-epoxy skin. The hat flare-out has been eliminated, instead the hat is continuous into the joint. The recommended concept for the spars is graphite-epoxy caps and a hybrid of Kevlar-49 and graphite-epoxy in the spar web. The spar cap, spar web stiffeners for attaching the ribs, and intermediate stiffeners are planned to be fabricated as a unit. Access hole in the web will be reinforced with a donut type, zero degree graphite-epoxy wound reinforcement. The miniwich design concept in the upper three ribs originally proposed is changed to a graphite-epoxy stiffened solid laminate design concept. The recommended configuration for the lower seven ribs remains as graphite-epoxy caps with aluminum cruciform diagonals. The indicated weight saving for the current advanced composite vertical fin configuration is 20.2% including a 24 lb growth allowance. The project production cost saving is approximately 1% based on a cumulative average of 250 aircraft and including only material, production labor, and quality assurance costs.

  14. Advances in SiC/SiC Composites for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.

    2006-01-01

    In recent years, supported by a variety of materials development programs, NASA Glenn Research Center has significantly increased the thermostructural capability of SiC/SiC composite materials for high-temperature aerospace applications. These state-of-the-art advances have occurred in every key constituent of the composite: fiber, fiber coating, matrix, and environmental barrier coating, as well as processes for forming the fiber architectures needed for complex-shaped components such as turbine vanes for gas turbine engines. This presentation will briefly elaborate on the nature of these advances in terms of performance data and underlying mechanisms. Based on a list of first-order property goals for typical high-temperature applications, key data from a variety of laboratory tests are presented which demonstrate that the NASA-developed constituent materials and processes do indeed result in SiC/SiC systems with the desired thermal and structural capabilities. Remaining process and microstructural issues for further property enhancement are discussed, as well as on-going approaches at NASA to solve these issues. NASA efforts to develop physics-based property models that can be used not only for component design and life modeling, but also for constituent material and process improvement will also be discussed.

  15. Aeroelastic behavior of composite helicopter rotor blades with advanced geometry tips

    SciTech Connect

    Friedmann, P.P.; Yuan, K.A.

    1995-12-31

    A new structural and aeroelastic model capable of representing the aeroelastic stability and response of composite helicopter rotor blades with advanced geometry tips is presented. Where it is understood that advanced geometry tips are blade tips having sweep, anhedral and taper in the outboard 10% segment of the blade. The blade is modeled by beam finite elements. A single element is used to represent the swept tip. The nonlinear equations of motion are derived using the Hamilton`s principle and are based on moderate deflection theory. Thus, the nonlinearities are of the geometric type. The important structural blade attributes captured by the model are arbitrary cross-sectional shape, general anisotropic material behavior, transverse shear and out-of-plane warping. The aerodynamic loads are based on quasi-steady Greenberg theory with reverse flow effects, using an implicit formulation. The nonlinear aeroelastic response of the blade is obtained from a fully coupled propulsive trim/aeroelastic response analysis. Aeroelastic stability is obtained from linearizing the equations of motion about the steady state response of the blade and using Floquet theory. Numerical results for the aeroelastic stability and response of a hingeless composite blade with two cell type cross section are presented, together with vibratory hub shears and moments. The influence of ply orientation and tip sweep is clearly illustrated by the results.

  16. Dilemmas of Blended Language Learning: Learner and Teacher Experiences

    ERIC Educational Resources Information Center

    Gleason, Jesse

    2013-01-01

    Rapidly advancing technology continues to change the landscape of blended foreign language education. Pinpointing the differences between blended language (BL) learning environments and understanding how stakeholders experience such spaces is complex. However, learner experiences can provide a roadmap for the design and development of BL courses.…

  17. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration, task 3

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A structural design study was conducted to assess the relative merits of structural concepts using advanced composite materials for an advanced supersonic aircraft cruising at Mach 2.7. The configuration and structural arrangement developed during Task I and II of the study, was used as the baseline configuration. Allowable stresses and strains were established for boron and advanced graphite fibers based on projected fiber properties available in the next decade. Structural concepts were designed and analyzed using graphite polyimide and boron polyimide, applied to stiffened panels and conventional sandwich panels. The conventional sandwich panels were selected as the structural concept to be used on the wing structure. The upper and lower surface panels of the Task I arrow wing were redesigned using high-strength graphite polyimide sandwich panels over the titanium spars and ribs. The ATLAS computer system was used as the basis for stress analysis and resizing the surface panels using the loads from the Task II study, without adjustment for change in aeroelastic deformation. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter speed was increased to that of the titanium wing, with a weight penalty less than that of the metallic airplane.

  18. Extension-torsion coupling behavior of advanced composite tilt-rotor blades

    NASA Technical Reports Server (NTRS)

    Kosmatka, J. B.

    1989-01-01

    An analytic model was developed to study the extension-bend-twist coupling behavior of an advanced composite helicopter or tilt-rotor blade. The outer surface of the blade is defined by rotating an arbitrary cross section about an initial twist axis. The cross section can be nonhomogeneous and composed of generally anisotropic materials. The model is developed based upon a three dimensional elasticity approach that is recast as a coupled two-dimensional boundary value problem defined in a curvilinear coordinate system. Displacement solutions are written in terms of known functions that represent extension, bending, and twisting and unknown functions for local cross section deformations. The unknown local deformation functions are determined by applying the principle of minimum potential energy to the discretized two-dimensional cross section. This is an application of the Ritz method, where the trial function family is the displacement field associated with a finite element (8-node isoparametric quadrilaterals) representation of the section. A computer program was written where the cross section is discretized into 8-node quadrilateral subregions. Initially the program was verified using previously published results (both three-dimensional elasticity and technical beam theory) for pretwisted isotropic bars with an elliptical cross section. In addition, solid and thin-wall multi-cell NACA-0012 airfoil sections were analyzed to illustrate the pronounced effects that pretwist, initial twist axis location, and spar location has on coupled behavior. Currently, a series of advanced composite airfoils are being modeled in order to assess how the use of laminated composite materials interacts with pretwist to alter the coupling behavior of the blade. These studies will investigate the use of different ply angle orientations and the use of symmetric versus unsymmetric laminates.

  19. Mechanical properties of advanced SiC/SiC composites after neutron irradiation

    NASA Astrophysics Data System (ADS)

    Ozawa, K.; Nozawa, T.; Katoh, Y.; Hinoki, T.; Kohyama, A.

    2007-08-01

    The effect of neutron irradiation on tensile properties in advanced 2D-SiC/SiC composites was evaluated. The composites used were composed of a SiC matrix obtained by the forced-flow chemical vapor infiltration (FCVI) process and either Tyranno™-SA Grade-3 or Hi-Nicalon™ Type-S fibers with single-layered PyC coating as the interphase. Neutron irradiation fluence and temperature were 3.1 × 10 25 n/m 2 ( E > 0.1 MeV) and 1.2 × 10 26 n/m 2 at 740-750 °C. Tensile properties were evaluated by cyclic tensile test, and hysteresis loop analysis was applied in order to evaluate interfacial properties. Both composites exhibited excellent irradiation resistance in ultimate and proportional limit tensile stresses. From the hysteresis loop analysis, the level of interfacial sliding stress decreased significantly after irradiation to 1.5 × 10 26 n/m 2 at 750 °C.

  20. Plasma-modified graphene nanoplatelets and multiwalled carbon nanotubes as fillers for advanced rubber composites

    NASA Astrophysics Data System (ADS)

    Sicinski, M.; Gozdek, T.; Bielinski, D. M.; Szymanowski, H.; Kleczewska, J.; Piatkowska, A.

    2015-07-01

    In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied.

  1. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites.

    PubMed

    Lee, Koon-Yang; Buldum, Gizem; Mantalaris, Athanasios; Bismarck, Alexander

    2014-01-01

    Bacterial cellulose (BC) nanofibers are one of the stiffest organic materials produced by nature. It consists of pure cellulose without the impurities that are commonly found in plant-based cellulose. This review discusses the metabolic pathways of cellulose-producing bacteria and the genetic pathways of Acetobacter xylinum. The fermentative production of BC and the bioprocess parameters for the cultivation of bacteria are also discussed. The influence of the composition of the culture medium, pH, temperature, and oxygen content on the morphology and yield of BC are reviewed. In addition, the progress made to date on the genetic modification of bacteria to increase the yield of BC and the large-scale production of BC using various bioreactors, namely static and agitated cultures, stirred tank, airlift, aerosol, rotary, and membrane reactors, is reviewed. The challenges in commercial scale production of BC are thoroughly discussed and the efficiency of various bioreactors is compared. In terms of the application of BC, particular emphasis is placed on the utilization of BC in advanced fiber composites to manufacture the next generation truly green, sustainable and renewable hierarchical composites. PMID:23897676

  2. Structural Framework for Flight: NASA's Role in Development of Advanced Composite Materials for Aircraft and Space Structures

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.; Davis, John G., Jr.; Johnston, Norman J.; Pipes, R. Byron; McGuire, Jack F.

    2011-01-01

    This serves as a source of collated information on Composite Research over the past four decades at NASA Langley Research Center, and is a key reference for readers wishing to grasp the underlying principles and challenges associated with developing and applying advanced composite materials to new aerospace vehicle concepts. Second, it identifies the major obstacles encountered in developing and applying composites on advanced flight vehicles, as well as lessons learned in overcoming these obstacles. Third, it points out current barriers and challenges to further application of composites on future vehicles. This is extremely valuable for steering research in the future, when new breakthroughs in materials or processing science may eliminate/minimize some of the barriers that have traditionally blocked the expanded application of composite to new structural or revolutionary vehicle concepts. Finally, a review of past work and identification of future challenges will hopefully inspire new research opportunities and development of revolutionary materials and structural concepts to revolutionize future flight vehicles.

  3. Process for blending coal with water immiscible liquid

    DOEpatents

    Heavin, Leonard J.; King, Edward E.; Milliron, Dennis L.

    1982-10-26

    A continuous process for blending coal with a water immiscible liquid produces a uniform, pumpable slurry. Pulverized raw feed coal and preferably a coal derived, water immiscible liquid are continuously fed to a blending zone (12 and 18) in which coal particles and liquid are intimately admixed and advanced in substantially plug flow to form a first slurry. The first slurry is withdrawn from the blending zone (12 and 18) and fed to a mixing zone (24) where it is mixed with a hot slurry to form the pumpable slurry. A portion of the pumpable slurry is continuously recycled to the blending zone (12 and 18) for mixing with the feed coal.

  4. Raman imaging of polymer gels and elastomer blends

    NASA Astrophysics Data System (ADS)

    Appel, Rainer

    2000-12-01

    The incorporation of high-resolution optics in a Raman spectrometer allows sampling from areas less than one micron in diameter. The addition of a confocal microscope improves the axial resolution to a couple of microns. The fast data collection combined with high lateral and vertical resolutions makes possible scanning experiments in which the specimen is advanced in micron size steps. Analysis of the spectra provides information on the spatial composition of the sample. For macroporous N-isopropylacrylamide (NIPA) gel the temperature induced evolution of the pore structures is characterized. This model is used to explain surface roughness of the gels and characteristics of a NIPA- acrylamide (PAAM) interface. At room temperature, the average sizes of the pores and the width of polymer-rich areas are 75 μm and 20 μm, respectively. At higher temperatures polymer chains bunch together and this process accelerates rapidly near the volume phase transition temperature (34°C). The porous structure of the NIPA extends to the gel's boundary causing surface roughness, which, like the bulk material, is temperature dependent. A shrinking process results in a dense shell on the surface. Also, the surface becomes smoother due to hydrophobic interactions between isopropyl groups in the NIPA gel. For a polymer-polymer interface we showed that different drying and diffusion times affect the topography of the interfacial region. Phase separation in binary mixtures of two polymers, polyisobutadiene (BR) and brominated poly(isobuthylene- co-para-methylstyrene) (BIMS), is studied for different compositions of the blends. Binary blends of BIMS and BR do mix better in the presence of precipitated silica and domain sizes decrease from approximate 5 μm to less than 1μm. Blend components with polar groups like BIMS, silica, and zinc stearate can be found in close proximity to each other. The blend morphology of the uncured samples is dependent upon temperature. Increased temperature

  5. Advanced SiC/SiC Ceramic Composites For Gas-Turbine Engine Components

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.; Easler, T. E.

    2004-01-01

    NASA Glenn Research Center (GRC) is developing a variety of advanced SiC/SiC ceramic composite (ASC) systems that allow these materials to operate for hundreds of hours under stress in air at temperatures approaching 2700 F. These SiC/SiC composite systems are lightweight (approximately 30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive gas-turbine engine environments. The key for the ASC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays higher thermal stability than any other SiC- based ceramic fibers and possesses an in-situ grown BN surface layer for higher environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics (COIC). Further capability is then derived by using chemical vapor infiltration (CVI) and/or polymer infiltration and pyrolysis (PIP) to form a Sic-based matrix with high creep and rupture resistance as well as high thermal conductivity. The objectives of this study were (1) to optimize the constituents and processing parameters for a Sylramic-iBN fiber reinforced ceramic composite system in which the Sic-based matrix is formed at COIC almost entirely by PIP (full PIP approach), (2) to evaluate the properties of this system in comparison to other 2700 F Sylramic-iBN systems in which the matrix is formed by full CVI and CVI + PIP, and (3) to examine the pros and cons of the full PIP approach for fabricating hot-section engine components. A key goal is the development of a composite system with low porosity, thereby providing high modulus, high matrix cracking strength, high interlaminar strength, and high thermal conductivity, a major property requirement for engine components that will experience high thermal gradients during service. Other key composite property goals are demonstration at

  6. On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    2003-01-01

    A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.

  7. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration

    NASA Technical Reports Server (NTRS)

    Turner, M. J.; Grande, D. L.

    1978-01-01

    Based on estimated graphite and boron fiber properties, allowable stresses and strains were established for advanced composite materials. Stiffened panel and conventional sandwich panel concepts were designed and analyzed, using graphite/polyimide and boron/polyimide materials. The conventional sandwich panel was elected as the structural concept for the modified wing structure. Upper and lower surface panels of the arrow wing structure were then redesigned, using high strength graphite/polyimide sandwich panels, retaining the titanium spars and ribs from the prior study. The ATLAS integrated analysis and design system was used for stress analysis and automated resizing of surface panels. Flutter analysis of the hybrid structure showed a significant decrease in flutter speed relative to the titanium wing design. The flutter speed was increased to that of the titanium design by selective increase in laminate thickness and by using graphite fibers with properties intermediate between high strength and high modulus values.

  8. Experimental method for determination of bending and torsional rigidities of advanced composite laminates

    SciTech Connect

    Maeda, Takenori

    1995-11-01

    This paper presents an experimental method for the determination of the bending and torsional rigidities of advanced fiber composite laminates with the aid of laser holographic interferometry. The proposed method consists of a four-point bending test and a resonance test. The bending rigidity ratio (D{sub 12}/D{sub 22}) can be determined from the fringe patterns of the four-point bending test. The bending rigidities (D{sub 11} and D{sub 22}) and the torsional rigidity (D{sub 66}) are calculated from the natural frequencies of cantilever plates of the resonance test. The test specimens are carbon/epoxy cross-ply laminates. The adequacy of the experimental method is confirmed by comparing the measured rigidities with the theoretical values obtained from classical lamination theory (CLT) by using the measured tensile properties. The results show that the present method can be used to evaluate the rigidities of orthotropic laminates with reasonably good accuracy.

  9. Advanced Cosmic-ray Composition Experiment for Space Station: ISS accommodation study

    SciTech Connect

    Wefel, John P.

