Development and applications of nondestructive evaluation at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Whitaker, Ann F.
1990-01-01
A brief description of facility design and equipment, facility usage, and typical investigations are presented for the following: Surface Inspection Facility; Advanced Computer Tomography Inspection Station (ACTIS); NDE Data Evaluation Facility; Thermographic Test Development Facility; Radiographic Test Facility; Realtime Radiographic Test Facility; Eddy Current Research Facility; Acoustic Emission Monitoring System; Advanced Ultrasonic Test Station (AUTS); Ultrasonic Test Facility; and Computer Controlled Scanning (CONSCAN) System.
Integrated System Test of the Advanced Instructional System (AIS). Final Report.
ERIC Educational Resources Information Center
Lintz, Larry M.; And Others
The integrated system test for the Advanced Instructional System (AIS) was designed to provide quantitative information regarding training time reductions resulting from certain computer managed instruction features. The reliabilities of these features and of support systems were also investigated. Basic computer managed instruction reduced…
1988-06-30
casting. 68 Figure 1-9: Line printer representation of roll solidification. 69 Figure I1-1: Test casting model. 76 Figure 11-2: Division of test casting...writing new casting analysis and design routines. The new routines would take advantage of advanced criteria for predicting casting soundness and cast...properties and technical advances in computer hardware and software. 11 2. CONCLUSIONS UPCAST, a comprehensive software package, has been developed for
Enhancing a Computer-Based Testing Environment with Optimum Item Response Time
ERIC Educational Resources Information Center
Delen, Erhan
2015-01-01
As technology has become more advanced and accessible in instructional settings, there has been an upward trend in computer-based testing in the last decades. The present experimental study examines students' behaviors during computer-based testing in two different conditions and explores how these conditions affect the test results. Results…
Advanced Capabilities for Wind Tunnel Testing in the 21st Century
NASA Technical Reports Server (NTRS)
Kegelman, Jerome T.; Danehy, Paul M.; Schwartz, Richard J.
2010-01-01
Wind tunnel testing methods and test technologies for the 21st century using advanced capabilities are presented. These capabilities are necessary to capture more accurate and high quality test results by eliminating the uncertainties in testing and to facilitate verification of computational tools for design. This paper discusses near term developments underway in ground testing capabilities, which will enhance the quality of information of both the test article and airstream flow details. Also discussed is a selection of new capability investments that have been made to accommodate such developments. Examples include advanced experimental methods for measuring the test gas itself; using efficient experiment methodologies, including quality assurance strategies within the test; and increasing test result information density by using extensive optical visualization together with computed flow field results. These points could be made for both major investments in existing tunnel capabilities or for entirely new capabilities.
Using Business Simulations as Authentic Assessment Tools
ERIC Educational Resources Information Center
Neely, Pat; Tucker, Jan
2012-01-01
New modalities for assessing student learning exist as a result of advances in computer technology. Conventional measurement practices have been transformed into computer based testing. Although current testing replicates assessment processes used in college classrooms, a greater opportunity exists to use computer technology to create authentic…
Computer-Assisted Foreign Language Teaching and Learning: Technological Advances
ERIC Educational Resources Information Center
Zou, Bin; Xing, Minjie; Wang, Yuping; Sun, Mingyu; Xiang, Catherine H.
2013-01-01
Computer-Assisted Foreign Language Teaching and Learning: Technological Advances highlights new research and an original framework that brings together foreign language teaching, experiments and testing practices that utilize the most recent and widely used e-learning resources. This comprehensive collection of research will offer linguistic…
AN INTELLIGENT REPRODUCTIVE AND DEVELOPMENTAL TESTING PARADIGM FOR THE 21ST CENTURY
Addressing the chemical evaluation bottleneck that currently exists can only be achieved through progressive changes to the current testing paradigm. The primary resources for addressing these issues lie in computational toxicology, a field enriched by recent advances in computer...
Advanced Computer Simulations of Military Incinerators
2004-12-01
Reaction Engineering International (REI) has developed advanced computer simulation tools for analyzing chemical demilitarization incinerators. The...Manager, 2003a: Summary of Engineering Design Study Projectile Washout System (PWS) Testing. Assembled Chemical Weapons Alternatives (ACWA), Final... Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Pueblo Chemical Depot. O’Shea, L. et al, 2003: RIM 57 – Monitoring in
Combining high performance simulation, data acquisition, and graphics display computers
NASA Technical Reports Server (NTRS)
Hickman, Robert J.
1989-01-01
Issues involved in the continuing development of an advanced simulation complex are discussed. This approach provides the capability to perform the majority of tests on advanced systems, non-destructively. The controlled test environments can be replicated to examine the response of the systems under test to alternative treatments of the system control design, or test the function and qualification of specific hardware. Field tests verify that the elements simulated in the laboratories are sufficient. The digital computer is hosted by a Digital Equipment Corp. MicroVAX computer with an Aptec Computer Systems Model 24 I/O computer performing the communication function. An Applied Dynamics International AD100 performs the high speed simulation computing and an Evans and Sutherland PS350 performs on-line graphics display. A Scientific Computer Systems SCS40 acts as a high performance FORTRAN program processor to support the complex, by generating numerous large files from programs coded in FORTRAN that are required for the real time processing. Four programming languages are involved in the process, FORTRAN, ADSIM, ADRIO, and STAPLE. FORTRAN is employed on the MicroVAX host to initialize and terminate the simulation runs on the system. The generation of the data files on the SCS40 also is performed with FORTRAN programs. ADSIM and ADIRO are used to program the processing elements of the AD100 and its IOCP processor. STAPLE is used to program the Aptec DIP and DIA processors.
ERIC Educational Resources Information Center
King, Angela G.
2007-01-01
This article presents three reports of research advances. The first report describes a deoxyribonucleic acid (DNA)-based computer that could lead to faster, more accurate tests for diagnosing West Nile Virus and bird flu. Representing the first "medium-scale integrated molecular circuit," it is the most powerful computing device of its type to…
Advances in computer-aided well-test interpretation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horne, R.N.
1994-07-01
Despite the feeling expressed several times over the past 40 years that well-test analysis had reached it peak development, an examination of recent advances shows continuous expansion in capability, with future improvement likely. The expansion in interpretation capability over the past decade arose mainly from the development of computer-aided techniques, which, although introduced 20 years ago, have come into use only recently. The broad application of computer-aided interpretation originated with the improvement of the methodologies and continued with the expansion in computer access and capability that accompanied the explosive development of the microcomputer industry. This paper focuses on the differentmore » pieces of the methodology that combine to constitute a computer-aided interpretation and attempts to compare some of the approaches currently used. Future directions of the approach are also discussed. The separate areas discussed are deconvolution, pressure derivatives, model recognition, nonlinear regression, and confidence intervals.« less
NASA Technical Reports Server (NTRS)
1992-01-01
The proceedings of the meeting is presented in conversational form. Some areas of discussion are as follow: resin advancement at NASA Marshall new technologies studies; NMR studies; SPIP/PAN development summary; computer modeling support; composite testing; carbon assay testing; activity and aerospace computer database; alternate rayon yarn sizing; fiber morphology; and carbon microballoons specifications.
Parsons, Thomas D; McMahan, Timothy; Kane, Robert
2018-01-01
Clinical neuropsychologists have long underutilized computer technologies for neuropsychological assessment. Given the rapid advances in technology (e.g. virtual reality; tablets; iPhones) and the increased accessibility in the past decade, there is an on-going need to identify optimal specifications for advanced technologies while minimizing potential sources of error. Herein, we discuss concerns raised by a joint American Academy of Clinical Neuropsychology/National Academy of Neuropsychology position paper. Moreover, we proffer parameters for the development and use of advanced technologies in neuropsychological assessments. We aim to first describe software and hardware configurations that can impact a computerized neuropsychological assessment. This is followed by a description of best practices for developers and practicing neuropsychologists to minimize error in neuropsychological assessments using advanced technologies. We also discuss the relevance of weighing potential computer error in light of possible errors associated with traditional testing. Throughout there is an emphasis on the need for developers to provide bench test results for their software's performance on various devices and minimum specifications (documented in manuals) for the hardware (e.g. computer, monitor, input devices) in the neuropsychologist's practice. Advances in computerized assessment platforms offer both opportunities and challenges. The challenges can appear daunting but are a manageable and require informed consumers who can appreciate the issues and ask pertinent questions in evaluating their options.
Specification for Qualification and Certification for Level II - Advanced Welders.
ERIC Educational Resources Information Center
American Welding Society, Miami, FL.
This document defines the requirements and program for the American Welding Society (AWS) to certify advanced-level welders through an evaluation process entailing performance qualification and practical knowledge tests requiring the use of advanced reading, computational, and manual skills. The following items are included: statement of the…
In vitro screening of chemicals for bioactivity together with computational modeling are beginning to replace animal toxicity testing in support of chemical risk assessment. To facilitate this transition, an amphibian thyroid axis model has been developed to describe thyroid home...
Descriptive and Criterion-Referenced Self-Assessment with L2 Readers
ERIC Educational Resources Information Center
Brantmeier, Cindy; Vanderplank, Robert
2008-01-01
Brantmeier [Brantmeier, C., 2006. "Advanced L2 learners and reading placement: self-assessment, computer-based testing, and subsequent performance." 'System 34" (1), 15-35] found that self-assessment (SA) of second language (L2) reading ability is not an accurate predictor for computer-based testing or subsequent classroom performance. With 359…
NASA Technical Reports Server (NTRS)
Matijevic, Jacob R.; Zimmerman, Wayne F.; Dolinsky, Shlomo
1990-01-01
Assembly of electromechanical and electronic equipment (including computers) constitutes test bed for development of advanced robotic systems for remote manipulation. Combines features not found in commercial systems. Its architecture allows easy growth in complexity and level of automation. System national resource for validation of new telerobotic technology. Intended primarily for robots used in outer space, test bed adapted to development of advanced terrestrial telerobotic systems for handling radioactive materials, dangerous chemicals, and explosives.
NASA Technical Reports Server (NTRS)
Rediess, Herman A.; Hewett, M. D.
1991-01-01
The requirements are assessed for the use of remote computation to support HRV flight testing. First, remote computational requirements were developed to support functions that will eventually be performed onboard operational vehicles of this type. These functions which either cannot be performed onboard in the time frame of initial HRV flight test programs because the technology of airborne computers will not be sufficiently advanced to support the computational loads required, or it is not desirable to perform the functions onboard in the flight test program for other reasons. Second, remote computational support either required or highly desirable to conduct flight testing itself was addressed. The use is proposed of an Automated Flight Management System which is described in conceptual detail. Third, autonomous operations is discussed and finally, unmanned operations.
ERIC Educational Resources Information Center
Baker, Eva L.
Some special problems associated with evaluating intelligent computer-assisted instruction (ICAI) programs are addressed. This paper intends to describe alternative approaches to the assessment and improvement of such applications and to provide examples of efforts undertaken and shortfalls. Issues discussed stem chiefly from the technical demands…
Experimental aerothermodynamic research of hypersonic aircraft
NASA Technical Reports Server (NTRS)
Cleary, Joseph W.
1987-01-01
The 2-D and 3-D advance computer codes being developed for use in the design of such hypersonic aircraft as the National Aero-Space Plane require comparison of the computational results with a broad spectrum of experimental data to fully assess the validity of the codes. This is particularly true for complex flow fields with control surfaces present and for flows with separation, such as leeside flow. Therefore, the objective is to provide a hypersonic experimental data base required for validation of advanced computational fluid dynamics (CFD) computer codes and for development of more thorough understanding of the flow physics necessary for these codes. This is being done by implementing a comprehensive test program for a generic all-body hypersonic aircraft model in the NASA/Ames 3.5 foot Hypersonic Wind Tunnel over a broad range of test conditions to obtain pertinent surface and flowfield data. Results from the flow visualization portion of the investigation are presented.
Programs for Testing an SSME-Monitoring System
NASA Technical Reports Server (NTRS)
Lang, Andre; Cecil, Jimmie; Heusinger, Ralph; Freestone, Kathleen; Blue, Lisa; Wilkerson, DeLisa; McMahon, Leigh Anne; Hall, Richard B.; Varnavas, Kosta; Smith, Keary;
2007-01-01
A suite of computer programs has been developed for special test equipment (STE) that is used in verification testing of the Health Management Computer Integrated Rack Assembly (HMCIRA), a ground-based system of analog and digital electronic hardware and software for "flight-like" testing for development of components of an advanced health-management system for the space shuttle main engine (SSME). The STE software enables the STE to simulate the analog input and the data flow of an SSME test firing from start to finish.
Current CFD Practices in Launch Vehicle Applications
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin
2012-01-01
The quest for sustained space exploration will require the development of advanced launch vehicles, and efficient and reliable operating systems. Development of launch vehicles via test-fail-fix approach is very expensive and time consuming. For decision making, modeling and simulation (M&S) has played increasingly important roles in many aspects of launch vehicle development. It is therefore essential to develop and maintain most advanced M&S capability. More specifically computational fluid dynamics (CFD) has been providing critical data for developing launch vehicles complementing expensive testing. During the past three decades CFD capability has increased remarkably along with advances in computer hardware and computing technology. However, most of the fundamental CFD capability in launch vehicle applications is derived from the past advances. Specific gaps in the solution procedures are being filled primarily through "piggy backed" efforts.on various projects while solving today's problems. Therefore, some of the advanced capabilities are not readily available for various new tasks, and mission-support problems are often analyzed using ad hoc approaches. The current report is intended to present our view on state-of-the-art (SOA) in CFD and its shortcomings in support of space transport vehicle development. Best practices in solving current issues will be discussed using examples from ascending launch vehicles. Some of the pacing will be discussed in conjunction with these examples.
NASA Technical Reports Server (NTRS)
Mccune, M. C.
1981-01-01
The advanced real time system (ARTS) was tested utilizing existing commercial system hardware and software which has been operating under advanced operating system (AOS) for several years in a multitasking, multiprocessing, and multiple computer environment. Experiences with ARTS in terms of compatibility with AOS, ease of transmission between AOS and ARTS, and functional areas of ARTS which were tested are discussed. Relative and absolute performance of ARTS versus AOS as measured in the system environment are also presented.
FUN3D Airload Predictions for the Full-Scale UH-60A Airloads Rotor in a Wind Tunnel
NASA Technical Reports Server (NTRS)
Lee-Rausch, Elizabeth M.; Biedron, Robert T.
2013-01-01
An unsteady Reynolds-Averaged Navier-Stokes solver for unstructured grids, FUN3D, is used to compute the rotor performance and airloads of the UH-60A Airloads Rotor in the National Full-Scale Aerodynamic Complex (NFAC) 40- by 80-foot Wind Tunnel. The flow solver is loosely coupled to a rotorcraft comprehensive code, CAMRAD-II, to account for trim and aeroelastic deflections. Computations are made for the 1-g level flight speed-sweep test conditions with the airloads rotor installed on the NFAC Large Rotor Test Apparatus (LRTA) and in the 40- by 80-ft wind tunnel to determine the influence of the test stand and wind-tunnel walls on the rotor performance and airloads. Detailed comparisons are made between the results of the CFD/CSD simulations and the wind tunnel measurements. The computed trends in solidity-weighted propulsive force and power coefficient match the experimental trends over the range of advance ratios and are comparable to previously published results. Rotor performance and sectional airloads show little sensitivity to the modeling of the wind-tunnel walls, which indicates that the rotor shaft-angle correction adequately compensates for the wall influence up to an advance ratio of 0.37. Sensitivity of the rotor performance and sectional airloads to the modeling of the rotor with the LRTA body/hub increases with advance ratio. The inclusion of the LRTA in the simulation slightly improves the comparison of rotor propulsive force between the computation and wind tunnel data but does not resolve the difference in the rotor power predictions at mu = 0.37. Despite a more precise knowledge of the rotor trim loads and flight condition, the level of comparison between the computed and measured sectional airloads/pressures at an advance ratio of 0.37 is comparable to the results previously published for the high-speed flight test condition.
Preliminary Computational Study for Future Tests in the NASA Ames 9 foot' x 7 foot Wind Tunnel
NASA Technical Reports Server (NTRS)
Pearl, Jason M.; Carter, Melissa B.; Elmiligui, Alaa A.; WInski, Courtney S.; Nayani, Sudheer N.
2016-01-01
The NASA Advanced Air Vehicles Program, Commercial Supersonics Technology Project seeks to advance tools and techniques to make over-land supersonic flight feasible. In this study, preliminary computational results are presented for future tests in the NASA Ames 9 foot x 7 foot supersonic wind tunnel to be conducted in early 2016. Shock-plume interactions and their effect on pressure signature are examined for six model geometries. Near- field pressure signatures are assessed using the CFD code USM3D to model the proposed test geometries in free-air. Additionally, results obtained using the commercial grid generation software Pointwise Reigistered Trademark are compared to results using VGRID, the NASA Langley Research Center in-house mesh generation program.
Computer Aided Enzyme Design and Catalytic Concepts
Frushicheva, Maria P.; Mills, Matthew J. L.; Schopf, Patrick; Singh, Manoj K.; Warshel, Arieh
2014-01-01
Gaining a deeper understanding of enzyme catalysis is of great practical and fundamental importance. Over the years it has become clear that despite advances made in experimental mutational studies, a quantitative understanding of enzyme catalysis will not be possible without the use of computer modeling approaches. While we believe that electrostatic preorganization is by far the most important catalytic factor, convincing the wider scientific community of this may require the demonstration of effective rational enzyme design. Here we make the point that the main current advances in enzyme design are basically advances in directed evolution and that computer aided enzyme design must involve approaches that can reproduce catalysis in well-defined test cases. Such an approach is provided by the empirical valence bond method. PMID:24814389
NASA Technical Reports Server (NTRS)
Cliff, Susan E.; Elmiligui, A.; Aftosmis, M.; Morgenstern, J.; Durston, D.; Thomas, S.
2012-01-01
An innovative pressure rail concept for wind tunnel sonic boom testing of modern aircraft configurations with very low overpressures was designed with an adjoint-based solution-adapted Cartesian grid method. The computational method requires accurate free-air calculations of a test article as well as solutions modeling the influence of rail and tunnel walls. Specialized grids for accurate Euler and Navier-Stokes sonic boom computations were used on several test articles including complete aircraft models with flow-through nacelles. The computed pressure signatures are compared with recent results from the NASA 9- x 7-foot Supersonic Wind Tunnel using the advanced rail design.
John G. Michopoulos; John Hermanson; Athanasios Iliopoulos
2014-01-01
The research areas of mutiaxial robotic testing and design optimization have been recently utilized for the purpose of data-driven constitutive characterization of anisotropic material systems. This effort has been enabled by both the progress in the areas of computers and information in engineering as well as the progress in computational automation. Although our...
Dynamic Docking Test System (DDTS) active table computer program NASA Advanced Docking System (NADS)
NASA Technical Reports Server (NTRS)
Gates, R. M.; Jantz, R. E.
1974-01-01
A computer program was developed to describe the three-dimensional motion of the Dynamic Docking Test System active table. The input consists of inertia and geometry data, actuator structural data, forcing function data, hydraulics data, servo electronics data, and integration control data. The output consists of table responses, actuator bending responses, and actuator responses.
Advance the characterization of exposure and dose metrics required to translate advances and findings in computational toxicology to information that can be directly used to support exposure and risk assessment for decision making and improved public health.
Proceedings of the 3rd Annual Conference on Aerospace Computational Control, volume 1
NASA Technical Reports Server (NTRS)
Bernard, Douglas E. (Editor); Man, Guy K. (Editor)
1989-01-01
Conference topics included definition of tool requirements, advanced multibody component representation descriptions, model reduction, parallel computation, real time simulation, control design and analysis software, user interface issues, testing and verification, and applications to spacecraft, robotics, and aircraft.
Dynamic Stall Measurements and Computations for a VR-12 Airfoil with a Variable Droop Leading Edge
NASA Technical Reports Server (NTRS)
Martin, P. B.; McAlister, K. W.; Chandrasekhara, M. S.; Geissler, W.
2003-01-01
High density-altitude operations of helicopters with advanced performance and maneuver capabilities have lead to fundamental research on active high-lift system concepts for rotor blades. The requirement for this type of system was to improve the sectional lift-to-drag ratio by alleviating dynamic stall on the retreating blade while simultaneously reducing the transonic drag rise of the advancing blade. Both measured and computational results showed that a Variable Droop Leading Edge (VDLE) airfoil is a viable concept for application to a rotor high-lift system. Results are presented for a series of 2D compressible dynamic stall wind tunnel tests with supporting CFD results for selected test cases. These measurements and computations show a dramatic decrease in the drag and pitching moment associated with severe dynamic stall when the VDLE concept is applied to the Boeing VR-12 airfoil. Test results also show an elimination of the negative pitch damping observed in the baseline moment hysteresis curves.
Designing for Deeper Learning in a Blended Computer Science Course for Middle School Students
ERIC Educational Resources Information Center
Grover, Shuchi; Pea, Roy; Cooper, Stephen
2015-01-01
The focus of this research was to create and test an introductory computer science course for middle school. Titled "Foundations for Advancing Computational Thinking" (FACT), the course aims to prepare and motivate middle school learners for future engagement with algorithmic problem solving. FACT was also piloted as a seven-week course…
Providing Feedback on Computer-Based Algebra Homework in Middle-School Classrooms
ERIC Educational Resources Information Center
Fyfe, Emily R.
2016-01-01
Homework is transforming at a rapid rate with continuous advances in educational technology. Computer-based homework, in particular, is gaining popularity across a range of schools, with little empirical evidence on how to optimize student learning. The current aim was to test the effects of different types of feedback on computer-based homework.…
NASA Applications for Computational Electromagnetic Analysis
NASA Technical Reports Server (NTRS)
Lewis, Catherine C.; Trout, Dawn H.; Krome, Mark E.; Perry, Thomas A.
2011-01-01
Computational Electromagnetic Software is used by NASA to analyze the compatibility of systems too large or too complex for testing. Recent advances in software packages and computer capabilities have made it possible to determine the effects of a transmitter inside a launch vehicle fairing, better analyze the environment threats, and perform on-orbit replacements with assured electromagnetic compatibility.
Design and Performance Frameworks for Constructing Problem-Solving Simulations
ERIC Educational Resources Information Center
Stevens, Rons; Palacio-Cayetano, Joycelin
2003-01-01
Rapid advancements in hardware, software, and connectivity are helping to shorten the times needed to develop computer simulations for science education. These advancements, however, have not been accompanied by corresponding theories of how best to design and use these technologies for teaching, learning, and testing. Such design frameworks…
NASA Astrophysics Data System (ADS)
Glasa, J.; Valasek, L.; Weisenpacher, P.; Halada, L.
2013-02-01
Recent advances in computer fluid dynamics (CFD) and rapid increase of computational power of current computers have led to the development of CFD models capable to describe fire in complex geometries incorporating a wide variety of physical phenomena related to fire. In this paper, we demonstrate the use of Fire Dynamics Simulator (FDS) for cinema fire modelling. FDS is an advanced CFD system intended for simulation of the fire and smoke spread and prediction of thermal flows, toxic substances concentrations and other relevant parameters of fire. The course of fire in a cinema hall is described focusing on related safety risks. Fire properties of flammable materials used in the simulation were determined by laboratory measurements and validated by fire tests and computer simulations
NASA Technical Reports Server (NTRS)
1979-01-01
A comprehensive review of all NASA airfoil research, conducted both in-house and under grant and contract, as well as a broad spectrum of airfoil research outside of NASA is presented. Emphasis is placed on the development of computational aerodynamic codes for airfoil analysis and design, the development of experimental facilities and test techniques, and all types of airfoil applications.
ERIC Educational Resources Information Center
Denner, Jill; Werner, Linda; O'Connor, Lisa; Glassman, Jill
2014-01-01
Efforts to increase the number of women who pursue and complete advanced degrees in computer and information sciences (CIS) have been limited, in part, by a lack of research on pathways into and out of community college CIS classes. This longitudinal study tests three widely held beliefs about how to increase the number of CIS majors at 4-year…
Technologies as Rural Special Education Problem Solvers--A Status Report and Successful Strategies.
ERIC Educational Resources Information Center
Helge, Doris
Rural schools can help solve their special education problems by using advanced technology to provide instructional support (computer managed instruction, satellite television, library searches, resource networks, on-line testing), instructional applications (computer assisted instruction, reading machines, mobile vans, instructional television),…
Advanced computational tools for 3-D seismic analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barhen, J.; Glover, C.W.; Protopopescu, V.A.
1996-06-01
The global objective of this effort is to develop advanced computational tools for 3-D seismic analysis, and test the products using a model dataset developed under the joint aegis of the United States` Society of Exploration Geophysicists (SEG) and the European Association of Exploration Geophysicists (EAEG). The goal is to enhance the value to the oil industry of the SEG/EAEG modeling project, carried out with US Department of Energy (DOE) funding in FY` 93-95. The primary objective of the ORNL Center for Engineering Systems Advanced Research (CESAR) is to spearhead the computational innovations techniques that would enable a revolutionary advancemore » in 3-D seismic analysis. The CESAR effort is carried out in collaboration with world-class domain experts from leading universities, and in close coordination with other national laboratories and oil industry partners.« less
Structural Analysis Made 'NESSUSary'
NASA Technical Reports Server (NTRS)
2005-01-01
Everywhere you look, chances are something that was designed and tested by a computer will be in plain view. Computers are now utilized to design and test just about everything imaginable, from automobiles and airplanes to bridges and boats, and elevators and escalators to streets and skyscrapers. Computer-design engineering first emerged in the 1970s, in the automobile and aerospace industries. Since computers were in their infancy, however, architects and engineers during the time were limited to producing only designs similar to hand-drafted drawings. (At the end of 1970s, a typical computer-aided design system was a 16-bit minicomputer with a price tag of $125,000.) Eventually, computers became more affordable and related software became more sophisticated, offering designers the "bells and whistles" to go beyond the limits of basic drafting and rendering, and venture into more skillful applications. One of the major advancements was the ability to test the objects being designed for the probability of failure. This advancement was especially important for the aerospace industry, where complicated and expensive structures are designed. The ability to perform reliability and risk assessment without using extensive hardware testing is critical to design and certification. In 1984, NASA initiated the Probabilistic Structural Analysis Methods (PSAM) project at Glenn Research Center to develop analysis methods and computer programs for the probabilistic structural analysis of select engine components for current Space Shuttle and future space propulsion systems. NASA envisioned that these methods and computational tools would play a critical role in establishing increased system performance and durability, and assist in structural system qualification and certification. Not only was the PSAM project beneficial to aerospace, it paved the way for a commercial risk- probability tool that is evaluating risks in diverse, down- to-Earth application
Evaluation of the Intel iWarp parallel processor for space flight applications
NASA Technical Reports Server (NTRS)
Hine, Butler P., III; Fong, Terrence W.
1993-01-01
The potential of a DARPA-sponsored advanced processor, the Intel iWarp, for use in future SSF Data Management Systems (DMS) upgrades is evaluated through integration into the Ames DMS testbed and applications testing. The iWarp is a distributed, parallel computing system well suited for high performance computing applications such as matrix operations and image processing. The system architecture is modular, supports systolic and message-based computation, and is capable of providing massive computational power in a low-cost, low-power package. As a consequence, the iWarp offers significant potential for advanced space-based computing. This research seeks to determine the iWarp's suitability as a processing device for space missions. In particular, the project focuses on evaluating the ease of integrating the iWarp into the SSF DMS baseline architecture and the iWarp's ability to support computationally stressing applications representative of SSF tasks.
Direction and Integration of Experimental Ground Test Capabilities and Computational Methods
NASA Technical Reports Server (NTRS)
Dunn, Steven C.
2016-01-01
This paper groups and summarizes the salient points and findings from two AIAA conference panels targeted at defining the direction, with associated key issues and recommendations, for the integration of experimental ground testing and computational methods. Each panel session utilized rapporteurs to capture comments from both the panel members and the audience. Additionally, a virtual panel of several experts were consulted between the two sessions and their comments were also captured. The information is organized into three time-based groupings, as well as by subject area. These panel sessions were designed to provide guidance to both researchers/developers and experimental/computational service providers in defining the future of ground testing, which will be inextricably integrated with the advancement of computational tools.
A Computational Model of Fraction Arithmetic
ERIC Educational Resources Information Center
Braithwaite, David W.; Pyke, Aryn A.; Siegler, Robert S.
2017-01-01
Many children fail to master fraction arithmetic even after years of instruction, a failure that hinders their learning of more advanced mathematics as well as their occupational success. To test hypotheses about why children have so many difficulties in this area, we created a computational model of fraction arithmetic learning and presented it…
Proceedings, Conference on the Computing Environment for Mathematical Software
NASA Technical Reports Server (NTRS)
1981-01-01
Recent advances in software and hardware technology which make it economical to create computing environments appropriate for specialized applications are addressed. Topics included software tools, FORTRAN standards activity, and features of languages, operating systems, and hardware that are important for the development, testing, and maintenance of mathematical software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opalka, K.O.
1989-08-01
The construction of a large test facility has been proposed for simulating the blast and thermal environment resulting from nuclear explosions. This facility would be used to test the survivability and vulnerability of military equipment such as trucks, tanks, and helicopters in a simulated thermal and blast environment, and to perform research into nuclear blast phenomenology. The proposed advanced design concepts, heating of driver gas and fast-acting throat valves for wave shaping, are described and the results of CFD studies to advance these new technical concepts fro simulating decaying blast waves are reported.
Artificial intelligence and expert systems in-flight software testing
NASA Technical Reports Server (NTRS)
Demasie, M. P.; Muratore, J. F.
1991-01-01
The authors discuss the introduction of advanced information systems technologies such as artificial intelligence, expert systems, and advanced human-computer interfaces directly into Space Shuttle software engineering. The reconfiguration automation project (RAP) was initiated to coordinate this move towards 1990s software technology. The idea behind RAP is to automate several phases of the flight software testing procedure and to introduce AI and ES into space shuttle flight software testing. In the first phase of RAP, conventional tools to automate regression testing have already been developed or acquired. There are currently three tools in use.
ASC FY17 Implementation Plan, Rev. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, P. G.
The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computationalmore » resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resources, including technical staff, hardware, simulation software, and computer science solutions.« less
Future experimental needs to support applied aerodynamics - A transonic perspective
NASA Technical Reports Server (NTRS)
Gloss, Blair B.
1992-01-01
Advancements in facilities, test techniques, and instrumentation are needed to provide data required for the development of advanced aircraft and to verify computational methods. An industry survey of major users of wind tunnel facilities at Langley Research Center (LaRC) was recently carried out to determine future facility requirements, test techniques, and instrumentation requirements; results from this survey are reflected in this paper. In addition, areas related to transonic testing at LaRC which are either currently being developed or are recognized as needing improvements are discussed.
The Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model simulates long-term transport and deposition of oxides of and nitrogen. t is a potential screening tool for assessing long-term effects on regional visibility from sulfur emission sources. owever, a rigorou...
NASA Technical Reports Server (NTRS)
Bever, G. A.
1981-01-01
The flight test data requirements at the NASA Dryden Flight Research Center increased in complexity, and more advanced instrumentation became necessary to accomplish mission goals. This paper describes the way in which an airborne computer was used to perform real-time calculations on critical flight test parameters during a flight test on a winglet-equipped KC-135A aircraft. With the computer, an airborne flight test engineer can select any sensor for airborne display in several formats, including engineering units. The computer is able to not only calculate values derived from the sensor outputs but also to interact with the data acquisition system. It can change the data cycle format and data rate, and even insert the derived values into the pulse code modulation (PCM) bit stream for recording.
A Computational Methodology for Simulating Thermal Loss Testing of the Advanced Stirling Convertor
NASA Technical Reports Server (NTRS)
Reid, Terry V.; Wilson, Scott D.; Schifer, Nicholas A.; Briggs, Maxwell H.
2012-01-01
The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. In an effort to improve net heat input predictions, numerous tasks have been performed which provided a more accurate value for net heat input into the ASCs, including the use of multidimensional numerical models. Validation test hardware has also been used to provide a direct comparison of numerical results and validate the multi-dimensional numerical models used to predict convertor net heat input and efficiency. These validation tests were designed to simulate the temperature profile of an operating Stirling convertor and resulted in a measured net heat input of 244.4 W. The methodology was applied to the multi-dimensional numerical model which resulted in a net heat input of 240.3 W. The computational methodology resulted in a value of net heat input that was 1.7 percent less than that measured during laboratory testing. The resulting computational methodology and results are discussed.
NASA Technical Reports Server (NTRS)
Dorney, Suzanne; Dorney, Daniel J.; Huber, Frank; Sheffler, David A.; Turner, James E. (Technical Monitor)
2001-01-01
The advent of advanced computer architectures and parallel computing have led to a revolutionary change in the design process for turbomachinery components. Two- and three-dimensional steady-state computational flow procedures are now routinely used in the early stages of design. Unsteady flow analyses, however, are just beginning to be incorporated into design systems. This paper outlines the transition of a three-dimensional unsteady viscous flow analysis from the research environment into the design environment. The test case used to demonstrate the analysis is the full turbine system (high-pressure turbine, inter-turbine duct and low-pressure turbine) from an advanced turboprop engine.
Evaluation of an eye-pointer interaction device for human-computer interaction.
Cáceres, Enrique; Carrasco, Miguel; Ríos, Sebastián
2018-03-01
Advances in eye-tracking technology have led to better human-computer interaction, and involve controlling a computer without any kind of physical contact. This research describes the transformation of a commercial eye-tracker for use as an alternative peripheral device in human-computer interactions, implementing a pointer that only needs the eye movements of a user facing a computer screen, thus replacing the need to control the software by hand movements. The experiment was performed with 30 test individuals who used the prototype with a set of educational videogames. The results show that, although most of the test subjects would prefer a mouse to control the pointer, the prototype tested has an empirical precision similar to that of the mouse, either when trying to control its movements or when attempting to click on a point of the screen.
NASA Astrophysics Data System (ADS)
Poggio, Andrew J.
1988-10-01
This issue of Energy and Technology Review contains: Neutron Penumbral Imaging of Laser-Fusion Targets--using our new penumbral-imaging diagnostic, we have obtained the first images that can be used to measure directly the deuterium-tritium burn region in laser-driven fusion targets; Computed Tomography for Nondestructive Evaluation--various computed tomography systems and computational techniques are used in nondestructive evaluation; Three-Dimensional Image Analysis for Studying Nuclear Chromatin Structure--we have developed an optic-electronic system for acquiring cross-sectional views of cell nuclei, and computer codes to analyze these images and reconstruct the three-dimensional structures they represent; Imaging in the Nuclear Test Program--advanced techniques produce images of unprecedented detail and resolution from Nevada Test Site data; and Computational X-Ray Holography--visible-light experiments and numerically simulated holograms test our ideas about an X-ray microscope for biological research.
Beyer, Jonathan A.; Lumley, Mark A.; Latsch, Deborah A.; Oberleitner, Lindsay M.S.; Carty, Jennifer N.; Radcliffe, Alison M.
2014-01-01
Standard written emotional disclosure (WED) about stress, which is private and unguided, yields small health benefits. The effect of providing individualized guidance to writers may enhance WED, but has not been tested. This trial of computer-based WED compared two novel therapist-guided forms of WED—advance guidance (before sessions) or real-time guidance (during sessions, through instant messaging)—to both standard WED and control writing; it also tested Big 5 personality traits as moderators of guided WED. Young adult participants (n = 163) with unresolved stressful experiences were randomized to conditions, had three, 30-min computer-based writing sessions, and were reassessed 6 weeks later. Contrary to hypotheses, real-time guidance WED had poorer outcomes than the other conditions on several measures, and advance guidance WED also showed some poorer outcomes. Moderator analyses revealed that participants with low baseline agreeableness, low extraversion, or high conscientiousness had relatively poor responses to guidance. We conclude that providing guidance for WED, especially in real-time, may interfere with emotional processing of unresolved stress, particularly for people whose personalities have poor fit with this interactive form of WED. PMID:24266598
A Synthesis of Hybrid RANS/LES CFD Results for F-16XL Aircraft Aerodynamics
NASA Technical Reports Server (NTRS)
Luckring, James M.; Park, Michael A.; Hitzel, Stephan M.; Jirasek, Adam; Lofthouse, Andrew J.; Morton, Scott A.; McDaniel, David R.; Rizzi, Arthur M.
2015-01-01
A synthesis is presented of recent numerical predictions for the F-16XL aircraft flow fields and aerodynamics. The computational results were all performed with hybrid RANS/LES formulations, with an emphasis on unsteady flows and subsequent aerodynamics, and results from five computational methods are included. The work was focused on one particular low-speed, high angle-of-attack flight test condition, and comparisons against flight-test data are included. This work represents the third coordinated effort using the F-16XL aircraft, and a unique flight-test data set, to advance our knowledge of slender airframe aerodynamics as well as our capability for predicting these aerodynamics with advanced CFD formulations. The prior efforts were identified as Cranked Arrow Wing Aerodynamics Project International, with the acronyms CAWAPI and CAWAPI-2. All information in this paper is in the public domain.
Reducing the Time and Cost of Testing Engines
NASA Technical Reports Server (NTRS)
2004-01-01
Producing a new aircraft engine currently costs approximately $1 billion, with 3 years of development time for a commercial engine and 10 years for a military engine. The high development time and cost make it extremely difficult to transition advanced technologies for cleaner, quieter, and more efficient new engines. To reduce this time and cost, NASA created a vision for the future where designers would use high-fidelity computer simulations early in the design process in order to resolve critical design issues before building the expensive engine hardware. To accomplish this vision, NASA's Glenn Research Center initiated a collaborative effort with the aerospace industry and academia to develop its Numerical Propulsion System Simulation (NPSS), an advanced engineering environment for the analysis and design of aerospace propulsion systems and components. Partners estimate that using NPSS has the potential to dramatically reduce the time, effort, and expense necessary to design and test jet engines by generating sophisticated computer simulations of an aerospace object or system. These simulations will permit an engineer to test various design options without having to conduct costly and time-consuming real-life tests. By accelerating and streamlining the engine system design analysis and test phases, NPSS facilitates bringing the final product to market faster. NASA's NPSS Version (V)1.X effort was a task within the Agency s Computational Aerospace Sciences project of the High Performance Computing and Communication program, which had a mission to accelerate the availability of high-performance computing hardware and software to the U.S. aerospace community for its use in design processes. The technology brings value back to NASA by improving methods of analyzing and testing space transportation components.
Analysis of a benchmark suite to evaluate mixed numeric and symbolic processing
NASA Technical Reports Server (NTRS)
Ragharan, Bharathi; Galant, David
1992-01-01
The suite of programs that formed the benchmark for a proposed advanced computer is described and analyzed. The features of the processor and its operating system that are tested by the benchmark are discussed. The computer codes and the supporting data for the analysis are given as appendices.
QuesTInSitu: From Tests to Routes for Assessment "in Situ" Activities
ERIC Educational Resources Information Center
Santos, Patricia; Perez-Sanagustin, Mar; Hernandez-Leo, Davinia; Blat, Josep
2011-01-01
Test-based assessment tools are mostly focused on the use of computers. However, advanced Information and Communication Technologies, such as handheld devices, opens up the possibilities of creating new assessment scenarios, increasing the teachers' choices to design more appropriate tests for their subject areas. In this paper we use the term…
Recent Advances in X-ray Cone-beam Computed Laminography.
O'Brien, Neil S; Boardman, Richard P; Sinclair, Ian; Blumensath, Thomas
2016-10-06
X-ray computed tomography is an established volume imaging technique used routinely in medical diagnosis, industrial non-destructive testing, and a wide range of scientific fields. Traditionally, computed tomography uses scanning geometries with a single axis of rotation together with reconstruction algorithms specifically designed for this setup. Recently there has however been increasing interest in more complex scanning geometries. These include so called X-ray computed laminography systems capable of imaging specimens with large lateral dimensions or large aspect ratios, neither of which are well suited to conventional CT scanning procedures. Developments throughout this field have thus been rapid, including the introduction of novel system trajectories, the application and refinement of various reconstruction methods, and the use of recently developed computational hardware and software techniques to accelerate reconstruction times. Here we examine the advances made in the last several years and consider their impact on the state of the art.
High performance flight computer developed for deep space applications
NASA Technical Reports Server (NTRS)
Bunker, Robert L.
1993-01-01
The development of an advanced space flight computer for real time embedded deep space applications which embodies the lessons learned on Galileo and modern computer technology is described. The requirements are listed and the design implementation that meets those requirements is described. The development of SPACE-16 (Spaceborne Advanced Computing Engine) (where 16 designates the databus width) was initiated to support the MM2 (Marine Mark 2) project. The computer is based on a radiation hardened emulation of a modern 32 bit microprocessor and its family of support devices including a high performance floating point accelerator. Additional custom devices which include a coprocessor to improve input/output capabilities, a memory interface chip, and an additional support chip that provide management of all fault tolerant features, are described. Detailed supporting analyses and rationale which justifies specific design and architectural decisions are provided. The six chip types were designed and fabricated. Testing and evaluation of a brass/board was initiated.
An Analysis of the Assignment of the Responsible Test Organization in Simulator Testing.
1981-09-01
tie the tasks to the funds. This agreement would prevent the program mana- ger from redirecting funds without knowing the implications of deleting the...of take-over can be regulated by the exper- tise advances made by AFFTC on each simulator program. This would prevent an overload on AFFTC and possible...support.?) Response: independent ontractor & 3 er E. Computer support not required for my prgram (Omit #3 S. DOD cersornel used for computer support
Center of Excellence for Hypersonics Research
2012-01-25
detailed simulations of actual combustor configurations, and ultimately for the optimization of hypersonic air - breathing propulsion system flow paths... vehicle development programs. The Center engaged leading experts in experimental and computational analysis of hypersonic flows to provide research...advanced hypersonic vehicles and space access systems will require significant advances in the design methods and ground testing techniques to ensure
Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 1
NASA Technical Reports Server (NTRS)
1991-01-01
Papers from the technical sessions of the Technology 2001 Conference and Exposition are presented. The technical sessions featured discussions of advanced manufacturing, artificial intelligence, biotechnology, computer graphics and simulation, communications, data and information management, electronics, electro-optics, environmental technology, life sciences, materials science, medical advances, robotics, software engineering, and test and measurement.
What about Me?: Individual Self-Assessment by Skill and Level of Language Instruction
ERIC Educational Resources Information Center
Brantmeier, Cindy; Vanderplank, Robert; Strube, Michael
2012-01-01
In an investigation with advanced language learners, Brantmeier [Brantmeier, C., 2006. "Advanced L2 learners and reading placement: self-assessment, computer based testing, and subsequent performance." "System" 34 (1), 15-35.] reports that self-assessment (SA) of second language (L2) reading ability, when measured with self-rated scales, is not an…
Advancements in optical techniques and imaging in the diagnosis and management of bladder cancer.
Rose, Tracy L; Lotan, Yair
2018-03-01
Accurate detection and staging is critical to the appropriate management of urothelial cancer (UC). The use of advanced optical techniques during cystoscopy is becoming more widespread to prevent recurrent nonmuscle invasive bladder cancer. Standard of care for muscle-invasive UC includes the use of computed tomography and/or magnetic resonance imaging, but staging accuracy of these tests remains imperfect. Novel imaging modalities are being developed to improve current test performance. Positron emission tomography/computed tomography has a role in the initial evaluation of select patients with muscle-invasive bladder cancer and in disease recurrence in some cases. Several novel immuno-positron emission tomography tracers are currently in development to address the inadequacy of current imaging modalities for monitoring of tumor response to newer immune-based treatments. This review summaries the current standards and recent advances in optical techniques and imaging modalities in localized and metastatic UC. Copyright © 2018 Elsevier Inc. All rights reserved.
Use of a Computer Program for Advance Care Planning with African American Participants.
Markham, Sarah A; Levi, Benjamin H; Green, Michael J; Schubart, Jane R
2015-02-01
The authors wish to acknowledge the support and assistance of Dr. William Lawrence for his contribution to the M.A.UT model used in the decision aid, Making Your Wishes Known: Planning Your Medical Future (MYWK), Dr. Cheryl Dellasega for her leadership in focus group activities, Charles Sabatino for his review of legal aspects of MYWK, Dr. Robert Pearlman and his collaborative team for use of the advance care planning booklet "Your Life, Your Choices," Megan Whitehead for assistance in grant preparation and project organization, and the Instructional Media Development Center at the University of Wisconsin as well as JPL Integrated Communications for production and programming of MYWK. For various cultural and historical reasons, African Americans are less likely than Caucasians to engage in advance care planning (ACP) for healthcare decisions. This pilot study tested whether an interactive computer program could help overcome barriers to effective ACP among African Americans. African American adults were recruited from traditionally Black churches to complete an interactive computer program on ACP, pre-/post-questionnaires, and a follow-up phone interview. Eighteen adults (mean age =53.2 years, 83% female) completed the program without any problems. Knowledge about ACP significantly increased following the computer intervention (44.9% → 61.3%, p=0.0004), as did individuals' sense of self-determination. Participants were highly satisfied with the ACP process (9.4; 1 = not at all satisfied, 10 = extremely satisfied), and reported that the computer-generated advance directive accurately reflected their wishes (6.4; 1 = not at all accurate, 7 = extremely accurate). Follow-up phone interviews found that >80% of participants reported having shared their advance directives with family members and spokespeople. Preliminary evidence suggests that an interactive computer program can help African Americans engage in effective advance care planning, including creating an accurate advance directive document that will be shared with loved ones. © 2015 National Medical Association. Published by Elsevier Inc. All rights reserved.
The MDT Innovation: Machine-Scoring of Fill-in-the-Blank Tests.
ERIC Educational Resources Information Center
Anderson, Paul S.
The Multi-Digit Technologies (MDT) testing technique is discussed as the first major advance in computer assisted testing in several decades. The MDT testing method uses fill-in-the-blank or completion-type questions, with an alphabetized long list of possible responses. An MDT answer sheet is used to record the code number of the answer. For…
Composite structural materials. [aircraft applications
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1981-01-01
The development of composite materials for aircraft applications is addressed with specific consideration of physical properties, structural concepts and analysis, manufacturing, reliability, and life prediction. The design and flight testing of composite ultralight gliders is documented. Advances in computer aided design and methods for nondestructive testing are also discussed.
ERIC Educational Resources Information Center
Maza, Paul Sadiri
2010-01-01
In recent years, technological advances such as computers have been employed in teaching gross anatomy at all levels of education, even in professional schools such as medical and veterinary medical colleges. Benefits of computer based instructional tools for gross anatomy include the convenience of not having to physically view or dissect a…
ERIC Educational Resources Information Center
Hahn, H. A.; And Others
The purposes of this research were to evaluate the cost effectiveness of using Asynchronous Computer Conferencing (ACC) and to develop guidelines for effectively conducting high quality military training using ACC. The evaluation used a portion of the Engineer Officer Advanced Course (EOAC) as a test bed. Course materials which taught the same…
Construction and Analysis of Educational Tests Using Abductive Machine Learning
ERIC Educational Resources Information Center
El-Alfy, El-Sayed M.; Abdel-Aal, Radwan E.
2008-01-01
Recent advances in educational technologies and the wide-spread use of computers in schools have fueled innovations in test construction and analysis. As the measurement accuracy of a test depends on the quality of the items it includes, item selection procedures play a central role in this process. Mathematical programming and the item response…
Advanced Simulation & Computing FY15 Implementation Plan Volume 2, Rev. 0.5
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, Michel; Archer, Bill; Matzen, M. Keith
2014-09-16
The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities andmore » computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. As the program approaches the end of its second decade, ASC is intently focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Where possible, the program also enables the use of high-performance simulation and computing tools to address broader national security needs, such as foreign nuclear weapon assessments and counternuclear terrorism.« less
Program of Basic Research in Distributed Tactical Decision Making.
1987-08-05
computer -simulated game representing a "space war" battle context were devised and two experiments were conducted to test some of the underlying...assume that advanced communication and computation of ever increasing capabilities will ensure successful group performance simply by improving the...There was a total of 12 subjects, three in each condition. 0 Apparatus A computer -controlled DTDM environment was developed using a VAX-I 1/750. The DTDM
Test and control computer user's guide for a digital beam former test system
NASA Technical Reports Server (NTRS)
Alexovich, Robert E.; Mallasch, Paul G.
1992-01-01
A Digital Beam Former Test System was developed to determine the effects of noise, interferers and distortions, and digital implementations of beam forming as applied to the Tracking and Data Relay Satellite 2 (TDRS 2) architectures. The investigation of digital beam forming with application to TDRS 2 architectures, as described in TDRS 2 advanced concept design studies, was conducted by the NASA/Lewis Research Center for NASA/Goddard Space Flight Center. A Test and Control Computer (TCC) was used as the main controlling element of the digital Beam Former Test System. The Test and Control Computer User's Guide for a Digital Beam Former Test System provides an organized description of the Digital Beam Former Test System commands. It is written for users who wish to conduct tests of the Digital Beam forming Test processor using the TCC. The document describes the function, use, and syntax of the TCC commands available to the user while summarizing and demonstrating the use of the commands wtihin DOS batch files.
Chemical toxicity testing is being transformed by advances in biology and computer modeling, concerns over animal use, and the thousands of environmental chemicals lacking toxicity data. The U.S. Environmental Protection Agency’s ToxCast program aims to address these concerns by ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, Michel; Archer, Bill; Hendrickson, Bruce
The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computationalmore » resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifying critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.« less
1984-01-01
working drawings, lists, and miscellaneous information needed for construction and testing (fig. 4). Detail design and construction in- cludes...still in test and evaluation phases, and is currently operational on a CDC computer. Its approach to management of geometric data is a unique and...been to provide the high degree of engineering user flexibility and yet achieve acceptable response times. In late 1983, a test system which has user
Development of Experimental and Computational Aeroacoustic Tools for Advanced Liner Evaluation
NASA Technical Reports Server (NTRS)
Jones, Michael G.; Watson, Willie R.; Nark, Douglas N.; Parrott, Tony L.; Gerhold, Carl H.; Brown, Martha C.
2006-01-01
Acoustic liners in aircraft engine nacelles suppress radiated noise. Therefore, as air travel increases, increasingly sophisticated tools are needed to maximize noise suppression. During the last 30 years, NASA has invested significant effort in development of experimental and computational acoustic liner evaluation tools. The Curved Duct Test Rig is a 152-mm by 381- mm curved duct that supports liner evaluation at Mach numbers up to 0.3 and source SPLs up to 140 dB, in the presence of user-selected modes. The Grazing Flow Impedance Tube is a 51- mm by 63-mm duct currently being fabricated to operate at Mach numbers up to 0.6 with source SPLs up to at least 140 dB, and will replace the existing 51-mm by 51-mm duct. Together, these test rigs allow evaluation of advanced acoustic liners over a range of conditions representative of those observed in aircraft engine nacelles. Data acquired with these test ducts are processed using three aeroacoustic propagation codes. Two are based on finite element solutions to convected Helmholtz and linearized Euler equations. The third is based on a parabolic approximation to the convected Helmholtz equation. The current status of these computational tools and their associated usage with the Langley test rigs is provided.
