Science.gov

Sample records for advanced computer graphics

  1. Some Recent Advances in Computer Graphics.

    ERIC Educational Resources Information Center

    Whitted, Turner

    1982-01-01

    General principles of computer graphics are reviewed, including discussions of display hardware, geometric modeling, algorithms, and applications in science, computer-aided design, flight training, communications, business, art, and entertainment. (JN)

  2. Advanced computer graphic techniques for laser range finder (LRF) simulation

    NASA Astrophysics Data System (ADS)

    Bedkowski, Janusz; Jankowski, Stanislaw

    2008-11-01

    This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.

  3. Computer Graphics.

    ERIC Educational Resources Information Center

    Halpern, Jeanne W.

    1970-01-01

    Computer graphics have been called the most exciting development in computer technology. At the University of Michigan, three kinds of graphics output equipment are now being used: symbolic printers, line plotters or drafting devices, and cathode-ray tubes (CRT). Six examples are given that demonstrate the range of graphics use at the University.…

  4. Advanced Certification Program for Computer Graphic Specialists. Final Performance Report.

    ERIC Educational Resources Information Center

    Parkland Coll., Champaign, IL.

    A pioneer program in computer graphics was implemented at Parkland College (Illinois) to meet the demand for specialized technicians to visualize data generated on high performance computers. In summer 1989, 23 students were accepted into the pilot program. Courses included C programming, calculus and analytic geometry, computer graphics, and…

  5. Integrated Graphics Operations and Analysis Lab Development of Advanced Computer Graphics Algorithms

    NASA Technical Reports Server (NTRS)

    Wheaton, Ira M.

    2011-01-01

    The focus of this project is to aid the IGOAL in researching and implementing algorithms for advanced computer graphics. First, this project focused on porting the current International Space Station (ISS) Xbox experience to the web. Previously, the ISS interior fly-around education and outreach experience only ran on an Xbox 360. One of the desires was to take this experience and make it into something that can be put on NASA s educational site for anyone to be able to access. The current code works in the Unity game engine which does have cross platform capability but is not 100% compatible. The tasks for an intern to complete this portion consisted of gaining familiarity with Unity and the current ISS Xbox code, porting the Xbox code to the web as is, and modifying the code to work well as a web application. In addition, a procedurally generated cloud algorithm will be developed. Currently, the clouds used in AGEA animations and the Xbox experiences are a texture map. The desire is to create a procedurally generated cloud algorithm to provide dynamically generated clouds for both AGEA animations and the Xbox experiences. This task consists of gaining familiarity with AGEA and the plug-in interface, developing the algorithm, creating an AGEA plug-in to implement the algorithm inside AGEA, and creating a Unity script to implement the algorithm for the Xbox. This portion of the project was unable to be completed in the time frame of the internship; however, the IGOAL will continue to work on it in the future.

  6. Computer graphics and the graphic artist

    NASA Technical Reports Server (NTRS)

    Taylor, N. L.; Fedors, E. G.; Pinelli, T. E.

    1985-01-01

    A centralized computer graphics system is being developed at the NASA Langley Research Center. This system was required to satisfy multiuser needs, ranging from presentation quality graphics prepared by a graphic artist to 16-mm movie simulations generated by engineers and scientists. While the major thrust of the central graphics system was directed toward engineering and scientific applications, hardware and software capabilities to support the graphic artists were integrated into the design. This paper briefly discusses the importance of computer graphics in research; the central graphics system in terms of systems, software, and hardware requirements; the application of computer graphics to graphic arts, discussed in terms of the requirements for a graphic arts workstation; and the problems encountered in applying computer graphics to the graphic arts. The paper concludes by presenting the status of the central graphics system.

  7. How Computer Graphics Work.

    ERIC Educational Resources Information Center

    Prosise, Jeff

    This document presents the principles behind modern computer graphics without straying into the arcane languages of mathematics and computer science. Illustrations accompany the clear, step-by-step explanations that describe how computers draw pictures. The 22 chapters of the book are organized into 5 sections. "Part 1: Computer Graphics in…

  8. Interactive computer graphics

    NASA Astrophysics Data System (ADS)

    Purser, K.

    1980-08-01

    Design layouts have traditionally been done on a drafting board by drawing a two-dimensional representation with section cuts and side views to describe the exact three-dimensional model. With the advent of computer graphics, a three-dimensional model can be created directly. The computer stores the exact three-dimensional model, which can be examined from any angle and at any scale. A brief overview of interactive computer graphics, how models are made and some of the benefits/limitations are described.

  9. Space Spurred Computer Graphics

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Dicomed Corporation was asked by NASA in the early 1970s to develop processing capabilities for recording images sent from Mars by Viking spacecraft. The company produced a film recorder which increased the intensity levels and the capability for color recording. This development led to a strong technology base resulting in sophisticated computer graphics equipment. Dicomed systems are used to record CAD (computer aided design) and CAM (computer aided manufacturing) equipment, to update maps and produce computer generated animation.

  10. Computer Graphics Verification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Video processing creates technical animation sequences using studio quality equipment to realistically represent fluid flow over space shuttle surfaces, helicopter rotors, and turbine blades.Computer systems Co-op, Tim Weatherford, performing computer graphics verification. Part of Co-op brochure.

  11. Some research advances in computer graphics that will enhance applications to engineering design

    NASA Technical Reports Server (NTRS)

    Allan, J. J., III

    1975-01-01

    Research in man/machine interactions and graphics hardware/software that will enhance applications to engineering design was described. Research aspects of executive systems, command languages, and networking used in the computer applications laboratory are mentioned. Finally, a few areas where little or no research is being done were identified.

  12. Computing Graphical Confidence Bounds

    NASA Technical Reports Server (NTRS)

    Mezzacappa, M. A.

    1983-01-01

    Approximation for graphical confidence bounds is simple enough to run on programmable calculator. Approximation is used in lieu of numerical tables not always available, and exact calculations, which often require rather sizable computer resources. Approximation verified for collection of up to 50 data points. Method used to analyze tile-strength data on Space Shuttle thermal-protection system.

  13. Advances in Human-Computer Interaction: Graphics and Animation Components for Interface Design

    NASA Astrophysics Data System (ADS)

    Cipolla Ficarra, Francisco V.; Nicol, Emma; Cipolla-Ficarra, Miguel; Richardson, Lucy

    We present an analysis of communicability methodology in graphics and animation components for interface design, called CAN (Communicability, Acceptability and Novelty). This methodology has been under development between 2005 and 2010, obtaining excellent results in cultural heritage, education and microcomputing contexts. In studies where there is a bi-directional interrelation between ergonomics, usability, user-centered design, software quality and the human-computer interaction. We also present the heuristic results about iconography and layout design in blogs and websites of the following countries: Spain, Italy, Portugal and France.

  14. Career Opportunities in Computer Graphics.

    ERIC Educational Resources Information Center

    Langer, Victor

    1983-01-01

    Reviews the impact of computer graphics on industrial productivity. Details the computer graphics technician curriculum at Milwaukee Area Technical College and the cooperative efforts of business and industry to fund and equip the program. (SK)

  15. Computer graphics in aerodynamic analysis

    NASA Technical Reports Server (NTRS)

    Cozzolongo, J. V.

    1984-01-01

    The use of computer graphics and its application to aerodynamic analyses on a routine basis is outlined. The mathematical modelling of the aircraft geometries and the shading technique implemented are discussed. Examples of computer graphics used to display aerodynamic flow field data and aircraft geometries are shown. A future need in computer graphics for aerodynamic analyses is addressed.

  16. Development of computer graphics

    SciTech Connect

    Nuttall, H.E.

    1989-07-01

    The purpose of this project was to screen and evaluate three graphics packages as to their suitability for displaying concentration contour graphs. The information to be displayed is from computer code simulations describing air-born contaminant transport. The three evaluation programs were MONGO (John Tonry, MIT, Cambridge, MA, 02139), Mathematica (Wolfram Research Inc.), and NCSA Image (National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign). After a preliminary investigation of each package, NCSA Image appeared to be significantly superior for generating the desired concentration contour graphs. Hence subsequent work and this report describes the implementation and testing of NCSA Image on both an Apple MacII and Sun 4 computers. NCSA Image includes several utilities (Layout, DataScope, HDF, and PalEdit) which were used in this study and installed on Dr. Ted Yamada`s Mac II computer. Dr. Yamada provided two sets of air pollution plume data which were displayed using NCSA Image. Both sets were animated into a sequential expanding plume series.

  17. Oklahoma's Mobile Computer Graphics Laboratory.

    ERIC Educational Resources Information Center

    McClain, Gerald R.

    This Computer Graphics Laboratory houses an IBM 1130 computer, U.C.C. plotter, printer, card reader, two key punch machines, and seminar-type classroom furniture. A "General Drafting Graphics System" (GDGS) is used, based on repetitive use of basic coordinate and plot generating commands. The system is used by 12 institutions of higher education…

  18. Computer Graphics Evolution: A Survey.

    ERIC Educational Resources Information Center

    Gartel, Laurence M.

    1985-01-01

    The history of the field of computer graphics is discussed. In 1976 there were no institutions that offered any kind of study of computer graphics. Today electronic image-making is seen as a viable, legitimate art form, and courses are offered by many universities and colleges. (RM)

  19. Flowfield computer graphics

    NASA Technical Reports Server (NTRS)

    Desautel, Richard

    1993-01-01

    The objectives of this research include supporting the Aerothermodynamics Branch's research by developing graphical visualization tools for both the branch's adaptive grid code and flow field ray tracing code. The completed research for the reporting period includes development of a graphical user interface (GUI) and its implementation into the NAS Flowfield Analysis Software Tool kit (FAST), for both the adaptive grid code (SAGE) and the flow field ray tracing code (CISS).

  20. Calculators and Computers: Graphical Addition.

    ERIC Educational Resources Information Center

    Spero, Samuel W.

    1978-01-01

    A computer program is presented that generates problem sets involving sketching graphs of trigonometric functions using graphical addition. The students use calculators to sketch the graphs and a computer solution is used to check it. (MP)

  1. Computer Graphics and Physics Teaching.

    ERIC Educational Resources Information Center

    Bork, Alfred M.; Ballard, Richard

    New, more versatile and inexpensive terminals will make computer graphics more feasible in science instruction than before. This paper describes the use of graphics in physics teaching at the University of California at Irvine. Commands and software are detailed in established programs, which include a lunar landing simulation and a program which…

  2. TAIGA: Twente Advanced Interactive Graphic Authoring System. A New Concept in Computer Assisted Learning (CAL) and Educational Research. Doc 88-18.

    ERIC Educational Resources Information Center

    Pilot, A.

    TAIGA (Twente Advanced Interactive Graphic Authoring system) is a system which can be used to develop instructional software. It is written in MS-PASCAL, and runs on computers that support MS-DOS. Designed to support the production of structured software, TAIGA has a hierarchical structure of three layers, each with a specific function, and each…

  3. Interactive Computer Graphics

    NASA Technical Reports Server (NTRS)

    Kenwright, David

    2000-01-01

    Aerospace data analysis tools that significantly reduce the time and effort needed to analyze large-scale computational fluid dynamics simulations have emerged this year. The current approach for most postprocessing and visualization work is to explore the 3D flow simulations with one of a dozen or so interactive tools. While effective for analyzing small data sets, this approach becomes extremely time consuming when working with data sets larger than one gigabyte. An active area of research this year has been the development of data mining tools that automatically search through gigabyte data sets and extract the salient features with little or no human intervention. With these so-called feature extraction tools, engineers are spared the tedious task of manually exploring huge amounts of data to find the important flow phenomena. The software tools identify features such as vortex cores, shocks, separation and attachment lines, recirculation bubbles, and boundary layers. Some of these features can be extracted in a few seconds; others take minutes to hours on extremely large data sets. The analysis can be performed off-line in a batch process, either during or following the supercomputer simulations. These computations have to be performed only once, because the feature extraction programs search the entire data set and find every occurrence of the phenomena being sought. Because the important questions about the data are being answered automatically, interactivity is less critical than it is with traditional approaches.

  4. Revised adage graphics computer system

    NASA Technical Reports Server (NTRS)

    Tulppo, J. S.

    1980-01-01

    Bootstrap loader and mode-control options for Adage Graphics Computer System Significantly simplify operations procedures. Normal load and control functions are performed quickly and easily from control console. Operating characteristics of revised system include greatly increased speed, convenience, and reliability.

  5. Computer graphics techniques and computer-generated movies

    NASA Astrophysics Data System (ADS)

    Holzman, Robert E.; Blinn, James F.

    1988-04-01

    The JPL Computer Graphics Laboratory (CGL) has been using advanced computer graphics for more than ten years to simulate space missions and related activities. Applications have ranged from basic computer graphics used interactively to allow engineers to study problems, to sophisticated color graphics used to simulate missions and produce realistic animations and stills for use by NASA and the scientific press. In addition, the CGL did the computer animation for ``Cosmos'', a series of general science programs done for Public Television in the United States by Carl Sagan and shown world-wide. The CGL recently completed the computer animation for ``The Mechanical Universe'', a series of fifty-two half-hour elementary physics lectures, led by Professor David Goodstein of the California Institute of Technology, and now being shown on Public Television in the US. For this series, the CGL produced more than seven hours of computer animation, averaging approximately eight minutes and thirty seconds of computer animation per half-hour program. Our aim at the JPL Computer Graphics Laboratory (CGL) is the realistic depiction of physical phenomena, that is, we deal primarily in ``science education'' rather than in scientific research. Of course, our attempts to render physical events realistically often require the development of new capabilities through research or technology advances, but those advances are not our primary goal.

  6. Optical design using computer graphics.

    PubMed

    Howard, J M

    2001-07-01

    For decades the computer has been the primary tool used for optical design. Typical tasks include performing numerical calculations for ray tracing and analysis and rendering graphics for system drawings. As machines become faster with each new generation, the time needed for a particular design task has greatly reduced, allowing multiple assignments to be performed with little noticeable delay. This lets the designer modify a system and then immediately see the results rendered in graphics with a single motion. Such visual design methods are discussed here, where graphics of systems and plots relating to their performance are produced in real time, permitting the optical designer to design by pictures. Three examples are given: an educational tutorial for designing a simple microscope objective, an unobstructed reflective telescope composed of three spherical mirrors, and a modified Offner relay with an accessible pupil. PMID:11958264

  7. Computer Graphics for Multimedia and Hypermedia Development.

    ERIC Educational Resources Information Center

    Mohler, James L.

    1998-01-01

    Discusses several theoretical and technical aspects of computer-graphics development that are useful for creating hypermedia and multimedia materials. Topics addressed include primary bitmap attributes in computer graphics, the jigsaw principle, and raster layering. (MSE)

  8. Computer Graphics and Administrative Decision-Making.

    ERIC Educational Resources Information Center

    Yost, Michael

    1984-01-01

    Reduction in prices now makes it possible for almost any institution to use computer graphics for administrative decision making and research. Current and potential uses of computer graphics in these two areas are discussed. (JN)

  9. Collection Of Software For Computer Graphics

    NASA Technical Reports Server (NTRS)

    Hibbard, Eric A.; Makatura, George

    1990-01-01

    Ames Research Graphics System (ARCGRAPH) collection of software libraries and software utilities assisting researchers in generating, manipulating, and visualizing graphical data. Defines metafile format containing device-independent graphical data. File format used with various computer-graphics-manipulation and -animation software packages at Ames, including SURF (COSMIC Program ARC-12381) and GAS (COSMIC Program ARC-12379). Consists of two-stage "pipeline" used to put out graphical primitives. ARCGRAPH libraries developed on VAX computer running VMS.

  10. Educational Concepts of Computer Graphics in the Classroom.

    ERIC Educational Resources Information Center

    Smith, Alan D.

    There are increasing numbers of commercially available computer graphics packages, both in terms of hardware and software, that can be utilized by instructors, practitioners, and students of education. With the proliferation of low-cost graphic terminals, time-sharing capabilities, and recent advances in mini- and microcomputers, computer graphics…

  11. General aviation design synthesis utilizing interactive computer graphics

    NASA Technical Reports Server (NTRS)

    Galloway, T. L.; Smith, M. R.

    1976-01-01

    Interactive computer graphics is a fast growing area of computer application, due to such factors as substantial cost reductions in hardware, general availability of software, and expanded data communication networks. In addition to allowing faster and more meaningful input/output, computer graphics permits the use of data in graphic form to carry out parametric studies for configuration selection and for assessing the impact of advanced technologies on general aviation designs. The incorporation of interactive computer graphics into a NASA developed general aviation synthesis program is described, and the potential uses of the synthesis program in preliminary design are demonstrated.

  12. Is There Computer Graphics after Multimedia?

    ERIC Educational Resources Information Center

    Booth, Kellogg S.

    Computer graphics has been driven by the desire to generate real-time imagery subject to constraints imposed by the human visual system. The future of computer graphics, when off-the-shelf systems have full multimedia capability and when standard computing engines render imagery faster than real-time, remains to be seen. A dedicated pipeline for…

  13. Interactive graphical computer-aided design system

    NASA Technical Reports Server (NTRS)

    Edge, T. M.

    1975-01-01

    System is used for design, layout, and modification of large-scale-integrated (LSI) metal-oxide semiconductor (MOS) arrays. System is structured around small computer which provides real-time support for graphics storage display unit with keyboard, slave display unit, hard copy unit, and graphics tablet for designer/computer interface.

  14. 2005 DOE Computer Graphics Forum Site Survey

    SciTech Connect

    Rebecca, S; Eric, B

    2005-04-15

    The Information Management and Graphics Group supports and develops tools that enhance our ability to access, display, and understand large, complex data sets. Activities include developing visualization software for terascale data exploration; running two video production labs; supporting graphics libraries and tools for end users; maintaining four PowerWalls and assorted other advanced displays; and providing integrated tools for searching, organizing, and browsing scientific data. The Data group supports Defense and Nuclear technologies (D&NT) Directorate. The group's visualization team has developed and maintains two visualization tools: MeshTV and VisIt. These are interactive graphical analysis tools for visualizing and analyzing data on two- and three-dimensional meshes. They also provide movie production support. Researchers in the Center for Applied Scientific Computing (CASC) work on various projects including the development of visualization and data mining techniques for terascale data exploration that are funded by ASC. The researchers also have LDRD projects and collaborations with other lab researchers, academia, and industry.

  15. Applications of computer graphics to aircraft synthesis

    NASA Technical Reports Server (NTRS)

    Carmichael, R. L.; Putnam, R.

    1975-01-01

    The history of the development of an aircraft configuration synthesis program using interactive computer graphics was described. A system based on time-sharing was compared to two different concepts based on distributed computing.

  16. Getting the picture through computer graphics

    NASA Technical Reports Server (NTRS)

    Gregory, T. J.; Carmichael, R. L.

    1983-01-01

    The benefits of computer graphics in design are discussed, with particular reference to aerospace applications. The evolution of computer graphics is illustrated by the following examples: solid lines representing the edges of solid geometric parts; graphics with colored lines providing better descriptions of a variety of objects, such as circuit boards, maps, and complete aircraft; graphics with colored surfaces mapping such information as heating rates and pressures on aircraft; and color mapping combined with shading. Finally, examples are given of complex flow fields and scenes showing many objects that are displayed dynamically, with transparency used to clarify these scenes.

  17. Astronomy Simulation with Computer Graphics.

    ERIC Educational Resources Information Center

    Thomas, William E.

    1982-01-01

    "Planetary Motion Simulations" is a system of programs designed for students to observe motions of a superior planet (one whose orbit lies outside the orbit of the earth). Programs run on the Apple II microcomputer and employ high-resolution graphics to present the motions of Saturn. (Author/JN)

  18. Light reflection models for computer graphics.

    PubMed

    Greenberg, D P

    1989-04-14

    During the past 20 years, computer graphic techniques for simulating the reflection of light have progressed so that today images of photorealistic quality can be produced. Early algorithms considered direct lighting only, but global illumination phenomena with indirect lighting, surface interreflections, and shadows can now be modeled with ray tracing, radiosity, and Monte Carlo simulations. This article describes the historical development of computer graphic algorithms for light reflection and pictorially illustrates what will be commonly available in the near future. PMID:17835348

  19. Key Issues in Instructional Computer Graphics.

    ERIC Educational Resources Information Center

    Wozny, Michael J.

    1981-01-01

    Addresses key issues facing universities which plan to establish instructional computer graphics facilities, including computer-aided design/computer aided manufacturing systems, role in curriculum, hardware, software, writing instructional software, faculty involvement, operations, and research. Thirty-seven references and two appendices are…

  20. Advanced computing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Advanced concepts in hardware, software and algorithms are being pursued for application in next generation space computers and for ground based analysis of space data. The research program focuses on massively parallel computation and neural networks, as well as optical processing and optical networking which are discussed under photonics. Also included are theoretical programs in neural and nonlinear science, and device development for magnetic and ferroelectric memories.

  1. Graphics supercomputer for computational fluid dynamics research

    NASA Astrophysics Data System (ADS)

    Liaw, Goang S.

    1994-11-01

    The objective of this project is to purchase a state-of-the-art graphics supercomputer to improve the Computational Fluid Dynamics (CFD) research capability at Alabama A & M University (AAMU) and to support the Air Force research projects. A cutting-edge graphics supercomputer system, Onyx VTX, from Silicon Graphics Computer Systems (SGI), was purchased and installed. Other equipment including a desktop personal computer, PC-486 DX2 with a built-in 10-BaseT Ethernet card, a 10-BaseT hub, an Apple Laser Printer Select 360, and a notebook computer from Zenith were also purchased. A reading room has been converted to a research computer lab by adding some furniture and an air conditioning unit in order to provide an appropriate working environments for researchers and the purchase equipment. All the purchased equipment were successfully installed and are fully functional. Several research projects, including two existing Air Force projects, are being performed using these facilities.

  2. Interactive computer graphics - Why's, wherefore's and examples

    NASA Technical Reports Server (NTRS)

    Gregory, T. J.; Carmichael, R. L.

    1983-01-01

    The benefits of using computer graphics in design are briefly reviewed. It is shown that computer graphics substantially aids productivity by permitting errors in design to be found immediately and by greatly reducing the cost of fixing the errors and the cost of redoing the process. The possibilities offered by computer-generated displays in terms of information content are emphasized, along with the form in which the information is transferred. The human being is ideally and naturally suited to dealing with information in picture format, and the content rate in communication with pictures is several orders of magnitude greater than with words or even graphs. Since science and engineering involve communicating ideas, concepts, and information, the benefits of computer graphics cannot be overestimated.

  3. Computer graphics aid mission operations. [NASA missions

    NASA Technical Reports Server (NTRS)

    Jeletic, James F.

    1990-01-01

    The application of computer graphics techniques in NASA space missions is reviewed. Telemetric monitoring of the Space Shuttle and its components is discussed, noting the use of computer graphics for real-time visualization problems in the retrieval and repair of the Solar Maximum Mission. The use of the world map display for determining a spacecraft's location above the earth and the problem of verifying the relative position and orientation of spacecraft to celestial bodies are examined. The Flight Dynamics/STS Three-dimensional Monitoring System and the Trajectroy Computations and Orbital Products System world map display are described, emphasizing Space Shuttle applications. Also, consideration is given to the development of monitoring systems such as the Shuttle Payloads Mission Monitoring System and the Attitude Heads-Up Display and the use of the NASA-Goddard Two-dimensional Graphics Monitoring System during Shuttle missions and to support the Hubble Space Telescope.

  4. Interactive computer graphics applications for compressible aerodynamics

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1994-01-01

    Three computer applications have been developed to solve inviscid compressible fluids problems using interactive computer graphics. The first application is a compressible flow calculator which solves for isentropic flow, normal shocks, and oblique shocks or centered expansions produced by two dimensional ramps. The second application couples the solutions generated by the first application to a more graphical presentation of the results to produce a desk top simulator of three compressible flow problems: 1) flow past a single compression ramp; 2) flow past two ramps in series; and 3) flow past two opposed ramps. The third application extends the results of the second to produce a design tool which solves for the flow through supersonic external or mixed compression inlets. The applications were originally developed to run on SGI or IBM workstations running GL graphics. They are currently being extended to solve additional types of flow problems and modified to operate on any X-based workstation.

  5. General-Purpose Software For Computer Graphics

    NASA Technical Reports Server (NTRS)

    Rogers, Joseph E.

    1992-01-01

    NASA Device Independent Graphics Library (NASADIG) is general-purpose computer-graphics package for computer-based engineering and management applications which gives opportunity to translate data into effective graphical displays for presentation. Features include two- and three-dimensional plotting, spline and polynomial interpolation, control of blanking of areas, multiple log and/or linear axes, control of legends and text, control of thicknesses of curves, and multiple text fonts. Included are subroutines for definition of areas and axes of plots; setup and display of text; blanking of areas; setup of style, interpolation, and plotting of lines; control of patterns and of shading of colors; control of legends, blocks of text, and characters; initialization of devices; and setting of mixed alphabets. Written in FORTRAN 77.