    1999-01-22

    ACCESS--Advanced Cosmic-ray Composition Experiment for Space Station--was selected as a new Mission Concept under NRA 96-OSS-03, with the goal of combining calorimeter and transition radiation techniques to provide measurements of cosmic rays from Hydrogen through Nickel up to energies approaching the 'knee' in the cosmic ray all particle spectrum, plus providing measurements of the Z>28 (Ultra-Heavy) nuclei at all energies. An instrument to perform such an investigation is undergoing an ISS/STS Accommodation Study at JSC. The instrument concept, the mission plan, and the accommodation issues for an ISS attached payload which include, in part, the carrier, ISS Site, thermal control, power, data and operations are described and the current status of these issues, for an ACCESS Mission, is summarized.

  10. Development of a metal-clad advanced composite shear web design concept

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.

    1974-01-01

    An advanced composite web concept was developed for potential application to the Space Shuttle Orbiter main engine thrust structure. The program consisted of design synthesis, analysis, detail design, element testing, and large scale component testing. A concept was sought that offered significant weight saving by the use of Boron/Epoxy (B/E) reinforced titanium plate structure. The desired concept was one that was practical and that utilized metal to efficiently improve structural reliability. The resulting development of a unique titanium-clad B/E shear web design concept is described. Three large scale components were fabricated and tested to demonstrate the performance of the concept: a titanium-clad plus or minus 45 deg B/E web laminate stiffened with vertical B/E reinforced aluminum stiffeners.

  11. Comparative Blended Learning Practices and Environments

    ERIC Educational Resources Information Center

    Ng, Eugenia M. W., Ed.

    2010-01-01

    With the advent of new technologies, more convenient and effective ways of learning are being adopted. However, despite the growing advancements there remains a lack of literature in applications of using these technology teaching approaches. This book offers in-depth analysis of new technologies in blended learning that promote creativity,…

  12. Development, Implementation and Application of Micromechanical Analysis Tools for Advanced High Temperature Composites

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document contains the final report to the NASA Glenn Research Center (GRC) for the research project entitled Development, Implementation, and Application of Micromechanical Analysis Tools for Advanced High-Temperature Composites. The research supporting this initiative has been conducted by Dr. Brett A. Bednarcyk, a Senior Scientist at OM in Brookpark, Ohio from the period of August 1998 to March 2005. Most of the work summarized herein involved development, implementation, and application of enhancements and new capabilities for NASA GRC's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) software package. When the project began, this software was at a low TRL (3-4) and at release version 2.0. Due to this project, the TRL of MAC/GMC has been raised to 7 and two new versions (3.0 and 4.0) have been released. The most important accomplishments with respect to MAC/GMC are: (1) A multi-scale framework has been built around the software, enabling coupled design and analysis from the global structure scale down to the micro fiber-matrix scale; (2) The software has been expanded to analyze smart materials; (3) State-of-the-art micromechanics theories have been implemented and validated within the code; (4) The damage, failure, and lifing capabilities of the code have been expanded from a very limited state to a vast degree of functionality and utility; and (5) The user flexibility of the code has been significantly enhanced. MAC/GMC is now the premier code for design and analysis of advanced composite and smart materials. It is a candidate for the 2005 NASA Software of the Year Award. The work completed over the course of the project is summarized below on a year by year basis. All publications resulting from the project are listed at the end of this report.

  13. Advances in the Lightweight Air-Liquid Composite Heat Exchanger Development for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Johnston, J. Chris; Haas, Daniel

    2011-01-01

    An advanced, lightweight composite modular Air/Liquid (A/L) Heat Exchanger (HX) Prototype for potential space exploration thermal management applications was successfully designed, manufactured, and tested. This full-scale Prototype consisting of 19 modules, based on recommendations from its predecessor Engineering Development unit (EDU) but with improved thermal characteristics and manufacturability, was 11.2 % lighter than the EDU and achieves potentially a 42.7% weight reduction from the existing state-of-the-art metallic HX demonstrator. However, its higher pressure drop (0.58 psid vs. 0.16 psid of the metal HX) has to be mitigated by foam material optimizations and design modifications including a more systematic air channel design. Scalability of the Prototype design was validated experimentally by comparing manufacturability and performance between the 2-module coupon and the 19-module Prototype. The Prototype utilized the thermally conductive open-cell carbon foam material but with lower density and adopted a novel high-efficiency cooling system with significantly increased heat transfer contact surface areas, improved fabricability and manufacturability compared to the EDU. Even though the Prototype was required to meet both the thermal and the structural specifications, accomplishing the thermal requirement was a higher priority goal for this first version. Overall, the Prototype outperformed both the EDU and the corresponding metal HX, particularly in terms of specific heat transfer, but achieved 93.4% of the target. The next generation Prototype to achieve the specification target, 3,450W would need 24 core modules based on the simple scaling factor. The scale-up Prototype will weigh about 14.7 Kg vs. 21.6 Kg for the metal counterpart. The advancement of this lightweight composite HX development from the original feasibility test coupons to EDU to Prototype is discussed in this paper.

  14. Radiological study on newly developed composite corn advance lines in Malaysia

    NASA Astrophysics Data System (ADS)

    Adekunle Olatunji, Michael; Bemigho Uwatse, Onosohwo; Uddin Khandaker, Mayeen; Amin, Y. M.; Faruq, G.

    2014-12-01

    Owing to population growth, there has been high demand for food across the world, and hence, different agricultural activities such as use of phosphate fertilizers, recycling of organic matters, etc, have been deployed to increase crop yields. In Malaysia, a total of nine composite corn advance lines have been developed at the Institute of Biological Sciences, University of Malaya and are being grown under different conditions with a bid to meet the average daily human need for energy and fiber intake. To this end, the knowledge of radioactivity levels in these corn advance lines are of paramount importance for the estimation of possible radiological hazards due to its consumption. Hence, the radioactivity concentrations of 226Ra, 228Ra and 40K in the corn have been determined using HPGe γ-ray spectrometry. The activity concentrations in the corn ranged from 0.05 to 19.18 Bq kg-1 for 226Ra, from 0.10 to 3.22 Bq kg-1 for 228Ra and from 26.4 to 129 Bq kg-1 for 40K. In order to ascertain the radiological safety of the population regarding maize consumption, the daily intakes of these radionuclides as well as the annual effective dose were estimated. The total effective dose obtained due to the ingestion of radionuclides via maize consumption is 15.39 μSv y-1, which is less than the international recommendations.

  15. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    SciTech Connect

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  16. Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion

    NASA Technical Reports Server (NTRS)

    Hanley, David; Carella, John

    1999-01-01

    This document, submitted by AlliedSignal Engines (AE), a division of AlliedSignal Aerospace Company, presents the program final report for the Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion in compliance with data requirements in the statement of work, Contract No. NAS3-97003. This document includes: 1 -Technical Summary: a) Component Design, b) Manufacturing Process Selection, c) Vendor Selection, and d) Testing Validation: 2-Program Conclusion and Perspective. Also, see the Appendix at the back of this report. This report covers the program accomplishments from December 1, 1996, to August 24, 1998. The Advanced High Temperature PMC's for Gas Turbine Engines Program Expansion was a one year long, five task technical effort aimed at designing, fabricating and testing a turbine engine component using NASA's high temperature resin system AMB-21. The fiber material chosen was graphite T650-35, 3K, 8HS with UC-309 sizing. The first four tasks included component design and manufacturing, process selection, vendor selection, component fabrication and validation testing. The final task involved monthly financial and technical reports.

  17. A Better Blend

    ERIC Educational Resources Information Center

    Demski, Jennifer

    2010-01-01

    In May 2009, the US Department of Education released a meta-analysis of effectiveness studies of online, face-to-face, and blended learning models. The analysis found that online learning produced better student outcomes than face-to-face classes, and that blended learning offered an even "larger advantage" over face-to-face. The hybrid approach…

  18. Tuning the Blend

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2012-01-01

    "Tuning the blend" is a phrase that educators hear a lot these days. It refers to finding the correct balance of online activities and face-to-face instruction in hybrid--or blended--courses. Finding a mix that meets the needs of both faculty and students requires experimentation, experience, and constant tweaking. And, as with coffee, the same…

  19. A Blended Learning Experience

    ERIC Educational Resources Information Center

    Gecer, Aynur; Dag, Funda

    2012-01-01

    Blended (hybrid) learning is one of the approaches that is utilized to help students for meaningful learning via information and communication technologies in educational settings. In this study, Computer II Course which is taught in faculties of education was planned and implemented in the form of a blended learning environment. The data were…

  20. Blended Teaching & Learning

    ERIC Educational Resources Information Center

    Pape, Liz

    2010-01-01

    Blended learning is using online tools to communicate, collaborate and publish, to extend the school day or year and to develop the 21st-century skills students need. With blended learning, teachers can use online tools and resources as part of their daily classroom instruction. Using many of the online tools and resources students already are…

  1. The effects of curcumin (diferuloylmethane) on body composition of patients with advanced pancreatic cancer

    PubMed Central

    Parsons, Henrique A.; Baracos, Vickie E.; Hong, David S.; Abbruzzese, James; Bruera, Eduardo; Kurzrock, Razelle

    2016-01-01

    Background Curcumin is a natural product that is often explored by patients with cancer. Weight loss due to fat and muscle depletion is a hallmark of pancreatic cancer and is associated with worse outcomes. Studies of curcumin's effects on muscularity show conflicting results in animal models. Methods and results Retrospective matched 1:2 case-control study to evaluate the effects of curcumin on body composition (determined by computerized tomography) of 66 patients with advanced pancreatic cancer (22 treated,44 controls). Average age (SEM) was 63(1.8) years, 30/66(45%) women, median number of prior therapies was 2, median (IQR) time from advanced pancreatic cancer diagnosis to baseline image was 7(2-13.5) months (p>0.2, all variables). All patients lost weight (3.3% and 1.3%, treated vs. control, p=0.13). Treated patients lost more muscle (median [IQR] percent change −4.8[−9.1,-0.1] vs. −0.05%[−4.2, 2.6] in controls,p<0.001) and fat (median [IQR] percent change −6.8%[−15,-0.6] vs. −4.0%[−7.6, 1.3] in controls,p=0.04). Subcutaneous fat was more affected in the treated patients. Sarcopenic patients treated with curcumin(n=15) had survival of 169(115-223) days vs. 299(229-369) sarcopenic controls(p=0.024). No survival difference was found amongst non-sarcopenic patients. Conclusions Patients with advanced pancreatic cancer treated with curcumin showed significantly greater loss of subcutaneous fat and muscle than matched untreated controls. PMID:26934122

  2. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft. Phase 1: Engineering development

    NASA Technical Reports Server (NTRS)

    Ary, A.; Axtell, C.; Fogg, L.; Jackson, A.; James, A. M.; Mosesian, B.; Vanderwier, J.; Vanhamersveld, J.

    1976-01-01

    The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes the front and rear spars. Various design options were evaluated to arrive at a configuration which would offer the highest potential for satisfying program objectives. The preferred configuration selected consists of a hat-stiffened cover with molded integrally stiffened spars, aluminum trussed composite ribs, and composite miniwich web ribs with integrally molded caps. Material screening tests were performed to select an advanced composite material system for the Advanced Composite Vertical Fin (ACFV) that would meet the program requirements from the standpoint of quality, reproducibility, and cost. Preliminary weight and cost analysis were made, targets established, and tracking plans developed. These include FAA certification, ancillary test program, quality control, and structural integrity control plans.

  3. Behavior of thin-walled beams made of advanced composite materials and incorporating non-classical effects

    NASA Astrophysics Data System (ADS)

    Librescu, Liviu; Song, Ohseop

    1991-11-01

    Several results concerning the refined theory of thin-walled beams of arbitrary closed cross-section incorporating nonclassical effects are presented. These effects are related both with the exotic properties characterizing the advanced composite material structures and the nonuniform torsional model. A special case of the general equations is used to study several problems of cantilevered thin-walled beams and to assess the influence of the incorporated effects. The results presented in this paper could be useful toward a more rational design of aeronautical or aerospace constructions, as well as of helicopter or tilt rotor blades constructed of advanced composite materials.

  4. ADVANCED COMPOSITE WIND TURBINE BLADE DESIGN BASED ON DURABILITY AND DAMAGE TOLERANCE

    SciTech Connect

    Galib Abumeri; Frank Abdi

    2012-02-16

    The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints and closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite

  5. Preparing GMAT for Operational Maneuver Planning of the Advanced Composition Explorer (ACE)

    NASA Technical Reports Server (NTRS)

    Qureshi, Rizwan Hamid; Hughes, Steven P.

    2014-01-01

    The General Mission Analysis Tool (GMAT) is an open-source space mission design, analysis and trajectory optimization tool. GMAT is developed by a team of NASA, private industry, public and private contributors. GMAT is designed to model, optimize and estimate spacecraft trajectories in flight regimes ranging from low Earth orbit to lunar applications, interplanetary trajectories and other deep space missions. GMAT has also been flight qualified to support operational maneuver planning for the Advanced Composition Explorer (ACE) mission. ACE was launched in August, 1997 and is orbiting the Sun-Earth L1 libration point. The primary science objective of ACE is to study the composition of both the solar wind and the galactic cosmic rays. Operational orbit determination, maneuver operations and product generation for ACE are conducted by NASA Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF). This paper discusses the entire engineering lifecycle and major operational certification milestones that GMAT successfully completed to obtain operational certification for the ACE mission. Operational certification milestones such as gathering of the requirements for ACE operational maneuver planning, gap analysis, test plans and procedures development, system design, pre-shadow operations, training to FDF ACE maneuver planners, shadow operations, Test Readiness Review (TRR) and finally Operational Readiness Review (ORR) are discussed. These efforts have demonstrated that GMAT is flight quality software ready to support ACE mission operations in the FDF.

  6. Biocompatible electrospun polymer blends for biomedical applications.

    PubMed

    Munj, Hrishikesh Ramesh; Nelson, M Tyler; Karandikar, Prathamesh Sadanand; Lannutti, John Joseph; Tomasko, David Lane

    2014-10-01

    Blends of natural and synthetic polymers have received considerable attention as biomaterials due to the potential to optimize both mechanical and bioactive properties. Electrospinning of biocompatible polymers is an efficient method producing biomimetic topographies suited to various applications. In the ultimate application, electrospun scaffolds must also incorporate drug/protein delivery for effective cell growth and tissue repair. This study explored the suitability of a ternary Polymethylmethacrylate-Polycaprolactone-gelatin blend in the preparation of electrospun scaffolds for biomedical applications. Tuning the blend composition allows control over scaffold mechanical properties and degradation rate. Significant improvements were observed in the mechanical properties of the blend compared with the individual components. In order to study drug delivery potential, triblends were impregnated with the model compound Rhodamine-B using sub/supercritical CO₂ infusion under benign conditions. Results show significantly distinct release profiles of the impregnated dye from the triblends. Specific factors such as porosity, degradation rate, stress relaxation, dye-polymer interactions, play key roles in impregnation and release. Each polymer component of the triblends shows distinct behavior during impregnation and release process. This affects the aforementioned factors and the release profiles of the dye. Careful control over blend composition and infusion conditions creates the flexibility needed to produce biocompatible electrospun scaffolds for a variety of biomedical applications. PMID:24604876

  7. Bottlebrush Polymer Additives for Binary Polymer Blends

    NASA Astrophysics Data System (ADS)

    Mah, Hui Zhen; Afzali, Pantea; Phan, Hanh; Qi, Luqing; Pesek, Stacy; Verduzco, Rafael; Stein, Gila

    Bottlebrush polymers are highly branched polymers that have been used in applications such as self-assembling photonics, drug delivery and stimuli-responsive surface coatings. However, they have not been widely studied as compatibilizers for polymer blends. In this study, bottlebrush polymers with poly(styrene-r-methyl methacrylate) side chains were used as additives for thin film blends of polystyrene (PS) and poly (methyl methacrylate) (PMMA). The blends were heated above the glass transition temperature to drive phase separation, and the resulting morphology was characterized with atomic force microscopy and optical microscopy. Outcomes were compared with PS/PMMA blends that contain conventional compatibilizers such as linear random copolymers of poly(styrene-r-methyl methacrylate) and diblock PS-PMMA copolymers. The bottlebrush additive accumulates at the PS/PMMA interface and drives the formation of vesicle-like droplets that assemble into longer chains. The continuity of the chains depends on the blend composition, where a network structure is achieved close to the critical composition. This unusual microstructure was not observed with the other additives, and may be a consequence of preferential wetting of the bottlebrush by the PS phase.