76 FR 41234 - Advanced Scientific Computing Advisory Committee Charter Renewal
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... Secretariat, General Services Administration, notice is hereby given that the Advanced Scientific Computing... advice and recommendations concerning the Advanced Scientific Computing program in response only to... Advanced Scientific Computing Research program and recommendations based thereon; --Advice on the computing...
Integration of design and inspection
NASA Astrophysics Data System (ADS)
Simmonds, William H.
1990-08-01
Developments in advanced computer integrated manufacturing technology, coupled with the emphasis on Total Quality Management, are exposing needs for new techniques to integrate all functions from design through to support of the delivered product. One critical functional area that must be integrated into design is that embracing the measurement, inspection and test activities necessary for validation of the delivered product. This area is being tackled by a collaborative project supported by the UK Government Department of Trade and Industry. The project is aimed at developing techniques for analysing validation needs and for planning validation methods. Within the project an experimental Computer Aided Validation Expert system (CAVE) is being constructed. This operates with a generalised model of the validation process and helps with all design stages: specification of product requirements; analysis of the assurance provided by a proposed design and method of manufacture; development of the inspection and test strategy; and analysis of feedback data. The kernel of the system is a knowledge base containing knowledge of the manufacturing process capabilities and of the available inspection and test facilities. The CAVE system is being integrated into a real life advanced computer integrated manufacturing facility for demonstration and evaluation.
Active Control Technology at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Antcliff, Richard R.; McGowan, Anna-Marie R.
2000-01-01
NASA Langley has a long history of attacking important technical opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight. The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures. The computational materials effort is focused on developing predictive tools for the efficient design of new materials with the appropriate combination of properties for next generation smart airframe systems. Research in the area of advanced piezoelectrics includes optimizing the efficiency, force output, use temperature, and energy transfer between the structure and device for both ceramic and polymeric materials. For structural health monitoring, advanced non-destructive techniques including fiber optics are being developed for detection of delaminations, cracks and environmental deterioration in aircraft structures. The computational materials effort is focused on developing predictive tools for the efficient design of new materials with the appropriate combination of properties for next generation smart airframe system. Innovative fabrication techniques processing structural composites with sensor and actuator integration are being developed.
Flight experience with flight control redundancy management
NASA Technical Reports Server (NTRS)
Szalai, K. J.; Larson, R. R.; Glover, R. D.
1980-01-01
Flight experience with both current and advanced redundancy management schemes was gained in recent flight research programs using the F-8 digital fly by wire aircraft. The flight performance of fault detection, isolation, and reconfiguration (FDIR) methods for sensors, computers, and actuators is reviewed. Results of induced failures as well as of actual random failures are discussed. Deficiencies in modeling and implementation techniques are also discussed. The paper also presents comparison off multisensor tracking in smooth air, in turbulence, during large maneuvers, and during maneuvers typical of those of large commercial transport aircraft. The results of flight tests of an advanced analytic redundancy management algorithm are compared with the performance of a contemporary algorithm in terms of time to detection, false alarms, and missed alarms. The performance of computer redundancy management in both iron bird and flight tests is also presented.
Advanced instrumentation for aeronautical propulsion research
NASA Technical Reports Server (NTRS)
Hartmann, M. J.
1986-01-01
The development and use of advanced instrumentation and measurement systems are key to extending the understanding of the physical phenomena that limit the advancement of aeropropulsion systems. The data collected by using these systems are necessary to verify numerical models and to increase the technologists' intuition into the physical phenomena. The systems must be versatile enough to allow their use with older technology measurement systems, with computer-based data reduction systems, and with existing test facilities. Researchers in all aeropropulsion fields contribute to the development of these systems.
2016-11-17
A test unit, or prototype, of NASA's Advanced Plant Habitat (APH) was delivered to the Space Station Processing Facility at the agency's Kennedy Space Center in Florida. Inside a laboratory, Engineering Services Contract engineers set up test parameters on computers. From left, are Glenn Washington, ESC quality engineer; Claton Grosse, ESC mechanical engineer; and Jeff Richards, ESC project scientist. The APH is the largest plant chamber built for the agency. It will have 180 sensors and four times the light output of Veggie. The APH will be delivered to the International Space Station in March 2017.
S-Boxes Based on Affine Mapping and Orbit of Power Function
NASA Astrophysics Data System (ADS)
Khan, Mubashar; Azam, Naveed Ahmed
2015-06-01
The demand of data security against computational attacks such as algebraic, differential, linear and interpolation attacks has been increased as a result of rapid advancement in the field of computation. It is, therefore, necessary to develop such cryptosystems which can resist current cryptanalysis and more computational attacks in future. In this paper, we present a multiple S-boxes scheme based on affine mapping and orbit of the power function used in Advanced Encryption Standard (AES). The proposed technique results in 256 different S-boxes named as orbital S-boxes. Rigorous tests and comparisons are performed to analyse the cryptographic strength of each of the orbital S-boxes. Furthermore, gray scale images are encrypted by using multiple orbital S-boxes. Results and simulations show that the encryption strength of the orbital S-boxes against computational attacks is better than that of the existing S-boxes.
The advanced receiver 2: Telemetry test results in CTA 21
NASA Technical Reports Server (NTRS)
Hinedi, S.; Bevan, R.; Marina, M.
1991-01-01
Telemetry tests with the Advanced Receiver II (ARX II) in Compatibility Test Area 21 are described. The ARX II was operated in parallel with a Block-III Receiver/baseband processor assembly combination (BLK-III/BPA) and a Block III Receiver/subcarrier demodulation assembly/symbol synchronization assembly combination (BLK-III/SDA/SSA). The telemetry simulator assembly provided the test signal for all three configurations, and the symbol signal to noise ratio as well as the symbol error rates were measured and compared. Furthermore, bit error rates were also measured by the system performance test computer for all three systems. Results indicate that the ARX-II telemetry performance is comparable and sometimes superior to the BLK-III/BPA and BLK-III/SDA/SSA combinations.
Zagar, Robert John; Kovach, Joseph W; Basile, Benjamin; Hughes, John Russell; Grove, William M; Busch, Kenneth G; Zablocki, Michael; Osnowitz, William; Neuhengen, Jonas; Liu, Yutong; Zagar, Agata Karolina
2013-12-01
147 adults (107 men, 40 women) and 89 adolescents (61 boys, 28 girls), selected randomly from referrals and volunteers, were given the Ammons Quick Test (QT), the Beck Suicide Scale (BSS), the Minnesota Multiphasic Personality Inventory Second (MMPI-2) or Adolescent Versions (MMPI-A), the Raven's Advanced Progressive Matrices, and the Standard Predictor (SP) of Violence Potential Adult or Adolescent Versions. The goals were to: (a) demonstrate computer and paper-and-pencil tests correlated; (b) validate tests to identify at-risk for violence; (c) show that identifying at-risk saves lives and resources; and (d) find which industries benefited from testing at-risk. Paper-and-pencil vs. computer test correlations (.83-.99), sensitivity (.97-.98), and specificity (.50-.97) were computed. Testing at-risk saves lives and resources. Critical industries for testing at-risk individuals may include airlines, energy generating industries, insurance, military, nonprofit-religious, prisoners, trucking or port workers, and veterans.
Parallelization of Unsteady Adaptive Mesh Refinement for Unstructured Navier-Stokes Solvers
NASA Technical Reports Server (NTRS)
Schwing, Alan M.; Nompelis, Ioannis; Candler, Graham V.
2014-01-01
This paper explores the implementation of the MPI parallelization in a Navier-Stokes solver using adaptive mesh re nement. Viscous and inviscid test problems are considered for the purpose of benchmarking, as are implicit and explicit time advancement methods. The main test problem for comparison includes e ects from boundary layers and other viscous features and requires a large number of grid points for accurate computation. Ex- perimental validation against double cone experiments in hypersonic ow are shown. The adaptive mesh re nement shows promise for a staple test problem in the hypersonic com- munity. Extension to more advanced techniques for more complicated ows is described.
Advanced Simulation and Computing Fiscal Year 2016 Implementation Plan, Version 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, M.; Archer, B.; Hendrickson, B.
2015-08-27
The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The purpose of this IP is to outline key work requirements to be performed and to control individualmore » work activities within the scope of work. Contractors may not deviate from this plan without a revised WA or subsequent IP.« less
Multi-Scale Hierarchical and Topological Design of Structures for Failure Resistance
2013-10-04
materials, simulation, 3D printing , advanced manufacturing, design, fracture Markus J. Buehler Massachusetts Institute of Technology (MIT) 77...by Mineralized Natural Materials: Computation, 3D printing , and Testing, Advanced Functional Materials, (09 2013): 0. doi: 10.1002/adfm.201300215 10...have made substantial progress. Recent work focuses on the analysis of topological effects of composite design, 3D printing of bioinspired and
User's manual for PEPSIG NASA tip vortex version
NASA Technical Reports Server (NTRS)
Tsai, Tommy M.; Dejong, Frederick J.; Levy, Ralph
1988-01-01
The tip vortex flowfield plays a significant role in the performance of advanced aircraft propellers. The flowfield in the tip region is complex, three-dimensional and viscous with large secondary velocities. A computer code was developed to predict the tip vortex flowfield of advanced aircraft propellers. This document is the user's manual. The analysis and a series of test cases are presented in NASA-CR-182179.
Research in Natural Laminar Flow and Laminar-Flow Control, part 2
NASA Technical Reports Server (NTRS)
Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)
1987-01-01
Part 2 of the Symposium proceedings includes papers addressing various topics in basic wind tunnel research/techniques and computational transitional research. Specific topics include: advanced measurement techniques; laminar flow control; Tollmien-Schlichting wave characteristics; boundary layer transition; flow visualization; wind tunnel tests; flight tests; boundary layer equations; swept wings; and skin friction.
Dispersion Interactions between Rare Gas Atoms: Testing the London Equation Using ab Initio Methods
ERIC Educational Resources Information Center
Halpern, Arthur M.
2011-01-01
A computational chemistry experiment is described in which students can use advanced ab initio quantum mechanical methods to test the ability of the London equation to account quantitatively for the attractive (dispersion) interactions between rare gas atoms. Using readily available electronic structure applications, students can calculate the…
ERIC Educational Resources Information Center
Bennett, Randy Elliot; And Others
1990-01-01
The relationship of an expert-system-scored constrained free-response item type to multiple-choice and free-response items was studied using data for 614 students on the College Board's Advanced Placement Computer Science (APCS) Examination. Implications for testing and the APCS test are discussed. (SLD)
Duct flow nonuniformities study for space shuttle main engine
NASA Technical Reports Server (NTRS)
Thoenes, J.
1985-01-01
To improve the Space Shuttle Main Engine (SSME) design and for future use in the development of generation rocket engines, a combined experimental/analytical study was undertaken with the goals of first, establishing an experimental data base for the flow conditions in the SSME high pressure fuel turbopump (HPFTP) hot gas manifold (HGM) and, second, setting up a computer model of the SSME HGM flow field. Using the test data to verify the computer model it should be possible in the future to computationally scan contemplated advanced design configurations and limit costly testing to the most promising design. The effort of establishing and using the computer model is detailed. The comparison of computational results and experimental data observed clearly demonstrate that computational fluid mechanics (CFD) techniques can be used successfully to predict the gross features of three dimensional fluid flow through configurations as intricate as the SSME turbopump hot gas manifold.
76 FR 31945 - Advanced Scientific Computing Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
... DEPARTMENT OF ENERGY Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy... teleconference meeting of the Advanced Scientific Computing Advisory Committee (ASCAC). The Federal [email protected] . FOR FURTHER INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing...
Extreme Scale Computing to Secure the Nation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D L; McGraw, J R; Johnson, J R
2009-11-10
Since the dawn of modern electronic computing in the mid 1940's, U.S. national security programs have been dominant users of every new generation of high-performance computer. Indeed, the first general-purpose electronic computer, ENIAC (the Electronic Numerical Integrator and Computer), was used to calculate the expected explosive yield of early thermonuclear weapons designs. Even the U. S. numerical weather prediction program, another early application for high-performance computing, was initially funded jointly by sponsors that included the U.S. Air Force and Navy, agencies interested in accurate weather predictions to support U.S. military operations. For the decades of the cold war, national securitymore » requirements continued to drive the development of high performance computing (HPC), including advancement of the computing hardware and development of sophisticated simulation codes to support weapons and military aircraft design, numerical weather prediction as well as data-intensive applications such as cryptography and cybersecurity U.S. national security concerns continue to drive the development of high-performance computers and software in the U.S. and in fact, events following the end of the cold war have driven an increase in the growth rate of computer performance at the high-end of the market. This mainly derives from our nation's observance of a moratorium on underground nuclear testing beginning in 1992, followed by our voluntary adherence to the Comprehensive Test Ban Treaty (CTBT) beginning in 1995. The CTBT prohibits further underground nuclear tests, which in the past had been a key component of the nation's science-based program for assuring the reliability, performance and safety of U.S. nuclear weapons. In response to this change, the U.S. Department of Energy (DOE) initiated the Science-Based Stockpile Stewardship (SBSS) program in response to the Fiscal Year 1994 National Defense Authorization Act, which requires, 'in the absence of nuclear testing, a progam to: (1) Support a focused, multifaceted program to increase the understanding of the enduring stockpile; (2) Predict, detect, and evaluate potential problems of the aging of the stockpile; (3) Refurbish and re-manufacture weapons and components, as required; and (4) Maintain the science and engineering institutions needed to support the nation's nuclear deterrent, now and in the future'. This program continues to fulfill its national security mission by adding significant new capabilities for producing scientific results through large-scale computational simulation coupled with careful experimentation, including sub-critical nuclear experiments permitted under the CTBT. To develop the computational science and the computational horsepower needed to support its mission, SBSS initiated the Accelerated Strategic Computing Initiative, later renamed the Advanced Simulation & Computing (ASC) program (sidebar: 'History of ASC Computing Program Computing Capability'). The modern 3D computational simulation capability of the ASC program supports the assessment and certification of the current nuclear stockpile through calibration with past underground test (UGT) data. While an impressive accomplishment, continued evolution of national security mission requirements will demand computing resources at a significantly greater scale than we have today. In particular, continued observance and potential Senate confirmation of the Comprehensive Test Ban Treaty (CTBT) together with the U.S administration's promise for a significant reduction in the size of the stockpile and the inexorable aging and consequent refurbishment of the stockpile all demand increasing refinement of our computational simulation capabilities. Assessment of the present and future stockpile with increased confidence of the safety and reliability without reliance upon calibration with past or future test data is a long-term goal of the ASC program. This will be accomplished through significant increases in the scientific bases that underlie the computational tools. Computer codes must be developed that replace phenomenology with increased levels of scientific understanding together with an accompanying quantification of uncertainty. These advanced codes will place significantly higher demands on the computing infrastructure than do the current 3D ASC codes. This article discusses not only the need for a future computing capability at the exascale for the SBSS program, but also considers high performance computing requirements for broader national security questions. For example, the increasing concern over potential nuclear terrorist threats demands a capability to assess threats and potential disablement technologies as well as a rapid forensic capability for determining a nuclear weapons design from post-detonation evidence (nuclear counterterrorism).« less
Applications of Computational Methods for Dynamic Stability and Control Derivatives
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Spence, Angela M.
2004-01-01
Initial steps in the application o f a low-order panel method computational fluid dynamic (CFD) code to the calculation of aircraft dynamic stability and control (S&C) derivatives are documented. Several capabilities, unique to CFD but not unique to this particular demonstration, are identified and demonstrated in this paper. These unique capabilities complement conventional S&C techniques and they include the ability to: 1) perform maneuvers without the flow-kinematic restrictions and support interference commonly associated with experimental S&C facilities, 2) easily simulate advanced S&C testing techniques, 3) compute exact S&C derivatives with uncertainty propagation bounds, and 4) alter the flow physics associated with a particular testing technique from those observed in a wind or water tunnel test in order to isolate effects. Also presented are discussions about some computational issues associated with the simulation of S&C tests and selected results from numerous surface grid resolution studies performed during the course of the study.
Development of an Axisymmetric Afterbody Test Case for Turbulent Flow Separation Validation
NASA Technical Reports Server (NTRS)
Disotell, Kevin J.; Rumsey, Christopher L.
2017-01-01
As identified in the CFD Vision 2030 Study commissioned by NASA, validation of advanced RANS models and scale-resolving methods for computing turbulent flows must be supported by improvements in high-quality experiments designed specifically for CFD implementation. A new test platform referred to as the Axisymmetric Afterbody allows for a range of flow behaviors to be studied on interchangeable afterbodies while facilitating access to higher Reynolds number facilities. A priori RANS computations are reported for a risk-reduction configuration to demonstrate critical variation among turbulence model results for a given afterbody, ranging from barely-attached to mild separated flow. The effects of body nose geometry and tunnel-wall boundary condition on the computed afterbody flow are explored to inform the design of an experimental test program.
75 FR 9887 - Advanced Scientific Computing Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-04
... DEPARTMENT OF ENERGY Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy... Advanced Scientific Computing Advisory Committee (ASCAC). Federal Advisory Committee Act (Pub. L. 92-463... INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building...
76 FR 9765 - Advanced Scientific Computing Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-22
... DEPARTMENT OF ENERGY Advanced Scientific Computing Advisory Committee AGENCY: Office of Science... Advanced Scientific Computing Advisory Committee (ASCAC). The Federal Advisory Committee Act (Pub. L. 92... INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research, SC-21/Germantown Building...
77 FR 45345 - DOE/Advanced Scientific Computing Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-31
... Recompetition results for Scientific Discovery through Advanced Computing (SciDAC) applications Co-design Public... DEPARTMENT OF ENERGY DOE/Advanced Scientific Computing Advisory Committee AGENCY: Office of... the Advanced Scientific Computing Advisory Committee (ASCAC). The Federal Advisory Committee Act (Pub...
75 FR 64720 - DOE/Advanced Scientific Computing Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-20
... DEPARTMENT OF ENERGY DOE/Advanced Scientific Computing Advisory Committee AGENCY: Department of... the Advanced Scientific Computing Advisory Committee (ASCAC). Federal Advisory Committee Act (Pub. L.... FOR FURTHER INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research; SC-21...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amadio, G.; et al.
An intensive R&D and programming effort is required to accomplish new challenges posed by future experimental high-energy particle physics (HEP) programs. The GeantV project aims to narrow the gap between the performance of the existing HEP detector simulation software and the ideal performance achievable, exploiting latest advances in computing technology. The project has developed a particle detector simulation prototype capable of transporting in parallel particles in complex geometries exploiting instruction level microparallelism (SIMD and SIMT), task-level parallelism (multithreading) and high-level parallelism (MPI), leveraging both the multi-core and the many-core opportunities. We present preliminary verification results concerning the electromagnetic (EM) physicsmore » models developed for parallel computing architectures within the GeantV project. In order to exploit the potential of vectorization and accelerators and to make the physics model effectively parallelizable, advanced sampling techniques have been implemented and tested. In this paper we introduce a set of automated statistical tests in order to verify the vectorized models by checking their consistency with the corresponding Geant4 models and to validate them against experimental data.« less
NASA Astrophysics Data System (ADS)
Rahman, Md Mushfiqur; Lei, Yu; Kalantzis, Georgios
2018-01-01
Quality Assurance (QA) for medical linear accelerator (linac) is one of the primary concerns in external beam radiation Therapy. Continued advancements in clinical accelerators and computer control technology make the QA procedures more complex and time consuming which often, adequate software accompanied with specific phantoms is required. To ameliorate that matter, we introduce QALMA (Quality Assurance for Linac with MATLAB), a MALAB toolkit which aims to simplify the quantitative analysis of QA for linac which includes Star-Shot analysis, Picket Fence test, Winston-Lutz test, Multileaf Collimator (MLC) log file analysis and verification of light & radiation field coincidence test.
NASA Technical Reports Server (NTRS)
Koh, Severino L. (Editor); Speziale, Charles G. (Editor)
1989-01-01
Various papers on recent advances in engineering science are presented. Some individual topics addressed include: advances in adaptive methods in computational fluid mechanics, mixtures of two medicomorphic materials, computer tests of rubber elasticity, shear bands in isotropic micropolar elastic materials, nonlinear surface wave and resonator effects in magnetostrictive crystals, simulation of electrically enhanced fibrous filtration, plasticity theory of granular materials, dynamics of viscoelastic media with internal oscillators, postcritical behavior of a cantilever bar, boundary value problems in nonlocal elasticity, stability of flexible structures with random parameters, electromagnetic tornadoes in earth's ionosphere and magnetosphere, helicity fluctuations and the energy cascade in turbulence, mechanics of interfacial zones in bonded materials, propagation of a normal shock in a varying area duct, analytical mechanics of fracture and fatigue.
Analysis of Flowfields over Four-Engine DC-X Rockets
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Cornelison, Joni
1996-01-01
The objective of this study is to validate a computational methodology for the aerodynamic performance of an advanced conical launch vehicle configuration. The computational methodology is based on a three-dimensional, viscous flow, pressure-based computational fluid dynamics formulation. Both wind-tunnel and ascent flight-test data are used for validation. Emphasis is placed on multiple-engine power-on effects. Computational characterization of the base drag in the critical subsonic regime is the focus of the validation effort; until recently, almost no multiple-engine data existed for a conical launch vehicle configuration. Parametric studies using high-order difference schemes are performed for the cold-flow tests, whereas grid studies are conducted for the flight tests. The computed vehicle axial force coefficients, forebody, aftbody, and base surface pressures compare favorably with those of tests. The results demonstrate that with adequate grid density and proper distribution, a high-order difference scheme, finite rate afterburning kinetics to model the plume chemistry, and a suitable turbulence model to describe separated flows, plume/air mixing, and boundary layers, computational fluid dynamics is a tool that can be used to predict the low-speed aerodynamic performance for rocket design and operations.
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; Railkar, Sudhir B.
1988-01-01
This paper describes new and recent advances in the development of a hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer problems. The transfinite element methodology, while retaining the modeling versatility of contemporary finite element formulations, is based on application of transform techniques in conjunction with classical Galerkin schemes and is a hybrid approach. The purpose of this paper is to provide a viable hybrid computational methodology for applicability to general transient thermal analysis. Highlights and features of the methodology are described and developed via generalized formulations and applications to several test problems. The proposed transfinite element methodology successfully provides a viable computational approach and numerical test problems validate the proposed developments for conduction/convection/radiation thermal analysis.
NASA Technical Reports Server (NTRS)
Usab, William J., Jr.; Jiang, Yi-Tsann
1991-01-01
The objective of the present research is to develop a general solution adaptive scheme for the accurate prediction of inviscid quasi-three-dimensional flow in advanced compressor and turbine designs. The adaptive solution scheme combines an explicit finite-volume time-marching scheme for unstructured triangular meshes and an advancing front triangular mesh scheme with a remeshing procedure for adapting the mesh as the solution evolves. The unstructured flow solver has been tested on a series of two-dimensional airfoil configurations including a three-element analytic test case presented here. Mesh adapted quasi-three-dimensional Euler solutions are presented for three spanwise stations of the NASA rotor 67 transonic fan. Computed solutions are compared with available experimental data.
Demo of three ways to use a computer to assist in lab
NASA Technical Reports Server (NTRS)
Neville, J. P.
1990-01-01
The objective is to help the slow learner and students with a language problem, or to challenge the advanced student. Technology has advanced to the point where images generated on a computer can easily be recorded on a VCR and used as a video tutorial. This transfer can be as simple as pointing a video camera at the screen and recording the image. For more clarity and professional results, a board may be inserted into a computer which will convert the signals directly to the TV standard. Using a computer program that generates movies one can animate various principles which would normally be impossible to show or would require time-lapse photography. For example, you might show the change in shape of grains as a piece of metal is cold worked and then show the recrystallization and grain growth as heat is applied. More imaginative titles and graphics are also possible using this technique. Remedial help may also be offered via computer to those who find a specific concept difficult. A printout of specific data, details of the theory or equipment set-up can be offered. Programs are now available that will help as well as test the student in specific areas so that a Keller type approach can be used with each student to insure each knows the subject before going on to the next topic. A computer can serve as an information source and contain the microstructures, physical data and availability of each material tested in the lab. With this source present unknowns can be evaluated and various tests simulated to create a simple or complex case study lab assignment.
Optimization and large scale computation of an entropy-based moment closure
NASA Astrophysics Data System (ADS)
Kristopher Garrett, C.; Hauck, Cory; Hill, Judith
2015-12-01
We present computational advances and results in the implementation of an entropy-based moment closure, MN, in the context of linear kinetic equations, with an emphasis on heterogeneous and large-scale computing platforms. Entropy-based closures are known in several cases to yield more accurate results than closures based on standard spectral approximations, such as PN, but the computational cost is generally much higher and often prohibitive. Several optimizations are introduced to improve the performance of entropy-based algorithms over previous implementations. These optimizations include the use of GPU acceleration and the exploitation of the mathematical properties of spherical harmonics, which are used as test functions in the moment formulation. To test the emerging high-performance computing paradigm of communication bound simulations, we present timing results at the largest computational scales currently available. These results show, in particular, load balancing issues in scaling the MN algorithm that do not appear for the PN algorithm. We also observe that in weak scaling tests, the ratio in time to solution of MN to PN decreases.
Optimization and large scale computation of an entropy-based moment closure
Hauck, Cory D.; Hill, Judith C.; Garrett, C. Kristopher
2015-09-10
We present computational advances and results in the implementation of an entropy-based moment closure, M N, in the context of linear kinetic equations, with an emphasis on heterogeneous and large-scale computing platforms. Entropy-based closures are known in several cases to yield more accurate results than closures based on standard spectral approximations, such as P N, but the computational cost is generally much higher and often prohibitive. Several optimizations are introduced to improve the performance of entropy-based algorithms over previous implementations. These optimizations include the use of GPU acceleration and the exploitation of the mathematical properties of spherical harmonics, which aremore » used as test functions in the moment formulation. To test the emerging high-performance computing paradigm of communication bound simulations, we present timing results at the largest computational scales currently available. Lastly, these results show, in particular, load balancing issues in scaling the M N algorithm that do not appear for the P N algorithm. We also observe that in weak scaling tests, the ratio in time to solution of M N to P N decreases.« less
Computational Astrophysics Consortium, University of Minnesota, Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heger, Alexander
During its six year duration the Computational Astrophysics consortium helped to train the next generation of scientists in computational and nuclear astrophysics. A total of five graduate students were supported by the grant at UMN. The major advances at UMN were in the use, testing, and contribution to development of the CASTRO that efficiently scales on over 100,000 CPUs. At UMN it was used for modeling of thermonuclear supernovae (pair instability and supermassive stars) and core-collapse supernovae as well as the final phases of their progenitors, as well as for x-ray bursts from accreting neutron stars. Important secondary advances inmore » the field of nuclear astrophysics included a better understanding of the evolution of massive stars and the origin of the elements. The research resulted in more than 50 publications.« less
Computer Plotting Data Points in the Engine Research Building
1956-09-21
A female computer plotting compressor data in the Engine Research Building at the NACA’s Lewis Flight Propulsion Laboratory. The Computing Section was introduced during World War II to relieve short-handed research engineers of some of the tedious data-taking work. The computers made the initial computations and plotted the data graphically. The researcher then analyzed the data and either summarized the findings in a report or made modifications or ran the test again. With the introduction of mechanical computer systems in the 1950s the female computers learned how to encode the punch cards. As the data processing capabilities increased, fewer female computers were needed. Many left on their own to start families, while others earned mathematical degrees and moved into advanced positions.
Recommendations for Establishing the Texas Roadway Research Implementation Center
DOT National Transportation Integrated Search
1998-07-01
The overall objective of the Roadway Research Initiative study was to describe an advanced testing capability, on that would speed implementation of the results from traditional computer and laboratory-based research efforts by providing a reusable t...
NASA Astrophysics Data System (ADS)
Endy, Drew; You, Lingchong; Yin, John; Molineux, Ian J.
2000-05-01
We created a simulation based on experimental data from bacteriophage T7 that computes the developmental cycle of the wild-type phage and also of mutants that have an altered genome order. We used the simulation to compute the fitness of more than 105 mutants. We tested these computations by constructing and experimentally characterizing T7 mutants in which we repositioned gene 1, coding for T7 RNA polymerase. Computed protein synthesis rates for ectopic gene 1 strains were in moderate agreement with observed rates. Computed phage-doubling rates were close to observations for two of four strains, but significantly overestimated those of the other two. Computations indicate that the genome organization of wild-type T7 is nearly optimal for growth: only 2.8% of random genome permutations were computed to grow faster, the highest 31% faster, than wild type. Specific discrepancies between computations and observations suggest that a better understanding of the translation efficiency of individual mRNAs and the functions of qualitatively "nonessential" genes will be needed to improve the T7 simulation. In silico representations of biological systems can serve to assess and advance our understanding of the underlying biology. Iteration between computation, prediction, and observation should increase the rate at which biological hypotheses are formulated and tested.
Experimental and computational surface and flow-field results for an all-body hypersonic aircraft
NASA Technical Reports Server (NTRS)
Lockman, William K.; Lawrence, Scott L.; Cleary, Joseph W.
1990-01-01
The objective of the present investigation is to establish a benchmark experimental data base for a generic hypersonic vehicle shape for validation and/or calibration of advanced computational fluid dynamics computer codes. This paper includes results from the comprehensive test program conducted in the NASA/Ames 3.5-foot Hypersonic Wind Tunnel for a generic all-body hypersonic aircraft model. Experimental and computational results on flow visualization, surface pressures, surface convective heat transfer, and pitot-pressure flow-field surveys are presented. Comparisons of the experimental results with computational results from an upwind parabolized Navier-Stokes code developed at Ames demonstrate the capabilities of this code.
A synthetic design environment for ship design
NASA Technical Reports Server (NTRS)
Chipman, Richard R.
1995-01-01
Rapid advances in computer science and information system technology have made possible the creation of synthetic design environments (SDE) which use virtual prototypes to increase the efficiency and agility of the design process. This next generation of computer-based design tools will rely heavily on simulation and advanced visualization techniques to enable integrated product and process teams to concurrently conceptualize, design, and test a product and its fabrication processes. This paper summarizes a successful demonstration of the feasibility of using a simulation based design environment in the shipbuilding industry. As computer science and information science technologies have evolved, there have been many attempts to apply and integrate the new capabilities into systems for the improvement of the process of design. We see the benefits of those efforts in the abundance of highly reliable, technologically complex products and services in the modern marketplace. Furthermore, the computer-based technologies have been so cost effective that the improvements embodied in modern products have been accompanied by lowered costs. Today the state-of-the-art in computerized design has advanced so dramatically that the focus is no longer on merely improving design methodology; rather the goal is to revolutionize the entire process by which complex products are conceived, designed, fabricated, tested, deployed, operated, maintained, refurbished and eventually decommissioned. By concurrently addressing all life-cycle issues, the basic decision making process within an enterprise will be improved dramatically, leading to new levels of quality, innovation, efficiency, and customer responsiveness. By integrating functions and people with an enterprise, such systems will change the fundamental way American industries are organized, creating companies that are more competitive, creative, and productive.
Advanced Simulation and Computing Fiscal Year 14 Implementation Plan, Rev. 0.5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meisner, Robert; McCoy, Michel; Archer, Bill
2013-09-11
The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities andmore » computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Moreover, ASC’s business model is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools.« less
Proceedings for the Advance Planning Briefing for Industry
1990-01-24
Liaison Office TOD - Technical Objective Documents TSR - Tactical Source Region UAV - Unmanned Aerial Vehicle UGT - UnderGround nuclear Test A G.EN D635I...tests in AURORA and underground nuclear tests ( UGT ) and will help develop tactical source region hardening requirements and lead to approaches for TSR...X-Ray theory , lasers, electronic controllers, computers, robotics, etc. Contracting for scientific studies and one-of-a-kind machines will emphasize
NASA Technical Reports Server (NTRS)
Brodnick, Jacob; Richardson, Brian; Ramachandran, Narayanan
2015-01-01
The Low Profile Diffuser (LPD) project originated as an award from the Marshall Space Flight Center (MSFC) Advanced Development (ADO) office to the Main Propulsion Systems Branch (ER22). The task was created to develop and test an LPD concept that could produce comparable performance to a larger, traditionally designed, ullage gas diffuser while occupying a smaller volume envelope. Historically, ullage gas diffusers have been large, bulky devices that occupy a significant portion of the propellant tank, decreasing the tank volume available for propellant. Ullage pressurization of spacecraft propellant tanks is required to prevent boil-off of cryogenic propellants and to provide a positive pressure for propellant extraction. To achieve this, ullage gas diffusers must slow hot, high-pressure gas entering a propellant tank from supersonic speeds to only a few meters per second. Decreasing the incoming gas velocity is typically accomplished through expansion to larger areas within the diffuser which has traditionally led to large diffuser lengths. The Fluid Dynamics Branch (ER42) developed and applied advanced Computational Fluid Dynamics (CFD) analysis methods in order to mature the LPD design from and initial concept to an optimized test prototype and to provide extremely accurate pre-test predictions of diffuser performance. Additionally, the diffuser concept for the Core Stage of the Space Launch System (SLS) was analyzed in a short amount of time to guide test data collection efforts of the qualification of the device. CFD analysis of the SLS diffuser design provided new insights into the functioning of the device and was qualitatively validated against hot wire anemometry of the exterior flow field. Rigorous data analysis of the measurements was performed on static and dynamic pressure data, data from two microphones, accelerometers and hot wire anemometry with automated traverse. Feasibility of the LPD concept and validation of the computational model were demonstrated by the test data.
Hardware-in-the-Loop Testing of Utility-Scale Wind Turbine Generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schkoda, Ryan; Fox, Curtiss; Hadidi, Ramtin
2016-01-26
Historically, wind turbine prototypes were tested in the field, which was--and continues to be--a slow and expensive process. As a result, wind turbine dynamometer facilities were developed to provide a more cost-effective alternative to field testing. New turbine designs were tested and the design models were validated using dynamometers to drive the turbines in a controlled environment. Over the years, both wind turbine dynamometer testing and computer technology have matured and improved, and the two are now being joined to provide hardware-in-the-loop (HIL) testing. This type of testing uses a computer to simulate the items that are missing from amore » dynamometer test, such as grid stiffness, voltage, frequency, rotor, and hub. Furthermore, wind input and changing electric grid conditions can now be simulated in real time. This recent advance has greatly increased the utility of dynamometer testing for the development of wind turbine systems.« less
Bridging the Gap: Linking Simulation and Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krajewski, Paul E.; Carsley, John; Stoudt, Mark R.
2012-09-01
The Materials Genome Initiative (MGI) which is a key enabler for the Advanced Manufacturing Partnership, announced in 2011 by U.S. President Barack Obama, was established to accelerate the development and deployment of advanced materials. The MGI is driven by the need to "bridge the gap" between (I) experimental results and computational analysis to enable the rapid development and validation of new mateirals, and (II) the processes required to convert these materials into useable goods.
ERIC Educational Resources Information Center
Vail, Kathleen
2003-01-01
Practitioners and researchers in the education technology field asked to give their vision of the future list laptop computers, personal digital assistants, electronic testing, wireless networking, and multimedia technology among the technology advances headed soon for schools. A sidebar lists 12 online resources. (MLF)
In Vitro Models of Human Toxicity Pathways
For toxicity testing and assessment programs to address the large numbers of substances of potential concern, a paradigm shift in the assessment of chemical hazard and risk is needed that takes advantage of advances in molecular toxicology, computational sciences, and information...
Advanced technology airfoil research, volume 2. [conferences
NASA Technical Reports Server (NTRS)
1979-01-01
A comprehensive review of airfoil research is presented. The major thrust of the research is in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.
Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems
NASA Technical Reports Server (NTRS)
Seal, D. W.
1989-01-01
This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabakar, Kumaraguru; Shirazi, Mariko; Singh, Akanksha
Penetration levels of solar photovoltaic (PV) generation on the electric grid have increased in recent years. In the past, most PV installations have not included grid-support functionalities. But today, standards such as the upcoming revisions to IEEE 1547 recommend grid support and anti-islanding functions-including volt-var, frequency-watt, volt-watt, frequency/voltage ride-through, and other inverter functions. These functions allow for the standardized interconnection of distributed energy resources into the grid. This paper develops and tests low-level inverter current control and high-level grid support functions. The controller was developed to integrate advanced inverter functions in a systematic approach, thus avoiding conflict among the differentmore » control objectives. The algorithms were then programmed on an off-the-shelf, embedded controller with a dual-core computer processing unit and field-programmable gate array (FPGA). This programmed controller was tested using a controller-hardware-in-the-loop (CHIL) test bed setup using an FPGA-based real-time simulator. The CHIL was run at a time step of 500 ns to accommodate the 20-kHz switching frequency of the developed controller. The details of the advanced control function and CHIL test bed provided here will aide future researchers when designing, implementing, and testing advanced functions of PV inverters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitanidis, Peter
As large-scale, commercial storage projects become operational, the problem of utilizing information from diverse sources becomes more critically important. In this project, we developed, tested, and applied an advanced joint data inversion system for CO 2 storage modeling with large data sets for use in site characterization and real-time monitoring. Emphasis was on the development of advanced and efficient computational algorithms for joint inversion of hydro-geophysical data, coupled with state-of-the-art forward process simulations. The developed system consists of (1) inversion tools using characterization data, such as 3D seismic survey (amplitude images), borehole log and core data, as well as hydraulic,more » tracer and thermal tests before CO 2 injection, (2) joint inversion tools for updating the geologic model with the distribution of rock properties, thus reducing uncertainty, using hydro-geophysical monitoring data, and (3) highly efficient algorithms for directly solving the dense or sparse linear algebra systems derived from the joint inversion. The system combines methods from stochastic analysis, fast linear algebra, and high performance computing. The developed joint inversion tools have been tested through synthetic CO 2 storage examples.« less
Correlating CFD Simulation with Wind Tunnel Test for the Full-Scale UH-60A Airloads Rotor
NASA Technical Reports Server (NTRS)
Romandr, Ethan; Norman, Thomas R.; Chang, I-Chung
2011-01-01
Data from the recent UH-60A Airloads Test in the National Full-Scale Aerodynamics Complex 40- by 80- Foot Wind Tunnel at NASA Ames Research Center are presented and compared to predictions computed by a loosely coupled Computational Fluid Dynamics (CFD)/Comprehensive analysis. Primary calculations model the rotor in free-air, but initial calculations are presented including a model of the tunnel test section. The conditions studied include a speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed into deep stall. Predictions show reasonable agreement with measurement for integrated performance indicators such as power and propulsive but occasionally deviate significantly. Detailed analysis of sectional airloads reveals good correlation in overall trends for normal force and pitching moment but pitching moment mean often differs. Chord force is frequently plagued by mean shifts and an overprediction of drag on the advancing side. Locations of significant aerodynamic phenomena are predicted accurately although the magnitude of individual events is often missed.
The exact analysis of contingency tables in medical research.
Mehta, C R
1994-01-01
A unified view of exact nonparametric inference, with special emphasis on data in the form of contingency tables, is presented. While the concept of exact tests has been in existence since the early work of RA Fisher, the computational complexity involved in actually executing such tests precluded their use until fairly recently. Modern algorithmic advances, combined with the easy availability of inexpensive computing power, has renewed interest in exact methods of inference, especially because they remain valid in the face of small, sparse, imbalanced, or heavily tied data. After defining exact p-values in terms of the permutation principle, we reference algorithms for computing them. Several data sets are then analysed by both exact and asymptotic methods. We end with a discussion of the available software.
1977-10-01
APPROVED DATE FUNCTION APPROVED jDATE WRITER J . K-olanek 2/6/76 REVISIONS CHK DESCRIPTION REV CHK DESCRIPTION IREV REVISION jJ ~ ~ ~~~ _ II SHEET NO...DOCUMENT (CDBDD) 45 5.5 COMPUTER PROGRAM PACKAGE (CPP)- j 45 5.6 COMPUTER PROGRAM OPERATOR’S MANUAL (CPOM) 45 5.7 COMPUTER PROGRAM TEST PLAN (CPTPL) 45...I LIST OF FIGURES Number Page 1 JEWS Simplified Block Diagram 4 2 System Controller Architecture 5 SIZE CODE IDENT NO DRAWING NO. A 49956 SCALE REV J
A tool for measuring the bending length in thin wires
NASA Astrophysics Data System (ADS)
Lorenzini, M.; Cagnoli, G.; Cesarini, E.; Losurdo, G.; Martelli, F.; Piergiovanni, F.; Vetrano, F.; Viceré, A.
2013-03-01
Great effort is currently being put into the development and construction of the second generation, advanced gravitational wave detectors, Advanced Virgo and Advanced LIGO. The development of new low thermal noise suspensions of mirrors, based on the experience gained in the previous experiments, is part of this task. Quasi-monolithic suspensions with fused silica wires avoid the problem of rubbing friction introduced by steel cradle arrangements by directly welding the wires to silica blocks bonded to the mirror. Moreover, the mechanical loss level introduced by silica (ϕfs ˜ 10-7 in thin fused silica wires) is by far less than the one associated with steel. The low frequency dynamical behaviour of the suspension can be computed and optimized, provided that the wire bending shape under pendulum motion is known. Due to the production process, fused silica wires are thicker near the two ends (necks), so that analytical bending computations are very complicated. We developed a tool to directly measure the low frequency bending parameters of fused silica wires, and we tested it on the wires produced for the Virgo+ monolithic suspensions. The working principle and a set of test measurements are presented and explained.
A tool for measuring the bending length in thin wires.
Lorenzini, M; Cagnoli, G; Cesarini, E; Losurdo, G; Martelli, F; Piergiovanni, F; Vetrano, F; Viceré, A
2013-03-01
Great effort is currently being put into the development and construction of the second generation, advanced gravitational wave detectors, Advanced Virgo and Advanced LIGO. The development of new low thermal noise suspensions of mirrors, based on the experience gained in the previous experiments, is part of this task. Quasi-monolithic suspensions with fused silica wires avoid the problem of rubbing friction introduced by steel cradle arrangements by directly welding the wires to silica blocks bonded to the mirror. Moreover, the mechanical loss level introduced by silica (φfs ∼ 10(-7) in thin fused silica wires) is by far less than the one associated with steel. The low frequency dynamical behaviour of the suspension can be computed and optimized, provided that the wire bending shape under pendulum motion is known. Due to the production process, fused silica wires are thicker near the two ends (necks), so that analytical bending computations are very complicated. We developed a tool to directly measure the low frequency bending parameters of fused silica wires, and we tested it on the wires produced for the Virgo+ monolithic suspensions. The working principle and a set of test measurements are presented and explained.
Computational methods to extract meaning from text and advance theories of human cognition.
McNamara, Danielle S
2011-01-01
Over the past two decades, researchers have made great advances in the area of computational methods for extracting meaning from text. This research has to a large extent been spurred by the development of latent semantic analysis (LSA), a method for extracting and representing the meaning of words using statistical computations applied to large corpora of text. Since the advent of LSA, researchers have developed and tested alternative statistical methods designed to detect and analyze meaning in text corpora. This research exemplifies how statistical models of semantics play an important role in our understanding of cognition and contribute to the field of cognitive science. Importantly, these models afford large-scale representations of human knowledge and allow researchers to explore various questions regarding knowledge, discourse processing, text comprehension, and language. This topic includes the latest progress by the leading researchers in the endeavor to go beyond LSA. Copyright © 2010 Cognitive Science Society, Inc.
20180312 - Mechanistic Modeling of Developmental Defects through Computational Embryology (SOT)
Significant advances in the genome sciences, in automated high-throughput screening (HTS), and in alternative methods for testing enable rapid profiling of chemical libraries for quantitative effects on diverse cellular activities. While a surfeit of HTS data and information is n...
The Use of Information Technology To Enhance Learning in Geological Field Trips.
ERIC Educational Resources Information Center
Hesthammer, Jonny; Fossen, Haakon; Sautter, Michael; Saether, Bjorn; Johansen, Stale Emile
2002-01-01
Reports on the testing of two approaches to enhance learning in geological field trips through the use of technology. One approach used an advanced flight simulator and the other used digital cameras and computers. (Contains 18 references.) (DDR)
A Historical Perspective on Dynamics Testing at the Langley Research Center
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Kvaternik, Raymond G.; Hanks, Brantley R.
2000-01-01
The experience and advancement of Structural dynamics testing for space system applications at the Langley Research Center of the National Aeronautics and Space Administration (NASA) over the past four decades is reviewed. This experience began in the 1960's with the development of a technology base using a variety of physical models to explore dynamic phenomena and to develop reliable analytical modeling capability for space systems. It continued through the 1970's and 80's with the development of rapid, computer-aided test techniques, the testing of low-natural frequency, gravity-sensitive systems, the testing of integrated structures with active flexible motion control, and orbital flight measurements, It extended into the 1990's where advanced computerized system identification methods were developed for estimating the dynamic states of complex, lightweight, flexible aerospace systems, The scope of discussion in this paper includes ground and flight tests and summarizes lessons learned in both successes and failures.
NASA technology program for future civil air transports
NASA Technical Reports Server (NTRS)
Wright, H. T.
1983-01-01
An assessment is undertaken of the development status of technology, applicable to future civil air transport design, which is currently undergoing conceptual study or testing at NASA facilities. The NASA civil air transport effort emphasizes advanced aerodynamic computational capabilities, fuel-efficient engines, advanced turboprops, composite primary structure materials, advanced aerodynamic concepts in boundary layer laminarization and aircraft configuration, refined control, guidance and flight management systems, and the integration of all these design elements into optimal systems. Attention is given to such novel transport aircraft design concepts as forward swept wings, twin fuselages, sandwich composite structures, and swept blade propfans.
NASA Astrophysics Data System (ADS)
Narciso, Steven J.
2011-08-01
An emerging test and measurement standard called AXIe, AdvancedTCA extensions for Instrumentation, is expected to find wide acceptance within the Physics community as it offers many benefits to applications including shock, plasma, particle and nuclear physics. It is expected that many COTS (commercial off-the-shelf) signal conditioning, acquisition and processing modules will become available from a range of different suppliers. AXIe uses AdvancedTCA® as its basis, but then levers test and measurement industry standards such as PXI, IVI, and LXI to facilitate cooperation and plug-and-play interoperability between COTS instrument suppliers. AXIe's large board footprint and power allows high density in a 19" rack, enabling the development of high-performance signal conditioning, analog-to-digital conversion, and data processing, while offering channel count scalability inherent in modular systems. Synchronization between modules is flexible and provided by two triggering structures: a parallel trigger bus, and radially-distributed, time-matched point-to-point trigger lines. Inter-module communication is also provided with an adjacent module local bus allowing data transfer to 600 Gbits/s in each direction, for example between a front-end digitizer and DSP. AXIe allows embedding high performance computing and a range of COTS AdvancedTCA® computer blades are currently available that provide low cost alternatives to the development of custom signal processing modules. The availability of both LAN and PCI Express allow interconnection between modules, as well as industry-standard high-performance data paths to external host computer systems. AXIe delivers a powerful environment for custom module devel opment. As in the case of VXIbus and PXI before it, commercial development kits are expected to be available. This paper will give an overview of the architectural elements of AXIe 1.0, the compatibility model with AdvancedTCA, and signal acquisition performance of many of the AXIe structures.
Probabilistic design of fibre concrete structures
NASA Astrophysics Data System (ADS)
Pukl, R.; Novák, D.; Sajdlová, T.; Lehký, D.; Červenka, J.; Červenka, V.
2017-09-01
Advanced computer simulation is recently well-established methodology for evaluation of resistance of concrete engineering structures. The nonlinear finite element analysis enables to realistically predict structural damage, peak load, failure, post-peak response, development of cracks in concrete, yielding of reinforcement, concrete crushing or shear failure. The nonlinear material models can cover various types of concrete and reinforced concrete: ordinary concrete, plain or reinforced, without or with prestressing, fibre concrete, (ultra) high performance concrete, lightweight concrete, etc. Advanced material models taking into account fibre concrete properties such as shape of tensile softening branch, high toughness and ductility are described in the paper. Since the variability of the fibre concrete material properties is rather high, the probabilistic analysis seems to be the most appropriate format for structural design and evaluation of structural performance, reliability and safety. The presented combination of the nonlinear analysis with advanced probabilistic methods allows evaluation of structural safety characterized by failure probability or by reliability index respectively. Authors offer a methodology and computer tools for realistic safety assessment of concrete structures; the utilized approach is based on randomization of the nonlinear finite element analysis of the structural model. Uncertainty of the material properties or their randomness obtained from material tests are accounted in the random distribution. Furthermore, degradation of the reinforced concrete materials such as carbonation of concrete, corrosion of reinforcement, etc. can be accounted in order to analyze life-cycle structural performance and to enable prediction of the structural reliability and safety in time development. The results can serve as a rational basis for design of fibre concrete engineering structures based on advanced nonlinear computer analysis. The presented methodology is illustrated on results from two probabilistic studies with different types of concrete structures related to practical applications and made from various materials (with the parameters obtained from real material tests).
NASA Technical Reports Server (NTRS)
Celestina, Mark L.; Fabian, John C.; Kulkarni, Sameer
2012-01-01
This paper describes a collaborative and cost-shared approach to reducing fuel burn under the NASA Environmentally Responsible Aviation project. NASA and General Electric (GE) Aviation are working together aa an integrated team to obtain compressor aerodynamic data that is mutually beneficial to both NASA and GE Aviation. The objective of the High OPR Compressor Task is to test a single stage then two stages of an advanced GE core compressor using state-of-the-art research instrumentation to investigate the loss mechanisms and interaction effects of embedded transonic highly-loaded compressor stages. This paper presents preliminary results from NASA's in-house multistage computational code, APNASA, in preparation for this advanced transonic compressor rig test.
[Isolation and identification methods of enterobacteria group and its technological advancement].
Furuta, Itaru
2007-08-01
In the last half-century, isolation and identification methods of enterobacteria groups have markedly improved by technological advancement. Clinical microbiology tests have changed overtime from tube methods to commercial identification kits and automated identification. Tube methods are the original method for the identification of enterobacteria groups, that is, a basically essential method to recognize bacterial fermentation and biochemical principles. In this paper, traditional tube tests are discussed, such as the utilization of carbohydrates, indole, methyl red, and citrate and urease tests. Commercial identification kits and automated instruments by computer based analysis as current methods are also discussed, and those methods provide rapidity and accuracy. Nonculture techniques of nucleic acid typing methods using PCR analysis, and immunochemical methods using monoclonal antibodies can be further developed.
75 FR 43518 - Advanced Scientific Computing Advisory Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-26
... DEPARTMENT OF ENERGY Advanced Scientific Computing Advisory Committee; Meeting AGENCY: Office of... Scientific Computing Advisory Committee (ASCAC). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770...: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U. S...
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Housner, Jerrold M.