  6. Computer Graphics Instruction in VizClass

    ERIC Educational Resources Information Center

    Grimes, Douglas; Warschauer, Mark; Hutchinson, Tara; Kuester, Falko

    2005-01-01

    "VizClass" is a university classroom environment designed to offer students in computer graphics and engineering courses up-to-date visualization technologies. Three digital whiteboards and a three-dimensional stereoscopic display provide complementary display surfaces. Input devices include touchscreens on the digital whiteboards, remote…

  7. Applications of Computer Graphics in Engineering

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Various applications of interactive computer graphics to the following areas of science and engineering were described: design and analysis of structures, configuration geometry, animation, flutter analysis, design and manufacturing, aircraft design and integration, wind tunnel data analysis, architecture and construction, flight simulation, hydrodynamics, curve and surface fitting, gas turbine engine design, analysis, and manufacturing, packaging of printed circuit boards, spacecraft design.

  8. Constructivist Design of Graphic Computer Simulations.

    ERIC Educational Resources Information Center

    Black, John B.; And Others

    Two graphic computer simulations have been prepared for teaching high school and middle school students about how business organizations and financial systems work: "Parkside," which simulates managing a hotel; and "Guestwear," which simulates managing a clothing manufacturer. Both simulations are based on six principles of constructivist design…

  9. Computer graphics in architecture and engineering

    NASA Technical Reports Server (NTRS)

    Greenberg, D. P.

    1975-01-01

    The present status of the application of computer graphics to the building profession or architecture and its relationship to other scientific and technical areas were discussed. It was explained that, due to the fragmented nature of architecture and building activities (in contrast to the aerospace industry), a comprehensive, economic utilization of computer graphics in this area is not practical and its true potential cannot now be realized due to the present inability of architects and structural, mechanical, and site engineers to rely on a common data base. Future emphasis will therefore have to be placed on a vertical integration of the construction process and effective use of a three-dimensional data base, rather than on waiting for any technological breakthrough in interactive computing.

  10. Global trajectory targeting via computer graphics

    NASA Technical Reports Server (NTRS)

    Mann, F. I.

    1971-01-01

    A technique is described in which the two-point boundary value problem (TPBVP) may be solved with the aid of interactive computer graphics. The particular TPBVP considered is the optimal electric propulsion space trajectory problem. An appropriate two-dimensional projection of the TPBVP mapping, or trajectory, is displayed on the computer's television screen, and a man-in-the-loop varies selected trajectory starting conditions in the fashion of a nonlinear walk until the viewed trajectory endpoint lies near a displayed target. Once global targeting is accomplished in this manner, program internal logic can easily handle local targeting to strongly solve the TPBVP.

  11. Computer graphics applications to crew displays

    NASA Technical Reports Server (NTRS)

    Wyzkoski, J.

    1983-01-01

    Astronauts are provided much data and information via the monochrome CRT displays on the orbiter. For this project two areas were investigated for the possible introduction of computer graphics to enhance and extend the utility of these displays. One involved reviewing the current orbiter displays and identifying those which could be improved via computer graphics. As an example, the tabular data on electrical power distribution and control was enhanced by the addition of color and bar charts. The other dealt with the development of an aid to berthing a payload with the Remote Manipulator System (RMS). This aid consists of a graphics display of the top, front and side views of the payload and cargo bay and point of resolution (POR) position and attitude data for the current location of the payload. The initial implementation was on an IBM PC clone. The demonstration software installed in the Johnson Space Center Manipulator Development Facility (MD) was reviewed. Due to current hardware limitations, the MDF verision is slow, i.e., about a 40+ seond update rate and, hence, not real-time. Despite this fact, the evaluation of this additional visual cue as an RMS operator aid indicates that this display, with modifications for speed, etc., can assist the crew. Further development is appropriate.

  12. Graphics Programs for the DEC VAX Computer

    NASA Technical Reports Server (NTRS)

    Long, D.

    1986-01-01

    Variety of plots available in video or printed form. LONGLIB library of computer programs set of subroutines designed for vector plotting on cathode-ray tubes and dot-matrix printers. LONGLIB subroutines invoked by program calls similar to standard CALCOMP routines. In addition to basic plotting routines, LONGLIB contains extensive set of routines to allow viewport clipping, extended character sets, graphic input, gray-level plots, polar plots, and three-dimensional plotting with or without removal of hidden lines. LONGLIB written in FORTRAN 77 and C for batch execution.

  13. When Do Computer Graphics Contribute to Early Literacy Learning?

    ERIC Educational Resources Information Center

    Wepner, Shelley B.; Cotter, Michelle

    2002-01-01

    Notes that new literacies use computer graphics to tell a story, demonstrate a theory, or support a definition. Offers a functionality framework for assessing the value of computer graphics for early literacy learning. Provides ideas for determining the value of CD-ROM software and websites. Concludes that graphics that give text meaning or…

  14. Graphics processing unit acceleration of computational electromagnetic methods

    NASA Astrophysics Data System (ADS)

    Inman, Matthew

    The use of Graphical Processing Units (GPU's) for scientific applications has been evolving and expanding for the decade. GPU's provide an alternative to the CPU in the creation and execution of the numerical codes that are often relied upon in to perform simulations in computational electromagnetics. While originally designed purely to display graphics on the users monitor, GPU's today are essentially powerful floating point co-processors that can be programmed not only to render complex graphics, but also perform the complex mathematical calculations often encountered in scientific computing. Currently the GPU's being produced often contain hundreds of separate cores able to access large amounts of high-speed dedicated memory. By utilizing the power offered by such a specialized processor, it is possible to drastically speed up the calculations required in computational electromagnetics. This increase in speed allows for the use of GPU based simulations in a variety of situations that the computational time has heretofore been a limiting factor in, such as in educational courses. Many situations in teaching electromagnetics often rely upon simple examples of problems due to the simulation times needed to analyze more complex problems. The use of GPU based simulations will be shown to allow demonstrations of more advanced problems than previously allowed by adapting the methods for use on the GPU. Modules will be developed for a wide variety of teaching situations utilizing the speed of the GPU to demonstrate various techniques and ideas previously unrealizable.

  15. Wide-angle display developments by computer graphics

    NASA Technical Reports Server (NTRS)

    Fetter, William A.

    1989-01-01

    Computer graphics can now expand its new subset, wide-angle projection, to be as significant a generic capability as computer graphics itself. Some prior work in computer graphics is presented which leads to an attractive further subset of wide-angle projection, called hemispheric projection, to be a major communication media. Hemispheric film systems have long been present and such computer graphics systems are in use in simulators. This is the leading edge of capabilities which should ultimately be as ubiquitous as CRTs (cathode-ray tubes). These assertions are not from degrees in science or only from a degree in graphic design, but in a history of computer graphics innovations, laying groundwork by demonstration. The author believes that it is timely to look at several development strategies, since hemispheric projection is now at a point comparable to the early stages of computer graphics, requiring similar patterns of development again.

  16. Exploiting graphics processing units for computational biology and bioinformatics.

    PubMed

    Payne, Joshua L; Sinnott-Armstrong, Nicholas A; Moore, Jason H

    2010-09-01

    Advances in the video gaming industry have led to the production of low-cost, high-performance graphics processing units (GPUs) that possess more memory bandwidth and computational capability than central processing units (CPUs), the standard workhorses of scientific computing. With the recent release of generalpurpose GPUs and NVIDIA's GPU programming language, CUDA, graphics engines are being adopted widely in scientific computing applications, particularly in the fields of computational biology and bioinformatics. The goal of this article is to concisely present an introduction to GPU hardware and programming, aimed at the computational biologist or bioinformaticist. To this end, we discuss the primary differences between GPU and CPU architecture, introduce the basics of the CUDA programming language, and discuss important CUDA programming practices, such as the proper use of coalesced reads, data types, and memory hierarchies. We highlight each of these topics in the context of computing the all-pairs distance between instances in a dataset, a common procedure in numerous disciplines of scientific computing. We conclude with a runtime analysis of the GPU and CPU implementations of the all-pairs distance calculation. We show our final GPU implementation to outperform the CPU implementation by a factor of 1700. PMID:20658333

  17. SPACEBAR: Kinematic design by computer graphics

    NASA Technical Reports Server (NTRS)

    Ricci, R. J.

    1975-01-01

    The interactive graphics computer program SPACEBAR, conceived to reduce the time and complexity associated with the development of kinematic mechanisms on the design board, was described. This program allows the direct design and analysis of mechanisms right at the terminal screen. All input variables, including linkage geometry, stiffness, and applied loading conditions, can be fed into or changed at the terminal and may be displayed in three dimensions. All mechanism configurations can be cycled through their range of travel and viewed in their various geometric positions. Output data includes geometric positioning in orthogonal coordinates of each node point in the mechanism, velocity and acceleration of the node points, and internal loads and displacements of the node points and linkages. All analysis calculations take at most a few seconds to complete. Output data can be viewed at the scope and also printed at the discretion of the user.

  18. CAD-based graphical computer simulation in endoscopic surgery.

    PubMed

    Kuehnapfel, U G; Neisius, B

    1993-06-01

    This article presents new techniques for three-dimensional, kinematic realtime simulation of dextrous endoscopic instruments. The integrated simulation package KISMET is used for engineering design verification and evaluation. Geometric and kinematic computer models of the mechanisms and the laparoscopic workspace were created. Using the advanced capabilities of high-performance graphical workstations combined with state-of-the-art simulation software, it is possible to generate displays of the surgical instruments acting realistically on the organs of the digestive system. The organ geometry is modelled in a high degree of detail. Apart from discussing the use of KISMET for the development of MFM-II (Modular Flexible MIS Instrument, Release II), the paper indicates further applications of realtime 3D graphical simulation methods in endoscopic surgery. PMID:8055320

  19. Decluttering Methods for Computer-Generated Graphic Displays

    NASA Technical Reports Server (NTRS)

    Schultz, E. Eugene, Jr.

    1986-01-01

    Symbol simplification and contrasting enhance viewer's ability to detect particular symbol. Report describes experiments designed to indicate how various decluttering methods affect viewer's abilities to distinguish essential from nonessential features on computer-generated graphic displays. Results indicate partial removal of nonessential graphic features through symbol simplification effective in decluttering as total removal of nonessential graphic features.

  20. Graphical and Normative Analysis of Binocular Vision by Mini Computer: A Teaching Aid and Clinical Tool.

    ERIC Educational Resources Information Center

    Kees, Martin; Schor, Clifton

    1981-01-01

    An inexpensive computer graphics systems (Commodore PET), used as a video aid for teaching students advanced case analysis, is described. The course provides students with the analytical tools for evaluating with graphical and statistical techniques and treating with lenses, prisms, and orthoptics various anomalies of binocular vision. (MLW)

  1. Managing facts and concepts: computer graphics and information graphics from a graphic designer's perspective

    SciTech Connect

    Marcus, A.

    1983-01-01

    This book emphasizes the importance of graphic design for an information-oriented society. In an environment in which many new graphic communication technologies are emerging, it raises some issues which graphic designers and managers of graphic design production should consider in using the new technology effectively. In its final sections, it gives an example of the steps taken in designing a visual narrative as a prototype for responsible information-oriented graphic design. The management of complex facts and concepts, of complex systems of ideas and issues, presented in a visual as well as verbal narrative or dialogue and conveyed through new technology will challenge the graphic design community in the coming decades. This shift to visual-verbal communication has repercussions in the educational system and the political/governance systems that go beyond the scope of this book. If there is a single goal for this book, it is to stimulate the reader and then to provide references that will help you learn more about graphic design in an era of communication when know business is show business.

  2. Computer graphics application in the engineering design integration system

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Abel, R. W.; Hirsch, G. N.; Alford, G. E.; Colquitt, W. N.; Stewart, W. A.

    1975-01-01

    The computer graphics aspect of the Engineering Design Integration (EDIN) system and its application to design problems were discussed. Three basic types of computer graphics may be used with the EDIN system for the evaluation of aerospace vehicles preliminary designs: offline graphics systems using vellum-inking or photographic processes, online graphics systems characterized by direct coupled low cost storage tube terminals with limited interactive capabilities, and a minicomputer based refresh terminal offering highly interactive capabilities. The offline line systems are characterized by high quality (resolution better than 0.254 mm) and slow turnaround (one to four days). The online systems are characterized by low cost, instant visualization of the computer results, slow line speed (300 BAUD), poor hard copy, and the early limitations on vector graphic input capabilities. The recent acquisition of the Adage 330 Graphic Display system has greatly enhanced the potential for interactive computer aided design.

  3. Combining high performance simulation, data acquisition, and graphics display computers

    NASA Technical Reports Server (NTRS)

    Hickman, Robert J.

    1989-01-01

    Issues involved in the continuing development of an advanced simulation complex are discussed. This approach provides the capability to perform the majority of tests on advanced systems, non-destructively. The controlled test environments can be replicated to examine the response of the systems under test to alternative treatments of the system control design, or test the function and qualification of specific hardware. Field tests verify that the elements simulated in the laboratories are sufficient. The digital computer is hosted by a Digital Equipment Corp. MicroVAX computer with an Aptec Computer Systems Model 24 I/O computer performing the communication function. An Applied Dynamics International AD100 performs the high speed simulation computing and an Evans and Sutherland PS350 performs on-line graphics display. A Scientific Computer Systems SCS40 acts as a high performance FORTRAN program processor to support the complex, by generating numerous large files from programs coded in FORTRAN that are required for the real time processing. Four programming languages are involved in the process, FORTRAN, ADSIM, ADRIO, and STAPLE. FORTRAN is employed on the MicroVAX host to initialize and terminate the simulation runs on the system. The generation of the data files on the SCS40 also is performed with FORTRAN programs. ADSIM and ADIRO are used to program the processing elements of the AD100 and its IOCP processor. STAPLE is used to program the Aptec DIP and DIA processors.

  4. Computer Graphics for Student Engagement in Science Learning.

    ERIC Educational Resources Information Center

    Cifuentes, Lauren; Hsieh, Yi-Chuan Jane

    2001-01-01

    Discusses student use of computer graphics software and presents documentation from a visualization workshop designed to help learners use computer graphics to construct meaning while they studied science concepts. Describes problems and benefits when delivering visualization workshops in the natural setting of a middle school. (Author/LRW)

  5. Computer Graphics by Students for Students: Enhancing Science Education.

    ERIC Educational Resources Information Center

    Brillhart, L. V.; Bell, Eric

    1983-01-01

    Computer graphics was selected as the means of teaching students to use the computer as a tool to enhance their comprehension of scientific and technical principles. Discusses strategies used and provides examples of student-generated graphics in mathematics, chemistry, physics, and engineering mechanics. (JN)

  6. Computation and graphics in mathematical research

    SciTech Connect

    Hoffman, D.A.; Spruck, J.

    1992-08-13

    This report discusses: The description of the GANG Project and results for prior research; the center for geometry, analysis, numerics and graphics; description of GANG Laboratory; software development at GANG; and mathematical and scientific research activities.

  7. For Drafting Programs--Computer Graphics in Industrial Tech.

    ERIC Educational Resources Information Center

    Sutliff, Ron

    1980-01-01

    Posits that computer-aided drafting and design should be introduced to students in industrial technology programs. Discusses ways the technical educator can get involved in computer graphics to familiarize students with it without a large outlay of money. (JOW)

  8. X-33 Landing - Computer generated graphic

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This 46-second clip has the X-33 aircraft on final approach to Michael AAF in Utah, then with its landing gear down, it flares for touchdown and brakes to a halt. This graphic like the three before it shows an early configuration without vertical stabilizers, which have since been added.

  9. Distributed computation of graphics primitives on a transputer network

    NASA Technical Reports Server (NTRS)

    Ellis, Graham K.

    1988-01-01

    A method is developed for distributing the computation of graphics primitives on a parallel processing network. Off-the-shelf transputer boards are used to perform the graphics transformations and scan-conversion tasks that would normally be assigned to a single transputer based display processor. Each node in the network performs a single graphics primitive computation. Frequently requested tasks can be duplicated on several nodes. The results indicate that the current distribution of commands on the graphics network shows a performance degradation when compared to the graphics display board alone. A change to more computation per node for every communication (perform more complex tasks on each node) may cause the desired increase in throughput.

  10. Trends in Continuity and Interpolation for Computer Graphics.

    PubMed

    Gonzalez Garcia, Francisco

    2015-01-01

    In every computer graphics oriented application today, it is a common practice to texture 3D models as a way to obtain realistic material. As part of this process, mesh texturing, deformation, and visualization are all key parts of the computer graphics field. This PhD dissertation was completed in the context of these three important and related fields in computer graphics. The article presents techniques that improve on existing state-of-the-art approaches related to continuity and interpolation in texture space (texturing), object space (deformation), and screen space (rendering). PMID:26594958

  11. Learning with Interactive Computer Graphics in the Undergraduate Neuroscience Classroom

    ERIC Educational Resources Information Center

    Pani, John R.; Chariker, Julia H.; Naaz, Farah; Mattingly, William; Roberts, Joshua; Sephton, Sandra E.

    2014-01-01

    Instruction of neuroanatomy depends on graphical representation and extended self-study. As a consequence, computer-based learning environments that incorporate interactive graphics should facilitate instruction in this area. The present study evaluated such a system in the undergraduate neuroscience classroom. The system used the method of…

  12. Computer-Graphics Emulation of Chemical Instrumentation: Absorption Spectrophotometers.

    ERIC Educational Resources Information Center

    Gilbert, D. D.; And Others

    1982-01-01

    Describes interactive, computer-graphics program emulating behavior of high resolution, ultraviolet-visible analog recording spectrophotometer. Graphics terminal behaves as recording absorption spectrophotometer. Objective of the emulation is study of optimization of the instrument to yield accurate absorption spectra, including…

  13. Computer Graphics Symposium, Phoenix, AZ, April 24, 1982, Proceedings

    NASA Astrophysics Data System (ADS)

    1982-04-01

    The hardware, programming, applications, and effectiveness of computer-aided design (CAD), computer-aided manufacturing (CAM), and computer-aided engineering (CAE) were examined. Basic concepts and options for graphics software were considered, along with display functions and languages, particularly extensions to BASIC. Attention was given to human factors in designing computer graphics systems, and trade-offs in designing a graphics display were explored. Real-time applications which were detailed included aerial combat simulation in the Air Force and data system displays in nuclear power plants, and the integration of CAM geometric systems and the design of CAD/CAM circuit boards were reviewed. Finally, analyses were presented on the role of computer graphics in geographical research and finite element analysis.

  14. Graphics simulation and training aids for advanced teleoperation

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Schenker, Paul S.; Bejczy, Antal K.

    1993-01-01

    Graphics displays can be of significant aid in accomplishing a teleoperation task throughout all three phases of off-line task analysis and planning, operator training, and online operation. In the first phase, graphics displays provide substantial aid to investigate work cell layout, motion planning with collision detection and with possible redundancy resolution, and planning for camera views. In the second phase, graphics displays can serve as very useful tools for introductory training of operators before training them on actual hardware. In the third phase, graphics displays can be used for previewing planned motions and monitoring actual motions in any desired viewing angle, or, when communication time delay prevails, for providing predictive graphics overlay on the actual camera view of the remote site to show the non-time-delayed consequences of commanded motions in real time. This paper addresses potential space applications of graphics displays in all three operational phases of advanced teleoperation. Possible applications are illustrated with techniques developed and demonstrated in the Advanced Teleoperation Laboratory at JPL. The examples described include task analysis and planning of a simulated Solar Maximum Satellite Repair task, a novel force-reflecting teleoperation simulator for operator training, and preview and predictive displays for on-line operations.

  15. Operational computer graphics in the flight dynamics environment

    NASA Technical Reports Server (NTRS)

    Jeletic, James F.

    1989-01-01

    Over the past five years, the Flight Dynamics Division of the National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center has incorporated computer graphics technology into its operational environment. In an attempt to increase the effectiveness and productivity of the Division, computer graphics software systems have been developed that display spacecraft tracking and telemetry data in 2-d and 3-d graphic formats that are more comprehensible than the alphanumeric tables of the past. These systems vary in functionality from real-time mission monitoring system, to mission planning utilities, to system development tools. Here, the capabilities and architecture of these systems are discussed.

  16. The development of an engineering computer graphics laboratory

    NASA Technical Reports Server (NTRS)

    Anderson, D. C.; Garrett, R. E.

    1975-01-01

    Hardware and software systems developed to further research and education in interactive computer graphics were described, as well as several of the ongoing application-oriented projects, educational graphics programs, and graduate research projects. The software system consists of a FORTRAN 4 subroutine package, in conjunction with a PDP 11/40 minicomputer as the primary computation processor and the Imlac PDS-1 as an intelligent display processor. The package comprises a comprehensive set of graphics routines for dynamic, structured two-dimensional display manipulation, and numerous routines to handle a variety of input devices at the Imlac.

  17. Computation and graphics in mathematical research

    SciTech Connect

    Hoffman, D.A.; Spruck, J.

    1993-06-01

    Current research is described on: grain boundaries and dislocations in compound polymers, boundary value problems for hypersurfaces constant Gaussian curvature, and discrete computational geometry. 19 refs, 4 figs.

  18. Using Computer Graphics in the 90's.

    ERIC Educational Resources Information Center

    Towne, Violet A.

    Computer-Aided Design, a hands-on program for public school teachers, was first offered in the summer of 1987 as an outgrowth of a 1986 robotics training program. Area technology teachers needed computer-aided design (CAD) training because of a New York State Education system transition from the industrial arts curriculum to a new curriculum in…

  19. Computer Graphics: More Help for Chemists

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1976

    1976-01-01

    Describes computer programs and projects designed to assist the chemical researcher in solving problems on-line. Discusses programs that interpret molecular structures, analyze multivariant data, and generate structural isomers of compounds. (MLH)

  20. Integration of rocket turbine design and analysis through computer graphics

    NASA Technical Reports Server (NTRS)

    Hsu, Wayne; Boynton, Jim

    1988-01-01

    An interactive approach with engineering computer graphics is used to integrate the design and analysis processes of a rocket engine turbine into a progressive and iterative design procedure. The processes are interconnected through pre- and postprocessors. The graphics are used to generate the blade profiles, their stacking, finite element generation, and analysis presentation through color graphics. Steps of the design process discussed include pitch-line design, axisymmetric hub-to-tip meridional design, and quasi-three-dimensional analysis. The viscous two- and three-dimensional analysis codes are executed after acceptable designs are achieved and estimates of initial losses are confirmed.

  1. Retrospective Study on Mathematical Modeling Based on Computer Graphic Processing

    NASA Astrophysics Data System (ADS)

    Zhang, Kai Li

    Graphics & image making is an important field in computer application, in which visualization software has been widely used with the characteristics of convenience and quick. However, it was thought by modeling designers that the software had been limited in it's function and flexibility because mathematics modeling platform was not built. A non-visualization graphics software appearing at this moment enabled the graphics & image design has a very good mathematics modeling platform. In the paper, a polished pyramid is established by multivariate spline function algorithm, and validate the non-visualization software is good in mathematical modeling.

  2. Computer Generated Graphics in Television Advertising.

    ERIC Educational Resources Information Center

    Ulloth, Dana

    An organization that has led the way in opening new frontiers in using advanced technology to create innovative commercials is Charlex, a New York-based company in business since 1977. Charlex has produced music videos, and also commercials for Diet Pepsi, Cherry Coke, Crest Toothpaste, and White Mountain Cooler. It has used a wide range of…

  3. Graphics and Flow Visualization of Computer Generated Flow Fields

    NASA Technical Reports Server (NTRS)

    Kathong, M.; Tiwari, S. N.

    1987-01-01

    Flow field variables are visualized using color representations described on surfaces that are interpolated from computational grids and transformed to digital images. Techniques for displaying two and three dimensional flow field solutions are addressed. The transformations and the use of an interactive graphics program for CFD flow field solutions, called PLOT3D, which runs on the color graphics IRIS workstation are described. An overview of the IRIS workstation is also described.

  4. Graphics and composite material computer program enhancements for SPAR

    NASA Technical Reports Server (NTRS)

    Farley, G. L.; Baker, D. J.

    1980-01-01

    User documentation is provided for additional computer programs developed for use in conjunction with SPAR. These programs plot digital data, simplify input for composite material section properties, and compute lamina stresses and strains. Sample problems are presented including execution procedures, program input, and graphical output.

  5. Computer Art--A New Tool in Advertising Graphics.

    ERIC Educational Resources Information Center

    Wassmuth, Birgit L.