  8. Positron annihilation lifetime study of interfaces in ternary polymer blends

    NASA Astrophysics Data System (ADS)

    Meghala, D.; Ramya, P.; Pasang, T.; Raj, J. M.; Ranganathaiah, C.; Williams, J. F.

    2013-06-01

    A new method based on positron lifetime spectroscopy is developed to characterize individual interfaces in ternary polymer blends and hence determine the composition dependent miscibility level. The method owes its origin to the Kirkwood-Risemann-Zimm (KRZ) model for the evaluation of the hydrodynamic interaction parameters (αij) which was used successfully for a binary blend with a single interface. The model was revised for the present work for ternary polymer blends to account for three interfaces. The efficacy of this method is shown for two ternary blends namely poly(styrene-co-acrylonitrile)/poly (ethylene-co-vinylacetate)/poly(vinyl chloride) (SAN/EVA/PVC) and polycaprolactone /poly(styrene-co-acrylonitrile)/poly(vinyl chloride) (PCL/SAN/PVC) at different compositions. An effective hydrodynamic interaction parameter, αeff, was introduced to predict the overall miscibility of ternary blends.

  9. Conceptual design study of advanced acoustic composite nacelle. [for achieving reductions in community noise and operating expense

    NASA Technical Reports Server (NTRS)

    Goodall, R. G.; Painter, G. W.

    1975-01-01

    Conceptual nacelle designs for wide-bodied and for advanced-technology transports were studied with the objective of achieving significant reductions in community noise with minimum penalties in airplane weight, cost, and in operating expense by the application of advanced composite materials to nacelle structure and sound suppression elements. Nacelle concepts using advanced liners, annular splitters, radial splitters, translating centerbody inlets, and mixed-flow nozzles were evaluated and a preferred concept selected. A preliminary design study of the selected concept, a mixed flow nacelle with extended inlet and no splitters, was conducted and the effects on noise, direct operating cost, and return on investment determined.

  10. Displaying Composite and Archived Soundings in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Volkmer, Matthew R.; Blottman, Peter F.; Sharp, David W.

    2008-01-01

    In a previous task, the Applied Meteorology Unit (AMU) developed spatial and temporal climatologies of lightning occurrence based on eight atmospheric flow regimes. The AMU created climatological, or composite, soundings of wind speed and direction, temperature, and dew point temperature at four rawinsonde observation stations at Jacksonville, Tampa, Miami, and Cape Canaveral Air Force Station, for each of the eight flow regimes. The composite soundings were delivered to the National Weather Service (NWS) Melbourne (MLB) office for display using the National version of the Skew-T Hodograph analysis and Research Program (NSHARP) software program. The NWS MLB requested the AMU make the composite soundings available for display in the Advanced Weather Interactive Processing System (AWIPS), so they could be overlaid on current observed soundings. This will allow the forecasters to compare the current state of the atmosphere with climatology. This presentation describes how the AMU converted the composite soundings from NSHARP Archive format to Network Common Data Form (NetCDF) format, so that the soundings could be displayed in AWl PS. The NetCDF is a set of data formats, programming interfaces, and software libraries used to read and write scientific data files. In AWIPS, each meteorological data type, such as soundings or surface observations, has a unique NetCDF format. Each format is described by a NetCDF template file. Although NetCDF files are in binary format, they can be converted to a text format called network Common data form Description Language (CDL). A software utility called ncgen is used to create a NetCDF file from a CDL file, while the ncdump utility is used to create a CDL file from a NetCDF file. An AWIPS receives soundings in Binary Universal Form for the Representation of Meteorological data (BUFR) format (http://dss.ucar.edu/docs/formats/bufr/), and then decodes them into NetCDF format. Only two sounding files are generated in AWIPS per day. One

  11. Blended Hydrometeorological Products for the Research and Operational Communities

    NASA Astrophysics Data System (ADS)

    Kidder, S. Q.; Vonder Haar, T. H.; Forsythe, J.

    2013-12-01

    With advances in environmental parameter retrieval algorithms and their use of a wide array of satellite instruments, constantly changing views of Earth are possible. Enabling users to reap the benefits of this data requires good communication about the products. More and more, new near-realtime blended multisensor satellite products are becoming available to the weather forecaster, who must quickly decide whether the product is helpful or not. Research users of blended products can take more time to explore the suitability of these data for their applications, but communication and guidance from the data provider is essential. An effort under NASA's Making Earth Science Data Records for Use in Research Environments (MEaSUREs) program has reprocessed and extended the NASA Water Vapor Project (NVAP) dataset, which now includes data from 1988-2009. The new dataset is named NVAP-M and includes global grids of both total and layered precipitable water vapor, as well as data source codes for each grid box. NVAP-M is distributed to the weather and climate research community via the NASA Langley Atmospheric Science Data Center. The global (land and ocean) NVAP-M dataset features different product types designed to fit a variety of user needs on a variety of time scales, from weather case studies to studies of climate change and trends. In particular, a three-track approach focused on weather, climate and ocean applications was chosen. Challenges and lessons learned in communicating with the diverse user community for NVAP-M (e.g., hydrologists, weather and climate scientists, epidemiologists) will be presented. Close relatives of NVAP-M are the NOAA Operational Blended Total Precipitable Water and Blended Rain Rate products. These products are available hourly in near-real time to National Weather Service forecast offices and are valuable for precipitation analysis and forecasting. They are created from a composite of passive microwave instruments on board typically six

  12. Advanced manufacturing development of a composite empennage component for L-1011 aircraft. Phase 4: Full scale ground test

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.; Dorwald, F.

    1982-01-01

    The ground tests conducted on the advanced composite vertical fin (ACVF) program are described. The design and fabrication of the test fixture and the transition structure, static test of Ground Test Article (GTA) No. 1, rework of GTA No. 2, and static, damage tolerance, fail-safe and residual strength tests of GTA No. 2 are described.

  13. Blended Working: For Whom It May (Not) Work

    PubMed Central

    Van Yperen, Nico W.; Rietzschel, Eric F.; De Jonge, Kiki M. M.

    2014-01-01

    Similarly to related developments such as blended learning and blended care, blended working is a pervasive and booming trend in modern societies. Blended working combines on-site and off-site working in an optimal way to improve workers’ and organizations’ outcomes. In this paper, we examine the degree to which workers feel that the two defining features of blended working (i.e., time-independent working and location-independent working) enhance their own functioning in their jobs. Blended working, enabled through the continuing advance and improvement of high-tech ICT software, devices, and infrastructure, may be considered beneficial for workers’ perceived effectiveness because it increases their job autonomy. However, because blended working may have downsides as well, it is important to know for whom blended working may (not) work. As hypothesized, in a sample of 348 workers (51.7% women), representing a wide range of occupations and organizations, we found that the perceived personal effectiveness of blended working was contingent upon workers’ psychological need strength. Specifically, the perceived effectiveness of both time-independent working and location-independent working was positively related to individuals’ need for autonomy at work, and negatively related to their need for relatedness and need for structure at work. PMID:25033202

  14. MoS2 nanolayers grown on carbon nanotubes: an advanced reinforcement for epoxy composites.

    PubMed

    Zhou, Keqing; Liu, Jiajia; Shi, Yongqian; Jiang, Saihua; Wang, Dong; Hu, Yuan; Gui, Zhou

    2015-03-25

    In the present study, carbon nanotubes (CNTs) wrapped with MoS2 nanolayers (MoS2-CNTs) were facilely synthesized to obtain advanced hybrids. The structure of the MoS2-CNT hybrids was characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy measurements. Subsequently, the MoS2-CNT hybrids were incorporated into EP for reducing fire hazards. Compared with pristine CNTs, MoS2-CNT hybrids showed good dispersion in EP matrix and no obvious aggregation of CNTs was observed. The obtained nanocomposites exhibited significant improvements in thermal properties, flame retardancy and mechanical properties, compared with those of neat EP and composites with a single CNT or MoS2. With the incorporation of 2.0 wt % of MoS2-CNT hybrids, the char residues and glass transition temperature (Tg) of the EP composite was significantly increased. Also, the addition of MoS2-CNT hybrids awarded excellent fire resistance to the EP matrix, which was evidenced by the significantly reduced peak heat release rate and total heat release. Moreover, the amount of organic volatiles from EP decomposition was obviously decreased, and the formation of toxic CO was effectively suppressed, implying the toxicity of the volatiles was reduced and smoke production was obviously suppressed. The dramatically reduced fire hazards were generally ascribed to the synergistic effect of MoS2 and CNTs, containing good dispersion of MoS2-CNT hybrids, catalytic char function of MoS2 nanolayers, and physical barrier effects of MoS2 nanolayers and CNT network structure. PMID:25742464

  15. Elastomeric biodegradable polyurethane blends for soft tissue applications.

    PubMed

    Fromstein, J D; Woodhouse, K A

    2002-01-01

    Four biodegradable polyurethane blends were made from segmented polyurethanes that contain amino acid-based chain extender and diisocyanate groups. The soft segments of these parent polyurethanes were either polyethylene oxide (PEO) or polycaprolactone (PCL) diols. The blends were developed to investigate the effect of varying soft segment compositions on the overall morphological, mechanical, and degradative properties of the materials, with a view to producing a family of materials with a wide range of properties. The highly hydrophilic PEO material was incorporated to increase the blend's susceptibility to degradation, while the PCL polyurethane was selected to provide higher moduli and percent elongations (strains) than the PEO parent materials can achieve. All four blends were determined to be semi-crystalline, elastomeric materials that possess similarly shaped stress-strain curves to that of the PCL-based parent polyurethane. As the percent composition of PEO polyurethane within the blend increased, the material became weaker and less extensible. The blends demonstrated rapid initial degradation in buffer followed by significantly slower, prolonged degradation, likely corresponding to an initial loss of primarily PEO-containing polymer, followed by the slower degradation of the PCL polyurethane. All four blends were successfully formed into three-dimensional porous scaffolds utilizing solvent casting/particulate leaching methods. Since these new blends possess a range of mechanical and degradation properties and can be shaped into three-dimensional objects, these materials may hold potential for use in soft tissue engineering scaffold applications. PMID:12160300

  16. Preliminary Validation of a High Docosahexaenoic Acid (DHA) and -Linolenic Acid (ALA) Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar) Smolts

    PubMed Central

    Nuez-Ortín, Waldo G.; Carter, Chris G.; Wilson, Richard; Cooke, Ira; Nichols, Peter D.

    2016-01-01

    Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA), a key omega-3 long-chain (≥C20) polyunsaturated fatty acid (n-3 LC-PUFA) that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA) content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX) with high DHA and ALA content using tuna oil (TO) high in DHA and the flaxseed oil (FX) high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO) and a commercial-like oil blend diet (fish oil + poultry oil, FOPO) over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend. PMID:27556399

  17. Preliminary Validation of a High Docosahexaenoic Acid (DHA) and -Linolenic Acid (ALA) Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar) Smolts.

    PubMed

    Nuez-Ortín, Waldo G; Carter, Chris G; Wilson, Richard; Cooke, Ira; Nichols, Peter D

    2016-01-01

    Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA), a key omega-3 long-chain (≥C20) polyunsaturated fatty acid (n-3 LC-PUFA) that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA) content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX) with high DHA and ALA content using tuna oil (TO) high in DHA and the flaxseed oil (FX) high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO) and a commercial-like oil blend diet (fish oil + poultry oil, FOPO) over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend. PMID:27556399

  18. Blend Concepts for Fuel Cell Membranes

    NASA Astrophysics Data System (ADS)

    Kerres, Jochen

    Differently cross-linked blend membranes were prepared from commercial arylene main-chain polymers from the classes of poly(ether-ketones) and poly(ethersulfones) modified with sulfonate groups, sulfinate cross-linking groups and basic N-groups. The following membrane types have been prepared: (a) van-der Waals/dipole-dipole blends by mixing a polysulfonate with unmodified PSU. This membrane type showed a heterogeneous morphology, leading to extreme swelling and even dissolution of the sulfonated component at elevated temperatures. (b) Hydrogen bridge blends by mixing a polysulfonate with a polyamide or polyetherimide. This membrane type showed a partially heterogeneous morphology, also leading to extreme swelling/dissolution of the sulfonated blend component at elevated temperatures. (c) Acid-base blends by mixing a polysulfonate with a polymeric N-base (self-developed/commercial). With this membrane type, we could reach a wide variability of properties by variation of different parameters. Membranes showing excellent stability and good fuel cell performance up to 100°C (PEFC) and 130°C (DMFC) were obtained. (d) Covalently cross-linked (blend) membranes by either mixing of a polysulfonate with a polysulfinate or by preparation of a polysulfinatesulfonate, followed by reaction of the sulfinate groups in solution with a dihalogeno compound under S-alkylation. Membranes were prepared that showed effective suppression of swelling without H+-conductivity loss. The membranes showed good PEFC (up to 100°C) and DMFC (up to 130°C) performance. (e) Covalent-ionically cross-linked blend membranes by mixing polysulfonates with polysulfinates and polybases or by mixing a polysulfonate with a polymer carrying both sulfinate and basic N-groups. The covalent-ionically cross-linked membranes were tested in DMFC up to 110°C and showed a good performance. (f) Differently cross-linked organic-inorganic blend composite membranes via different procedures. The best results were

  19. Phase Segregation in Polystyrene?Polylactide Blends

    SciTech Connect

    Leung, Bonnie; Hitchcock, Adam; Brash, John; Scholl, Andreas; Doran, Andrew

    2010-06-09

    Spun-cast films of polystyrene (PS) blended with polylactide (PLA) were visualized and characterized using atomic force microscopy (AFM) and synchrotron-based X-ray photoemission electron microscopy (X-PEEM). The composition of the two polymers in these systems was determined by quantitative chemical analysis of near-edge X-ray absorption signals recorded with X-PEEM. The surface morphology depends on the ratio of the two components, the total polymer concentration, and the temperature of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing in discrete domains or segregated to the air?polymer interface. Phase segregation was improved with further annealing. A phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt percent loading) were annealed above the glass transition temperature (Tg) of PLA.

  20. Designed blending for near infrared calibration.

    PubMed

    Scheibelhofer, Otto; Grabner, Bianca; Bondi, Robert W; Igne, Benoît; Sacher, Stephan; Khinast, Johannes G

    2015-07-01

    Spectroscopic methods are increasingly used for monitoring pharmaceutical manufacturing unit operations that involve powder handling and processing. With that regard, chemometric models are required to interpret the obtained spectra. There are many ways to prepare artificial powder blend samples used in a chemometric model for predicting the chemical content. Basically, an infinite number of possible concentration levels exist in terms of the individual components. In our study, design of experiments for ternary mixtures was used to establish a suitable number of blend compositions that represents the entire mixture region of interest for a three component blend. Various experimental designs and their effect on the predictive power of a chemometric model for near infrared spectra were investigated. It was determined that a particular choice of experimental design could change the predictive power of a model, even with the same number of calibration experiments. PMID:25980978

  1. Quantitative Tomography of Organic Photovoltaic Blends at the Nanoscale.

    PubMed

    Pfannmöller, M; Heidari, H; Nanson, L; Lozman, O R; Chrapa, M; Offermans, T; Nisato, G; Bals, S

    2015-10-14

    The success of semiconducting organic materials has enabled green technologies for electronics, lighting, and photovoltaics. However, when blended together, these materials have also raised novel fundamental questions with respect to electronic, optical, and thermodynamic properties. This is particularly important for organic photovoltaic cells based on the bulk heterojunction. Here, the distribution of nanoscale domains plays a crucial role depending on the specific device structure. Hence, correlation of the aforementioned properties requires 3D nanoscale imaging of materials domains, which are embedded in a multilayer device. Such visualization has so far been elusive due to lack of contrast, insufficient signal, or resolution limits. In this Letter, we introduce spectral scanning transmission electron tomography for reconstruction of entire volume plasmon spectra from rod-shaped specimens. We provide 3D structural correlations and compositional mapping at a resolution of approximately 7 nm within advanced organic photovoltaic tandem cells. Novel insights that are obtained from quantitative 3D analyses reveal that efficiency loss upon thermal annealing can be attributed to subtle, fundamental blend properties. These results are invaluable in guiding the design and optimization of future devices in plastic electronics applications and provide an empirical basis for modeling and simulation of organic solar cells. PMID:26390367

  2. Advanced manufacturing development of a composite empennage component for L-1011 aircraft

    NASA Technical Reports Server (NTRS)

    Alva, T.; Henkel, J.; Johnson, R.; Carll, B.; Jackson, A.; Mosesian, B.; Brozovic, R.; Obrien, R.; Eudaily, R.