1993-01-01
Recent advances in computer technology that are likely to impact structural analysis and design of flight vehicles are reviewed. A brief summary is given of the advances in microelectronics, networking technologies, and in the user-interface hardware and software. The major features of new and projected computing systems, including high performance computers, parallel processing machines, and small systems, are described. Advances in programming environments, numerical algorithms, and computational strategies for new computing systems are reviewed. The impact of the advances in computer technology on structural analysis and the design of flight vehicles is described. A scenario for future computing paradigms is presented, and the near-term needs in the computational structures area are outlined.
Advanced flight control system study
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.
1982-01-01
A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.
NASA Technical Reports Server (NTRS)
Coogan, J. J.
1986-01-01
Modifications were designed for the B-737-100 Research Aircraft autobrake system hardware of the Advanced Transport Operating Systems (ATOPS) Program at Langley Research Center. These modifications will allow the on-board flight control computer to control the aircraft deceleration after landing to a continuously variable level for the purpose of executing automatic high speed turn-offs from the runway. A bread board version of the proposed modifications was built and tested in simulated stopping conditions. Test results, for various aircraft weights, turnoff speed, winds, and runway conditions show that the turnoff speeds are achieved generally with errors less than 1 ft/sec.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driscoll, Frederick R.
The University of Washington (UW) - Northwest National Marine Renewable Energy Center (UW-NNMREC) and the National Renewable Energy Laboratory (NREL) will collaborate to advance research and development (R&D) of Marine Hydrokinetic (MHK) renewable energy technology, specifically renewable energy captured from ocean tidal currents. UW-NNMREC is endeavoring to establish infrastructure, capabilities and tools to support in-water testing of marine energy technology. NREL is leveraging its experience and capabilities in field testing of wind systems to develop protocols and instrumentation to advance field testing of MHK systems. Under this work, UW-NNMREC and NREL will work together to develop a common instrumentation systemmore » and testing methodologies, standards and protocols. UW-NNMREC is also establishing simulation capabilities for MHK turbine and turbine arrays. NREL has extensive experience in wind turbine array modeling and is developing several computer based numerical simulation capabilities for MHK systems. Under this CRADA, UW-NNMREC and NREL will work together to augment single device and array modeling codes. As part of this effort UW NNMREC will also work with NREL to run simulations on NREL's high performance computer system.« less
Evaluation of ADAM/1 model for advanced coal extraction concepts
NASA Technical Reports Server (NTRS)
Deshpande, G. K.; Gangal, M. D.
1982-01-01
Several existing computer programs for estimating life cycle cost of mining systems were evaluated. A commercially available program, ADAM/1 was found to be satisfactory in relation to the needs of the advanced coal extraction project. Two test cases were run to confirm the ability of the program to handle nonconventional mining equipment and procedures. The results were satisfactory. The model, therefore, is recommended to the project team for evaluation of their conceptual designs.
NASA Astrophysics Data System (ADS)
Heglund, Brian
Educators recognize the importance of reasoning ability for development of critical thinking skills, conceptual change, metacognition, and participation in 21st century society. There is a recognized need for students to improve their skills of argumentation, however, argumentation is not explicitly taught outside logic and philosophy---subjects that are not part of the K-12 curriculum. One potential way of supporting the development of argumentation skills in the K-12 context is through incorporating Computer-Assisted Argument Mapping to evaluate arguments. This quasi-experimental study tested the effects of such argument mapping software and was informed by the following two research questions: 1. To what extent does the collaborative use of Computer-Assisted Argumentation Mapping to evaluate competing theories influence the critical thinking skill of argument evaluation, metacognitive awareness, and conceptual knowledge acquisition in high school Advanced Placement physics, compared to the more traditional method of text tables that does not employ Computer-Assisted Argumentation Mapping? 2. What are the student perceptions of the pros and cons of argument evaluation in the high school Advanced Placement physics environment? This study examined changes in critical thinking skills, including argumentation evaluation skills, as well as metacognitive awareness and conceptual knowledge, in two groups: a treatment group using Computer-Assisted Argumentation Mapping to evaluate physics arguments, and a comparison group using text tables to evaluate physics arguments. Quantitative and qualitative methods for collecting and analyzing data were used to answer the research questions. Quantitative data indicated no significant difference between the experimental groups, and qualitative data suggested students perceived pros and cons of argument evaluation in the high school Advanced Placement physics environment, such as self-reported sense of improvement in argument evaluation and low perceived value of the learning task, respectively. The discussion presents implications for practice and research, such as introducing motivation scaffolds to support appreciation of task value, and addressing major differences between the design of this study and similar published studies, respectively. This work provides contributions in that it tested the effect of Computer-Assisted Argumentation Mapping on the critical thinking skills of twelfth-grade students within the context of evaluating physics arguments, a previously unexplored age group and domain.
Advanced Free Flight Planner and Dispatcher's Workstation: Preliminary Design Specification
NASA Technical Reports Server (NTRS)
Wilson, J.; Wright, C.; Couluris, G. J.
1997-01-01
The National Aeronautics and Space Administration (NASA) has implemented the Advanced Air Transportation Technology (AATT) program to investigate future improvements to the national and international air traffic management systems. This research, as part of the AATT program, developed preliminary design requirements for an advanced Airline Operations Control (AOC) dispatcher's workstation, with emphasis on flight planning. This design will support the implementation of an experimental workstation in NASA laboratories that would emulate AOC dispatch operations. The work developed an airline flight plan data base and specified requirements for: a computer tool for generation and evaluation of free flight, user preferred trajectories (UPT); the kernel of an advanced flight planning system to be incorporated into the UPT-generation tool; and an AOC workstation to house the UPT-generation tool and to provide a real-time testing environment. A prototype for the advanced flight plan optimization kernel was developed and demonstrated. The flight planner uses dynamic programming to search a four-dimensional wind and temperature grid to identify the optimal route, altitude and speed for successive segments of a flight. An iterative process is employed in which a series of trajectories are successively refined until the LTPT is identified. The flight planner is designed to function in the current operational environment as well as in free flight. The free flight environment would enable greater flexibility in UPT selection based on alleviation of current procedural constraints. The prototype also takes advantage of advanced computer processing capabilities to implement more powerful optimization routines than would be possible with older computer systems.
Modular, Semantics-Based Composition of Biosimulation Models
ERIC Educational Resources Information Center
Neal, Maxwell Lewis
2010-01-01
Biosimulation models are valuable, versatile tools used for hypothesis generation and testing, codification of biological theory, education, and patient-specific modeling. Driven by recent advances in computational power and the accumulation of systems-level experimental data, modelers today are creating models with an unprecedented level of…
EVALUATION OF A DAPHNIA BIOMONITOR FOR REAL-TIME DRINKING WATER SOURCE TESTING
The quality of drinking water sources has come under closer scrutiny in recent years. Issues ranging from ecological to public health, to national security are under consideration. With advances in electronic and computer technology, biomonitors are being developed that can asses...
Bearing tester data compilation, analysis, and reporting and bearing math modeling
NASA Technical Reports Server (NTRS)
1986-01-01
A test condition data base was developed for the Bearing and Seal Materials Tester (BSMT) program which permits rapid retrieval of test data for trend analysis and evaluation. A model was developed for the Space shuttle Main Engine (SSME) Liquid Oxygen (LOX) turbopump shaft/bearing system. The model was used to perform parametric analyses to determine the sensitivity of bearing operating characteristics and temperatures to variations in: axial preload, contact friction, coolant flow and subcooling, heat transfer coefficients, outer race misalignments, and outer race to isolator clearances. The bearing program ADORE (Advanced Dynamics of Rolling Elements) was installed on the UNIVAC 1100/80 computer system and is operational. ADORE is an advanced FORTRAN computer program for the real time simulation of the dynamic performance of rolling bearings. A model of the 57 mm turbine-end bearing is currently being checked out. Analyses were conducted to estimate flow work energy for several flow diverter configurations and coolant flow rates for the LOX BSMT.
ERIC Educational Resources Information Center
Ercan, Orhan; Bilen, Kadir
2014-01-01
Advances in computer technologies and adoption of related methods and techniques in education have developed parallel to each other. This study focuses on the need to utilize more than one teaching method and technique in education rather than focusing on a single teaching method. By using the pre-test post-test and control group semi-experimental…
Computation Directorate 2008 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, D L
2009-03-25
Whether a computer is simulating the aging and performance of a nuclear weapon, the folding of a protein, or the probability of rainfall over a particular mountain range, the necessary calculations can be enormous. Our computers help researchers answer these and other complex problems, and each new generation of system hardware and software widens the realm of possibilities. Building on Livermore's historical excellence and leadership in high-performance computing, Computation added more than 331 trillion floating-point operations per second (teraFLOPS) of power to LLNL's computer room floors in 2008. In addition, Livermore's next big supercomputer, Sequoia, advanced ever closer to itsmore » 2011-2012 delivery date, as architecture plans and the procurement contract were finalized. Hyperion, an advanced technology cluster test bed that teams Livermore with 10 industry leaders, made a big splash when it was announced during Michael Dell's keynote speech at the 2008 Supercomputing Conference. The Wall Street Journal touted Hyperion as a 'bright spot amid turmoil' in the computer industry. Computation continues to measure and improve the costs of operating LLNL's high-performance computing systems by moving hardware support in-house, by measuring causes of outages to apply resources asymmetrically, and by automating most of the account and access authorization and management processes. These improvements enable more dollars to go toward fielding the best supercomputers for science, while operating them at less cost and greater responsiveness to the customers.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
... Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology..., Computational, and Systems Biology [External Review Draft]'' (EPA/600/R-13/214A). EPA is also announcing that... Advances in Molecular, Computational, and Systems Biology [External Review Draft]'' is available primarily...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-13
... Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology... Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology..., computational, and systems biology data can better inform risk assessment. This draft document is available for...
Making Advanced Computer Science Topics More Accessible through Interactive Technologies
ERIC Educational Resources Information Center
Shao, Kun; Maher, Peter
2012-01-01
Purpose: Teaching advanced technical concepts in a computer science program to students of different technical backgrounds presents many challenges. The purpose of this paper is to present a detailed experimental pedagogy in teaching advanced computer science topics, such as computer networking, telecommunications and data structures using…
Simulated parallel annealing within a neighborhood for optimization of biomechanical systems.
Higginson, J S; Neptune, R R; Anderson, F C
2005-09-01
Optimization problems for biomechanical systems have become extremely complex. Simulated annealing (SA) algorithms have performed well in a variety of test problems and biomechanical applications; however, despite advances in computer speed, convergence to optimal solutions for systems of even moderate complexity has remained prohibitive. The objective of this study was to develop a portable parallel version of a SA algorithm for solving optimization problems in biomechanics. The algorithm for simulated parallel annealing within a neighborhood (SPAN) was designed to minimize interprocessor communication time and closely retain the heuristics of the serial SA algorithm. The computational speed of the SPAN algorithm scaled linearly with the number of processors on different computer platforms for a simple quadratic test problem and for a more complex forward dynamic simulation of human pedaling.
M/A-COM linkabit eastern operations
NASA Astrophysics Data System (ADS)
Mills, D. L.; Avramovic, Z.
1983-03-01
This first Quarterly Project Report on LINKABIT's contribution to the Defense Advanced Research Projects Agency (DARPA) Internet Program covers the period from 22 December 1982 through 21 March 1983. LINKABIT's support of the Internet Program is concentrated in the areas of protocol design, implementation, testing, and evaluation. In addition, LINKABIT staff are providing integration and support services for certain computer systems to be installed at DARPA sites in Washington, D.C., and Stuttgart, West Germany. During the period covered by this report, LINKABIT organized the project activities and established staff responsibilities. Several computers and peripheral devices were made available from Government sources for use in protocol development and network testing. Considerable time was devoted to installing this equipment, integrating the software, and testing it with the Internet system.
Advanced Gasoline Turbocharged Direction Injection (GTDI) Engine Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Terrance
This program was undertaken in response to US Department of Energy Solicitation DE-FOA-0000079, resulting in a cooperative agreement with Ford and MTU to demonstrate improvement of fuel efficiency in a vehicle equipped with an advanced GTDI engine. Ford Motor Company has invested significantly in GTDI engine technology as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost technology. Ford envisions additional fuel economy improvement in the medium and long term by further advancing EcoBoost technology. The approach for the project was to engineer a comprehensive suite of gasoline engine systems technologies to achieve the project objectives, andmore » to progressively demonstrate the objectives via concept analysis / computer modeling, single-cylinder and multi-cylinder engine testing on engine dynamometer, and vehicle level testing on chassis rolls.« less
Flight experience with a fail-operational digital fly-by-wire control system
NASA Technical Reports Server (NTRS)
Brown, S. R.; Szalai, K. J.
1977-01-01
The NASA Dryden Flight Research Center is flight testing a triply redundant digital fly-by-wire (DFBW) control system installed in an F-8 aircraft. The full-time, full-authority system performs three-axis flight control computations, including stability and command augmentation, autopilot functions, failure detection and isolation, and self-test functions. Advanced control law experiments include an active flap mode for ride smoothing and maneuver drag reduction. This paper discusses research being conducted on computer synchronization, fault detection, fault isolation, and recovery from transient faults. The F-8 DFBW system has demonstrated immunity from nuisance fault declarations while quickly identifying truly faulty components.
Computer Simulation and Modeling of CO2 Removal Systems for Exploration 2013-2014
NASA Technical Reports Server (NTRS)
Coker, R.; Knox, J.; Gomez, C.
2015-01-01
The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project and the follow-on Life Support Systems (LSS) project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper will describes the testing and 1-D modeling of the combined water desiccant and carbon dioxide sorbent subsystems of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development.
NASA Technical Reports Server (NTRS)
Abramson, N.
1974-01-01
The Aloha system was studied and developed and extended to advanced forms of computer communications networks. Theoretical and simulation studies of Aloha type radio channels for use in packet switched communications networks were performed. Improved versions of the Aloha communications techniques and their extensions were tested experimentally. A packet radio repeater suitable for use with the Aloha system operational network was developed. General studies of the organization of multiprocessor systems centered on the development of the BCC 500 computer were concluded.
NASA Technical Reports Server (NTRS)
Spring, Samuel D.
2006-01-01
This report documents the results of an experimental program conducted on two advanced metallic alloy systems (Rene' 142 directionally solidified alloy (DS) and Rene' N6 single crystal alloy) and the characterization of two distinct internal state variable inelastic constitutive models. The long term objective of the study was to develop a computational life prediction methodology that can integrate the obtained material data. A specialized test matrix for characterizing advanced unified viscoplastic models was specified and conducted. This matrix included strain controlled tensile tests with intermittent relaxtion test with 2 hr hold times, constant stress creep tests, stepped creep tests, mixed creep and plasticity tests, cyclic temperature creep tests and tests in which temperature overloads were present to simulate actual operation conditions for validation of the models. The selected internal state variable models where shown to be capable of representing the material behavior exhibited by the experimental results; however the program ended prior to final validation of the models.
NASA Technical Reports Server (NTRS)
Barrett, Eamon B. (Editor); Pearson, James J. (Editor)
1989-01-01
Image understanding concepts and models, image understanding systems and applications, advanced digital processors and software tools, and advanced man-machine interfaces are among the topics discussed. Particular papers are presented on such topics as neural networks for computer vision, object-based segmentation and color recognition in multispectral images, the application of image algebra to image measurement and feature extraction, and the integration of modeling and graphics to create an infrared signal processing test bed.
NASA Technical Reports Server (NTRS)
Rizk, Magdi H.
1988-01-01
A scheme is developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The scheme updates the design parameter iterative solutions and the flow variable iterative solutions simultaneously. It is applied to an advanced propeller design problem with the Euler equations used as the flow governing equations. The scheme's accuracy, efficiency and sensitivity to the computational parameters are tested.
1981-12-01
ADVANCED COMPUTER TYPOGRAPHY .(U) DEC 81 A V HERSHEY UNCLASSIFIED NPS012-81-005 M MEEEIEEEII IIUJIL15I.4 MICROCQP RE SO.JjI ON ft R NPS012-81-005...NAVAL POSTGRADUATE SCHOOL 0Monterey, California DTIC SELECTEWA APR 5 1982 B ADVANCED COMPUTER TYPOGRAPHY by A. V. HERSHEY December 1981 OApproved for...Subtitle) S. TYPE Or REPORT & PERIOD COVERED Final ADVANCED COMPUTER TYPOGRAPHY Dec 1979 - Dec 1981 S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) S CONTRACT
NASA Astrophysics Data System (ADS)
Rabinovitch, Jason
Motivated by recent MSL results where the ablation rate of the PICA heatshield was over-predicted, and staying true to the objectives outlined in the NASA Space Technology Roadmaps and Priorities report, this work focuses on advancing EDL technologies for future space missions. Due to the difficulties in performing flight tests in the hypervelocity regime, a new ground testing facility called the vertical expansion tunnel is proposed. The adverse effects from secondary diaphragm rupture in an expansion tunnel may be reduced or eliminated by orienting the tunnel vertically, matching the test gas pressure and the accelerator gas pressure, and initially separating the test gas from the accelerator gas by density stratification. If some sacrifice of the reservoir conditions can be made, the VET can be utilized in hypervelocity ground testing, without the problems associated with secondary diaphragm rupture. The performance of different constraints for the Rate-Controlled Constrained-Equilibrium (RCCE) method is investigated in the context of modeling reacting flows characteristic to ground testing facilities, and re-entry conditions. The effectiveness of different constraints are isolated, and new constraints previously unmentioned in the literature are introduced. Three main benefits from the RCCE method were determined: 1) the reduction in number of equations that need to be solved to model a reacting flow; 2) the reduction in stiffness of the system of equations needed to be solved; and 3) the ability to tabulate chemical properties as a function of a constraint once, prior to running a simulation, along with the ability to use the same table for multiple simulations. Finally, published physical properties of PICA are compiled, and the composition of the pyrolysis gases that form at high temperatures internal to a heatshield is investigated. A necessary link between the composition of the solid resin, and the composition of the pyrolysis gases created is provided. This link, combined with a detailed investigation into a reacting pyrolysis gas mixture, allows a much needed consistent, and thorough description of many of the physical phenomena occurring in a PICA heatshield, and their implications, to be presented. Through the use of computational fluid mechanics and computational chemistry methods, significant contributions have been made to advancing ground testing facilities, computational methods for reacting flows, and ablation modeling.
ROS-IGTL-Bridge: an open network interface for image-guided therapy using the ROS environment.
Frank, Tobias; Krieger, Axel; Leonard, Simon; Patel, Niravkumar A; Tokuda, Junichi
2017-08-01
With the growing interest in advanced image-guidance for surgical robot systems, rapid integration and testing of robotic devices and medical image computing software are becoming essential in the research and development. Maximizing the use of existing engineering resources built on widely accepted platforms in different fields, such as robot operating system (ROS) in robotics and 3D Slicer in medical image computing could simplify these tasks. We propose a new open network bridge interface integrated in ROS to ensure seamless cross-platform data sharing. A ROS node named ROS-IGTL-Bridge was implemented. It establishes a TCP/IP network connection between the ROS environment and external medical image computing software using the OpenIGTLink protocol. The node exports ROS messages to the external software over the network and vice versa simultaneously, allowing seamless and transparent data sharing between the ROS-based devices and the medical image computing platforms. Performance tests demonstrated that the bridge could stream transforms, strings, points, and images at 30 fps in both directions successfully. The data transfer latency was <1.2 ms for transforms, strings and points, and 25.2 ms for color VGA images. A separate test also demonstrated that the bridge could achieve 900 fps for transforms. Additionally, the bridge was demonstrated in two representative systems: a mock image-guided surgical robot setup consisting of 3D slicer, and Lego Mindstorms with ROS as a prototyping and educational platform for IGT research; and the smart tissue autonomous robot surgical setup with 3D Slicer. The study demonstrated that the bridge enabled cross-platform data sharing between ROS and medical image computing software. This will allow rapid and seamless integration of advanced image-based planning/navigation offered by the medical image computing software such as 3D Slicer into ROS-based surgical robot systems.
Improving Conceptual Design for Launch Vehicles
NASA Technical Reports Server (NTRS)
Olds, John R.
1998-01-01
This report summarizes activities performed during the second year of a three year cooperative agreement between NASA - Langley Research Center and Georgia Tech. Year 1 of the project resulted in the creation of a new Cost and Business Assessment Model (CABAM) for estimating the economic performance of advanced reusable launch vehicles including non-recurring costs, recurring costs, and revenue. The current year (second year) activities were focused on the evaluation of automated, collaborative design frameworks (computation architectures or computational frameworks) for automating the design process in advanced space vehicle design. Consistent with NASA's new thrust area in developing and understanding Intelligent Synthesis Environments (ISE), the goals of this year's research efforts were to develop and apply computer integration techniques and near-term computational frameworks for conducting advanced space vehicle design. NASA - Langley (VAB) has taken a lead role in developing a web-based computing architectures within which the designer can interact with disciplinary analysis tools through a flexible web interface. The advantages of this approach are, 1) flexible access to the designer interface through a simple web browser (e.g. Netscape Navigator), 2) ability to include existing 'legacy' codes, and 3) ability to include distributed analysis tools running on remote computers. To date, VAB's internal emphasis has been on developing this test system for the planetary entry mission under the joint Integrated Design System (IDS) program with NASA - Ames and JPL. Georgia Tech's complementary goals this year were to: 1) Examine an alternate 'custom' computational architecture for the three-discipline IDS planetary entry problem to assess the advantages and disadvantages relative to the web-based approach.and 2) Develop and examine a web-based interface and framework for a typical launch vehicle design problem.
Mars Science Laboratory CHIMRA: A Device for Processing Powdered Martian Samples
NASA Technical Reports Server (NTRS)
Sunshine, Daniel
2010-01-01
The CHIMRA is an extraterrestrial sample acquisition and processing device for the Mars Science Laboratory that emphasizes robustness and adaptability through design configuration. This work reviews the guidelines utilized to invent the initial CHIMRA and the strategy employed in advancing the design; these principles will be discussed in relation to both the final CHIMRA design and similar future devices. The computational synthesis necessary to mature a boxed-in impact-generating mechanism will be presented alongside a detailed mechanism description. Results from the development testing required to advance the design for a highly-loaded, long-life and high-speed bearing application will be presented. Lessons learned during the assembly and testing of this subsystem as well as results and lessons from the sample-handling development test program will be reviewed.
NASA Technical Reports Server (NTRS)
1990-01-01
Since the Final Environmental Impact Statement (FEIS) and Record of Decision on the FEIS describing the potential impacts to human health and the environment associated with the program, three factors have caused NASA to initiate additional studies regarding these issues. These factors are: (1) The U.S. Army Corps of Engineers and the Environmental Protection Agency (EPA) agreed to use the same comprehensive procedures to identify and delineate wetlands; (2) EPA has given NASA further guidance on how best to simulate the exhaust plume from the Advanced Solid Rocket Motor (ASRM) testing through computer modeling, enabling more realistic analysis of emission impacts; and (3) public concerns have been raised concerning short and long term impacts on human health and the environment from ASRM testing.
Composite structural materials. [aircraft structures
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1980-01-01
The use of filamentary composite materials in the design and construction of primary aircraft structures is considered with emphasis on efforts to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, and reliability and life prediction. The redesign of a main spar/rib region on the Boeing 727 elevator near its actuator attachment point is discussed. A composite fabrication and test facility is described as well as the use of minicomputers for computer aided design. Other topics covered include (1) advanced structural analysis methids for composites; (2) ultrasonic nondestructive testing of composite structures; (3) optimum combination of hardeners in the cure of epoxy; (4) fatigue in composite materials; (5) resin matrix characterization and properties; (6) postbuckling analysis of curved laminate composite panels; and (7) acoustic emission testing of composite tensile specimens.
NASA Technical Reports Server (NTRS)
Paynter, G. C.; Salemann, V.; Strom, E. E. I.
1984-01-01
A numerical procedure which solves the parabolized Navier-Stokes (PNS) equations on a body fitted mesh was used to compute the flow about the forebody of an advanced tactical supercruise fighter configuration in an effort to explore the use of a PNS method for design of supersonic cruise forebody geometries. Forebody flow fields were computed at Mach numbers of 1.5, 2.0, and 2.5, and at angles-of-attack of 0 deg, 4 deg, and 8 deg. at each Mach number. Computed results are presented at several body stations and include contour plots of Mach number, total pressure, upwash angle, sidewash angle and cross-plane velocity. The computational analysis procedure was found reliable for evaluating forebody flow fields of advanced aircraft configurations for flight conditions where the vortex shed from the wing leading edge is not a dominant flow phenomenon. Static pressure distributions and boundary layer profiles on the forebody and wing were surveyed in a wind tunnel test, and the analytical results are compared to the data. The current status of the parabolized flow flow field code is described along with desirable improvements in the code.
QRS detection based ECG quality assessment.
Hayn, Dieter; Jammerbund, Bernhard; Schreier, Günter
2012-09-01
Although immediate feedback concerning ECG signal quality during recording is useful, up to now not much literature describing quality measures is available. We have implemented and evaluated four ECG quality measures. Empty lead criterion (A), spike detection criterion (B) and lead crossing point criterion (C) were calculated from basic signal properties. Measure D quantified the robustness of QRS detection when applied to the signal. An advanced Matlab-based algorithm combining all four measures and a simplified algorithm for Android platforms, excluding measure D, were developed. Both algorithms were evaluated by taking part in the Computing in Cardiology Challenge 2011. Each measure's accuracy and computing time was evaluated separately. During the challenge, the advanced algorithm correctly classified 93.3% of the ECGs in the training-set and 91.6 % in the test-set. Scores for the simplified algorithm were 0.834 in event 2 and 0.873 in event 3. Computing time for measure D was almost five times higher than for other measures. Required accuracy levels depend on the application and are related to computing time. While our simplified algorithm may be accurate for real-time feedback during ECG self-recordings, QRS detection based measures can further increase the performance if sufficient computing power is available.
NASA Technical Reports Server (NTRS)
Papadopoulos, Periklis; Venkatapathy, Ethiraj; Prabhu, Dinesh; Loomis, Mark P.; Olynick, Dave; Arnold, James O. (Technical Monitor)
1998-01-01
Recent advances in computational power enable computational fluid dynamic modeling of increasingly complex configurations. A review of grid generation methodologies implemented in support of the computational work performed for the X-38 and X-33 are presented. In strategizing topological constructs and blocking structures factors considered are the geometric configuration, optimal grid size, numerical algorithms, accuracy requirements, physics of the problem at hand, computational expense, and the available computer hardware. Also addressed are grid refinement strategies, the effects of wall spacing, and convergence. The significance of grid is demonstrated through a comparison of computational and experimental results of the aeroheating environment experienced by the X-38 vehicle. Special topics on grid generation strategies are also addressed to model control surface deflections, and material mapping.
Airloads Correlation of the UH-60A Rotor Inside the 40- by 80-Foot Wind Tunnel
NASA Technical Reports Server (NTRS)
Chang, I-Chung; Norman, Thomas R.; Romander, Ethan A.
2013-01-01
The presented research validates the capability of a loosely-coupled computational fluid dynamics (CFD) and comprehensive rotorcraft analysis (CRA) code to calculate the flowfield around a rotor and test stand mounted inside a wind tunnel. The CFD/CRA predictions for the full-scale UH-60A Airloads Rotor inside the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center are compared with the latest measured airloads and performance data. The studied conditions include a speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed up to and including stall. For the speed sweep, wind tunnel modeling becomes important at advance ratios greater than 0.37 and test stand modeling becomes increasingly important as the advance ratio increases. For the thrust sweep, both the wind tunnel and test stand modeling become important as the rotor approaches stall. Despite the beneficial effects of modeling the wind tunnel and test stand, the new models do not completely resolve the current airload discrepancies between prediction and experiment.
2013-01-01
Background Incorporation of information technology advancements in healthcare has gained wide acceptance in the last two decades. Developed countries have successfully incorporated information technology advancements in their healthcare system thus, improving healthcare. However, only a limited application of information technology advancements is seen in developing countries in their healthcare system. Hence, this study was aimed at assessing knowledge and utilization of computer among health workers in Addis Ababa hospitals. Methods A quantitative cross-sectional study was conducted among 304 health workers who were selected using stratified sampling technique from all governmental hospitals in Addis Ababa. Data was collected from April 15 to April 30, 2010 using a structured, self-administered, and pre-tested questionnaire from five government hospitals in Addis Ababa. The data was entered into Epi Info version 3.5.1 and exported to SPSS version 16. Analysis was done using multinomial logistic regression technique. Results A total of 270 participants, age ranging from 21 to 60 years responded to the survey (88.8% response rate). A total of 91 (33.7%) respondents had an adequate knowledge of computers while 108 (40.0%) had fair knowledge and 71(26.3%) of the respondents showed inadequate knowledge. A total of 38(14.1%) were adequately utilizing computers, 14(5.2%) demonstrated average or fair utilization and majority of the respondents 218(80.7%) inadequately utilized computers. Significant predictor variables were average monthly income, job satisfaction index and own computer possession. Conclusions Computer knowledge and utilization habit of health workers were found to be very low. Increasing accessibility to computers and delivering training on the use of computers for workers will increases the knowledge and utilization of computers. This will facilitate the rate of diffusion of the technology to the health sector. Hence, programs targeted at enhancing knowledge and skill of computer use and increasing access to computer should be designed. The association between computer knowledge/skill and health care delivery competence should be studied. PMID:23514191
From Marginal Adjustments to Meaningful Change: Rethinking Weapon System Acquisition
2010-01-01
phones, digital cameras, Blackberries , GPS navigation systems, Bluetooth headsets, et cetera. To achieve these breakthroughs, businesses accept a greater...informing the detailed design phase—is less valid. For instance, even with advances in computational fl uid dynamics, wind tunnel testing and live fl ight...of Federal Procurement Pol- icy, 2007. Antón, Philip S., Eugene C. Gritton, Richard Mesic, and Paul Steinberg, Wind Tunnel and Propulsion Test
High resolution X-ray CT for advanced electronics packaging
NASA Astrophysics Data System (ADS)
Oppermann, M.; Zerna, T.
2017-02-01
Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).
1983-10-28
Computing. By seizing an opportunity to leverage recent advances in artificial intelligence, computer science, and microelectronics, the Agency plans...occurred in many separated areas of artificial intelligence, computer science, and microelectronics. Advances in "expert system" technology now...and expert knowledge o Advances in Artificial Intelligence: Mechanization of speech recognition, vision, and natural language understanding. o
Specification for Qualification and Certification for Level III - Expert Welders.
ERIC Educational Resources Information Center
American Welding Society, Miami, FL.
This document defines the requirements and program for the American Welding Society to certify expert welders through an evaluation process entailing performance qualification and practical knowledge tests requiring the use of advanced reading, computational, and manual skills. The following items are included: statement of the standard's scope;…
Software/hardware distributed processing network supporting the Ada environment
NASA Astrophysics Data System (ADS)
Wood, Richard J.; Pryk, Zen
1993-09-01
A high-performance, fault-tolerant, distributed network has been developed, tested, and demonstrated. The network is based on the MIPS Computer Systems, Inc. R3000 Risc for processing, VHSIC ASICs for high speed, reliable, inter-node communications and compatible commercial memory and I/O boards. The network is an evolution of the Advanced Onboard Signal Processor (AOSP) architecture. It supports Ada application software with an Ada- implemented operating system. A six-node implementation (capable of expansion up to 256 nodes) of the RISC multiprocessor architecture provides 120 MIPS of scalar throughput, 96 Mbytes of RAM and 24 Mbytes of non-volatile memory. The network provides for all ground processing applications, has merit for space-qualified RISC-based network, and interfaces to advanced Computer Aided Software Engineering (CASE) tools for application software development.
FBIS report. Science and technology: Europe/International, March 29, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-29
;Partial Contents: Advanced Materials (EU Project to Improve Production in Metal Matrix Compounds Noted, Germany: Extremely Hard Carbon Coating Development, Italy: Director of CNR Metallic Materials Institute Interviewed); Aerospace (ESA Considers Delays, Reductions as Result of Budget Cuts, Italy: Space Agency`s Director on Restructuring, Future Plans); Automotive, Transportation (EU: Clean Diesel Engine Technology Research Reviewed); Biotechnology (Germany`s Problems, Successes in Biotechnology Discussed); Computers (EU Europort Parallel Computing Project Concluded, Italy: PQE 2000 Project on Massively Parallel Systems Viewed); Defense R&D (France: Future Tasks of `Brevel` Military Intelligence Drone Noted); Energy, Environment (German Scientist Tests Elimination of Phosphates); Advanced Manufacturing (France:more » Advanced Rapid Prototyping System Presented); Lasers, Sensors, Optics (France: Strategy of Cilas Laser Company Detailed); Microelectronics (France: Simulation Company to Develop Microelectronic Manufacturing Application); Nuclear R&D (France: Megajoule Laser Plan, Cooperation with Livermore Lab Noted); S&T Policy (EU Efforts to Aid Small Companies` Research Viewed); Telecommunications (France Telecom`s Way to Internet).« less
Clinically expedient reporting of rapid diagnostic test information.
Doern, G V
1986-03-01
With the development of rapid diagnostic tests in the clinical microbiology laboratory has come an awareness of the importance of rapid results reporting. Clearly, the potential clinical impact of rapid diagnostic tests is dependent on expeditious reporting. Traditional manual reporting systems are encumbered by the necessity of transcription of test information onto hard copy reports and then the subsequent distribution of such reports into the hands of the user. Laboratory computers when linked directly to CRTs located in nursing stations, ambulatory clinics, or physician's offices, both inside and outside of the hospital, permit essentially instantaneous transfer of test results from the laboratory to the clinician. Computer-assisted results reporting, while representing a significant advance over manual reporting systems is not, however, without problems. Concerns include validation of test information, authorization of users with access to test information, mechanical integrity, and cost. These issues notwithstanding, computerized results reporting will undoubtedly play a central role in optimizing the clinical impact of rapid diagnostic tests.
Outline of CS application experiments
NASA Astrophysics Data System (ADS)
Otsu, Y.; Kondoh, K.; Matsumoto, M.
1985-09-01
To promote and investigate the practical application of satellite use, CS application experiments for various social activity needs, including those of public services such as the National Police Agency and the Japanese National Railway, computer network services, news material transmissions, and advanced teleconference activities, were performed. Public service satellite communications systems were developed and tested. Based on results obtained, several public services have implemented CS-2 for practical disaster-back-up uses. Practical application computer network and enhanced video-conference experiments have also been performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2000-02-01
DOE support for a broad research program in the sciences of complexity permitted the Santa Fe Institute to initiate new collaborative research within its integrative core activities as well as to host visitors to participate in research on specific topics that serve as motivation and testing ground for the study of the general principles of complex systems. Results are presented on computational biology, biodiversity and ecosystem research, and advanced computing and simulation.
NASA Technical Reports Server (NTRS)
Garbeff, Theodore J., II; Baerny, Jennifer K.
2017-01-01
The following details recent efforts undertaken at the NASA Ames Unitary Plan wind tunnels to design and deploy an advanced, production-level infrared (IR) flow visualization data system. Highly sensitive IR cameras, coupled with in-line image processing, have enabled the visualization of wind tunnel model surface flow features as they develop in real-time. Boundary layer transition, shock impingement, junction flow, vortex dynamics, and buffet are routinely observed in both transonic and supersonic flow regimes all without the need of dedicated ramps in test section total temperature. Successful measurements have been performed on wing-body sting mounted test articles, semi-span floor mounted aircraft models, and sting mounted launch vehicle configurations. The unique requirements of imaging in production wind tunnel testing has led to advancements in the deployment of advanced IR cameras in a harsh test environment, robust data acquisition storage and workflow, real-time image processing algorithms, and evaluation of optimal surface treatments. The addition of a multi-camera IR flow visualization data system to the Ames UPWT has demonstrated itself to be a valuable analyses tool in the study of new and old aircraft/launch vehicle aerodynamics and has provided new insight for the evaluation of computational techniques.
Nielsen, Jens E.; Gunner, M. R.; Bertrand García-Moreno, E.
2012-01-01
The pKa Cooperative http://www.pkacoop.org was organized to advance development of accurate and useful computational methods for structure-based calculation of pKa values and electrostatic energy in proteins. The Cooperative brings together laboratories with expertise and interest in theoretical, computational and experimental studies of protein electrostatics. To improve structure-based energy calculations it is necessary to better understand the physical character and molecular determinants of electrostatic effects. The Cooperative thus intends to foment experimental research into fundamental aspects of proteins that depend on electrostatic interactions. It will maintain a depository for experimental data useful for critical assessment of methods for structure-based electrostatics calculations. To help guide the development of computational methods the Cooperative will organize blind prediction exercises. As a first step, computational laboratories were invited to reproduce an unpublished set of experimental pKa values of acidic and basic residues introduced in the interior of staphylococcal nuclease by site-directed mutagenesis. The pKa values of these groups are unique and challenging to simulate owing to the large magnitude of their shifts relative to normal pKa values in water. Many computational methods were tested in this 1st Blind Prediction Challenge and critical assessment exercise. A workshop was organized in the Telluride Science Research Center to assess objectively the performance of many computational methods tested on this one extensive dataset. This volume of PROTEINS: Structure, Function, and Bioinformatics introduces the pKa Cooperative, presents reports submitted by participants in the blind prediction challenge, and highlights some of the problems in structure-based calculations identified during this exercise. PMID:22002877
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
1996-01-01
NASA's advanced propulsion system Small Scale Magnetic Disturbances/Advanced Technology Development (SSME/ATD) has been undergoing extensive flight certification and developmental testing, which involves large numbers of health monitoring measurements. To enhance engine safety and reliability, detailed analysis and evaluation of the measurement signals are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce the risk of catastrophic system failures and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. During the development of SSME, ASRI participated in the research and development of several advanced non- linear signal diagnostic methods for health monitoring and failure prediction in turbomachinery components. However, due to the intensive computational requirement associated with such advanced analysis tasks, current SSME dynamic data analysis and diagnostic evaluation is performed off-line following flight or ground test with a typical diagnostic turnaround time of one to two days. The objective of MSFC's MPP Prototype System is to eliminate such 'diagnostic lag time' by achieving signal processing and analysis in real-time. Such an on-line diagnostic system can provide sufficient lead time to initiate corrective action and also to enable efficient scheduling of inspection, maintenance and repair activities. The major objective of this project was to convert and implement a number of advanced nonlinear diagnostic DSP algorithms in a format consistent with that required for integration into the Vanderbilt Multigraph Architecture (MGA) Model Based Programming environment. This effort will allow the real-time execution of these algorithms using the MSFC MPP Prototype System. ASRI has completed the software conversion and integration of a sequence of nonlinear signal analysis techniques specified in the SOW for real-time execution on MSFC's MPP Prototype. This report documents and summarizes the results of the contract tasks; provides the complete computer source code; including all FORTRAN/C Utilities; and all other utilities/supporting software libraries that are required for operation.
NASA Technical Reports Server (NTRS)
Henne, P. A.; Dahlin, J. A.; Peavey, C. C.; Gerren, D. S.
1982-01-01
The results of design studies and wind tunnel tests of high aspect ratio supercritical wings suitable for a medium range, narrow body transport aircraft flying near M=0.80 were presented. The basic characteristics of the wing design were derived from system studies of advanced transport aircraft where detailed structural and aerodynamic tradeoffs were used to determine the most optimum design from the standpoint of fuel usage and direct operating cost. These basic characteristics included wing area, aspect ratio, average thickness, and sweep. The detailed wing design was accomplished through application of previous test results and advanced computational transonic flow procedures. In addition to the basic wing/body development, considerable attention was directed to nacelle/plyon location effects, horizontal tail effects, and boundary layer transition effects. Results of these tests showed that the basic cruise performance objectives were met or exceeded.
The Numerical Propulsion System Simulation: An Overview
NASA Technical Reports Server (NTRS)
Lytle, John K.
2000-01-01
Advances in computational technology and in physics-based modeling are making large-scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze major propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of designing systems, providing the designer with critical information about the components early in the design process. This paper describes the development of the numerical propulsion system simulation (NPSS), a modular and extensible framework for the integration of multicomponent and multidisciplinary analysis tools using geographically distributed resources such as computing platforms, data bases, and people. The analysis is currently focused on large-scale modeling of complete aircraft engines. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.
AST Combustion Workshop: Diagnostics Working Group Report
NASA Technical Reports Server (NTRS)
Locke, Randy J.; Hicks, Yolanda R.; Hanson, Ronald K.
1996-01-01
A workshop was convened under NASA's Advanced Subsonics Technologies (AST) Program. Many of the principal combustion diagnosticians from industry, academia, and government laboratories were assembled in the Diagnostics/Testing Subsection of this workshop to discuss the requirements and obstacles to the successful implementation of advanced diagnostic techniques to the test environment of the proposed AST combustor. The participants, who represented the major relevant areas of advanced diagnostic methods currently applied to combustion and related fields, first established the anticipated AST combustor flowfield conditions. Critical flow parameters were then examined and prioritized as to their importance to combustor/fuel injector design and manufacture, environmental concerns, and computational interests. Diagnostic techniques were then evaluated in terms of current status, merits and obstacles for each flow parameter. All evaluations are presented in tabular form and recommendations are made on the best-suited diagnostic method to implement for each flow parameter in order of applicability and intrinsic value.
AN ADVANCED LEAKAGE SCHEME FOR NEUTRINO TREATMENT IN ASTROPHYSICAL SIMULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perego, A.; Cabezón, R. M.; Käppeli, R., E-mail: albino.perego@physik.tu-darmstadt.de
We present an Advanced Spectral Leakage (ASL) scheme to model neutrinos in the context of core-collapse supernovae (CCSNe) and compact binary mergers. Based on previous gray leakage schemes, the ASL scheme computes the neutrino cooling rates by interpolating local production and diffusion rates (relevant in optically thin and thick regimes, respectively) separately for discretized values of the neutrino energy. Neutrino trapped components are also modeled, based on equilibrium and timescale arguments. The better accuracy achieved by the spectral treatment allows a more reliable computation of neutrino heating rates in optically thin conditions. The scheme has been calibrated and tested against Boltzmannmore » transport in the context of Newtonian spherically symmetric models of CCSNe. ASL shows a very good qualitative and a partial quantitative agreement for key quantities from collapse to a few hundreds of milliseconds after core bounce. We have proved the adaptability and flexibility of our ASL scheme, coupling it to an axisymmetric Eulerian and to a three-dimensional smoothed particle hydrodynamics code to simulate core collapse. Therefore, the neutrino treatment presented here is ideal for large parameter-space explorations, parametric studies, high-resolution tests, code developments, and long-term modeling of asymmetric configurations, where more detailed neutrino treatments are not available or are currently computationally too expensive.« less
Tan, S; Hu, A; Wilson, T; Ladak, H; Haase, P; Fung, K
2012-04-01
(1) To investigate the efficacy of a computer-generated three-dimensional laryngeal model for laryngeal anatomy teaching; (2) to explore the relationship between students' spatial ability and acquisition of anatomical knowledge; and (3) to assess participants' opinion of the computerised model. Forty junior doctors were randomised to undertake laryngeal anatomy study supplemented by either a three-dimensional computer model or two-dimensional images. Outcome measurements comprised a laryngeal anatomy test, the modified Vandenberg and Kuse mental rotation test, and an opinion survey. Mean scores ± standard deviations for the anatomy test were 15.7 ± 2.0 for the 'three dimensions' group and 15.5 ± 2.3 for the 'standard' group (p = 0.7222). Pearson's correlation between the rotation test scores and the scores for the spatial ability questions in the anatomy test was 0.4791 (p = 0.086, n = 29). Opinion survey answers revealed significant differences in respondents' perceptions of the clarity and 'user friendliness' of, and their preferences for, the three-dimensional model as regards anatomical study. The three-dimensional computer model was equivalent to standard two-dimensional images, for the purpose of laryngeal anatomy teaching. There was no association between students' spatial ability and functional anatomy learning. However, students preferred to use the three-dimensional model.
78 FR 41046 - Advanced Scientific Computing Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-09
... Services Administration, notice is hereby given that the Advanced Scientific Computing Advisory Committee will be renewed for a two-year period beginning on July 1, 2013. The Committee will provide advice to the Director, Office of Science (DOE), on the Advanced Scientific Computing Research Program managed...
Implementation and Testing of Turbulence Models for the F18-HARV Simulation
NASA Technical Reports Server (NTRS)
Yeager, Jessie C.
1998-01-01
This report presents three methods of implementing the Dryden power spectral density model for atmospheric turbulence. Included are the equations which define the three methods and computer source code written in Advanced Continuous Simulation Language to implement the equations. Time-history plots and sample statistics of simulated turbulence results from executing the code in a test program are also presented. Power spectral densities were computed for sample sequences of turbulence and are plotted for comparison with the Dryden spectra. The three model implementations were installed in a nonlinear six-degree-of-freedom simulation of the High Alpha Research Vehicle airplane. Aircraft simulation responses to turbulence generated with the three implementations are presented as plots.
NASA Technical Reports Server (NTRS)
Edwards, J. W.; Deets, D. A.
1975-01-01
A cost-effective approach to flight testing advanced control concepts with remotely piloted vehicles is described. The approach utilizes a ground based digital computer coupled to the remotely piloted vehicle's motion sensors and control surface actuators through telemetry links to provide high bandwidth feedback control. The system was applied to the control of an unmanned 3/8-scale model of the F-15 airplane. The model was remotely augmented; that is, the F-15 mechanical and control augmentation flight control systems were simulated by the ground-based computer, rather than being in the vehicle itself. The results of flight tests of the model at high angles of attack are discussed.
Applications of Automation Methods for Nonlinear Fracture Test Analysis
NASA Technical Reports Server (NTRS)
Allen, Phillip A.; Wells, Douglas N.
2013-01-01
Using automated and standardized computer tools to calculate the pertinent test result values has several advantages such as: 1. allowing high-fidelity solutions to complex nonlinear phenomena that would be impractical to express in written equation form, 2. eliminating errors associated with the interpretation and programing of analysis procedures from the text of test standards, 3. lessening the need for expertise in the areas of solid mechanics, fracture mechanics, numerical methods, and/or finite element modeling, to achieve sound results, 4. and providing one computer tool and/or one set of solutions for all users for a more "standardized" answer. In summary, this approach allows a non-expert with rudimentary training to get the best practical solution based on the latest understanding with minimum difficulty.Other existing ASTM standards that cover complicated phenomena use standard computer programs: 1. ASTM C1340/C1340M-10- Standard Practice for Estimation of Heat Gain or Loss Through Ceilings Under Attics Containing Radiant Barriers by Use of a Computer Program 2. ASTM F 2815 - Standard Practice for Chemical Permeation through Protective Clothing Materials: Testing Data Analysis by Use of a Computer Program 3. ASTM E2807 - Standard Specification for 3D Imaging Data Exchange, Version 1.0 The verification, validation, and round-robin processes required of a computer tool closely parallel the methods that are used to ensure the solution validity for equations included in test standard. The use of automated analysis tools allows the creation and practical implementation of advanced fracture mechanics test standards that capture the physics of a nonlinear fracture mechanics problem without adding undue burden or expense to the user. The presented approach forms a bridge between the equation-based fracture testing standards of today and the next generation of standards solving complex problems through analysis automation.
The NASA aircraft icing research program
NASA Technical Reports Server (NTRS)
Shaw, Robert J.; Reinmann, John J.
1990-01-01
The objective of the NASA aircraft icing research program is to develop and make available to industry icing technology to support the needs and requirements for all-weather aircraft designs. Research is being done for both fixed wing and rotary wing applications. The NASA program emphasizes technology development in two areas, advanced ice protection concepts and icing simulation. Reviewed here are the computer code development/validation, icing wind tunnel testing, and icing flight testing efforts.
NASA Astrophysics Data System (ADS)
Gomez, R.; Gentle, J.
2015-12-01
Modern data pipelines and computational processes require that meticulous methodologies be applied in order to insure that the source data, algorithms, and results are properly curated, managed and retained while remaining discoverable, accessible, and reproducible. Given the complexity of understanding the scientific problem domain being researched, combined with the overhead of learning to use advanced computing technologies, it becomes paramount that the next generation of scientists and researchers learn to embrace best-practices. The Integrative Computational Education and Research Traineeship (ICERT) is a National Science Foundation (NSF) Research Experience for Undergraduates (REU) Site at the Texas Advanced Computing Center (TACC). During Summer 2015, two ICERT interns joined the 3DDY project. 3DDY converts geospatial datasets into file types that can take advantage of new formats, such as natural user interfaces, interactive visualization, and 3D printing. Mentored by TACC researchers for ten weeks, students with no previous background in computational science learned to use scripts to build the first prototype of the 3DDY application, and leveraged Wrangler, the newest high performance computing (HPC) resource at TACC. Test datasets for quadrangles in central Texas were used to assemble the 3DDY workflow and code. Test files were successfully converted into a stereo lithographic (STL) format, which is amenable for use with a 3D printers. Test files and the scripts were documented and shared using the Figshare site while metadata was documented for the 3DDY application using OntoSoft. These efforts validated a straightforward set of workflows to transform geospatial data and established the first prototype version of 3DDY. Adding the data and software management procedures helped students realize a broader set of tangible results (e.g. Figshare entries), better document their progress and the final state of their work for the research group and community, helped students and researchers follow a clear set of formats and fill in the necessary details that may be lost otherwise, and exposed the students to the next generation workflows and practices for digital scholarship and scientific inquiry for converting geospatial data into formats that are easy to reuse.
Conquering technophobia: preparing faculty for today.
Richard, P L
1997-01-01
The constantly changing world of technology creates excitement and an obligation for faculty of schools of nursing to address computer literacy in the curricula at all levels. The initial step in the process of meeting the goals was to assist the faculty in becoming computer literate so that they could foster and encourage the same in the students. The implementation of The Cure for Technophobia included basic and advanced computer skills designed to assist the faculty in becoming comfortable and competent computer users. The applications addressed included: introduction to windows, electronic mail, word processing, presentation and database applications, library on-line searches of literature databases, introduction to internet browsers and a computerized testing program. Efforts were made to overcome barriers to computer literacy and promote the learning process. Familiar, competent, computer literate individuals were used to conduct the classes to accomplish this goal.
Civil propulsion technology for the next twenty-five years
NASA Technical Reports Server (NTRS)
Rosen, Robert; Facey, John R.
1987-01-01
The next twenty-five years will see major advances in civil propulsion technology that will result in completely new aircraft systems for domestic, international, commuter and high-speed transports. These aircraft will include advanced aerodynamic, structural, and avionic technologies resulting in major new system capabilities and economic improvements. Propulsion technologies will include high-speed turboprops in the near term, very high bypass ratio turbofans, high efficiency small engines and advanced cycles utilizing high temperature materials for high-speed propulsion. Key fundamental enabling technologies include increased temperature capability and advanced design methods. Increased temperature capability will be based on improved composite materials such as metal matrix, intermetallics, ceramics, and carbon/carbon as well as advanced heat transfer techniques. Advanced design methods will make use of advances in internal computational fluid mechanics, reacting flow computation, computational structural mechanics and computational chemistry. The combination of advanced enabling technologies, new propulsion concepts and advanced control approaches will provide major improvements in civil aircraft.