    Using computers to produce art began with scientists, mathematicians, and individuals with strong technical backgrounds who used the graphic material as visualizations of data in technical fields. People are using computer art in advertising, as well as in painting; sculpture; music; textile, product, industrial, and interior design; architecture;…

  6. Animation graphic interface for the space shuttle onboard computer

    NASA Technical Reports Server (NTRS)

    Wike, Jeffrey; Griffith, Paul

    1989-01-01

    Graphics interfaces designed to operate on space qualified hardware challenge software designers to display complex information under processing power and physical size constraints. Under contract to Johnson Space Center, MICROEXPERT Systems is currently constructing an intelligent interface for the LASER DOCKING SENSOR (LDS) flight experiment. Part of this interface is a graphic animation display for Rendezvous and Proximity Operations. The displays have been designed in consultation with Shuttle astronauts. The displays show multiple views of a satellite relative to the shuttle, coupled with numeric attitude information. The graphics are generated using position data received by the Shuttle Payload and General Support Computer (PGSC) from the Laser Docking Sensor. Some of the design considerations include crew member preferences in graphic data representation, single versus multiple window displays, mission tailoring of graphic displays, realistic 3D images versus generic icon representations of real objects, the physical relationship of the observers to the graphic display, how numeric or textual information should interface with graphic data, in what frame of reference objects should be portrayed, recognizing conditions of display information-overload, and screen format and placement consistency.

  7. A remote computer graphics user at General Motors

    NASA Technical Reports Server (NTRS)

    Murphy, H. S.

    1982-01-01

    The successful use of automotive body surface design data is described. This data has been originally created elsewhere in GM's two large computer graphics systems of CADANCE and Fisher Graphics. As a supplier exterior lighting components, radiator grilles, energy absorbing soft faced bumper systems, and other associated items, Guide has become most dependent on the corporate computer graphics systems to supply accurate car body styling and sheet metal surfacing information for the design of their products. The presentation includes the origin and transfer of design data to a remote user site; its use in the design of their products; and the ultimate production of detailed drawings, N/C punched tapes, and subsequent downstream transfers of detailed part data to a turnkey system for tool design purposes.

  8. A computer graphics pilot project - Spacecraft mission support with an interactive graphics workstation

    NASA Technical Reports Server (NTRS)

    Hagedorn, John; Ehrner, Marie-Jacqueline; Reese, Jodi; Chang, Kan; Tseng, Irene

    1986-01-01

    The NASA Computer Graphics Pilot Project was undertaken to enhance the quality control, productivity and efficiency of mission support operations at the Goddard Operations Support Computing Facility. The Project evolved into a set of demonstration programs for graphics intensive simulated control room operations, particularly in connection with the complex space missions that began in the 1980s. Complex mission mean more data. Graphic displays are a means to reduce the probabilities of operator errors. Workstations were selected with 1024 x 768 pixel color displays controlled by a custom VLSI chip coupled to an MC68010 chip running UNIX within a shell that permits operations through the medium of mouse-accessed pulldown window menus. The distributed workstations run off a host NAS 8040 computer. Applications of the system for tracking spacecraft orbits and monitoring Shuttle payload handling illustrate the system capabilities, noting the built-in capabilities of shifting the point of view and rotating and zooming in on three-dimensional views of spacecraft.

  9. Digital-Computer Processing of Graphical Data. Final Report.

    ERIC Educational Resources Information Center

    Freeman, Herbert

    The final report of a two-year study concerned with the digital-computer processing of graphical data. Five separate investigations carried out under this study are described briefly, and a detailed bibliography, complete with abstracts, is included in which are listed the technical papers and reports published during the period of this program.…

  10. Cognitive Load While Learning with a Graphical Computer Interface.

    ERIC Educational Resources Information Center

    Martin-Michiellot, S.; Mendelsohn, P.

    2000-01-01

    Discusses cognitive load theory and describes a study that investigated how undergraduates learned the basic commands of a CAD (computer-assisted design) software package using manuals with different formats of presentation of instructions. Results show that graphical interface, using a manual that juxtaposes text and screen images, was most…

  11. Computer-Graphics and the Literary Construct: A Learning Method.

    ERIC Educational Resources Information Center

    Henry, Avril

    2002-01-01

    Describes an undergraduate student module that was developed at the University of Exeter (United Kingdom) in which students made their own computer graphics to discover and to describe literary structures in texts of their choice. Discusses learning outcomes and refers to the Web site that shows students' course work. (Author/LRW)

  12. A computer graphics program for general finite element analyses

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Sawyer, L. M.

    1978-01-01

    Documentation for a computer graphics program for displays from general finite element analyses is presented. A general description of display options and detailed user instructions are given. Several plots made in structural, thermal and fluid finite element analyses are included to illustrate program options. Sample data files are given to illustrate use of the program.

  13. Role of Computer Graphics in Simulations for Teaching Physiology.

    ERIC Educational Resources Information Center

    Modell, H. I.; And Others

    1983-01-01

    Discusses a revision of existing respiratory physiology simulations to promote active learning experiences for individual students. Computer graphics were added to aid student's conceptualization of the physiological system. Specific examples are provided, including those dealing with alveolar gas equations and effects of anatomic shunt flow on…

  14. A Complete Interactive Graphical Computer-Aided Instruction System.

    ERIC Educational Resources Information Center

    Abrams, Steven Selby

    The use of interactive graphics in computer-aided instruction systems is discussed with emphasis placed on two requirements of such a system. The first is the need to provide the teacher with a useful tool with which to design and modify teaching sessions tailored to the individual needs and capabilities of the students. The second is the…

  15. A "Service-Learning Approach" to Teaching Computer Graphics

    ERIC Educational Resources Information Center

    Hutzel, Karen

    2007-01-01

    The author taught a computer graphics course through a service-learning framework to undergraduate and graduate students in the spring of 2003 at Florida State University (FSU). The students in this course participated in learning a software program along with youths from a neighboring, low-income, primarily African-American community. Together,…

  16. Applications of Selected Computer Graphics in Institutional Research.

    ERIC Educational Resources Information Center

    Smith, Alan D.

    1982-01-01

    The use of computer graphics techniques in a study of attrition at the University of Akron is outlined to illustrate potential applications. The techniques produce information that is more readily interpreted than the usual data tables. Specific software information and illustrations are included. (MSE)

  17. KINPLOT: An Interactive Pharmacokinetics Graphics Program for Digital Computers.

    ERIC Educational Resources Information Center

    Wilson, Robert C.; And Others

    1982-01-01

    Inability to see the relevance of mathematics to understanding the time course of drugs in the body may discourage interest in pharmacokinetics. A UNC-developed computer graphics simulation program helps visualize the nature of pharmacokinetic-patient interactions, generates classroom handouts, and is used in the pharmaceuticals industry to…

  18. Simulation of Robot Kinematics Using Interactive Computer Graphics.

    ERIC Educational Resources Information Center

    Leu, M. C.; Mahajan, R.

    1984-01-01

    Development of a robot simulation program based on geometric transformation softwares available in most computer graphics systems and program features are described. The program can be extended to simulate robots coordinating with external devices (such as tools, fixtures, conveyors) using geometric transformations to describe the…

  19. Learning with interactive computer graphics in the undergraduate neuroscience classroom.

    PubMed

    Pani, John R; Chariker, Julia H; Naaz, Farah; Mattingly, William; Roberts, Joshua; Sephton, Sandra E

    2014-10-01

    Instruction of neuroanatomy depends on graphical representation and extended self-study. As a consequence, computer-based learning environments that incorporate interactive graphics should facilitate instruction in this area. The present study evaluated such a system in the undergraduate neuroscience classroom. The system used the method of adaptive exploration, in which exploration in a high fidelity graphical environment is integrated with immediate testing and feedback in repeated cycles of learning. The results of this study were that students considered the graphical learning environment to be superior to typical classroom materials used for learning neuroanatomy. Students managed the frequency and duration of study, test, and feedback in an efficient and adaptive manner. For example, the number of tests taken before reaching a minimum test performance of 90 % correct closely approximated the values seen in more regimented experimental studies. There was a wide range of student opinion regarding the choice between a simpler and a more graphically compelling program for learning sectional anatomy. Course outcomes were predicted by individual differences in the use of the software that reflected general work habits of the students, such as the amount of time committed to testing. The results of this introduction into the classroom are highly encouraging for development of computer-based instruction in biomedical disciplines. PMID:24449123

  20. Sparse reconstruction of visual appearance for computer graphics and vision

    NASA Astrophysics Data System (ADS)

    Ramamoorthi, Ravi

    2011-09-01

    A broad range of problems in computer graphics rendering, appearance acquisition for graphics and vision, and imaging, involve sampling, reconstruction, and integration of high-dimensional (4D-8D) signals. For example, precomputation-based real-time rendering of glossy materials and intricate lighting effects like caustics, can involve (pre)-computing the response of the scene to different light and viewing directions, which is often a 6D dataset. Similarly, image-based appearance acquisition of facial details, car paint, or glazed wood, requires us to take images from different light and view directions. Even offline rendering of visual effects like motion blur from a fast-moving car, or depth of field, involves high-dimensional sampling across time and lens aperture. The same problems are also common in computational imaging applications such as light field cameras. In the past few years, computer graphics and computer vision researchers have made significant progress in subsequent analysis and compact factored or multiresolution representations for some of these problems. However, the initial full dataset must almost always still be acquired or computed by brute force. This is often prohibitively expensive, taking hours to days of computation and acquisition time, as well as being a challenge for memory usage and storage. For example, on the order of 10,000 megapixel images are needed for a 1 degree sampling of lights and views for high-frequency materials. We argue that dramatically sparser sampling and reconstruction of these signals is possible, before the full dataset is acquired or simulated. Our key idea is to exploit the structure of the data that often lies in lower-frequency, sparse, or low-dimensional spaces. Our framework will apply to a diverse set of problems such as sparse reconstruction of light transport matrices for relighting, sheared sampling and denoising for offline shadow rendering, time-coherent compressive sampling for appearance

  1. Computer generated hologram from point cloud using graphics processor.

    PubMed

    Chen, Rick H-Y; Wilkinson, Timothy D

    2009-12-20

    Computer generated holography is an extremely demanding and complex task when it comes to providing realistic reconstructions with full parallax, occlusion, and shadowing. We present an algorithm designed for data-parallel computing on modern graphics processing units to alleviate the computational burden. We apply Gaussian interpolation to create a continuous surface representation from discrete input object points. The algorithm maintains a potential occluder list for each individual hologram plane sample to keep the number of visibility tests to a minimum. We experimented with two approximations that simplify and accelerate occlusion computation. It is observed that letting several neighboring hologram plane samples share visibility information on object points leads to significantly faster computation without causing noticeable artifacts in the reconstructed images. Computing a reduced sample set via nonuniform sampling is also found to be an effective acceleration technique. PMID:20029585

  2. Interfaces for Advanced Computing.

    ERIC Educational Resources Information Center

    Foley, James D.

    1987-01-01

    Discusses the coming generation of supercomputers that will have the power to make elaborate "artificial realities" that facilitate user-computer communication. Illustrates these technological advancements with examples of the use of head-mounted monitors which are connected to position and orientation sensors, and gloves that track finger and…

  3. Graphics

    ERIC Educational Resources Information Center

    Post, Susan

    1975-01-01

    An art teacher described an elective course in graphics which was designed to enlarge a student's knowledge of value, color, shape within a shape, transparency, line and texture. This course utilized the technique of working a multi-colored print from a single block that was first introduced by Picasso. (Author/RK)

  4. Creating presentation graphics with MS-DOS computer technology.

    PubMed

    Van Hoozer, H; Warner, S; Felton, G

    1989-01-01

    This article describes how The University of Iowa College of Nursing Instructional Design Services uses MS-DOS computer technology to create presentation graphics to support nursing education, research, scholarly productivity, and service. Hardware and software are described and examples are presented to illustrate the use of software to create alphanumeric, schematic, and freeform pictures. The authors stress that the use of computer-aided design and production does not eliminate the use of traditional principles of visual design, but rather necessitates their application. PMID:2752333

  5. The convergence of robotics, vision, and computer graphics for user interaction

    SciTech Connect

    Hollerback, J.M.; Thompson, W.B.; Shirley, P.

    1999-11-01

    Mechanical interfaces to virtual environments and the creation of virtual environments represent important and relatively new application areas for robotics. The creation of immersive interfaces will require codevelopment of visual displays that complement mechanical stimuli with appropriate visual cues, ultimately determined from human psychophysics. Advances in interactive rendering and geometric modeling form computer graphics will play a key role. Examples are drawn from haptic and locomotion interface projects.

  6. Gabedit--a graphical user interface for computational chemistry softwares.

    PubMed

    Allouche, Abdul-Rahman

    2011-01-15

    Gabedit is a freeware graphical user interface, offering preprocessing and postprocessing adapted (to date) to nine computational chemistry software packages. It includes tools for editing, displaying, analyzing, converting, and animating molecular systems. A conformational search tool is implemented using a molecular mechanics or a semiempirical potential. Input files can be generated for the computational chemistry software supported by Gabedit. Some molecular properties of interest are processed directly from the output of the computational chemistry programs; others are calculated by Gabedit before display. Molecular orbitals, electron density, electrostatic potential, nuclear magnetic resonance shielding density, and any other volumetric data properties can be displayed. It can display electronic circular dichroism, UV-visible, infrared, and Raman-computed spectra after a convolution. Gabedit can generate a Povray file for geometry, surfaces, contours, and color-coded planes. Output can be exported to a selection of popular image and vector graphics file formats; the program can also generate a series of pictures for animation. Quantum mechanical electrostatic potentials can be calculated using the partial charges on atoms, or by solving the Poisson equation using the multigrid method. The atoms in molecule charges can also be calculated. Gabedit is platform independent. The code is distributed under free open source X11 style license and is available at http://gabedit.sourceforge.net/. PMID:20607691

  7. Form in the Natural Environment: Fractal Computer Graphics and Wassily Kandinsky.

    ERIC Educational Resources Information Center

    Geake, John; Porter, Jim

    1992-01-01

    Reports on study of use of fractal geometry in a computer graphics program to improve the perception of intermediate grade level students in their paintings. Finds that students are more likely to use changing shapes and colors after viewing slides of fractal computer graphics. Concludes that fractal computer graphics would make highly engaging…

  8. Computer-Based Tools for Evaluating Graphical User Interfaces

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.

    1997-01-01

    The user interface is the component of a software system that connects two very complex system: humans and computers. Each of these two systems impose certain requirements on the final product. The user is the judge of the usability and utility of the system; the computer software and hardware are the tools with which the interface is constructed. Mistakes are sometimes made in designing and developing user interfaces because the designers and developers have limited knowledge about human performance (e.g., problem solving, decision making, planning, and reasoning). Even those trained in user interface design make mistakes because they are unable to address all of the known requirements and constraints on design. Evaluation of the user inter-face is therefore a critical phase of the user interface development process. Evaluation should not be considered the final phase of design; but it should be part of an iterative design cycle with the output of evaluation being feed back into design. The goal of this research was to develop a set of computer-based tools for objectively evaluating graphical user interfaces. The research was organized into three phases. The first phase resulted in the development of an embedded evaluation tool which evaluates the usability of a graphical user interface based on a user's performance. An expert system to assist in the design and evaluation of user interfaces based upon rules and guidelines was developed during the second phase. During the final phase of the research an automatic layout tool to be used in the initial design of graphical inter- faces was developed. The research was coordinated with NASA Marshall Space Flight Center's Mission Operations Laboratory's efforts in developing onboard payload display specifications for the Space Station.

  9. Interactive analysis of thermal imagery. [computer graphics terminal for photointerpretation

    NASA Technical Reports Server (NTRS)

    Madding, R. P.; Fisher, L. T.

    1976-01-01

    Necessary knowledge is presented on data acquisition and preparation for analysis of thermal imagery of power plant heated discharges remotely sensed from an aircraft, with special emphasis on analog to digital conversion of analog tapes acquired during scanning and to geometrical scaling. The central element in the interactive analysis of thermal imagery is an interactive graphics computer terminal which allows an interpreter to effectively interact with a large-scale computer, providing decisions or data as computations are carried out. A temperature calibration is performed, which the interpreter may test anywhere on the image. When satisfied that calibration is correct, the portion of the image to be analyzed is outlined. Printed and microfiche analyses of the plume are produced. The flow chart of programs for analysis of thermal imagery is presented and discussed in some detail.

  10. STS-49 ASEM activities illustrated with PLAID computer graphics

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, Assembly of Station by Extravehicular Activity (EVA) Methods (ASEM) activities are illustrated with PLAID computer graphics. Two extravehicular mobility unit (EMU) suited crewmembers work on multipurpose experiment support structure (MPESS) (with legs attached) grappled by remote manipulator system (RMS) end effector and positioned in the over-the-nose location (above OV-105's crew compartment). This position has been designated as the assembly area for Space Station Freedom (SSF). This procedure will evaluate the ability to use the RMS to position MPESS carrier and EVA crewmembers forward and above the PLB.

  11. STS-49 ASEM activities illustrated with PLAID computer graphics

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, Assembly of Station by Extravehicular Activity (EVA) Methods (ASEM) activities are illustrated with PLAID computer graphics. The multipurpose experiment support structure (MPESS) grappled by the remote manipulator system (RMS) end effector is positioned over OV-105's payload bay (PLB) as extravehicular mobility unit (EMU) suited crewmembers attach MPESS to ASEM truss structure with 'legs'. One astronaut, floating, works near the top of the structure while the second astronaut works at a payload retention latch assembly (PLRA) on the starboard sill. The empty INTELSAT perigee stage cradle structure is seen in the aft PLB.

  12. Interactive Computer Graphics for Performance-Structure-Oriented CAI. Technical Report No. 73.

    ERIC Educational Resources Information Center

    Rigney, Joseph W.; And Others

    Two different uses of interactive graphics in computer-assisted instruction are described. Interactive graphics may be used as substitutes for physical devices and operations. An example is simulation of operating on man/machine interfaces, substituting interactive graphics for controls, indicators, and indications. Interactive graphics may also…

  13. Computer Graphics 2: More of the Best Computer Art and Design.

    ERIC Educational Resources Information Center

    1994

    This collection of computer generated images aims to present media tools and processes, stimulate ideas, and inspire artists and art students working in computer-related design. The images are representative of state-of-the-art editorial, broadcast, packaging, fine arts, and graphic techniques possible through computer generation. Each image is…

  14. DSPOBJ - System for display of multiple sets of three-dimensional data. [Fortran subroutine for computer graphics

    NASA Technical Reports Server (NTRS)

    Ashbaugh, J. B.; Roland, D. P.; Laird, L. F.

    1978-01-01

    DSPOBJ is a FORTRAN subroutine to control the display of three-dimensional line networks on a stand-alone, general-purpose, interactive computer graphics system. The program controls the creation and manipulation of transformation matrices for the display and control of multiple sets of line networks. It provides advanced graphics features such as independent and global scaling, rotation and translation, cross-sectioning, reflection, and simultaneous display of four views.

  15. Color calculations for and perceptual assessment of computer graphic images

    SciTech Connect

    Meyer, G.W.

    1986-01-01

    Realistic image synthesis involves the modelling of an environment in accordance with the laws of physics and the production of a final simulation that is perceptually acceptable. To be considered a scientific endeavor, synthetic image generation should also include the final step of experimental verification. This thesis concentrates on the color calculations that are inherent in the production of the final simulation and on the perceptual assessment of the computer graphic images that result. The fundamental spectral sensitivity functions that are active in the human visual system are introduced and are used to address color-blindness issues in computer graphics. A digitally controlled color television monitor is employed to successfully implement both the Farnsworth Munsell 100 hues test and a new color vision test that yields more accurate diagnoses. Images that simulate color blind vision are synthesized and are used to evaluate color scales for data display. Gaussian quadrature is used with a set of opponent fundamental to select the wavelengths at which to perform synthetic image generation.

  16. Use of computer graphics for visualization of flow fields

    NASA Technical Reports Server (NTRS)

    Watson, Val; Buning, Pieter; Choi, Diana; Bancroft, Gordon; Merritt, Fergus; Rogers, Stuart

    1987-01-01

    A high-performance graphics workstation has been combined with software developed for flow-field visualization to yield a highly effective tool for analysis of fluid-flow dynamics. After the flow fields are obtained from experimental measurements or computer simulations, the workstation permits one to interactively view the dynamics of the flow fields; e.g., the viewer can zoom into a region or rotate his viewing position about the region to study it in more detail. Several techniques for visualization of flow fields with this workstation are described in this paper and illustrated with a videotape available from the authors. The computer hardware and software required to create effective flow visualization displays are discussed. Additional software and hardware required to create videotapes or 16mm movies are also described. Limitations imposed by current workstation performance is addressed and future workstation performance is forecast.

  17. Solar physics applications of computer graphics and image processing

    NASA Technical Reports Server (NTRS)

    Altschuler, M. D.

    1985-01-01

    Computer graphics devices coupled with computers and carefully developed software provide new opportunities to achieve insight into the geometry and time evolution of scalar, vector, and tensor fields and to extract more information quickly and cheaply from the same image data. Two or more different fields which overlay in space can be calculated from the data (and the physics), then displayed from any perspective, and compared visually. The maximum regions of one field can be compared with the gradients of another. Time changing fields can also be compared. Images can be added, subtracted, transformed, noise filtered, frequency filtered, contrast enhanced, color coded, enlarged, compressed, parameterized, and histogrammed, in whole or section by section. Today it is possible to process multiple digital images to reveal spatial and temporal correlations and cross correlations. Data from different observatories taken at different times can be processed, interpolated, and transformed to a common coordinate system.

  18. A computer graphics display and data compression technique

    NASA Technical Reports Server (NTRS)

    Teague, M. J.; Meyer, H. G.; Levenson, L. (Editor)

    1974-01-01

    The computer program discussed is intended for the graphical presentation of a general dependent variable X that is a function of two independent variables, U and V. The required input to the program is the variation of the dependent variable with one of the independent variables for various fixed values of the other. The computer program is named CRP, and the output is provided by the SD 4060 plotter. Program CRP is an extremely flexible program that offers the user a wide variety of options. The dependent variable may be presented in either a linear or a logarithmic manner. Automatic centering of the plot is provided in the ordinate direction, and the abscissa is scaled automatically for a logarithmic plot. A description of the carpet plot technique is given along with the coordinates system used in the program. Various aspects of the program logic are discussed and detailed documentation of the data card format is presented.

  19. Three Dimensional Computer Graphics Federates for the 2012 Smackdown Simulation

    NASA Technical Reports Server (NTRS)

    Fordyce, Crystal; Govindaiah, Swetha; Muratet, Sean; O'Neil, Daniel A.; Schricker, Bradley C.

    2012-01-01

    The Simulation Interoperability Standards Organization (SISO) Smackdown is a two-year old annual event held at the 2012 Spring Simulation Interoperability Workshop (SIW). A primary objective of the Smackdown event is to provide college students with hands-on experience in developing distributed simulations using High Level Architecture (HLA). Participating for the second time, the University of Alabama in Huntsville (UAHuntsville) deployed four federates, two federates simulated a communications server and a lunar communications satellite with a radio. The other two federates generated 3D computer graphics displays for the communication satellite constellation and for the surface based lunar resupply mission. Using the Light-Weight Java Graphics Library, the satellite display federate presented a lunar-texture mapped sphere of the moon and four Telemetry Data Relay Satellites (TDRS), which received object attributes from the lunar communications satellite federate to drive their motion. The surface mission display federate was an enhanced version of the federate developed by ForwardSim, Inc. for the 2011 Smackdown simulation. Enhancements included a dead-reckoning algorithm and a visual indication of which communication satellite was in line of sight of Hadley Rille. This paper concentrates on these two federates by describing the functions, algorithms, HLA object attributes received from other federates, development experiences and recommendations for future, participating Smackdown teams.

  20. Accelerating sino-atrium computer simulations with graphic processing units.

    PubMed

    Zhang, Hong; Xiao, Zheng; Lin, Shien-fong

    2015-01-01

    Sino-atrial node cells (SANCs) play a significant role in rhythmic firing. To investigate their role in arrhythmia and interactions with the atrium, computer simulations based on cellular dynamic mathematical models are generally used. However, the large-scale computation usually makes research difficult, given the limited computational power of Central Processing Units (CPUs). In this paper, an accelerating approach with Graphic Processing Units (GPUs) is proposed in a simulation consisting of the SAN tissue and the adjoining atrium. By using the operator splitting method, the computational task was made parallel. Three parallelization strategies were then put forward. The strategy with the shortest running time was further optimized by considering block size, data transfer and partition. The results showed that for a simulation with 500 SANCs and 30 atrial cells, the execution time taken by the non-optimized program decreased 62% with respect to a serial program running on CPU. The execution time decreased by 80% after the program was optimized. The larger the tissue was, the more significant the acceleration became. The results demonstrated the effectiveness of the proposed GPU-accelerating methods and their promising applications in more complicated biological simulations. PMID:26406070

  1. An Architectural Design System Based on Computer Graphics.

    ERIC Educational Resources Information Center

    MacDonald, Stephen L.; Wehrli, Robert

    The recent developments in computer hardware and software are presented to inform architects of this design tool. Technical advancements in equipment include--(1) cathode ray tube displays, (2) light pens, (3) print-out and photo copying attachments, (4) controls for comparison and selection of images, (5) chording keyboards, (6) plotters, and (7)…

  2. Engineering computer graphics in gas turbine engine design, analysis and manufacture

    NASA Technical Reports Server (NTRS)

    Lopatka, R. S.