    1982-01-01

    This is the final report of technical work conducted during the fourth phase of a multiphase program having the objective of the design, development and flight evaluation of an advanced composite empennage component manufactured in a production environment at a cost competitive with those of its metal counterpart, and at a weight savings of at least 20 percent. The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes front and rear spars. During Phase 4 of the program, production quality tooling was designed and manufactured to produce three sets of covers, ribs, spars, miscellaneous parts, and subassemblies to assemble three complete ACVF units. Recurring and nonrecurring cost data were compiled and documented in the updated producibility/design to cost plan. Nondestruct inspections, quality control tests, and quality acceptance tests were performed in accordance with the quality assurance plan and the structural integrity control plan. Records were maintained to provide traceability of material and parts throughout the manufacturing development phase. It was also determined that additional tooling would not be required to support the current and projected L-1011 production rate.

  3. The entrance system laboratory prototype for an advanced mass and ionic charge composition experiment

    SciTech Connect

    Allegrini, F.; Desai, M. I.; Livi, R.; Livi, S.; McComas, D. J.; Randol, B.

    2009-10-15

    Electrostatic analyzers (ESA) have been used extensively for the characterization of plasmas in a variety of space environments. They vary in shape, geometry, and size and are adapted to the specific particle population to be measured and the configuration of the spacecraft. Their main function is to select the energy per charge of the particles within a passband. An energy-per-charge range larger than that of the passband can be sampled by varying the voltage difference between the ESA electrodes. The voltage sweep takes time and reduces the duty cycle for a particular energy-per-charge passband. Our design approach for an advanced mass and ionic charge composition experiment (AMICCE) has a novel electrostatic analyzer that essentially serves as a spectrograph and selects ions simultaneously over a broad range of energy-per-charge (E/q). Only three voltage settings are required to cover the entire range from {approx}10 to 270 keV/q, thus dramatically increasing the product of the geometric factor times the duty cycle when compared with other instruments. In this paper, we describe the AMICCE concept with particular emphasis on the prototype of the entrance system (ESA and collimator), which we designed, developed, and tested. We also present comparisons of the laboratory results with electrostatic simulations.

  4. Resin Flow of an Advanced Grid-Stiffened Composite Structure in the Co-Curing Process

    NASA Astrophysics Data System (ADS)

    Huang, Qizhong; Ren, Mingfa; Chen, Haoran

    2013-06-01

    The soft-mold aided co-curing process which cures the skin part and ribs part simultaneously was introduced for reducing the cost of advanced grid-stiffened composite structure (AGS). The co-curing process for a typical AGS, preformed by the prepreg AS4/3501-6, was simulated by a finite element program incorporated with the user-subroutines `thermo-chemical' module and the `chemical-flow' module. The variations of temperature, cure degree, resin pressure and fiber volume fraction of the AGS were predicted. It shows that the uniform distributions of temperature, cure degree and viscosity in the AGS would be disturbed by the unique geometrical pattern of AGS. There is an alternation in distribution of resin pressure at the interface between ribs and skin, and the duration time of resin flow is sensitive to the thickness of the AGS. To obtain a desired AGS, the process parameters of the co-curing process should be determined by the geometry of an AGS and the kinds of resin.

  5. The Advanced Composition Explorer spacecraft lifts off from Pad 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Photographers and other onlookers watch as a Boeing Delta II expendable launch vehicle lifts off with NASA's Advanced Composition Explorer (ACE) observatory at 10:39 a.m. EDT, on Aug. 25, 1997, from Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. Liftoff had been scheduled for Aug. 24, but was scrubbed one day by Air Force range safety personnel because two commercial fishing vessels were within the Delta's launch danger area. The ACE spacecraft will study low-energy particles of solar origin and high-energy galactic particles on its one-million-mile journey. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA. Study of these energetic particles may contribute to our understanding of the formation and evolution of the solar system. ACE has a two-year minimum mission lifetime and a goal of five years of service. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA's Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology (Caltech) in Pasadena, Calif.

  6. The Advanced Composition Explorer spacecraft lifts off from Pad 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A Boeing Delta II expendable launch vehicle lifts off with NASA's Advanced Composition Explorer (ACE) observatory at 10:39 a.m. EDT, on Aug. 25, 1997, from Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. Launch was scrubbed one day by Air Force range safety personnel because two commercial fishing vessels were within the Delta's launch danger area. The ACE spacecraft will study low-energy particles of solar origin and high-energy galactic particles on its one-million-mile journey. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA. Study of these energetic particles may contribute to our understanding of the formation and evolution of the solar system. ACE has a two-year minimum mission lifetime and a goal of five years of service. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA's Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology (Caltech) in Pasadena, Calif.

  7. Structural Characterization of Advanced Composite Tow-Steered Shells with Large Cutouts

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Turpin, Jason D.; Gardner, Nathaniel W.; Stanford, Bret K.; Martin, Robert A.

    2015-01-01

    The structural performance of two advanced composite tow-steered shells with large cutouts, manufactured using an automated fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles of the shells vary continuously around their circumference from +/- 10 degrees on the crown and keel, to +/- 45 degrees on the sides. The raised surface features on one shell result from application of all 24 tows during each fiber placement system pass, while the second shell uses the tow drop/add capability of the system to achieve a more uniform wall thickness. These unstiffened shells, both without and with small cutouts, were previously tested in axial compression and buckled elastically. In this study, a single unreinforced cutout, scaled to represent a cargo door on a commercial aircraft, is machined into one side of each shell. The prebuckling axial stiffnesses and bifurcation buckling loads of these shells with large cutouts are also computed using linear finite element structural analyses for preliminary comparisons with test data. During testing, large displacements are observed around the large cutouts, but the shells maintain an average of 91 percent of the axial stiffness, and also carry 85 percent of the buckling loads, when compared to the pristine shells without cutouts. These relatively small reductions indicate that there is great potential for using tow steering to mitigate the adverse effects of large cutouts on the overall structural performance.

  8. Structural Performance of Advanced Composite Tow-Steered Shells With Cutouts

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Turpin, Jason D.; Stanford, Bret K.; Martin, Robert A.

    2014-01-01

    The structural performance of two advanced composite tow-steered shells with cutouts, manufactured using an automated fiber placement system, is assessed using both experimental and analytical methods. The shells' fiber orientation angles vary continuously around their circumference from +/-10 degrees on the crown and keel, to +/-45 degrees on the sides. The raised surface features on one shell result from application of all 24 tows during each fiber placement system pass, while the second shell uses the system's tow drop/add capability to achieve a more uniform wall thickness. These unstiffened shells were previously tested in axial compression and buckled elastically. A single cutout, scaled to represent a passenger door on a commercial aircraft, is then machined into one side of each shell. The prebuckling axial stiffnesses and bifurcation buckling loads of the shells with cutouts are also computed using linear finite element structural analyses for initial comparisons with test data. When retested, large deflections were observed around the cutouts, but the shells carried an average of 92 percent of the axial stiffness, and 86 percent of the buckling loads, of the shells without cutouts. These relatively small reductions in performance demonstrate the potential for using tow steering to mitigate the adverse effects of typical design features on the overall structural performance.

  9. LiNiFe-based layered structure oxide and composite for advanced single layer fuel cells

    NASA Astrophysics Data System (ADS)

    Zhu, Bin; Fan, Liangdong; Deng, Hui; He, Yunjune; Afzal, Muhammad; Dong, Wenjing; Yaqub, Azra; Janjua, Naveed K.

    2016-06-01

    A layered structure metal oxide, LiNi0.1Fe0.90O2-δ (LNF), is explored for the advanced single layer fuel cells (SLFCs). The temperature dependent impedance profiles and concentration cells (hydrogen concentration, oxygen concentration, and H2/air atmospheres) tests prove LNF to be an intrinsically electronic conductor in air while mixed electronic and proton conductor in H2/air environment. SLFCs constructed by pure LNF materials show significant short circuiting reflected by a low device OCV and power output (175 mW cm-2 at 500 °C) due to high intrinsic electronic conduction. The power output is improved up to 640 and 760 mW cm-2, respectively at 500 and 550 °C by compositing LNF with ion conducting material, e.g., samarium doped ceria (SDC), to balance the electronic and ionic conductivity; both reached at 0.1 S cm-1 level. Such an SLFC gives super-performance and simplicity over the conventional 3-layer (anode, electrolyte and cathode) FCs, suggesting strong scientific and commercial impacts.

  10. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.

    1980-01-01

    Results of an experimental program to develop several types of graphite/polyimide (GR/PI) bonded and bolted joints for lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Tasks accomplished include: a literature survey; design of static discriminator specimens; design allowables testing; fabrication of test panels and specimens; small specimen testing; and standard joint testing. Detail designs of static discriminator specimens for each of the four major attachment types are presented. Test results are given for the following: (1) transverse tension of Celion 3000/PMR-15 laminate; (2) net tension of a laminate for both a loaded and unloaded bolt hole; (3) comparative testing of bonded and co-cured doublers along with pull-off tests of single and double bonded angles; (4) single lap shear tests, transverse tension and coefficient of thermal expansion tests of A7F (LARC-13 amide-imide modified) adhesive; and (5) tension tests of standard single lap, double lap, and symmetric step lap bonded joints. Also, included are results of a finite element analysis of a single lap bonded composite joint.

  11. Fuel Distribution Estimate via Spin Period to Precession Period Ratio for the Advanced Composition Explorer

    NASA Technical Reports Server (NTRS)

    DeHart, Russell; Smith, Eric; Lakin, John

    2015-01-01

    The spin period to precession period ratio of a non-axisymmetric spin-stabilized spacecraft, the Advanced Composition Explorer (ACE), was used to estimate the remaining mass and distribution of fuel within its propulsion system. This analysis was undertaken once telemetry suggested that two of the four fuel tanks had no propellant remaining, contrary to pre-launch expectations of the propulsion system performance. Numerical integration of possible fuel distributions was used to calculate moments of inertia for the spinning spacecraft. A Fast Fourier Transform (FFT) of output from a dynamics simulation was employed to relate calculated moments of inertia to spin and precession periods. The resulting modeled ratios were compared to the actual spin period to precession period ratio derived from the effect of post-maneuver nutation angle on sun sensor measurements. A Monte Carlo search was performed to tune free parameters using the observed spin period to precession period ratio over the life of the mission. This novel analysis of spin and precession periods indicates that at the time of launch, propellant was distributed unevenly between the two pairs of fuel tanks, with one pair having approximately 20% more propellant than the other pair. Furthermore, it indicates the pair of the tanks with less fuel expelled all of its propellant by 2014 and that approximately 46 kg of propellant remains in the other two tanks, an amount that closely matches the operational fuel accounting estimate. Keywords: Fuel Distribution, Moments of Inertia, Precession, Spin, Nutation

  12. Advanced Cosmic-Ray Composition Experiment for Space Station (ACCESS): ACCESS Accommodation Study Report

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L. (Editor); Wefel, John P. (Editor)

    1999-01-01

    In 1994 NASA Administrator selected the first high-energy particle physics experiment for the Space Station, the Alpha Magnetic Spectrometer (AMS), to place a magnetic spectrometer in Earth orbit and search for cosmic antimatter. A natural consequence of this decision was that NASA would begin to explore cost-effective ways through which the design and implementation of AMS might benefit other promising payload experiments. The first such experiment to come forward was Advanced Cosmic-Ray Composition Experiment for Space Station (ACCESS) in 1996. It was proposed as a new mission concept in space physics to attach a cosmic-ray experiment of weight, volume, and geometry similar to the AMS on the International Space Station (ISS), and replace the latter as its successor when the AMS is returned to Earth. This was to be an extension of NASA's suborbital balloon program, with balloon payloads serving as the precursor flights and heritage for ACCESS. The balloon programs have always been a cost-effective NASA resource since the particle physics instrumentation for balloon and space applications are directly related. The next step was to expand the process, pooling together expertise from various NASA centers and universities while opening up definition of the ACCESS science goals to the international community through the standard practice of peer review. This process is still ongoing, and the accommodation study presented here will discuss the baseline definition of ACCESS as we understand it today.

  13. Composite transport wing technology development: Design development tests and advanced structural concepts

    NASA Technical Reports Server (NTRS)

    Griffin, Charles F.; Harvill, William E.

    1988-01-01

    Numerous design concepts, materials, and manufacturing methods were investigated for the covers and spars of a transport box wing. Cover panels and spar segments were fabricated and tested to verify the structural integrity of design concepts and fabrication techniques. Compression tests on stiffened panels demonstrated the ability of graphite/epoxy wing upper cover designs to achieve a 35 percent weight savings compared to the aluminum baseline. The impact damage tolerance of the designs and materials used for these panels limits the allowable compression strain and therefore the maximum achievable weight savings. Bending and shear tests on various spar designs verified an average weight savings of 37 percent compared to the aluminum baseline. Impact damage to spar webs did not significantly degrade structural performance. Predictions of spar web shear instability correlated well with measured performance. The structural integrity of spars manufactured by filament winding equalled or exceeded those fabricated by hand lay-up. The information obtained will be applied to the design, fabrication, and test of a full-scale section of a wing box. When completed, the tests on the technology integration box beam will demonstrate the structural integrity of an advanced composite wing design which is 25 percent lighter than the metal baseline.

  14. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 2: Project planning data

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Project planning data for a rotor and control system procurement and testing program for modifications to the XV-15 tilt-rotor research demonstrator aircraft is presented. The design, fabrication, and installation of advanced composite blades compatible with the existing hub, an advanced composite hub, and a nonmechanical control system are required.

  15. A report of a Conference on Advanced Composites: An Assessment of the Future

    NASA Technical Reports Server (NTRS)

    Harris, L. A.

    1977-01-01

    A conference was held to evaluate the current status and future commitment to composites by government and industry. This reassessment, was felt needed because of an apparent transition in the acceptance of composites. The management of government agencies restated their progress and commitment to the development of composites and industrial management defined their concerns and requirements to commit to the future use of composites.

  16. Blending toward Competency. Early Patterns of Blended Learning and Competency-Based Education in New Hampshire

    ERIC Educational Resources Information Center

    Freeland, Julia

    2014-01-01

    As the education field strives to differentiate and personalize learning to cater to each student, two related movements are gaining attention: competency-based education and blended learning. In competency-based models, students advance on the basis of mastery, rather than according to the traditional methods of counting progress in terms of time…

  17. Polymeric blends for sensor and actuation dual functionality

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L. (Inventor); Harrison, Joycelyn S. (Inventor); Su, Ji (Inventor); Ounaies, Zoubeida (Inventor)

    2004-01-01

    The invention described herein supplies a new class of electroactive polymeric blend materials which offer both sensing and actuation dual functionality. The blend comprises two components, one component having a sensing capability and the other component having an actuating capability. These components should be co-processable and coexisting in a phase separated blend system. Specifically, the materials are blends of a sensing component selected from the group consisting of ferroelectric, piezoelectric, pyroelectric and photoelectric polymers and an actuating component that responds to an electric field in terms of dimensional change. Said actuating component includes, but is not limited to, electrostrictive graft elastomers, dielectric electroactive elastomers, liquid crystal electroactive elastomers and field responsive polymeric gels. The sensor functionality and actuation functionality are designed by tailoring the relative fraction of the two components. The temperature dependence of the piezoelectric response and the mechanical toughness of the dual functional blends are also tailored by the composition adjustment.