Rotorcraft application of advanced computational aerodynamics
NASA Technical Reports Server (NTRS)
Stanaway, Sharon
1991-01-01
The objective was to develop the capability to compute the unsteady viscous flow around rotor-body combinations. In the interest of tractability, the problem was divided into subprograms for: (1) computing the flow around a rotor blade in isolation; (2) computing the flow around a fuselage in isolation, and (3) integrating the pieces. Considerable progress has already been made by others toward computing the rotor in isolation (Srinivasen) and this work focused on the remaining tasks. These tasks required formulating a multi-block strategy for combining rotating blades and nonrotating components (i.e., a fuselage). Then an appropriate configuration was chosen for which suitable rotor body interference test data exists. Next, surface and volume grids were generated and state-of-the-art CFD codes were modified and applied to the problem.
Towards a neuro-computational account of prism adaptation.
Petitet, Pierre; O'Reilly, Jill X; O'Shea, Jacinta
2017-12-14
Prism adaptation has a long history as an experimental paradigm used to investigate the functional and neural processes that underlie sensorimotor control. In the neuropsychology literature, prism adaptation behaviour is typically explained by reference to a traditional cognitive psychology framework that distinguishes putative functions, such as 'strategic control' versus 'spatial realignment'. This theoretical framework lacks conceptual clarity, quantitative precision and explanatory power. Here, we advocate for an alternative computational framework that offers several advantages: 1) an algorithmic explanatory account of the computations and operations that drive behaviour; 2) expressed in quantitative mathematical terms; 3) embedded within a principled theoretical framework (Bayesian decision theory, state-space modelling); 4) that offers a means to generate and test quantitative behavioural predictions. This computational framework offers a route towards mechanistic neurocognitive explanations of prism adaptation behaviour. Thus it constitutes a conceptual advance compared to the traditional theoretical framework. In this paper, we illustrate how Bayesian decision theory and state-space models offer principled explanations for a range of behavioural phenomena in the field of prism adaptation (e.g. visual capture, magnitude of visual versus proprioceptive realignment, spontaneous recovery and dynamics of adaptation memory). We argue that this explanatory framework can advance understanding of the functional and neural mechanisms that implement prism adaptation behaviour, by enabling quantitative tests of hypotheses that go beyond merely descriptive mapping claims that 'brain area X is (somehow) involved in psychological process Y'. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Jack A.; Quinn, Robert A.; Debelius, Justine
Rapid advances in DNA sequencing, metabolomics, proteomics and computation dramatically increase accessibility of microbiome studies and identify links between the microbiome and disease. Microbial time-series and multiple molecular perspectives enable Microbiome-Wide Association Studies (MWAS), analogous to Genome-Wide Association Studies (GWAS). Rapid research advances point towards actionable results, although approved clinical tests based on MWAS are still in the future. Appreciating the complexity of interactions between diet, chemistry, health and the microbiome, and determining the frequency of observations needed to capture and integrate this dynamic interface, is paramount for addressing the need for personalized and precision microbiome-based diagnostics and therapies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryden, Mark; Tucker, David A.
The goal of this project is to develop a merged environment for simulation and analysis (MESA) at the National Energy Technology Laboratory’s (NETL) Hybrid Performance (Hyper) project laboratory. The MESA sensor lab developed as a component of this research will provide a development platform for investigating: 1) advanced control strategies, 2) testing and development of sensor hardware, 3) various modeling in-the-loop algorithms and 4) other advanced computational algorithms for improved plant performance using sensors, real-time models, and complex systems tools.
Advanced technology airfoil research, volume 1, part 2
NASA Technical Reports Server (NTRS)
1978-01-01
This compilation contains papers presented at the NASA Conference on Advanced Technology Airfoil Research held at Langley Research Center on March 7-9, 1978, which have unlimited distribution. This conference provided a comprehensive review of all NASA airfoil research, conducted in-house and under grant and contract. A broad spectrum of airfoil research outside of NASA was also reviewed. The major thrust of the technical sessions were in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.
Preparing Lessons, Exercises and Tests for M-Learning of IT Fundamentals
ERIC Educational Resources Information Center
Djenic, S.; Vasiljevic, V.; Mitic, J.; Petkovic, V.; Miletic, A.
2014-01-01
This paper represents a result of studying the efficiency of applying mobile learning technologies, as well as the accompanying advanced teaching methods in the area of Information Technologies, at the School of Electrical and Computer Engineering of Applied Studies in Belgrade, Serbia. It contains a brief description of the form of application…
Creating an Agile ECE Learning Environment through Engineering Clinics
ERIC Educational Resources Information Center
Jansson, P. M.; Ramachandran, R. P.; Schmalzel, J. L.; Mandayam, S. A.
2010-01-01
To keep up with rapidly advancing technology, numerous innovations to the electrical and computer engineering (ECE) curriculum, learning methods and pedagogy have been envisioned, tested, and implemented. It is safe to say that no single approach will work for all of the diverse ECE technologies and every type of learner. However, a few key…
Advanced Computing Methods for Knowledge Discovery and Prognosis in Acoustic Emission Monitoring
ERIC Educational Resources Information Center
Mejia, Felipe
2012-01-01
Structural health monitoring (SHM) has gained significant popularity in the last decade. This growing interest, coupled with new sensing technologies, has resulted in an overwhelming amount of data in need of management and useful interpretation. Acoustic emission (AE) testing has been particularly fraught by the problem of growing data and is…
Making Distance Learning E.R.O.T.I.C.: Applying Interpretation Principles to Distance Learning
ERIC Educational Resources Information Center
Ross, Anne; Siepen, Greg; O'Connor, Sue
2003-01-01
Distance learners are self-directed learners traditionally taught via study books, collections of readings, and exercises to test understanding of learning packages. Despite advances in e-Learning environments and computer-based teaching interfaces, distance learners still lack opportunities to participate in exercises and debates available to…
Examining CEGEP Students' Acceptance of Computer-Based Learning Environments: A Test of Two Models
ERIC Educational Resources Information Center
Doleck, Tenzin; Bazelais, Paul; Lemay, David John
2017-01-01
As the use of technology in education advances and broadens, empirical research around its use assumes increased importance. Yet literature investigating technology acceptance in certain populations remains scarce. We recently argued that technology acceptance investigations should also consider the modality of the antecedent belief, to…
Edison - A New Cray Supercomputer Advances Discovery at NERSC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dosanjh, Sudip; Parkinson, Dula; Yelick, Kathy
2014-02-06
When a supercomputing center installs a new system, users are invited to make heavy use of the computer as part of the rigorous testing. In this video, find out what top scientists have discovered using Edison, a Cray XC30 supercomputer, and how NERSC's newest supercomputer will accelerate their future research.
The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) modeling tool was created by EPA to estimate greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle type...
Edison - A New Cray Supercomputer Advances Discovery at NERSC
Dosanjh, Sudip; Parkinson, Dula; Yelick, Kathy; Trebotich, David; Broughton, Jeff; Antypas, Katie; Lukic, Zarija, Borrill, Julian; Draney, Brent; Chen, Jackie
2018-01-16
When a supercomputing center installs a new system, users are invited to make heavy use of the computer as part of the rigorous testing. In this video, find out what top scientists have discovered using Edison, a Cray XC30 supercomputer, and how NERSC's newest supercomputer will accelerate their future research.
In Vitro Simulation and Validation of the Circulation with Congenital Heart Defects
Figliola, Richard S.; Giardini, Alessandro; Conover, Tim; Camp, Tiffany A.; Biglino, Giovanni; Chiulli, John; Hsia, Tain-Yen
2010-01-01
Despite the recent advances in computational modeling, experimental simulation of the circulation with congenital heart defect using mock flow circuits remains an important tool for device testing, and for detailing the probable flow consequences resulting from surgical and interventional corrections. Validated mock circuits can be applied to qualify the results from novel computational models. New mathematical tools, coupled with advanced clinical imaging methods, allow for improved assessment of experimental circuit performance relative to human function, as well as the potential for patient-specific adaptation. In this review, we address the development of three in vitro mock circuits specific for studies of congenital heart defects. Performance of an in vitro right heart circulation circuit through a series of verification and validation exercises is described, including correlations with animal studies, and quantifying the effects of circuit inertiance on test results. We present our experience in the design of mock circuits suitable for investigations of the characteristics of the Fontan circulation. We use one such mock circuit to evaluate the accuracy of Doppler predictions in the presence of aortic coarctation. PMID:21218147
Taqueti, Viviany R.; Di Carli, Marcelo F.
2018-01-01
Over the last several decades, radionuclide myocardial perfusion imaging (MPI) with single photon emission tomography and positron emission tomography has been a mainstay for the evaluation of patients with known or suspected coronary artery disease (CAD). More recently, technical advances in separate and complementary imaging modalities including coronary computed tomography angiography, computed tomography perfusion, cardiac magnetic resonance imaging, and contrast stress echocardiography have expanded the toolbox of diagnostic testing for cardiac patients. While the growth of available technologies has heralded an exciting era of multimodality cardiovascular imaging, coordinated and dispassionate utilization of these techniques is needed to implement the right test for the right patient at the right time, a promise of “precision medicine.” In this article, we review the maturing role of MPI in the current era of multimodality cardiovascular imaging, particularly in the context of recent advances in myocardial blood flow quantitation, and as applied to the evaluation of patients with known or suspected CAD. PMID:25770849
ERIC Educational Resources Information Center
Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu
2013-01-01
With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…
Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Mike; Cipiti, Ben; Demuth, Scott Francis
2017-01-30
The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less
Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durkee, Joe W.; Cipiti, Ben; Demuth, Scott Francis
The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less
Testing in Support of Space Fission System Development and Qualification
NASA Technical Reports Server (NTRS)
Houts, Mike; Bragg-Sitton, Shannon; Garber, Anne; Godfrey, Tom; Martin, Jim; Pearson, Boise; Webster, Kenny
2007-01-01
Extensive data would be required for the qualification of a fission surface power (FSP) system. The strategy for qualifying a FSP system could have a significant programmatic impact. This paper explores potential options that could be used for qualifying FSP systems, including cost-effective means for obtaining required data. three methods for obtaining qualification data are analysis, non-nuclear testing, and nuclear testing. It has been over 40 years since the US qualified a space reactor for launch. During that time, advances have been made related to all three methods. Perhaps the greatest advancement has occurred in the area of computational tools for design and analysis. Tools that have been developed, coupled with modem computers, would have a significant impact on a FSP qualification. This would be especially true for systems with materials and fuels operating well within temperature, irradiation damage, and burnup limits. The ability to perform highly realistic non-nuclear testing has also advanced throughout the past four decades. Instrumented thermal simulators were developed during the 1970s and 1980s to assist in the development, operation, and assessment of terrestrial fission systems. Instrumented thermal simulators optimized for assisting in the development, operation, and assessment of modem FSP systems have been under development (and utilized) since 1998. These thermal simulators enable heat from fission to be closely mimicked (axial power profile, radial power profile, temperature, heat flux, etc.} and extensive data to be taken from the core region. Both steady-state and transient operation can be tested. For transient testing, reactivity feedback is calculated (or measured in cold/warm criticals) based on reactor temperature and/or dimensional changes. Pin power during a transient is then calculated based on the reactivity feedback that would occur given measured values of temperature and/or dimensional change. In this way nonnuclear testing can be used to provide very realistic information related to nuclear operation. Non-nuclear testing can be used at all levels, including component, subsystem, and integrated system testing. Realistic non-nuclear testing is most useful for systems operating within known temperature, irradiation damage, and burnup capabilities.
Real-Time Hardware-in-the-Loop Simulation of Ares I Launch Vehicle
NASA Technical Reports Server (NTRS)
Tobbe, Patrick; Matras, Alex; Walker, David; Wilson, Heath; Fulton, Chris; Alday, Nathan; Betts, Kevin; Hughes, Ryan; Turbe, Michael
2009-01-01
The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory at the Marshall Space Flight Center. The primary purpose of the Ares System Integration Laboratory is to test the vehicle avionics hardware and software in a hardware - in-the-loop environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time simulation backbone to stimulate all required Ares components for verification testing. ARTE_VIIS provides high -fidelity dynamics, actuator, and sensor models to simulate an accurate flight trajectory in order to ensure realistic test conditions. ARTEMIS has been designed to take advantage of the advances in underlying computational power now available to support hardware-in-the-loop testing to achieve real-time simulation with unprecedented model fidelity. A modular realtime design relying on a fully distributed computing architecture has been implemented.
2017-01-05
AFRL-AFOSR-JP-TR-2017-0002 Advanced Computational Methods for Optimization of Non-Periodic Inspection Intervals for Aging Infrastructure Manabu...Computational Methods for Optimization of Non-Periodic Inspection Intervals for Aging Infrastructure 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386...UNLIMITED: PB Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT This report for the project titled ’Advanced Computational Methods for Optimization of
Evanescent wave fluorescence biosensors: Advances of the last decade
Taitt, Chris Rowe; Anderson, George P.; Ligler, Frances S.
2015-01-01
Biosensor development has been a highly dynamic field of research and has progressed rapidly over the past two decades. The advances have accompanied the breakthroughs in molecular biology, nanomaterial sciences, and most importantly computers and electronics. The subfield of evanescent wave fluorescence biosensors has also matured dramatically during this time. Fundamentally, this review builds on our earlier 2005 review. While a brief mention of seminal early work will be included, this current review will focus on new technological developments as well as technology commercialized in just the last decade. Evanescent wave biosensors have found a wide array applications ranging from clinical diagnostics to biodefense to food testing; advances in those applications and more are described herein. PMID:26232145
OpenZika: An IBM World Community Grid Project to Accelerate Zika Virus Drug Discovery
Perryman, Alexander L.; Horta Andrade, Carolina
2016-01-01
The Zika virus outbreak in the Americas has caused global concern. To help accelerate this fight against Zika, we launched the OpenZika project. OpenZika is an IBM World Community Grid Project that uses distributed computing on millions of computers and Android devices to run docking experiments, in order to dock tens of millions of drug-like compounds against crystal structures and homology models of Zika proteins (and other related flavivirus targets). This will enable the identification of new candidates that can then be tested in vitro, to advance the discovery and development of new antiviral drugs against the Zika virus. The docking data is being made openly accessible so that all members of the global research community can use it to further advance drug discovery studies against Zika and other related flaviviruses. PMID:27764115
Beam breakup in an advanced linear induction accelerator
Ekdahl, Carl August; Coleman, Joshua Eugene; McCuistian, Brian Trent
2016-07-01
Two linear induction accelerators (LIAs) have been in operation for a number of years at the Los Alamos Dual Axis Radiographic Hydrodynamic Test (DARHT) facility. A new multipulse LIA is being developed. We have computationally investigated the beam breakup (BBU) instability in this advanced LIA. In particular, we have explored the consequences of the choice of beam injector energy and the grouping of LIA cells. We find that within the limited range of options presently under consideration for the LIA architecture, there is little adverse effect on the BBU growth. The computational tool that we used for this investigation wasmore » the beam dynamics code linear accelerator model for DARHT (LAMDA). In conclusion, to confirm that LAMDA was appropriate for this task, we first validated it through comparisons with the experimental BBU data acquired on the DARHT accelerators.« less
OpenZika: An IBM World Community Grid Project to Accelerate Zika Virus Drug Discovery.
Ekins, Sean; Perryman, Alexander L; Horta Andrade, Carolina
2016-10-01
The Zika virus outbreak in the Americas has caused global concern. To help accelerate this fight against Zika, we launched the OpenZika project. OpenZika is an IBM World Community Grid Project that uses distributed computing on millions of computers and Android devices to run docking experiments, in order to dock tens of millions of drug-like compounds against crystal structures and homology models of Zika proteins (and other related flavivirus targets). This will enable the identification of new candidates that can then be tested in vitro, to advance the discovery and development of new antiviral drugs against the Zika virus. The docking data is being made openly accessible so that all members of the global research community can use it to further advance drug discovery studies against Zika and other related flaviviruses.
Active Control Technology at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Antcliff, Richard R.; McGowan, Anna-Marie R.
2000-01-01
NASA Langley has a long history of attacking important technical Opportunities from a broad base of supporting disciplines. The research and development at Langley in this subject area range from the test tube to the test flight, The information covered here will range from the development of innovative new materials, sensors and actuators, to the incorporation of smart sensors and actuators in practical devices, to the optimization of the location of these devices, to, finally, a wide variety of applications of these devices utilizing Langley's facilities and expertise. Advanced materials are being developed for sensors and actuators, as well as polymers for integrating smart devices into composite structures. Contributions reside in three key areas: computational materials; advanced piezoelectric materials; and integrated composite structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikkel, Daniel J.; Meisner, Robert
The Advanced Simulation and Computing Campaign, herein referred to as the ASC Program, is a core element of the science-based Stockpile Stewardship Program (SSP), which enables assessment, certification, and maintenance of the safety, security, and reliability of the U.S. nuclear stockpile without the need to resume nuclear testing. The use of advanced parallel computing has transitioned from proof-of-principle to become a critical element for assessing and certifying the stockpile. As the initiative phase of the ASC Program came to an end in the mid-2000s, the National Nuclear Security Administration redirected resources to other urgent priorities, and resulting staff reductions inmore » ASC occurred without the benefit of analysis of the impact on modern stockpile stewardship that is dependent on these new simulation capabilities. Consequently, in mid-2008 the ASC Program management commissioned a study to estimate the essential size and balance needed to sustain advanced simulation as a core component of stockpile stewardship. The ASC Program requires a minimum base staff size of 930 (which includes the number of staff necessary to maintain critical technical disciplines as well as to execute required programmatic tasks) to sustain its essential ongoing role in stockpile stewardship.« less
NASA Astrophysics Data System (ADS)
Baumbick, Robert J.
1991-02-01
Fiber optic technology is expected to be used in future advanced weapons platforms as well as commercial aerospace applications. Fiber optic waveguides will be used to transmit noise free high speed data between a multitude of computers as well as audio and video information to the flight crew. Passive optical sensors connected to control computers with optical fiber interconnects will serve both control and monitoring functions. Implementation of fiber optic technology has already begun. Both the military and NASA have several programs in place. A cooperative program called FOCSI (Fiber Optic Control System Integration) between NASA Lewis and the NAVY to build environmentally test and flight demonstrate sensor systems for propul sion and flight control systems is currently underway. Integrated Optical Circuits (IOC''s) are also being given serious consideration for use in advanced aircraft sys tems. IOC''s will result in miniaturization and localization of components to gener ate detect optical signals and process them for use by the control computers. In some complex systems IOC''s may be required to perform calculations optically if the technology is ready replacing some of the electronic systems used today. IOC''s are attractive because they will result in rugged components capable of withstanding severe environments in advanced aerospace vehicles. Manufacturing technology devel oped for microelectronic integrated circuits applied to IOC''s will result in cost effective manufacturing. This paper reviews the current FOCSI program and describes the role of IOC''s in FOCSI applications.
A low-cost test-bed for real-time landmark tracking
NASA Astrophysics Data System (ADS)
Csaszar, Ambrus; Hanan, Jay C.; Moreels, Pierre; Assad, Christopher
2007-04-01
A low-cost vehicle test-bed system was developed to iteratively test, refine and demonstrate navigation algorithms before attempting to transfer the algorithms to more advanced rover prototypes. The platform used here was a modified radio controlled (RC) car. A microcontroller board and onboard laptop computer allow for either autonomous or remote operation via a computer workstation. The sensors onboard the vehicle represent the types currently used on NASA-JPL rover prototypes. For dead-reckoning navigation, optical wheel encoders, a single axis gyroscope, and 2-axis accelerometer were used. An ultrasound ranger is available to calculate distance as a substitute for the stereo vision systems presently used on rovers. The prototype also carries a small laptop computer with a USB camera and wireless transmitter to send real time video to an off-board computer. A real-time user interface was implemented that combines an automatic image feature selector, tracking parameter controls, streaming video viewer, and user generated or autonomous driving commands. Using the test-bed, real-time landmark tracking was demonstrated by autonomously driving the vehicle through the JPL Mars yard. The algorithms tracked rocks as waypoints. This generated coordinates calculating relative motion and visually servoing to science targets. A limitation for the current system is serial computing-each additional landmark is tracked in order-but since each landmark is tracked independently, if transferred to appropriate parallel hardware, adding targets would not significantly diminish system speed.
NASA Technical Reports Server (NTRS)
Smith, Paul H.
1988-01-01
The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.
Simulating Coupling Complexity in Space Plasmas: First Results from a new code
NASA Astrophysics Data System (ADS)
Kryukov, I.; Zank, G. P.; Pogorelov, N. V.; Raeder, J.; Ciardo, G.; Florinski, V. A.; Heerikhuisen, J.; Li, G.; Petrini, F.; Shematovich, V. I.; Winske, D.; Shaikh, D.; Webb, G. M.; Yee, H. M.
2005-12-01
The development of codes that embrace 'coupling complexity' via the self-consistent incorporation of multiple physical scales and multiple physical processes in models has been identified by the NRC Decadal Survey in Solar and Space Physics as a crucial necessary development in simulation/modeling technology for the coming decade. The National Science Foundation, through its Information Technology Research (ITR) Program, is supporting our efforts to develop a new class of computational code for plasmas and neutral gases that integrates multiple scales and multiple physical processes and descriptions. We are developing a highly modular, parallelized, scalable code that incorporates multiple scales by synthesizing 3 simulation technologies: 1) Computational fluid dynamics (hydrodynamics or magneto-hydrodynamics-MHD) for the large-scale plasma; 2) direct Monte Carlo simulation of atoms/neutral gas, and 3) transport code solvers to model highly energetic particle distributions. We are constructing the code so that a fourth simulation technology, hybrid simulations for microscale structures and particle distributions, can be incorporated in future work, but for the present, this aspect will be addressed at a test-particle level. This synthesis we will provide a computational tool that will advance our understanding of the physics of neutral and charged gases enormously. Besides making major advances in basic plasma physics and neutral gas problems, this project will address 3 Grand Challenge space physics problems that reflect our research interests: 1) To develop a temporal global heliospheric model which includes the interaction of solar and interstellar plasma with neutral populations (hydrogen, helium, etc., and dust), test-particle kinetic pickup ion acceleration at the termination shock, anomalous cosmic ray production, interaction with galactic cosmic rays, while incorporating the time variability of the solar wind and the solar cycle. 2) To develop a coronal mass ejection and interplanetary shock propagation model for the inner and outer heliosphere, including, at a test-particle level, wave-particle interactions and particle acceleration at traveling shock waves and compression regions. 3) To develop an advanced Geospace General Circulation Model (GGCM) capable of realistically modeling space weather events, in particular the interaction with CMEs and geomagnetic storms. Furthermore, by implementing scalable run-time supports and sophisticated off- and on-line prediction algorithms, we anticipate important advances in the development of automatic and intelligent system software to optimize a wide variety of 'embedded' computations on parallel computers. Finally, public domain MHD and hydrodynamic codes had a transforming effect on space and astrophysics. We expect that our new generation, open source, public domain multi-scale code will have a similar transformational effect in a variety of disciplines, opening up new classes of problems to physicists and engineers alike.
Application of computational physics within Northrop
NASA Technical Reports Server (NTRS)
George, M. W.; Ling, R. T.; Mangus, J. F.; Thompkins, W. T.
1987-01-01
An overview of Northrop programs in computational physics is presented. These programs depend on access to today's supercomputers, such as the Numerical Aerodynamical Simulator (NAS), and future growth on the continuing evolution of computational engines. Descriptions here are concentrated on the following areas: computational fluid dynamics (CFD), computational electromagnetics (CEM), computer architectures, and expert systems. Current efforts and future directions in these areas are presented. The impact of advances in the CFD area is described, and parallels are drawn to analagous developments in CEM. The relationship between advances in these areas and the development of advances (parallel) architectures and expert systems is also presented.
NASA Astrophysics Data System (ADS)
Shegog, Ross; Lazarus, Melanie M.; Murray, Nancy G.; Diamond, Pamela M.; Sessions, Nathalie; Zsigmond, Eva
2012-10-01
The transgenic mouse model is useful for studying the causes and potential cures for human genetic diseases. Exposing high school biology students to laboratory experience in developing transgenic animal models is logistically prohibitive. Computer-based simulation, however, offers this potential in addition to advantages of fidelity and reach. This study describes and evaluates a computer-based simulation to train advanced placement high school science students in laboratory protocols, a transgenic mouse model was produced. A simulation module on preparing a gene construct in the molecular biology lab was evaluated using a randomized clinical control design with advanced placement high school biology students in Mercedes, Texas ( n = 44). Pre-post tests assessed procedural and declarative knowledge, time on task, attitudes toward computers for learning and towards science careers. Students who used the simulation increased their procedural and declarative knowledge regarding molecular biology compared to those in the control condition (both p < 0.005). Significant increases continued to occur with additional use of the simulation ( p < 0.001). Students in the treatment group became more positive toward using computers for learning ( p < 0.001). The simulation did not significantly affect attitudes toward science in general. Computer simulation of complex transgenic protocols have potential to provide a "virtual" laboratory experience as an adjunct to conventional educational approaches.
An Advanced Actuator Line Method for Wind Energy Applications and Beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchfield, Matthew J.; Schreck, Scott; Martinez-Tossas, Luis A.
The actuator line method to represent rotor aerodynamics within computational fluid dynamics has been in use for over a decade. This method applies a body force to the flow field along rotating lines corresponding to the individual rotor blades and employs tabular airfoil data to compute the force distribution. The actuator line method is attractive because compared to blade-resolved simulations, the required mesh is much simpler and the computational cost is lower. This work proposes a higher fidelity variant of the actuator line method meant to fill the space between current actuator line and blade-resolved simulations. It contains modifications inmore » two key areas. The first is that of freestream velocity vector estimation along the line, which is necessary to compute the lift and drag along the line using tabular airfoil data. Most current methods rely on point sampling in which the location of sampling is ambiguous. Here we test a velocity sampling method that uses a properly weighted integral over space, removing this ambiguity. The second area of improvement is the function used to project the one-dimensional actuator line force onto the three-dimensional fluid mesh as a body force. We propose and test a projection function that spreads the force over a region that looks something like a real blade with the hope that it will produce the blade local and near wake flow features with more accuracy and higher fidelity. Our goal is that between these two improvements, not only will the flow field predictions be enhanced, but also the spanwise loading will be made more accurate. We refer to this combination of improvements as the advanced actuator line method. We apply these improvements to two different wind turbine cases. Although there is a strong wind energy motivation in our work, there is no reason these advanced actuator line ideas cannot be used in other applications, such as helicopter rotors.« less
An Advanced Actuator Line Method for Wind Energy Applications and Beyond: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchfield, Matthew; Schreck, Scott; Martinez-Tossas, Luis A.
The actuator line method to represent rotor aerodynamics within computational fluid dynamics has been in use for over a decade. This method applies a body force to the flow field along rotating lines corresponding to the individual rotor blades and employs tabular airfoil data to compute the force distribution. The actuator line method is attractive because compared to blade-resolved simulations, the required mesh is much simpler and the computational cost is lower. This work proposes a higher fidelity variant of the actuator line method meant to fill the space between current actuator line and blade-resolved simulations. It contains modifications inmore » two key areas. The first is that of freestream velocity vector estimation along the line, which is necessary to compute the lift and drag along the line using tabular airfoil data. Most current methods rely on point sampling in which the location of sampling is ambiguous. Here we test a velocity sampling method that uses a properly weighted integral over space, removing this ambiguity. The second area of improvement is the function used to project the one-dimensional actuator line force onto the three-dimensional fluid mesh as a body force. We propose and test a projection function that spreads the force over a region that looks something like a real blade with the hope that it will produce the blade local and near wake flow features with more accuracy and higher fidelity. Our goal is that between these two improvements, not only will the flow field predictions be enhanced, but also the spanwise loading will be made more accurate. We refer to this combination of improvements as the advanced actuator line method. We apply these improvements to two different wind turbine cases. Although there is a strong wind energy motivation in our work, there is no reason these advanced actuator line ideas cannot be used in other applications, such as helicopter rotors.« less
The Design and Transfer of Advanced Command and Control (C2) Computer-Based Systems
1980-03-31
TECHNICAL REPORT 80-02 QUARTERLY TECHNICAL REPORT: THE DESIGN AND TRANSFER OF ADVANCED COMMAND AND CONTROL (C 2 ) COMPUTER-BASED SYSTEMS ARPA...The Tasks/Objectives and/or Purposes of the overall project are connected with the design , development, demonstration and transfer of advanced...command and control (C2 ) computer-based systems; this report covers work in the computer-based design and transfer areas only. The Technical Problems thus
PRESAGE: PRivacy-preserving gEnetic testing via SoftwAre Guard Extension.
Chen, Feng; Wang, Chenghong; Dai, Wenrui; Jiang, Xiaoqian; Mohammed, Noman; Al Aziz, Md Momin; Sadat, Md Nazmus; Sahinalp, Cenk; Lauter, Kristin; Wang, Shuang
2017-07-26
Advances in DNA sequencing technologies have prompted a wide range of genomic applications to improve healthcare and facilitate biomedical research. However, privacy and security concerns have emerged as a challenge for utilizing cloud computing to handle sensitive genomic data. We present one of the first implementations of Software Guard Extension (SGX) based securely outsourced genetic testing framework, which leverages multiple cryptographic protocols and minimal perfect hash scheme to enable efficient and secure data storage and computation outsourcing. We compared the performance of the proposed PRESAGE framework with the state-of-the-art homomorphic encryption scheme, as well as the plaintext implementation. The experimental results demonstrated significant performance over the homomorphic encryption methods and a small computational overhead in comparison to plaintext implementation. The proposed PRESAGE provides an alternative solution for secure and efficient genomic data outsourcing in an untrusted cloud by using a hybrid framework that combines secure hardware and multiple crypto protocols.
Tutorial: Computer architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gajski, D.D.; Milutinovic, V.M.; Siegel, H.J.
1986-01-01
This book presents the state-of-the-art in advanced computer architecture. It deals with the concepts underlying current architectures and covers approaches and techniques being used in the design of advanced computer systems.
Qualification and Certification of 3D Printed Parts for Naval Ships
2017-12-01
advances in computer systems, power generators, missile capabilities and product construction, yet they rarely change how something is created, designed or...settings), but section 1.3 takes a look at what must be determined during the design process to ensure the best product can be created. As seen in Chapter...center as well as the printed products . 46 Figure 33. Test Block Design All test cubes were immediately labeled upon being removed from the
1991-03-07
rsolve the attack; delay whil the weapon has to wait; RESOURCE ALLOCATION . PRIORITY OF signal readiness to CONTROL; TARGETS. AND BIAS OF THE SYSTEM...Communications Systems. focal point for Computer Resource He served as project manager for the Management (CRM), Advanced Software development of the Joint...Interface Test Technology (AST), Ada Technology, Systems (JITS) - the world’s largest Joint/Army Interoperability Testing distributed command and
NASA Technical Reports Server (NTRS)
Ghaffari, Farhad; Biedron, Robert T.; Luckring, James M.
2002-01-01
Turbulent Navier-Stokes computational results are presented for an advanced diamond wing semispan model at low-speed, high-lift conditions. The numerical results are obtained in support of a wind-tunnel test that was conducted in the National Transonic Facility at the NASA Langley Research Center. The model incorporated a generic fuselage and was mounted on the tunnel sidewall using a constant-width non-metric standoff. The computations were performed at to a nominal approach and landing flow conditions.The computed high-lift flow characteristics for the model in both the tunnel and in free-air environment are presented. The computed wing pressure distributions agreed well with the measured data and they both indicated a small effect due to the tunnel wall interference effects. However, the wall interference effects were found to be relatively more pronounced in the measured and the computed lift, drag and pitching moment. Although the magnitudes of the computed forces and moment were slightly off compared to the measured data, the increments due the wall interference effects were predicted reasonably well. The numerical results are also presented on the combined effects of the tunnel sidewall boundary layer and the standoff geometry on the fuselage forebody pressure distributions and the resulting impact on the configuration longitudinal aerodynamic characteristics.
Out of the lab and into the fab: Nano-alignment as an enabler for Silicon Photonics' next chapter
NASA Astrophysics Data System (ADS)
Jordan, Scott
2017-06-01
The rapid advent of Silicon Photonics presents many challenges for test and packaging. Here we concisely review SiP device attributes that differ significantly from classical photonic configurations, with a view to the future beyond current, connectivity-oriented silicon photonics developments, looking to such endeavors as all-optical computing and quantum computing. The necessity for nano-precision alignment of optical elements in test and packaging operations quickly emerges as the unfilled need. We review the industrial test and packaging solutions developed back in the 1997-2001 photonics boom to address the needs of that era's devices, and map their gaps with the new SiP device classes. Finally we review the new state-of-the-art of recent advances in the field that address these gaps.
GPU-accelerated phase extraction algorithm for interferograms: a real-time application
NASA Astrophysics Data System (ADS)
Zhu, Xiaoqiang; Wu, Yongqian; Liu, Fengwei
2016-11-01
Optical testing, having the merits of non-destruction and high sensitivity, provides a vital guideline for optical manufacturing. But the testing process is often computationally intensive and expensive, usually up to a few seconds, which is sufferable for dynamic testing. In this paper, a GPU-accelerated phase extraction algorithm is proposed, which is based on the advanced iterative algorithm. The accelerated algorithm can extract the right phase-distribution from thirteen 1024x1024 fringe patterns with arbitrary phase shifts in 233 milliseconds on average using NVIDIA Quadro 4000 graphic card, which achieved a 12.7x speedup ratio than the same algorithm executed on CPU and 6.6x speedup ratio than that on Matlab using DWANING W5801 workstation. The performance improvement can fulfill the demand of computational accuracy and real-time application.
Analysis of whisker-toughened CMC structural components using an interactive reliability model
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Palko, Joseph L.
1992-01-01
Realizing wider utilization of ceramic matrix composites (CMC) requires the development of advanced structural analysis technologies. This article focuses on the use of interactive reliability models to predict component probability of failure. The deterministic William-Warnke failure criterion serves as theoretical basis for the reliability model presented here. The model has been implemented into a test-bed software program. This computer program has been coupled to a general-purpose finite element program. A simple structural problem is presented to illustrate the reliability model and the computer algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Michael K.; Davidson, Megan
As part of Sandia’s nuclear deterrence mission, the B61-12 Life Extension Program (LEP) aims to modernize the aging weapon system. Modernization requires requalification and Sandia is using high performance computing to perform advanced computational simulations to better understand, evaluate, and verify weapon system performance in conjunction with limited physical testing. The Nose Bomb Subassembly (NBSA) of the B61-12 is responsible for producing a fuzing signal upon ground impact. The fuzing signal is dependent upon electromechanical impact sensors producing valid electrical fuzing signals at impact. Computer generated models were used to assess the timing between the impact sensor’s response to themore » deceleration of impact and damage to major components and system subassemblies. The modeling and simulation team worked alongside the physical test team to design a large-scale reverse ballistic test to not only assess system performance, but to also validate their computational models. The reverse ballistic test conducted at Sandia’s sled test facility sent a rocket sled with a representative target into a stationary B61-12 (NBSA) to characterize the nose crush and functional response of NBSA components. Data obtained from data recorders and high-speed photometrics were integrated with previously generated computer models in order to refine and validate the model’s ability to reliably simulate real-world effects. Large-scale tests are impractical to conduct for every single impact scenario. By creating reliable computer models, we can perform simulations that identify trends and produce estimates of outcomes over the entire range of required impact conditions. Sandia’s HPCs enable geometric resolution that was unachievable before, allowing for more fidelity and detail, and creating simulations that can provide insight to support evaluation of requirements and performance margins. As computing resources continue to improve, researchers at Sandia are hoping to improve these simulations so they provide increasingly credible analysis of the system response and performance over the full range of conditions.« less
Mattfeldt, Torsten
2011-04-01
Computer-intensive methods may be defined as data analytical procedures involving a huge number of highly repetitive computations. We mention resampling methods with replacement (bootstrap methods), resampling methods without replacement (randomization tests) and simulation methods. The resampling methods are based on simple and robust principles and are largely free from distributional assumptions. Bootstrap methods may be used to compute confidence intervals for a scalar model parameter and for summary statistics from replicated planar point patterns, and for significance tests. For some simple models of planar point processes, point patterns can be simulated by elementary Monte Carlo methods. The simulation of models with more complex interaction properties usually requires more advanced computing methods. In this context, we mention simulation of Gibbs processes with Markov chain Monte Carlo methods using the Metropolis-Hastings algorithm. An alternative to simulations on the basis of a parametric model consists of stochastic reconstruction methods. The basic ideas behind the methods are briefly reviewed and illustrated by simple worked examples in order to encourage novices in the field to use computer-intensive methods. © 2010 The Authors Journal of Microscopy © 2010 Royal Microscopical Society.
Systems Toxicology: Real World Applications and Opportunities.
Hartung, Thomas; FitzGerald, Rex E; Jennings, Paul; Mirams, Gary R; Peitsch, Manuel C; Rostami-Hodjegan, Amin; Shah, Imran; Wilks, Martin F; Sturla, Shana J
2017-04-17
Systems Toxicology aims to change the basis of how adverse biological effects of xenobiotics are characterized from empirical end points to describing modes of action as adverse outcome pathways and perturbed networks. Toward this aim, Systems Toxicology entails the integration of in vitro and in vivo toxicity data with computational modeling. This evolving approach depends critically on data reliability and relevance, which in turn depends on the quality of experimental models and bioanalysis techniques used to generate toxicological data. Systems Toxicology involves the use of large-scale data streams ("big data"), such as those derived from omics measurements that require computational means for obtaining informative results. Thus, integrative analysis of multiple molecular measurements, particularly acquired by omics strategies, is a key approach in Systems Toxicology. In recent years, there have been significant advances centered on in vitro test systems and bioanalytical strategies, yet a frontier challenge concerns linking observed network perturbations to phenotypes, which will require understanding pathways and networks that give rise to adverse responses. This summary perspective from a 2016 Systems Toxicology meeting, an international conference held in the Alps of Switzerland, describes the limitations and opportunities of selected emerging applications in this rapidly advancing field. Systems Toxicology aims to change the basis of how adverse biological effects of xenobiotics are characterized, from empirical end points to pathways of toxicity. This requires the integration of in vitro and in vivo data with computational modeling. Test systems and bioanalytical technologies have made significant advances, but ensuring data reliability and relevance is an ongoing concern. The major challenge facing the new pathway approach is determining how to link observed network perturbations to phenotypic toxicity.
Systems Toxicology: Real World Applications and Opportunities
2017-01-01
Systems Toxicology aims to change the basis of how adverse biological effects of xenobiotics are characterized from empirical end points to describing modes of action as adverse outcome pathways and perturbed networks. Toward this aim, Systems Toxicology entails the integration of in vitro and in vivo toxicity data with computational modeling. This evolving approach depends critically on data reliability and relevance, which in turn depends on the quality of experimental models and bioanalysis techniques used to generate toxicological data. Systems Toxicology involves the use of large-scale data streams (“big data”), such as those derived from omics measurements that require computational means for obtaining informative results. Thus, integrative analysis of multiple molecular measurements, particularly acquired by omics strategies, is a key approach in Systems Toxicology. In recent years, there have been significant advances centered on in vitro test systems and bioanalytical strategies, yet a frontier challenge concerns linking observed network perturbations to phenotypes, which will require understanding pathways and networks that give rise to adverse responses. This summary perspective from a 2016 Systems Toxicology meeting, an international conference held in the Alps of Switzerland, describes the limitations and opportunities of selected emerging applications in this rapidly advancing field. Systems Toxicology aims to change the basis of how adverse biological effects of xenobiotics are characterized, from empirical end points to pathways of toxicity. This requires the integration of in vitro and in vivo data with computational modeling. Test systems and bioanalytical technologies have made significant advances, but ensuring data reliability and relevance is an ongoing concern. The major challenge facing the new pathway approach is determining how to link observed network perturbations to phenotypic toxicity. PMID:28362102
First 3 years of operation of RIACS (Research Institute for Advanced Computer Science) (1983-1985)
NASA Technical Reports Server (NTRS)
Denning, P. J.
1986-01-01
The focus of the Research Institute for Advanced Computer Science (RIACS) is to explore matches between advanced computing architectures and the processes of scientific research. An architecture evaluation of the MIT static dataflow machine, specification of a graphical language for expressing distributed computations, and specification of an expert system for aiding in grid generation for two-dimensional flow problems was initiated. Research projects for 1984 and 1985 are summarized.
An Overview of NASA's Intelligent Systems Program
NASA Technical Reports Server (NTRS)
Cooke, Daniel E.; Norvig, Peter (Technical Monitor)
2001-01-01
NASA and the Computer Science Research community are poised to enter a critical era. An era in which - it seems - that each needs the other. Market forces, driven by the immediate economic viability of computer science research results, place Computer Science in a relatively novel position. These forces impact how research is done, and could, in worst case, drive the field away from significant innovation opting instead for incremental advances that result in greater stability in the market place. NASA, however, requires significant advances in computer science research in order to accomplish the exploration and science agenda it has set out for itself. NASA may indeed be poised to advance computer science research in this century much the way it advanced aero-based research in the last.
NASA Technical Reports Server (NTRS)
Aretskin-Hariton, Eliot D.; Zinnecker, Alicia Mae; Culley, Dennis E.
2014-01-01
Distributed Engine Control (DEC) is an enabling technology that has the potential to advance the state-of-the-art in gas turbine engine control. To analyze the capabilities that DEC offers, a Hardware-In-the-Loop (HIL) test bed is being developed at NASA Glenn Research Center. This test bed will support a systems-level analysis of control capabilities in closed-loop engine simulations. The structure of the HIL emulates a virtual test cell by implementing the operator functions, control system, and engine on three separate computers. This implementation increases the flexibility and extensibility of the HIL. Here, a method is discussed for implementing these interfaces by connecting the three platforms over a dedicated Local Area Network (LAN). This approach is verified using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k), which is typically implemented on one computer. There are marginal differences between the results from simulation of the typical and the three-computer implementation. Additional analysis of the LAN network, including characterization of network load, packet drop, and latency, is presented. The three-computer setup supports the incorporation of complex control models and proprietary engine models into the HIL framework.
Web-based tailored nutrition education: results of a randomized controlled trial.
Oenema, A; Brug, J; Lechner, L
2001-12-01
There is ample evidence that printed, computer-tailored nutrition education is a more effective tool for motivating people to change to healthier diets than general nutrition education. New technology is now providing more advanced ways of delivering tailored messages, e.g. via the World Wide Web (WWW). Before disseminating a tailored intervention via the web, it is important to investigate the potential of web-based tailored nutrition education. The present study investigated the immediate impact of web-based computer-tailored nutrition education on personal awareness and intentions related to intake of fat, fruit and vegetables. A randomized controlled trial, with a pre-test-post-test control group design was conducted. Significant differences in awareness and intention to change were found between the intervention and control group at post-test. The tailored intervention was appreciated better, was rated as more personally relevant, and had more subjective impact on opinion and intentions to change than the general nutrition information. Computer literacy had no effect on these ratings. The results indicate that interactive, web-based computer-tailored nutrition education can lead to changes in determinants of behavior. Future research should be aimed at longer-term (behavioral) effects and the practicability of distributing tailored interventions via the WWW.
ERIC Educational Resources Information Center
Hao, Shuang
2016-01-01
Scaffolding is a type of instructional support that helps students to complete a learning task that exceeds their current ability. Scaffolding plays an important role in augmenting other instructional approaches, such as problem-based learning, and facilitates gradual shifts of responsibility from the more advanced others to the learner (Belland,…
The Computing And Interdisciplinary Systems Office: Annual Review and Planning Meeting
NASA Technical Reports Server (NTRS)
Lytle, John K.
2003-01-01
The goal of this research is to develop an advanced engineering analysis system that enables high-fidelity, multi-disciplinary, full propulsion system simulations to be performed early in the design process (a virtual test cell that integrates propulsion and information technologies). This will enable rapid, high-confidence, cost-effective design of revolutionary systems.
NASA Tech Briefs, May 1995. Volume 19, No. 5
NASA Technical Reports Server (NTRS)
1995-01-01
This issue features an resource report on Jet Propulsion Laboratory and a special focus on advanced composites and plastics. It also contains articles on electronic components and circuits, electronic systems, physical sciences, computer programs, mechanics, machinery, manufacturing and fabrication, mathematics and information sciences, and life sciences. This issue also contains a supplement on federal laboratory test and measurements.
Wind Tunnel Testing of Powered Lift, All-Wing STOL Model
NASA Technical Reports Server (NTRS)
Collins, Scott W.; Westra, Bryan W.; Lin, John C.; Jones, Gregory S.; Zeune, Cal H.
2008-01-01
Short take-off and landing (STOL) systems can offer significant capabilities to warfighters and, for civil operators thriving on maximizing efficiencies they can improve airspace use while containing noise within airport environments. In order to provide data for next generation systems, a wind tunnel test of an all-wing cruise efficient, short take-off and landing (CE STOL) configuration was conducted in the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) 14- by 22-foot Subsonic Wind Tunnel. The test s purpose was to mature the aerodynamic aspects of an integrated powered lift system within an advanced mobility configuration capable of CE STOL. The full-span model made use of steady flap blowing and a lifting centerbody to achieve high lift coefficients. The test occurred during April through June of 2007 and included objectives for advancing the state-of-the-art of powered lift testing through gathering force and moment data, on-body pressure data, and off-body flow field measurements during automatically controlled blowing conditions. Data were obtained for variations in model configuration, angles of attack and sideslip, blowing coefficient, and height above ground. The database produced by this effort is being used to advance design techniques and computational tools for developing systems with integrated powered lift technologies.
Improved first-order uncertainty method for water-quality modeling
Melching, C.S.; Anmangandla, S.
1992-01-01
Uncertainties are unavoidable in water-quality modeling and subsequent management decisions. Monte Carlo simulation and first-order uncertainty analysis (involving linearization at central values of the uncertain variables) have been frequently used to estimate probability distributions for water-quality model output due to their simplicity. Each method has its drawbacks: Monte Carlo simulation's is mainly computational time; and first-order analysis are mainly questions of accuracy and representativeness, especially for nonlinear systems and extreme conditions. An improved (advanced) first-order method is presented, where the linearization point varies to match the output level whose exceedance probability is sought. The advanced first-order method is tested on the Streeter-Phelps equation to estimate the probability distribution of critical dissolved-oxygen deficit and critical dissolved oxygen using two hypothetical examples from the literature. The advanced first-order method provides a close approximation of the exceedance probability for the Streeter-Phelps model output estimated by Monte Carlo simulation using less computer time - by two orders of magnitude - regardless of the probability distributions assumed for the uncertain model parameters.
NASA Astrophysics Data System (ADS)
Beshears, Ronald D.; Hediger, Lisa H.
1994-10-01
The Advanced Computed Tomography Inspection System (ACTIS) was developed by the Marshall Space Flight Center to support in-house solid propulsion test programs. ACTIS represents a significant advance in state-of-the-art inspection systems. Its flexibility and superior technical performance have made ACTIS very popular, both within and outside the aerospace community. Through Technology Utilization efforts, ACTIS has been applied to inspection problems in commercial aerospace, lumber, automotive, and nuclear waste disposal industries. ACTIS has even been used to inspect items of historical interest. ACTIS has consistently produced valuable results, providing information which was unattainable through conventional inspection methods. Although many successes have already been demonstrated, the full potential of ACTIS has not yet been realized. It is currently being applied in the commercial aerospace industry by Boeing Aerospace Company. Smaller systems, based on ACTIS technology are becoming increasingly available. This technology has much to offer small businesses and industry, especially in identifying design and process problems early in the product development cycle to prevent defects. Several options are available to businesses interested in pursuing this technology.
NASA Technical Reports Server (NTRS)
Hediger, Lisa H.
1991-01-01
The Advanced Computed Tomography Inspection System (ACTIS) was developed by NASA Marshall to support solid propulsion test programs. ACTIS represents a significant advance in state-of-the-art inspection systems. Its flexibility and superior technical performance have made ACTIS very popular, both within and outside the aerospace community. Through technology utilization efforts, ACTIS has been applied to inspection problems in commercial aerospace, lumber, automotive, and nuclear waste disposal industries. ACTIS has been used to inspect items of historical interest. ACTIS has consistently produced valuable results, providing information which was unattainable through conventional inspection methods. Although many successes have already been shown, the full potential of ACTIS has not yet been realized. It is currently being applied in the commercial aerospace industry by Boeing. Smaller systems, based on ACTIS technology, are becoming increasingly available. This technology has much to offer the small business and industry, especially in identifying design and process problems early in the product development cycle to prevent defects. Several options are available to businesses interested in this technology.
Hot Corrosion Test Facility at the NASA Lewis Special Projects Laboratory
NASA Technical Reports Server (NTRS)
Robinson, Raymond C.; Cuy, Michael D.
1994-01-01
The Hot Corrosion Test Facility (HCTF) at the NASA Lewis Special Projects Laboratory (SPL) is a high-velocity, pressurized burner rig currently used to evaluate the environmental durability of advanced ceramic materials such as SiC and Si3N4. The HCTF uses laboratory service air which is preheated, mixed with jet fuel, and ignited to simulate the conditions of a gas turbine engine. Air, fuel, and water systems are computer-controlled to maintain test conditions which include maximum air flows of 250 kg/hr (550 lbm/hr), pressures of 100-600 kPa (1-6 atm), and gas temperatures exceeding 1500 C (2732 F). The HCTF provides a relatively inexpensive, yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials, and the injection of a salt solution provides the added capability of conducting hot corrosion studies.
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi; Alkalai, Leon
1996-01-01
Recent changes within NASA's space exploration program favor the design, implementation, and operation of low cost, lightweight, small and micro spacecraft with multiple launches per year. In order to meet the future needs of these missions with regard to the use of spacecraft microelectronics, NASA's advanced flight computing (AFC) program is currently considering industrial cooperation and advanced packaging architectures. In relation to this, the AFC program is reviewed, considering the design and implementation of NASA's AFC multichip module.
NREL Kicks Off Next Phase of Advanced Computer-Aided Battery Engineering |
lithium-ion (Li-ion) batteries, known as a multi-scale multi-domain (GH-MSMD) model framework, was News | NREL Kicks Off Next Phase of Advanced Computer-Aided Battery Engineering NREL Kicks Off Next Phase of Advanced Computer-Aided Battery Engineering March 16, 2016 NREL researcher looks across
A Comparison of Computed and Experimental Flowfields of the RAH-66 Helicopter
NASA Technical Reports Server (NTRS)
vanDam, C. P.; Budge, A. M.; Duque, E. P. N.