    1975-01-01

    A time-sharing and computer graphics facility designed to provide effective interactive tools to a large number of engineering users with varied requirements was described. The application of computer graphics displays at several levels of hardware complexity and capability is discussed, with examples of graphics systems tracing gas turbine product development, beginning with preliminary design through manufacture. Highlights of an operating system stylized for interactive engineering graphics is described.

  3. STS-49 ASEM activities illustrated with PLAID computer graphics

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, Assembly of Station by Extravehicular Activity (EVA) Methods (ASEM) activities are illustrated with PLAID computer graphics. An extravehicular mobility unit (EMU) suited crewmember, positioned on the remote manipulator system (RMS) manipulator foot restraint (MFR), grabs and maneuvers the multipurpose experiment support structure (MPESS) above OV-105's payload bay (PLB) using the steering wheel assembly. Once in position the MPESS will be attached to the truss assembly. The crewmember lifting the MPESS out of the PLB is evaluating mass manipulation and berthing of a relatively large mass. This will simulate techniques to be used for module-to-truss installation for Space Station Freedom (SSF). A second EMU suited crewmember oversees and directs the MPESS manipulation from a portable foot restraint (PFR) attached to the starboard sill longeron.

  4. Using computer graphics to enhance astronaut and systems safety

    NASA Technical Reports Server (NTRS)

    Brown, J. W.

    1982-01-01

    The Operator Station Design System (OSDS), a technique of applied computer graphics featuring a flexible interactive software package, is presented in terms of man-machine analyses, flight operations, and systems engineering. In man-machine analyses, the OSDS was used to determine if viewing from the Shuttle Remote Manipulator System was satisfactory and to identify requirements for a pallet-mounted television camera. In another study, extravehicular activity was analyzed using the example of emergency access to latches should they fail in orbit. In terms of flight operations, OSDS can be used to evaluate array monitoring of a solar array power system complex and to provide animated scenarios of mission operations. The most important application of OSDS is in relation to systems engineering, as OSDS can be used to analyze spacecraft and payload design and integration. Payload configurations are included.

  5. STS-49 ASEM activity illustrated with PLAID computer graphics

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, Assembly of Station by Extravehicular Activity (EVA) Methods (ASEM) activity is illustrated with PLAID computer graphics. An extravehicular mobility unit (EMU) suited crewmember, positioned on the remote manipulator system (RMS) manipulator foot restraint (MFR), grabs and maneuvers the multipurpose experiment support structure (MPESS) with truss assembly attached above OV-105's payload bay (PLB) using the steer wheel assembly. The MPESS/ASEM truss structure has been lifted out the sill-mounted payload retention latch assemblies (PRLAs) and will be repositioned in the PRLAs upon completion of handling procedures. Also seen in this illustration are the empty INTELSAT perigee stage cradle structure (aft PLB) and the capture bar grapple fixture stowed on the port side sill longeron.

  6. A Computer Graphics Human Figure Application Of Biostereometrics

    NASA Astrophysics Data System (ADS)

    Fetter, William A.

    1980-07-01

    A study of improved computer graphic representation of the human figure is being conducted under a National Science Foundation grant. Special emphasis is given biostereometrics as a primary data base from which applications requiring a variety of levels of detail may be prepared. For example, a human figure represented by a single point can be very useful in overview plots of a population. A crude ten point figure can be adequate for queuing theory studies and simulated movement of groups. A one hundred point figure can usefully be animated to achieve different overall body activities including male and female figures. A one thousand point figure si-milarly animated, begins to be useful in anthropometrics and kinesiology gross body movements. Extrapolations of this order-of-magnitude approach ultimately should achieve very complex data bases and a program which automatically selects the correct level of detail for the task at hand. See Summary Figure 1.

  7. Software-based geometry operations for 3D computer graphics

    NASA Astrophysics Data System (ADS)

    Sima, Mihai; Iancu, Daniel; Glossner, John; Schulte, Michael; Mamidi, Suman

    2006-02-01

    In order to support a broad dynamic range and a high degree of precision, many of 3D renderings fundamental algorithms have been traditionally performed in floating-point. However, fixed-point data representation is preferable over floating-point representation in graphics applications on embedded devices where performance is of paramount importance, while the dynamic range and precision requirements are limited due to the small display sizes (current PDA's are 640 × 480 (VGA), while cell-phones are even smaller). In this paper we analyze the efficiency of a CORDIC-augmented Sandbridge processor when implementing a vertex processor in software using fixed-point arithmetic. A CORDIC-based solution for vertex processing exhibits a number of advantages over classical Multiply-and-Acumulate solutions. First, since a single primitive is used to describe the computation, the code can easily be vectorized and multithreaded, and thus fits the major Sandbridge architectural features. Second, since a CORDIC iteration consists of only a shift operation followed by an addition, the computation may be deeply pipelined. Initially, we outline the Sandbridge architecture extension which encompasses a CORDIC functional unit and the associated instructions. Then, we consider rigid-body rotation, lighting, exponentiation, vector normalization, and perspective division (which are some of the most important data-intensive 3D graphics kernels) and propose a scheme to implement them on the CORDIC-augmented Sandbridge processor. Preliminary results indicate that the performance improvement within the extended instruction set ranges from 3× to 10× (with the exception of rigid body rotation).

  8. Techniques for increasing the update rate of real-time dynamic computer graphic displays

    NASA Technical Reports Server (NTRS)

    Kahlbaum, W. M., Jr.

    1986-01-01

    This paper describes several techniques which may be used to increase the animation update rate of real-time computer raster graphic displays. The techniques were developed on the ADAGE RDS 3000 graphic system in support of the Advanced Concepts Simulator at the NASA Langley Research Center. The first technique involves pre-processing of the next animation frame while the previous one is being erased from the screen memory. The second technique involves the use of a parallel processor, the AGG4, for high speed character generation. The description of the AGG4 includes the Barrel Shifter which is a part of the hardware and is the key to the high speed character rendition. The final result of this total effort was a four fold increase in the update rate of an existing primary flight display from 4 to 16 frames per second.

  9. High-power graphic computers for visual simulation: a real-time--rendering revolution

    NASA Technical Reports Server (NTRS)

    Kaiser, M. K.

    1996-01-01

    Advances in high-end graphics computers in the past decade have made it possible to render visual scenes of incredible complexity and realism in real time. These new capabilities make it possible to manipulate and investigate the interactions of observers with their visual world in ways once only dreamed of. This paper reviews how these developments have affected two preexisting domains of behavioral research (flight simulation and motion perception) and have created a new domain (virtual environment research) which provides tools and challenges for the perceptual psychologist. Finally, the current limitations of these technologies are considered, with an eye toward how perceptual psychologist might shape future developments.

  10. Using computer graphics to enhance astronaut and systems safety

    NASA Technical Reports Server (NTRS)

    Brown, J. W.

    1985-01-01

    Computer graphics is being employed at the NASA Johnson Space Center as a tool to perform rapid, efficient and economical analyses for man-machine integration, flight operations development and systems engineering. The Operator Station Design System (OSDS), a computer-based facility featuring a highly flexible and versatile interactive software package, PLAID, is described. This unique evaluation tool, with its expanding data base of Space Shuttle elements, various payloads, experiments, crew equipment and man models, supports a multitude of technical evaluations, including spacecraft and workstation layout, definition of astronaut visual access, flight techniques development, cargo integration and crew training. As OSDS is being applied to the Space Shuttle, Orbiter payloads (including the European Space Agency's Spacelab) and future space vehicles and stations, astronaut and systems safety are being enhanced. Typical OSDS examples are presented. By performing physical and operational evaluations during early conceptual phases. supporting systems verification for flight readiness, and applying its capabilities to real-time mission support, the OSDS provides the wherewithal to satisfy a growing need of the current and future space programs for efficient, economical analyses.

  11. Using computer graphics to enhance astronaut and systems safety.

    PubMed

    Brown, J W

    1985-02-01

    Computer graphics is being employed at the NASA Johnson Space Center as a tool to perform rapid, efficient and economical analyses for man-machine integration, flight operations development and systems engineering. The Operator Station Design System (OSDS), a computer-based facility featuring a highly flexible and versatile interactive software package, PLAID, is described. This unique evaluation tool, with its expanding data base of Space Shuttle elements, various payloads, experiments, crew equipment and man models, supports a multitude of technical evaluations, including spacecraft and workstation layout, definition of astronaut visual access, flight techniques development, cargo integration and crew training. As OSDS is being applied to the Space Shuttle, Orbiter payloads (including the European Space Agency's Spacelab) and future space vehicles and stations, astronaut and systems safety are being enhanced. Typical OSDS examples are presented. By performing physical and operational evaluations during early conceptual phases. supporting systems verification for flight readiness, and applying its capabilities to real-time mission support, the OSDS provides the wherewithal to satisfy a growing need of the current and future space programs for efficient, economical analyses. PMID:11542840

  12. A computer graphics system for visualizing spacecraft in orbit

    NASA Technical Reports Server (NTRS)

    Eyles, Don E.

    1989-01-01

    To carry out unanticipated operations with resources already in space is part of the rationale for a permanently manned space station in Earth orbit. The astronauts aboard a space station will require an on-board, spatial display tool to assist the planning and rehearsal of upcoming operations. Such a tool can also help astronauts to monitor and control such operations as they occur, especially in cases where first-hand visibility is not possible. A computer graphics visualization system designed for such an application and currently implemented as part of a ground-based simulation is described. The visualization system presents to the user the spatial information available in the spacecraft's computers by drawing a dynamic picture containing the planet Earth, the Sun, a star field, and up to two spacecraft. The point of view within the picture can be controlled by the user to obtain a number of specific visualization functions. The elements of the display, the methods used to control the display's point of view, and some of the ways in which the system can be used are described.

  13. Interpretation and display of the NURE data base using computer graphics

    SciTech Connect

    Koller, G R

    1980-01-01

    Computer graphics not only is an integral part of data reduction and interpretation, it is also a fundamental aid in the planning and forecasting of the National Uranium Resource Evaluation program at Savannah River Laboratory. Computer graphics not only allows more rapid execution of tasks which could be performed manually, but also presents scientists with new capabilities which would be exceedingly impractical to apply were it not for the application of computer graphics to a problem.

  14. Interactive computer graphics system improves planning of directionally drilled wells in the East Wilmington field

    SciTech Connect

    Lutz, T.S.; Kendle, D.W.

    1988-06-01

    The Long Beach Unit of the East Wilmington field contains more than 1,200 wells directionally drilled from four manmade islands and five land-based drilling sites. Planning new wells that avoid interference with existing wells becomes more difficult and time-consuming as the density of wells in the Unit increases. Improvements and modifications in design procedures have culminated in the interactive computer graphics system now in use. The interactive computer-graphics system (ICGS) permits the viewing of a proposed new well or redrill well course, together with all existing well surveys and other proposed well courses in the area of interest. Plan, section, and traveling cylinder views can be displayed to allow the identification of design problems. The significance of the problems is then minimized by use of the interactive features of the system to refine the design parameters. The system's interactive features are also used to create, edit, and plot the finalized design. Reductions in design and drilling costs and many other less-direct benefits have been realized as a result of the system's use. The step-by-step use of the system from the user's point of view is described and examples of its graphic output are presented. To the best of our knowledge, this is the most advanced system of its kind in use today.

  15. Graphic Novels in Advanced English/Language Arts Classrooms: A Phenomenological Case Study

    ERIC Educational Resources Information Center

    Gillenwater, Cary

    2012-01-01

    This dissertation is a phenomenological case study of two 12th grade English/language arts (ELA) classrooms where teachers used graphic novels with their advanced students. The primary purpose of this case study was to gain insight into the phenomenon of using graphic novels with these students--a research area that is currently limited.…

  16. Some computer graphical user interfaces in radiation therapy

    PubMed Central

    Chow, James C L

    2016-01-01

    In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls

  17. Some computer graphical user interfaces in radiation therapy.

    PubMed

    Chow, James C L

    2016-03-28

    In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls

  18. Using computer graphics to design Space Station Freedom viewing

    NASA Technical Reports Server (NTRS)

    Goldsberry, Betty S.; Lippert, Buddy O.; Mckee, Sandra D.; Lewis, James L., Jr.; Mount, Francis E.

    1993-01-01

    Viewing requirements were identified early in the Space Station Freedom program for both direct viewing via windows and indirect viewing via cameras and closed-circuit television (CCTV). These requirements reside in NASA Program Definition and Requirements Document (PDRD), Section 3: Space Station Systems Requirements. Currently, analyses are addressing the feasibility of direct and indirect viewing. The goal of these analyses is to determine the optimum locations for the windows, cameras, and CCTV's in order to meet established requirements, to adequately support space station assembly, and to operate on-board equipment. PLAID, a three-dimensional computer graphics program developed at NASA JSC, was selected for use as the major tool in these analyses. PLAID provides the capability to simulate the assembly of the station as well as to examine operations as the station evolves. This program has been used successfully as a tool to analyze general viewing conditions for many Space Shuttle elements and can be used for virtually all Space Station components. Additionally, PLAID provides the ability to integrate an anthropometric scale-modeled human (representing a crew member) with interior and exterior architecture.

  19. An Accurate and Dynamic Computer Graphics Muscle Model

    NASA Technical Reports Server (NTRS)

    Levine, David Asher

    1997-01-01

    A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.

  20. Parallel computer graphics algorithms for the Connection Machine

    SciTech Connect

    Richardson, J.F.

    1990-01-01

    Many of the classes of computer graphics algorithms and polygon storage schemes can be adapted for parallel execution on various parallel architectures. The connection machine is one such architecture that should be thought of as a multiprocessor grid that can be reconfigured into standard 2-dimensional mesh and n-dimensional hypercube architectures. The classes of algorithms considered in this paper are SPLINES; POLYGON STORAGE; TRIANGULARIZATION; and SYMBOLIC INPUT. The target Connection Machine (hearafter designated as CM) for the algorithms of this paper has 8192 physical processors. Each physical processor has 8 kilobytes of local memory plus an arithmetic-logic unit. All processors can communicate with any other processor through a router. Thus this CM has a shared memory of 64 megabytes when used as a standard multiprocessor (MIMD) architecture. In addition, the CM interconnection structure can simulate a 2-dimensional mesh and n-dimensional hypercube (SIMD) architecture with the mesh being the default architecture. The front end for the CM is a Symbolics and the high level language is LISP or FORTRAN.

  1. Graphic Organizers or Graphic Overviews? Presentation Order Effects with Computer-Based Text

    ERIC Educational Resources Information Center

    Shaw, Shana; Nihalani, Priya; Mayrath, Michael; Robinson, Daniel H.

    2012-01-01

    It has long been assumed that graphic organizers (GOs) should be presented to students following text as an organizer, rather than preceding text as an overview. Robinson et al. ("Educational Technology Research & Development," 51(4), 25-41, 2003) challenged this assumption by finding support for GOs as an overview. The present study further…

  2. Decluttering methods for high density computer-generated graphic displays

    NASA Technical Reports Server (NTRS)

    Schultz, E. E., Jr.; Nichols, D. A.; Curran, P. S.

    1985-01-01

    Several decluttering methods were compared with respect to the speed and accuracy of user performance which resulted. The presence of a map background was also manipulated. Partial removal of nonessential graphic features through symbol simplification was as effective a decluttering technique as was total removal of nonessential graphic features. The presence of a map background interacted with decluttering conditions when response time was the dependent measure. Results indicate that the effectiveness of decluttering methods depends upon the degree to which each method makes essential graphic information distinctive from nonessential information. Practical implications are discussed.

  3. Traditional Engineering Graphics versus Computer-Aided Drafting: A View from Academe.

    ERIC Educational Resources Information Center

    Foster, Robert J.

    1987-01-01

    Argues for a legitimate role of manually expressed engineering graphics within engineering education as a needed support for computer-assisted drafting work. Discusses what and how students should learn as well as trends in engineering graphics education. Compares and contrasts manual and computer drafting methods. (CW)

  4. Interplay of Computer and Paper-Based Sketching in Graphic Design

    ERIC Educational Resources Information Center

    Pan, Rui; Kuo, Shih-Ping; Strobel, Johannes

    2013-01-01

    The purpose of this study is to investigate student designers' attitude and choices towards the use of computers and paper sketches when involved in a graphic design process. 65 computer graphic technology undergraduates participated in this research. A mixed method study with survey and in-depth interviews was applied to answer the research…

  5. The Use of Computer Graphics to Teach Thermodynamic Phase Diagrams.

    ERIC Educational Resources Information Center

    Naik, Chandrashekhar D.; And Others

    1985-01-01

    Describes an interactive graphics package which illustrates the phase behavior of binary mixtures. The package has been successfully used with graduate and undergraduate students in the chemical engineering curriculum at Cornell University. Features contributing to this success are noted. (JN)

  6. Advances in Computational Astrophysics

    SciTech Connect

    Calder, Alan C.; Kouzes, Richard T.

    2009-03-01

    I was invited to be the guest editor for a special issue of Computing in Science and Engineering along with a colleague from Stony Brook. This is the guest editors' introduction to a special issue of Computing in Science and Engineering. Alan and I have written this introduction and have been the editors for the 4 papers to be published in this special edition.

  7. The Merging Of Computer Graphics And Image Processing Technologies And Applications

    NASA Astrophysics Data System (ADS)

    Brammer, Robert F.; Stephenson, Thomas P.

    1990-01-01

    Historically, computer graphics and image processing technologies and applications have been distinct, both in their research communities and in their hardware and software product suppliers. Computer graphics deals with synthesized visual depictions of outputs from computer models*, whereas image processing (and analysis) deals with computational operations on input data from "imaging sensors"**. Furthermore, the fundamental storage and computational aspects of these two fields are different from one another. For example, many computer graphics applications store data using vector formats whereas image processing applications generally use raster formats. Computer graphics applications may involve polygonal representations, floating point operations, and mathematical models of physical phenomena such as lighting conditions, surface reflecting properties, etc. Image processing applications may involve pixel operations, fixed point representations, global operations (e.g. image rotations), and nonlinear signal processing algorithms.

  8. An application of interactive computer graphics technology to the design of dispersal mechanisms

    NASA Technical Reports Server (NTRS)

    Richter, B. J.; Welch, B. H.

    1977-01-01

    Interactive computer graphics technology is combined with a general purpose mechanisms computer code to study the operational behavior of three guided bomb dispersal mechanism designs. These studies illustrate the use of computer graphics techniques to discover operational anomalies, to assess the effectiveness of design improvements, to reduce the time and cost of the modeling effort, and to provide the mechanism designer with a visual understanding of the physical operation of such systems.

  9. Applied Mathematics via Student-Created Computer Graphics.

    ERIC Educational Resources Information Center

    Sloyer, Clifford; Smith, Lynn H.

    1983-01-01

    Describes topics and applications of five lessons dealing with applied mathematics (solving sequential optimization problems, queuing theory, graph theory, glyphs (pictorial techniques for displaying relationships among variables, medical mathematics). Design and evaluation of these materials which employ interactive graphics are also described.…

  10. Interactive computer graphic surface modeling of three-dimensional solid domains for boundary element analysis

    NASA Technical Reports Server (NTRS)

    Perucchio, R.; Ingraffea, A. R.

    1984-01-01

    The establishment of the boundary element method (BEM) as a valid tool for solving problems in structural mechanics and in other fields of applied physics is discussed. The development of an integrated interactive computer graphic system for the application of the BEM to three dimensional problems in elastostatics is described. The integration of interactive computer graphic techniques and the BEM takes place at the preprocessing and postprocessing stages of the analysis process, when, respectively, the data base is generated and the results are interpreted. The interactive computer graphic modeling techniques used for generating and discretizing the boundary surfaces of a solid domain are outlined.

  11. Interactive computer graphics and its role in control system design of large space structures

    NASA Technical Reports Server (NTRS)

    Reddy, A. S. S. R.

    1985-01-01

    This paper attempts to show the relevance of interactive computer graphics in the design of control systems to maintain attitude and shape of large space structures to accomplish the required mission objectives. The typical phases of control system design, starting from the physical model such as modeling the dynamics, modal analysis, and control system design methodology are reviewed and the need of the interactive computer graphics is demonstrated. Typical constituent parts of large space structures such as free-free beams and free-free plates are used to demonstrate the complexity of the control system design and the effectiveness of the interactive computer graphics.

  12. Toward a Singleton Undergraduate Computer Graphics Course in Small and Medium-Sized Colleges

    ERIC Educational Resources Information Center

    Shesh, Amit

    2013-01-01

    This article discusses the evolution of a single undergraduate computer graphics course over five semesters, driven by a primary question: if one could offer only one undergraduate course in graphics, what would it include? This constraint is relevant to many small and medium-sized colleges that lack resources, adequate expertise, and enrollment…

  13. Top View of a Computer Graphic Model of the Opportunity Lander and Rover

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] PIA05265

    A computer graphics model of the Opportunity lander and rover are super-imposed on top of the martian terrain where Opportunity landed.

  14. Belavkin-Kolokoltsov watchdog effects in interactively controlled stochastic computer-graphic dynamic systems

    NASA Astrophysics Data System (ADS)

    Juriev, D. V.

    1996-02-01

    The results of investigating the stochastic properties of the long-term behavior of a continuously observed (and interactively controlled) quantum-field top are reported. Applications for interactively controlled stochastic dynamic computer-graphics systems are discussed.

  15. Graphics Flutter Analysis Methods, an interactive computing system at Lockheed-California Company

    NASA Technical Reports Server (NTRS)

    Radovcich, N. A.

    1975-01-01

    An interactive computer graphics system, Graphics Flutter Analysis Methods (GFAM), was developed to complement FAMAS, a matrix-oriented batch computing system, and other computer programs in performing complex numerical calculations using a fully integrated data management system. GFAM has many of the matrix operation capabilities found in FAMAS, but on a smaller scale, and is utilized when the analysis requires a high degree of interaction between the engineer and computer, and schedule constraints exclude the use of batch entry programs. Applications of GFAM to a variety of preliminary design, development design, and project modification programs suggest that interactive flutter analysis using matrix representations is a feasible and cost effective computing tool.

  16. Advanced software development workstation project: Engineering scripting language. Graphical editor

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Software development is widely considered to be a bottleneck in the development of complex systems, both in terms of development and in terms of maintenance of deployed systems. Cost of software development and maintenance can also be very high. One approach to reducing costs and relieving this bottleneck is increasing the reuse of software designs and software components. A method for achieving such reuse is a software parts composition system. Such a system consists of a language for modeling software parts and their interfaces, a catalog of existing parts, an editor for combining parts, and a code generator that takes a specification and generates code for that application in the target language. The Advanced Software Development Workstation is intended to be an expert system shell designed to provide the capabilities of a software part composition system.

  17. Real-time application of advanced three-dimensional graphic techniques for research aircraft simulation

    NASA Technical Reports Server (NTRS)

    Davis, Steven B.

    1990-01-01

    Visual aids are valuable assets to engineers for design, demonstration, and evaluation. Discussed here are a variety of advanced three-dimensional graphic techniques used to enhance the displays of test aircraft dynamics. The new software's capabilities are examined and possible future uses are considered.

  18. Attention and visual memory in visualization and computer graphics.

    PubMed

    Healey, Christopher G; Enns, James T

    2012-07-01

    A fundamental goal of visualization is to produce images of data that support visual analysis, exploration, and discovery of novel insights. An important consideration during visualization design is the role of human visual perception. How we "see" details in an image can directly impact a viewer's efficiency and effectiveness. This paper surveys research on attention and visual perception, with a specific focus on results that have direct relevance to visualization and visual analytics. We discuss theories of low-level visual perception, then show how these findings form a foundation for more recent work on visual memory and visual attention. We conclude with a brief overview of how knowledge of visual attention and visual memory is being applied in visualization and graphics. We also discuss how challenges in visualization are motivating research in psychophysics. PMID:21788672

  19. Using computer graphics to design Space Station Freedom viewing

    NASA Technical Reports Server (NTRS)

    Goldsberry, B. S.; Lippert, B. O.; Mckee, S. D.; Lewis, J. L., Jr.; Mount, F. E.

    1989-01-01

    An important aspect of planning for Space Station Freedom at the United States National Aeronautics and Space Administration (NASA) is the placement of the viewing windows and cameras for optimum crewmember use. Researchers and analysts are evaluating the placement options using a three-dimensional graphics program called PLAID. This program, developed at the NASA Johnson Space Center (JSC), is being used to determine the extent to which the viewing requirements for assembly and operations are being met. A variety of window placement options in specific modules are assessed for accessibility. In addition, window and camera placements are analyzed to insure that viewing areas are not obstructed by the truss assemblies, externally-mounted payloads, or any other station element. Other factors being examined include anthropometric design considerations, workstation interfaces, structural issues, and mechanical elements.