  18. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    SciTech Connect

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; Wang, Dapeng; Amine, Khalil; Thevuthasan, Suntharampillai

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and the oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.

  19. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    DOE PAGESBeta

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; Yan, Pengfei; Wang, Chong M.; Zheng, Jianming; Xiao, Jie; Genc, Arda; Zhang, Jiguang; Belharouak, Ilias; et al

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li1.2Ni0.2Mn0.6O2 and spinel LiNi0.5Mn1.5O4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution of the transition metal cations (M) and themore » oxygen. The as-fabricated layered Li1.2Ni0.2Mn0.6O2 is shown to have Li-rich Li2MO3 phase regions and Li-depleted Li(Ni0.5Mn0.5)O2 regions while in the cycled layered Li1.2Ni0.2Mn0.6O2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi0.5Mn1.5O4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.« less

  20. Assessing coastal plain wetland composition using advanced spaceborne thermal emission and reflection radiometer imagery

    NASA Astrophysics Data System (ADS)

    Pantaleoni, Eva

    Establishing wetland gains and losses, delineating wetland boundaries, and determining their vegetative composition are major challenges that can be improved through remote sensing studies. We used the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) to separate wetlands from uplands in a study of 870 locations on the Virginia Coastal Plain. We used the first five bands from each of two ASTER scenes (6 March 2005 and 16 October 2005), covering the visible to the short-wave infrared region (0.52-2.185mum). We included GIS data layers for soil survey, topography, and presence or absence of water in a logistic regression model that predicted the location of over 78% of the wetlands. While this was slightly less accurate (78% vs. 86%) than current National Wetland Inventory (NWI) aerial photo interpretation procedures of locating wetlands, satellite imagery analysis holds great promise for speeding wetland mapping, lowering costs, and improving update frequency. To estimate wetland vegetation composition classes, we generated a classification and regression tree (CART) model and a multinomial logistic regression (logit) model, and compared their accuracy in separating woody wetlands, emergent wetlands and open water. The overall accuracy of the CART model was 73.3%, while for the logit model was 76.7%. The CART producer's accuracy of the emergent wetlands was higher than the accuracy from the multinomial logit (57.1% vs. 40.7%). However, we obtained the opposite result for the woody wetland category (68.7% vs. 52.6%). A McNemar test between the two models and NWI maps showed that their accuracies were not statistically different. We conducted a subpixel analysis of the ASTER images to estimate canopy cover of forested wetlands. We used top-of-atmosphere reflectance from the visible and near infrared bands, Delta Normalized Difference Vegetation Index, and a tasseled cap brightness, greenness, and wetness in linear regression model with canopy

  1. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    This paper describes the process development for fabricating a high thermal conductivity NARloy-Z-Diamond composite (NARloy-Z-D) combustion chamber liner for application in advanced rocket engines. The fabrication process is challenging and this paper presents some details of these challenges and approaches used to address them. Prior research conducted at NASA-MSFC and Penn State had shown that NARloy-Z-40%D composite material has significantly higher thermal conductivity than the state of the art NARloy-Z alloy. Furthermore, NARloy-Z-40 %D is much lighter than NARloy-Z. These attributes help to improve the performance of the advanced rocket engines. Increased thermal conductivity will directly translate into increased turbopump power, increased chamber pressure for improved thrust and specific impulse. Early work on NARloy-Z-D composites used the Field Assisted Sintering Technology (FAST, Ref. 1, 2) for fabricating discs. NARloy-Z-D composites containing 10, 20 and 40vol% of high thermal conductivity diamond powder were investigated. Thermal conductivity (TC) data. TC increased with increasing diamond content and showed 50% improvement over pure copper at 40vol% diamond. This composition was selected for fabricating the combustion chamber liner using the FAST technique.

  2. Annual Conference on Composites and Advanced Ceramic Materials, 12th, Cocoa Beach, FL, Jan. 17-22, 1988, Proceedings. Parts 1 and 2

    SciTech Connect

    Not Available

    1988-10-01

    The present conference discusses topics in the development status of advanced ceramics, the engineering applications of ceramic-matrix composites, modeling and theoretical considerations of engineering ceramics, the role of interfaces in ceramic-matrix composites, and polycrystalline oxide-matrix composites. Also discussed are glass- and glass-ceramic-matrix composites, carbide- and nitride-matrix composites, the synthesis methods as well as the properties and applications of ceramic matrix-reinforcing whiskers, fibers, and powders, and various SDI-related advanced ceramic materials for use in orbital systems.

  3. Assessment of Silicon Carbide Composites for Advanced Salt-Cooled Reactors

    SciTech Connect

    Katoh, Yutai; Wilson, Dane F; Forsberg, Charles W

    2007-09-01

    The Advanced High-Temperature Reactor (AHTR) is a new reactor concept that uses a liquid fluoride salt coolant and a solid high-temperature fuel. Several alternative fuel types are being considered for this reactor. One set of fuel options is the use of pin-type fuel assemblies with silicon carbide (SiC) cladding. This report provides (1) an initial viability assessment of using SiC as fuel cladding and other in-core components of the AHTR, (2) the current status of SiC technology, and (3) recommendations on the path forward. Based on the analysis of requirements, continuous SiC fiber-reinforced, chemically vapor-infiltrated SiC matrix (CVI SiC/SiC) composites are recommended as the primary option for further study on AHTR fuel cladding among various industrially available forms of SiC. Critical feasibility issues for the SiC-based AHTR fuel cladding are identified to be (1) corrosion of SiC in the candidate liquid salts, (2) high dose neutron radiation effects, (3) static fatigue failure of SiC/SiC, (4) long-term radiation effects including irradiation creep and radiation-enhanced static fatigue, and (5) fabrication technology of hermetic wall and sealing end caps. Considering the results of the issues analysis and the prospects of ongoing SiC research and development in other nuclear programs, recommendations on the path forward is provided in the order or priority as: (1) thermodynamic analysis and experimental examination of SiC corrosion in the candidate liquid salts, (2) assessment of long-term mechanical integrity issues using prototypical component sections, and (3) assessment of high dose radiation effects relevant to the anticipated operating condition.

  4. The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Zank, G. P.

    2015-01-01

    The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forwardforward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given.

  5. The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Zank, G. P.

    2015-01-01

    The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forward-forward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given.

  6. EFFECT OF HYDROCARBON COMPOSITION ON OXIDANT-HYDROCARBON RELATIONSHIPS. PHASE I. EXHAUST BLENDS FROM NON-CATALYST AND CATALYST EQUIPPED VEHICLES

    EPA Science Inventory

    Oxidation catalysts on automobiles not only reduce the total amount of hydrocarbon emissions, but also change the composition of these emissions significantly. To explore the effect of this change on oxidant formation, 28 ten-hour irradiations were carried out in the Exxon Resear...

  7. A Multi-Objective Advanced Design Methodology of Composite Beam-to-Column Joints Subjected to Seismic and Fire Loads

    SciTech Connect

    Pucinotti, Raffaele; Ferrario, Fabio; Bursi, Oreste S.

    2008-07-08

    A multi-objective advanced design methodology dealing with seismic actions followed by fire on steel-concrete composite full strength joints with concrete filled tubes is proposed in this paper. The specimens were designed in detail in order to exhibit a suitable fire behaviour after a severe earthquake. The major aspects of the cyclic behaviour of composite joints are presented and commented upon. The data obtained from monotonic and cyclic experimental tests have been used to calibrate a model of the joint in order to perform seismic simulations on several moment resisting frames. A hysteretic law was used to take into account the seismic degradation of the joints. Finally, fire tests were conducted with the objective to evaluate fire resistance of the connection already damaged by an earthquake. The experimental activity together with FE simulation demonstrated the adequacy of the advanced design methodology.

  8. Uses of Advanced Ceramic Composites in the Thermal Protection Systems of Future Space Vehicles

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.

    1994-01-01

    Current ceramic composites being developed and characterized for use in the thermal protection systems (TPS) of future space vehicles are reviewed. The composites discussed include new tough, low density ceramic insulation's, both rigid and flexible; ultra-high temperature ceramic composites; nano-ceramics; as well as new hybrid ceramic/metallic and ceramic/organic systems. Application and advantage of these new composites to the thermal protection systems of future reusable access to space vehicles and small spacecraft is reviewed.

  9. Erosion Coatings for High-Temperature Polymer Composites: A Collaborative Project With Allison Advanced Development Company

    NASA Technical Reports Server (NTRS)

    Sutter, James K.

    2000-01-01

    composite (ASTM D 4541 95 "Pull Off Strength of Coatings"). Glenn and Allison Advanced Development Company collaborated to optimize erosion coatings for gas turbine fan and compressor applications. All the coating systems survived aggressive thermal cycling without spalling. During erosion tests (see the final photo), the most promising coating systems tested had Cr3C2-NiCr and WC-Co as the hard topcoats. In all cases, these coating systems performed significantly better than that with a TiN hard topcoat. When material depth (thickness) loss is considered, the Cr3C2-NiCr and WC-Co coating systems provided, on average, an erosion resistance 8.5 times greater than that for the uncoated PMR 15/T650 35 composite. Similarly, Cr3C2-NiCr and WC-Co coating systems adhered to the PMC substrate during tensile tests significantly better than systems containing a TiN topcoat. Differences in topcoats of Cr3C2-NiCr and WC-Co were determined by considering issues such as cost and environmental impact. The preferred erosion-resistant coating system for PMR 15/T650 35 has WC-Co as the hard topcoat. This system provides the following benefits in comparison to the coating system with Cr3C2-NiCr topcoat: lower powder material cost (15 to 20 percent), environmentally friendly materials (Cr3C2-NiCr is hazardous), and higher deposition yield (10 to 15 percent), which results in less waste.

  10. Self-Consistency of the Lauritzen-Hoffman and Strobl Models of Polymer Crystallization Evaluated for Poly(epsilon-caprolactone) Fractions and Effect of Composition on the Phenomenon of Concurrent Crystallization in Polyethylene Blends

    NASA Astrophysics Data System (ADS)

    Sheth, Swapnil Suhas

    -growth and equilibrium melting temperature values are identical with each other within the uncertainty of their determinations casts serious doubt on the validity of Strobl three-phase model. A novel method is proposed to determine the Porod constant necessary to extrapolate the small angle X-ray scattering intensity data to large scattering vectors. The one-dimensional correlation function determined using this Porod constant yielded the values of lamellar crystal thickness, which were similar to these estimated using the Hosemann-Bagchi Paracrystalline Lattice model. The temperature dependence of the lamellar crystal thickness was consistent with both LH and the Strobl model of polymer crystallization. However, in contrast to the predictions of Strobl's model, the value of the mesomorph-to-crystal equilibrium transition temperature was very close to the zero-growth temperature. Moreover, the lateral block sizes (obtained using wide angle X-ray diffraction) and the lamellar thicknesses were not found to be controlled by the mesomorph-to-crystal equilibrium transition temperature. Hence, we concluded that the crystallization of PCL is not mediated by a mesophase. Metallocene-catalyzed linear low-density (m-LLDPE with 3.4 mol% 1-octene) and conventional low-density (LDPE) polyethylene blends of different compositions were investigated for their melt-state miscibility and concurrent crystallization tendency. Differential scanning calorimetric studies and morphological studies using atomic force microscopy confirm that these blends are miscible in the melt-state for all compositions. LDPE chains are found to crystallize concurrently with m-LLDPE chains during cooling in the m-LLDPE crystallization temperature range. While the extent of concurrent crystallization was found to be optimal in .. .. iv blends with highest m-LLDPE content studied, strong evidence was uncovered for the existence of a saturation effect in the concurrent crystallization behavior. This observation leads

  11. Development of rice bran oil blends for quality improvement.

    PubMed

    Choudhary, Monika; Grover, Kiran; Kaur, Gurpreet

    2015-04-15

    Six rice bran oil (RBO) blends were prepared in two ratios i.e., 80:20 and 70:30 and analysed for physicochemical properties, and antioxidants and fatty acid composition. Among all the RBO blends, rice bran oil+groundnut oil (70:30) had the highest smoke point (204 °C) and rice bran oil+olive oil (70:30) was the most stable blend in terms of chemical parameters. The highest value of total antioxidants was observed in rice bran oil+sunflower oil (70:30) (2568.7 mg/kg). Fatty acid composition (SFA:MUFA:PUFA) (1:1.5:2) of rice bran oil+palm oil (80:20), and products prepared using this RBO blend, were close to the recommended intake. Boiling with sautéing was a better cooking method in terms of maintaining fatty acid ratios. PMID:25466088

  12. Enzymatic interesterification of soybean oil and methyl stearate blends using lipase immobilized on magnetic Fe3O4/SBA-15 composites as a biocatalyst.

    PubMed

    Zang, Xuezhen; Xie, Wenlei

    2014-01-01

    The magnetic Fe3O4/SBA-15 composites were prepared, and treated with 3-aminopropyltriethoxysilane as a carrier material for enzyme immobilization. The immobilization of Candida rugosa lipase onto the amino-functionalized Fe3O4/SBA-15 composite was investigated by using glutaraldehyde as a coupling reagent. The immobilized lipase was then employed as a biocatalyst for the interesterification of soybean oil and methyl stearate in a laboratory-scale operation at 45°C. Various techniques, such as Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), and vibrating sample magnetometry (VSM), were used for the characterization of the immobilized lipase composite. The immobilized lipase behaved superparamagnetic and showed excellent response at applied magnetic field. The obtained results showed that the immobilized lipase could efficiently catalyze the interesterification reaction. Moreover, the interesterification reaction parameters, such as reaction temperature, substrate ratio and reaction time were investigated regarding the stearoyl incorporation into the triacylglycerols. Further, the immobilized lipase proved to be easily separated from the reaction mixture by applying an external magnetic field and to be stable in the repeated use for four cycles. PMID:25213444

  13. Nutritional evaluation of wheat-fenugreek blends for product making.

    PubMed

    Hooda, Shalini; Jood, Sudesh

    2004-01-01

    Wheat flour was separately substituted with fenugreek flour (raw, soaked, and germinated) at 5-20% levels for product making. Nutrient analysis of the blends, product development, and their acceptability were carried out. Replacement of wheat flour with fenugreek flour increased the protein, fat, lysine, minerals, and dietary fibre contents proportionately to the level of substitution. Among the composite flours, the blends containing germinated fenugreek flour were found superior in nutritional quality compared to others. However, products, viz., bread, biscuits, noodles, and macaroni prepared from the wheat-fenugreek blends at 10, 15, and 20% levels, were found organoleptically acceptable. PMID:15678723

  14. LiLaPO{sub 4}-coated Li[Ni{sub 0.5}Co{sub 0.2}Mn{sub 0.3}]O{sub 2} and AlF{sub 3}-coated Li[Ni{sub 0.5}Co{sub 0.2}Mn{sub 0.3}]O{sub 2} blend composite for lithium ion batteries

    SciTech Connect

    Song, Han Gab; Park, Yong Joon

    2012-10-15

    A blended composite of LiLaPO{sub 4}-coated Li[Ni{sub 0.5}Co{sub 0.2}Mn{sub 0.3}]O{sub 2} and AlF{sub 3}-coated Li[Ni{sub 0.5}Co{sub 0.2}Mn{sub 0.3}]O{sub 2} was tested as the cathode of lithium secondary batteries. The rate capability, cyclic performance, and thermal stability of the blended electrode were characterized and compared with pristine, AlF{sub 3}-coated, and LiLaPO{sub 4}-coated electrodes. The blended sample showed good cyclic performance and thermal stability, which implies that blending these two cathode coatings were effective in obtaining their advantages and lessening their weaknesses.