1996-01-01
This paper compares and evaluates numerical and experimental flowfields of the RAH-66 Comanche helicopter. The numerical predictions were obtained by solving the Thin-Layer Navier-Stokes equations. The computations use actuator disks to investigate the main and tail rotor effects upon the fuselage flowfield. The wind tunnel experiment was performed in the 14 x 22 foot facility located at NASA Langley. A suite of flow conditions, rotor thrusts and fuselage-rotor-tail configurations were tested. In addition, the tunnel model and the computational geometry were based upon the same CAD definition. Computations were performed for an isolated fuselage configuration and for a rotor on configuration. Comparisons between the measured and computed surface pressures show areas of correlation and some discrepancies. Local areas of poor computational grid-quality and local areas of geometry differences account for the differences. These calculations demonstrate the use of advanced computational fluid dynamic methodologies towards a flight vehicle currently under development. It serves as an important verification for future computed results.
Examinations of the Chemical Step in Enzyme Catalysis.
Singh, P; Islam, Z; Kohen, A
2016-01-01
Advances in computational and experimental methods in enzymology have aided comprehension of enzyme-catalyzed chemical reactions. The main difficulty in comparing computational findings to rate measurements is that the first examines a single energy barrier, while the second frequently reflects a combination of many microscopic barriers. We present here intrinsic kinetic isotope effects and their temperature dependence as a useful experimental probe of a single chemical step in a complex kinetic cascade. Computational predictions are tested by this method for two model enzymes: dihydrofolate reductase and thymidylate synthase. The description highlights the significance of collaboration between experimentalists and theoreticians to develop a better understanding of enzyme-catalyzed chemical conversions. © 2016 Elsevier Inc. All rights reserved.
Current state and future direction of computer systems at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Rogers, James L. (Editor); Tucker, Jerry H. (Editor)
1992-01-01
Computer systems have advanced at a rate unmatched by any other area of technology. As performance has dramatically increased there has been an equally dramatic reduction in cost. This constant cost performance improvement has precipitated the pervasiveness of computer systems into virtually all areas of technology. This improvement is due primarily to advances in microelectronics. Most people are now convinced that the new generation of supercomputers will be built using a large number (possibly thousands) of high performance microprocessors. Although the spectacular improvements in computer systems have come about because of these hardware advances, there has also been a steady improvement in software techniques. In an effort to understand how these hardware and software advances will effect research at NASA LaRC, the Computer Systems Technical Committee drafted this white paper to examine the current state and possible future directions of computer systems at the Center. This paper discusses selected important areas of computer systems including real-time systems, embedded systems, high performance computing, distributed computing networks, data acquisition systems, artificial intelligence, and visualization.
Advances in computer imaging/applications in facial plastic surgery.
Papel, I D; Jiannetto, D F
1999-01-01
Rapidly progressing computer technology, ever-increasing expectations of patients, and a confusing medicolegal environment requires a clarification of the role of computer imaging/applications. Advances in computer technology and its applications are reviewed. A brief historical discussion is included for perspective. Improvements in both hardware and software with the advent of digital imaging have allowed great increases in speed and accuracy in patient imaging. This facilitates doctor-patient communication and possibly realistic patient expectations. Patients seeking cosmetic surgery now often expect preoperative imaging. Although society in general has become more litigious, a literature search up to 1998 reveals no lawsuits directly involving computer imaging. It appears that conservative utilization of computer imaging by the facial plastic surgeon may actually reduce liability and promote communication. Recent advances have significantly enhanced the value of computer imaging in the practice of facial plastic surgery. These technological advances in computer imaging appear to contribute a useful technique for the practice of facial plastic surgery. Inclusion of computer imaging should be given serious consideration as an adjunct to clinical practice.
The Numerical Propulsion System Simulation: A Multidisciplinary Design System for Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Lytle, John K.
1999-01-01
Advances in computational technology and in physics-based modeling are making large scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze ma or propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of design process and to provide the designer with critical information about the components early in the design process. This paper describes the development of the Numerical Propulsion System Simulation (NPSS), a multidisciplinary system of analysis tools that is focussed on extending the simulation capability from components to the full system. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.
Periodic control of the individual-blade-control helicopter rotor. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Mckillip, R. M., Jr.
1984-01-01
Results of an investigation into methods of controller design for an individual helicopter rotor blade in the high forward-flight speed regime are described. This operating condition poses a unique control problem in that the perturbation equations of motion are linear with coefficients that vary periodically with time. The design of a control law was based on extensions to modern multivariate synthesis techniques and incorporated a novel approach to the reconstruction of the missing system state variables. The controller was tested on both an electronic analog computer simulation of the out-of-plane flapping dynamics, and on a four foot diameter single-bladed model helicopter rotor in the M.I.T. 5x7 subsonic wind tunnel at high levels of advance ratio. It is shown that modal control using the IBC concept is possible over a large range of advance ratios with only a modest amount of computational power required.
Robertson, W M; Parker, J M
2012-03-01
A straightforward and inexpensive implementation of acoustic impulse response measurement is described utilizing the signal processing technique of coherent averaging. The technique is capable of high signal-to-noise measurements with personal computer data acquisition equipment, an amplifier/speaker, and a high quality microphone. When coupled with simple waveguide test systems fabricated from commercial PVC plumbing pipe, impulse response measurement has proven to be ideal for undergraduate research projects-often of publishable quality-or for advanced laboratory experiments. The technique provides important learning objectives for science or engineering students in areas such as interfacing and computer control of experiments; analog-to-digital conversion and sampling; time and frequency analysis using Fourier transforms; signal processing; and insight into a variety of current research areas such as acoustic bandgap materials, acoustic metamaterials, and fast and slow wave manipulation. © 2012 Acoustical Society of America
Computer-aided design and computer science technology
NASA Technical Reports Server (NTRS)
Fulton, R. E.; Voigt, S. J.
1976-01-01
A description is presented of computer-aided design requirements and the resulting computer science advances needed to support aerospace design. The aerospace design environment is examined, taking into account problems of data handling and aspects of computer hardware and software. The interactive terminal is normally the primary interface between the computer system and the engineering designer. Attention is given to user aids, interactive design, interactive computations, the characteristics of design information, data management requirements, hardware advancements, and computer science developments.
Gas turbine critical research and advanced technology (CRT) support project
NASA Technical Reports Server (NTRS)
Furman, E. R.; Anderson, D. N.; Gedwill, M. A.; Lowell, C. E.; Schultz, D. F.
1982-01-01
The technical progress to provide a critical technology base for utility gas turbine systems capable of burning coal-derived fuels is summarized. Project tasks include the following: (1) combustion - to investigate the combustion of coal-derived fuels and the conversion of fuel-bound nitrogen to NOx; (2) materials - to understand and prevent the hot corrosion of turbine hot section materials; and (3) system studies - to integrate and guide the technological efforts. Technical accomplishments include: an extension of flame tube combustion testing of propane - Toluene Fuel Mixtures to vary H2 content from 9 to 18 percent by weight and the comparison of results with that predicted from a NASA Lewis General Chemical Kinetics Computer Code; the design and fabrication of combustor sector test section to test current and advanced combustor concepts; Testing of Catalytic combustors with residual and coal-derived liquid fuels; testing of high strength super alloys to evaluate their resistance to potential fuel impurities using doped clean fuels and coal-derived liquids; and the testing and evaluation of thermal barrier coatings and bond coatings on conventional turbine materials.
NASA Technical Reports Server (NTRS)
Andrews, E. H., Jr.; Mackley, E. A.
1976-01-01
The NASA Hypersonic Research Engine (HRE) Project was initiated for the purpose of advancing the technology of airbreathing propulsion for hypersonic flight. A large component (inlet, combustor, and nozzle) and structures development program was encompassed by the project. The tests of a full-scale (18 in. diameter cowl and 87 in. long) HRE concept, designated the Aerothermodynamic Integration Model (AIM), at Mach numbers of 5, 6, and 7. Computer program results for Mach 6 component integration tests are presented.
NASA Technical Reports Server (NTRS)
Newman, Perry A.; Mineck, Raymond E.; Barnwell, Richard W.; Kemp, William B., Jr.
1986-01-01
About a decade ago, interest in alleviating wind tunnel wall interference was renewed by advances in computational aerodynamics, concepts of adaptive test section walls, and plans for high Reynolds number transonic test facilities. Selection of NASA Langley cryogenic concept for the National Transonic Facility (NTF) tended to focus the renewed wall interference efforts. A brief overview and current status of some Langley sponsored transonic wind tunnel wall interference research are presented. Included are continuing efforts in basic wall flow studies, wall interference assessment/correction procedures, and adaptive wall technology.
Tests Of Array Of Flush Pressure Sensors
NASA Technical Reports Server (NTRS)
Larson, Larry J.; Moes, Timothy R.; Siemers, Paul M., III
1992-01-01
Report describes tests of array of pressure sensors connected to small orifices flush with surface of 1/7-scale model of F-14 airplane in wind tunnel. Part of effort to determine whether pressure parameters consisting of various sums, differences, and ratios of measured pressures used to compute accurately free-stream values of stagnation pressure, static pressure, angle of attack, angle of sideslip, and mach number. Such arrays of sensors and associated processing circuitry integrated into advanced aircraft as parts of flight-monitoring and -controlling systems.
Modeling of Revitalization of Atmospheric Water
NASA Technical Reports Server (NTRS)
Coker, Robert; Knox, Jim
2014-01-01
The Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project was initiated in September of 2011 as part of the Advanced Exploration Systems (AES) program. Under the ARREM project, testing of sub-scale and full-scale systems has been combined with multiphysics computer simulations for evaluation and optimization of subsystem approaches. In particular, this paper describes the testing and modeling of the water desiccant subsystem of the carbon dioxide removal assembly (CDRA). The goal is a full system predictive model of CDRA to guide system optimization and development.
Sozzi, Fabiola B; Maiello, Maria; Pelliccia, Francesco; Parato, Vito Maurizio; Canetta, Ciro; Savino, Ketty; Lombardi, Federico; Palmiero, Pasquale
2016-09-01
Coronary computed tomography angiography is a noninvasive heart imaging test currently undergoing rapid development and advancement. The high resolution of the three-dimensional pictures of the moving heart and great vessels is performed during a coronary computed tomography to identify coronary artery disease and classify patient risk for atherosclerotic cardiovascular disease. The technique provides useful information about the coronary tree and atherosclerotic plaques beyond simple luminal narrowing and plaque type defined by calcium content. This application will improve image-guided prevention, medical therapy, and coronary interventions. The ability to interpret coronary computed tomography images is of utmost importance as we develop personalized medical care to enable therapeutic interventions stratified on the bases of plaque characteristics. This overview provides available data and expert's recommendations in the utilization of coronary computed tomography findings. We focus on the use of coronary computed tomography to detect coronary artery disease and stratify patients at risk, illustrating the implications of this test on patient management. We describe its diagnostic power in identifying patients at higher risk to develop acute coronary syndrome and its prognostic significance. Finally, we highlight the features of the vulnerable plaques imaged by coronary computed tomography angiography. © 2016, Wiley Periodicals, Inc.
Embedded Data Processor and Portable Computer Technology testbeds
NASA Technical Reports Server (NTRS)
Alena, Richard; Liu, Yuan-Kwei; Goforth, Andre; Fernquist, Alan R.
1993-01-01
Attention is given to current activities in the Embedded Data Processor and Portable Computer Technology testbed configurations that are part of the Advanced Data Systems Architectures Testbed at the Information Sciences Division at NASA Ames Research Center. The Embedded Data Processor Testbed evaluates advanced microprocessors for potential use in mission and payload applications within the Space Station Freedom Program. The Portable Computer Technology (PCT) Testbed integrates and demonstrates advanced portable computing devices and data system architectures. The PCT Testbed uses both commercial and custom-developed devices to demonstrate the feasibility of functional expansion and networking for portable computers in flight missions.
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Editor)
1986-01-01
The papers contained in this volume provide an overview of the advances made in a number of aspects of computational mechanics, identify some of the anticipated industry needs in this area, discuss the opportunities provided by new hardware and parallel algorithms, and outline some of the current government programs in computational mechanics. Papers are included on advances and trends in parallel algorithms, supercomputers for engineering analysis, material modeling in nonlinear finite-element analysis, the Navier-Stokes computer, and future finite-element software systems.
Modified surface testing method for large convex aspheric surfaces based on diffraction optics.
Zhang, Haidong; Wang, Xiaokun; Xue, Donglin; Zhang, Xuejun
2017-12-01
Large convex aspheric optical elements have been widely applied in advanced optical systems, which have presented a challenging metrology problem. Conventional testing methods cannot satisfy the demand gradually with the change of definition of "large." A modified method is proposed in this paper, which utilizes a relatively small computer-generated hologram and an illumination lens with certain feasibility to measure the large convex aspherics. Two example systems are designed to demonstrate the applicability, and also, the sensitivity of this configuration is analyzed, which proves the accuracy of the configuration can be better than 6 nm with careful alignment and calibration of the illumination lens in advance. Design examples and analysis show that this configuration is applicable to measure the large convex aspheric surfaces.
NASA Technical Reports Server (NTRS)
Korkan, Kenneth D.; Eagleson, Lisa A.; Griffiths, Robert C.
1991-01-01
Current research in the area of advanced propeller configurations for performance and acoustics are briefly reviewed. Particular attention is given to the techniques of Lock and Theodorsen modified for use in the design of counterrotating propeller configurations; a numerical method known as SSTAGE, which is a Euler solver for the unducted fan concept; the NASPROP-E numerical analysis also based on a Euler solver and used to study the near acoustic fields for the SR series propfan configurations; and a counterrotating propeller test rig designed to obtain an experimental performance/acoustic data base for various propeller configurations.
On the prediction of far field computational aeroacoustics of advanced propellers
NASA Technical Reports Server (NTRS)
Jaeger, Stephen M.; Korkan, Kenneth D.
1990-01-01
A numerical method for determining the acoustic far field generated by a high-speed subsonic aircraft propeller was developed. The approach used in this method was to generate the entire three-dimensional pressure field about the propeller (using an Euler flowfield solver) and then to apply a solution of the wave equation on a cylindrical surface enveloping the propeller. The method is applied to generate the three-dimensional flowfield between two blades of an advanced propeller. The results are compared with experimental data obtained in a wind-tunnel test at a Mach number of 0.6.
Composite structural materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1979-01-01
A multifaceted program is described in which aeronautical, mechanical, and materials engineers interact to develop composite aircraft structures. Topics covered include: (1) the design of an advanced composite elevator and a proposed spar and rib assembly; (2) optimizing fiber orientation in the vicinity of heavily loaded joints; (3) failure mechanisms and delamination; (4) the construction of an ultralight sailplane; (5) computer-aided design; finite element analysis programs, preprocessor development, and array preprocessor for SPAR; (6) advanced analysis methods for composite structures; (7) ultrasonic nondestructive testing; (8) physical properties of epoxy resins and composites; (9) fatigue in composite materials, and (10) transverse thermal expansion of carbon/epoxy composites.
Army/NASA small turboshaft engine digital controls research program
NASA Technical Reports Server (NTRS)
Sellers, J. F.; Baez, A. N.
1981-01-01
The emphasis of a program to conduct digital controls research for small turboshaft engines is on engine test evaluation of advanced control logic using a flexible microprocessor based digital control system designed specifically for research on advanced control logic. Control software is stored in programmable memory. New control algorithms may be stored in a floppy disk and loaded directly into memory. This feature facilitates comparative evaluation of different advanced control modes. The central processor in the digital control is an Intel 8086 16 bit microprocessor. Control software is programmed in assembly language. Software checkout is accomplished prior to engine test by connecting the digital control to a real time hybrid computer simulation of the engine. The engine currently installed in the facility has a hydromechanical control modified to allow electrohydraulic fuel metering and VG actuation by the digital control. Simulation results are presented which show that the modern control reduces the transient rotor speed droop caused by unanticipated load changes such as cyclic pitch or wind gust transients.
Vision 20/20: Automation and advanced computing in clinical radiation oncology.
Moore, Kevin L; Kagadis, George C; McNutt, Todd R; Moiseenko, Vitali; Mutic, Sasa
2014-01-01
This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.
WE-D-303-00: Computational Phantoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, John; Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, MA
2015-06-15
Modern medical physics deals with complex problems such as 4D radiation therapy and imaging quality optimization. Such problems involve a large number of radiological parameters, and anatomical and physiological breathing patterns. A major challenge is how to develop, test, evaluate and compare various new imaging and treatment techniques, which often involves testing over a large range of radiological parameters as well as varying patient anatomies and motions. It would be extremely challenging, if not impossible, both ethically and practically, to test every combination of parameters and every task on every type of patient under clinical conditions. Computer-based simulation using computationalmore » phantoms offers a practical technique with which to evaluate, optimize, and compare imaging technologies and methods. Within simulation, the computerized phantom provides a virtual model of the patient’s anatomy and physiology. Imaging data can be generated from it as if it was a live patient using accurate models of the physics of the imaging and treatment process. With sophisticated simulation algorithms, it is possible to perform virtual experiments entirely on the computer. By serving as virtual patients, computational phantoms hold great promise in solving some of the most complex problems in modern medical physics. In this proposed symposium, we will present the history and recent developments of computational phantom models, share experiences in their application to advanced imaging and radiation applications, and discuss their promises and limitations. Learning Objectives: Understand the need and requirements of computational phantoms in medical physics research Discuss the developments and applications of computational phantoms Know the promises and limitations of computational phantoms in solving complex problems.« less
Test-bench system for a borehole azimuthal acoustic reflection imaging logging tool
NASA Astrophysics Data System (ADS)
Liu, Xianping; Ju, Xiaodong; Qiao, Wenxiao; Lu, Junqiang; Men, Baiyong; Liu, Dong
2016-06-01
The borehole azimuthal acoustic reflection imaging logging tool (BAAR) is a new generation of imaging logging tool, which is able to investigate stratums in a relatively larger range of space around the borehole. The BAAR is designed based on the idea of modularization with a very complex structure, so it has become urgent for us to develop a dedicated test-bench system to debug each module of the BAAR. With the help of a test-bench system introduced in this paper, test and calibration of BAAR can be easily achieved. The test-bench system is designed based on the client/server model. The hardware system mainly consists of a host computer, an embedded controlling board, a bus interface board, a data acquisition board and a telemetry communication board. The host computer serves as the human machine interface and processes the uploaded data. The software running on the host computer is designed based on VC++. The embedded controlling board uses Advanced Reduced Instruction Set Machines 7 (ARM7) as the micro controller and communicates with the host computer via Ethernet. The software for the embedded controlling board is developed based on the operating system uClinux. The bus interface board, data acquisition board and telemetry communication board are designed based on a field programmable gate array (FPGA) and provide test interfaces for the logging tool. To examine the feasibility of the test-bench system, it was set up to perform a test on BAAR. By analyzing the test results, an unqualified channel of the electronic receiving cabin was discovered. It is suggested that the test-bench system can be used to quickly determine the working condition of sub modules of BAAR and it is of great significance in improving production efficiency and accelerating industrial production of the logging tool.
Haering, Diane; Huchez, Aurore; Barbier, Franck; Holvoët, Patrice; Begon, Mickaël
2017-01-01
Introduction Teaching acrobatic skills with a minimal amount of repetition is a major challenge for coaches. Biomechanical, statistical or computer simulation tools can help them identify the most determinant factors of performance. Release parameters, change in moment of inertia and segmental momentum transfers were identified in the prediction of acrobatics success. The purpose of the present study was to evaluate the relative contribution of these parameters in performance throughout expertise or optimisation based improvements. The counter movement forward in flight (CMFIF) was chosen for its intrinsic dichotomy between the accessibility of its attempt and complexity of its mastery. Methods Three repetitions of the CMFIF performed by eight novice and eight advanced female gymnasts were recorded using a motion capture system. Optimal aerial techniques that maximise rotation potential at regrasp were also computed. A 14-segment-multibody-model defined through the Rigid Body Dynamics Library was used to compute recorded and optimal kinematics, and biomechanical parameters. A stepwise multiple linear regression was used to determine the relative contribution of these parameters in novice recorded, novice optimised, advanced recorded and advanced optimised trials. Finally, fixed effects of expertise and optimisation were tested through a mixed-effects analysis. Results and discussion Variation in release state only contributed to performances in novice recorded trials. Moment of inertia contribution to performance increased from novice recorded, to novice optimised, advanced recorded, and advanced optimised trials. Contribution to performance of momentum transfer to the trunk during the flight prevailed in all recorded trials. Although optimisation decreased transfer contribution, momentum transfer to the arms appeared. Conclusion Findings suggest that novices should be coached on both contact and aerial technique. Inversely, mainly improved aerial technique helped advanced gymnasts increase their performance. For both, reduction of the moment of inertia should be focused on. The method proposed in this article could be generalized to any aerial skill learning investigation. PMID:28422954
Generalized Advanced Propeller Analysis System (GAPAS). Volume 2: Computer program user manual
NASA Technical Reports Server (NTRS)
Glatt, L.; Crawford, D. R.; Kosmatka, J. B.; Swigart, R. J.; Wong, E. W.
1986-01-01
The Generalized Advanced Propeller Analysis System (GAPAS) computer code is described. GAPAS was developed to analyze advanced technology multi-bladed propellers which operate on aircraft with speeds up to Mach 0.8 and altitudes up to 40,000 feet. GAPAS includes technology for analyzing aerodynamic, structural, and acoustic performance of propellers. The computer code was developed for the CDC 7600 computer and is currently available for industrial use on the NASA Langley computer. A description of all the analytical models incorporated in GAPAS is included. Sample calculations are also described as well as users requirements for modifying the analysis system. Computer system core requirements and running times are also discussed.
Visuospatial skills and computer game experience influence the performance of virtual endoscopy.
Enochsson, Lars; Isaksson, Bengt; Tour, René; Kjellin, Ann; Hedman, Leif; Wredmark, Torsten; Tsai-Felländer, Li
2004-11-01
Advanced medical simulators have been introduced to facilitate surgical and endoscopic training and thereby improve patient safety. Residents trained in the Procedicus Minimally Invasive Surgical Trainer-Virtual Reality (MIST-VR) laparoscopic simulator perform laparoscopic cholecystectomy safer and faster than a control group. Little has been reported regarding whether factors like gender, computer experience, and visuospatial tests can predict the performance with a medical simulator. Our aim was to investigate whether such factors influence the performance of simulated gastroscopy. Seventeen medical students were asked about computer gaming experiences. Before virtual endoscopy, they performed the visuospatial test PicCOr, which discriminates the ability of the tested person to create a three-dimensional image from a two-dimensional presentation. Each student performed one gastroscopy (level 1, case 1) in the GI Mentor II, Simbionix, and several variables related to performance were registered. Percentage of time spent with a clear view in the endoscope correlated well with the performance on the PicSOr test (r = 0.56, P < 0.001). Efficiency of screening also correlated with PicSOr (r = 0.23, P < 0.05). In students with computer gaming experience, the efficiency of screening increased (33.6% +/- 3.1% versus 22.6% +/- 2.8%, P < 0.05) and the duration of the examination decreased by 1.5 minutes (P < 0.05). A similar trend was seen in men compared with women. The visuospatial test PicSOr predicts the results with the endoscopic simulator GI Mentor II. Two-dimensional image experience, as in computer games, also seems to affect the outcome.
Extraction and Analysis of Display Data
NASA Technical Reports Server (NTRS)
Land, Chris; Moye, Kathryn
2008-01-01
The Display Audit Suite is an integrated package of software tools that partly automates the detection of Portable Computer System (PCS) Display errors. [PCS is a lap top computer used onboard the International Space Station (ISS).] The need for automation stems from the large quantity of PCS displays (6,000+, with 1,000,000+ lines of command and telemetry data). The Display Audit Suite includes data-extraction tools, automatic error detection tools, and database tools for generating analysis spread sheets. These spread sheets allow engineers to more easily identify many different kinds of possible errors. The Suite supports over 40 independent analyses, 16 NASA Tech Briefs, November 2008 and complements formal testing by being comprehensive (all displays can be checked) and by revealing errors that are difficult to detect via test. In addition, the Suite can be run early in the development cycle to find and correct errors in advance of testing.
Did the Shift to Computer-Based Testing in PISA 2015 Affect Reading Scores? A View from East Asia
ERIC Educational Resources Information Center
Komatsu, Hikaru; Rappleye, Jeremy
2017-01-01
In this Forum article, Komatsu and Rappleye report that the results of PISA 2015 released December 2016 revealed a major oddity: reading scores in several of the "leading" East Asian countries had apparently plummeted. An interesting point is that Japan, Taiwan, Korea and Hong Kong are among the most advanced technological societies in…
J. McKean; D. Tonina; C. Bohn; C. W. Wright
2014-01-01
New remote sensing technologies and improved computer performance now allow numerical flow modeling over large stream domains. However, there has been limited testing of whether channel topography can be remotely mapped with accuracy necessary for such modeling. We assessed the ability of the Experimental Advanced Airborne Research Lidar, to support a multi-dimensional...
E-Mail Writing: Providing Background Information in the Core of Computer Assisted Instruction
ERIC Educational Resources Information Center
Nazari, Behzad; Ninknejad, Sahar
2015-01-01
The present study highly supported the effective role of providing background information via email by the teacher to write e-mail by the students in learners' writing ability. A total number of 50 EFL advanced male students aged between 25 and 40 at different branches of Iran Language Institute in Tehran, Tehran. Through the placement test of…
Cognitive correlates of performance in advanced mathematics.
Wei, Wei; Yuan, Hongbo; Chen, Chuansheng; Zhou, Xinlin
2012-03-01
Much research has been devoted to understanding cognitive correlates of elementary mathematics performance, but little such research has been done for advanced mathematics (e.g., modern algebra, statistics, and mathematical logic). To promote mathematical knowledge among college students, it is necessary to understand what factors (including cognitive factors) are important for acquiring advanced mathematics. We recruited 80 undergraduates from four universities in Beijing. The current study investigated the associations between students' performance on a test of advanced mathematics and a battery of 17 cognitive tasks on basic numerical processing, complex numerical processing, spatial abilities, language abilities, and general cognitive processing. The results showed that spatial abilities were significantly correlated with performance in advanced mathematics after controlling for other factors. In addition, certain language abilities (i.e., comprehension of words and sentences) also made unique contributions. In contrast, basic numerical processing and computation were generally not correlated with performance in advanced mathematics. Results suggest that spatial abilities and language comprehension, but not basic numerical processing, may play an important role in advanced mathematics. These results are discussed in terms of their theoretical significance and practical implications. ©2011 The British Psychological Society.
Development of iterative techniques for the solution of unsteady compressible viscous flows
NASA Technical Reports Server (NTRS)
Hixon, Duane; Sankar, L. N.
1993-01-01
During the past two decades, there has been significant progress in the field of numerical simulation of unsteady compressible viscous flows. At present, a variety of solution techniques exist such as the transonic small disturbance analyses (TSD), transonic full potential equation-based methods, unsteady Euler solvers, and unsteady Navier-Stokes solvers. These advances have been made possible by developments in three areas: (1) improved numerical algorithms; (2) automation of body-fitted grid generation schemes; and (3) advanced computer architectures with vector processing and massively parallel processing features. In this work, the GMRES scheme has been considered as a candidate for acceleration of a Newton iteration time marching scheme for unsteady 2-D and 3-D compressible viscous flow calculation; from preliminary calculations, this will provide up to a 65 percent reduction in the computer time requirements over the existing class of explicit and implicit time marching schemes. The proposed method has ben tested on structured grids, but is flexible enough for extension to unstructured grids. The described scheme has been tested only on the current generation of vector processor architecture of the Cray Y/MP class, but should be suitable for adaptation to massively parallel machines.
Towards Test Driven Development for Computational Science with pFUnit
NASA Technical Reports Server (NTRS)
Rilee, Michael L.; Clune, Thomas L.
2014-01-01
Developers working in Computational Science & Engineering (CSE)/High Performance Computing (HPC) must contend with constant change due to advances in computing technology and science. Test Driven Development (TDD) is a methodology that mitigates software development risks due to change at the cost of adding comprehensive and continuous testing to the development process. Testing frameworks tailored for CSE/HPC, like pFUnit, can lower the barriers to such testing, yet CSE software faces unique constraints foreign to the broader software engineering community. Effective testing of numerical software requires a comprehensive suite of oracles, i.e., use cases with known answers, as well as robust estimates for the unavoidable numerical errors associated with implementation with finite-precision arithmetic. At first glance these concerns often seem exceedingly challenging or even insurmountable for real-world scientific applications. However, we argue that this common perception is incorrect and driven by (1) a conflation between model validation and software verification and (2) the general tendency in the scientific community to develop relatively coarse-grained, large procedures that compound numerous algorithmic steps.We believe TDD can be applied routinely to numerical software if developers pursue fine-grained implementations that permit testing, neatly side-stepping concerns about needing nontrivial oracles as well as the accumulation of errors. We present an example of a successful, complex legacy CSE/HPC code whose development process shares some aspects with TDD, which we contrast with current and potential capabilities. A mix of our proposed methodology and framework support should enable everyday use of TDD by CSE-expert developers.
Research in Structures and Dynamics, 1984
NASA Technical Reports Server (NTRS)
Hayduk, R. J. (Compiler); Noor, A. K. (Compiler)
1984-01-01
A symposium on advanced and trends in structures and dynamics was held to communicate new insights into physical behavior and to identify trends in the solution procedures for structures and dynamics problems. Pertinent areas of concern were (1) multiprocessors, parallel computation, and database management systems, (2) advances in finite element technology, (3) interactive computing and optimization, (4) mechanics of materials, (5) structural stability, (6) dynamic response of structures, and (7) advanced computer applications.
Development of a change management system
NASA Technical Reports Server (NTRS)
Parks, Cathy Bonifas
1993-01-01
The complexity and interdependence of software on a computer system can create a situation where a solution to one problem causes failures in dependent software. In the computer industry, software problems arise and are often solved with 'quick and dirty' solutions. But in implementing these solutions, documentation about the solution or user notification of changes is often overlooked, and new problems are frequently introduced because of insufficient review or testing. These problems increase when numerous heterogeneous systems are involved. Because of this situation, a change management system plays an integral part in the maintenance of any multisystem computing environment. At the NASA Ames Advanced Computational Facility (ACF), the Online Change Management System (OCMS) was designed and developed to manage the changes being applied to its multivendor computing environment. This paper documents the research, design, and modifications that went into the development of this change management system (CMS).
Recent advances in computational mechanics of the human knee joint.
Kazemi, M; Dabiri, Y; Li, L P
2013-01-01
Computational mechanics has been advanced in every area of orthopedic biomechanics. The objective of this paper is to provide a general review of the computational models used in the analysis of the mechanical function of the knee joint in different loading and pathological conditions. Major review articles published in related areas are summarized first. The constitutive models for soft tissues of the knee are briefly discussed to facilitate understanding the joint modeling. A detailed review of the tibiofemoral joint models is presented thereafter. The geometry reconstruction procedures as well as some critical issues in finite element modeling are also discussed. Computational modeling can be a reliable and effective method for the study of mechanical behavior of the knee joint, if the model is constructed correctly. Single-phase material models have been used to predict the instantaneous load response for the healthy knees and repaired joints, such as total and partial meniscectomies, ACL and PCL reconstructions, and joint replacements. Recently, poromechanical models accounting for fluid pressurization in soft tissues have been proposed to study the viscoelastic response of the healthy and impaired knee joints. While the constitutive modeling has been considerably advanced at the tissue level, many challenges still exist in applying a good material model to three-dimensional joint simulations. A complete model validation at the joint level seems impossible presently, because only simple data can be obtained experimentally. Therefore, model validation may be concentrated on the constitutive laws using multiple mechanical tests of the tissues. Extensive model verifications at the joint level are still crucial for the accuracy of the modeling.
Recent Advances in Computational Mechanics of the Human Knee Joint
Kazemi, M.; Dabiri, Y.; Li, L. P.
2013-01-01
Computational mechanics has been advanced in every area of orthopedic biomechanics. The objective of this paper is to provide a general review of the computational models used in the analysis of the mechanical function of the knee joint in different loading and pathological conditions. Major review articles published in related areas are summarized first. The constitutive models for soft tissues of the knee are briefly discussed to facilitate understanding the joint modeling. A detailed review of the tibiofemoral joint models is presented thereafter. The geometry reconstruction procedures as well as some critical issues in finite element modeling are also discussed. Computational modeling can be a reliable and effective method for the study of mechanical behavior of the knee joint, if the model is constructed correctly. Single-phase material models have been used to predict the instantaneous load response for the healthy knees and repaired joints, such as total and partial meniscectomies, ACL and PCL reconstructions, and joint replacements. Recently, poromechanical models accounting for fluid pressurization in soft tissues have been proposed to study the viscoelastic response of the healthy and impaired knee joints. While the constitutive modeling has been considerably advanced at the tissue level, many challenges still exist in applying a good material model to three-dimensional joint simulations. A complete model validation at the joint level seems impossible presently, because only simple data can be obtained experimentally. Therefore, model validation may be concentrated on the constitutive laws using multiple mechanical tests of the tissues. Extensive model verifications at the joint level are still crucial for the accuracy of the modeling. PMID:23509602
Vision 20/20: Automation and advanced computing in clinical radiation oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Kevin L., E-mail: kevinmoore@ucsd.edu; Moiseenko, Vitali; Kagadis, George C.
This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authorsmore » contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.« less
Vision 20/20: Automation and advanced computing in clinical radiation oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Kevin L., E-mail: kevinmoore@ucsd.edu; Moiseenko, Vitali; Kagadis, George C.
2014-01-15
This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authorsmore » contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.« less
NASA Astrophysics Data System (ADS)
Volosovitch, Anatoly E.; Konopaltseva, Lyudmila I.
1995-11-01
Well-known methods of optical diagnostics, database for their storage, as well as expert system (ES) for their development are analyzed. A computer informational system is developed, which is based on a hybrid ES built on modern DBMS. As an example, the structural and constructive circuits of the hybrid integrated-optical devices based on laser diodes, diffusion waveguides, geodetic lenses, package-free linear photodiode arrays, etc. are presented. The features of methods and test results as well as the advanced directions of works related to the hybrid integrated-optical devices in the field of metrology are discussed.
NASA Astrophysics Data System (ADS)
Kudryavtsev, Alexey N.; Kashkovsky, Alexander V.; Borisov, Semyon P.; Shershnev, Anton A.
2017-10-01
In the present work a computer code RCFS for numerical simulation of chemically reacting compressible flows on hybrid CPU/GPU supercomputers is developed. It solves 3D unsteady Euler equations for multispecies chemically reacting flows in general curvilinear coordinates using shock-capturing TVD schemes. Time advancement is carried out using the explicit Runge-Kutta TVD schemes. Program implementation uses CUDA application programming interface to perform GPU computations. Data between GPUs is distributed via domain decomposition technique. The developed code is verified on the number of test cases including supersonic flow over a cylinder.
Designing for deeper learning in a blended computer science course for middle school students
NASA Astrophysics Data System (ADS)
Grover, Shuchi; Pea, Roy; Cooper, Stephen
2015-04-01
The focus of this research was to create and test an introductory computer science course for middle school. Titled "Foundations for Advancing Computational Thinking" (FACT), the course aims to prepare and motivate middle school learners for future engagement with algorithmic problem solving. FACT was also piloted as a seven-week course on Stanford's OpenEdX MOOC platform for blended in-class learning. Unique aspects of FACT include balanced pedagogical designs that address the cognitive, interpersonal, and intrapersonal aspects of "deeper learning"; a focus on pedagogical strategies for mediating and assessing for transfer from block-based to text-based programming; curricular materials for remedying misperceptions of computing; and "systems of assessments" (including formative and summative quizzes and tests, directed as well as open-ended programming assignments, and a transfer test) to get a comprehensive picture of students' deeper computational learning. Empirical investigations, accomplished over two iterations of a design-based research effort with students (aged 11-14 years) in a public school, sought to examine student understanding of algorithmic constructs, and how well students transferred this learning from Scratch to text-based languages. Changes in student perceptions of computing as a discipline were measured. Results and mixed-method analyses revealed that students in both studies (1) achieved substantial learning gains in algorithmic thinking skills, (2) were able to transfer their learning from Scratch to a text-based programming context, and (3) achieved significant growth toward a more mature understanding of computing as a discipline. Factor analyses of prior computing experience, multivariate regression analyses, and qualitative analyses of student projects and artifact-based interviews were conducted to better understand the factors affecting learning outcomes. Prior computing experiences (as measured by a pretest) and math ability were found to be strong predictors of learning outcomes.
Optimization of knowledge-based systems and expert system building tools
NASA Technical Reports Server (NTRS)
Yasuda, Phyllis; Mckellar, Donald
1993-01-01
The objectives of the NASA-AMES Cooperative Agreement were to investigate, develop, and evaluate, via test cases, the system parameters and processing algorithms that constrain the overall performance of the Information Sciences Division's Artificial Intelligence Research Facility. Written reports covering various aspects of the grant were submitted to the co-investigators for the grant. Research studies concentrated on the field of artificial intelligence knowledge-based systems technology. Activities included the following areas: (1) AI training classes; (2) merging optical and digital processing; (3) science experiment remote coaching; (4) SSF data management system tests; (5) computer integrated documentation project; (6) conservation of design knowledge project; (7) project management calendar and reporting system; (8) automation and robotics technology assessment; (9) advanced computer architectures and operating systems; and (10) honors program.
Staged-Fault Testing of Distance Protection Relay Settings
NASA Astrophysics Data System (ADS)
Havelka, J.; Malarić, R.; Frlan, K.
2012-01-01
In order to analyze the operation of the protection system during induced fault testing in the Croatian power system, a simulation using the CAPE software has been performed. The CAPE software (Computer-Aided Protection Engineering) is expert software intended primarily for relay protection engineers, which calculates current and voltage values during faults in the power system, so that relay protection devices can be properly set up. Once the accuracy of the simulation model had been confirmed, a series of simulations were performed in order to obtain the optimal fault location to test the protection system. The simulation results were used to specify the test sequence definitions for the end-to-end relay testing using advanced testing equipment with GPS synchronization for secondary injection in protection schemes based on communication. The objective of the end-to-end testing was to perform field validation of the protection settings, including verification of the circuit breaker operation, telecommunication channel time and the effectiveness of the relay algorithms. Once the end-to-end secondary injection testing had been completed, the induced fault testing was performed with three-end lines loaded and in service. This paper describes and analyses the test procedure, consisting of CAPE simulations, end-to-end test with advanced secondary equipment and staged-fault test of a three-end power line in the Croatian transmission system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez, Marte
The research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to: 1) Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation. 2) Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator. 3) Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the resultsmore » to improve understand of proppant flow and transport. 4) Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production. 5) Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include: 1) A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS, 2) Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock, 3) Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications, and 4) Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez, Marte
2013-12-31
This research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to; Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation; Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator; Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understandmore » of proppant flow and transport; Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production; and Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include; A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS; Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock; Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications; and Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.« less
NASA Technical Reports Server (NTRS)
Thorp, Scott A.; Downey, Kevin M.
1992-01-01
One of the propulsion concepts being investigated for future cruise missiles is advanced unducted propfans. To support the evaluation of this technology applied to the cruise missile, a joint DOD and NASA test project was conducted to design and then test the characteristics of the propfans on a 0.55-scale, cruise missile model in a NASA wind tunnel. The configuration selected for study is a counterrotating rearward swept propfan. The forward blade row, having six blades, rotates in a counterclockwise direction, and the aft blade row, having six blades, rotates in a clockwise direction, as viewed from aft of the test model. Figures show the overall cruise missile and propfan blade configurations. The objective of this test was to evaluate propfan performance and suitability as a viable propulsion option for next generation of cruise missiles. This paper details the concurrent computer aided design, engineering, and manufacturing of the carbon fiber/epoxy propfan blades as the NASA Lewis Research Center.
NASA Technical Reports Server (NTRS)
Ellis, J. R.; Sandlass, G. S.; Bayyari, M.
2001-01-01
A design study was undertaken to investigate the feasibility of using simple specimen designs and reusable fixturing for in-plane biaxial tests planned for advanced aeropropulsion materials. Materials of interest in this work include: advanced metallics, polymeric matrix composites, metal and intermetallic matrix composites, and ceramic matrix composites. Early experience with advanced metallics showed that the cruciform specimen design typically used in this type of testing was impractical for these materials, primarily because of concerns regarding complexity and cost. The objective of this research was to develop specimen designs, fixturing, and procedures which would allow in-plane biaxial tests to be conducted on a wide range of aeropropulsion materials while at the same time keeping costs within acceptable limits. With this goal in mind. a conceptual design was developed centered on a specimen incorporating a relatively simple arrangement of slots and fingers for attachment and loading purposes. The ANSYS finite element code was used to demonstrate the feasibility of the approach and also to develop a number of optimized specimen designs. The same computer code was used to develop the reusable fixturing needed to position and grip the specimens in the load frame. The design adopted uses an assembly of slotted fingers which can be reconfigured as necessary to obtain optimum biaxial stress states in the specimen gage area. Most recently, prototype fixturing was manufactured and is being evaluated over a range of uniaxial and biaxial loading conditions.
Experimental and Analytical Seismic Studies of a Four-Span Bridge System with Innovative Materials
NASA Astrophysics Data System (ADS)
Cruz Noguez, Carlos Alonso
As part of a multi-university project utilizing the NSF Network for Earthquake Engineering Simulation (NEES), a quarter-scale model of a four-span bridge incorporating plastic hinges with different advanced materials was tested to failure on the three shake table system at the University of Nevada, Reno (UNR). The bridge was the second test model in a series of three 4-span bridges, with the first model being a conventional reinforced-concrete (RC) structure. The purpose of incorporating advanced materials was to improve the seismic performance of the bridge with respect to two damage indicators: (1) column damage and (2) permanent deformations. The goals of the study presented in this document were to (1) evaluate the seismic performance of a 4-span bridge system incorporating SMA/ECC and built-in rubber pad plastic hinges as well as post-tensioned piers, (2) quantify the relative merit of these advanced materials and details compared to each other and to conventional reinforced concrete plastic hinges, (3) determine the influence of abutment-superstructure interaction on the response, (4) examine the ability of available elaborate analytical modeling techniques to model the performance of advanced materials and details, and (5) conduct an extensive parametric study of different variations of the bridge model to study several important issues in bridge earthquake engineering. The bridge model included six columns, each pair of which utilized a different advanced detail at bottom plastic hinges: shape memory alloys (SMA), special engineered cementitious composites (ECC), elastomeric pads embedded into columns, and post-tensioning tendons. The design of the columns, location of the bents, and selection of the loading protocol were based on pre-test analyses conducted using computer program OpenSees. The bridge model was subjected to two-horizontal components of simulated earthquake records of the 1994 Northridge earthquake. Over 340 channels of data were collected. The test results showed the effectiveness of the advanced materials in reducing damage and permanent displacements. The damage was minimal in plastic hinges with SMA/ECC and those with built-in elastomeric pads. Conventional RC plastic hinges were severely damaged due to spalling of concrete and rupture of the longitudinal and transverse reinforcement. Extensive post-test analytical studies were conducted and it was determined that a computational model of the bridge that included bridge-abutment interaction using OpenSees was able to provide satisfactory estimations of key structural parameters such as superstructure displacements and base shears. The analytical model was also used to conduct parametric studies on single-column and bridge-system response under near-fault ground motions. The effects of vertical excitations and transverse shear-keys at the bridge abutments on the superstructure displacement and column drifts were also explored.
ERIC Educational Resources Information Center
Montgomery, Ann D.; Judd, Wilson A.
This report details the design, development, and implementation of computer software to support the cost-effective production of computer assisted instruction (CAI) within the context of the Advanced Instructional System (AIS) located at Lowry Air Force Base. The report supplements the computer managed Air Force technical training that is…
Energy efficient transport technology: Program summary and bibliography
NASA Technical Reports Server (NTRS)
Middleton, D. B.; Bartlett, D. W.; Hood, R. V.
1985-01-01
The Energy Efficient Transport (EET) Program began in 1976 as an element of the NASA Aircraft Energy Efficiency (ACEE) Program. The EET Program and the results of various applications of advanced aerodynamics and active controls technology (ACT) as applicable to future subsonic transport aircraft are discussed. Advanced aerodynamics research areas included high aspect ratio supercritical wings, winglets, advanced high lift devices, natural laminar flow airfoils, hybrid laminar flow control, nacelle aerodynamic and inertial loads, propulsion/airframe integration (e.g., long duct nacelles) and wing and empennage surface coatings. In depth analytical/trade studies, numerous wind tunnel tests, and several flight tests were conducted. Improved computational methodology was also developed. The active control functions considered were maneuver load control, gust load alleviation, flutter mode control, angle of attack limiting, and pitch augmented stability. Current and advanced active control laws were synthesized and alternative control system architectures were developed and analyzed. Integrated application and fly by wire implementation of the active control functions were design requirements in one major subprogram. Additional EET research included interdisciplinary technology applications, integrated energy management, handling qualities investigations, reliability calculations, and economic evaluations related to fuel savings and cost of ownership of the selected improvements.
Casner, Stephen M
2009-05-01
Four types of advanced cockpit systems were tested in an in-flight experiment for their effect on pilot workload and error. Twelve experienced pilots flew conventional cockpit and advanced cockpit versions of the same make and model airplane. In both airplanes, the experimenter dictated selected combinations of cockpit systems for each pilot to use while soliciting subjective workload measures and recording any errors that pilots made. The results indicate that the use of a GPS navigation computer helped reduce workload and errors during some phases of flight but raised them in others. Autopilots helped reduce some aspects of workload in the advanced cockpit airplane but did not appear to reduce workload in the conventional cockpit. Electronic flight and navigation instruments appeared to have no effect on workload or error. Despite this modest showing for advanced cockpit systems, pilots stated an overwhelming preference for using them during all phases of flight.
Users' manual for the Langley high speed propeller noise prediction program (DFP-ATP)
NASA Technical Reports Server (NTRS)
Dunn, M. H.; Tarkenton, G. M.
1989-01-01
The use of the Dunn-Farassat-Padula Advanced Technology Propeller (DFP-ATP) noise prediction program which computes the periodic acoustic pressure signature and spectrum generated by propellers moving with supersonic helical tip speeds is described. The program has the capacity of predicting noise produced by a single-rotation propeller (SRP) or a counter-rotation propeller (CRP) system with steady or unsteady blade loading. The computational method is based on two theoretical formulations developed by Farassat. One formulation is appropriate for subsonic sources, and the other for transonic or supersonic sources. Detailed descriptions of user input, program output, and two test cases are presented, as well as brief discussions of the theoretical formulations and computational algorithms employed.
NASA Technical Reports Server (NTRS)
Goldman, Louis J.
1993-01-01
An advanced laser anemometer (LA) was used to measure the axial and tangential velocity components in an annular cascade of turbine stator vanes operating at transonic flow conditions. The vanes tested were based on a previous redesign of the first-stage stator in a two-stage turbine for a high-bypass-ratio engine. The vanes produced 75 deg of flow turning. Tests were conducted on a 0.771-scale model of the engine-sized stator. The advanced LA fringe system employed an extremely small 50-micron diameter probe volume. Window correction optics were used to ensure that the laser beams did not uncross in passing through the curved optical access port. Experimental LA measurements of velocity and turbulence were obtained at the mean radius upstream of, within, and downstream of the stator vane row at an exit critical velocity ratio of 1.050 at the hub. Static pressures were also measured on the vane surface. The measurements are compared, where possible, with calculations from a three-dimensional inviscid flow analysis. Comparisons were also made with the results obtained previously when these same vanes were tested at the design exit critical velocity ratio of 0.896 at the hub. The data are presented in both graphical and tabulated form so that they can be readily compared against other turbomachinery computations.
Advanced laptop and small personal computer technology
NASA Technical Reports Server (NTRS)
Johnson, Roger L.
1991-01-01
Advanced laptop and small personal computer technology is presented in the form of the viewgraphs. The following areas of hand carried computers and mobile workstation technology are covered: background, applications, high end products, technology trends, requirements for the Control Center application, and recommendations for the future.
77 FR 12823 - Advanced Scientific Computing Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
... Exascale ARRA projects--Magellan final report, Advanced Networking update Status from Computer Science COV Early Career technical talks Summary of Applied Math and Computer Science Workshops ASCR's new SBIR..., Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the...
Computational modeling of brain tumors: discrete, continuum or hybrid?
NASA Astrophysics Data System (ADS)
Wang, Zhihui; Deisboeck, Thomas S.
In spite of all efforts, patients diagnosed with highly malignant brain tumors (gliomas), continue to face a grim prognosis. Achieving significant therapeutic advances will also require a more detailed quantitative understanding of the dynamic interactions among tumor cells, and between these cells and their biological microenvironment. Data-driven computational brain tumor models have the potential to provide experimental tumor biologists with such quantitative and cost-efficient tools to generate and test hypotheses on tumor progression, and to infer fundamental operating principles governing bidirectional signal propagation in multicellular cancer systems. This review highlights the modeling objectives of and challenges with developing such in silico brain tumor models by outlining two distinct computational approaches: discrete and continuum, each with representative examples. Future directions of this integrative computational neuro-oncology field, such as hybrid multiscale multiresolution modeling are discussed.
Computational modeling of brain tumors: discrete, continuum or hybrid?
NASA Astrophysics Data System (ADS)
Wang, Zhihui; Deisboeck, Thomas S.
2008-04-01
In spite of all efforts, patients diagnosed with highly malignant brain tumors (gliomas), continue to face a grim prognosis. Achieving significant therapeutic advances will also require a more detailed quantitative understanding of the dynamic interactions among tumor cells, and between these cells and their biological microenvironment. Data-driven computational brain tumor models have the potential to provide experimental tumor biologists with such quantitative and cost-efficient tools to generate and test hypotheses on tumor progression, and to infer fundamental operating principles governing bidirectional signal propagation in multicellular cancer systems. This review highlights the modeling objectives of and challenges with developing such in silicobrain tumor models by outlining two distinct computational approaches: discrete and continuum, each with representative examples. Future directions of this integrative computational neuro-oncology field, such as hybrid multiscale multiresolution modeling are discussed.
Free-wake computation of helicopter rotor flowfields in forward flight
NASA Technical Reports Server (NTRS)
Ramachandran, K.; Schlechtriem, S.; Caradonna, F. X.; Steinhoff, John
1993-01-01
A new method has been developed for computing advancing rotor flows. This method uses the Vorticity Embedding technique, which has been developed and validated over the last several years for hovering rotor problems. In this work, the unsteady full potential equation is solved on an Eulerian grid with an embedded vortical velocity field. This vortical velocity accounts for the influence of the wake. Dynamic grid changes that are required to accommodate prescribed blade motion and deformation are included using a novel grid blending method. Free wake computations have been performed on a two-bladed AH-1G rotor at low advance ratios including blade motion. Computed results are compared with experimental data. The sudden variations in airloads due to blade-vortex interactions on the advancing and retreating sides are well captured. The sensitivity of the computed solution to various factors like core size, time step and grids has been investigated. Computed wake geometries and their influence on the aerodynamic loads at these advance ratios are also discussed.