  20. Molecular conformational space analysis using computer graphics: going beyond FRODO.

    PubMed

    Nilsson, O

    1990-12-01

    The molecular graphics program FRODO has been modified to support analytical animation of molecular dynamics trajectories. The enhanced program, mdFRODO, supports all features available in FRODO and is interfaced to GROMOS. A variety of analytical animation modes is included. Extensive coloring and atom selection features are implemented to aid the user in distinguishing features of interest in a set of conformations. Molecular conformational space can be analyzed efficiently and comprehended. Animations may be viewed in stereo, and the animated object can be overlaid with any of the standard FRODO objects. The mdFRODO program is of wide use in molecular dynamics, X-ray crystallography and two-dimensional NMR work. Examples illustrating various aspects of collective motion in protein molecules are given and discussed. PMID:2282358

  1. Graphics processing unit (GPU)-based computation of heat conduction in thermally anisotropic solids

    NASA Astrophysics Data System (ADS)

    Nahas, C. A.; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2013-01-01

    Numerical modeling of anisotropic media is a computationally intensive task since it brings additional complexity to the field problem in such a way that the physical properties are different in different directions. Largely used in the aerospace industry because of their lightweight nature, composite materials are a very good example of thermally anisotropic media. With advancements in video gaming technology, parallel processors are much cheaper today and accessibility to higher-end graphical processing devices has increased dramatically over the past couple of years. Since these massively parallel GPUs are very good in handling floating point arithmetic, they provide a new platform for engineers and scientists to accelerate their numerical models using commodity hardware. In this paper we implement a parallel finite difference model of thermal diffusion through anisotropic media using the NVIDIA CUDA (Compute Unified device Architecture). We use the NVIDIA GeForce GTX 560 Ti as our primary computing device which consists of 384 CUDA cores clocked at 1645 MHz with a standard desktop pc as the host platform. We compare the results from standard CPU implementation for its accuracy and speed and draw implications for simulation using the GPU paradigm.

  2. Center for Advanced Computational Technology

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    2000-01-01

    The Center for Advanced Computational Technology (ACT) was established to serve as a focal point for diverse research activities pertaining to application of advanced computational technology to future aerospace systems. These activities include the use of numerical simulations, artificial intelligence methods, multimedia and synthetic environments, and computational intelligence, in the modeling, analysis, sensitivity studies, optimization, design and operation of future aerospace systems. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The Center has four specific objectives: 1) conduct innovative research on applications of advanced computational technology to aerospace systems; 2) act as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); 3) help in identifying future directions of research in support of the aeronautical and space missions of the twenty-first century; and 4) help in the rapid transfer of research results to industry and in broadening awareness among researchers and engineers of the state-of-the-art in applications of advanced computational technology to the analysis, design prototyping and operations of aerospace and other high-performance engineering systems. In addition to research, Center activities include helping in the planning and coordination of the activities of a multi-center team of NASA and JPL researchers who are developing an intelligent synthesis environment for future aerospace systems; organizing workshops and national symposia; as well as writing state-of-the-art monographs and NASA special publications on timely topics.

  3. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, Amy; Hansman, R. J.

    1992-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) has developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator has been successfully used to evaluate graphical microburst alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  4. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, A.; Hansman, R. John

    1994-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator was successfully used to evaluate graphical microbursts alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  5. Recent advances in computational aerodynamics

    NASA Astrophysics Data System (ADS)

    Agarwal, Ramesh K.; Desse, Jerry E.

    1991-04-01

    The current state of the art in computational aerodynamics is described. Recent advances in the discretization of surface geometry, grid generation, and flow simulation algorithms have led to flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics is emerging as a crucial enabling technology for the development and design of flight vehicles. Examples illustrating the current capability for the prediction of aircraft, launch vehicle and helicopter flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.

  6. Computing Advances in the Teaching of Chemistry.

    ERIC Educational Resources Information Center

    Baskett, W. P.; Matthews, G. P.

    1984-01-01

    Discusses three trends in computer-oriented chemistry instruction: (1) availability of interfaces to integrate computers with experiments; (2) impact of the development of higher resolution graphics and greater memory capacity; and (3) role of videodisc technology on computer assisted instruction. Includes program listings for auto-titration and…

  7. X based interactive computer graphics applications for aerodynamic design and education

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.; Higgs, C. Fred, III

    1995-01-01

    Six computer applications packages have been developed to solve a variety of aerodynamic problems in an interactive environment on a single workstation. The packages perform classical one dimensional analysis under the control of a graphical user interface and can be used for preliminary design or educational purposes. The programs were originally developed on a Silicon Graphics workstation and used the GL version of the FORMS library as the graphical user interface. These programs have recently been converted to the XFORMS library of X based graphics widgets and have been tested on SGI, IBM, Sun, HP and PC-Lunix computers. The paper will show results from the new VU-DUCT program as a prime example. VU-DUCT has been developed as an educational package for the study of subsonic open and closed loop wind tunnels.

  8. Using Computer Interfacing to Graphically Illustrate Phases of Water.

    ERIC Educational Resources Information Center

    Pushkin, David B.; Zheng, Ting Fang

    1995-01-01

    Using a computer and thermistor probes, students analyze graphs of temperature versus time. The experiment demonstrates phase changes in water, which can lead to a broader interpretation of matter, its properties, and the laws of thermodynamics. (Author/AIM)

  9. A few modeling and rendering techniques for computer graphics and their implementation on ultra hardware

    NASA Technical Reports Server (NTRS)

    Bidasaria, Hari

    1989-01-01

    Ultra network is a recently installed very high speed graphic hardware at NASA Langley Research Center. The Ultra Network interfaced to Voyager through its HSX channel is capable of transmitting up to 800 million bits of information per second. It is capable of displaying fifteen to twenty frames of precomputed images of size 1024 x 2368 with 24 bits of color information per pixel per second. Modeling and rendering techniques are being developed in computer graphics and implemented on Ultra hardware. A ray tracer is being developed for use at the Flight Software and Graphic branch. Changes were made to make the ray tracer compatible with Voyager.

  10. Advanced flight computer. Special study

    NASA Technical Reports Server (NTRS)

    Coo, Dennis

    1995-01-01

    This report documents a special study to define a 32-bit radiation hardened, SEU tolerant flight computer architecture, and to investigate current or near-term technologies and development efforts that contribute to the Advanced Flight Computer (AFC) design and development. An AFC processing node architecture is defined. Each node may consist of a multi-chip processor as needed. The modular, building block approach uses VLSI technology and packaging methods that demonstrate a feasible AFC module in 1998 that meets that AFC goals. The defined architecture and approach demonstrate a clear low-risk, low-cost path to the 1998 production goal, with intermediate prototypes in 1996.

  11. Interactive computer graphics system for structural sizing and analysis of aircraft structures

    NASA Technical Reports Server (NTRS)

    Bendavid, D.; Pipano, A.; Raibstein, A.; Somekh, E.

    1975-01-01

    A computerized system for preliminary sizing and analysis of aircraft wing and fuselage structures was described. The system is based upon repeated application of analytical program modules, which are interactively interfaced and sequence-controlled during the iterative design process with the aid of design-oriented graphics software modules. The entire process is initiated and controlled via low-cost interactive graphics terminals driven by a remote computer in a time-sharing mode.

  12. Computer graphics for management: An abstract of capabilities and applications of the EIS system

    NASA Technical Reports Server (NTRS)

    Solem, B. J.

    1975-01-01

    The Executive Information Services (EIS) system, developed as a computer-based, time-sharing tool for making and implementing management decisions, and including computer graphics capabilities, was described. The following resources are available through the EIS languages: centralized corporate/gov't data base, customized and working data bases, report writing, general computational capability, specialized routines, modeling/programming capability, and graphics. Nearly all EIS graphs can be created by a single, on-line instruction. A large number of options are available, such as selection of graphic form, line control, shading, placement on the page, multiple images on a page, control of scaling and labeling, plotting of cum data sets, optical grid lines, and stack charts. The following are examples of areas in which the EIS system may be used: research, estimating services, planning, budgeting, and performance measurement, national computer hook-up negotiations.

  13. Effects of Computer Graphics Types and Epistemological Beliefs on Students' Learning of Mathematical Concepts.

    ERIC Educational Resources Information Center

    Lin, Chi-Hui

    2002-01-01

    Describes a study that determined the implications of computer graphics types and epistemological beliefs with regard to the design of computer-based mathematical concept learning with elementary school students in Taiwan. Discusses the factor structure of the epistemological belief questionnaire, student performance, and students' attitudes…

  14. APPLICATIONS OF COMPUTER GRAPHICS TO INTEGRATED ENVIRONMENTAL ASSESSMENTS OF ENERGY SYSTEMS

    EPA Science Inventory

    This report summarizes the first two years of research designed to demonstrate applications of computer graphics to environmental analyses associated with the evaluation of impacts from development of conventional energy systems. The work emphasizes the use of storage-tube comput...

  15. Computer Graphics in Research: Some State -of-the-Art Systems

    ERIC Educational Resources Information Center

    Reddy, R.; And Others

    1975-01-01

    A description is given of the structure and functional characteristics of three types of interactive computer graphic systems, developed by the Department of Computer Science at Carnegie-Mellon; a high-speed programmable display capable of displaying 50,000 short vectors, flicker free; a shaded-color video display for the display of gray-scale…

  16. Application of Computer Graphics to Graphing in Algebra and Trigonometry. Final Report.

    ERIC Educational Resources Information Center

    Morris, J. Richard

    This project was designed to improve the graphing competency of students in elementary algebra, intermediate algebra, and trigonometry courses at Virginia Commonwealth University. Computer graphics programs were designed using an Apple II Plus computer and implemented using Pascal. The software package is interactive and gives students control…

  17. ResidPlots-2: Computer Software for IRT Graphical Residual Analyses

    ERIC Educational Resources Information Center

    Liang, Tie; Han, Kyung T.; Hambleton, Ronald K.

    2009-01-01

    This article discusses the ResidPlots-2, a computer software that provides a powerful tool for IRT graphical residual analyses. ResidPlots-2 consists of two components: a component for computing residual statistics and another component for communicating with users and for plotting the residual graphs. The features of the ResidPlots-2 software are…

  18. Desktop computer graphics for RMS/payload handling flight design

    NASA Technical Reports Server (NTRS)

    Homan, D. J.

    1984-01-01

    A computer program, the Multi-Adaptive Drawings, Renderings and Similitudes (MADRAS) program, is discussed. The modeling program, written for a desktop computer system (the Hewlett-Packard 9845/C), is written in BASIC and uses modular construction of objects while generating both wire-frame and hidden-line drawings from any viewpoint. The dimensions and placement of objects are user definable. Once the hidden-line calculations are made for a particular viewpoint, the viewpoint may be rotated in pan, tilt, and roll without further hidden-line calculations. The use and results of this program are discussed.

  19. Matrix Transformations in Lower Level Computer Graphics Course.

    ERIC Educational Resources Information Center

    Ying, Dao-ning

    1982-01-01

    Presents computer programs (Applesoft Basic) for: (1) 2-D rotation about any point through any angle; (2) matrix transformation for 2-D rotation; (3) 3-D translation; (4) 3-D rotation; and (5) hyperboloid rotated in 2-D space. Includes background information and sample output for the matrix transformation subroutines. (JN)

  20. Computer Graphics For CT-Assisted Knee Surgery

    NASA Astrophysics Data System (ADS)

    Rhodes, Michael L.; Jackson, Douglas W.; Azzawi, Yu-Ming; Glenn, William V.; Howland, Robert S.; Rothman, Stephen L.

    1984-08-01

    Computed tomography (CT) scanners provide images of internal anatomy with unsurpassed spatial resolution. Since these images are inherently digital, computer systems can be used to simulate, plan, and guide surgical procedures to submillimeter precision. The combination of CT images, specially designed instruments, and the software to coordinate them results in improved accuracy for stereotactic surgery. This paper introduces per cutaneous cruciate ligament replacement as a new application for computer-aided ster eotaxi s. The procedure is described here with the knee firmly attached to a custom device. Twenty-five to thirty CT scans are performed to view the knee in detail, with special care taken to visualize the cruciate ligaments and their attachment to the tibia and femur. At the display console, two trajectories are chosen, using images delivered by the scanner and alternative views generated by software. These trajectories position two attachment shafts through skeletal structure in the knee to secure a replacement cruciate ligament. Interaction is illustrated that allows both the selection of the trajectories and the simulated surgery along their path. Anatomy intersected by the proposed trajectories can be reviewed in detail prior to actual surgery. Once reviewed, frame sittings are delivered by the computer system to drill the ligament attachment shafts. A replacement cruciate ligament can be passed through these two drill holes. Only an arthroscopic procedure is needed for later fixation of the ligament. In this manner, 4-6 hour open surgery of the knee is avoided and patient rehabilitation should be reduced from several months to 4-5 weeks. The frame, software, procedure, and computational aspects of the interaction are described. Test and patient results are given.

  1. Implementation Of True 3D Cursors In Computer Graphics

    NASA Astrophysics Data System (ADS)

    Butts, David R.; McAllister, David F.

    1988-06-01

    The advances in stereoscopic image display techniques have shown an increased need for real-time interaction with the three-dimensional image. We have developed a prototype real-time stereoscopic cursor to investigate this interaction. The results have pointed out areas where hardware speeds are a limiting factor, as well as areas where various methodologies cause perceptual difficulties. This paper addresses the psychological and perceptual anomalies involved in stereo image techniques, cursor generation and motion, and the use of the device as a 3D drawing and depth measuring tool.

  2. Use of computer-assisted courseware in teaching neuroscience: the Graphic Brain.

    PubMed

    Teyler, T J; Voneida, T J

    1992-12-01

    We describe the development of a computer-assisted instructional tool for the neurosciences. Designed to run on readily available MS-DOS computers, the Graphic Brain utilizes computer-generated static and animated images and accompanying text to assist in instruction of neuroanatomy and neurophysiology. We have used the Graphic Brain in our medical neuroscience course and report that, as measured anecdotally and by test scores, it facilitates student comprehension of the space- and time-varying aspects of anatomy and physiology. When the Graphic Brain is used as an adjunct to lecture, we find that we can cover the same material in 75% of the time required using traditional methods. PMID:1476214

  3. Identification of natural images and computer-generated graphics based on statistical and textural features.

    PubMed

    Peng, Fei; Li, Jiao-ting; Long, Min

    2015-03-01

    To discriminate the acquisition pipelines of digital images, a novel scheme for the identification of natural images and computer-generated graphics is proposed based on statistical and textural features. First, the differences between them are investigated from the view of statistics and texture, and 31 dimensions of feature are acquired for identification. Then, LIBSVM is used for the classification. Finally, the experimental results are presented. The results show that it can achieve an identification accuracy of 97.89% for computer-generated graphics, and an identification accuracy of 97.75% for natural images. The analyses also demonstrate the proposed method has excellent performance, compared with some existing methods based only on statistical features or other features. The method has a great potential to be implemented for the identification of natural images and computer-generated graphics. PMID:25537575

  4. 3D object optonumerical acquisition methods for CAD/CAM and computer graphics systems

    NASA Astrophysics Data System (ADS)

    Sitnik, Robert; Kujawinska, Malgorzata; Pawlowski, Michal E.; Woznicki, Jerzy M.

    1999-08-01

    The creation of a virtual object for CAD/CAM and computer graphics on the base of data gathered by full-field optical measurement of 3D object is presented. The experimental co- ordinates are alternatively obtained by combined fringe projection/photogrammetry based system or fringe projection/virtual markers setup. The new and fully automatic procedure which process the cloud of measured points into triangular mesh accepted by CAD/CAM and computer graphics systems is presented. Its applicability for various classes of objects is tested including the error analysis of virtual objects generated. The usefulness of the method is proved by applying the virtual object in rapid prototyping system and in computer graphics environment.

  5. Improving Secondary Practical Computer Skills: Logo Test Scores through Graphically Designed Computer Programs and Utilization of Multimedia and Technology.

    ERIC Educational Resources Information Center

    Miller, Douglas S.

    The intent of this project was to improve test and programming scores of 9th through 12th grade students enrolled in the Practical Computer Skills: Logo course in a north central Florida high school. An implementation program that demonstrated teacher-designed graphical computer language Logo programs, utilized multimedia techniques, and used…

  6. Computer-Based Learning: Graphical Integration of Whole and Sectional Neuroanatomy Improves Long-Term Retention

    PubMed Central

    Naaz, Farah; Chariker, Julia H.; Pani, John R.

    2013-01-01

    A study was conducted to test the hypothesis that instruction with graphically integrated representations of whole and sectional neuroanatomy is especially effective for learning to recognize neural structures in sectional imagery (such as MRI images). Neuroanatomy was taught to two groups of participants using computer graphical models of the human brain. Both groups learned whole anatomy first with a three-dimensional model of the brain. One group then learned sectional anatomy using two-dimensional sectional representations, with the expectation that there would be transfer of learning from whole to sectional anatomy. The second group learned sectional anatomy by moving a virtual cutting plane through the three-dimensional model. In tests of long-term retention of sectional neuroanatomy, the group with graphically integrated representation recognized more neural structures that were known to be challenging to learn. This study demonstrates the use of graphical representation to facilitate a more elaborated (deeper) understanding of complex spatial relations. PMID:24563579

  7. Computer graphics of center of masticatory forces in complete dentures.

    PubMed

    Ogata, K; Kawahara, K; Kishimoto, E; Ogata, S

    1995-01-01

    1. INTRODUCTION. In dental education, it is valuable to show visually the differences between a good-fitting and an ill-fitting complete denture. A vector of masticatory forces across all the teeth of the denture is available to estimate the capability of the denture. The vector is simple while the forces exerted on a denture are very complex. A vector has only two factors, the point of application (center of force) and the magnitude. Because a complete denture acts as a unit, we can obtain the vector from electrical signals detected by transducers installed in the denture base. The aim of this study was to develop software which is able to show visually to dental students, the differences between the vectors of the dentures of three representative complete denture wearers. 2. METHODS. Three subjects, each with either a good, a moderate or an ill-fitting complete denture, were selected. Subject 1 could use the denture very comfortably during experiment. Subject 2 was uncomfortable at the insertion of the new denture, but after adaptations to the denture he could use it very well. Subject 3 had been uncomfortable during the experiment. A bottom complete denture was divided into upper and lower parts. These were connected by the four force-detecting units which were embedded in approximately the first premolar and second molar regions on both sides of the denture. The electric signals from these units during the chewing of peanuts and raisins (sampling time period: 30 msec) were recorded as digital signals and processed using the computer (Macintosh IIcx, Apple Computer) with the A/D converter (Lab-NB), National Instruments). Center and magnitudes of masticatory force were calculated from all sampling points using our newly developed software scripted by ¿C¿ (MPW C, Apple Computer). On the other hand, a tracing of the external shape of the dentition of the denture was made using the project (V-12, NIKON). The tracing of the dentition, with center and magnitude of

  8. PLOTTER: An independent computer program for the generation of graphical displays

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.; Hirsch, G. N.

    1974-01-01

    A computer program is described for generating graphical information from input data or auxiliary analysis programs on a variety of graphical devices. Options are presented for tabulating the data in columnar format and for plotting auxiliary text in the vicinity of the plotted information. Display device selection is accomplished by interfacing the basic computer code through routines which convert the internally generated plot vectors to hardware commands for the display device. The plotting techniques employed in the computer program are discussed. User's instructions are presented with examples which illustrate the use of the program in generating plotted information from various sources and presenting the information in alternate plot formats. Technical discussion of the computer code is presented giving the physical characteristics, computer loading instructions and descriptions of the subroutines.

  9. Three-Dimensional Computer Animated Graphics: A Tool for Spatial Skill Instruction.

    ERIC Educational Resources Information Center

    Zavotka, Susan Lee

    1987-01-01

    Describes study of home economics students at Ohio State University that investigated whether computer animated graphics that replicate mental images of rotation and dimensional transformation would be useful in the development of spatial skills. Orthographic drawings are described, and results for treatment and control groups are analyzed. (29…

  10. Using 3D Computer Graphics Multimedia to Motivate Preservice Teachers' Learning of Geometry and Pedagogy

    ERIC Educational Resources Information Center

    Goodson-Espy, Tracy; Lynch-Davis, Kathleen; Schram, Pamela; Quickenton, Art

    2010-01-01

    This paper describes the genesis and purpose of our geometry methods course, focusing on a geometry-teaching technology we created using NVIDIA[R] Chameleon demonstration. This article presents examples from a sequence of lessons centered about a 3D computer graphics demonstration of the chameleon and its geometry. In addition, we present data…

  11. Role of computer graphics in space telerobotics - Preview and predictive displays

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Venema, Steven; Kim, Won S.

    1991-01-01

    The application of computer graphics in space telerobotics research and development work is briefly reviewed and illustrated by specific examples implemented in real time operation. The applications are discussed under the following four major categories: preview displays, predictive displays, sensor data displays, and control system status displays.

  12. Modern Teaching Methods in Physics with the Aid of Original Computer Codes and Graphical Representations

    ERIC Educational Resources Information Center

    Ivanov, Anisoara; Neacsu, Andrei

    2011-01-01

    This study describes the possibility and advantages of utilizing simple computer codes to complement the teaching techniques for high school physics. The authors have begun working on a collection of open source programs which allow students to compare the results and graphics from classroom exercises with the correct solutions and further more to…

  13. Graphical Methods: A Review of Current Methods and Computer Hardware and Software. Technical Report No. 27.

    ERIC Educational Resources Information Center

    Bessey, Barbara L.; And Others

    Graphical methods for displaying data, as well as available computer software and hardware, are reviewed. The authors have emphasized the types of graphs which are most relevant to the needs of the National Center for Education Statistics (NCES) and its readers. The following types of graphs are described: tabulations, stem-and-leaf displays,…

  14. The Land of WYSIWYG, Plain Talk about New Computer Graphics in the Journalism Classroom.

    ERIC Educational Resources Information Center

    Abrams, Michael E.; Norvelle, Ronald L.

    Intended for journalism school instructors and administrators as they make decisions about purchasing computers to help teach graphics and typology, this guide discusses seven areas of weakness in journalism curricula and ways in which schools should prepare themselves for new technologies. The introduction first discusses WYSIWYG--"what you see…

  15. Computer Graphics Orientation and Training in a Corporate/Production Environment.

    ERIC Educational Resources Information Center

    McDevitt, Marsha Jean

    This master's thesis provides an overview of a computer graphics production environment and proposes a realistic approach to orientation and on-going training for employees working within a fast-paced production schedule. Problems involved in meeting the training needs of employees are briefly discussed in the first chapter, while the second…

  16. The Representation of Highly Non-Ideal Phase Equilibria Using Computer Graphics.

    ERIC Educational Resources Information Center

    Charos, Georgios N.; And Others

    1986-01-01

    Previous work focused on use of computer graphics in teaching thermodynamic phase equilibria for classes I and II. Extends this work to include the considerably more non-ideal phase behavior shown by classes III, IV, and V. Student and instructor response has been overwhelmingly positive about the approach. (JN)

  17. Emphasizing Planning for Essay Writing with a Computer-Based Graphic Organizer

    ERIC Educational Resources Information Center

    Evmenova, Anya S.; Regan, Kelley; Boykin, Andrea; Good, Kevin; Hughes, Melissa; MacVittie, Nichole; Sacco, Donna; Ahn, Soo Y.; Chirinos, David

    2016-01-01

    The authors conducted a multiple-baseline study to investigate the effects of a computer-based graphic organizer (CBGO) with embedded self-regulated learning strategies on the quantity and quality of persuasive essay writing by students with high-incidence disabilities. Ten seventh- and eighth-grade students with learning disabilities, emotional…

  18. Computer graphics testbed to simulate and test vision systems for space applications

    NASA Technical Reports Server (NTRS)

    Cheatham, John B.

    1991-01-01

    Research activity has shifted from computer graphics and vision systems to the broader scope of applying concepts of artificial intelligence to robotics. Specifically, the research is directed toward developing Artificial Neural Networks, Expert Systems, and Laser Imaging Techniques for Autonomous Space Robots.

  19. Computer-Based Graphic Organizers for Students with LD: A Systematic Review of Literature

    ERIC Educational Resources Information Center

    Ciullo, Stephen; Reutebuch, Colleen

    2013-01-01

    This article presents a systematic review of the literature for studies that utilized computer-based graphic organizers for students with learning disabilities. A comprehensive search yielded 12 studies that were coded and analyzed. The authors investigated the effectiveness of the treatments on academic outcomes, and selected integral…

  20. A computer graphics display technique for the examination of aircraft design data

    NASA Technical Reports Server (NTRS)

    Talcott, N. A., Jr.

    1981-01-01

    An interactive computer graphics technique has been developed for quickly sorting and interpreting large amounts of aerodynamic data. It utilizes a graphic representation rather than numbers. The geometry package represents the vehicle as a set of panels. These panels are ordered in groups of ascending values (e.g., equilibrium temperatures). The groups are then displayed successively on a CRT building up to the complete vehicle. A zoom feature allows for displaying only the panels with values between certain limits. The addition of color allows a one-time display thus eliminating the need for a display build up.