  15. Smart Materials for Advanced Applications: Self-Decontaminating Polymers, Photofunctional Composites, and Electroconductive Fibers

    NASA Astrophysics Data System (ADS)

    Little, Brian Kevin

    2011-12-01

    Materials capable of providing multifunctional properties controllable by some external stimulus (pH, light, temperature, etc) are highly desirable and obtainable given recent advancements in material science. Development of these so called "Smart" materials spanned across many disciplines of science with applications in industrial areas such as medical, military, security, and environmental. Furthermore, next-generation materials require the ability to not only sense/respond to changes in their external/internal environment, but process information in regards to these changes and adapt accordingly in a dynamic fashion, autonomously, so called "Intelligent" materials. Findings reported in this manuscript detail the synthesis, characterization, and application of smart materials in the following three areas: (1) self-cleaning polymers (2) photoresponsive composites and (3) electroconductive fibers. Self-Cleaning Polymers: Self-decontaminating polymers are unique materials capable of degrading toxic organic chemicals (TOCs). Barriers composed of or coated with our photochemical reactive polymer matrix could be applied to multiple surfaces for defense against TOCs; for example, military garments for protection against chemical warfare agents. This study investigates conditions necessary for formation of peroxides via O2 reduction induced by long-lived, strongly reducing benzophenyl ketyl (BPK) polymer radicals. Photolysis of aqueous solutions composed of sulphonated poly(ether etherketone), SPEEK, and poly(vinyl alcohol), PVA lead to the formation of the BPK radicals. Experiments investigate the formation and decomposition of peroxides in aqueous solutions of SPEEK/PVA under photolysis. Photofunctional Composites: Photoresponsive nanoporous (PN) films and powders were studied and evaluated as possible additives to sensitize the initiation of CH3NO2 via a mechanism involving coalescence of reaction sites. Such materials consist of a 3-D mesoporous silica framework

  16. A Lattice Model for Segmental Dynamics of Miscible Polymer Blends

    NASA Astrophysics Data System (ADS)

    Colby, Ralph H.

    2006-03-01

    Thermally-driven concentration fluctuations make local regions (at the scale of monomers) have a wide range of local compositions for weakly interacting miscible blends of long chain polymers. These fluctuations remain important hundreds of degrees from the critical temperature because the entropy (and hence free energy) of mixing is small in polymer mixtures. The connected nature of the chain biases the local composition distribution, making the range of effective compositions surrounding a given monomer extend from the self-composition to environments very rich in that type of monomer. These two polymer physics issues make blends of polymers vastly more interesting than mixtures of small molecules. Time-temperature superposition can fail and motions can persist far below the glass transition temperature of the blend; both of these results are enhanced as the glass transition contrast between the two components increases. A simple lattice model is used to describe the segmental dynamics of miscible polymer blends. Concentration fluctuations and chain connectivity effects are calculated at the scale of the Kuhn length, by considering a central monomer to be surrounded, out to the second shell of monomers, by 24 lattice sites. Including the central monomer, fraction 5/25 = 0.2 of the lattice sites are part of the central monomer's chain (the self-composition) and the other 20 sites are occupied stochastically, while preserving connectivity of all chains. The resulting concentration distributions are mapped onto segmental relaxation time distributions for each blend component using the composition dependence of the glass transition and dynamic scaling. The predicted distributions are compared with experimental dielectric data on miscible polymer blends using three methods: (1) A Debye (single exponential) relaxation of each composition predicts dielectric loss peaks for each blend component which are too narrow because the lattice model ignores density fluctuations

  17. Advanced composite aileron for L-1011 transport aircraft: Ground tests and flight evaluation

    NASA Technical Reports Server (NTRS)

    Griffin, C. F.

    1981-01-01

    A composite aileron and a metal aileron were subjected to a series of comparative stiffness and vibration tests. These tests showed that the stiffness and vibration characteristics of the composite aileron are similar to the metal aileron. The first composite ground test article was statically tested to failure which occurred at 139 percent of design ultimate load. The second composite ground test article was tested to verify damage tolerance and fail-safe characteristics. Visible damage was inflicted to the aileron and the aileron was subjected to one lifetime of spectrum fatigue loading. After conducting limit load tests on the aileron, major damage was inflicted to the cover and the aileron was loaded to failure which occurred at 130 percent of design ultimate load. A shipset of composite ailerons were installed on Lockheed's L-1011 flight test aircraft and flown. The composite aileron was flutter-free throughout the flight envelope.

  18. Recent advances in synthesis, characterization of hydroxyapatite/polyurethane composites and study of their biocompatible properties.

    PubMed

    Popescu, L M; Piticescu, R M; Antonelli, A; Rusti, C F; Carboni, E; Sfara, C; Magnani, M; Badilita, V; Vasile, E; Trusca, R; Buruiana, T

    2013-11-01

    The development of engineered biomaterials that mimic bone tissues is a promising research area that benefits from a growing interest. Polymers and polymer-ceramic composites are the principle materials investigated for the development of synthetic bone scaffolds thanks to their proven biocompatibility and biostability. Several polymers have been combined with calcium phosphates (mainly hydroxyapatite) to prepare nanocomposites with improved biocompatible and mechanical properties. Here, we report the hydrothermal synthesis in high pressure conditions of nanostructured composites based on hydroxyapatite and polyurethane functionalized with carboxyl and thiol groups. Cell-material interactions were investigated for potential applications of these new types of composites as coating for orthopedic implants. Physical-chemical and morphological characteristics of hydroxyapatite/polyurethane composites were evaluated for different compositions, showing their dependence on synthesis parameters (pressure, temperature). In vitro experiments, performed to verify if these composites are biocompatible cell culture substrates, showed that they are not toxic and do not affect cell viability. PMID:23877879

  19. A guide to structural factors for advanced composites used on spacecraft

    NASA Technical Reports Server (NTRS)

    Vanwagenen, Robert

    1989-01-01

    The use of composite materials in spacecraft systems is constantly increasing. Although the areas of composite design and fabrication are maturing, they remain distinct from the same activities performed using conventional materials and processes. This has led to some confusion regarding the precise meaning of the term 'factor of safety' as it applies to these structures. In addition, composite engineering introduces terms such as 'knock-down factors' to further modify material properties for design purposes. This guide is intended to clarify these terms as well as their use in the design of composite structures for spacecraft. It is particularly intended to be used by the engineering community not involved in the day-to-day composites design process. An attempt is also made to explain the wide range of factors of safety encountered in composite designs as well as their relationship to the 1.4 factor of safety conventionally applied to metallic structures.

  20. Advanced composite materials and subcooled liquid change-of-phase (COP) cooling for thermal management in advanced electronic systems

    SciTech Connect

    Morgan, R.E.; Ehlers, S.L.; Mudawar, I.

    1996-12-31

    High performance, high density airborne and spaceborne electronic systems (both DoD and commercial) are performance and reliability limited by materials and thermal management. There is a continual need to improve performance and reliability in high density systems and to reduce adverse effects induced by excessive weight, dissipated heat, and related environmental incompatibilities. The penalties effected by these limitations prevail from cradle-to-grave in the life of high performance airborne systems, beginning at the development stage, continuing through manufacturing and procurement, and throughout system life, ultimately raising the cost of ownership. The objective of this effort is to investigate the use of selected high specific property composites and change-of-phase (COP) (i.e., liquid to vapor) cooling (using non-CFC, perfluorohexane fluids) to combat these limitations. High density (e.g., 2 kw SEM-E configuration), miniaturized avionics are assumed. Material systems for enclosure and module packaging as well as COP mechanisms will be discussed at this time relative to a retrofit scenario, interfacing with existing aircraft environmental control systems (ECS) for coolant reconditioning.

  1. A Data-Driven Approach to Hue-Preserving Color-Blending.

    PubMed

    Kuhne, L; Giesen, J; Zhang, Zhiyuan; Ha, Sungsoo; Mueller, K

    2012-12-01

    Color mapping and semitransparent layering play an important role in many visualization scenarios, such as information visualization and volume rendering. The combination of color and transparency is still dominated by standard alpha-compositing using the Porter-Duff over operator which can result in false colors with deceiving impact on the visualization. Other more advanced methods have also been proposed, but the problem is still far from being solved. Here we present an alternative to these existing methods specifically devised to avoid false colors and preserve visual depth ordering. Our approach is data driven and follows the recently formulated knowledge-assisted visualization (KAV) paradigm. Preference data, that have been gathered in web-based user surveys, are used to train a support-vector machine model for automatically predicting an optimized hue-preserving blending. We have applied the resulting model to both volume rendering and a specific information visualization technique, illustrative parallel coordinate plots. Comparative renderings show a significant improvement over previous approaches in the sense that false colors are completely removed and important properties such as depth ordering and blending vividness are better preserved. Due to the generality of the defined data-driven blending operator, it can be easily integrated also into other visualization frameworks. PMID:26357119

  2. Reactive modification of polyesters and their blends

    NASA Astrophysics Data System (ADS)

    Wan, Chen

    2004-12-01

    As part of a broader research effort to investigate the chemical modification of polyesters by reactive processing a low molecular weight (MW) unsaturated polyester (UP) and a higher MW saturated polyester, polyethylene terephthalate (PET), alone or blended with polypropylene (PP) were melt processed in a batch mixer and continuous twin screw extruders. Modification was monitored by on-line rheology and the products were characterized primarily by off-line rheology, morphology and thermal analysis. Efforts were made to establish processing/property relationships and provide an insight of the accompanying structural changes. The overall response of the reactively modified systems was found to be strongly dependent on the component characteristics, blend composition, type and concentrations of reactive additives and processing conditions. The work concluded that UP can be effectively modified through reactive melt processing. Its melt viscosity and MW can be increased through chemical reactions between organic peroxides (POX) and chain unsaturation or between MgO and carboxyl/hydroxyl end groups. Reactive blending of PP/UP blends through peroxide modification gave finer and more uniform morphology than unreacted blends and at a given PP/UP weight ratio more thermoplastic elastomers-like rheological behavior. This is due to the continuously decreasing viscosity ratio of PP/UP towards unity by the competing reactions between POX and the blend components and formation of PP-UP copolymers which serve as in-situ compatibilizers to promote better interfacial adhesion. Kinetics of the competing reactions were analyzed through a developed model. In addition to POX concentration and mixing efficiency, rheology and morphology of UP/PP bends were significantly affected by the addition of inorganic and organic coagents. Addition of coagents such as a difunctional maleimide, MgO and/or an anhydride functionalized PP during reactive blending offers effective means for tailoring

  3. Blending the Basics.

    ERIC Educational Resources Information Center

    McCampbell, Bill

    2001-01-01

    Blended e-learning approaches combine the power of the Internet with existing class events or assignments. Inexpensive tools include electronic mail, keyboarding instruction, online research, streamed video or audio clips, message boards, chat rooms, scanned class reading assignments, and online assessments. IT buzzwords are decoded. (MLH)

  4. Advancing Student Success with Competency Points: Elevating Engagement and Motivation in Community College English Composition Students

    ERIC Educational Resources Information Center

    Keller, Jill Lenett

    2011-01-01

    This research tested and evaluated how one method--Competency Points (CPs)--increased student success by enhancing engagement and motivation in community college English composition students. In 2005 I introduced Competency Points in my English Composition 1 classes, and began tracking how engaged and motivated students were to succeed as revealed…

  5. Effect of Interface Structure on Mechanical Properties of Advanced Composite Materials

    PubMed Central

    Gan, Yong X.

    2009-01-01

    This paper deals with the effect of interface structures on the mechanical properties of fiber reinforced composite materials. First, the background of research, development and applications on hybrid composite materials is introduced. Second, metal/polymer composite bonded structures are discussed. Then, the rationale is given for nanostructuring the interface in composite materials and structures by introducing nanoscale features such as nanopores and nanofibers. The effects of modifying matrices and nano-architecturing interfaces on the mechanical properties of nanocomposite materials are examined. A nonlinear damage model for characterizing the deformation behavior of polymeric nanocomposites is presented and the application of this model to carbon nanotube-reinforced and reactive graphite nanotube-reinforced epoxy composite materials is shown. PMID:20054466

  6. Apparatus for blending small particles

    DOEpatents

    Bradley, R.A.; Reese, C.R.; Sease, J.D.

    1975-08-26

    An apparatus is described for blending small particles and uniformly loading the blended particles in a receptacle. Measured volumes of various particles are simultaneously fed into a funnel to accomplish radial blending and then directed onto the apex of a conical splitter which collects the blended particles in a multiplicity of equal subvolumes. Thereafter the apparatus sequentially discharges the subvolumes for loading in a receptacle. A system for blending nuclear fuel particles and loading them into fuel rod molds is described in a preferred embodiment. (auth)

  7. Durability and CMAS Resistance of Advanced Environmental Barrier Coatings Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. This paper will emphasize advanced environmental barrier coating developments for SiCSiC turbine airfoil components, by using advanced coating compositions and processing, in conjunction with mechanical and environment testing and durability validations. The coating-CMC degradations and durability in the laboratory simulated engine fatigue-creep and complex operating environments are being addressed. The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will be discussed. The results help understand the advanced EBC-CMC system performance, aiming at the durability improvements of more robust, prime-reliant environmental barrier coatings for successful applications of the component technologies and lifing methodologies.

  8. Rheology of miscible polymer blends with hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Yang, Zhiyi

    Poly(4-vinylphenol) (PVPh) was blended with four different polymers: poly(vinyl methyl ether) (PVME), poly(vinyl acetate) (PVAc), poly(2-vinylpyridine) (P2VP), and poly(4-vinylpyridine) (P4VP) by solvent casting. The miscibility of these four PVPh-based blend systems was investigated using differential scanning calorimetry (DSC) and the composition-dependent glass transition temperature (Tg) was predicted by a thermodynamic theory. The hydrogen bonds between phenolic group in PVPh and ether group, carbonyl group or pyridine group was confirmed by Fourier transform infrared (FTIR) spectroscopy. The fraction of hydrogen bonds was calculated by the Coleman-Graf-Painter association model. Linear dynamic viscoelasticity of four PVPh-based miscible polymer blends with hydrogen bonding was investigated. Emphasis was placed on investigating how the linear dynamic viscoelasticity of miscible polymer blends with specific interaction might be different from that of miscible polymer blends without specific interaction. We have found that an application of time-temperature superposition (TTS) to the PVPh-based miscible blends with intermolecular hydrogen bonding is warranted even when the difference in the component glass transition temperatures is as large as about 200°C, while TTS fails for miscible polymer blends without specific interactions. On the basis of such an observation, we have concluded that hydrogen bonding suppressed concentration fluctuations in PVPh-based miscible blends. It has been found that both the intra-association (self-association) of the phenoxy hydroxyl groups in PVPh and inter-association (intermolecular interactions) between the constituent components have a profound influence on the frequency dependence of dynamic moduli in the terminal region of the PVPh-based miscible blend systems investigated. Hydrogenated functional polynorbornenes (HFPNBs) were synthesized and they were used to investigate the miscibility and rheology of HFPNB

  9. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    NARloy-Z alloy (Cu-3 percent, Ag-0.5 percent, Zr) is a state of the art alloy currently used for fabricating rocket engine combustion chamber liners. Research conducted at NASA-MSFC and Penn State – Applied Research Laboratory has shown that thermal conductivity of NARloy-Z can be increased significantly by adding diamonds to form a composite (NARloy-Z-D). NARloy-Z-D is also lighter than NARloy-Z. These attributes make this advanced composite material an ideal candidate for fabricating combustion chamber liner for an advanced rocket engine. Increased thermal conductivity will directly translate into increased turbopump power and increased chamber pressure for improved thrust and specific impulse. This paper describes the process development for fabricating a subscale high thermal conductivity NARloy-Z-D combustion chamber liner using Field Assisted Sintering Technology (FAST). The FAST process uses a mixture of NARloy-Z and diamond powders which is sintered under pressure at elevated temperatures. Several challenges were encountered, i.e., segregation of diamonds, machining the super hard NARloy-Z-D composite, net shape fabrication and nondestructive examination. The paper describes how these challenges were addressed. Diamonds coated with copper (CuD) appear to give the best results. A near net shape subscale combustion chamber liner is being fabricated by diffusion bonding cylindrical rings of NARloy-Z-CuD using the FAST process.