Biological materials by design.
Qin, Zhao; Dimas, Leon; Adler, David; Bratzel, Graham; Buehler, Markus J
2014-02-19
In this topical review we discuss recent advances in the use of physical insight into the way biological materials function, to design novel engineered materials 'from scratch', or from the level of fundamental building blocks upwards and by using computational multiscale methods that link chemistry to material function. We present studies that connect advances in multiscale hierarchical material structuring with material synthesis and testing, review case studies of wood and other biological materials, and illustrate how engineered fiber composites and bulk materials are designed, modeled, and then synthesized and tested experimentally. The integration of experiment and simulation in multiscale design opens new avenues to explore the physics of materials from a fundamental perspective, and using complementary strengths from models and empirical techniques. Recent developments in this field illustrate a new paradigm by which complex material functionality is achieved through hierarchical structuring in spite of simple material constituents.
Distribution system model calibration with big data from AMI and PV inverters
Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.; ...
2016-03-03
Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less
Distribution system model calibration with big data from AMI and PV inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.
Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less
Computational materials design of crystalline solids.
Butler, Keith T; Frost, Jarvist M; Skelton, Jonathan M; Svane, Katrine L; Walsh, Aron
2016-11-07
The modelling of materials properties and processes from first principles is becoming sufficiently accurate as to facilitate the design and testing of new systems in silico. Computational materials science is both valuable and increasingly necessary for developing novel functional materials and composites that meet the requirements of next-generation technology. A range of simulation techniques are being developed and applied to problems related to materials for energy generation, storage and conversion including solar cells, nuclear reactors, batteries, fuel cells, and catalytic systems. Such techniques may combine crystal-structure prediction (global optimisation), data mining (materials informatics) and high-throughput screening with elements of machine learning. We explore the development process associated with computational materials design, from setting the requirements and descriptors to the development and testing of new materials. As a case study, we critically review progress in the fields of thermoelectrics and photovoltaics, including the simulation of lattice thermal conductivity and the search for Pb-free hybrid halide perovskites. Finally, a number of universal chemical-design principles are advanced.
Effect of Helical Slow-Wave Circuit Variations on TWT Cold-Test Characteristics
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Dayton, J. A., Jr.
1998-01-01
Recent advances in the state of the art of computer modeling offer the possibility for the first time to evaluate the effect that slow-wave structure parameter variations, such as manufacturing tolerances, have on the cold-test characteristics of helical traveling-wave tubes (TWT's). This will enable manufacturers to determine the cost effectiveness of controlling the dimensions of the component parts of the TWT, which is almost impossible to do experimentally without building a large number of tubes and controlling several parameters simultaneously. The computer code MAFIA is used in this analysis to determine the effect on dispersion and on-axis interaction impedance of several helical slow-wave circuit parameter variations, including thickness and relative dielectric constant of the support rods, tape width, and height of the metallized films deposited on the dielectric rods. Previous computer analyzes required so many approximations that accurate determinations of the effect of many relevant dimensions on tube performance were practically impossible.
Effect of Helical Slow-Wave Circuit Variations on TWT Cold-Test Characteristics
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Dayton, James A., Jr.
1997-01-01
Recent advances in the state of the art of computer modeling offer the possibility for the first time to evaluate the effect that slow-wave structure parameter variations, such as manufacturing tolerances, have on the cold-test characteristics of helical traveling-wave tubes (TWT's). This will enable manufacturers to determine the cost effectiveness of controlling the dimensions of the component parts of the TWT, which is almost impossible to do experimentally without building a large number of tubes and controlling several parameters simultaneously. The computer code MAFIA is used in this analysis to determine the effect on dispersion and on-axis interaction impedance of several helical slow-wave circuit parameter variations, including thickness and relative dielectric constant of the support rods, tape width, and height of the metallized films deposited on the dielectric rods. Previous computer analyses required so many approximations that accurate determinations of the effect of many relevant dimensions on tube performance were practically impossible.
Effect of Helical Slow-Wave Circuit Variations on TWT Cold-Test Characteristics
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Dayton, James A., Jr.
1998-01-01
Recent advances in the state of the art of computer modeling offer the possibility for the first time to evaluate the effect that slow-wave structure parameter variations, such'as manufacturing tolerances, have on the cold-test characteristics of helical traveling-wave tubes (TWT's). This will enable manufacturers to determine the cost effectiveness of controlling the dimensions of the component parts of the TWT, which is almost impossible to do experimentally without building a large number of tubes and controlling several parameters simultaneously. The computer code MAxwell's equations by the Finite Integration Algorithm (MAFIA) is used in this analysis to determine the effect on dispersion and on-axis interaction impedance of several helical slow-wave circuit parameter variations, including thickness and relative dielectric constant of the support rods, tape width, and height of the metallized films deposited on the dielectric rods. Previous computer analyzes required so many approximations that accurate determinations of the effect of many relevant dimensions on tube performance were practically impossible.
NASA Astrophysics Data System (ADS)
Torkelson, G. Q.; Stoll, R., II
2017-12-01
Large Eddy Simulation (LES) is a tool commonly used to study the turbulent transport of momentum, heat, and moisture in the Atmospheric Boundary Layer (ABL). For a wide range of ABL LES applications, representing the full range of turbulent length scales in the flow field is a challenge. This is an acute problem in regions of the ABL with strong velocity or scalar gradients, which are typically poorly resolved by standard computational grids (e.g., near the ground surface, in the entrainment zone). Most efforts to address this problem have focused on advanced sub-grid scale (SGS) turbulence model development, or on the use of massive computational resources. While some work exists using embedded meshes, very little has been done on the use of grid refinement. Here, we explore the benefits of grid refinement in a pseudo-spectral LES numerical code. The code utilizes both uniform refinement of the grid in horizontal directions, and stretching of the grid in the vertical direction. Combining the two techniques allows us to refine areas of the flow while maintaining an acceptable grid aspect ratio. In tests that used only refinement of the vertical grid spacing, large grid aspect ratios were found to cause a significant unphysical spike in the stream-wise velocity variance near the ground surface. This was especially problematic in simulations of stably-stratified ABL flows. The use of advanced SGS models was not sufficient to alleviate this issue. The new refinement technique is evaluated using a series of idealized simulation test cases of neutrally and stably stratified ABLs. These test cases illustrate the ability of grid refinement to increase computational efficiency without loss in the representation of statistical features of the flow field.
Software Testing and Verification in Climate Model Development
NASA Technical Reports Server (NTRS)
Clune, Thomas L.; Rood, RIchard B.
2011-01-01
Over the past 30 years most climate models have grown from relatively simple representations of a few atmospheric processes to a complex multi-disciplinary system. Computer infrastructure over that period has gone from punch card mainframes to modem parallel clusters. Model implementations have become complex, brittle, and increasingly difficult to extend and maintain. Existing verification processes for model implementations rely almost exclusively upon some combination of detailed analysis of output from full climate simulations and system-level regression tests. In additional to being quite costly in terms of developer time and computing resources, these testing methodologies are limited in terms of the types of defects that can be detected, isolated and diagnosed. Mitigating these weaknesses of coarse-grained testing with finer-grained "unit" tests has been perceived as cumbersome and counter-productive. In the commercial software sector, recent advances in tools and methodology have led to a renaissance for systematic fine-grained testing. We discuss the availability of analogous tools for scientific software and examine benefits that similar testing methodologies could bring to climate modeling software. We describe the unique challenges faced when testing complex numerical algorithms and suggest techniques to minimize and/or eliminate the difficulties.
Using advanced computer vision algorithms on small mobile robots
NASA Astrophysics Data System (ADS)
Kogut, G.; Birchmore, F.; Biagtan Pacis, E.; Everett, H. R.
2006-05-01
The Technology Transfer project employs a spiral development process to enhance the functionality and autonomy of mobile robot systems in the Joint Robotics Program (JRP) Robotic Systems Pool by converging existing component technologies onto a transition platform for optimization. An example of this approach is the implementation of advanced computer vision algorithms on small mobile robots. We demonstrate the implementation and testing of the following two algorithms useful on mobile robots: 1) object classification using a boosted Cascade of classifiers trained with the Adaboost training algorithm, and 2) human presence detection from a moving platform. Object classification is performed with an Adaboost training system developed at the University of California, San Diego (UCSD) Computer Vision Lab. This classification algorithm has been used to successfully detect the license plates of automobiles in motion in real-time. While working towards a solution to increase the robustness of this system to perform generic object recognition, this paper demonstrates an extension to this application by detecting soda cans in a cluttered indoor environment. The human presence detection from a moving platform system uses a data fusion algorithm which combines results from a scanning laser and a thermal imager. The system is able to detect the presence of humans while both the humans and the robot are moving simultaneously. In both systems, the two aforementioned algorithms were implemented on embedded hardware and optimized for use in real-time. Test results are shown for a variety of environments.
Hens, Bart; Sinko, Patrick; Job, Nicholas; Dean, Meagan; Al-Gousous, Jozef; Salehi, Niloufar; Ziff, Robert M; Tsume, Yasuhiro; Bermejo, Marival; Paixão, Paulo; Brasseur, James G; Yu, Alex; Talattof, Arjang; Benninghoff, Gail; Langguth, Peter; Lennernäs, Hans; Hasler, William L; Marciani, Luca; Dickens, Joseph; Shedden, Kerby; Sun, Duxin; Amidon, Gregory E; Amidon, Gordon L
2018-06-23
Over the past decade, formulation predictive dissolution (fPD) testing has gained increasing attention. Another mindset is pushed forward where scientists in our field are more confident to explore the in vivo behavior of an oral drug product by performing predictive in vitro dissolution studies. Similarly, there is an increasing interest in the application of modern computational fluid dynamics (CFD) frameworks and high-performance computing platforms to study the local processes underlying absorption within the gastrointestinal (GI) tract. In that way, CFD and computing platforms both can inform future PBPK-based in silico frameworks and determine the GI-motility-driven hydrodynamic impacts that should be incorporated into in vitro dissolution methods for in vivo relevance. Current compendial dissolution methods are not always reliable to predict the in vivo behavior, especially not for biopharmaceutics classification system (BCS) class 2/4 compounds suffering from a low aqueous solubility. Developing a predictive dissolution test will be more reliable, cost-effective and less time-consuming as long as the predictive power of the test is sufficiently strong. There is a need to develop a biorelevant, predictive dissolution method that can be applied by pharmaceutical drug companies to facilitate marketing access for generic and novel drug products. In 2014, Prof. Gordon L. Amidon and his team initiated a far-ranging research program designed to integrate (1) in vivo studies in humans in order to further improve the understanding of the intraluminal processing of oral dosage forms and dissolved drug along the gastrointestinal (GI) tract, (2) advancement of in vitro methodologies that incorporates higher levels of in vivo relevance and (3) computational experiments to study the local processes underlying dissolution, transport and absorption within the intestines performed with a new unique CFD based framework. Of particular importance is revealing the physiological variables determining the variability in in vivo dissolution and GI absorption from person to person in order to address (potential) in vivo BE failures. This paper provides an introduction to this multidisciplinary project, informs the reader about current achievements and outlines future directions. Copyright © 2018. Published by Elsevier B.V.
Displaying Computer Simulations Of Physical Phenomena
NASA Technical Reports Server (NTRS)
Watson, Val
1991-01-01
Paper discusses computer simulation as means of experiencing and learning to understand physical phenomena. Covers both present simulation capabilities and major advances expected in near future. Visual, aural, tactile, and kinesthetic effects used to teach such physical sciences as dynamics of fluids. Recommends classrooms in universities, government, and industry be linked to advanced computing centers so computer simulations integrated into education process.
Snatching Defeat from the Jaws of Victory: When Good Projects Go Bad. Girls and Computer Science.
ERIC Educational Resources Information Center
Sanders, Jo
In week-long semesters in the summers of 1997, 1998, and 1999, the 6APT (Summer Institute in Computer Science for Advanced Placement Teachers) project taught 240 high school teachers of Advanced Placement Computer Science (APCS) about gender equity in computers. Teachers were then followed through 2000. Results indicated that while teachers, did…
Scientific Discovery through Advanced Computing in Plasma Science
NASA Astrophysics Data System (ADS)
Tang, William
2005-03-01
Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research during the 21st Century. For example, the Department of Energy's ``Scientific Discovery through Advanced Computing'' (SciDAC) Program was motivated in large measure by the fact that formidable scientific challenges in its research portfolio could best be addressed by utilizing the combination of the rapid advances in super-computing technology together with the emergence of effective new algorithms and computational methodologies. The imperative is to translate such progress into corresponding increases in the performance of the scientific codes used to model complex physical systems such as those encountered in high temperature plasma research. If properly validated against experimental measurements and analytic benchmarks, these codes can provide reliable predictive capability for the behavior of a broad range of complex natural and engineered systems. This talk reviews recent progress and future directions for advanced simulations with some illustrative examples taken from the plasma science applications area. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by the combination of access to powerful new computational resources together with innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning a huge range in time and space scales. In particular, the plasma science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of plasma turbulence in magnetically-confined high temperature plasmas. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract bright young talent to the computational science area.
Thiel, Scott; Mitchell, Jennifer; Williams, Jim
2017-03-01
Diagnosis and treatment of diabetes changed little from the Middle Ages through the early 19th century, when the first chemical test for the condition was developed. In the 20th century, advances in diabetes management gained momentum with home-use diagnostic devices and mass-produced insulin. In the 21st century, technological developments around diabetes are advancing so rapidly that a small, discrete system of medical devices that serve as an artificial pancreas are now possible. In this article, we assert that medical device interoperability and cyber security are necessary preconditions for safe, effective, and reliable widespread use of the artificial pancreas system.
Advanced sensors and instrumentation
NASA Technical Reports Server (NTRS)
Calloway, Raymond S.; Zimmerman, Joe E.; Douglas, Kevin R.; Morrison, Rusty
1990-01-01
NASA is currently investigating the readiness of Advanced Sensors and Instrumentation to meet the requirements of new initiatives in space. The following technical objectives and technologies are briefly discussed: smart and nonintrusive sensors; onboard signal and data processing; high capacity and rate adaptive data acquisition systems; onboard computing; high capacity and rate onboard storage; efficient onboard data distribution; high capacity telemetry; ground and flight test support instrumentation; power distribution; and workstations, video/lighting. The requirements for high fidelity data (accuracy, frequency, quantity, spatial resolution) in hostile environments will continue to push the technology developers and users to extend the performance of their products and to develop new generations.
Thiel, Scott; Mitchell, Jennifer; Williams, Jim
2016-01-01
Diagnosis and treatment of diabetes changed little from the Middle Ages through the early 19th century, when the first chemical test for the condition was developed. In the 20th century, advances in diabetes management gained momentum with home-use diagnostic devices and mass-produced insulin. In the 21st century, technological developments around diabetes are advancing so rapidly that a small, discrete system of medical devices that serve as an artificial pancreas are now possible. In this article, we assert that medical device interoperability and cyber security are necessary preconditions for safe, effective, and reliable widespread use of the artificial pancreas system. PMID:27784829
OpenSim Model Improvements to Support High Joint Angle Resistive Exercising
NASA Technical Reports Server (NTRS)
Gallo, Christopher; Thompson, William; Lewandowski, Beth; Humphreys, Brad
2016-01-01
Long duration space travel to Mars or to an asteroid will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited. Therefore, compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Rigorous testing of these proposed devices in space flight is difficult so computational modeling provides an estimation of the muscle forces and joint loads during exercise to gain insight on the efficacy to protect the musculoskeletal health of astronauts. The NASA Digital Astronaut Project (DAP) is supporting the Advanced Exercise Concepts (AEC) Project, Exercise Physiology and Countermeasures (ExPC) project and the National Space Biomedical Research Institute (NSBRI) funded researchers by developing computational models of exercising with these new advanced exercise device concepts
Engineering and Development Program Plan, Aircraft Cabin Fire Safety.
1980-06-01
relative to a postcrash fuel fire, or whether advanced materials provide a significant safety benefit in comparison to inservice materials. if either...have always been controlled by early detection and prompt extinguishment action by effectively trained crew members. In addition, the fire resistant...occupants. g. Develop a computer fire test data bank with broad user availability for inservice and candidate cabin interior materials. h. Identify
ERIC Educational Resources Information Center
Steffen, Dale A.; And Others
A study was undertaken to develop a microterminal for use in a computer-based instructional system. Objectives were to use new microprocessor technology to produce one terminal that is more effective and efficient than either the management terminal or the plasma type interactive terminal presently in use by the Air Force Advanced Instructional…
Agent-Based Computing Integration and Testing
2006-12-01
Query Language (DQL). Regrettably, DQL never became a W3C Member Submission itself, but likely had some influence on the SPARQL Protocol And RDF... Query Language ( SPARQL ) subsequently produced by the W3C Data Access Working Group (DAWG) as that working group also contained members from the DAML...Sponsored by Defense Advanced Research Projects Agency DARPA Order No. K536 APPROVED FOR PUBLIC RELEASE
2012-05-31
inherently shock-absorbent, and more durable than conventional materials. Despite these initial demonstration successes, there are still barriers that need...to deliver boats that are stronger, lighter, inherently shock‐absorbent, and more durable than those manufactured with conventional materials...and more durable than conventional materials (e.g. aluminum). Further, prior research by the University of Maine, Virginia Tech, and others has
Development of a Robust and Efficient Parallel Solver for Unsteady Turbomachinery Flows
NASA Technical Reports Server (NTRS)
West, Jeff; Wright, Jeffrey; Thakur, Siddharth; Luke, Ed; Grinstead, Nathan
2012-01-01
The traditional design and analysis practice for advanced propulsion systems relies heavily on expensive full-scale prototype development and testing. Over the past decade, use of high-fidelity analysis and design tools such as CFD early in the product development cycle has been identified as one way to alleviate testing costs and to develop these devices better, faster and cheaper. In the design of advanced propulsion systems, CFD plays a major role in defining the required performance over the entire flight regime, as well as in testing the sensitivity of the design to the different modes of operation. Increased emphasis is being placed on developing and applying CFD models to simulate the flow field environments and performance of advanced propulsion systems. This necessitates the development of next generation computational tools which can be used effectively and reliably in a design environment. The turbomachinery simulation capability presented here is being developed in a computational tool called Loci-STREAM [1]. It integrates proven numerical methods for generalized grids and state-of-the-art physical models in a novel rule-based programming framework called Loci [2] which allows: (a) seamless integration of multidisciplinary physics in a unified manner, and (b) automatic handling of massively parallel computing. The objective is to be able to routinely simulate problems involving complex geometries requiring large unstructured grids and complex multidisciplinary physics. An immediate application of interest is simulation of unsteady flows in rocket turbopumps, particularly in cryogenic liquid rocket engines. The key components of the overall methodology presented in this paper are the following: (a) high fidelity unsteady simulation capability based on Detached Eddy Simulation (DES) in conjunction with second-order temporal discretization, (b) compliance with Geometric Conservation Law (GCL) in order to maintain conservative property on moving meshes for second-order time-stepping scheme, (c) a novel cloud-of-points interpolation method (based on a fast parallel kd-tree search algorithm) for interfaces between turbomachinery components in relative motion which is demonstrated to be highly scalable, and (d) demonstrated accuracy and parallel scalability on large grids (approx 250 million cells) in full turbomachinery geometries.
Semantic Pattern Analysis for Verbal Fluency Based Assessment of Neurological Disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar, Sreenivas R; Ainsworth, Keela C; Brown, Tyler C
In this paper, we present preliminary results of semantic pattern analysis of verbal fluency tests used for assessing cognitive psychological and neuropsychological disorders. We posit that recent advances in semantic reasoning and artificial intelligence can be combined to create a standardized computer-aided diagnosis tool to automatically evaluate and interpret verbal fluency tests. Towards that goal, we derive novel semantic similarity (phonetic, phonemic and conceptual) metrics and present the predictive capability of these metrics on a de-identified dataset of participants with and without neurological disorders.
I Use the Computer to ADVANCE Advances in Comprehension-Strategy Research.
ERIC Educational Resources Information Center
Blohm, Paul J.
Merging the instructional implications drawn from theory and research in the interactive reading model, schemata, and metacognition with computer based instruction seems a natural approach for actively involving students' participation in reading and learning from text. Computer based graphic organizers guide students' preview or review of lengthy…
Overview of Computer Simulation Modeling Approaches and Methods
Robert E. Manning; Robert M. Itami; David N. Cole; Randy Gimblett
2005-01-01
The field of simulation modeling has grown greatly with recent advances in computer hardware and software. Much of this work has involved large scientific and industrial applications for which substantial financial resources are available. However, advances in object-oriented programming and simulation methodology, concurrent with dramatic increases in computer...
Advanced Computing Tools and Models for Accelerator Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryne, Robert; Ryne, Robert D.
2008-06-11
This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.
Advanced Biomedical Computing Center (ABCC) | DSITP
The Advanced Biomedical Computing Center (ABCC), located in Frederick Maryland (MD), provides HPC resources for both NIH/NCI intramural scientists and the extramural biomedical research community. Its mission is to provide HPC support, to provide collaborative research, and to conduct in-house research in various areas of computational biology and biomedical research.
Advanced CNC Programming (EZ-CAM). 439-366.
ERIC Educational Resources Information Center
Casey, Joe
This document contains two units for an advanced course in computer numerical control (CNC) for computer-aided manufacturing. It is intended to familiarize students with the principles and techniques necessary to create proper CNC programs using computer software. Each unit consists of an introduction, instructional objectives, learning materials,…
Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head
NASA Technical Reports Server (NTRS)
Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.
2010-01-01
Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC-E2 heater head assembly. These mechanical tests were collectively referred to as "lateral load tests" since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.
Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head
NASA Technical Reports Server (NTRS)
Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.
2011-01-01
Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC-E2 heater head assembly. These mechanical tests were collectively referred to as "lateral load tests" since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.
Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head
NASA Technical Reports Server (NTRS)
Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.
2010-01-01
Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC E2 heater head assembly. These mechanical tests were collectively referred to as lateral load tests since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.
Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia company
NASA Technical Reports Server (NTRS)
Lores, M. E.
1978-01-01
Experience with advanced computational methods being used at the Lockheed-Georgia Company to aid in the evaluation and design of new and modified aircraft indicates that large and specialized computers will be needed to make advanced three-dimensional viscous aerodynamic computations practical. The Numerical Aerodynamic Simulation Facility should be used to provide a tool for designing better aerospace vehicles while at the same time reducing development costs by performing computations using Navier-Stokes equations solution algorithms and permitting less sophisticated but nevertheless complex calculations to be made efficiently. Configuration definition procedures and data output formats can probably best be defined in cooperation with industry, therefore, the computer should handle many remote terminals efficiently. The capability of transferring data to and from other computers needs to be provided. Because of the significant amount of input and output associated with 3-D viscous flow calculations and because of the exceedingly fast computation speed envisioned for the computer, special attention should be paid to providing rapid, diversified, and efficient input and output.
Scaling, Similarity, and the Fourth Paradigm for Hydrology
NASA Technical Reports Server (NTRS)
Peters-Lidard, Christa D.; Clark, Martyn; Samaniego, Luis; Verhoest, Niko E. C.; van Emmerik, Tim; Uijlenhoet, Remko; Achieng, Kevin; Franz, Trenton E.; Woods, Ross
2017-01-01
In this synthesis paper addressing hydrologic scaling and similarity, we posit that roadblocks in the search for universal laws of hydrology are hindered by our focus on computational simulation (the third paradigm), and assert that it is time for hydrology to embrace a fourth paradigm of data-intensive science. Advances in information-based hydrologic science, coupled with an explosion of hydrologic data and advances in parameter estimation and modelling, have laid the foundation for a data-driven framework for scrutinizing hydrological scaling and similarity hypotheses. We summarize important scaling and similarity concepts (hypotheses) that require testing, describe a mutual information framework for testing these hypotheses, describe boundary condition, state flux, and parameter data requirements across scales to support testing these hypotheses, and discuss some challenges to overcome while pursuing the fourth hydrological paradigm. We call upon the hydrologic sciences community to develop a focused effort towards adopting the fourth paradigm and apply this to outstanding challenges in scaling and similarity.
78 FR 6087 - Advanced Scientific Computing Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-29
... INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building... Theory and Experiment (INCITE) Public Comment (10-minute rule) Public Participation: The meeting is open...
Teaching Advance Care Planning to Medical Students with a Computer-Based Decision Aid
Levi, Benjamin H.
2013-01-01
Discussing end-of-life decisions with cancer patients is a crucial skill for physicians. This article reports findings from a pilot study evaluating the effectiveness of a computer-based decision aid for teaching medical students about advance care planning. Second-year medical students at a single medical school were randomized to use a standard advance directive or a computer-based decision aid to help patients with advance care planning. Students' knowledge, skills, and satisfaction were measured by self-report; their performance was rated by patients. 121/133 (91%) of students participated. The Decision-Aid Group (n=60) outperformed the Standard Group (n=61) in terms of students´ knowledge (p<0.01), confidence in helping patients with advance care planning (p<0.01), knowledge of what matters to patients (p=0.05), and satisfaction with their learning experience (p<0.01). Likewise, patients in the Decision Aid Group were more satisfied with the advance care planning method (p<0.01) and with several aspects of student performance. Use of a computer-based decision aid may be an effective way to teach medical students how to discuss advance care planning with cancer patients. PMID:20632222
Texture and art with deep neural networks.
Gatys, Leon A; Ecker, Alexander S; Bethge, Matthias
2017-10-01
Although the study of biological vision and computer vision attempt to understand powerful visual information processing from different angles, they have a long history of informing each other. Recent advances in texture synthesis that were motivated by visual neuroscience have led to a substantial advance in image synthesis and manipulation in computer vision using convolutional neural networks (CNNs). Here, we review these recent advances and discuss how they can in turn inspire new research in visual perception and computational neuroscience. Copyright © 2017. Published by Elsevier Ltd.
2013-08-26
USING ADVANCED COMPUTING IN APPLIED DYNAMICS : FROM THE DYNAMICS OF GRANULAR MATERIAL TO THE MOTION OF THE MARS ROVER Dan Negrut NVIDIA CUDA...USING ADVANCED COMPUTING IN APPLIED DYNAMICS : FROM THE DYNAMICS OF GRANULAR MATERIAL TO THE MOTION OF THE MARS ROVER 5a. CONTRACT NUMBER W911NF-11-F...University of Parma, Italy • Drs. Paramsothy Jayakumar & David Lamb, US Army TARDEC • Mihai Anitescu, University of Chicago & Argonne National Lab
Mobile Computing for Aerospace Applications
NASA Technical Reports Server (NTRS)
Alena, Richard; Swietek, Gregory E. (Technical Monitor)
1994-01-01
The use of commercial computer technology in specific aerospace mission applications can reduce the cost and project cycle time required for the development of special-purpose computer systems. Additionally, the pace of technological innovation in the commercial market has made new computer capabilities available for demonstrations and flight tests. Three areas of research and development being explored by the Portable Computer Technology Project at NASA Ames Research Center are the application of commercial client/server network computing solutions to crew support and payload operations, the analysis of requirements for portable computing devices, and testing of wireless data communication links as extensions to the wired network. This paper will present computer architectural solutions to portable workstation design including the use of standard interfaces, advanced flat-panel displays and network configurations incorporating both wired and wireless transmission media. It will describe the design tradeoffs used in selecting high-performance processors and memories, interfaces for communication and peripheral control, and high resolution displays. The packaging issues for safe and reliable operation aboard spacecraft and aircraft are presented. The current status of wireless data links for portable computers is discussed from a system design perspective. An end-to-end data flow model for payload science operations from the experiment flight rack to the principal investigator is analyzed using capabilities provided by the new generation of computer products. A future flight experiment on-board the Russian MIR space station will be described in detail including system configuration and function, the characteristics of the spacecraft operating environment, the flight qualification measures needed for safety review, and the specifications of the computing devices to be used in the experiment. The software architecture chosen shall be presented. An analysis of the performance characteristics of wireless data links in the spacecraft environment will be discussed. Network performance and operation will be modeled and preliminary test results presented. A crew support application will be demonstrated in conjunction with the network metrics experiment.
NASA Technical Reports Server (NTRS)
Hall, E. J.; Topp, D. A.; Delaney, R. A.
1996-01-01
The overall objective of this study was to develop a 3-D numerical analysis for compressor casing treatment flowfields. The current version of the computer code resulting from this study is referred to as ADPAC (Advanced Ducted Propfan Analysis Codes-Version 7). This report is intended to serve as a computer program user's manual for the ADPAC code developed under Tasks 6 and 7 of the NASA Contract. The ADPAC program is based on a flexible multiple- block grid discretization scheme permitting coupled 2-D/3-D mesh block solutions with application to a wide variety of geometries. Aerodynamic calculations are based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a multigrid procedure. An iterative implicit algorithm is available for rapid time-dependent flow calculations, and an advanced two equation turbulence model is incorporated to predict complex turbulent flows. The consolidated code generated during this study is capable of executing in either a serial or parallel computing mode from a single source code. Numerous examples are given in the form of test cases to demonstrate the utility of this approach for predicting the aerodynamics of modem turbomachinery configurations.
NASA Astrophysics Data System (ADS)
Sinha, Vaibhav; Srivastava, Anjali; Koo Lee, Hyoung
2014-06-01
A novel method for non-destructive analysis has been developed using a neutron/X-ray combined computed tomography (NXCT) system at the Missouri University of Science and Technology Reactor (MSTR). This imaging system takes advantage of the fact that neutrons and X-rays have characteristically different interactions with same materials. NXCT fuses the imaging capabilities of both systems at one location and allows instant evaluation for nondestructive testing (NDT) applications. This technique promises viable advances in the field of NDT. In this paper, the complete design criteria and procedures are provided. The described design criteria and procedures can effectively be utilized to design and develop advanced combined computed tomography system. The successful operation of the high resolution X-ray and neutron computed tomography has been demonstrated in this paper. The utility and importance of the NXCT system has been shown by nondestructive evaluation of various phantoms constituting different materials, geometrical, structural and compositional information. The concept of NXCT can be useful for concealed material detection, material characterization, investigation of complex geometries involving different atomic number materials and real time imaging for in-situ studies.
Intelligent pump test system based on virtual instrument
NASA Astrophysics Data System (ADS)
Ma, Jungong; Wang, Shifu; Wang, Zhanlin
2003-09-01
The intelligent pump system is the key component of the aircraft hydraulic system that can solve the problem, such as the temperature sharply increasing. As the performance of the intelligent pump directly determines that of the aircraft hydraulic system and seriously affects fly security and reliability. So it is important to test all kinds of performance parameters of intelligent pump during design and development, while the advanced, reliable and complete test equipments are the necessary instruments for achieving the goal. In this paper, the application of virtual instrument and computer network technology in aircraft intelligent pump test is presented. The composition of the hardware, software, hydraulic circuit in this system are designed and implemented.
NASA Technical Reports Server (NTRS)
1976-01-01
The performance capability of each of two precision attitude determination systems (PADS), one using a strapdown star tracker, and the other using a single-axis gimbal star tracker was measured in the laboratory under simulated orbit conditions. The primary focus of the evaluation was on the contribution to the total system accuracy by the star trackers, and the effectiveness of the software algorithms in functioning with actual sensor signals. A brief description of PADS, the laboratory test configuration and the test facility, is given along with a discussion of the data handling and display, laboratory computer programs, PADS performance evaluation programs, and the strapdown and gimbal system tests. Results are presented and discussed.
Rattanatamrong, Prapaporn; Matsunaga, Andrea; Raiturkar, Pooja; Mesa, Diego; Zhao, Ming; Mahmoudi, Babak; Digiovanna, Jack; Principe, Jose; Figueiredo, Renato; Sanchez, Justin; Fortes, Jose
2010-01-01
The CyberWorkstation (CW) is an advanced cyber-infrastructure for Brain-Machine Interface (BMI) research. It allows the development, configuration and execution of BMI computational models using high-performance computing resources. The CW's concept is implemented using a software structure in which an "experiment engine" is used to coordinate all software modules needed to capture, communicate and process brain signals and motor-control commands. A generic BMI-model template, which specifies a common interface to the CW's experiment engine, and a common communication protocol enable easy addition, removal or replacement of models without disrupting system operation. This paper reviews the essential components of the CW and shows how templates can facilitate the processes of BMI model development, testing and incorporation into the CW. It also discusses the ongoing work towards making this process infrastructure independent.
Implementation and Testing of VLBI Software Correlation at the USNO
NASA Technical Reports Server (NTRS)
Fey, Alan; Ojha, Roopesh; Boboltz, Dave; Geiger, Nicole; Kingham, Kerry; Hall, David; Gaume, Ralph; Johnston, Ken
2010-01-01
The Washington Correlator (WACO) at the U.S. Naval Observatory (USNO) is a dedicated VLBI processor based on dedicated hardware of ASIC design. The WACO is currently over 10 years old and is nearing the end of its expected lifetime. Plans for implementation and testing of software correlation at the USNO are currently being considered. The VLBI correlation process is, by its very nature, well suited to a parallelized computing environment. Commercial off-the-shelf computer hardware has advanced in processing power to the point where software correlation is now both economically and technologically feasible. The advantages of software correlation are manifold but include flexibility, scalability, and easy adaptability to changing environments and requirements. We discuss our experience with and plans for use of software correlation at USNO with emphasis on the use of the DiFX software correlator.
Assessment of the TRACE Reactor Analysis Code Against Selected PANDA Transient Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavisca, M.; Ghaderi, M.; Khatib-Rahbar, M.
2006-07-01
The TRACE (TRAC/RELAP Advanced Computational Engine) code is an advanced, best-estimate thermal-hydraulic program intended to simulate the transient behavior of light-water reactor systems, using a two-fluid (steam and water, with non-condensable gas), seven-equation representation of the conservation equations and flow-regime dependent constitutive relations in a component-based model with one-, two-, or three-dimensional elements, as well as solid heat structures and logical elements for the control system. The U.S. Nuclear Regulatory Commission is currently supporting the development of the TRACE code and its assessment against a variety of experimental data pertinent to existing and evolutionary reactor designs. This paper presents themore » results of TRACE post-test prediction of P-series of experiments (i.e., tests comprising the ISP-42 blind and open phases) conducted at the PANDA large-scale test facility in 1990's. These results show reasonable agreement with the reported test results, indicating good performance of the code and relevant underlying thermal-hydraulic and heat transfer models. (authors)« less
NASA Technical Reports Server (NTRS)
Vicroy, Dan D.; Huber, Kerstin C.; Rohlf, Detlef; Loser, Thomas
2014-01-01
Several static and dynamic forced-motion wind tunnel tests have been conducted on a generic unmanned combat air vehicle (UCAV) configuration with a 53deg swept leading edge. These tests are part of an international research effort to assess and advance the state-of-art of computational fluid dynamics (CFD) methods to predict the static and dynamic stability and control characteristics for this type of configuration. This paper describes the dynamic forced motion data collected from two different models of this UCAV configuration as well as analysis of the control surface deflections on the dynamic forces and moments.
Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling
NASA Astrophysics Data System (ADS)
Rentz Dupuis, Julia; Mansur, David J.; Vaillancourt, Robert; Carlson, David; Evans, Thomas; Schundler, Elizabeth; Todd, Lori; Mottus, Kathleen
2009-05-01
OPTRA is developing an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach is intended as a referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill.
Experimental and Computational Analysis of Unidirectional Flow Through Stirling Engine Heater Head
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Dyson, Rodger W.; Tew, Roy C.; Demko, Rikako
2006-01-01
A high efficiency Stirling Radioisotope Generator (SRG) is being developed for possible use in long-duration space science missions. NASA s advanced technology goals for next generation Stirling convertors include increasing the Carnot efficiency and percent of Carnot efficiency. To help achieve these goals, a multi-dimensional Computational Fluid Dynamics (CFD) code is being developed to numerically model unsteady fluid flow and heat transfer phenomena of the oscillating working gas inside Stirling convertors. In the absence of transient pressure drop data for the zero mean oscillating multi-dimensional flows present in the Technology Demonstration Convertors on test at NASA Glenn Research Center, unidirectional flow pressure drop test data is used to compare against 2D and 3D computational solutions. This study focuses on tracking pressure drop and mass flow rate data for unidirectional flow though a Stirling heater head using a commercial CFD code (CFD-ACE). The commercial CFD code uses a porous-media model which is dependent on permeability and the inertial coefficient present in the linear and nonlinear terms of the Darcy-Forchheimer equation. Permeability and inertial coefficient were calculated from unidirectional flow test data. CFD simulations of the unidirectional flow test were validated using the porous-media model input parameters which increased simulation accuracy by 14 percent on average.
NASA Technical Reports Server (NTRS)
Schreiner, John; Clancy, Daniel (Technical Monitor)
2002-01-01
The Collaborative Information Portal (CIP) is a web-based information management and retrieval system. Its purpose is to provide users at MER (Mars Exploration Rover) mission operations with easy access to a broad range of mission data and products and contextual information such as the current operations schedule. The CIP web-server provides this content in a user customizable web-portal environment. Since CIP is still under development, only a subset of the full feature set will be available for the EDO field test. The CIP web-portal will be accessed through a standard web browser. CIP is intended to be intuitive and simple to use, however, at the training session, users will receive a one to two page reference guide, which should aid them in using CIP. Users must provide their own computers for accessing CIP during the field test. These computers should be configured with Java 1.3 and a Java 2 enabled browser. Macintosh computers should be running OS 10.1.3 or later. Classic Mac OS (OS 9) is not supported. For more information please read section 7.3 in the FIASCO Rover Science Operations Test Mission Plan. Several screen shots of the Beta Release of CIP are shown on the following pages.
Gong, Jing; Liu, Ji-Yu; Sun, Xi-Wen; Zheng, Bin; Nie, Sheng-Dong
2018-02-05
This study aims to develop a computer-aided diagnosis (CADx) scheme for classification between malignant and benign lung nodules, and also assess whether CADx performance changes in detecting nodules associated with early and advanced stage lung cancer. The study involves 243 biopsy-confirmed pulmonary nodules. Among them, 76 are benign, 81 are stage I and 86 are stage III malignant nodules. The cases are separated into three data sets involving: (1) all nodules, (2) benign and stage I malignant nodules, and (3) benign and stage III malignant nodules. A CADx scheme is applied to segment lung nodules depicted on computed tomography images and we initially computed 66 3D image features. Then, three machine learning models namely, a support vector machine, naïve Bayes classifier and linear discriminant analysis, are separately trained and tested by using three data sets and a leave-one-case-out cross-validation method embedded with a Relief-F feature selection algorithm. When separately using three data sets to train and test three classifiers, the average areas under receiver operating characteristic curves (AUC) are 0.94, 0.90 and 0.99, respectively. When using the classifiers trained using data sets with all nodules, average AUC values are 0.88 and 0.99 for detecting early and advanced stage nodules, respectively. AUC values computed from three classifiers trained using the same data set are consistent without statistically significant difference (p > 0.05). This study demonstrates (1) the feasibility of applying a CADx scheme to accurately distinguish between benign and malignant lung nodules, and (2) a positive trend between CADx performance and cancer progression stage. Thus, in order to increase CADx performance in detecting subtle and early cancer, training data sets should include more diverse early stage cancer cases.
NASA Astrophysics Data System (ADS)
Gong, Jing; Liu, Ji-Yu; Sun, Xi-Wen; Zheng, Bin; Nie, Sheng-Dong
2018-02-01
This study aims to develop a computer-aided diagnosis (CADx) scheme for classification between malignant and benign lung nodules, and also assess whether CADx performance changes in detecting nodules associated with early and advanced stage lung cancer. The study involves 243 biopsy-confirmed pulmonary nodules. Among them, 76 are benign, 81 are stage I and 86 are stage III malignant nodules. The cases are separated into three data sets involving: (1) all nodules, (2) benign and stage I malignant nodules, and (3) benign and stage III malignant nodules. A CADx scheme is applied to segment lung nodules depicted on computed tomography images and we initially computed 66 3D image features. Then, three machine learning models namely, a support vector machine, naïve Bayes classifier and linear discriminant analysis, are separately trained and tested by using three data sets and a leave-one-case-out cross-validation method embedded with a Relief-F feature selection algorithm. When separately using three data sets to train and test three classifiers, the average areas under receiver operating characteristic curves (AUC) are 0.94, 0.90 and 0.99, respectively. When using the classifiers trained using data sets with all nodules, average AUC values are 0.88 and 0.99 for detecting early and advanced stage nodules, respectively. AUC values computed from three classifiers trained using the same data set are consistent without statistically significant difference (p > 0.05). This study demonstrates (1) the feasibility of applying a CADx scheme to accurately distinguish between benign and malignant lung nodules, and (2) a positive trend between CADx performance and cancer progression stage. Thus, in order to increase CADx performance in detecting subtle and early cancer, training data sets should include more diverse early stage cancer cases.
Airborne Turbulence Detection and Warning ACLAIM Flight Test Results
NASA Technical Reports Server (NTRS)
Hannon, Stephen M.; Bagley, Hal R.; Soreide, Dave C.; Bowdle, David A.; Bogue, Rodney K.; Ehernberger, L. Jack
1999-01-01
The Airborne Coherent Lidar for Advanced Inflight Measurements (ACLAIM) is a NASA/Dryden-lead program to develop and demonstrate a 2 micrometers pulsed Doppler lidar for airborne look-ahead turbulence detection and warning. Advanced warning of approaching turbulence can significantly reduce injuries to passengers and crew aboard commercial airliners. The ACLAIM instrument is a key asset to the ongoing Turbulence component of NASA's Aviation Safety Program, aimed at reducing the accident rate aboard commercial airliners by a factor of five over the next ten years and by a factor of ten over the next twenty years. As well, the advanced turbulence warning capability can prevent "unstarts" in the inlet of supersonic aircraft engines by alerting the flight control computer which then adjusts the engine to operate in a less fuel efficient, and more turbulence tolerant, mode. Initial flight tests of the ACLAIM were completed in March and April of 1998. This paper and presentation gives results from these initial flights, with validated demonstration of Doppler lidar wind turbulence detection several kilometers ahead of the aircraft.
Advanced software integration: The case for ITV facilities
NASA Technical Reports Server (NTRS)
Garman, John R.
1990-01-01
The array of technologies and methodologies involved in the development and integration of avionics software has moved almost as rapidly as computer technology itself. Future avionics systems involve major advances and risks in the following areas: (1) Complexity; (2) Connectivity; (3) Security; (4) Duration; and (5) Software engineering. From an architectural standpoint, the systems will be much more distributed, involve session-based user interfaces, and have the layered architectures typified in the layers of abstraction concepts popular in networking. Typified in the NASA Space Station Freedom will be the highly distributed nature of software development itself. Systems composed of independent components developed in parallel must be bound by rigid standards and interfaces, the clean requirements and specifications. Avionics software provides a challenge in that it can not be flight tested until the first time it literally flies. It is the binding of requirements for such an integration environment into the advances and risks of future avionics systems that form the basis of the presented concept and the basic Integration, Test, and Verification concept within the development and integration life cycle of Space Station Mission and Avionics systems.
Leveraging e-Science infrastructure for electrochemical research.
Peachey, Tom; Mashkina, Elena; Lee, Chong-Yong; Enticott, Colin; Abramson, David; Bond, Alan M; Elton, Darrell; Gavaghan, David J; Stevenson, Gareth P; Kennedy, Gareth F
2011-08-28
As in many scientific disciplines, modern chemistry involves a mix of experimentation and computer-supported theory. Historically, these skills have been provided by different groups, and range from traditional 'wet' laboratory science to advanced numerical simulation. Increasingly, progress is made by global collaborations, in which new theory may be developed in one part of the world and applied and tested in the laboratory elsewhere. e-Science, or cyber-infrastructure, underpins such collaborations by providing a unified platform for accessing scientific instruments, computers and data archives, and collaboration tools. In this paper we discuss the application of advanced e-Science software tools to electrochemistry research performed in three different laboratories--two at Monash University in Australia and one at the University of Oxford in the UK. We show that software tools that were originally developed for a range of application domains can be applied to electrochemical problems, in particular Fourier voltammetry. Moreover, we show that, by replacing ad-hoc manual processes with e-Science tools, we obtain more accurate solutions automatically.
Advanced nodal neutron diffusion method with space-dependent cross sections: ILLICO-VX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajic, H.L.; Ougouag, A.M.
1987-01-01
Advanced transverse integrated nodal methods for neutron diffusion developed since the 1970s require that node- or assembly-homogenized cross sections be known. The underlying structural heterogeneity can be accurately accounted for in homogenization procedures by the use of heterogeneity or discontinuity factors. Other (milder) types of heterogeneity, burnup-induced or due to thermal-hydraulic feedback, can be resolved by explicitly accounting for the spatial variations of material properties. This can be done during the nodal computations via nonlinear iterations. The new method has been implemented in the code ILLICO-VX (ILLICO variable cross-section method). Numerous numerical tests were performed. As expected, the convergence ratemore » of ILLICO-VX is lower than that of ILLICO, requiring approx. 30% more outer iterations per k/sub eff/ computation. The methodology has also been implemented as the NOMAD-VX option of the NOMAD, multicycle, multigroup, two- and three-dimensional nodal diffusion depletion code. The burnup-induced heterogeneities (space dependence of cross sections) are calculated during the burnup steps.« less
Evaluation of Computed Tomography of Mock Uranium Fuel Rods at the Advanced Photon Source
Hunter, James F.; Brown, Donald William; Okuniewski, Maria
2015-06-01
This study discusses a multi-year effort to evaluate the utility of computed tomography at the Advanced Photon Source (APS) as a tool for non-destructive evaluation of uranium based fuel rods. The majority of the data presented is on mock material made with depleted uranium which mimics the x-ray attenuation characteristics of fuel rods while allowing for simpler handling. A range of data is presented including full thickness (5mm diameter) fuel rodlets, reduced thickness (1.8mm) sintering test samples, and pre/post irradiation samples (< 1mm thick). These data were taken on both a white beam (bending magnet) beamline and a high energy,more » monochromatic beamline. This data shows the utility of a synchrotron type source in the evealuation of manufacturing defects (pre-irradiation) and lays out the case for in situ CT of fuel pellet sintering. Finally, in addition data is shown from small post-irradiation samples and a case is made for post-irradiation CT of larger samples.« less
Advanced Multigrid Solvers for Fluid Dynamics
NASA Technical Reports Server (NTRS)
Brandt, Achi
1999-01-01
The main objective of this project has been to support the development of multigrid techniques in computational fluid dynamics that can achieve "textbook multigrid efficiency" (TME), which is several orders of magnitude faster than current industrial CFD solvers. Toward that goal we have assembled a detailed table which lists every foreseen kind of computational difficulty for achieving it, together with the possible ways for resolving the difficulty, their current state of development, and references. We have developed several codes to test and demonstrate, in the framework of simple model problems, several approaches for overcoming the most important of the listed difficulties that had not been resolved before. In particular, TME has been demonstrated for incompressible flows on one hand, and for near-sonic flows on the other hand. General approaches were advanced for the relaxation of stagnation points and boundary conditions under various situations. Also, new algebraic multigrid techniques were formed for treating unstructured grid formulations. More details on all these are given below.
Measuring the Resilience of Advanced Life Support Systems
NASA Technical Reports Server (NTRS)
Bell, Ann Maria; Dearden, Richard; Levri, Julie A.
2002-01-01
Despite the central importance of crew safety in designing and operating a life support system, the metric commonly used to evaluate alternative Advanced Life Support (ALS) technologies does not currently provide explicit techniques for measuring safety. The resilience of a system, or the system s ability to meet performance requirements and recover from component-level faults, is fundamentally a dynamic property. This paper motivates the use of computer models as a tool to understand and improve system resilience throughout the design process. Extensive simulation of a hybrid computational model of a water revitalization subsystem (WRS) with probabilistic, component-level faults provides data about off-nominal behavior of the system. The data can then be used to test alternative measures of resilience as predictors of the system s ability to recover from component-level faults. A novel approach to measuring system resilience using a Markov chain model of performance data is also developed. Results emphasize that resilience depends on the complex interaction of faults, controls, and system dynamics, rather than on simple fault probabilities.
Calculation of protein-ligand binding affinities.
Gilson, Michael K; Zhou, Huan-Xiang
2007-01-01
Accurate methods of computing the affinity of a small molecule with a protein are needed to speed the discovery of new medications and biological probes. This paper reviews physics-based models of binding, beginning with a summary of the changes in potential energy, solvation energy, and configurational entropy that influence affinity, and a theoretical overview to frame the discussion of specific computational approaches. Important advances are reported in modeling protein-ligand energetics, such as the incorporation of electronic polarization and the use of quantum mechanical methods. Recent calculations suggest that changes in configurational entropy strongly oppose binding and must be included if accurate affinities are to be obtained. The linear interaction energy (LIE) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods are analyzed, as are free energy pathway methods, which show promise and may be ready for more extensive testing. Ultimately, major improvements in modeling accuracy will likely require advances on multiple fronts, as well as continued validation against experiment.
Advanced complex trait analysis.
Gray, A; Stewart, I; Tenesa, A
2012-12-01
The Genome-wide Complex Trait Analysis (GCTA) software package can quantify the contribution of genetic variation to phenotypic variation for complex traits. However, as those datasets of interest continue to increase in size, GCTA becomes increasingly computationally prohibitive. We present an adapted version, Advanced Complex Trait Analysis (ACTA), demonstrating dramatically improved performance. We restructure the genetic relationship matrix (GRM) estimation phase of the code and introduce the highly optimized parallel Basic Linear Algebra Subprograms (BLAS) library combined with manual parallelization and optimization. We introduce the Linear Algebra PACKage (LAPACK) library into the restricted maximum likelihood (REML) analysis stage. For a test case with 8999 individuals and 279,435 single nucleotide polymorphisms (SNPs), we reduce the total runtime, using a compute node with two multi-core Intel Nehalem CPUs, from ∼17 h to ∼11 min. The source code is fully available under the GNU Public License, along with Linux binaries. For more information see http://www.epcc.ed.ac.uk/software-products/acta. a.gray@ed.ac.uk Supplementary data are available at Bioinformatics online.
NASA Technical Reports Server (NTRS)
Druyan, Leonard M.
2012-01-01
Climate models is a very broad topic, so a single volume can only offer a small sampling of relevant research activities. This volume of 14 chapters includes descriptions of a variety of modeling studies for a variety of geographic regions by an international roster of authors. The climate research community generally uses the rubric climate models to refer to organized sets of computer instructions that produce simulations of climate evolution. The code is based on physical relationships that describe the shared variability of meteorological parameters such as temperature, humidity, precipitation rate, circulation, radiation fluxes, etc. Three-dimensional climate models are integrated over time in order to compute the temporal and spatial variations of these parameters. Model domains can be global or regional and the horizontal and vertical resolutions of the computational grid vary from model to model. Considering the entire climate system requires accounting for interactions between solar insolation, atmospheric, oceanic and continental processes, the latter including land hydrology and vegetation. Model simulations may concentrate on one or more of these components, but the most sophisticated models will estimate the mutual interactions of all of these environments. Advances in computer technology have prompted investments in more complex model configurations that consider more phenomena interactions than were possible with yesterday s computers. However, not every attempt to add to the computational layers is rewarded by better model performance. Extensive research is required to test and document any advantages gained by greater sophistication in model formulation. One purpose for publishing climate model research results is to present purported advances for evaluation by the scientific community.