  1. Digitizing program for the Tektronix 4050 series computers with the Tektronix 4956 graphics tablet

    SciTech Connect

    McClenahan, C.R.

    1986-05-01

    A digitizing code written in BASIC which runs on Tektronix 4050 series graphics computers, interfaced to Tektronix 4956 graphics tablets is described. Using a hand held cursor, the user can interactivity digitize analog data, which gives the user maximum control over the digitizing process. The process is simple enough that a user can digitize an oscillogram in a few minutes. With reasonable care, a user can digitize an oscillogram with a precision that is comparable to the width of the trace. 5 refs., 8 figs.

  2. NATURAL graphics

    NASA Technical Reports Server (NTRS)

    Jones, R. H.

    1984-01-01

    The hardware and software developments in computer graphics are discussed. Major topics include: system capabilities, hardware design, system compatibility, and software interface with the data base management system.

  3. computer graphics

    2001-06-08

    MUSTAFA is a scientific visualization package for visualizing data in the EXODUSII file format. These data files are typically priduced from Sandia's suite of finite element engineering analysis codes.

  4. A graphical algorithm for fast computation of identity coefficients and generalized kinship coefficients

    PubMed Central

    Abney, Mark

    2009-01-01

    Summary: Computing the probability of identity by descent sharing among n genes given only the pedigree of those genes is a computationally challenging problem, if n or the pedigree size is large. Here, I present a novel graphical algorithm for efficiently computing all generalized kinship coefficients for n genes. The graphical description transforms the problem from doing many recursion on the pedigree to doing a single traversal of a structure referred to as the kinship graph. Availability: The algorithm is implemented for n = 4 in the software package IdCoefs at http://home.uchicago.edu/abney/Software.html. Contact: abney@bsd.uchicago.edu Supplementary Information:Supplementary data are available at Bioinformatics online. PMID:19359355

  5. Animated computer graphics models of space and earth sciences data generated via the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Treinish, Lloyd A.; Gough, Michael L.; Wildenhain, W. David

    1987-01-01

    The capability was developed of rapidly producing visual representations of large, complex, multi-dimensional space and earth sciences data sets via the implementation of computer graphics modeling techniques on the Massively Parallel Processor (MPP) by employing techniques recently developed for typically non-scientific applications. Such capabilities can provide a new and valuable tool for the understanding of complex scientific data, and a new application of parallel computing via the MPP. A prototype system with such capabilities was developed and integrated into the National Space Science Data Center's (NSSDC) Pilot Climate Data System (PCDS) data-independent environment for computer graphics data display to provide easy access to users. While developing these capabilities, several problems had to be solved independently of the actual use of the MPP, all of which are outlined.

  6. Experiments with a low-cost system for computer graphics material model acquisition

    NASA Astrophysics Data System (ADS)

    Rushmeier, Holly; Lockerman, Yitzhak; Cartwright, Luke; Pitera, David

    2015-03-01

    We consider the design of an inexpensive system for acquiring material models for computer graphics rendering applications in animation, games and conceptual design. To be useful in these applications a system must be able to model a rich range of appearances in a computationally tractable form. The range of appearance of interest in computer graphics includes materials that have spatially varying properties, directionality, small-scale geometric structure, and subsurface scattering. To be computationally tractable, material models for graphics must be compact, editable, and efficient to numerically evaluate for ray tracing importance sampling. To construct appropriate models for a range of interesting materials, we take the approach of separating out directly and indirectly scattered light using high spatial frequency patterns introduced by Nayar et al. in 2006. To acquire the data at low cost, we use a set of Raspberry Pi computers and cameras clamped to miniature projectors. We explore techniques to separate out surface and subsurface indirect lighting. This separation would allow the fitting of simple, and so tractable, analytical models to features of the appearance model. The goal of the system is to provide models for physically accurate renderings that are visually equivalent to viewing the original physical materials.

  7. Three-dimensional graphics simulator for testing mine machine computer-controlled algorithms -- phase 1 development

    SciTech Connect

    Ambrose, D.H. )

    1993-01-01

    Using three-dimensional (3-D) graphics computing to evaluate new technologies for computer-assisted mining systems illustrates how these visual techniques can redefine the way researchers look at raw scientific data. The US Bureau of Mines is using 3-D graphics computing to obtain cheaply, easily, and quickly information about the operation and design of current and proposed mechanical coal and metal-nonmetal mining systems. Bureau engineers developed a graphics simulator for a continuous miner that enables a realistic test for experimental software that controls the functions of a machine. Some of the specific simulated functions of the continuous miner are machine motion, appendage motion, machine position, and machine sensors. The simulator uses data files generated in the laboratory or mine using a computer-assisted mining machine. The data file contains information from a laser-based guidance system and a data acquisition system that records all control commands given to a computer-assisted mining machine. This report documents the first phase in developing the simulator and discusses simulator requirements, features of the initial simulator, and several examples of its application. During this endeavor, Bureau engineers discovered and appreciated the simulator's potential to assist their investigations of machine controls and navigation systems.

  8. First 3 years of operation of RIACS (Research Institute for Advanced Computer Science) (1983-1985)

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1986-01-01

    The focus of the Research Institute for Advanced Computer Science (RIACS) is to explore matches between advanced computing architectures and the processes of scientific research. An architecture evaluation of the MIT static dataflow machine, specification of a graphical language for expressing distributed computations, and specification of an expert system for aiding in grid generation for two-dimensional flow problems was initiated. Research projects for 1984 and 1985 are summarized.

  9. An evolving infrastructure for scientific computing and the integration of new graphics technology

    SciTech Connect

    Fong, K.W.

    1993-02-01

    The National Energy Research Supercomputer Center (NERSC) at the Lawrence Livermore National Laboratory is currently pursuing several projects to implement and integrate new hardware and software technologies. While each of these projects ought to be and is in fact individually justifiable, there is an appealing metaphor for viewing them collectively which provides a simple and memorable way to understand the future direction not only of supercomputing services but of computer centers in general. Once this general direction is understood, it becomes clearer what future computer graphics technologies would be possible and desirable, at least within the context of large scale scientific computing.

  10. A computer graphics based model for scattering from objects of arbitrary shapes in the optical region

    NASA Technical Reports Server (NTRS)

    Goel, Narendra S.; Rozehnal, Ivan; Thompson, Richard L.

    1991-01-01

    A computer-graphics-based model, named DIANA, is presented for generation of objects of arbitrary shape and for calculating bidirectional reflectances and scattering from them, in the visible and infrared region. The computer generation is based on a modified Lindenmayer system approach which makes it possible to generate objects of arbitrary shapes and to simulate their growth, dynamics, and movement. Rendering techniques are used to display an object on a computer screen with appropriate shading and shadowing and to calculate the scattering and reflectance from the object. The technique is illustrated with scattering from canopies of simulated corn plants.

  11. Applications of computer-graphics animation for motion-perception research

    NASA Technical Reports Server (NTRS)

    Proffitt, D. R.; Kaiser, M. K.

    1986-01-01

    The advantages and limitations of using computer animated stimuli in studying motion perception are presented and discussed. Most current programs of motion perception research could not be pursued without the use of computer graphics animation. Computer generated displays afford latitudes of freedom and control that are almost impossible to attain through conventional methods. There are, however, limitations to this presentational medium. At present, computer generated displays present simplified approximations of the dynamics in natural events. Very little is known about how the differences between natural events and computer simulations influence perceptual processing. In practice, the differences are assumed to be irrelevant to the questions under study, and that findings with computer generated stimuli will generalize to natural events.

  12. Future Directions in Computer Graphics and Visualization: From CG&A's Editorial Board

    SciTech Connect

    Encarnacao, L. M.; Chuang, Yung-Yu; Stork, Andre; Kasik, David; Rhyne, Theresa-Marie; Avila, Lisa; Kohlhammer, Jorn; LaViola, Joseph; Tory, Melanie; Dill, John; Domik, Gitta; Owen, G. Scott; Wong, Pak C.

    2015-01-01

    With many new members joining the CG&A editorial board over the past year, and with a renewed commitment to not only document the state of the art in computer graphics research and applications but to anticipate and where possible foster future areas of scientific discourse and industrial practice, we asked editorial and advisory council members about where they see their fields of expertise going. The answers compiled here aren’t meant to be all encompassing or deterministic when it comes to the opportunities computer graphics and interactive visualization hold for the future. Instead, we aim to accomplish two things: give a more in-depth introduction of members of the editorial board to the CG&A readership and encourage cross-disciplinary discourse toward approaching, complementing, or disputing the visions laid out in this compilation.

  13. Computer graphics testbed to simulate and test vision systems for space applications

    NASA Technical Reports Server (NTRS)

    Cheatham, John B.

    1991-01-01

    Artificial intelligence concepts are applied to robotics. Artificial neural networks, expert systems and laser imaging techniques for autonomous space robots are being studied. A computer graphics laser range finder simulator developed by Wu has been used by Weiland and Norwood to study use of artificial neural networks for path planning and obstacle avoidance. Interest is expressed in applications of CLIPS, NETS, and Fuzzy Control. These applications are applied to robot navigation.

  14. Computation of determinant expansion coefficients within the graphically contracted function method.

    SciTech Connect

    Gidofalvi, G.; Shepard, R.; Chemical Sciences and Engineering Division

    2009-11-30

    Most electronic structure methods express the wavefunction as an expansion of N-electron basis functions that are chosen to be either Slater determinants or configuration state functions. Although the expansion coefficient of a single determinant may be readily computed from configuration state function coefficients for small wavefunction expansions, traditional algorithms are impractical for systems with a large number of electrons and spatial orbitals. In this work, we describe an efficient algorithm for the evaluation of a single determinant expansion coefficient for wavefunctions expanded as a linear combination of graphically contracted functions. Each graphically contracted function has significant multiconfigurational character and depends on a relatively small number of variational parameters called arc factors. Because the graphically contracted function approach expresses the configuration state function coefficients as products of arc factors, a determinant expansion coefficient may be computed recursively more efficiently than with traditional configuration interaction methods. Although the cost of computing determinant coefficients scales exponentially with the number of spatial orbitals for traditional methods, the algorithm presented here exploits two levels of recursion and scales polynomially with system size. Hence, as demonstrated through applications to systems with hundreds of electrons and orbitals, it may readily be applied to very large systems.

  15. Computation of determinant expansion coefficients within the graphically contracted function method.

    PubMed

    Gidofalvi, Gergely; Shepard, Ron

    2009-11-30

    Most electronic structure methods express the wavefunction as an expansion of N-electron basis functions that are chosen to be either Slater determinants or configuration state functions. Although the expansion coefficient of a single determinant may be readily computed from configuration state function coefficients for small wavefunction expansions, traditional algorithms are impractical for systems with a large number of electrons and spatial orbitals. In this work, we describe an efficient algorithm for the evaluation of a single determinant expansion coefficient for wavefunctions expanded as a linear combination of graphically contracted functions. Each graphically contracted function has significant multiconfigurational character and depends on a relatively small number of variational parameters called arc factors. Because the graphically contracted function approach expresses the configuration state function coefficients as products of arc factors, a determinant expansion coefficient may be computed recursively more efficiently than with traditional configuration interaction methods. Although the cost of computing determinant coefficients scales exponentially with the number of spatial orbitals for traditional methods, the algorithm presented here exploits two levels of recursion and scales polynomially with system size. Hence, as demonstrated through applications to systems with hundreds of electrons and orbitals, it may readily be applied to very large systems. PMID:19360796

  16. Creating Interactive Graphical Overlays in the Advanced Weather Interactive Processing System Using Shapefiles and DGM Files

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Lafosse, Richard; Hood, Doris; Hoeth, Brian

    2007-01-01

    Graphical overlays can be created in real-time in the Advanced Weather Interactive Processing System (AWIPS) using shapefiles or Denver AWIPS Risk Reduction and Requirements Evaluation (DARE) Graphics Metafile (DGM) files. This presentation describes how to create graphical overlays on-the-fly for AWIPS, by using two examples of AWIPS applications that were created by the Applied Meteorology Unit (AMU) located at Cape Canaveral Air Force Station (CCAFS), Florida. The first example is the Anvil Threat Corridor Forecast Tool, which produces a shapefile that depicts a graphical threat corridor of the forecast movement of thunderstorm anvil clouds, based on the observed or forecast upper-level winds. This tool is used by the Spaceflight Meteorology Group (SMG) at Johnson Space Center, Texas and 45th Weather Squadron (45 WS) at CCAFS to analyze the threat of natural or space vehicle-triggered lightning over a location. The second example is a launch and landing trajectory tool that produces a DGM file that plots the ground track of space vehicles during launch or landing. The trajectory tool can be used by SMG and the 45 WS forecasters to analyze weather radar imagery along a launch or landing trajectory. The presentation will list the advantages and disadvantages of both file types for creating interactive graphical overlays in future AWIPS applications. Shapefiles are a popular format used extensively in Geographical Information Systems. They are usually used in AWIPS to depict static map backgrounds. A shapefile stores the geometry and attribute information of spatial features in a dataset (ESRI 1998). Shapefiles can contain point, line, and polygon features. Each shapefile contains a main file, index file, and a dBASE table. The main file contains a record for each spatial feature, which describes the feature with a list of its vertices. The index file contains the offset of each record from the beginning of the main file. The dBASE table contains records for each

  17. Computation of Large Covariance Matrices by SAMMY on Graphical Processing Units and Multicore CPUs

    SciTech Connect

    Arbanas, Goran; Dunn, Michael E; Wiarda, Dorothea

    2011-01-01

    Computational power of Graphical Processing Units and multicore CPUs was harnessed by the nuclear data evaluation code SAMMY to speed up computations of large Resonance Parameter Covariance Matrices (RPCMs). This was accomplished by linking SAMMY to vendor-optimized implementations of the matrix-matrix multiplication subroutine of the Basic Linear Algebra Library to compute the most time-consuming step. The U-235 RPCM computed previously using a triple-nested loop was re-computed using the NVIDIA implementation of the subroutine on a single Tesla Fermi Graphical Processing Unit, and also using the Intel's Math Kernel Library implementation on two different multicore CPU systems. A multiplication of two matrices of dimensions 16,000 x 20,000 that had previously taken days, took approximately one minute on the GPU. Similar performance was achieved on a dual six-core CPU system. The magnitude of the speed-up suggests that these, or similar, combinations of hardware and libraries may be useful for large matrix operations in SAMMY. Uniform interfaces of standard linear algebra libraries make them a promising candidate for a programming framework of a new generation of SAMMY for the emerging heterogeneous computing platforms.

  18. Java and Vector Graphics Tools for Element Production Calculations in Computational Astrophysics

    NASA Astrophysics Data System (ADS)

    Lingerfelt, Eric; McMahon, Erin; Hix, Raph; Guidry, Mike; Smith, Michael

    2002-08-01

    We are developing a set of extendable, cross-platform tools and interfaces using Java and vector technologies such as SVG and SWF to facilitate element production calculations in computational astrophysics. The Java technologies are customizable and portable, and can be utilized as a stand-alone application or distributed across a network. These tools, which can have a broad applications in general scientific visualization, are currently being used to explore and compare various reaction rates, set up and run explosive nucleosynthesis calculations, and visualize these results with compact, high quality vector graphics. The facilities for reading and plotting nuclear reaction rates and their components from a network or library permit the user to include new rates and adjust current ones. Setup and initialization of a nucleosynthesis calculation is through an intuitive graphical interface. Sophisticated visualization and graphical analysis tools offer the ability to view results in an interactive, scalable vector graphics format, which leads to a dramatic reduction in visualization file sizes while maintaining high visual quality and interactive control. The use of these tools for other applications will also be mentioned.

  19. A Parallel Implementation of a Smoothed Particle Hydrodynamics Method on Graphics Hardware Using the Compute Unified Device Architecture

    SciTech Connect

    Wong Unhong; Wong Honcheng; Tang Zesheng

    2010-05-21

    The smoothed particle hydrodynamics (SPH), which is a class of meshfree particle methods (MPMs), has a wide range of applications from micro-scale to macro-scale as well as from discrete systems to continuum systems. Graphics hardware, originally designed for computer graphics, now provide unprecedented computational power for scientific computation. Particle system needs a huge amount of computations in physical simulation. In this paper, an efficient parallel implementation of a SPH method on graphics hardware using the Compute Unified Device Architecture is developed for fluid simulation. Comparing to the corresponding CPU implementation, our experimental results show that the new approach allows significant speedups of fluid simulation through handling huge amount of computations in parallel on graphics hardware.

  20. PHREEQCI; a graphical user interface for the geochemical computer program PHREEQC

    USGS Publications Warehouse

    Charlton, Scott R.; Macklin, Clifford L.; Parkhurst, David L.

    1997-01-01

    PhreeqcI is a Windows-based graphical user interface for the geochemical computer program PHREEQC. PhreeqcI provides the capability to generate and edit input data files, run simulations, and view text files containing simulation results, all within the framework of a single interface. PHREEQC is a multipurpose geochemical program that can perform speciation, inverse, reaction-path, and 1D advective reaction-transport modeling. Interactive access to all of the capabilities of PHREEQC is available with PhreeqcI. The interface is written in Visual Basic and will run on personal computers under the Windows(3.1), Windows95, and WindowsNT operating systems.

  1. The use of computer graphic techniques for the determination of ventricular function.

    NASA Technical Reports Server (NTRS)

    Sandler, H.; Rasmussen, D.

    1972-01-01

    Description of computer techniques employed to increase the speed, accuracy, reliability, and scope of angiocardiographic analyses determining human heart dimensions. Chamber margins are traced with a Calma 303 digitizer from projections of the angiographic films. The digitized margins of the ventricular images are filed in a computer for subsequent analysis. The margins can be displayed on the television screen of a graphics unit for individual study or they can be viewed in real time (or at any selected speed) to study dynamic changes in the chamber outline. The construction of three dimensional images of the ventricle is described.

  2. Why do commodity graphics hardware boards (GPUs) work so well for acceleration of computed tomography?

    NASA Astrophysics Data System (ADS)

    Mueller, Klaus; Xu, Fang; Neophytou, Neophytos

    2007-02-01

    Commodity graphics hardware boards (GPUs) have achieved remarkable speedups in various sub-areas of Computed Tomography (CT). This paper takes a close look at the GPU architecture and its programming model and describes a successful acceleration of Feldkamp's cone-beam CT reconstruction algorithm. Further, we will also have a comparative look at the new emerging Cell architecture in this regard, which similar to GPUs has also seen its first deployment in gaming and entertainment. To complete the discussion on high-performance PC-based computing platforms, we will also compare GPUs with FPGA (Field Programmable Gate Array) based medical imaging solutions.

  3. Finite element analysis and computer graphics visualization of flow around pitching and plunging airfoils

    NASA Technical Reports Server (NTRS)

    Bratanow, T.; Ecer, A.

    1973-01-01

    A general computational method for analyzing unsteady flow around pitching and plunging airfoils was developed. The finite element method was applied in developing an efficient numerical procedure for the solution of equations describing the flow around airfoils. The numerical results were employed in conjunction with computer graphics techniques to produce visualization of the flow. The investigation involved mathematical model studies of flow in two phases: (1) analysis of a potential flow formulation and (2) analysis of an incompressible, unsteady, viscous flow from Navier-Stokes equations.

  4. Business Graphics

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Genigraphics Corporation's Masterpiece 8770 FilmRecorder is an advanced high resolution system designed to improve and expand a company's in-house graphics production. GRAFTIME/software package was designed to allow office personnel with minimal training to produce professional level graphics for business communications and presentations. Products are no longer being manufactured.

  5. Structural zooming research and development of an interactive computer graphical interface for stress analysis of cracks

    NASA Technical Reports Server (NTRS)

    Gerstle, Walter

    1989-01-01

    Engineering problems sometimes involve the numerical solution of boundary value problems over domains containing geometric feature with widely varying scales. Often, a detailed solution is required at one or more of these features. Small details in large structures may have profound effects upon global performance. Conversely, large-scale conditions may effect local performance. Many man-hours and CPU-hours are currently spent in modeling such problems. With the structural zooming technique, it is now possible to design an integrated program which allows the analyst to interactively focus upon a small region of interest, to modify the local geometry, and then to obtain highly accurate responses in that region which reflect both the properties of the overall structure and the local detail. A boundary integral equation analysis program, called BOAST, was recently developed for the stress analysis of cracks. This program can accurately analyze two-dimensional linear elastic fracture mechanics problems with far less computational effort than existing finite element codes. An interactive computer graphical interface to BOAST was written. The graphical interface would have several requirements: it would be menu-driven, with mouse input; all aspects of input would be entered graphically; the results of a BOAST analysis would be displayed pictorially but also the user would be able to probe interactively to get numerical values of displacement and stress at desired locations within the analysis domain; the entire procedure would be integrated into a single, easy to use package; and it would be written using calls to the graphic package called HOOPS. The program is nearing completion. All of the preprocessing features are working satisfactorily and were debugged. The postprocessing features are under development, and rudimentary postprocessing should be available by the end of the summer. The program was developed and run on a VAX workstation, and must be ported to the SUN

  6. High performance graphics processor based computed tomography reconstruction algorithms for nuclear and other large scale applications.

    SciTech Connect

    Jimenez, Edward Steven,

    2013-09-01

    The goal of this work is to develop a fast computed tomography (CT) reconstruction algorithm based on graphics processing units (GPU) that achieves significant improvement over traditional central processing unit (CPU) based implementations. The main challenge in developing a CT algorithm that is capable of handling very large datasets is parallelizing the algorithm in such a way that data transfer does not hinder performance of the reconstruction algorithm. General Purpose Graphics Processing (GPGPU) is a new technology that the Science and Technology (S&T) community is starting to adopt in many fields where CPU-based computing is the norm. GPGPU programming requires a new approach to algorithm development that utilizes massively multi-threaded environments. Multi-threaded algorithms in general are difficult to optimize since performance bottlenecks occur that are non-existent in single-threaded algorithms such as memory latencies. If an efficient GPU-based CT reconstruction algorithm can be developed; computational times could be improved by a factor of 20. Additionally, cost benefits will be realized as commodity graphics hardware could potentially replace expensive supercomputers and high-end workstations. This project will take advantage of the CUDA programming environment and attempt to parallelize the task in such a way that multiple slices of the reconstruction volume are computed simultaneously. This work will also take advantage of the GPU memory by utilizing asynchronous memory transfers, GPU texture memory, and (when possible) pinned host memory so that the memory transfer bottleneck inherent to GPGPU is amortized. Additionally, this work will take advantage of GPU-specific hardware (i.e. fast texture memory, pixel-pipelines, hardware interpolators, and varying memory hierarchy) that will allow for additional performance improvements.

  7. Advancing manufacturing through computational chemistry

    SciTech Connect

    Noid, D.W.; Sumpter, B.G.; Tuzun, R.E.

    1995-12-31

    The capabilities of nanotechnology and computational chemistry are reaching a point of convergence. New computer hardware and novel computational methods have created opportunities to test proposed nanometer-scale devices, investigate molecular manufacturing and model and predict properties of new materials. Experimental methods are also beginning to provide new capabilities that make the possibility of manufacturing various devices with atomic precision tangible. In this paper, we will discuss some of the novel computational methods we have used in molecular dynamics simulations of polymer processes, neural network predictions of new materials, and simulations of proposed nano-bearings and fluid dynamics in nano- sized devices.

  8. Computer graphics testbed to simulate and test vision systems for space applications

    NASA Technical Reports Server (NTRS)

    Cheatham, John B.; Wu, Chris K.; Lin, Y. H.

    1991-01-01

    A system was developed for displaying computer graphics images of space objects and the use of the system was demonstrated as a testbed for evaluating vision systems for space applications. In order to evaluate vision systems, it is desirable to be able to control all factors involved in creating the images used for processing by the vision system. Considerable time and expense is involved in building accurate physical models of space objects. Also, precise location of the model relative to the viewer and accurate location of the light source require additional effort. As part of this project, graphics models of space objects such as the Solarmax satellite are created that the user can control the light direction and the relative position of the object and the viewer. The work is also aimed at providing control of hue, shading, noise and shadows for use in demonstrating and testing imaging processing techniques. The simulated camera data can provide XYZ coordinates, pitch, yaw, and roll for the models. A physical model is also being used to provide comparison of camera images with the graphics images.

  9. A two-dimensional graphing program for the Tektronix 4050-series graphics computers

    USGS Publications Warehouse

    Kipp, K.L.

    1983-01-01

    A refined, two-dimensional graph-plotting program was developed for use on Tektronix 4050-series graphics computers. Important features of this program include: any combination of logarithmic and linear axes, optional automatic scaling and numbering of the axes, multiple-curve plots, character or drawn symbol-point plotting, optional cartridge-tape data input and plot-format storage, optional spline fitting for smooth curves, and built-in data-editing options. The program is run while the Tektronix is not connected to any large auxiliary computer, although data from files on an auxiliary computer easily can be transferred to data-cartridge for later plotting. The user is led through the plot-construction process by a series of questions and requests for data input. Five example plots are presented to illustrate program capability and the sequence of program operation. (USGS)

  10. An interactive NASTRAN preprocessor. [graphic display of undeformed structure using CDC 6000 series computer

    NASA Technical Reports Server (NTRS)

    Smith, W. W.