  10. Advanced composite aileron for L-1011 transport aircraft: Design and analysis

    NASA Technical Reports Server (NTRS)

    Griffin, C. F.; Fogg, L. D.; Dunning, E. G.

    1981-01-01

    Detail design of the composite aileron has been completed. The aileron design is a multi-rib configuration with single piece upper and lower covers mechanically fastened to the substructure. Covers, front, spar and ribs are fabricated with graphite/epoxy tape or fabric composite material. The design has a weight savings of 23 percent compared to the aluminum aileron. The composite aileron has 50 percent fewer fasteners and parts than the metal aileron and is predicted to be cost competitive. Structural integrity of the composite aileron was verified by structural analysis and an extensive test program. Static, failsafe, and vibration analyses have been conducted on the composite aileron using finite element models and specialized computer programs for composite material laminates. The fundamental behavior of the composite materials used in the aileron was determined by coupon tests for a variety of environmental conditions. Critical details of the design were interrogated by static and fatigue tests on full-scale subcomponents and subassemblies of the aileron.

  11. Composition, morphology and nanostructure of C-S-H in 70% white Portland cement-30% fly ash blends hydrated at 55 {sup o}C

    SciTech Connect

    Girao, A.V.; Richardson, I.G.; Taylor, R.; Brydson, R.M.D.

    2010-09-15

    Outer product C-S-H had a mixture of fibrillar and foil-like morphology in a 28-day-old water-activated paste, and foil- or lath-like morphology in an alkali-activated paste. It was not possible to determine the chemical composition of C-S-H using SEM-EDX because of fine-scale intermixing with other phases; TEM-EDX was necessary. The C-S-H formed in the alkali-activated paste had a lower mean Ca/(Al + Si) ratio than that formed with water. The mean length of the aluminosilicate anions in the C-S-H was similar in both systems and increased with age; those in the Op C-S-H were likely to be shorter than those present in the Ip C-S-H with water activation, but longer (and more protonated) with alkali. The potassium in the alkali-activated paste was present either within the C-S-H structure charge balancing the substitution of Al{sup 3+} for Si{sup 4+}, or adsorbed on the C-S-H charge balancing sulfate ions.

  12. Interim results of long-term environmental exposures of advanced composites for aircraft applications

    NASA Technical Reports Server (NTRS)

    Pride, R. A.

    1978-01-01

    Interim results from a number of ongoing, long-term environmental effects programs for composite materials are reported. The flight service experience is evaluated for 142 composite aircraft components after more than five years and one million successful component flight hours. Ground-based outdoor exposures of composite material coupons after 3 years of exposure at five sites have reached equilibrium levels of moisture pickup which are predictable. Solar ultraviolet-induced material loss is discussed for these same exposures. No significant degradation has been observed in residual strength for either stressed or unstressed specimens, or for exposures to aviation fuels and fluids.

  13. Silicon-Based Ceramic-Matrix Composites for Advanced Turbine Engines: Some Degradation Issues

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U. J.

    2000-01-01

    SiC/BN/SiC composites are designed to take advantage of the high specific strengths and moduli of non-oxide ceramics, and their excellent resistance to creep, chemical attack, and oxidation, while circumventing the brittleness inherent in ceramics. Hence, these composites have the potential to take turbine engines of the future to higher operating temperatures than is achievable with metal alloys. However, these composites remain developmental and more work needs to be done to optimize processing techniques. This paper highlights the lingering issue of pest degradation in these materials and shows that it results from vestiges of processing steps and can thus be minimized or eliminated.

  14. Thermal and mechanical properties of advanced, high temperature ceramic-composite insulation

    NASA Technical Reports Server (NTRS)

    Leiser, D. B.; Smith, M.; Stewart, D. A.; Goldstein, H. E.

    1983-01-01

    It is found that the mechanical properties of fibrous refractory composite insulation (FRCI) can be improved if a higher calcination temperature is used before final processing. The results also reveal that a higher density FRCI containing 60 wt pct aluminoborosilicate fibers will exhibit minimal surface recession at 1480 C in a convective-heating environment. Another finding is that the material performance in the convective-heating environment is limited by the coating and the temperature capability of its emittance agent. A table is included giving the coating compositions used with the composite insulation and tested in the convectively heated environment at a surface temperature of 1480 C.

  15. Feasibility study of applying an advanced composite structure technique to the fabrication of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Gleich, D.

    1972-01-01

    The fabrication of helicopter rotary wings from composite materials is discussed. Two composite spar specimens consisting of compressively prestressed stainless steel liner over-wrapped with pretensioned fiberglass were constructed. High liner strength and toughness together with the prescribed prestresses and final sizing of the part are achieved by means of cryogenic stretch forming of the fiber wrapped composite spar at minus 320 F, followed by release of the forming pressure and warm up to room temperature. The prestresses are chosen to provide residual compression in the metal liner under operating loads.

  16. Production of silk sericin/silk fibroin blend nanofibers

    PubMed Central

    2011-01-01

    Silk sericin (SS)/silk fibroin (SF) blend nanofibers have been produced by electrospinning in a binary SS/SF trifluoroacetic acid (TFA) solution system, which was prepared by mixing 20 wt.% SS TFA solution and 10 wt.% SF TFA solution to give different compositions. The diameters of the SS/SF nanofibers ranged from 33 to 837 nm, and they showed a round cross section. The surface of the SS/SF nanofibers was smooth, and the fibers possessed a bead-free structure. The average diameters of the SS/SF (75/25, 50/50, and 25/75) blend nanofibers were much thicker than that of SS and SF nanofibers. The SS/SF (100/0, 75/25, and 50/50) blend nanofibers were easily dissolved in water, while the SS/SF (25/75 and 0/100) blend nanofibers could not be completely dissolved in water. The SS/SF blend nanofibers could not be completely dissolved in methanol. The SS/SF blend nanofibers were characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, and differential thermal analysis. FTIR showed that the SS/SF blend nanofibers possessed a random coil conformation and ß-sheet structure. PMID:21867508

  17. Production of silk sericin/silk fibroin blend nanofibers

    NASA Astrophysics Data System (ADS)

    Zhang, Xianhua; Tsukada, Masuhiro; Morikawa, Hideaki; Aojima, Kazuki; Zhang, Guangyu; Miura, Mikihiko

    2011-08-01

    Silk sericin (SS)/silk fibroin (SF) blend nanofibers have been produced by electrospinning in a binary SS/SF trifluoroacetic acid (TFA) solution system, which was prepared by mixing 20 wt.% SS TFA solution and 10 wt.% SF TFA solution to give different compositions. The diameters of the SS/SF nanofibers ranged from 33 to 837 nm, and they showed a round cross section. The surface of the SS/SF nanofibers was smooth, and the fibers possessed a bead-free structure. The average diameters of the SS/SF (75/25, 50/50, and 25/75) blend nanofibers were much thicker than that of SS and SF nanofibers. The SS/SF (100/0, 75/25, and 50/50) blend nanofibers were easily dissolved in water, while the SS/SF (25/75 and 0/100) blend nanofibers could not be completely dissolved in water. The SS/SF blend nanofibers could not be completely dissolved in methanol. The SS/SF blend nanofibers were characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, and differential thermal analysis. FTIR showed that the SS/SF blend nanofibers possessed a random coil conformation and ß-sheet structure.

  18. Basic failure mechanisms in advanced composites. [composed of epoxy resins reinforced with carbon fibers

    NASA Technical Reports Server (NTRS)

    Mazzio, V. F.; Mehan, R. L.; Mullin, J. V.

    1973-01-01

    The fundamental failure mechanisms which result from the interaction of thermal cycling and mechanical loading of carbon-epoxy composites were studied. This work was confined to epoxy resin uniderictionally reinforced with HTS carbon fibers, and consists of first identifying local fiber, matrix and interface failure mechanisms using the model composite specimen containing a small number of fibers so that optical techniques can be used for characterization. After the local fracture process has been established for both mechanical loading and thermal cycling, engineering composite properties and gross fracture modes are then examined to determine how the local events contribute to real composite performance. Flexural strength in high fiber content specimens shows an increase in strength with increased thermal cycling. Similar behavior is noted for 25 v/o material up to 200 cycles; however, there is a drastic reduction after 200 cycles indicating a major loss of integrity probably through the accumulation of local cleavage cracks in the tensile region.

  19. Study on utilization of advanced composites in commercial aircraft wing structures, volume 2

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Ostrom, R. B.

    1978-01-01

    A plan is defined for a composite wing development effort which will assist commercial transport manufacturers in reaching a level of technology readiness where the utilization of composite wing structure is a cost competitive option for a new aircraft production plan. The recommended development effort consists of two programs: a joint government/industry material development program and a wing structure development program. Both programs are described in detail.

  20. Ferroelectric and Piezoelectric Properties of Blends of Poly(Vinylidene-Trifluoroethylene) and Graft Elastomer

    NASA Technical Reports Server (NTRS)

    Su, J.; Ounaies, Z.; Harrison, J. S.

    1999-01-01

    A piezoelectric polymeric blend system has been developed. The system contains two components: ferroelectric poly(vinylidene-trifluoroethylene) and graft elastomer. The remanent polarization, Pr, and the piezoelectric strain coefficient, d31, of the blends have been studied as a function of relative composition of the two components, temperature and frequency. Both blended copolymer and graft unit in the elastomer contribute to the total crystallinity of the blend-system, and hence to the remanent polarization and piezoelectricity. The piezoelectric strain coefficient, d31, of the blend systems shows dependence on both the remanent polarization and the mechanical stiffness, which in turn are determined by the fraction of the two components in the blends. This mechanism makes it possible for the piezoelectric strain response of the blend to be tailored by adjusting the relative composition. Although Pr of the copolymer is higher than that of the blends, the blend films containing 75 wt.% copolymer exhibit a higher d31 at room temperature, possibly due to their lower modulus. The blend films containing 50 wt.% copolymer exhibit a constant value of d31, from room temperature to 70 C.

  1. The use of 0-3 piezocomposite embedded Lamb wave sensors for detection of damage in advanced fibre composites

    NASA Astrophysics Data System (ADS)

    Badcock, R. A.; Birt, E. A.

    2000-06-01

    The use of smart damage-detection systems may have considerable benefits for equipment operators. As sensing elements for a health-monitoring array, piezoelectric elements offer potential benefits. In particular, 0-3 piezocomposite elements have been identified as good candidates since they offer the potential for embedment within the advanced fibre composites. Ultrasonic Lamb waves have been shown to offer a technique for large-area damage detection for composites. It has been shown that the use of the S0 Lamb mode may enable a quantitative estimate of the degree of damage to be obtained. A comparison of various transducer elements for Lamb wave detection is made and the use of embedded 0-3 piezocomposite elements demonstrated.

  2. The Advanced Composition Explorer is prepared for its move to Pad 17A, CCAS in SAEF-II

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In KSC's Spacecraft Assembly and Encapsulation Facility-II (SAEF- II), the Advanced Composition Explorer (ACE) spacecraft is encapsulated and placed into the transporter which will move it to Launch Complex 17A. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 24, ACE will study low- energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA.

  3. Monitoring blending of pharmaceutical powders with multipoint NIR spectroscopy.

    PubMed

    Scheibelhofer, Otto; Balak, Nikolaus; Wahl, Patrick R; Koller, Daniel M; Glasser, Benjamin J; Khinast, Johannes G

    2013-03-01

    Blending of powders is a crucial step in the production of pharmaceutical solid dosage forms. The active pharmaceutical ingredient (API) is often a powder that is blended with other powders (excipients) in order to produce tablets. The blending efficiency is influenced by several external factors, such as the desired degree of homogeneity and the required blending time, which mainly depend on the properties of the blended materials and on the geometry of the blender. This experimental study investigates the mixing behavior of acetyl salicylic acid as an API and α-lactose monohydrate as an excipient for different filling orders and filling levels in a blender. A multiple near-infrared probe setup on a laboratory-scale blender is used to observe the powder composition quasi-simultaneously and in-line in up to six different positions of the blender. Partial least squares regression modeling was used for a quantitative analysis of the powder compositions in the different measurement positions. The end point for the investigated mixtures and measurement positions was determined via moving block standard deviation. Observing blending in different positions helped to detect good and poor mixing positions inside the blender that are affected by convective and diffusive mixing. PMID:23263752

  4. Milk Yield, Composition, and Fatty Acid Profile in Dairy Cows Fed a High-concentrate Diet Blended with Oil Mixtures Rich in Polyunsaturated Fatty Acids.

    PubMed

    Thanh, Lam Phuoc; Suksombat, Wisitiporn

    2015-06-01

    To evaluate the effects of feeding linseed oil or/and sunflower oil mixed with fish oil on milk yield, milk composition and fatty acid (FA) profiles of dairy cows fed a high-concentrate diet, 24 crossbred primiparous lactating dairy cows in early lactation were assigned to a completely randomized design experiment. All cows were fed a high-concentrate basal diet and 0.38 kg dry matter (DM) molasses per day. Treatments were composed of a basal diet without oil supplement (Control), or diets of (DM basis) 3% linseed and fish oils (1:1, w/w, LSO-FO), or 3% sunflower and fish oils (1:1, w/w, SFO-FO), or 3% mixture (1:1:1, w/w) of linseed, sunflower, and fish oils (MIX-O). The animals fed SFO-FO had a 13.12% decrease in total dry matter intake compared with the control diet (p<0.05). No significant change was detected for milk yield; however, the animals fed the diet supplemented with SFO-FO showed a depressed milk fat yield and concentration by 35.42% and 27.20%, respectively, compared to those fed the control diet (p<0.05). Milk c9, t11-conjugated linoleic acid (CLA) proportion increased by 198.11% in the LSO-FO group relative to the control group (p<0.01). Milk C18:3n-3 (ALA) proportion was enhanced by 227.27% supplementing with LSO-FO relative to the control group (p<0.01). The proportions of milk docosahexaenoic acid (DHA) were significantly increased (p<0.01) in the cows fed LSO-FO (0.38%) and MIX-O (0.23%) compared to the control group (0.01%). Dietary inclusion of LSO-FO mainly increased milk c9, t11-CLA, ALA, DHA, and n-3 polyunsaturated fatty acids (PUFA), whereas feeding MIX-O improved preformed FA and unsaturated fatty acids (UFA). While the lowest n-6/n-3 ratio was found in the LSO-FO, the decreased atherogenecity index (AI) and thrombogenicity index (TI) seemed to be more extent in the MIX-O. Therefore, to maximize milk c9, t11-CLA, ALA, DHA, and n-3 PUFA and to minimize milk n-6/n-3 ratio, AI and TI, an ideal supplement would appear to be either LSO-FO or

  5. Milk Yield, Composition, and Fatty Acid Profile in Dairy Cows Fed a High-concentrate Diet Blended with Oil Mixtures Rich in Polyunsaturated Fatty Acids