Computer program user's manual for advanced general aviation propeller study
NASA Technical Reports Server (NTRS)
Worobel, R.
1972-01-01
A user's manual is presented for a computer program for predicting the performance (static, flight, and reverse), noise, weight and cost of propellers for advanced general aviation aircraft of the 1980 time period. Complete listings of this computer program with detailed instructions and samples of input and output are included.
Deep facial analysis: A new phase I epilepsy evaluation using computer vision.
Ahmedt-Aristizabal, David; Fookes, Clinton; Nguyen, Kien; Denman, Simon; Sridharan, Sridha; Dionisio, Sasha
2018-05-01
Semiology observation and characterization play a major role in the presurgical evaluation of epilepsy. However, the interpretation of patient movements has subjective and intrinsic challenges. In this paper, we develop approaches to attempt to automatically extract and classify semiological patterns from facial expressions. We address limitations of existing computer-based analytical approaches of epilepsy monitoring, where facial movements have largely been ignored. This is an area that has seen limited advances in the literature. Inspired by recent advances in deep learning, we propose two deep learning models, landmark-based and region-based, to quantitatively identify changes in facial semiology in patients with mesial temporal lobe epilepsy (MTLE) from spontaneous expressions during phase I monitoring. A dataset has been collected from the Mater Advanced Epilepsy Unit (Brisbane, Australia) and is used to evaluate our proposed approach. Our experiments show that a landmark-based approach achieves promising results in analyzing facial semiology, where movements can be effectively marked and tracked when there is a frontal face on visualization. However, the region-based counterpart with spatiotemporal features achieves more accurate results when confronted with extreme head positions. A multifold cross-validation of the region-based approach exhibited an average test accuracy of 95.19% and an average AUC of 0.98 of the ROC curve. Conversely, a leave-one-subject-out cross-validation scheme for the same approach reveals a reduction in accuracy for the model as it is affected by data limitations and achieves an average test accuracy of 50.85%. Overall, the proposed deep learning models have shown promise in quantifying ictal facial movements in patients with MTLE. In turn, this may serve to enhance the automated presurgical epilepsy evaluation by allowing for standardization, mitigating bias, and assessing key features. The computer-aided diagnosis may help to support clinical decision-making and prevent erroneous localization and surgery. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1994-01-01
In the mid-1980s, Kinetic Systems and Langley Research Center determined that high speed CAMAC (Computer Automated Measurement and Control) data acquisition systems could significantly improve Langley's ARTS (Advanced Real Time Simulation) system. The ARTS system supports flight simulation R&D, and the CAMAC equipment allowed 32 high performance simulators to be controlled by centrally located host computers. This technology broadened Kinetic Systems' capabilities and led to several commercial applications. One of them is General Atomics' fusion research program. Kinetic Systems equipment allows tokamak data to be acquired four to 15 times more rapidly. Ford Motor company uses the same technology to control and monitor transmission testing facilities.
Development and Current Status of Skull-Image Superimposition - Methodology and Instrumentation.
Lan, Y
1992-12-01
This article presents a review of the literature and an evaluation on the development and application of skull-image superimposition technology - both instrumentation and methodology - contributed by a number of scholars since 1935. Along with a comparison of the methodologies involved in the two superimposition techniques - photographic and video - the author characterized the techniques in action and the recent advances in computer image superimposition processing technology. The major disadvantage of conventional approaches is its relying on subjective interpretation. Through painstaking comparison and analysis, computer image processing technology can make more conclusive identifications by direct testing and evaluating the various programmed indices. Copyright © 1992 Central Police University.
Moniz, Ernest; Carr, Alan; Bethe, Hans; Morrison, Phillip; Ramsay, Norman; Teller, Edward; Brixner, Berlyn; Archer, Bill; Agnew, Harold; Morrison, John
2018-01-16
The Trinity Test of July 16, 1945 was the first full-scale, real-world test of a nuclear weapon; with the new Trinity supercomputer Los Alamos National Laboratory's goal is to do this virtually, in 3D. Trinity was the culmination of a fantastic effort of groundbreaking science and engineering by hundreds of men and women at Los Alamos and other Manhattan Project sites. It took them less than two years to change the world. The Laboratory is marking the 70th anniversary of the Trinity Test because it not only ushered in the Nuclear Age, but with it the origin of todayâs advanced supercomputing. We live in the Age of Supercomputers due in large part to nuclear weapons science here at Los Alamos. National security science, and nuclear weapons science in particular, at Los Alamos National Laboratory have provided a key motivation for the evolution of large-scale scientific computing. Beginning with the Manhattan Project there has been a constant stream of increasingly significant, complex problems in nuclear weapons science whose timely solutions demand larger and faster computers. The relationship between national security science at Los Alamos and the evolution of computing is one of interdependence.
History of the numerical aerodynamic simulation program
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Ballhaus, William F., Jr.
1987-01-01
The Numerical Aerodynamic Simulation (NAS) program has reached a milestone with the completion of the initial operating configuration of the NAS Processing System Network. This achievement is the first major milestone in the continuing effort to provide a state-of-the-art supercomputer facility for the national aerospace community and to serve as a pathfinder for the development and use of future supercomputer systems. The underlying factors that motivated the initiation of the program are first identified and then discussed. These include the emergence and evolution of computational aerodynamics as a powerful new capability in aerodynamics research and development, the computer power required for advances in the discipline, the complementary nature of computation and wind tunnel testing, and the need for the government to play a pathfinding role in the development and use of large-scale scientific computing systems. Finally, the history of the NAS program is traced from its inception in 1975 to the present time.
Numerical design of advanced multi-element airfoils
NASA Technical Reports Server (NTRS)
Mathias, Donovan L.; Cummings, Russell M.
1994-01-01
The current study extends the application of computational fluid dynamics to three-dimensional high-lift systems. Structured, overset grids are used in conjunction with an incompressible Navier-Stokes flow solver to investigate flow over a two-element high-lift configuration. The computations were run in a fully turbulent mode using the one-equation Baldwin-Barth turbulence model. The geometry consisted of an unswept wing which spanned a wind tunnel test section. Flows over full and half-span Fowler flap configurations were computed. Grid resolution issues were investigated in two dimensional studies of the flapped airfoil. Results of the full-span flap wing agreed well with experimental data and verified the method. Flow over the wing with the half-span was computed to investigate the details of the flow at the free edge of the flap. The results illustrated changes in flow streamlines, separation locations, and surface pressures due to the vortex shed from the flap edge.
Aerodynamic optimization by simultaneously updating flow variables and design parameters
NASA Technical Reports Server (NTRS)
Rizk, M. H.
1990-01-01
The application of conventional optimization schemes to aerodynamic design problems leads to inner-outer iterative procedures that are very costly. An alternative approach is presented based on the idea of updating the flow variable iterative solutions and the design parameter iterative solutions simultaneously. Two schemes based on this idea are applied to problems of correcting wind tunnel wall interference and optimizing advanced propeller designs. The first of these schemes is applicable to a limited class of two-design-parameter problems with an equality constraint. It requires the computation of a single flow solution. The second scheme is suitable for application to general aerodynamic problems. It requires the computation of several flow solutions in parallel. In both schemes, the design parameters are updated as the iterative flow solutions evolve. Computations are performed to test the schemes' efficiency, accuracy, and sensitivity to variations in the computational parameters.
Advance Directives and Do Not Resuscitate Orders
... a form. Call a lawyer. Use a computer software package for legal documents. Advance directives and living ... you write by yourself or with a computer software package should follow your state laws. You may ...
NASA Technical Reports Server (NTRS)
Rudy, David H.; Kumar, Ajay; Thomas, James L.; Gnoffo, Peter A.; Chakravarthy, Sukumar R.
1988-01-01
A comparative study was made using 4 different computer codes for solving the compressible Navier-Stokes equations. Three different test problems were used, each of which has features typical of high speed internal flow problems of practical importance in the design and analysis of propulsion systems for advanced hypersonic vehicles. These problems are the supersonic flow between two walls, one of which contains a 10 deg compression ramp, the flow through a hypersonic inlet, and the flow in a 3-D corner formed by the intersection of two symmetric wedges. Three of the computer codes use similar recently developed implicit upwind differencing technology, while the fourth uses a well established explicit method. The computed results were compared with experimental data where available.
Hunter, Kendall S.; Feinstein, Jeffrey A.; Ivy, D. Dunbar; Shandas, Robin
2010-01-01
The hemodynamic state of the pulmonary arteries is challenging to routinely measure in children due to the vascular circuit's position in the lungs. The resulting relative scarcity of quantitative clinical diagnostic and prognostic information impairs management of diseases such as pulmonary hypertension, or high blood pressure of the pulmonary circuit, and invites new techniques of measurement. Here we examine recent applications of macro-scale computational mechanics methods for fluids and solids – traditionally used by engineers in the design and virtual testing of complex metal and composite structures – applied to study the pulmonary vasculature, both in healthy and diseased states. In four subject areas, we briefly outline advances in computational methodology and provide examples of clinical relevance. PMID:21499523
Role of HPC in Advancing Computational Aeroelasticity
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
2004-01-01
On behalf of the High Performance Computing and Modernization Program (HPCMP) and NASA Advanced Supercomputing Division (NAS) a study is conducted to assess the role of supercomputers on computational aeroelasticity of aerospace vehicles. The study is mostly based on the responses to a web based questionnaire that was designed to capture the nuances of high performance computational aeroelasticity, particularly on parallel computers. A procedure is presented to assign a fidelity-complexity index to each application. Case studies based on major applications using HPCMP resources are presented.
Advances in computational design and analysis of airbreathing propulsion systems
NASA Technical Reports Server (NTRS)
Klineberg, John M.
1989-01-01
The development of commercial and military aircraft depends, to a large extent, on engine manufacturers being able to achieve significant increases in propulsion capability through improved component aerodynamics, materials, and structures. The recent history of propulsion has been marked by efforts to develop computational techniques that can speed up the propulsion design process and produce superior designs. The availability of powerful supercomputers, such as the NASA Numerical Aerodynamic Simulator, and the potential for even higher performance offered by parallel computer architectures, have opened the door to the use of multi-dimensional simulations to study complex physical phenomena in propulsion systems that have previously defied analysis or experimental observation. An overview of several NASA Lewis research efforts is provided that are contributing toward the long-range goal of a numerical test-cell for the integrated, multidisciplinary design, analysis, and optimization of propulsion systems. Specific examples in Internal Computational Fluid Mechanics, Computational Structural Mechanics, Computational Materials Science, and High Performance Computing are cited and described in terms of current capabilities, technical challenges, and future research directions.
TOPICAL REVIEW: Advances and challenges in computational plasma science
NASA Astrophysics Data System (ADS)
Tang, W. M.; Chan, V. S.
2005-02-01
Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This should produce the scientific excitement which will help to (a) stimulate enhanced cross-cutting collaborations with other fields and (b) attract the bright young talent needed for the future health of the field of plasma science.
Advances and challenges in computational plasma science
NASA Astrophysics Data System (ADS)
Tang, W. M.
2005-02-01
Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This should produce the scientific excitement which will help to (a) stimulate enhanced cross-cutting collaborations with other fields and (b) attract the bright young talent needed for the future health of the field of plasma science.
IPAD: A unique approach to government/industry cooperation for technology development and transfer
NASA Technical Reports Server (NTRS)
Fulton, Robert E.; Salley, George C.
1985-01-01
A key element to improved industry productivity is effective management of Computer Aided Design / Computer Aided Manufacturing (CAD/CAM) information. To stimulate advancement, a unique joint government/industry project designated Integrated Programs for Aerospace-Vehicle Design (IPAD) was carried out from 1971 to 1984. The goal was to raise aerospace industry productivity through advancement of computer based technology to integrate and manage information involved in the design and manufacturing process. IPAD research was guided by an Industry Technical Advisory Board (ITAB) composed of over 100 representatives from aerospace and computer companies. The project complemented traditional NASA/DOD research to develop aerospace design technology and the Air Force's Integrated Computer Aided Manufacturing (ICAM) program to advance CAM technology. IPAD had unprecedented industry support and involvement and served as a unique approach to government industry cooperation in the development and transfer of advanced technology. The IPAD project background, approach, accomplishments, industry involvement, technology transfer mechanisms and lessons learned are summarized.
NASA's computer science research program
NASA Technical Reports Server (NTRS)
Larsen, R. L.
1983-01-01
Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.
Incipient fault detection study for advanced spacecraft systems
NASA Technical Reports Server (NTRS)
Milner, G. Martin; Black, Michael C.; Hovenga, J. Mike; Mcclure, Paul F.
1986-01-01
A feasibility study to investigate the application of vibration monitoring to the rotating machinery of planned NASA advanced spacecraft components is described. Factors investigated include: (1) special problems associated with small, high RPM machines; (2) application across multiple component types; (3) microgravity; (4) multiple fault types; (5) eight different analysis techniques including signature analysis, high frequency demodulation, cepstrum, clustering, amplitude analysis, and pattern recognition are compared; and (6) small sample statistical analysis is used to compare performance by computation of probability of detection and false alarm for an ensemble of repeated baseline and faulted tests. Both detection and classification performance are quantified. Vibration monitoring is shown to be an effective means of detecting the most important problem types for small, high RPM fans and pumps typical of those planned for the advanced spacecraft. A preliminary monitoring system design and implementation plan is presented.
Man-vehicle systems research facility advanced aircraft flight simulator throttle mechanism
NASA Technical Reports Server (NTRS)
Kurasaki, S. S.; Vallotton, W. C.
1985-01-01
The Advanced Aircraft Flight Simulator is equipped with a motorized mechanism that simulates a two engine throttle control system that can be operated via a computer driven performance management system or manually by the pilots. The throttle control system incorporates features to simulate normal engine operations and thrust reverse and vary the force feel to meet a variety of research needs. While additional testing to integrate the work required is principally now in software design, since the mechanical aspects function correctly. The mechanism is an important part of the flight control system and provides the capability to conduct human factors research of flight crews with advanced aircraft systems under various flight conditions such as go arounds, coupled instrument flight rule approaches, normal and ground operations and emergencies that would or would not normally be experienced in actual flight.
NASA Technical Reports Server (NTRS)
Hunter, H. E.
1972-01-01
The Avco Data Analysis and Prediction Techniques (ADAPT) were employed to determine laws capable of detecting failures in a heat plant up to three days in advance of the occurrence of the failure. The projected performance of algorithms yielded a detection probability of 90% with false alarm rates of the order of 1 per year for a sample rate of 1 per day with each detection, followed by 3 hourly samplings. This performance was verified on 173 independent test cases. The program also demonstrated diagnostic algorithms and the ability to predict the time of failure to approximately plus or minus 8 hours up to three days in advance of the failure. The ADAPT programs produce simple algorithms which have a unique possibility of a relatively low cost updating procedure. The algorithms were implemented on general purpose computers at Kennedy Space Flight Center and tested against current data.
An earth imaging camera simulation using wide-scale construction of reflectance surfaces
NASA Astrophysics Data System (ADS)
Murthy, Kiran; Chau, Alexandra H.; Amin, Minesh B.; Robinson, M. Dirk
2013-10-01
Developing and testing advanced ground-based image processing systems for earth-observing remote sensing applications presents a unique challenge that requires advanced imagery simulation capabilities. This paper presents an earth-imaging multispectral framing camera simulation system called PayloadSim (PaySim) capable of generating terabytes of photorealistic simulated imagery. PaySim leverages previous work in 3-D scene-based image simulation, adding a novel method for automatically and efficiently constructing 3-D reflectance scenes by draping tiled orthorectified imagery over a geo-registered Digital Elevation Map (DEM). PaySim's modeling chain is presented in detail, with emphasis given to the techniques used to achieve computational efficiency. These techniques as well as cluster deployment of the simulator have enabled tuning and robust testing of image processing algorithms, and production of realistic sample data for customer-driven image product development. Examples of simulated imagery of Skybox's first imaging satellite are shown.
NASA Astrophysics Data System (ADS)
Mentzer, Mark A.
Recent advances in the theoretical and practical design and applications of optoelectronic devices and optical circuits are examined in reviews and reports. Topics discussed include system and market considerations, guided-wave phenomena, waveguide devices, processing technology, lithium niobate devices, and coupling problems. Consideration is given to testing and measurement, integrated optics for fiber-optic systems, optical interconnect technology, and optical computing.
Dual Nozzle Aerodynamic and Cooling Analysis Study.
1981-02-27
program and to the aerodynamic model computer program. This pro - cedure was used to define two secondary nozzle contours for the baseline con - figuration...both the dual-throat and dual-expander con - cepts. Advanced analytical techniques were utilized to provide quantitative estimates of the bleed flow...preliminary heat transfer analysis of both con - cepts, and (5) engineering analysis of data from the NASA/MSFC hot-fire testing of a dual-throat
NASA Technical Reports Server (NTRS)
Brown, W. C.
1977-01-01
Significant advancements were made in a number of areas: improved efficiency of basic receiving element at low power density levels, improved resolution and confidence in efficiency measurements mathematical modelling and computer simulation of the receiving element and the design, construction, and testing of an environmentally protected two-plane construction suitable for low cost, highly automated construction of large receiving arrays.
Automated detection and location of indications in eddy current signals
Brudnoy, David M.; Oppenlander, Jane E.; Levy, Arthur J.
2000-01-01
A computer implemented information extraction process that locates and identifies eddy current signal features in digital point-ordered signals, signals representing data from inspection of test materials, by enhancing the signal features relative to signal noise, detecting features of the signals, verifying the location of the signal features that can be known in advance, and outputting information about the identity and location of all detected signal features.
NASA Technical Reports Server (NTRS)
Buntine, Wray
1994-01-01
IND computer program introduces Bayesian and Markov/maximum-likelihood (MML) methods and more-sophisticated methods of searching in growing trees. Produces more-accurate class-probability estimates important in applications like diagnosis. Provides range of features and styles with convenience for casual user, fine-tuning for advanced user or for those interested in research. Consists of four basic kinds of routines: data-manipulation, tree-generation, tree-testing, and tree-display. Written in C language.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svetlana Shasharina
The goal of the Center for Technology for Advanced Scientific Component Software is to fundamentally changing the way scientific software is developed and used by bringing component-based software development technologies to high-performance scientific and engineering computing. The role of Tech-X work in TASCS project is to provide an outreach to accelerator physics and fusion applications by introducing TASCS tools into applications, testing tools in the applications and modifying the tools to be more usable.
How DARHT Works - the World's Most Powerful X-ray Machine
None
2018-06-01
The Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory is an essential scientific tool that supports Stockpile Stewardship at the Laboratory. The World's most powerful x-ray machine, it's used to take high-speed images of mock nuclear devices - data that is used to confirm and modify advanced computer codes in assuring the safety, security, and effectiveness of the U.S. nuclear deterrent.
JPRS report: Science and Technology. Europe and Latin America
NASA Astrophysics Data System (ADS)
1988-01-01
Articles from the popular and trade press are included on the following subjects: advanced materials, aerospace industry, automotive industry, biotechnology, computers, factory automation and robotics, microelectronics, and science and technology policy. The aerospace articles discuss briefly and in a nontechnical way the SAGEM bubble memories for space applications, Ariane V new testing facilities, innovative technologies of TDF-1 satellite, and the restructuring of the Aviation Division at France's Aerospatiale.
Advanced measurement techniques to characterize thermo-mechanical aspects of solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Malzbender, J.; Steinbrech, R. W.
Advanced characterization methods have been used to analyze the thermo-mechanical behaviour of solid oxide fuel cells in a model stack. The primarily experimental work included contacting studies, sealing of a model stack, thermal and re-oxidation cycling. Also an attempt was made to correlate cell fracture in the stack with pore sizes determined from computer tomography. The contacting studies were carried out using pressure sensitive foils. The load to achieve full contact on anode and cathode side of the cell was assessed and applied in the subsequent model stack test. The stack experiment permitted a detailed analysis of stack compaction during sealing. During steady state operation thermal and re-oxidation cycling the changes in open cell voltage and acoustic emissions were monitored. Significant softening of the sealant material was observed at low temperatures. Heating in the thermal cycling loop of the stack appeared to be less critical than the cooling. Re-oxidation cycling led to significant damage if a critical re-oxidation time was exceeded. Microstructural studies permitted further insight into the re-oxidation mechanism. Finally, the maximum defect size in the cell was determined by computer tomography. A limit of maximum anode stress was estimated and the result correlated this with the failure strength observed during the model stack testing.
MHD code using multi graphical processing units: SMAUG+
NASA Astrophysics Data System (ADS)
Gyenge, N.; Griffiths, M. K.; Erdélyi, R.
2018-01-01
This paper introduces the Sheffield Magnetohydrodynamics Algorithm Using GPUs (SMAUG+), an advanced numerical code for solving magnetohydrodynamic (MHD) problems, using multi-GPU systems. Multi-GPU systems facilitate the development of accelerated codes and enable us to investigate larger model sizes and/or more detailed computational domain resolutions. This is a significant advancement over the parent single-GPU MHD code, SMAUG (Griffiths et al., 2015). Here, we demonstrate the validity of the SMAUG + code, describe the parallelisation techniques and investigate performance benchmarks. The initial configuration of the Orszag-Tang vortex simulations are distributed among 4, 16, 64 and 100 GPUs. Furthermore, different simulation box resolutions are applied: 1000 × 1000, 2044 × 2044, 4000 × 4000 and 8000 × 8000 . We also tested the code with the Brio-Wu shock tube simulations with model size of 800 employing up to 10 GPUs. Based on the test results, we observed speed ups and slow downs, depending on the granularity and the communication overhead of certain parallel tasks. The main aim of the code development is to provide massively parallel code without the memory limitation of a single GPU. By using our code, the applied model size could be significantly increased. We demonstrate that we are able to successfully compute numerically valid and large 2D MHD problems.
WE-D-303-01: Development and Application of Digital Human Phantoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segars, P.
2015-06-15
Modern medical physics deals with complex problems such as 4D radiation therapy and imaging quality optimization. Such problems involve a large number of radiological parameters, and anatomical and physiological breathing patterns. A major challenge is how to develop, test, evaluate and compare various new imaging and treatment techniques, which often involves testing over a large range of radiological parameters as well as varying patient anatomies and motions. It would be extremely challenging, if not impossible, both ethically and practically, to test every combination of parameters and every task on every type of patient under clinical conditions. Computer-based simulation using computationalmore » phantoms offers a practical technique with which to evaluate, optimize, and compare imaging technologies and methods. Within simulation, the computerized phantom provides a virtual model of the patient’s anatomy and physiology. Imaging data can be generated from it as if it was a live patient using accurate models of the physics of the imaging and treatment process. With sophisticated simulation algorithms, it is possible to perform virtual experiments entirely on the computer. By serving as virtual patients, computational phantoms hold great promise in solving some of the most complex problems in modern medical physics. In this proposed symposium, we will present the history and recent developments of computational phantom models, share experiences in their application to advanced imaging and radiation applications, and discuss their promises and limitations. Learning Objectives: Understand the need and requirements of computational phantoms in medical physics research Discuss the developments and applications of computational phantoms Know the promises and limitations of computational phantoms in solving complex problems.« less
Aerothermodynamic testing requirements for future space transportation systems
NASA Technical Reports Server (NTRS)
Paulson, John W., Jr.; Miller, Charles G., III
1995-01-01
Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamic and physical processes, is the genesis for the design and development of advanced space transportation vehicles. It provides crucial information to other disciplines involved in the development process such as structures, materials, propulsion, and avionics. Sources of aerothermodynamic information include ground-based facilities, computational fluid dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this triad is required to provide the optimum requirements while reducing undue design conservatism, risk, and cost. This paper discusses the role of ground-based facilities in the design of future space transportation system concepts. Testing methodology is addressed, including the iterative approach often required for the assessment and optimization of configurations from an aerothermodynamic perspective. The influence of vehicle shape and the transition from parametric studies for optimization to benchmark studies for final design and establishment of the flight data book is discussed. Future aerothermodynamic testing requirements including the need for new facilities are also presented.
Aerodynamic Analyses Requiring Advanced Computers, part 2
NASA Technical Reports Server (NTRS)
1975-01-01
Papers given at the conference present the results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include two-dimensional configurations, three-dimensional configurations, transonic aircraft, and the space shuttle.
Bringing Advanced Computational Techniques to Energy Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Julie C
2012-11-17
Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.
Experience with Aero- and Fluid-Dynamic Testing for Engineering and CFD Validation
NASA Technical Reports Server (NTRS)
Ross, James C.
2016-01-01
Ever since computations have been used to simulate aerodynamics the need to ensure that the computations adequately represent real life has followed. Many experiments have been performed specifically for validation and as computational methods have improved, so have the validation experiments. Validation is also a moving target because computational methods improve requiring validation for the new aspect of flow physics that the computations aim to capture. Concurrently, new measurement techniques are being developed that can help capture more detailed flow features pressure sensitive paint (PSP) and particle image velocimetry (PIV) come to mind. This paper will present various wind-tunnel tests the author has been involved with and how they were used for validation of various kinds of CFD. A particular focus is the application of advanced measurement techniques to flow fields (and geometries) that had proven to be difficult to predict computationally. Many of these difficult flow problems arose from engineering and development problems that needed to be solved for a particular vehicle or research program. In some cases the experiments required to solve the engineering problems were refined to provide valuable CFD validation data in addition to the primary engineering data. All of these experiments have provided physical insight and validation data for a wide range of aerodynamic and acoustic phenomena for vehicles ranging from tractor-trailers to crewed spacecraft.
Evaluation of tablet computers for visual function assessment.
Bodduluri, Lakshmi; Boon, Mei Ying; Dain, Stephen J
2017-04-01
Recent advances in technology and the increased use of tablet computers for mobile health applications such as vision testing necessitate an understanding of the behavior of the displays of such devices, to facilitate the reproduction of existing or the development of new vision assessment tests. The purpose of this study was to investigate the physical characteristics of one model of tablet computer (iPad mini Retina display) with regard to display consistency across a set of devices (15) and their potential application as clinical vision assessment tools. Once the tablet computer was switched on, it required about 13 min to reach luminance stability, while chromaticity remained constant. The luminance output of the device remained stable until a battery level of 5%. Luminance varied from center to peripheral locations of the display and with viewing angle, whereas the chromaticity did not vary. A minimal (1%) variation in luminance was observed due to temperature, and once again chromaticity remained constant. Also, these devices showed good temporal stability of luminance and chromaticity. All 15 tablet computers showed gamma functions approximating the standard gamma (2.20) and showed similar color gamut sizes, except for the blue primary, which displayed minimal variations. The physical characteristics across the 15 devices were similar and are known, thereby facilitating the use of this model of tablet computer as visual stimulus displays.
Lindberg, D A; Humphreys, B L
1995-01-01
The High-Performance Computing and Communications (HPCC) program is a multiagency federal effort to advance the state of computing and communications and to provide the technologic platform on which the National Information Infrastructure (NII) can be built. The HPCC program supports the development of high-speed computers, high-speed telecommunications, related software and algorithms, education and training, and information infrastructure technology and applications. The vision of the NII is to extend access to high-performance computing and communications to virtually every U.S. citizen so that the technology can be used to improve the civil infrastructure, lifelong learning, energy management, health care, etc. Development of the NII will require resolution of complex economic and social issues, including information privacy. Health-related applications supported under the HPCC program and NII initiatives include connection of health care institutions to the Internet; enhanced access to gene sequence data; the "Visible Human" Project; and test-bed projects in telemedicine, electronic patient records, shared informatics tool development, and image systems. PMID:7614116
Computer Aided Grid Interface: An Interactive CFD Pre-Processor
NASA Technical Reports Server (NTRS)
Soni, Bharat K.
1997-01-01
NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complementary to and in support of the aerodynamic-propulsion design and test activities. This is especially true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations utilizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool that will help engineers, scientists and CFD practitioners to analyze design problems involving complex geometries in a timely fashion. This goal is accomplished by developing the CAGI: Computer Aided Grid Interface system. The CAGI system is developed by integrating CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) geometric system output and/or Initial Graphics Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipulations and generations associated with grid constructions, and robust grid generation methodologies. This report describes the development process of the CAGI system.
Computer Aided Grid Interface: An Interactive CFD Pre-Processor
NASA Technical Reports Server (NTRS)
Soni, Bharat K.
1996-01-01
NASA maintains an applications oriented computational fluid dynamics (CFD) efforts complementary to and in support of the aerodynamic-propulsion design and test activities. This is especially true at NASA/MSFC where the goal is to advance and optimize present and future liquid-fueled rocket engines. Numerical grid generation plays a significant role in the fluid flow simulations utilizing CFD. An overall goal of the current project was to develop a geometry-grid generation tool that will help engineers, scientists and CFD practitioners to analyze design problems involving complex geometries in a timely fashion. This goal is accomplished by developing the Computer Aided Grid Interface system (CAGI). The CAGI system is developed by integrating CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) geometric system output and / or Initial Graphics Exchange Specification (IGES) files (including all the NASA-IGES entities), geometry manipulations and generations associated with grid constructions, and robust grid generation methodologies. This report describes the development process of the CAGI system.
MAX - An advanced parallel computer for space applications
NASA Technical Reports Server (NTRS)
Lewis, Blair F.; Bunker, Robert L.
1991-01-01
MAX is a fault-tolerant multicomputer hardware and software architecture designed to meet the needs of NASA spacecraft systems. It consists of conventional computing modules (computers) connected via a dual network topology. One network is used to transfer data among the computers and between computers and I/O devices. This network's topology is arbitrary. The second network operates as a broadcast medium for operating system synchronization messages and supports the operating system's Byzantine resilience. A fully distributed operating system supports multitasking in an asynchronous event and data driven environment. A large grain dataflow paradigm is used to coordinate the multitasking and provide easy control of concurrency. It is the basis of the system's fault tolerance and allows both static and dynamical location of tasks. Redundant execution of tasks with software voting of results may be specified for critical tasks. The dataflow paradigm also supports simplified software design, test and maintenance. A unique feature is a method for reliably patching code in an executing dataflow application.
A Comparison of Computational Aeroacoustic Prediction Methods for Transonic Rotor Noise
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.; Lyrintzis, Anastasios; Koutsavdis, Evangelos K.
1996-01-01
This paper compares two methods for predicting transonic rotor noise for helicopters in hover and forward flight. Both methods rely on a computational fluid dynamics (CFD) solution as input to predict the acoustic near and far fields. For this work, the same full-potential rotor code has been used to compute the CFD solution for both acoustic methods. The first method employs the acoustic analogy as embodied in the Ffowcs Williams-Hawkings (FW-H) equation, including the quadrupole term. The second method uses a rotating Kirchhoff formulation. Computed results from both methods are compared with one other and with experimental data for both hover and advancing rotor cases. The results are quite good for all cases tested. The sensitivity of both methods to CFD grid resolution and to the choice of the integration surface/volume is investigated. The computational requirements of both methods are comparable; in both cases these requirements are much less than the requirements for the CFD solution.
Software development to support sensor control of robot arc welding
NASA Technical Reports Server (NTRS)
Silas, F. R., Jr.
1986-01-01
The development of software for a Digital Equipment Corporation MINC-23 Laboratory Computer to provide functions of a workcell host computer for Space Shuttle Main Engine (SSME) robotic welding is documented. Routines were written to transfer robot programs between the MINC and an Advanced Robotic Cyro 750 welding robot. Other routines provide advanced program editing features while additional software allows communicatin with a remote computer aided design system. Access to special robot functions were provided to allow advanced control of weld seam tracking and process control for future development programs.
Network Penetration Testing and Research
NASA Technical Reports Server (NTRS)
Murphy, Brandon F.
2013-01-01
This paper will focus the on research and testing done on penetrating a network for security purposes. This research will provide the IT security office new methods of attacks across and against a company's network as well as introduce them to new platforms and software that can be used to better assist with protecting against such attacks. Throughout this paper testing and research has been done on two different Linux based operating systems, for attacking and compromising a Windows based host computer. Backtrack 5 and BlackBuntu (Linux based penetration testing operating systems) are two different "attacker'' computers that will attempt to plant viruses and or NASA USRP - Internship Final Report exploits on a host Windows 7 operating system, as well as try to retrieve information from the host. On each Linux OS (Backtrack 5 and BlackBuntu) there is penetration testing software which provides the necessary tools to create exploits that can compromise a windows system as well as other operating systems. This paper will focus on two main methods of deploying exploits 1 onto a host computer in order to retrieve information from a compromised system. One method of deployment for an exploit that was tested is known as a "social engineering" exploit. This type of method requires interaction from unsuspecting user. With this user interaction, a deployed exploit may allow a malicious user to gain access to the unsuspecting user's computer as well as the network that such computer is connected to. Due to more advance security setting and antivirus protection and detection, this method is easily identified and defended against. The second method of exploit deployment is the method mainly focused upon within this paper. This method required extensive research on the best way to compromise a security enabled protected network. Once a network has been compromised, then any and all devices connected to such network has the potential to be compromised as well. With a compromised network, computers and devices can be penetrated through deployed exploits. This paper will illustrate the research done to test ability to penetrate a network without user interaction, in order to retrieve personal information from a targeted host.
Teaching Advanced Concepts in Computer Networks: VNUML-UM Virtualization Tool
ERIC Educational Resources Information Center
Ruiz-Martinez, A.; Pereniguez-Garcia, F.; Marin-Lopez, R.; Ruiz-Martinez, P. M.; Skarmeta-Gomez, A. F.
2013-01-01
In the teaching of computer networks the main problem that arises is the high price and limited number of network devices the students can work with in the laboratories. Nowadays, with virtualization we can overcome this limitation. In this paper, we present a methodology that allows students to learn advanced computer network concepts through…
A CFD Case Study of a Fan Stage with Split Flow Path Subject to Total Pressure Distortion Inflow
NASA Technical Reports Server (NTRS)
To, Wai-Ming
2017-01-01
This report is the documentation of the work performed under the Hypersonic Project of the NASA's Fundamental Aeronautics Program. It was funded through Task Number NNC10E444T under GESS-2 Contract NNC06BA07B. The objective of the task is to develop advanced computational tools for the simulation of multi-stage turbomachinery in support of aeropropulsion. This includes work elements in extending the TURBO code and validating the multi-stage URANS (Unsteady Reynolds Averaged Navier Stokes) simulation results with the experimental data. The unsteady CFD (Computation Fluid Dynamics) calculations were performed in full wheel mode with and without screen generated total pressure distortion at the computational inflow boundary, as well as in single passage phase lag mode for uniform inflow. The experimental data were provided by NASA from the single stage RTA (Revolutionary Turbine Accelerator) fan test program.Significant non-uniform flow condition at the fan-face of the aeropropulsion system is frequentlyencountered in many of the advanced aerospace vehicles. These propulsion systems can be eithera podded or an embedded design employed in HWB (Hybrid Wing Body) airframe concept. It isalso a topic of interest in military applications, in which advanced air vehicles have already deployedsome form of embedded propulsion systems in their design because of the requirementsof compact and low observable inlets. Even in the conventional airframe/engine design, the fancould operate under such condition when the air vehicle is undergoing rapid maneuvering action.It is believed that a better understanding of the fan’s aerodynamic and aeromechanical responseto this type of operating condition or off design operation would be beneficial to designing distortiontolerant blades for improved engine operability.The objective for this research is to assess the capability of turbomachinery code as an analysistool in understanding the effects and evaluating the impact of flow distortion on the aerodynamicand aeromechanical performance of the fan in advanced propulsion systems. Results from thetesting of an advanced fan stage released by NASA are available and will be used here for CFDcode validation. The experiment was performed at NASA’s high speed compressor facility aspart of the RTA (Revolutionary Turbine Accelerator) demonstration project, a joint effort ofNASA Glenn Research Center and GE Aircraft Engines in developing an advanced Mach 4TBCC (Turbine Based Combined Cycle) turbofan/ramjet engine for access to space. Part of thetest was to assess the aerodynamic performance and operability of the fan stage under nonuniforminflow condition. Various flow distortion patterns were created at the fan-face by manipulatingsets of screens placed upstream of the wind tunnel. Measurements at the fan-face willprovide the necessary distortion flow information as the inflow boundary condition for the CFDin a full wheel simulation. Therefore the purpose of this work is to demonstrate the NASA supportedmulti-stage turbomachinery code, TURBO [1-5], in the aerodynamic performance analysisof a modern fan design operating under off design condition, and in particular to validate theCFD results with the RTA fan test data.A brief description of the RTA fan rig configuration is given in the next section, explaining onhow flow distortion were measured in the test and constructed for the CFD at the fan-face. It isfollowed by a section summarizing previous CFD work performed at NASA relevant to the currentfan configuration. A short description of the TURBO code is given next, followed by detailsin the computational model of the fan rig, the required computing resources, and the numericalprocedure for the simulations. The CFD results are presented in the discussion section and finallyconcluding remarks are summarized.
Blade Displacement Measurement Technique Applied to a Full-Scale Rotor Test
NASA Technical Reports Server (NTRS)
Abrego, Anita I.; Olson, Lawrence E.; Romander, Ethan A.; Barrows, Danny A.; Burner, Alpheus W.
2012-01-01
Blade displacement measurements using multi-camera photogrammetry were acquired during the full-scale wind tunnel test of the UH-60A Airloads rotor, conducted in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel. The objectives were to measure the blade displacement and deformation of the four rotor blades as they rotated through the entire rotor azimuth. These measurements are expected to provide a unique dataset to aid in the development and validation of rotorcraft prediction techniques. They are used to resolve the blade shape and position, including pitch, flap, lag and elastic deformation. Photogrammetric data encompass advance ratios from 0.15 to slowed rotor simulations of 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. An overview of the blade displacement measurement methodology and system development, descriptions of image processing, uncertainty considerations, preliminary results covering static and moderate advance ratio test conditions and future considerations are presented. Comparisons of experimental and computational results for a moderate advance ratio forward flight condition show good trend agreements, but also indicate significant mean discrepancies in lag and elastic twist. Blade displacement pitch measurements agree well with both the wind tunnel commanded and measured values.
Scalability Test of Multiscale Fluid-Platelet Model for Three Top Supercomputers
Zhang, Peng; Zhang, Na; Gao, Chao; Zhang, Li; Gao, Yuxiang; Deng, Yuefan; Bluestein, Danny
2016-01-01
We have tested the scalability of three supercomputers: the Tianhe-2, Stampede and CS-Storm with multiscale fluid-platelet simulations, in which a highly-resolved and efficient numerical model for nanoscale biophysics of platelets in microscale viscous biofluids is considered. Three experiments involving varying problem sizes were performed: Exp-S: 680,718-particle single-platelet; Exp-M: 2,722,872-particle 4-platelet; and Exp-L: 10,891,488-particle 16-platelet. Our implementations of multiple time-stepping (MTS) algorithm improved the performance of single time-stepping (STS) in all experiments. Using MTS, our model achieved the following simulation rates: 12.5, 25.0, 35.5 μs/day for Exp-S and 9.09, 6.25, 14.29 μs/day for Exp-M on Tianhe-2, CS-Storm 16-K80 and Stampede K20. The best rate for Exp-L was 6.25 μs/day for Stampede. Utilizing current advanced HPC resources, the simulation rates achieved by our algorithms bring within reach performing complex multiscale simulations for solving vexing problems at the interface of biology and engineering, such as thrombosis in blood flow which combines millisecond-scale hematology with microscale blood flow at resolutions of micro-to-nanoscale cellular components of platelets. This study of testing the performance characteristics of supercomputers with advanced computational algorithms that offer optimal trade-off to achieve enhanced computational performance serves to demonstrate that such simulations are feasible with currently available HPC resources. PMID:27570250
Classical command of quantum systems.
Reichardt, Ben W; Unger, Falk; Vazirani, Umesh
2013-04-25
Quantum computation and cryptography both involve scenarios in which a user interacts with an imperfectly modelled or 'untrusted' system. It is therefore of fundamental and practical interest to devise tests that reveal whether the system is behaving as instructed. In 1969, Clauser, Horne, Shimony and Holt proposed an experimental test that can be passed by a quantum-mechanical system but not by a system restricted to classical physics. Here we extend this test to enable the characterization of a large quantum system. We describe a scheme that can be used to determine the initial state and to classically command the system to evolve according to desired dynamics. The bipartite system is treated as two black boxes, with no assumptions about their inner workings except that they obey quantum physics. The scheme works even if the system is explicitly designed to undermine it; any misbehaviour is detected. Among its applications, our scheme makes it possible to test whether a claimed quantum computer is truly quantum. It also advances towards a goal of quantum cryptography: namely, the use of 'untrusted' devices to establish a shared random key, with security based on the validity of quantum physics.
Interactive computer-assisted instruction vs. lecture format in dental education.
Howerton, W Bruce; Enrique, Platin R T; Ludlow, John B; Tyndall, Donald A
2004-01-01
The purpose of this study was to compare computer-assisted instruction (CAI) with lecture format using recent hardware and software advances. A pre- and post-test was used to determine student performance and instructional preference. In addition, a post-instruction survey was used to determine student learning preferences. Seventy-five first-year University of North Carolina (UNC) dental students who were registered for the introductory radiology course were asked to participate. All agreed and were randomly placed in one of three groups: interactive CD only, interactive CD and lecture, and lecture only. The content of the multimedia instruction focused on intraoral radiography. A pre- and post-test was administered to determine if there was a significant difference between interactive CD and lecture formats, and an evaluation instrument was used to determine if there was a student learning preference between CAI and lecture format. Analysis of covariance and the sign test were used to determine significance (p<.05). There was no significant difference between pre- and post-test outcomes, indicating that similar learning took place using the interactive CD and/or lecture format. However, students preferred CAI to lecture format.
A computer vision-based approach for structural displacement measurement
NASA Astrophysics Data System (ADS)
Ji, Yunfeng
2010-04-01
Along with the incessant advancement in optics, electronics and computer technologies during the last three decades, commercial digital video cameras have experienced a remarkable evolution, and can now be employed to measure complex motions of objects with sufficient accuracy, which render great assistance to structural displacement measurement in civil engineering. This paper proposes a computer vision-based approach for dynamic measurement of structures. One digital camera is used to capture image sequences of planar targets mounted on vibrating structures. The mathematical relationship between image plane and real space is established based on computer vision theory. Then, the structural dynamic displacement at the target locations can be quantified using point reconstruction rules. Compared with other tradition displacement measurement methods using sensors, such as accelerometers, linear-variable-differential-transducers (LVDTs) and global position system (GPS), the proposed approach gives the main advantages of great flexibility, a non-contact working mode and ease of increasing measurement points. To validate, four tests of sinusoidal motion of a point, free vibration of a cantilever beam, wind tunnel test of a cross-section bridge model, and field test of bridge displacement measurement, are performed. Results show that the proposed approach can attain excellent accuracy compared with the analytical ones or the measurements using conventional transducers, and proves to deliver an innovative and low cost solution to structural displacement measurement.
NASA Technical Reports Server (NTRS)
Charles, H. K. Jr; Beck, T. J.; Feldmesser, H. S.; Magee, T. C.; Spisz, T. S.; Pisacane, V. L.
2001-01-01
An advanced, multiple projection, dual energy x-ray absorptiometry (AMPDXA) scanner system is under development. The AMPDXA is designed to make precision bone and muscle loss measurements necessary to determine the deleterious effects of microgravity on astronauts as well as develop countermeasures to stem their bone and muscle loss. To date, a full size test system has been developed to verify principles and the results of computer simulations. Results indicate that accurate predictions of bone mechanical properties can be determined from as few as three projections, while more projections are needed for a complete, three-dimensional reconstruction. c 2001. Elsevier Science Ltd. All rights reserved.
Grethe, Jeffrey S; Baru, Chaitan; Gupta, Amarnath; James, Mark; Ludaescher, Bertram; Martone, Maryann E; Papadopoulos, Philip M; Peltier, Steven T; Rajasekar, Arcot; Santini, Simone; Zaslavsky, Ilya N; Ellisman, Mark H
2005-01-01
Through support from the National Institutes of Health's National Center for Research Resources, the Biomedical Informatics Research Network (BIRN) is pioneering the use of advanced cyberinfrastructure for medical research. By synchronizing developments in advanced wide area networking, distributed computing, distributed database federation, and other emerging capabilities of e-science, the BIRN has created a collaborative environment that is paving the way for biomedical research and clinical information management. The BIRN Coordinating Center (BIRN-CC) is orchestrating the development and deployment of key infrastructure components for immediate and long-range support of biomedical and clinical research being pursued by domain scientists in three neuroimaging test beds.
1993-05-18
A NASA F/A-18, specially modified to test the newest and most advanced system technologies, on its first research flight on May 21, 1993, at NASA's Dryden Flight Research Facility, Edwards, California. Flown by Dryden in a multi-year, joint NASA/DOD/industry program, the F/A-18 former Navy fighter was modified into a unique Systems Research Aircraft (SRA) to investigate a host of new technologies in the areas of flight controls, airdata sensing and advanced computing. The primary goal of the SRA program was to validate through flight research cutting-edge technologies which could benefit future aircraft and spacecraft by improving efficiency and performance, reducing weight and complexity, with a resultant reduction on development and operational costs.
Aerodynamic Analyses Requiring Advanced Computers, Part 1
NASA Technical Reports Server (NTRS)
1975-01-01
Papers are presented which deal with results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include: viscous flows, boundary layer equations, turbulence modeling and Navier-Stokes equations, and internal flows.
Advances in free-energy-based simulations of protein folding and ligand binding.
Perez, Alberto; Morrone, Joseph A; Simmerling, Carlos; Dill, Ken A
2016-02-01
Free-energy-based simulations are increasingly providing the narratives about the structures, dynamics and biological mechanisms that constitute the fabric of protein science. Here, we review two recent successes. It is becoming practical: first, to fold small proteins with free-energy methods without knowing substructures and second, to compute ligand-protein binding affinities, not just their binding poses. Over the past 40 years, the timescales that can be simulated by atomistic MD are doubling every 1.3 years--which is faster than Moore's law. Thus, these advances are not simply due to the availability of faster computers. Force fields, solvation models and simulation methodology have kept pace with computing advancements, and are now quite good. At the tip of the spear recently are GPU-based computing, improved fast-solvation methods, continued advances in force fields, and conformational sampling methods that harness external information. Copyright © 2015 Elsevier Ltd. All rights reserved.
Point Cloud Management Through the Realization of the Intelligent Cloud Viewer Software
NASA Astrophysics Data System (ADS)
Costantino, D.; Angelini, M. G.; Settembrini, F.
2017-05-01
The paper presents a software dedicated to the elaboration of point clouds, called Intelligent Cloud Viewer (ICV), made in-house by AESEI software (Spin-Off of Politecnico di Bari), allowing to view point cloud of several tens of millions of points, also on of "no" very high performance systems. The elaborations are carried out on the whole point cloud and managed by means of the display only part of it in order to speed up rendering. It is designed for 64-bit Windows and is fully written in C ++ and integrates different specialized modules for computer graphics (Open Inventor by SGI, Silicon Graphics Inc), maths (BLAS, EIGEN), computational geometry (CGAL, Computational Geometry Algorithms Library), registration and advanced algorithms for point clouds (PCL, Point Cloud Library), advanced data structures (BOOST, Basic Object Oriented Supporting Tools), etc. ICV incorporates a number of features such as, for example, cropping, transformation and georeferencing, matching, registration, decimation, sections, distances calculation between clouds, etc. It has been tested on photographic and TLS (Terrestrial Laser Scanner) data, obtaining satisfactory results. The potentialities of the software have been tested by carrying out the photogrammetric survey of the Castel del Monte which was already available in previous laser scanner survey made from the ground by the same authors. For the aerophotogrammetric survey has been adopted a flight height of approximately 1000ft AGL (Above Ground Level) and, overall, have been acquired over 800 photos in just over 15 minutes, with a covering not less than 80%, the planned speed of about 90 knots.
Advances and trends in computational structural mechanics
NASA Technical Reports Server (NTRS)
Noor, A. K.
1986-01-01
Recent developments in computational structural mechanics are reviewed with reference to computational needs for future structures technology, advances in computational models for material behavior, discrete element technology, assessment and control of numerical simulations of structural response, hybrid analysis, and techniques for large-scale optimization. Research areas in computational structural mechanics which have high potential for meeting future technological needs are identified. These include prediction and analysis of the failure of structural components made of new materials, development of computational strategies and solution methodologies for large-scale structural calculations, and assessment of reliability and adaptive improvement of response predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almgren, Ann; DeMar, Phil; Vetter, Jeffrey
The widespread use of computing in the American economy would not be possible without a thoughtful, exploratory research and development (R&D) community pushing the performance edge of operating systems, computer languages, and software libraries. These are the tools and building blocks — the hammers, chisels, bricks, and mortar — of the smartphone, the cloud, and the computing services on which we rely. Engineers and scientists need ever-more specialized computing tools to discover new material properties for manufacturing, make energy generation safer and more efficient, and provide insight into the fundamentals of the universe, for example. The research division of themore » U.S. Department of Energy’s (DOE’s) Office of Advanced Scientific Computing and Research (ASCR Research) ensures that these tools and building blocks are being developed and honed to meet the extreme needs of modern science. See also http://exascaleage.org/ascr/ for additional information.« less
Computers and clinical arrhythmias.
Knoebel, S B; Lovelace, D E
1983-02-01
Cardiac arrhythmias are ubiquitous in normal and abnormal hearts. These disorders may be life-threatening or benign, symptomatic or unrecognized. Arrhythmias may be the precursor of sudden death, a cause or effect of cardiac failure, a clinical reflection of acute or chronic disorders, or a manifestation of extracardiac conditions. Progress is being made toward unraveling the diagnostic and therapeutic problems involved in arrhythmogenesis. Many of the advances would not be possible, however, without the availability of computer technology. To preserve the proper balance and purposeful progression of computer usage, engineers and physicians have been exhorted not to work independently in this field. Both should learn some of the other's trade. The two disciplines need to come together to solve important problems with computers in cardiology. The intent of this article was to acquaint the practicing cardiologist with some of the extant and envisioned computer applications and some of the problems with both. We conclude that computer-based database management systems are necessary for sorting out the clinical factors of relevance for arrhythmogenesis, but computer database management systems are beset with problems that will require sophisticated solutions. The technology for detecting arrhythmias on routine electrocardiograms is quite good but human over-reading is still required, and the rationale for computer application in this setting is questionable. Systems for qualitative, continuous monitoring and review of extended time ECG recordings are adequate with proper noise rejection algorithms and editing capabilities. The systems are limited presently for clinical application to the recognition of ectopic rhythms and significant pauses. Attention should now be turned to the clinical goals for detection and quantification of arrhythmias. We should be asking the following questions: How quantitative do systems need to be? Are computers required for the detection of all arrhythmias? In all settings? Should we be focusing alternatively on those arrhythmias that are frequent and with clinical significance? The ultimate test of any technology is, after all, its use in advancing knowledge and patient care.