    1973-01-01

    A Langley Research Center version of NASTRAN Level 15.1.0 designed to provide the analyst with an added tool for debugging massive NASTRAN input data is described. The program checks all NASTRAN input data cards and displays on a CRT the graphic representation of the undeformed structure. In addition, the program permits the display and alteration of input data and allows reexecution without physically resubmitting the job. Core requirements on the CDC 6000 computer are approximately 77,000 octal words of central memory.

  11. Quantum chromodynamics with advanced computing

    SciTech Connect

    Kronfeld, Andreas S.; /Fermilab

    2008-07-01

    We survey results in lattice quantum chromodynamics from groups in the USQCD Collaboration. The main focus is on physics, but many aspects of the discussion are aimed at an audience of computational physicists.

  12. Robot graphic simulation testbed

    NASA Technical Reports Server (NTRS)

    Cook, George E.; Sztipanovits, Janos; Biegl, Csaba; Karsai, Gabor; Springfield, James F.

    1991-01-01

    The objective of this research was twofold. First, the basic capabilities of ROBOSIM (graphical simulation system) were improved and extended by taking advantage of advanced graphic workstation technology and artificial intelligence programming techniques. Second, the scope of the graphic simulation testbed was extended to include general problems of Space Station automation. Hardware support for 3-D graphics and high processing performance make high resolution solid modeling, collision detection, and simulation of structural dynamics computationally feasible. The Space Station is a complex system with many interacting subsystems. Design and testing of automation concepts demand modeling of the affected processes, their interactions, and that of the proposed control systems. The automation testbed was designed to facilitate studies in Space Station automation concepts.

  13. Aerodynamic Analyses Requiring Advanced Computers, Part 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Papers are presented which deal with results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include: viscous flows, boundary layer equations, turbulence modeling and Navier-Stokes equations, and internal flows.

  14. Bringing Advanced Computational Techniques to Energy Research

    SciTech Connect

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  15. Aerodynamic Analyses Requiring Advanced Computers, part 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Papers given at the conference present the results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include two-dimensional configurations, three-dimensional configurations, transonic aircraft, and the space shuttle.

  16. Recovery Act: Advanced Interaction, Computation, and Visualization Tools for Sustainable Building Design

    SciTech Connect

    Greenberg, Donald P.; Hencey, Brandon M.

    2013-08-20

    Current building energy simulation technology requires excessive labor, time and expertise to create building energy models, excessive computational time for accurate simulations and difficulties with the interpretation of the results. These deficiencies can be ameliorated using modern graphical user interfaces and algorithms which take advantage of modern computer architectures and display capabilities. To prove this hypothesis, we developed an experimental test bed for building energy simulation. This novel test bed environment offers an easy-to-use interactive graphical interface, provides access to innovative simulation modules that run at accelerated computational speeds, and presents new graphics visualization methods to interpret simulation results. Our system offers the promise of dramatic ease of use in comparison with currently available building energy simulation tools. Its modular structure makes it suitable for early stage building design, as a research platform for the investigation of new simulation methods, and as a tool for teaching concepts of sustainable design. Improvements in the accuracy and execution speed of many of the simulation modules are based on the modification of advanced computer graphics rendering algorithms. Significant performance improvements are demonstrated in several computationally expensive energy simulation modules. The incorporation of these modern graphical techniques should advance the state of the art in the domain of whole building energy analysis and building performance simulation, particularly at the conceptual design stage when decisions have the greatest impact. More importantly, these better simulation tools will enable the transition from prescriptive to performative energy codes, resulting in better, more efficient designs for our future built environment.

  17. Experimental investigation of the persuasive impact of computer generated presentation graphics

    SciTech Connect

    Vogel, D.R.

    1986-01-01

    Computer generated presentation graphics are increasingly becoming a tool to aid management in communicating information and to cause an audience to accept a point of view or take action. Unfortunately, technological capability significantly exceeds current levels of user understanding and effective application. This research examines experimentally one aspect of this problem, the persuasive impact of characteristics of computer generated presentation graphics. The research was founded in theory based on the message learning approach to persuasion. Characteristics examined were color versus black and white, text versus image enhancement, and overhead transparencies versus 35 mm slides. Treatments were presented in association with a videotaped presentation intended to persuade subjects to invest time and money in a set of time management seminars. Data were collected using pre-measure, post measure, and post measure follow up questionnaires. Presentation support had a direct impact on perceptions of the presenter as well as components of persuasion, i.e., attention, comprehension, yielding, and retention. Further, a strong positive relationship existed between enhanced perceptions of the presenter and attention and yielding.

  18. Really Large Scale Computer Graphic Projection Using Lasers and Laser Substitutes

    NASA Astrophysics Data System (ADS)

    Rother, Paul

    1989-07-01

    This paper reflects on past laser projects to display vector scanned computer graphic images onto very large and irregular surfaces. Since the availability of microprocessors and high powered visible lasers, very large scale computer graphics projection have become a reality. Due to the independence from a focusing lens, lasers easily project onto distant and irregular surfaces and have been used for amusement parks, theatrical performances, concert performances, industrial trade shows and dance clubs. Lasers have been used to project onto mountains, buildings, 360° globes, clouds of smoke and water. These methods have proven successful in installations at: Epcot Theme Park in Florida; Stone Mountain Park in Georgia; 1984 Olympics in Los Angeles; hundreds of Corporate trade shows and thousands of musical performances. Using new ColorRayTM technology, the use of costly and fragile lasers is no longer necessary. Utilizing fiber optic technology, the functionality of lasers can be duplicated for new and exciting projection possibilities. The use of ColorRayTM technology has enjoyed worldwide recognition in conjunction with Pink Floyd and George Michaels' world wide tours.

  19. Computation of induced dipoles in molecular mechanics simulations using graphics processors.

    PubMed

    Pratas, Frederico; Sousa, Leonel; Dieterich, Johannes M; Mata, Ricardo A

    2012-05-25

    In this work, we present a tentative step toward the efficient implementation of polarizable molecular mechanics force fields with GPU acceleration. The computational bottleneck of such applications is found in the treatment of electrostatics, where higher-order multipoles and a self-consistent treatment of polarization effects are needed. We have implemented a GPU accelerated code, based on the Tinker program suite, for the computation of induced dipoles. The largest test system used shows a speedup factor of over 20 for a single precision GPU implementation, when comparing to the serial CPU version. A discussion of the optimization and parametrization steps is included. Comparison between different graphic cards and CPU-GPU embedding is also given. The current work demonstrates the potential usefulness of GPU programming in accelerating this field of applications. PMID:22536925

  20. Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models

    NASA Technical Reports Server (NTRS)

    Parke, F. I.

    1981-01-01

    Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.

  1. CREW CHIEF: A computer graphics simulation of an aircraft maintenance technician

    NASA Technical Reports Server (NTRS)

    Aume, Nilss M.

    1990-01-01

    Approximately 35 percent of the lifetime cost of a military system is spent for maintenance. Excessive repair time is caused by not considering maintenance during design. Problems are usually discovered only after a mock-up has been constructed, when it is too late to make changes. CREW CHIEF will reduce the incidence of such problems by catching design defects in the early design stages. CREW CHIEF is a computer graphic human factors evaluation system interfaced to commercial computer aided design (CAD) systems. It creates a three dimensional man model, either male or female, large or small, with various types of clothing and in several postures. It can perform analyses for physical accessibility, strength capability with tools, visual access, and strength capability for manual materials handling. The designer would produce a drawing on his CAD system and introduce CREW CHIEF in it. CREW CHIEF's analyses would then indicate places where problems could be foreseen and corrected before the design is frozen.

  2. Advanced laptop and small personal computer technology

    NASA Technical Reports Server (NTRS)

    Johnson, Roger L.

    1991-01-01

    Advanced laptop and small personal computer technology is presented in the form of the viewgraphs. The following areas of hand carried computers and mobile workstation technology are covered: background, applications, high end products, technology trends, requirements for the Control Center application, and recommendations for the future.

  3. Advanced Biomedical Computing Center (ABCC) | DSITP

    Cancer.gov

    The Advanced Biomedical Computing Center (ABCC), located in Frederick Maryland (MD), provides HPC resources for both NIH/NCI intramural scientists and the extramural biomedical research community. Its mission is to provide HPC support, to provide collaborative research, and to conduct in-house research in various areas of computational biology and biomedical research.

  4. Computer graphics simulations comparing reduced exposure mining equipment: Shuttle cars versus continuous haulage systems. Information circular/1994

    SciTech Connect

    Ambrose, D.H.

    1994-12-31

    The U.S. Bureau of Mines recently developed computer graphic simulations to characterize mining scenarios, specifically for room-and-pillar mining operations in a 3-entry longwall development section. These simulations compare productivity between computer-assisted shuttle car and continuous haulage system concepts. One of the continuous haulage system concepts has bolting capabilities that supplement its haulage function. Simulations showed the continuous haulage system to be more time efficient than the shuttle car system. Researchers can reuse the simulation code (e.g., mining rates and equipment capacities can be changed) should investigators care to compare production of other mining scenarios. Using computer graphics simulation, researchers found computer model design modification flaws and mining scenario conceptual errors. This report documents the computer graphic model and simulation developments and discusses some of the results and observations from the simulations.

  5. Advances and trends in computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1986-01-01

    Recent developments in computational structural mechanics are reviewed with reference to computational needs for future structures technology, advances in computational models for material behavior, discrete element technology, assessment and control of numerical simulations of structural response, hybrid analysis, and techniques for large-scale optimization. Research areas in computational structural mechanics which have high potential for meeting future technological needs are identified. These include prediction and analysis of the failure of structural components made of new materials, development of computational strategies and solution methodologies for large-scale structural calculations, and assessment of reliability and adaptive improvement of response predictions.

  6. A New Paradigm of Computer Graphics by Universal Solver for Solid, Liquid and Gas

    NASA Astrophysics Data System (ADS)

    Yabe, Takashi; Takizawa, Kenji; Xiao, Feng; Aoki, Takayuki; Himeno, Takehiro; Takahashi, Tsunemi; Kunimatsu, Atsushi

    We propose a new algorithm for producing computer graphics of melting and evaporation process of matter. Such a computation becomes possible by a universal solver for solid, liquid and gas based on the CIP (Cubic-Interpolated Propagation / Constrained Interpolation Profile) method proposed by one of the authors. This method can also be applied to the movement, deformation and even break up of solid, liquid and gas in one simple algorithm. Therefore seamless computation of all the phases of matter becomes possible. This enables us to reproduce natural phenomena in some instances by computation. In order to demonstrate this reality, we show how precisely the computational result replicates the movies of real phenomena. The flattering motions of metal disk in water and thin name card in air are treated showing accuracy of force calculation on the surface of sub-grid scale. Although the CIP uses semi-Lagrangian form algorithm, the exact mass conservation is guaranteed by additional tool. By using this scheme, separation of a bubble in bifurcation tube and splashing of water surface are successfully simulated.

  7. Opportunities in computational mechanics: Advances in parallel computing

    SciTech Connect

    Lesar, R.A.

    1999-02-01

    In this paper, the authors will discuss recent advances in computing power and the prospects for using these new capabilities for studying plasticity and failure. They will first review the new capabilities made available with parallel computing. They will discuss how these machines perform and how well their architecture might work on materials issues. Finally, they will give some estimates on the size of problems possible using these computers.

  8. A user's guide for DTIZE an interactive digitizing and graphical editing computer program

    NASA Technical Reports Server (NTRS)

    Thomas, C. C.

    1981-01-01

    A guide for DTIZE, a two dimensional digitizing program with graphical editing capability, is presented. DTIZE provides the capability to simultaneously create and display a picture on the display screen. Data descriptions may be permanently saved in three different formats. DTIZE creates the picture graphics in the locator mode, thus inputting one coordinate each time the terminator button is pushed. Graphic input devices (GIN) are also used to select function command menu. These menu commands and the program's interactive prompting sequences provide a complete capability for creating, editing, and permanently recording a graphical picture file. DTIZE is written in FORTRAN IV language for the Tektronix 4081 graphic system utilizing the Plot 80 Distributed Graphics Library (DGL) subroutines. The Tektronix 4953/3954 Graphic Tablet with mouse, pen, or joystick are used as graphics input devices to create picture graphics.

  9. Advances and challenges in computational plasma science

    NASA Astrophysics Data System (ADS)

    Tang, W. M.

    2005-02-01

    Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This

  10. Interactive Computing and Graphics in Undergraduate Digital Signal Processing. Microcomputing Working Paper Series F 84-9.

    ERIC Educational Resources Information Center

    Onaral, Banu; And Others

    This report describes the development of a Drexel University electrical and computer engineering course on digital filter design that used interactive computing and graphics, and was one of three courses in a senior-level sequence on digital signal processing (DSP). Interactive and digital analysis/design routines and the interconnection of these…

  11. Role of HPC in Advancing Computational Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2004-01-01

    On behalf of the High Performance Computing and Modernization Program (HPCMP) and NASA Advanced Supercomputing Division (NAS) a study is conducted to assess the role of supercomputers on computational aeroelasticity of aerospace vehicles. The study is mostly based on the responses to a web based questionnaire that was designed to capture the nuances of high performance computational aeroelasticity, particularly on parallel computers. A procedure is presented to assign a fidelity-complexity index to each application. Case studies based on major applications using HPCMP resources are presented.

  12. User's manual for a computer program to calculate discrete frequency noise of conventional and advanced propellers

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Farassat, F.

    1981-01-01

    A user's manual is presented for a computer program for the calculation of discrete frequency noise of conventional and advanced propellers. The structure of the program and the subroutines describing the input functions are discussed. Input variables and their default values and the variables in the output data sheet are defined. Two versions of the program are available. These differ only in the graphic output capability. One version has only printed output capability. A second version with extensive graphic output capability is available for the computer system at Langley. This Manual includes four detailed examples of both the printed and graphic outputs. These examples may be reproduced by users to check their code on their computer system.

  13. The use of computer-generated color graphic images for transient thermal analysis. [for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Edwards, C. L. W.; Meissner, F. T.; Hall, J. B.

    1979-01-01

    Color computer graphics techniques were investigated as a means of rapidly scanning and interpreting large sets of transient heating data. The data presented were generated to support the conceptual design of a heat-sink thermal protection system (TPS) for a hypersonic research airplane. Color-coded vector and raster displays of the numerical geometry used in the heating calculations were employed to analyze skin thicknesses and surface temperatures of the heat-sink TPS under a variety of trajectory flight profiles. Both vector and raster displays proved to be effective means for rapidly identifying heat-sink mass concentrations, regions of high heating, and potentially adverse thermal gradients. The color-coded (raster) surface displays are a very efficient means for displaying surface-temperature and heating histories, and thereby the more stringent design requirements can quickly be identified. The related hardware and software developments required to implement both the vector and the raster displays for this application are also discussed.

  14. The use of computer graphic simulation in the development of robotic systems

    NASA Technical Reports Server (NTRS)

    Fernandez, K.

    1986-01-01

    This paper describes the use of computer graphic simulation techniques to resolve critical design and operational issues for robotic systems. Use of this technology will result in greatly improved systems and reduced development costs. The major design issues in developing effective robotic systems are discussed and the use of ROBOSIM, a NASA developed simulation tool, to address these issues is presented. Three representative simulation case studies are reviewed: off-line programming of the robotic welding development cell for the Space Shuttle Main Engine (SSME); the integration of a sensor to control the robot used for removing the Thermal Protection System (TPS) from the Solid Rocket Booster (SRB); and the development of a teleoperator/robot mechanism for the Orbital Maneuvering Vehicle (OMV).

  15. The use of computer graphic simulation in the development of robotic systems

    NASA Technical Reports Server (NTRS)

    Fernandez, Ken

    1988-01-01

    The use of computer graphic simulation techniques to resolve critical design and operational issues for robotic systems is described. Use of this technology will result in greatly improved systems and reduced development costs. The major design issues in developing effective robotic systems are discussed and the use of ROBOSIM, a NASA developed simulation tool, to address these issues is presented. Three representative simulation case studies are reviewed: off-line programming of the robotic welding development cell for the Space Shuttle Main Engine; the integration of a sensor to control the robot used for removing the Thermal Protection System from the Solid Rocket Booster; and the development of a teleoperator/robot mechanism for the Orbital Maneuvering Vehicle.

  16. The use of computer graphic simulation in the development of robotic systems

    NASA Technical Reports Server (NTRS)

    Fernandez, Ken

    1987-01-01

    This paper describes the use of computer graphic simulation techniques to resolve critical design and operational issues for robotic systems. Use of this technology will result in greatly improved systems and reduced development costs. The major design issues in developing effective robotic systems are discussed and the use of ROBOSIM, a NASA developed simulation tool, to address these issues is presented. Three representative simulation case studies are reviewed: off-line programming of the robotic welding development cell for the Space Shuttle Main Engine (SSME); the integration of a sensor to control the robot used for removing the Thermal Protection System (TPS) from the Solid Rocket Booster (SRB); and the development of a teleoperator/robot mechanism for the Orbital Maneuvering Vehicle (OMV).

  17. uPy: a ubiquitous computer graphics Python API with Biological Modeling Applications

    PubMed Central

    Autin, L.; Johnson, G.; Hake, J.; Olson, A.; Sanner, M.

    2015-01-01

    In this paper we describe uPy, an extension module for the Python programming language that provides a uniform abstraction of the APIs of several 3D computer graphics programs called hosts, including: Blender, Maya, Cinema4D, and DejaVu. A plugin written with uPy is a unique piece of code that will run in all uPy-supported hosts. We demonstrate the creation of complex plug-ins for molecular/cellular modeling and visualization and discuss how uPy can more generally simplify programming for many types of projects (not solely science applications) intended for multi-host distribution. uPy is available at http://upy.scripps.edu PMID:24806987

  18. Glossiness of Colored Papers based on Computer Graphics Model and Its Measuring Method

    NASA Astrophysics Data System (ADS)

    Aida, Teizo

    In the case of colored papers, the color of surface effects strongly upon the gloss of its paper. The new glossiness for such a colored paper is suggested in this paper. First, using the Achromatic and Chromatic Munsell colored chips, the author obtained experimental equation which represents the relation between lightness V ( or V and saturation C ) and psychological glossiness Gph of these chips. Then, the author defined a new glossiness G for the colored papers, based on the above mentioned experimental equations Gph and Cook-Torrance's reflection model which are widely used in the filed of Computer Graphics. This new glossiness is shown to be nearly proportional to the psychological glossiness Gph. The measuring system for the new glossiness G is furthermore descrived. The measuring time for one specimen is within 1 minute.

  19. A distributed, graphical user interface based, computer control system for atomic physics experiments

    NASA Astrophysics Data System (ADS)

    Keshet, Aviv; Ketterle, Wolfgang

    2013-01-01

    Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.

  20. Computer graphic visualization of orbiter lower surface boundary-layer transition

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.; Hartung, L. C.

    1984-01-01

    Computer graphic techniques are applied to the processing of Shuttle Orbiter flight data in order to create a visual presentation of the extent and movement of the boundary-layer transition front over the orbiter lower surface during entry. Flight-measured surface temperature-time histories define the onset and completion of the boundary-layer transition process at any measurement location. The locus of points which define the spatial position of the boundary-layer transition front on the orbiter planform is plotted at each discrete time for which flight data are available. Displaying these images sequentially in real-time results in an animated simulation of the in-flight boundary-layer transition process.

  1. The implementation of the graphics of program EAGLE: A numerical grid generation code on NASA Langley SNS computer system

    NASA Technical Reports Server (NTRS)

    Houston, Johnny L.

    1989-01-01

    Program EAGLE (Eglin Arbitrary Geometry Implicit Euler) Numerical Grid Generation System is a composite (multi-block) algebraic or elliptic grid generation system designed to discretize the domain in and/or around any arbitrarily shaped three dimensional regions. This system combines a boundary conforming surface generation scheme and includes plotting routines designed to take full advantage of the DISSPLA Graphics Package (Version 9.0). Program EAGLE is written to compile and execute efficiently on any Cray machine with or without solid state disk (SSD) devices. Also, the code uses namelist inputs which are supported by all Cray machines using the FORTRAN compiler CFT77. The namelist inputs makes it easier for the user to understand the inputs and operation of Program EAGLE. EAGLE's numerical grid generator is constructed in the following form: main program, EGG (executive routine); subroutine SURFAC (surface generation routine); subroutine GRID (grid generation routine); and subroutine GRDPLOT (grid plotting routines). The EAGLE code was modified to use on the NASA-LaRC SNS computer (Cray 2S) system. During the modification a conversion program was developed for the output data of EAGLE's subroutine GRID to permit the data to be graphically displayed by IRIS workstations, using Plot3D. The code of program EAGLE was modified to make operational subroutine GRDPLOT (using DI-3000 Graphics Software Packages) on the NASA-LaRC SNS Computer System. How to implement graphically, the output data of subroutine GRID was determined on any NASA-LaRC graphics terminal that has access to the SNS Computer System DI-300 Graphics Software Packages. A Quick Reference User Guide was developed for the use of program EAGLE on the NASA-LaRC SNS Computer System. One or more application program(s) was illustrated using program EAGLE on the NASA LaRC SNS Computer System, with emphasis on graphics illustrations.

  2. Inferring Caravaggio's studio lighting and praxis in The calling of St. Matthew by computer graphics modeling

    NASA Astrophysics Data System (ADS)

    Stork, David G.; Nagy, Gabor

    2010-02-01

    We explored the working methods of the Italian Baroque master Caravaggio through computer graphics reconstruction of his studio, with special focus on his use of lighting and illumination in The calling of St. Matthew. Although he surely took artistic liberties while constructing this and other works and did not strive to provide a "photographic" rendering of the tableau before him, there are nevertheless numerous visual clues to the likely studio conditions and working methods within the painting: the falloff of brightness along the rear wall, the relative brightness of the faces of figures, and the variation in sharpness of cast shadows (i.e., umbrae and penumbrae). We explored two studio lighting hypotheses: that the primary illumination was local (and hence artificial) and that it was distant solar. We find that the visual evidence can be consistent with local (artificial) illumination if Caravaggio painted his figures separately, adjusting the brightness on each to compensate for the falloff in illumination. Alternatively, the evidence is consistent with solar illumination only if the rear wall had particular reflectance properties, as described by a bi-directional reflectance distribution function, BRDF. (Ours is the first research applying computer graphics to the understanding of artists' praxis that models subtle reflectance properties of surfaces through BRDFs, a technique that may find use in studies of other artists.) A somewhat puzzling visual feature-unnoted in the scholarly literature-is the upward-slanting cast shadow in the upper-right corner of the painting. We found this shadow is naturally consistent with a local illuminant passing through a small window perpendicular to the viewer's line of sight, but could also be consistent with solar illumination if the shadow was due to a slanted, overhanging section of a roof outside the artist's studio. Our results place likely conditions upon any hypotheses concerning Caravaggio's working methods and

  3. First 3 years of operation of RIACS (Research Institute for Advanced Computer Science) (1983-1985). Final Report

    SciTech Connect

    Denning, P.J.

    1986-04-01

    The focus of the Research Institute for Advanced Computer Science (RIACS) is to explore matches between advanced computing architectures and the processes of scientific research. An architecture evaluation of the MIT static dataflow machine, specification of a graphical language for expressing distributed computations, and specification of an expert system for aiding in grid generation for two-dimensional flow problems was initiated. Research projects for 1984 and 1985 are summarized.

  4. Advanced Computed-Tomography Inspection System

    NASA Technical Reports Server (NTRS)

    Harris, Lowell D.; Gupta, Nand K.; Smith, Charles R.; Bernardi, Richard T.; Moore, John F.; Hediger, Lisa

    1993-01-01

    Advanced Computed Tomography Inspection System (ACTIS) is computed-tomography x-ray apparatus revealing internal structures of objects in wide range of sizes and materials. Three x-ray sources and adjustable scan geometry gives system unprecedented versatility. Gantry contains translation and rotation mechanisms scanning x-ray beam through object inspected. Distance between source and detector towers varied to suit object. System used in such diverse applications as development of new materials, refinement of manufacturing processes, and inspection of components.

  5. Advances and Challenges in Computational Plasma Science

    SciTech Connect

    W.M. Tang; V.S. Chan

    2005-01-03

    Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behavior. Recent advances in simulations of magnetically-confined plasmas are reviewed in this paper with illustrative examples chosen from associated research areas such as microturbulence, magnetohydrodynamics, and other topics. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology.

  6. Digitizing zone maps, using modified LARSYS program. [computer graphics and computer techniques for mapping

    NASA Technical Reports Server (NTRS)

    Giddings, L.; Boston, S.