    PubMed Central

    Thanh, Lam Phuoc; Suksombat, Wisitiporn

    2015-01-01

    To evaluate the effects of feeding linseed oil or/and sunflower oil mixed with fish oil on milk yield, milk composition and fatty acid (FA) profiles of dairy cows fed a high-concentrate diet, 24 crossbred primiparous lactating dairy cows in early lactation were assigned to a completely randomized design experiment. All cows were fed a high-concentrate basal diet and 0.38 kg dry matter (DM) molasses per day. Treatments were composed of a basal diet without oil supplement (Control), or diets of (DM basis) 3% linseed and fish oils (1:1, w/w, LSO-FO), or 3% sunflower and fish oils (1:1, w/w, SFO-FO), or 3% mixture (1:1:1, w/w) of linseed, sunflower, and fish oils (MIX-O). The animals fed SFO-FO had a 13.12% decrease in total dry matter intake compared with the control diet (p<0.05). No significant change was detected for milk yield; however, the animals fed the diet supplemented with SFO-FO showed a depressed milk fat yield and concentration by 35.42% and 27.20%, respectively, compared to those fed the control diet (p<0.05). Milk c9, t11-conjugated linoleic acid (CLA) proportion increased by 198.11% in the LSO-FO group relative to the control group (p<0.01). Milk C18:3n-3 (ALA) proportion was enhanced by 227.27% supplementing with LSO-FO relative to the control group (p<0.01). The proportions of milk docosahexaenoic acid (DHA) were significantly increased (p<0.01) in the cows fed LSO-FO (0.38%) and MIX-O (0.23%) compared to the control group (0.01%). Dietary inclusion of LSO-FO mainly increased milk c9, t11-CLA, ALA, DHA, and n-3 polyunsaturated fatty acids (PUFA), whereas feeding MIX-O improved preformed FA and unsaturated fatty acids (UFA). While the lowest n-6/n-3 ratio was found in the LSO-FO, the decreased atherogenecity index (AI) and thrombogenicity index (TI) seemed to be more extent in the MIX-O. Therefore, to maximize milk c9, t11-CLA, ALA, DHA, and n-3 PUFA and to minimize milk n-6/n-3 ratio, AI and TI, an ideal supplement would appear to be either LSO-FO or

  6. Chemical interesterification of blends with palm stearin and patawa oil.

    PubMed

    Oliveira, Pedro D; Rodrigues, Antonio M C; Bezerra, Carolina V; Silva, Luiza H M

    2017-01-15

    The present study sought to develop lipid bases from blends between patawa oil and palm stearin. These blends were analyzed before and after the chemical interesterification process for their fatty acid and triacylglycerol composition, free fatty acid (FFA) content, peroxide index, thermal properties, melting point, consistency, and solid fat content (SFC). Blends with unsaturated fatty acid contents between 60 and 70% were obtained, with a good ratio between saturated and unsaturated fatty acids, which indicates a healthy content of fatty acids. Variations in the triacylglycerol contents and melting and crystallization thermograms evidenced the reaction. The blend with 50% stearin and 50% patawa oil showed the best results after the chemical interesterification reaction regarding the possible application in fatty products for its appropriate melting point, SFC similar to that of soft table margarines, plastic and spreadable consistency at refrigeration temperature, thus combining physical and nutritional properties desirable for the food industry. PMID:27542488

  7. Self-assembled phases of block copolymer blend thin films.

    PubMed

    Yager, Kevin G; Lai, Erica; Black, Charles T

    2014-10-28

    The patterns formed by self-assembled thin films of blended cylindrical and lamellar polystyrene-b-poly(methyl methacrylate) block copolymers can be either a spatially uniform, single type of nanostructure or separate, coexisting regions of cylinders and lamellae, depending on fractional composition and molecular weight ratio of the blend constituents. In blends of block copolymers with different molecular weights, the morphology of the smaller molecular weight component more strongly dictates the resulting pattern. Although molecular scale chain mixing distorts microdomain characteristic length scales from those of the pure components, even coexisting morphologies exhibit the same domain spacing. We quantitatively account for the phase behavior of thin-film blends of cylinders and lamellae using a physical, thermodynamic model balancing the energy of chain distortions with the entropy of mixing. PMID:25285733

  8. Synthesizing optimal waste blends

    SciTech Connect

    Narayan, V.; Diwekar, W.M.; Hoza, M.

    1996-10-01

    Vitrification of tank wastes to form glass is a technique that will be used for the disposal of high-level waste at Hanford. Process and storage economics show that minimizing the total number of glass logs produced is the key to keeping cost as low as possible. The amount of glass produced can be reduced by blending of the wastes. The optimal way to combine the tanks to minimize the vole of glass can be determined from a discrete blend calculation. However, this problem results in a combinatorial explosion as the number of tanks increases. Moreover, the property constraints make this problem highly nonconvex where many algorithms get trapped in local minima. In this paper the authors examine the use of different combinatorial optimization approaches to solve this problem. A two-stage approach using a combination of simulated annealing and nonlinear programming (NLP) is developed. The results of different methods such as the heuristics approach based on human knowledge and judgment, the mixed integer nonlinear programming (MINLP) approach with GAMS, and branch and bound with lower bound derived from the structure of the given blending problem are compared with this coupled simulated annealing and NLP approach.

  9. Evaluation of Damage Tolerance of Advanced SiC/SiC Composites after Neutron Irradiation

    NASA Astrophysics Data System (ADS)

    Ozawa, Kazumi; Katoh, Yutai; Nozawa, Takashi; Hinoki, Tatsuya; Snead, Lance L.

    2011-10-01

    Silicon carbide composites (SiC/SiC) are attractive candidate materials for structural and functional components in fusion energy systems. The effect of neutron irradiation on damage tolerance of the nuclear grade SiC/SiC composites (plain woven Hi-Nicalon™ Type-S reinforced CVI matrix composites multilayer interphase and unidirectional Tyranno™-SA3 reinforced NITE matrix with carbon mono-layer interphase) was evaluated by means of miniaturized single-edged notched beam test. No significant changes in crack extension behavior and in the load-loadpoint displacement characteristics such as the peak load and hysteresis loop width were observed after irradiation to 5.9 × 1025 n/m2 (E > 0.1 MeV) at 800°C and to 5.8 × 1025 n/m2 at 1300°C. By applying a global energy balance analysis based on non-linear fracture mechanics, the energy release rate for these composite materials was found to be unchanged by irradiation with a value of 3±2 kJ/m2. This has led to the conclusion that, for these fairly aggressive irradiation conditions, the effect of neutron irradiation on the fracture resistance of these composites appears insignificant.

  10. Theory and MD Simulation of Polyolefin Blends

    NASA Astrophysics Data System (ADS)

    Curro, John G.; Grest, Gary S.; Jaramillo, Eugenio; Wu, David T.; Li, Huimin

    2004-03-01

    Molecular dynamics (MD) simulations and PRISM theory calculations were carried out on various polyolefin homopolymer and copolymer blends. These polyolefins were modeled at the united atom level at 453K using the TRaPPE potential between pairs of sites. The chi parameters from the simulations were estimated from the structure factors using the random phase approximation (RPA) in analogy with neutron scattering (SANS) experiments. The heats of mixing were computed from both simulation and PRISM theory. The MD simulations predicted temperature dependent chi parameters in good agreement with SANS measurements previously reported on hhPP/PIB, hhPP/PP, and hhPP/PE. PRISM theory calculations on the PE(x)PEE(1-x)/PP blend suggest a miscibility window for a range of copolymer compositions x in agreement with SANS experiments.

  11. The effect of polymer blending on environmental stress cracking resistance: Role of polycarbonate blend morphology, miscibility, and crystallinity

    NASA Astrophysics Data System (ADS)

    Hopson, Peyton Lee

    strongly swelling fluids, e.g. diethyl ether in the presence of polycarbonate, causes local densification from polymer crystallization resulting in voids that facilitate the initiation and growth of crazes. The role of blend morphology, as well as the crystalline component, was studied through variations in polycarbonate molecular weight and injection molding conditions in polycarbonate/poly(butylene terephthalate) blends. Qualitative observations indicated a strong influence of the phase composition at the surface in determining the blend ESC resistance. An increase in polycarbonate component at the surface resulted in an increased ESC resistance to surface active fluids and a decreased resistance to plasticizing fluids. (Abstract shortened by UMI.)

  12. Evaluation of bisphenol E cyanate ester for the resin-injection repair of advanced composites

    NASA Astrophysics Data System (ADS)

    Lio, Wilber Yaote

    Polymer matrix composites (PMCs) are susceptible to impacts that often result in microcracks and delaminations that can greatly reduce their mechanical integrity. Current injection repair techniques are limited to low glass transition temperature (Tg) composites due to the temperature and viscosity limitations of current repair resins. Bisphenol E cyanate ester (BECy) has both a high Tg and low prepolymer viscosity that makes it an ideal resin for the injection repair of high temperature PMCs. In addition, alumina nanoparticles have been shown to increase the strengths of some adhesives as well as impart shear thinning properties in suspension; both of which are desirable effects for injection repair. Lap shear tests were performed to evaluate adhesive properties of BECy and BECy-alumina nanocomposites. Effects of substrate, temperature, nanoparticle loading, and moisture were investigated. A resin-injection process was developed and the efficiency of BECy in repairing bismaleimide-carbon fiber composite plates was studied through ultrasonic evaluation and compression-after-impact tests.

  13. NiAl-base composite containing high volume fraction of AlN for advanced engines

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan (Inventor); Whittenbeger, John D. (Inventor); Lowell, Carl F. (Inventor)

    1994-01-01

    A particulate reinforced NiAl-AlN composite alloy has a NiAl matrix and greater than about 13 volume percent fine particles of AlN within the matrix. The particles preferably have a diameter from about 15 nanometers to about 50 nanometers. The particulate reinforced NiAl-AlN composite alloy may be prepared by cryomilling prealloyed NiAl in liquid nitrogen using grinding media having a diameter of from about 2 to 6 mm at an impeller speed of from about 450 RPM to about 800 RPM. The cryomilling may be done for a duration of from about 4 hours to about 20 hours to obtain a cryomilled powder. The cryomilled powder may be consolidated to form the particulate reinforced NiAl-AlN composite alloy. The particulate reinforced alloy can further include a toughening alloy. The toughening alloy may include NiCrAlY, FeCrAlY, and FeAl.

  14. Amorphous phase separation in crystallizable polymer blends based on poly (aryl ether ketones) and poly (ether imide)

    SciTech Connect

    Kalika, D.S.; Bristow, J.F.

    1996-12-31

    The morphology of a series of miscible crystallizable blends based on poly (aryl ether ketones) [PAEK] and poly (ether imide) [PEI] has been investigated as a function of blend composition and crystallization condition by dielectric relaxation spectroscopy. For blends of poly (ether ether ketone) [PEEK] and PEI, dielectric scans of the crystallized samples reveal two glass-rubber relaxations corresponding to the coexistence of a mixed interlamellar amorphous phase, and a pure PEI phase located in interfibrillar/interspherulitic regions. The exclusion of a significant fraction of PEI outside of the crystal lamellae reflects a fundamental change in the nature of interaction between the interlamellar PEEK segments and the PEI chains owing to the constraints imposed on the PEEK segments by the crystal surfaces. The degree of PEI exclusion is dependent upon kinetic factors, i.e. the rate of PEEK crystallization relative to the rate of PEI diffusion away from the advancing crystal front. As a result, lower crystallization temperatures lead to an increase in the amount of PEI trapped in the interlamellar regions. In this work, the morphological characteristics of the PEEK/PEI blends are compared with those of blends comprised of poly (ether ketone ketone) [PEKK] and PEI. The introduction of the {open_quotes}kinked{close_quote} isophthalate moiety in the PEKK backbone has been shown to disrupt the persistence of order at the crystal-amorphous interface, and thereby leads to a reduction in the degree of constraint imposed by the crystal lamellae on the amorphous (interlamellar) PEKK segments. The impact of this reduction in crystalline constraint on the nature of the PEKK/PEI intersegmental interactions and the corresponding PEI segregation is discussed.

  15. Advances in Micromechanics Modeling of Composites Structures for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Moncada, Albert

    Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving reliable composite systems is a strong capability of assessing and inspecting physical damage of critical structural components. Installation of a robust Structural Health Monitoring (SHM) system would be very valuable in detecting the onset of composite failure. A number of major issues still require serious attention in connection with the research and development aspects of sensor-integrated reliable SHM systems for composite structures. In particular, the sensitivity of currently available sensor systems does not allow detection of micro level damage; this limits the capability of data driven SHM systems. As a fundamental layer in SHM, modeling can provide in-depth information on material and structural behavior for sensing and detection, as well as data for learning algorithms. This dissertation focuses on the development of a multiscale analysis framework, which is used to detect various forms of damage in complex composite structures. A generalized method of cells based micromechanics analysis, as implemented in NASA's MAC/GMC code, is used for the micro-level analysis. First, a baseline study of MAC/GMC is performed to determine the governing failure theories that best capture the damage progression. The deficiencies associated with various layups and loading conditions are addressed. In most micromechanics analysis, a representative unit cell (RUC) with a common fiber packing arrangement is used. The effect of variation in this arrangement within the RUC has been studied and results indicate this variation influences the macro-scale effective material properties and

  16. Analysis of Tile-Reinforced Composite Armor. Part 1; Advanced Modeling and Strength Analyses

    NASA Technical Reports Server (NTRS)

    Davila, C. G.; Chen, Tzi-Kang; Baker, D. J.

    1998-01-01

    The results of an analytical and experimental study of the structural response and strength of tile-reinforced components of the Composite Armored Vehicle are presented. The analyses are based on specialized finite element techniques that properly account for the effects of the interaction between the armor tiles, the surrounding elastomers, and the glass-epoxy sublaminates. To validate the analytical predictions, tests were conducted with panels subjected to three-point bending loads. The sequence of progressive failure events for the laminates is described. This paper describes the results of Part 1 of a study of the response and strength of tile-reinforced composite armor.

  17. Recent advances in the sensitivity analysis for the thermomechanical postbuckling of composite panels

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1995-01-01

    Three recent developments in the sensitivity analysis for thermomechanical postbuckling response of composite panels are reviewed. The three developments are: (1) effective computational procedure for evaluating hierarchical sensitivity coefficients of the various response quantities with respect to the different laminate, layer, and micromechanical characteristics; (2) application of reduction methods to the sensitivity analysis of the postbuckling response; and (3) accurate evaluation of the sensitivity coefficients to transverse shear stresses. Sample numerical results are presented to demonstrate the effectiveness of the computational procedures presented. Some of the future directions for research on sensitivity analysis for the thermomechanical postbuckling response of composite and smart structures are outlined.

  18. Microcracking, microcrack-induced delamination, and longitudinal splitting of advanced composite structures

    NASA Technical Reports Server (NTRS)

    Nairn, John A.

    1992-01-01

    A combined analytical and experimental study was conducted to analyze microcracking, microcrack-induced delamination, and longitudinal splitting in polymer matrix composites. Strain energy release rates, calculated by a variational analysis, were used in a failure criterion to predict microcracking. Predictions and test results were compared for static, fatigue, and cyclic thermal loading. The longitudinal splitting analysis accounted for the effects of fiber bridging. Test data are analyzed and compared for longitudinal splitting and delamination under mixed-mode loading. This study emphasizes the importance of using fracture mechanics analyses to understand the complex failure processes that govern composite strength and life.

  19. Infiltration/cure modeling of resin transfer molded composite materials using advanced fiber architectures

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Weideman, Mark H.; Long, Edward R., Jr.; Kranbuehl, David E.; Kinsley, Philip J.; Hart, Sean M.

    1991-01-01

    A model was developed which can be used to simulate infiltration and cure of textile composites by resin transfer molding. Fabric preforms were resin infiltrated and cured using model generated optimized one-step infiltration/cure protocols. Frequency dependent electromagnetic sensing (FDEMS) was used to monitor in situ resin infiltration and cure during processing. FDEMS measurements of infiltration time, resin viscosity, and resin degree of cure agreed well with values predicted by the simulation model. Textile composites fabricated using a one-step infiltration/cure procedure were uniformly resin impregnated and void free. Fiber volume fraction measurements by the resin digestion method compared well with values predicted using the model.

  20. An Integrated Theory for Predicting the Hydrothermomechanical Response of Advanced Composite Structural Components

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1977-01-01

    An integrated theory is developed for predicting the hydrothermomechanical (HDTM) response of fiber composite components. The integrated theory is based on a combined theoretical and experimental investigation. In addition to predicting the HDTM response of components, the theory is structured to assess the combined hydrothermal effects on the mechanical properties of unidirectional composites loaded along the material axis and off-axis, and those of angleplied laminates. The theory developed predicts values which are in good agreement with measured data at the micromechanics, macromechanics, laminate analysis and structural analysis levels.