Tools Automate Spacecraft Testing, Operation
NASA Technical Reports Server (NTRS)
2010-01-01
"NASA began the Small Explorer (SMEX) program to develop spacecraft to advance astrophysics and space physics. As one of the entities supporting software development at Goddard Space Flight Center, the Hammers Company Inc. (tHC Inc.), of Greenbelt, Maryland, developed the Integrated Test and Operations System to support SMEX. Later, the company received additional Small Business Innovation Research (SBIR) funding from Goddard for a tool to facilitate the development of flight software called VirtualSat. NASA uses the tools to support 15 satellites, and the aerospace industry is using them to develop science instruments, spacecraft computer systems, and navigation and control software."
Computational fluid dynamics: Transition to design applications
NASA Technical Reports Server (NTRS)
Bradley, R. G.; Bhateley, I. C.; Howell, G. A.
1987-01-01
The development of aerospace vehicles, over the years, was an evolutionary process in which engineering progress in the aerospace community was based, generally, on prior experience and data bases obtained through wind tunnel and flight testing. Advances in the fundamental understanding of flow physics, wind tunnel and flight test capability, and mathematical insights into the governing flow equations were translated into improved air vehicle design. The modern day field of Computational Fluid Dynamics (CFD) is a continuation of the growth in analytical capability and the digital mathematics needed to solve the more rigorous form of the flow equations. Some of the technical and managerial challenges that result from rapidly developing CFD capabilites, some of the steps being taken by the Fort Worth Division of General Dynamics to meet these challenges, and some of the specific areas of application for high performance air vehicles are presented.
Hypersonic simulations using open-source CFD and DSMC solvers
NASA Astrophysics Data System (ADS)
Casseau, V.; Scanlon, T. J.; John, B.; Emerson, D. R.; Brown, R. E.
2016-11-01
Hypersonic hybrid hydrodynamic-molecular gas flow solvers are required to satisfy the two essential requirements of any high-speed reacting code, these being physical accuracy and computational efficiency. The James Weir Fluids Laboratory at the University of Strathclyde is currently developing an open-source hybrid code which will eventually reconcile the direct simulation Monte-Carlo method, making use of the OpenFOAM application called dsmcFoam, and the newly coded open-source two-temperature computational fluid dynamics solver named hy2Foam. In conjunction with employing the CVDV chemistry-vibration model in hy2Foam, novel use is made of the QK rates in a CFD solver. In this paper, further testing is performed, in particular with the CFD solver, to ensure its efficacy before considering more advanced test cases. The hy2Foam and dsmcFoam codes have shown to compare reasonably well, thus providing a useful basis for other codes to compare against.
Advanced processing for high-bandwidth sensor systems
NASA Astrophysics Data System (ADS)
Szymanski, John J.; Blain, Phil C.; Bloch, Jeffrey J.; Brislawn, Christopher M.; Brumby, Steven P.; Cafferty, Maureen M.; Dunham, Mark E.; Frigo, Janette R.; Gokhale, Maya; Harvey, Neal R.; Kenyon, Garrett; Kim, Won-Ha; Layne, J.; Lavenier, Dominique D.; McCabe, Kevin P.; Mitchell, Melanie; Moore, Kurt R.; Perkins, Simon J.; Porter, Reid B.; Robinson, S.; Salazar, Alfonso; Theiler, James P.; Young, Aaron C.
2000-11-01
Compute performance and algorithm design are key problems of image processing and scientific computing in general. For example, imaging spectrometers are capable of producing data in hundreds of spectral bands with millions of pixels. These data sets show great promise for remote sensing applications, but require new and computationally intensive processing. The goal of the Deployable Adaptive Processing Systems (DAPS) project at Los Alamos National Laboratory is to develop advanced processing hardware and algorithms for high-bandwidth sensor applications. The project has produced electronics for processing multi- and hyper-spectral sensor data, as well as LIDAR data, while employing processing elements using a variety of technologies. The project team is currently working on reconfigurable computing technology and advanced feature extraction techniques, with an emphasis on their application to image and RF signal processing. This paper presents reconfigurable computing technology and advanced feature extraction algorithm work and their application to multi- and hyperspectral image processing. Related projects on genetic algorithms as applied to image processing will be introduced, as will the collaboration between the DAPS project and the DARPA Adaptive Computing Systems program. Further details are presented in other talks during this conference and in other conferences taking place during this symposium.
NASA Astrophysics Data System (ADS)
Silvernail, Nathan L.
This research was carried out in collaboration with the United Launch Alliance (ULA), to advance an innovative Centaur-based on-orbit propellant storage and transfer system that takes advantage of rotational settling to simplify Fluid Management (FM), specifically enabling settled fluid transfer between two tanks and settled pressure control. This research consists of two specific objectives: (1) technique and process validation and (2) computational model development. In order to raise the Technology Readiness Level (TRL) of this technology, the corresponding FM techniques and processes must be validated in a series of experimental tests, including: laboratory/ground testing, microgravity flight testing, suborbital flight testing, and orbital testing. Researchers from Embry-Riddle Aeronautical University (ERAU) have joined with the Massachusetts Institute of Technology (MIT) Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) team to develop a prototype FM system for operations aboard the International Space Station (ISS). Testing of the integrated system in a representative environment will raise the FM system to TRL 6. The tests will demonstrate the FM system and provide unique data pertaining to the vehicle's rotational dynamics while undergoing fluid transfer operations. These data sets provide insight into the behavior and physical tendencies of the on-orbit refueling system. Furthermore, they provide a baseline for comparison against the data produced by various computational models; thus verifying the accuracy of the models output and validating the modeling approach. Once these preliminary models have been validated, the parameters defined by them will provide the basis of development for accurate simulations of full scale, on-orbit systems. The completion of this project and the models being developed will accelerate the commercialization of on-orbit propellant storage and transfer technologies as well as all in-space technologies that utilize or will utilize similar FM techniques and processes.
Computing technology in the 1980's. [computers
NASA Technical Reports Server (NTRS)
Stone, H. S.
1978-01-01
Advances in computing technology have been led by consistently improving semiconductor technology. The semiconductor industry has turned out ever faster, smaller, and less expensive devices since transistorized computers were first introduced 20 years ago. For the next decade, there appear to be new advances possible, with the rate of introduction of improved devices at least equal to the historic trends. The implication of these projections is that computers will enter new markets and will truly be pervasive in business, home, and factory as their cost diminishes and their computational power expands to new levels. The computer industry as we know it today will be greatly altered in the next decade, primarily because the raw computer system will give way to computer-based turn-key information and control systems.
NEAMS Update. Quarterly Report for October - December 2011.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, K.
2012-02-16
The Advanced Modeling and Simulation Office within the DOE Office of Nuclear Energy (NE) has been charged with revolutionizing the design tools used to build nuclear power plants during the next 10 years. To accomplish this, the DOE has brought together the national laboratories, U.S. universities, and the nuclear energy industry to establish the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program. The mission of NEAMS is to modernize computer modeling of nuclear energy systems and improve the fidelity and validity of modeling results using contemporary software environments and high-performance computers. NEAMS will create a set of engineering-level codes aimedmore » at designing and analyzing the performance and safety of nuclear power plants and reactor fuels. The truly predictive nature of these codes will be achieved by modeling the governing phenomena at the spatial and temporal scales that dominate the behavior. These codes will be executed within a simulation environment that orchestrates code integration with respect to spatial meshing, computational resources, and execution to give the user a common 'look and feel' for setting up problems and displaying results. NEAMS is building upon a suite of existing simulation tools, including those developed by the federal Scientific Discovery through Advanced Computing and Advanced Simulation and Computing programs. NEAMS also draws upon existing simulation tools for materials and nuclear systems, although many of these are limited in terms of scale, applicability, and portability (their ability to be integrated into contemporary software and hardware architectures). NEAMS investments have directly and indirectly supported additional NE research and development programs, including those devoted to waste repositories, safeguarded separations systems, and long-term storage of used nuclear fuel. NEAMS is organized into two broad efforts, each comprising four elements. The quarterly highlights October-December 2011 are: (1) Version 1.0 of AMP, the fuel assembly performance code, was tested on the JAGUAR supercomputer and released on November 1, 2011, a detailed discussion of this new simulation tool is given; (2) A coolant sub-channel model and a preliminary UO{sub 2} smeared-cracking model were implemented in BISON, the single-pin fuel code, more information on how these models were developed and benchmarked is given; (3) The Object Kinetic Monte Carlo model was implemented to account for nucleation events in meso-scale simulations and a discussion of the significance of this advance is given; (4) The SHARP neutronics module, PROTEUS, was expanded to be applicable to all types of reactors, and a discussion of the importance of PROTEUS is given; (5) A plan has been finalized for integrating the high-fidelity, three-dimensional reactor code SHARP with both the systems-level code RELAP7 and the fuel assembly code AMP. This is a new initiative; (6) Work began to evaluate the applicability of AMP to the problem of dry storage of used fuel and to define a relevant problem to test the applicability; (7) A code to obtain phonon spectra from the force-constant matrix for a crystalline lattice has been completed. This important bridge between subcontinuum and continuum phenomena is discussed; (8) Benchmarking was begun on the meso-scale, finite-element fuels code MARMOT to validate its new variable splitting algorithm; (9) A very computationally demanding simulation of diffusion-driven nucleation of new microstructural features has been completed. An explanation of the difficulty of this simulation is given; (10) Experiments were conducted with deformed steel to validate a crystal plasticity finite-element code for bodycentered cubic iron; (11) The Capability Transfer Roadmap was completed and published as an internal laboratory technical report; (12) The AMP fuel assembly code input generator was integrated into the NEAMS Integrated Computational Environment (NiCE). More details on the planned NEAMS computing environment is given; and (13) The NEAMS program website (neams.energy.gov) is nearly ready to launch.« less
NASA Astrophysics Data System (ADS)
Benjanirat, Sarun
Next generation horizontal-axis wind turbines (HAWTs) will operate at very high wind speeds. Existing engineering approaches for modeling the flow phenomena are based on blade element theory, and cannot adequately account for 3-D separated, unsteady flow effects. Therefore, researchers around the world are beginning to model these flows using first principles-based computational fluid dynamics (CFD) approaches. In this study, an existing first principles-based Navier-Stokes approach is being enhanced to model HAWTs at high wind speeds. The enhancements include improved grid topology, implicit time-marching algorithms, and advanced turbulence models. The advanced turbulence models include the Spalart-Allmaras one-equation model, k-epsilon, k-o and Shear Stress Transport (k-o-SST) models. These models are also integrated with detached eddy simulation (DES) models. Results are presented for a range of wind speeds, for a configuration termed National Renewable Energy Laboratory Phase VI rotor, tested at NASA Ames Research Center. Grid sensitivity studies are also presented. Additionally, effects of existing transition models on the predictions are assessed. Data presented include power/torque production, radial distribution of normal and tangential pressure forces, root bending moments, and surface pressure fields. Good agreement was obtained between the predictions and experiments for most of the conditions, particularly with the Spalart-Allmaras-DES model.
Reliability of an interactive computer program for advance care planning.
Schubart, Jane R; Levi, Benjamin H; Camacho, Fabian; Whitehead, Megan; Farace, Elana; Green, Michael J
2012-06-01
Despite widespread efforts to promote advance directives (ADs), completion rates remain low. Making Your Wishes Known: Planning Your Medical Future (MYWK) is an interactive computer program that guides individuals through the process of advance care planning, explaining health conditions and interventions that commonly involve life or death decisions, helps them articulate their values/goals, and translates users' preferences into a detailed AD document. The purpose of this study was to demonstrate that (in the absence of major life changes) the AD generated by MYWK reliably reflects an individual's values/preferences. English speakers ≥30 years old completed MYWK twice, 4 to 6 weeks apart. Reliability indices were assessed for three AD components: General Wishes; Specific Wishes for treatment; and Quality-of-Life values (QoL). Twenty-four participants completed the study. Both the Specific Wishes and QoL scales had high internal consistency in both time periods (Knuder Richardson formula 20 [KR-20]=0.83-0.95, and 0.86-0.89). Test-retest reliability was perfect for General Wishes (κ=1), high for QoL (Pearson's correlation coefficient=0.83), but lower for Specific Wishes (Pearson's correlation coefficient=0.57). MYWK generates an AD where General Wishes and QoL (but not Specific Wishes) statements remain consistent over time.
The real-time control of planetary rovers through behavior modification
NASA Technical Reports Server (NTRS)
Miller, David P.
1991-01-01
It is not yet clear of what type, and how much, intelligence is needed for a planetary rover to function semi-autonomously on a planetary surface. Current designs assume an advanced AI system that maintains a detailed map of its journeys and the surroundings, and that carefully calculates and tests every move in advance. To achieve these abilities, and because of the limitations of space-qualified electronics, the supporting rover is quite sizable, massing a large fraction of a ton, and requiring technology advances in everything from power to ground operations. An alternative approach is to use a behavior driven control scheme. Recent research has shown that many complex tasks may be achieved by programming a robot with a set of behaviors and activation or deactivating a subset of those behaviors as required by the specific situation in which the robot finds itself. Behavior control requires much less computation than is required by tradition AI planning techniques. The reduced computation requirements allows the entire rover to be scaled down as appropriate (only down-link communications and payload do not scale under these circumstances). The missions that can be handled by the real-time control and operation of a set of small, semi-autonomous, interacting, behavior-controlled planetary rovers are discussed.
Reliability of an Interactive Computer Program for Advance Care Planning
Levi, Benjamin H.; Camacho, Fabian; Whitehead, Megan; Farace, Elana; Green, Michael J
2012-01-01
Abstract Despite widespread efforts to promote advance directives (ADs), completion rates remain low. Making Your Wishes Known: Planning Your Medical Future (MYWK) is an interactive computer program that guides individuals through the process of advance care planning, explaining health conditions and interventions that commonly involve life or death decisions, helps them articulate their values/goals, and translates users' preferences into a detailed AD document. The purpose of this study was to demonstrate that (in the absence of major life changes) the AD generated by MYWK reliably reflects an individual's values/preferences. English speakers ≥30 years old completed MYWK twice, 4 to 6 weeks apart. Reliability indices were assessed for three AD components: General Wishes; Specific Wishes for treatment; and Quality-of-Life values (QoL). Twenty-four participants completed the study. Both the Specific Wishes and QoL scales had high internal consistency in both time periods (Knuder Richardson formula 20 [KR-20]=0.83–0.95, and 0.86–0.89). Test-retest reliability was perfect for General Wishes (κ=1), high for QoL (Pearson's correlation coefficient=0.83), but lower for Specific Wishes (Pearson's correlation coefficient=0.57). MYWK generates an AD where General Wishes and QoL (but not Specific Wishes) statements remain consistent over time. PMID:22512830
Center for Center for Technology for Advanced Scientific Component Software (TASCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostadin, Damevski
A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technologymore » for Advanced Scientific Component Software (TASCS)1 tackles these these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.« less
NASA Technical Reports Server (NTRS)
Roozeboom, Nettie H.; Lee, Henry C.; Simurda, Laura J.; Zilliac, Gregory G.; Pulliam, Thomas H.
2016-01-01
Wing-body juncture flow fields on commercial aircraft configurations are challenging to compute accurately. The NASA Advanced Air Vehicle Program's juncture flow committee is designing an experiment to provide data to improve Computational Fluid Dynamics (CFD) modeling in the juncture flow region. Preliminary design of the model was done using CFD, yet CFD tends to over-predict the separation in the juncture flow region. Risk reduction wind tunnel tests were requisitioned by the committee to obtain a better understanding of the flow characteristics of the designed models. NASA Ames Research Center's Fluid Mechanics Lab performed one of the risk reduction tests. The results of one case, accompanied by CFD simulations, are presented in this paper. Experimental results suggest the wall mounted wind tunnel model produces a thicker boundary layer on the fuselage than the CFD predictions, resulting in a larger wing horseshoe vortex suppressing the side of body separation in the juncture flow region. Compared to experimental results, CFD predicts a thinner boundary layer on the fuselage generates a weaker wing horseshoe vortex resulting in a larger side of body separation.
Big Data Processing for a Central Texas Groundwater Case Study
NASA Astrophysics Data System (ADS)
Cantu, A.; Rivera, O.; Martínez, A.; Lewis, D. H.; Gentle, J. N., Jr.; Fuentes, G.; Pierce, S. A.
2016-12-01
As computational methods improve, scientists are able to expand the level and scale of experimental simulation and testing that is completed for case studies. This study presents a comparative analysis of multiple models for the Barton Springs segment of the Edwards aquifer. Several numerical simulations using state-mandated MODFLOW models ran on Stampede, a High Performance Computing system housed at the Texas Advanced Computing Center, were performed for multiple scenario testing. One goal of this multidisciplinary project aims to visualize and compare the output data of the groundwater model using the statistical programming language R to find revealing data patterns produced by different pumping scenarios. Presenting data in a friendly post-processing format is covered in this paper. Visualization of the data and creating workflows applicable to the management of the data are tasks performed after data extraction. Resulting analyses provide an example of how supercomputing can be used to accelerate evaluation of scientific uncertainty and geological knowledge in relation to policy and management decisions. Understanding the aquifer behavior helps policy makers avoid negative impact on the endangered species, environmental services and aids in maximizing the aquifer yield.
A detailed experimental study of a DNA computer with two endonucleases.
Sakowski, Sebastian; Krasiński, Tadeusz; Sarnik, Joanna; Blasiak, Janusz; Waldmajer, Jacek; Poplawski, Tomasz
2017-07-14
Great advances in biotechnology have allowed the construction of a computer from DNA. One of the proposed solutions is a biomolecular finite automaton, a simple two-state DNA computer without memory, which was presented by Ehud Shapiro's group at the Weizmann Institute of Science. The main problem with this computer, in which biomolecules carry out logical operations, is its complexity - increasing the number of states of biomolecular automata. In this study, we constructed (in laboratory conditions) a six-state DNA computer that uses two endonucleases (e.g. AcuI and BbvI) and a ligase. We have presented a detailed experimental verification of its feasibility. We described the effect of the number of states, the length of input data, and the nondeterminism on the computing process. We also tested different automata (with three, four, and six states) running on various accepted input words of different lengths such as ab, aab, aaab, ababa, and of an unaccepted word ba. Moreover, this article presents the reaction optimization and the methods of eliminating certain biochemical problems occurring in the implementation of a biomolecular DNA automaton based on two endonucleases.
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.
1992-01-01
The presentation gives a partial overview of research and development underway in the Structures Division of LeRC, which collectively is referred to as the Computational Structures Technology Program. The activities in the program are diverse and encompass four major categories: (1) composite materials and structures; (2) probabilistic analysis and reliability; (3) design optimization and expert systems; and (4) computational methods and simulation. The approach of the program is comprehensive and entails exploration of fundamental theories of structural mechanics to accurately represent the complex physics governing engine structural performance, formulation, and implementation of computational techniques and integrated simulation strategies to provide accurate and efficient solutions of the governing theoretical models by exploiting the emerging advances in computer technology, and validation and verification through numerical and experimental tests to establish confidence and define the qualities and limitations of the resulting theoretical models and computational solutions. The program comprises both in-house and sponsored research activities. The remainder of the presentation provides a sample of activities to illustrate the breadth and depth of the program and to demonstrate the accomplishments and benefits that have resulted.
Radiological Findings in a case of Advance staged Mesothelioma
Aziz, Fahad
2009-01-01
Chest X Ray is the initial screening test for the mesothelioma like all other the chest diseases. But computed tomography (CT) is the imaging technique of choice for charactering pleural masses. CT also gives important information regarding invasion of the chest wall and surrounding structures. Certain CT features help differentiate benign from malignant processes. This short article highlights the salient CT appearance of mesothelioma; the most common pleural tumor. PMID:22263002
U.S. Nuclear Weapons Enterprise: A Strategic Past and Unknown Future
2012-04-25
are left to base their planning assumptions, weapons designs and capabilities on outdated models . The likelihood of a large-scale nuclear war has...conduct any testing on nuclear weapons and must rely on computer modeling . While this may provide sufficient confidence in the current nuclear...unlikely the world will be free of nuclear weapons. 24 APPENDIX A – Acronyms ACC – Air Combat Command ACM – Advanced cruise missle CSAF
Design and Testing for a New Thermosyphon Irradiation Vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felde, David K.; Carbajo, Juan J.; McDuffee, Joel Lee
The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) requires most materials and all fuel experiments to be placed in a pressure containment vessel to ensure that internal contaminants such as fission products cannot be released into the primary coolant. It also requires that all experiments be capable of withstanding various accident conditions (e.g., loss of coolant) without generating vapor bubbles on the surface of the experiment in the primary coolant. These requirements are intended to artificially increase experiment temperatures by introducing a barrier between the experimental materials and the HFIR coolant, and by reducing heatmore » loads to the HFIR primary coolant, thus ensuring that no boiling can occur. A proposed design for materials irradiation would remove these limitations by providing the required primary containment with an internal cooling flow. This would allow for experiments to be irradiated without concern for coolant contamination (e.g., from cladding failure of advanced fuel pins) or for specimen heat load. This report describes a new materials irradiation experiment design that uses a thermosyphon cooling system to allow experimental materials direct access to a liquid coolant. The new design also increases the range of conditions that can be tested in HFIR. This design will provide a unique capability to validate the performance of current and advanced fuels and materials. Because of limited supporting data for this kind of irradiation vehicle, a test program was initiated to obtain operating data that can be used to (1) qualify the vehicle for operation in HFIR and (2) validate computer models used to perform design- and safety-basis calculations. This report also describes the test facility and experimental data, and it provides a comparison of the experimental data to computer simulations. A total of 51 tests have been completed: four tests with pure steam, 12 tests with argon, and 35 tests with helium. A total of 10 tests were performed at subatmospheric pressure, and four of these were performed with pure steam. One test was conducted at a high power of 92.7 kW, six tests were HFIR startups, and two tests were HFIR loss of offsite power (LOOP). Pressures up to 10 MPa, vapor temperatures up to 583 K (310°C), and heater temperatures above 600 K (327°C) have been reached in these tests. Two computer programs, RELAP5-3D and TRACE, have been used to simulate the tests. The TRACE code has shown good agreement with the test data and has been used to model a variety of tests. This experimental facility has been very useful in demonstrating the viability of this new type of irradiation facility.« less
NASA Technical Reports Server (NTRS)
Weller, W. H.
1983-01-01
A program of experimental and analytical research was performed to demonstrate the degree of correlation achieved between measured and computed rotor inplane stability characteristics. The experimental data were obtained from hover and wind tunnel tests of a scaled bearingless main rotor model. Both isolated rotor and free-hub conditions were tested. Test parameters included blade built-in cone and sweep angles; rotor inplane structural stiffness and damping; pitch link stiffness and location; and fuselage damping, inertia, and natural frequency. Analytical results for many test conditions were obtained. In addition, the analytical and experimental results were examined to ascertain the effects of the test parameters on rotor ground and air resonance stability. The results from this program are presented herein in tabular and graphical form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irminger, Philip; Starke, Michael R; Dimitrovski, Aleksandar D
2014-01-01
Power system equipment manufacturers and researchers continue to experiment with novel overhead electric conductor designs that support better conductor performance and address congestion issues. To address the technology gap in testing these novel designs, Oak Ridge National Laboratory constructed the Powerline Conductor Accelerated Testing (PCAT) facility to evaluate the performance of novel overhead conductors in an accelerated fashion in a field environment. Additionally, PCAT has the capability to test advanced sensors and measurement methods for accessing overhead conductor performance and condition. Equipped with extensive measurement and monitoring devices, PCAT provides a platform to improve/validate conductor computer models and assess themore » performance of novel conductors. The PCAT facility and its testing capabilities are described in this paper.« less
NASA Technical Reports Server (NTRS)
Bull, William B. (Compiler); Pinoli, Pat C. (Compiler); Upton, Cindy G. (Compiler); Day, Tony (Compiler); Hill, Keith (Compiler); Stone, Frank (Compiler); Hall, William B.
1994-01-01
This report is a compendium of the presentations of the 12th biannual meeting of the Industry Advisory Committee under the Solid Propulsion Integrity Program. A complete transcript of the welcoming talks is provided. Presentation outlines and overheads are included for the other sessions: SPIP Overview, Past, Current and Future Activity; Test Methods Manual and Video Tape Library; Air Force Developed Computer Aided Cure Program and SPC/TQM Experience; Magneto-Optical mapper (MOM), Joint Army/NASA program to assess composite integrity; Permeability Testing; Moisture Effusion Testing by Karl Fischer Analysis; Statistical Analysis of Acceptance Test Data; NMR Phenolic Resin Advancement; Constituent Testing Highlights on the LDC Optimization Program; Carbon Sulfur Study, Performance Related Testing; Current Rayon Specifications and Future Availability; RSRM/SPC Implementation; SRM Test Methods, Delta/Titan/FBM/RSRM; and Open Forum on Performance Based Acceptance Testing -- Industry Experience.
A Situation Awareness Assistant for Human Deep Space Exploration
NASA Technical Reports Server (NTRS)
Boy, Guy A.; Platt, Donald
2013-01-01
This paper presents the development and testing of a Virtual Camera (VC) system to improve astronaut and mission operations situation awareness while exploring other planetary bodies. In this embodiment, the VC is implemented using a tablet-based computer system to navigate through inter active database application. It is claimed that the advanced interaction media capability of the VC can improve situation awareness as the distribution of hu man space exploration roles change in deep space exploration. The VC is being developed and tested for usability and capability to improve situation awareness. Work completed thus far as well as what is needed to complete the project will be described. Planned testing will also be described.
Bosch, Linda J W; Oort, Frank A; Neerincx, Maarten; Khalid-de Bakker, Carolina A J; Terhaar sive Droste, Jochim S; Melotte, Veerle; Jonkers, Daisy M A E; Masclee, Ad A M; Mongera, Sandra; Grooteclaes, Madeleine; Louwagie, Joost; van Criekinge, Wim; Coupé, Veerle M H; Mulder, Chris J; van Engeland, Manon; Carvalho, Beatriz; Meijer, Gerrit A
2012-03-01
Using a bioinformatics-based strategy, we set out to identify hypermethylated genes that could serve as biomarkers for early detection of colorectal cancer (CRC) in stool. In addition, the complementary value to a Fecal Immunochemical Test (FIT) was evaluated. Candidate genes were selected by applying cluster alignment and computational analysis of promoter regions to microarray-expression data of colorectal adenomas and carcinomas. DNA methylation was measured by quantitative methylation-specific PCR on 34 normal colon mucosa, 71 advanced adenoma, and 64 CRC tissues. The performance as biomarker was tested in whole stool samples from in total 193 subjects, including 19 with advanced adenoma and 66 with CRC. For a large proportion of these series, methylation data for GATA4 and OSMR were available for comparison. The complementary value to FIT was measured in stool subsamples from 92 subjects including 44 with advanced adenoma or CRC. Phosphatase and Actin Regulator 3 (PHACTR3) was identified as a novel hypermethylated gene showing more than 70-fold increased DNA methylation levels in advanced neoplasia compared with normal colon mucosa. In a stool training set, PHACTR3 methylation showed a sensitivity of 55% (95% CI: 33-75) for CRC and a specificity of 95% (95% CI: 87-98). In a stool validation set, sensitivity reached 66% (95% CI: 50-79) for CRC and 32% (95% CI: 14-57) for advanced adenomas at a specificity of 100% (95% CI: 86-100). Adding PHACTR3 methylation to FIT increased sensitivity for CRC up to 15%. PHACTR3 is a new hypermethylated gene in CRC with a good performance in stool DNA testing and has complementary value to FIT.
NASA Advanced Supercomputing Facility Expansion
NASA Technical Reports Server (NTRS)
Thigpen, William W.
2017-01-01
The NASA Advanced Supercomputing (NAS) Division enables advances in high-end computing technologies and in modeling and simulation methods to tackle some of the toughest science and engineering challenges facing NASA today. The name "NAS" has long been associated with leadership and innovation throughout the high-end computing (HEC) community. We play a significant role in shaping HEC standards and paradigms, and provide leadership in the areas of large-scale InfiniBand fabrics, Lustre open-source filesystems, and hyperwall technologies. We provide an integrated high-end computing environment to accelerate NASA missions and make revolutionary advances in science. Pleiades, a petaflop-scale supercomputer, is used by scientists throughout the U.S. to support NASA missions, and is ranked among the most powerful systems in the world. One of our key focus areas is in modeling and simulation to support NASA's real-world engineering applications and make fundamental advances in modeling and simulation methods.
Agent-Based Modeling in Molecular Systems Biology.
Soheilypour, Mohammad; Mofrad, Mohammad R K
2018-07-01
Molecular systems orchestrating the biology of the cell typically involve a complex web of interactions among various components and span a vast range of spatial and temporal scales. Computational methods have advanced our understanding of the behavior of molecular systems by enabling us to test assumptions and hypotheses, explore the effect of different parameters on the outcome, and eventually guide experiments. While several different mathematical and computational methods are developed to study molecular systems at different spatiotemporal scales, there is still a need for methods that bridge the gap between spatially-detailed and computationally-efficient approaches. In this review, we summarize the capabilities of agent-based modeling (ABM) as an emerging molecular systems biology technique that provides researchers with a new tool in exploring the dynamics of molecular systems/pathways in health and disease. © 2018 WILEY Periodicals, Inc.
Aerothermal modeling program, phase 2. Element B: Flow interaction experiment
NASA Technical Reports Server (NTRS)
Nikjooy, M.; Mongia, H. C.; Murthy, S. N. B.; Sullivan, J. P.
1986-01-01
The design process was improved and the efficiency, life, and maintenance costs of the turbine engine hot section was enhanced. Recently, there has been much emphasis on the need for improved numerical codes for the design of efficient combustors. For the development of improved computational codes, there is a need for an experimentally obtained data base to be used at test cases for the accuracy of the computations. The purpose of Element-B is to establish a benchmark quality velocity and scalar measurements of the flow interaction of circular jets with swirling flow typical of that in the dome region of annular combustor. In addition to the detailed experimental effort, extensive computations of the swirling flows are to be compared with the measurements for the purpose of assessing the accuracy of current and advanced turbulence and scalar transport models.
The development of an airborne instrumentation computer system for flight test
NASA Technical Reports Server (NTRS)
Bever, G. A.
1984-01-01
Instrumentation interfacing frequently requires the linking of intelligent systems together, as well as requiring the link itself to be intelligent. The airborne instrumentation computer system (AICS) was developed to address this requirement. Its small size, approximately 254 by 133 by 140 mm (10 by 51/4 by 51/2 in), standard bus, and modular board configuration give it the ability to solve instrumentation interfacing and computation problems without forcing a redesign of the entire unit. This system has been used on the F-15 aircraft digital electronic engine control (DEEC) and its follow on engine model derivative (EMD) project and in an OV-1C Mohawk aircraft stall speed warning system. The AICS is presently undergoing configuration for use on an F-104 pace aircraft and on the advanced fighter technology integration (AFTI) F-111 aircraft.
Status of the Short-Pulse X-ray Project at the Advanced Photon Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nassiri, A; Berenc, T G; Borland, M
2012-07-01
The Advanced Photon Source Upgrade (APS-U) Project at Argonne will include generation of short-pulse x-rays based on Zholents deflecting cavity scheme. We have chosen superconducting (SC) cavities in order to have a continuous train of crabbed bunches and flexibility of operating modes. In collaboration with Jefferson Laboratory, we are prototyping and testing a number of single-cell deflecting cavities and associated auxiliary systems with promising initial results. In collaboration with Lawrence Berkeley National Laboratory, we are working to develop state-of-the-art timing, synchronization, and differential rf phase stability systems that are required for SPX. Collaboration with Advanced Computations Department at Stanford Linearmore » Accelerator Center is looking into simulations of complex, multi-cavity geometries with lower- and higher-order modes waveguide dampers using ACE3P. This contribution provides the current R&D status of the SPX project.« less
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Starnes, James H., Jr.; Newman, James C., Jr.
1995-01-01
NASA is developing a 'tool box' that includes a number of advanced structural analysis computer codes which, taken together, represent the comprehensive fracture mechanics capability required to predict the onset of widespread fatigue damage. These structural analysis tools have complementary and specialized capabilities ranging from a finite-element-based stress-analysis code for two- and three-dimensional built-up structures with cracks to a fatigue and fracture analysis code that uses stress-intensity factors and material-property data found in 'look-up' tables or from equations. NASA is conducting critical experiments necessary to verify the predictive capabilities of the codes, and these tests represent a first step in the technology-validation and industry-acceptance processes. NASA has established cooperative programs with aircraft manufacturers to facilitate the comprehensive transfer of this technology by making these advanced structural analysis codes available to industry.
NASA R and T aerospace plane vehicles: Progress and plans
NASA Technical Reports Server (NTRS)
Dixon, S. C.
1985-01-01
Progress made in key technologies such as materials, structures, aerothermodynamics, hypersonic aerodynamics, and hypersonic airbreathing propulsion are reported. Advances were made in more generic, areas such as active controls, flight computer hardware and software, and interdisciplinary analytical design methodology. These technology advances coupled with the development of and experiences with the Space Shuttle make feasible aerospace plane-type vehicles that meet the more demanding requirements of various DOD missions and/or an all-weather Shuttle II with reduced launch costs. Technology needs and high payoff technologies, and the technology advancements in propulsion, control-configured-vehicles, aerodynamics, aerothermodynamics, aerothermal loads, and materials and structures were studied. The highest payoff technologies of materials and structures including thermal-structural analysis and high temperature test techniques are emphasized. The high priority technology of propulsion, and plans, of what remains to be done rather than firm program commitments, are briefly discussed.
Flight control systems development of highly maneuverable aircraft technology /HiMAT/ vehicle
NASA Technical Reports Server (NTRS)
Petersen, K. L.
1979-01-01
The highly maneuverable aircraft technology (HiMAT) program was conceived to demonstrate advanced technology concepts through scaled-aircraft flight tests using a remotely piloted technique. Closed-loop primary flight control is performed from a ground-based cockpit, utilizing a digital computer and up/down telemetry links. A backup flight control system for emergency operation resides in an onboard computer. The onboard systems are designed to provide fail-operational capabilities and utilize two microcomputers, dual uplink receiver/decoders, and redundant hydraulic actuation and power systems. This paper discusses the design and validation of the primary and backup digital flight control systems as well as the unique pilot and specialized systems interfaces.
Overview of aerothermodynamic loads definition study
NASA Technical Reports Server (NTRS)
Gaugler, Raymond E.
1991-01-01
The objective of the Aerothermodynamic Loads Definition Study is to develop methods of accurately predicting the operating environment in advanced Earth-to-Orbit (ETO) propulsion systems, such as the Space Shuttle Main Engine (SSME) powerhead. Development of time averaged and time dependent three dimensional viscous computer codes as well as experimental verification and engine diagnostic testing are considered to be essential in achieving that objective. Time-averaged, nonsteady, and transient operating loads must all be well defined in order to accurately predict powerhead life. Described here is work in unsteady heat flow analysis, improved modeling of preburner flow, turbulence modeling for turbomachinery, computation of three dimensional flow with heat transfer, and unsteady viscous multi-blade row turbine analysis.
Description of MSFC engineering photographic analysis
NASA Technical Reports Server (NTRS)
Earle, Jim; Williams, Frank
1988-01-01
Utilizing a background that includes development of basic launch and test photographic coverage and analysis procedures, the MSFC Photographic Evaluation Group has built a body of experience that enables it to effectively satisfy MSFC's engineering photographic analysis needs. Combining the basic soundness of reliable, proven techniques of the past with the newer technical advances of computers and computer-related devices, the MSFC Photo Evaluation Group is in a position to continue to provide photo and video analysis service center-wide and NASA-wide to supply an improving photo analysis product to meet the photo evaluation needs of the future; and to provide new standards in the state-of-the-art of photo analysis of dynamic events.
Optimization of a Monte Carlo Model of the Transient Reactor Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Kristin; DeHart, Mark; Goluoglu, Sedat
2017-03-01
The ultimate goal of modeling and simulation is to obtain reasonable answers to problems that don’t have representations which can be easily evaluated while minimizing the amount of computational resources. With the advances during the last twenty years of large scale computing centers, researchers have had the ability to create a multitude of tools to minimize the number of approximations necessary when modeling a system. The tremendous power of these centers requires the user to possess an immense amount of knowledge to optimize the models for accuracy and efficiency.This paper seeks to evaluate the KENO model of TREAT to optimizemore » calculational efforts.« less
NASA Technical Reports Server (NTRS)
Gardner, Kevin D.; Liu, Jong-Shang; Murthy, Durbha V.; Kruse, Marlin J.; James, Darrell
1999-01-01
AlliedSignal Engines, in cooperation with NASA GRC (National Aeronautics and Space Administration Glenn Research Center), completed an evaluation of recently-developed aeroelastic computer codes using test cases from the AlliedSignal Engines fan blisk and turbine databases. Test data included strain gage, performance, and steady-state pressure information obtained for conditions where synchronous or flutter vibratory conditions were found to occur. Aeroelastic codes evaluated included quasi 3-D UNSFLO (MIT Developed/AE Modified, Quasi 3-D Aeroelastic Computer Code), 2-D FREPS (NASA-Developed Forced Response Prediction System Aeroelastic Computer Code), and 3-D TURBO-AE (NASA/Mississippi State University Developed 3-D Aeroelastic Computer Code). Unsteady pressure predictions for the turbine test case were used to evaluate the forced response prediction capabilities of each of the three aeroelastic codes. Additionally, one of the fan flutter cases was evaluated using TURBO-AE. The UNSFLO and FREPS evaluation predictions showed good agreement with the experimental test data trends, but quantitative improvements are needed. UNSFLO over-predicted turbine blade response reductions, while FREPS under-predicted them. The inviscid TURBO-AE turbine analysis predicted no discernible blade response reduction, indicating the necessity of including viscous effects for this test case. For the TURBO-AE fan blisk test case, significant effort was expended getting the viscous version of the code to give converged steady flow solutions for the transonic flow conditions. Once converged, the steady solutions provided an excellent match with test data and the calibrated DAWES (AlliedSignal 3-D Viscous Steady Flow CFD Solver). However, efforts expended establishing quality steady-state solutions prevented exercising the unsteady portion of the TURBO-AE code during the present program. AlliedSignal recommends that unsteady pressure measurement data be obtained for both test cases examined for use in aeroelastic code validation.
Choudhuri, Supratim; Patton, Geoffrey W; Chanderbhan, Ronald F; Mattia, Antonia; Klaassen, Curtis D
2018-01-01
Toxicology has made steady advances over the last 60+ years in understanding the mechanisms of toxicity at an increasingly finer level of cellular organization. Traditionally, toxicological studies have used animal models. However, the general adoption of the principles of 3R (Replace, Reduce, Refine) provided the impetus for the development of in vitro models in toxicity testing. The present commentary is an attempt to briefly discuss the transformation in toxicology that began around 1980. Many genes important in cellular protection and metabolism of toxicants were cloned and characterized in the 80s, and gene expression studies became feasible, too. The development of transgenic and knockout mice provided valuable animal models to investigate the role of specific genes in producing toxic effects of chemicals or protecting the organism from the toxic effects of chemicals. Further developments in toxicology came from the incorporation of the tools of "omics" (genomics, proteomics, metabolomics, interactomics), epigenetics, systems biology, computational biology, and in vitro biology. Collectively, the advances in toxicology made during the last 30-40 years are expected to provide more innovative and efficient approaches to risk assessment. A goal of experimental toxicology going forward is to reduce animal use and yet be able to conduct appropriate risk assessments and make sound regulatory decisions using alternative methods of toxicity testing. In that respect, Tox21 has provided a big picture framework for the future. Currently, regulatory decisions involving drugs, biologics, food additives, and similar compounds still utilize data from animal testing and human clinical trials. In contrast, the prioritization of environmental chemicals for further study can be made using in vitro screening and computational tools. Published by Oxford University Press on behalf of the Society of Toxicology 2017. This work is written by US Government employees and is in the public domain in the US.
Henry, N Lynn; Braun, Thomas M; Breslin, Tara M; Gorski, David H; Silver, Samuel M; Griggs, Jennifer J
2017-08-01
Although national guidelines do not recommend extent of disease imaging for patients with newly diagnosed early stage breast cancer given that the harm outweighs the benefits, high rates of testing have been documented. The 2012 Choosing Wisely guidelines specifically addressed this issue. We examined the change over time in imaging use across a statewide collaborative, as well as the reasons for performing imaging and the impact on cost of care. Clinicopathologic data and use of advanced imaging tests (positron emission tomography, computed tomography, and bone scan) were abstracted from the medical records of patients treated at 25 participating sites in the Michigan Breast Oncology Quality Initiative (MiBOQI). For patients diagnosed in 2014 and 2015, reasons for testing were abstracted from the medical record. Of the 34,078 patients diagnosed with stage 0-II breast cancer between 2008 and 2015 in MiBOQI, 6853 (20.1%) underwent testing with at least 1 imaging modality in the 90 days after diagnosis. There was considerable variability in rates of testing across the 25 sites for all stages of disease. Between 2008 and 2015, testing decreased over time for patients with stage 0-IIA disease (all P < .001) and remained stable for stage IIB disease (P = .10). This decrease in testing over time resulted in a cost savings, especially for patients with stage I disease. Use of advanced imaging at the time of diagnosis decreased over time in a large statewide collaborative. Additional interventions are warranted to further reduce rates of unnecessary imaging to improve quality of care for patients with breast cancer. Cancer 2017;123:2975-83. © 2017 American Cancer Society. © 2017 American Cancer Society.
Numerical Viscous Flow Analysis of an Advanced Semispan Diamond-Wing Model at High-Life Conditions
NASA Technical Reports Server (NTRS)
Ghaffari, F.; Biedron, R. T.; Luckring, J. M.
2002-01-01
Turbulent Navier-Stokes computational results are presented for an advanced diamond wing semispan model at low speed, high-lift conditions. The numerical results are obtained in support of a wind-tunnel test that was conducted in the National Transonic Facility (NTF) at the NASA Langley Research Center. The model incorporated a generic fuselage and was mounted on the tunnel sidewall using a constant width standoff. The analyses include: (1) the numerical simulation of the NTF empty, tunnel flow characteristics; (2) semispan high-lift model with the standoff in the tunnel environment; (3) semispan high-lift model with the standoff and viscous sidewall in free air; and (4) semispan high-lift model without the standoff in free air. The computations were performed at conditions that correspond to a nominal approach and landing configuration. The wing surface pressure distributions computed for the model in both the tunnel and in free air agreed well with the corresponding experimental data and they both indicated small increments due to the wall interference effects. However, the wall interference effects were found to be more pronounced in the total measured and the computed lift, drag and pitching moment due to standard induced up-flow effects. Although the magnitudes of the computed forces and moment were slightly off compared to the measured data, the increments due the wall interference effects were predicted well. The numerical predictions are also presented on the combined effects of the tunnel sidewall boundary layer and the standoff geometry on the fuselage fore-body pressure distributions and the resulting impact on the overall configuration longitudinal aerodynamic characteristics.
Constructing Neuronal Network Models in Massively Parallel Environments.
Ippen, Tammo; Eppler, Jochen M; Plesser, Hans E; Diesmann, Markus
2017-01-01
Recent advances in the development of data structures to represent spiking neuron network models enable us to exploit the complete memory of petascale computers for a single brain-scale network simulation. In this work, we investigate how well we can exploit the computing power of such supercomputers for the creation of neuronal networks. Using an established benchmark, we divide the runtime of simulation code into the phase of network construction and the phase during which the dynamical state is advanced in time. We find that on multi-core compute nodes network creation scales well with process-parallel code but exhibits a prohibitively large memory consumption. Thread-parallel network creation, in contrast, exhibits speedup only up to a small number of threads but has little overhead in terms of memory. We further observe that the algorithms creating instances of model neurons and their connections scale well for networks of ten thousand neurons, but do not show the same speedup for networks of millions of neurons. Our work uncovers that the lack of scaling of thread-parallel network creation is due to inadequate memory allocation strategies and demonstrates that thread-optimized memory allocators recover excellent scaling. An analysis of the loop order used for network construction reveals that more complex tests on the locality of operations significantly improve scaling and reduce runtime by allowing construction algorithms to step through large networks more efficiently than in existing code. The combination of these techniques increases performance by an order of magnitude and harnesses the increasingly parallel compute power of the compute nodes in high-performance clusters and supercomputers.
Constructing Neuronal Network Models in Massively Parallel Environments
Ippen, Tammo; Eppler, Jochen M.; Plesser, Hans E.; Diesmann, Markus
2017-01-01
Recent advances in the development of data structures to represent spiking neuron network models enable us to exploit the complete memory of petascale computers for a single brain-scale network simulation. In this work, we investigate how well we can exploit the computing power of such supercomputers for the creation of neuronal networks. Using an established benchmark, we divide the runtime of simulation code into the phase of network construction and the phase during which the dynamical state is advanced in time. We find that on multi-core compute nodes network creation scales well with process-parallel code but exhibits a prohibitively large memory consumption. Thread-parallel network creation, in contrast, exhibits speedup only up to a small number of threads but has little overhead in terms of memory. We further observe that the algorithms creating instances of model neurons and their connections scale well for networks of ten thousand neurons, but do not show the same speedup for networks of millions of neurons. Our work uncovers that the lack of scaling of thread-parallel network creation is due to inadequate memory allocation strategies and demonstrates that thread-optimized memory allocators recover excellent scaling. An analysis of the loop order used for network construction reveals that more complex tests on the locality of operations significantly improve scaling and reduce runtime by allowing construction algorithms to step through large networks more efficiently than in existing code. The combination of these techniques increases performance by an order of magnitude and harnesses the increasingly parallel compute power of the compute nodes in high-performance clusters and supercomputers. PMID:28559808
High performance computing for advanced modeling and simulation of materials
NASA Astrophysics Data System (ADS)
Wang, Jue; Gao, Fei; Vazquez-Poletti, Jose Luis; Li, Jianjiang
2017-02-01
The First International Workshop on High Performance Computing for Advanced Modeling and Simulation of Materials (HPCMS2015) was held in Austin, Texas, USA, Nov. 18, 2015. HPCMS 2015 was organized by Computer Network Information Center (Chinese Academy of Sciences), University of Michigan, Universidad Complutense de Madrid, University of Science and Technology Beijing, Pittsburgh Supercomputing Center, China Institute of Atomic Energy, and Ames Laboratory.
Research in nonlinear structural and solid mechanics
NASA Technical Reports Server (NTRS)
Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)
1981-01-01
Recent and projected advances in applied mechanics, numerical analysis, computer hardware and engineering software, and their impact on modeling and solution techniques in nonlinear structural and solid mechanics are discussed. The fields covered are rapidly changing and are strongly impacted by current and projected advances in computer hardware. To foster effective development of the technology perceptions on computing systems and nonlinear analysis software systems are presented.
Computational toxicity in 21st century safety sciences (China ...
presentation at the Joint Meeting of Analytical Toxicology and Computational Toxicology Committee (Chinese Society of Toxicology) International Workshop on Advanced Chemical Safety Assessment Technologies on 11 May 2016, Fuzhou University, Fuzhou China presentation at the Joint Meeting of Analytical Toxicology and Computational Toxicology Committee (Chinese Society of Toxicology) International Workshop on Advanced Chemical Safety Assessment Technologies on 11 May 2016, Fuzhou University, Fuzhou China
Advanced display object selection methods for enhancing user-computer productivity
NASA Technical Reports Server (NTRS)
Osga, Glenn A.
1993-01-01
The User-Interface Technology Branch at NCCOSC RDT&E Division has been conducting a series of studies to address the suitability of commercial off-the-shelf (COTS) graphic user-interface (GUI) methods for efficiency and performance in critical naval combat systems. This paper presents an advanced selection algorithm and method developed to increase user performance when making selections on tactical displays. The method has also been applied with considerable success to a variety of cursor and pointing tasks. Typical GUI's allow user selection by: (1) moving a cursor with a pointing device such as a mouse, trackball, joystick, touchscreen; and (2) placing the cursor on the object. Examples of GUI objects are the buttons, icons, folders, scroll bars, etc. used in many personal computer and workstation applications. This paper presents an improved method of selection and the theoretical basis for the significant performance gains achieved with various input devices tested. The method is applicable to all GUI styles and display sizes, and is particularly useful for selections on small screens such as notebook computers. Considering the amount of work-hours spent pointing and clicking across all styles of available graphic user-interfaces, the cost/benefit in applying this method to graphic user-interfaces is substantial, with the potential for increasing productivity across thousands of users and applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Salvador B.
Smart grids are a crucial component for enabling the nation’s future energy needs, as part of a modernization effort led by the Department of Energy. Smart grids and smart microgrids are being considered in niche applications, and as part of a comprehensive energy strategy to help manage the nation’s growing energy demands, for critical infrastructures, military installations, small rural communities, and large populations with limited water supplies. As part of a far-reaching strategic initiative, Sandia National Laboratories (SNL) presents herein a unique, three-pronged approach to integrate small modular reactors (SMRs) into microgrids, with the goal of providing economically-competitive, reliable, andmore » secure energy to meet the nation’s needs. SNL’s triad methodology involves an innovative blend of smart microgrid technology, high performance computing (HPC), and advanced manufacturing (AM). In this report, Sandia’s current capabilities in those areas are summarized, as well as paths forward that will enable DOE to achieve its energy goals. In the area of smart grid/microgrid technology, Sandia’s current computational capabilities can model the entire grid, including temporal aspects and cyber security issues. Our tools include system development, integration, testing and evaluation, monitoring, and sustainment.« less
NASA Technical Reports Server (NTRS)
Hall, Edward J.; Delaney, Robert A.; Adamczyk, John J.; Miller, Christopher J.; Arnone, Andrea; Swanson, Charles
1993-01-01
The primary objective of this study was the development of a time-marching three-dimensional Euler/Navier-Stokes aerodynamic analysis to predict steady and unsteady compressible transonic flows about ducted and unducted propfan propulsion systems employing multiple blade rows. The computer codes resulting from this study are referred to as ADPAC-AOACR (Advanced Ducted Propfan Analysis Codes-Angle of Attack Coupled Row). This report is intended to serve as a computer program user's manual for the ADPAC-AOACR codes developed under Task 5 of NASA Contract NAS3-25270, Unsteady Counterrotating Ducted Propfan Analysis. The ADPAC-AOACR program is based on a flexible multiple blocked grid discretization scheme permitting coupled 2-D/3-D mesh block solutions with application to a wide variety of geometries. For convenience, several standard mesh block structures are described for turbomachinery applications. Aerodynamic calculations are based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. Steady flow predictions are accelerated by a multigrid procedure. Numerical calculations are compared with experimental data for several test cases to demonstrate the utility of this approach for predicting the aerodynamics of modern turbomachinery configurations employing multiple blade rows.