    1976-01-01

    A method for digitizing zone maps is presented, starting with colored images and producing a final one-channel digitized tape. This method automates the work previously done interactively on the Image-100 and Data Analysis System computers of the Johnson Space Center (JSC) Earth Observations Division (EOD). A color-coded map was digitized through color filters on a scanner to form a digital tape in LARSYS-2 or JSC Universal format. The taped image was classified by the EOD LARSYS program on the basis of training fields included in the image. Numerical values were assigned to all pixels in a given class, and the resulting coded zone map was written on a LARSYS or Universal tape. A unique spatial filter option permitted zones to be made homogeneous and edges of zones to be abrupt transitions from one zone to the next. A zoom option allowed the output image to have arbitrary dimensions in terms of number of lines and number of samples on a line. Printouts of the computer program are given and the images that were digitized are shown.

  7. Parietal Neural Prosthetic Control of a Computer Cursor in a Graphical-User-Interface Task

    PubMed Central

    Revechkis, Boris; Aflalo, Tyson NS; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A

    2014-01-01

    Objective To date, the majority of Brain Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. Approach A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in Area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like “Face in a Crowd” task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the “Crowd”) using a neurally controlled cursor. We assessed whether the Crowd affected decodes of intended cursor movements by comparing it to a “Crowd Off” condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Main Results Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the Crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Significance Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet

  8. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task

    NASA Astrophysics Data System (ADS)

    Revechkis, Boris; Aflalo, Tyson NS; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A.

    2014-12-01

    Objective. To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. Approach. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like ‘Face in a Crowd’ task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the ‘Crowd’) using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a ‘Crowd Off’ condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Main results. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Significance. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet

  9. Graphics enhanced computer emulation for improved timing-race and fault tolerance control system analysis. [of Centaur liquid-fuel booster

    NASA Technical Reports Server (NTRS)

    Szatkowski, G. P.

    1983-01-01

    A computer simulation system has been developed for the Space Shuttle's advanced Centaur liquid fuel booster rocket, in order to conduct systems safety verification and flight operations training. This simulation utility is designed to analyze functional system behavior by integrating control avionics with mechanical and fluid elements, and is able to emulate any system operation, from simple relay logic to complex VLSI components, with wire-by-wire detail. A novel graphics data entry system offers a pseudo-wire wrap data base that can be easily updated. Visual subsystem operations can be selected and displayed in color on a six-monitor graphics processor. System timing and fault verification analyses are conducted by injecting component fault modes and min/max timing delays, and then observing system operation through a red line monitor.

  10. The use of computer graphic simulation in the development of on-orbit tele-robotic systems

    NASA Technical Reports Server (NTRS)

    Fernandez, Ken; Hinman, Elaine

    1987-01-01

    This paper describes the use of computer graphic simulation techniques to resolve critical design and operational issues for robotic systems used for on-orbit operations. These issues are robot motion control, robot path-planning/verification, and robot dynamics. The major design issues in developing effective telerobotic systems are discussed, and the use of ROBOSIM, a NASA-developed computer graphic simulation tool, to address these issues is presented. Simulation plans for the Space Station and the Orbital Maneuvering Vehicle are presented and discussed.

  11. Application of computer generated color graphic techniques to the processing and display of three dimensional fluid dynamic data

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Putt, C. W.; Giamati, C. C.

    1981-01-01

    Color coding techniques used in the processing of remote sensing imagery were adapted and applied to the fluid dynamics problems associated with turbofan mixer nozzles. The computer generated color graphics were found to be useful in reconstructing the measured flow field from low resolution experimental data to give more physical meaning to this information and in scanning and interpreting the large volume of computer generated data from the three dimensional viscous computer code used in the analysis.

  12. Advanced networks and computing in healthcare

    PubMed Central

    Ackerman, Michael

    2011-01-01

    As computing and network capabilities continue to rise, it becomes increasingly important to understand the varied applications for using them to provide healthcare. The objective of this review is to identify key characteristics and attributes of healthcare applications involving the use of advanced computing and communication technologies, drawing upon 45 research and development projects in telemedicine and other aspects of healthcare funded by the National Library of Medicine over the past 12 years. Only projects publishing in the professional literature were included in the review. Four projects did not publish beyond their final reports. In addition, the authors drew on their first-hand experience as project officers, reviewers and monitors of the work. Major themes in the corpus of work were identified, characterizing key attributes of advanced computing and network applications in healthcare. Advanced computing and network applications are relevant to a range of healthcare settings and specialties, but they are most appropriate for solving a narrower range of problems in each. Healthcare projects undertaken primarily to explore potential have also demonstrated effectiveness and depend on the quality of network service as much as bandwidth. Many applications are enabling, making it possible to provide service or conduct research that previously was not possible or to achieve outcomes in addition to those for which projects were undertaken. Most notable are advances in imaging and visualization, collaboration and sense of presence, and mobility in communication and information-resource use. PMID:21486877

  13. Advanced networks and computing in healthcare.

    PubMed

    Ackerman, Michael; Locatis, Craig

    2011-01-01

    As computing and network capabilities continue to rise, it becomes increasingly important to understand the varied applications for using them to provide healthcare. The objective of this review is to identify key characteristics and attributes of healthcare applications involving the use of advanced computing and communication technologies, drawing upon 45 research and development projects in telemedicine and other aspects of healthcare funded by the National Library of Medicine over the past 12 years. Only projects publishing in the professional literature were included in the review. Four projects did not publish beyond their final reports. In addition, the authors drew on their first-hand experience as project officers, reviewers and monitors of the work. Major themes in the corpus of work were identified, characterizing key attributes of advanced computing and network applications in healthcare. Advanced computing and network applications are relevant to a range of healthcare settings and specialties, but they are most appropriate for solving a narrower range of problems in each. Healthcare projects undertaken primarily to explore potential have also demonstrated effectiveness and depend on the quality of network service as much as bandwidth. Many applications are enabling, making it possible to provide service or conduct research that previously was not possible or to achieve outcomes in addition to those for which projects were undertaken. Most notable are advances in imaging and visualization, collaboration and sense of presence, and mobility in communication and information-resource use. PMID:21486877

  14. Advanced Algebra and Trigonometry: Supplemental Computer Units.

    ERIC Educational Resources Information Center

    Dotseth, Karen

    A set of computer-oriented, supplemental activities is offered which can be used with a course in advanced algebra and trigonometry. The activities involve use of the BASIC programming language; it is assumed that the teacher is familiar with programming in BASIC. Students will learn some BASIC; however, the intent is not to develop proficient…

  15. Computational Biology, Advanced Scientific Computing, and Emerging Computational Architectures

    SciTech Connect

    2007-06-27

    This CRADA was established at the start of FY02 with $200 K from IBM and matching funds from DOE to support post-doctoral fellows in collaborative research between International Business Machines and Oak Ridge National Laboratory to explore effective use of emerging petascale computational architectures for the solution of computational biology problems. 'No cost' extensions of the CRADA were negotiated with IBM for FY03 and FY04.

  16. Predictive Dynamic Security Assessment through Advanced Computing

    SciTech Connect

    Huang, Zhenyu; Diao, Ruisheng; Jin, Shuangshuang; Chen, Yousu

    2014-11-30

    Abstract— Traditional dynamic security assessment is limited by several factors and thus falls short in providing real-time information to be predictive for power system operation. These factors include the steady-state assumption of current operating points, static transfer limits, and low computational speed. This addresses these factors and frames predictive dynamic security assessment. The primary objective of predictive dynamic security assessment is to enhance the functionality and computational process of dynamic security assessment through the use of high-speed phasor measurements and the application of advanced computing technologies for faster-than-real-time simulation. This paper presents algorithms, computing platforms, and simulation frameworks that constitute the predictive dynamic security assessment capability. Examples of phasor application and fast computation for dynamic security assessment are included to demonstrate the feasibility and speed enhancement for real-time applications.

  17. Optical diagnostics of a single evaporating droplet using fast parallel computing on graphics processing units

    NASA Astrophysics Data System (ADS)

    Jakubczyk, D.; Migacz, S.; Derkachov, G.; Woźniak, M.; Archer, J.; Kolwas, K.

    2016-09-01

    We report on the first application of the graphics processing units (GPUs) accelerated computing technology to improve performance of numerical methods used for the optical characterization of evaporating microdroplets. Single microdroplets of various liquids with different volatility and molecular weight (glycerine, glycols, water, etc.), as well as mixtures of liquids and diverse suspensions evaporate inside the electrodynamic trap under the chosen temperature and composition of atmosphere. The series of scattering patterns recorded from the evaporating microdroplets are processed by fitting complete Mie theory predictions with gradientless lookup table method. We showed that computations on GPUs can be effectively applied to inverse scattering problems. In particular, our technique accelerated calculations of the Mie scattering theory on a single-core processor in a Matlab environment over 800 times and almost 100 times comparing to the corresponding code in C language. Additionally, we overcame problems of the time-consuming data post-processing when some of the parameters (particularly the refractive index) of an investigated liquid are uncertain. Our program allows us to track the parameters characterizing the evaporating droplet nearly simultaneously with the progress of evaporation.

  18. Computer implementations of iterative and non-iterative crystal plasticity solvers on high performance graphics hardware

    NASA Astrophysics Data System (ADS)

    Savage, Daniel J.; Knezevic, Marko

    2015-10-01

    We present parallel implementations of Newton-Raphson iterative and spectral based non-iterative solvers for single-crystal visco-plasticity models on a specialized computer hardware integrating a graphics-processing unit (GPU). We explore two implementations for the iterative solver on GPU multiprocessors: one based on a thread per crystal parallelization on local memory and another based on multiple threads per crystal on shared memory. The non-iterative solver implementation on the GPU hardware is based on a divide-conquer approach for matrix operations. The reduction of computational time for the iterative scheme was found to approach one order of magnitude. From detailed performance comparisons of the developed GPU iterative and non-iterative implementations, we conclude that the spectral non-iterative solver programed on a GPU platform is superior over the iterative implementation in terms of runtime as well as ease of implementation. It provides remarkable speedup factors exceeding three orders of magnitude over the iterative scalar version of the solver.

  19. A fast-reacting and versatile optokinetic stimulus pattern by computer graphics with application examples

    NASA Technical Reports Server (NTRS)

    Yasui, S.; Tole, J. R.; Young, L. R.

    1979-01-01

    A computer graphics method for the generation of horizontally moving vertical stripes which serve as stimuli for optokinetic nystagmus is presented. The pattern is generated by the successive addition of a constant in a digital register, leading to its periodic overflow. Digital to analog conversion of the register contents results in a staircase waveform, which is converted into a pattern of vertical lines on a CRT. The addition of any number to the reference buffer shifts all lines uniformly, so that the group velocity of the pattern is easily controlled. The computer controlled display allows an accurate realization of a commanded velocity profile with practically no time delay and facilitates study under conditions of variable feedback. The display software can be easily modified to limit stimulation to a selected area of the moving retina, and the method has been used to simulate central scotomata. It is pointed out that the technique, while more accurate, versatile and responsive than a rotating drum device, may be less useful in experiments requiring a wide field display.

  20. Graphics processing unit accelerated one-dimensional blood flow computation in the human arterial tree.

    PubMed

    Itu, Lucian; Sharma, Puneet; Kamen, Ali; Suciu, Constantin; Comaniciu, Dorin

    2013-12-01

    One-dimensional blood flow models have been used extensively for computing pressure and flow waveforms in the human arterial circulation. We propose an improved numerical implementation based on a graphics processing unit (GPU) for the acceleration of the execution time of one-dimensional model. A novel parallel hybrid CPU-GPU algorithm with compact copy operations (PHCGCC) and a parallel GPU only (PGO) algorithm are developed, which are compared against previously introduced PHCG versions, a single-threaded CPU only algorithm and a multi-threaded CPU only algorithm. Different second-order numerical schemes (Lax-Wendroff and Taylor series) are evaluated for the numerical solution of one-dimensional model, and the computational setups include physiologically motivated non-periodic (Windkessel) and periodic boundary conditions (BC) (structured tree) and elastic and viscoelastic wall laws. Both the PHCGCC and the PGO implementations improved the execution time significantly. The speed-up values over the single-threaded CPU only implementation range from 5.26 to 8.10 × , whereas the speed-up values over the multi-threaded CPU only implementation range from 1.84 to 4.02 × . The PHCGCC algorithm performs best for an elastic wall law with non-periodic BC and for viscoelastic wall laws, whereas the PGO algorithm performs best for an elastic wall law with periodic BC. PMID:24009129

  1. Next Generation Sequence Analysis and Computational Genomics Using Graphical Pipeline Workflows

    PubMed Central

    Torri, Federica; Dinov, Ivo D.; Zamanyan, Alen; Hobel, Sam; Genco, Alex; Petrosyan, Petros; Clark, Andrew P.; Liu, Zhizhong; Eggert, Paul; Pierce, Jonathan; Knowles, James A.; Ames, Joseph; Kesselman, Carl; Toga, Arthur W.; Potkin, Steven G.; Vawter, Marquis P.; Macciardi, Fabio

    2012-01-01

    Whole-genome and exome sequencing have already proven to be essential and powerful methods to identify genes responsible for simple Mendelian inherited disorders. These methods can be applied to complex disorders as well, and have been adopted as one of the current mainstream approaches in population genetics. These achievements have been made possible by next generation sequencing (NGS) technologies, which require substantial bioinformatics resources to analyze the dense and complex sequence data. The huge analytical burden of data from genome sequencing might be seen as a bottleneck slowing the publication of NGS papers at this time, especially in psychiatric genetics. We review the existing methods for processing NGS data, to place into context the rationale for the design of a computational resource. We describe our method, the Graphical Pipeline for Computational Genomics (GPCG), to perform the computational steps required to analyze NGS data. The GPCG implements flexible workflows for basic sequence alignment, sequence data quality control, single nucleotide polymorphism analysis, copy number variant identification, annotation, and visualization of results. These workflows cover all the analytical steps required for NGS data, from processing the raw reads to variant calling and annotation. The current version of the pipeline is freely available at http://pipeline.loni.ucla.edu. These applications of NGS analysis may gain clinical utility in the near future (e.g., identifying miRNA signatures in diseases) when the bioinformatics approach is made feasible. Taken together, the annotation tools and strategies that have been developed to retrieve information and test hypotheses about the functional role of variants present in the human genome will help to pinpoint the genetic risk factors for psychiatric disorders. PMID:23139896

  2. Creating Interactive Graphical Overlays in the Advanced Weather Interactive Processing System (AWIPS) Using Shapefiles and DGM Files

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Lafosse, Richard; Hood, Doris; Hoeth, Brian

    2007-01-01

    Graphical overlays can be created in real-time in the Advanced Weather Interactive Processing System (AWIPS) using shapefiles or DARE Graphics Metafile (DGM) files. This presentation describes how to create graphical overlays on-the-fly for AWIPS, by using two examples of AWIPS applications that were created by the Applied Meteorology Unit (AMU). The first example is the Anvil Threat Corridor Forecast Tool, which produces a shapefile that depicts a graphical threat corridor of the forecast movement of thunderstorm anvil clouds, based on the observed or forecast upper-level winds. This tool is used by the Spaceflight Meteorology Group (SMG) and 45th Weather Squadron (45 WS) to analyze the threat of natural or space vehicle-triggered lightning over a location. The second example is a launch and landing trajectory tool that produces a DGM file that plots the ground track of space vehicles during launch or landing. The trajectory tool can be used by SMG and the 45 WS forecasters to analyze weather radar imagery along a launch or landing trajectory. Advantages of both file types will be listed.

  3. Computer-Based Graphical Displays for Enhancing Mental Animation and Improving Reasoning in Novice Learning of Probability

    ERIC Educational Resources Information Center

    Kaplan, Danielle E.; Wu, Erin Chia-ling

    2006-01-01

    Our research suggests static and animated graphics can lead to more animated thinking and more correct problem solving in computer-based probability learning. Pilot software modules were developed for graduate online statistics courses and representation research. A study with novice graduate student statisticians compared problem solving in five…

  4. The Effects of Computer Graphic Organizers on the Persuasive Writing of Hispanic Middle School Students with Specific Learning Disabilities

    ERIC Educational Resources Information Center

    Unzueta, Caridad H.; Barbetta, Patricia M.

    2012-01-01

    A multiple baseline design investigated the effects of computer graphic organizers on the persuasive composition writing skills of four Hispanic students with specific learning disabilities. Participants reviewed the elements of persuasive writing and then developed compositions using a word processing program. Baseline planning was done with a…

  5. Interactive computer graphics displays for hierarchical data structures. [Description of THESGRAF, in FORTRAN IV for CDC and IBM computers

    SciTech Connect

    Cahn, D.F.; Murano, C.V.

    1980-05-01

    An interactive computer graphical display program was developed as an aid to user visualization and manipulation of hierarchically structured data systems such as thesauri. In the present configuration, a thesaurus term and its primary and secondary conceptual neighbors are presented to the user in tree graph form on a CRT; the user then designates, via light pen or keyboard, any of the neighbors as the next term of interest and receives a new display centered on this term. By successive specification of broader, narrower, and related terms, the user can course rapidly through the thesaurus space and refine his search file. At any stage, he deals with a term-centered, conceptually meaningful picture of a localized portion of the thesaurus, and is freed from the artificial difficulties of handling the traditional alphabetized thesaurus. Intentional limitation of the associative range of each display frame, and the use of color, case, and interconnecting vectors to encode relationships among terms, enhance interpretability of the display. Facile movement through the term space, provided by interactive computation, allows the display to remain simple, and is an essential element of the system. 3 figures.

  6. Advances in Computational Capabilities for Hypersonic Flows

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay; Gnoffo, Peter A.; Moss, James N.; Drummond, J. Philip

    1997-01-01

    The paper reviews the growth and advances in computational capabilities for hypersonic applications over the period from the mid-1980's to the present day. The current status of the code development issues such as surface and field grid generation, algorithms, physical and chemical modeling, and validation is provided. A brief description of some of the major codes being used at NASA Langley Research Center for hypersonic continuum and rarefied flows is provided, along with their capabilities and deficiencies. A number of application examples are presented, and future areas of research to enhance accuracy, reliability, efficiency, and robustness of computational codes are discussed.

  7. A Computer Graphical Tool for Analysing the User Reaction to Videotex Systems.

    ERIC Educational Resources Information Center

    Magenat-Thalmann, Nadia; And Others

    1982-01-01

    Describes INVIDO (systeme d' INformations VIsuelles a DOmicile), a graphical tool which was designed and implemented for studying user reactions to the various types of graphic information displays used by videotex systems. Sample display illustrations included depict weather forecasts and sports and lottery results. (Author/JL)

  8. 3D animation of facial plastic surgery based on computer graphics

    NASA Astrophysics Data System (ADS)

    Zhang, Zonghua; Zhao, Yan

    2013-12-01

    More and more people, especial women, are getting desired to be more beautiful than ever. To some extent, it becomes true because the plastic surgery of face was capable in the early 20th and even earlier as doctors just dealing with war injures of face. However, the effect of post-operation is not always satisfying since no animation could be seen by the patients beforehand. In this paper, by combining plastic surgery of face and computer graphics, a novel method of simulated appearance of post-operation will be given to demonstrate the modified face from different viewpoints. The 3D human face data are obtained by using 3D fringe pattern imaging systems and CT imaging systems and then converted into STL (STereo Lithography) file format. STL file is made up of small 3D triangular primitives. The triangular mesh can be reconstructed by using hash function. Top triangular meshes in depth out of numbers of triangles must be picked up by ray-casting technique. Mesh deformation is based on the front triangular mesh in the process of simulation, which deforms interest area instead of control points. Experiments on face model show that the proposed 3D animation facial plastic surgery can effectively demonstrate the simulated appearance of post-operation.

  9. Emerging human-computer interface (HCI) design guidelines for graphical user interface (GUI)

    SciTech Connect

    Bowser, S.E.; Adams, S.M.

    1993-10-01

    The requirement to establish baseline style references for Graphical User Interfaces (GUIs) is recognized. The ability to obtain consensus among user communities has been limited to nonexistent. The authors are part of a team that has developed a generic baseline human-computer interface (HCI) style guide for the U.S. Department of Defense (DoD). The DoD HCI Style Guide has its origin in a style guide developed by the intelligence community and in human factors design guidelines developed for Army tactical command and control systems. The DoD HCI Style Guide is intended to be a baseline style reference for the design of HCIs within DoD. The needs of specific user communities have been addressed by including addenda that expand on the baseline and address focus areas of interest. The conclusion is that an overall or general style guide should be adopted for GUIs with allowance for specialized user group requirements and additions. The anticipated results would be higher productivity and reduced training and development time.

  10. Students Perception towards the Implementation of Computer Graphics Technology in Class via Unified Theory of Acceptance and Use of Technology (UTAUT) Model

    NASA Astrophysics Data System (ADS)

    Binti Shamsuddin, Norsila

    Technology advancement and development in a higher learning institution is a chance for students to be motivated to learn in depth in the information technology areas. Students should take hold of the opportunity to blend their skills towards these technologies as preparation for them when graduating. The curriculum itself can rise up the students' interest and persuade them to be directly involved in the evolvement of the technology. The aim of this study is to see how deep is the students' involvement as well as their acceptance towards the adoption of the technology used in Computer Graphics and Image Processing subjects. The study will be towards the Bachelor students in Faculty of Industrial Information Technology (FIIT), Universiti Industri Selangor (UNISEL); Bac. In Multimedia Industry, BSc. Computer Science and BSc. Computer Science (Software Engineering). This study utilizes the new Unified Theory of Acceptance and Use of Technology (UTAUT) to further validate the model and enhance our understanding of the adoption of Computer Graphics and Image Processing Technologies. Four (4) out of eight (8) independent factors in UTAUT will be studied towards the dependent factor.

  11. Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a

  12. Guide to making time-lapse graphics using the facilities of the National Magnetic Fusion Energy Computing Center

    SciTech Connect

    Munro, J.K. Jr.

    1980-05-01

    The advent of large, fast computers has opened the way to modeling more complex physical processes and to handling very large quantities of experimental data. The amount of information that can be processed in a short period of time is so great that use of graphical displays assumes greater importance as a means of displaying this information. Information from dynamical processes can be displayed conveniently by use of animated graphics. This guide presents the basic techniques for generating black and white animated graphics, with consideration of aesthetic, mechanical, and computational problems. The guide is intended for use by someone who wants to make movies on the National Magnetic Fusion Energy Computing Center (NMFECC) CDC-7600. Problems encountered by a geographically remote user are given particular attention. Detailed information is given that will allow a remote user to do some file checking and diagnosis before giving graphics files to the system for processing into film in order to spot problems without having to wait for film to be delivered. Source listings of some useful software are given in appendices along with descriptions of how to use it. 3 figures, 5 tables.

  13. Airborne Advanced Reconfigurable Computer System (ARCS)

    NASA Technical Reports Server (NTRS)

    Bjurman, B. E.; Jenkins, G. M.; Masreliez, C. J.; Mcclellan, K. L.; Templeman, J. E.

    1976-01-01

    A digital computer subsystem fault-tolerant concept was defined, and the potential benefits and costs of such a subsystem were assessed when used as the central element of a new transport's flight control system. The derived advanced reconfigurable computer system (ARCS) is a triple-redundant computer subsystem that automatically reconfigures, under multiple fault conditions, from triplex to duplex to simplex operation, with redundancy recovery if the fault condition is transient. The study included criteria development covering factors at the aircraft's operation level that would influence the design of a fault-tolerant system for commercial airline use. A new reliability analysis tool was developed for evaluating redundant, fault-tolerant system availability and survivability; and a stringent digital system software design methodology was used to achieve design/implementation visibility.

  14. Computer graphics for quality control in the INAA of geological samples

    USGS Publications Warehouse

    Grossman, J.N.; Baedecker, P.A.

    1987-01-01

    A data reduction system for the routine instrumental activation analysis of samples is described, with particular emphasis on interactive graphics capabilities for evaluating analytical quality. Graphics procedures have been developed to interactively control the analysis of selected photopeaks during spectral analysis, and to evaluate detector performance during a given counting cycle. Graphics algorithms are also used to compare the data on reference samples with accepted values, to prepare quality control charts to evaluate long term precision and to search for systematic variations in data on reference samples as a function of time. ?? 1987 Akade??miai Kiado??.

  15. Recent advances in computational actinoid chemistry.

    PubMed

    Wang, Dongqi; van Gunsteren, Wilfred F; Chai, Zhifang

    2012-09-01

    We briefly review advances in computational actinoid (An) chemistry during the past ten years in regard to two issues: the geometrical and electronic structures, and reactions. The former addresses the An-O, An-C, and M-An (M is a metal atom including An) bonds in the actinoid molecular systems, including actinoid oxo and oxide species, actinoid-carbenoid, dinuclear and diatomic systems, and the latter the hydration and ligand exchange, the disproportionation, the oxidation, the reduction of uranyl, hydroamination, and the photolysis of uranium azide. Concerning their relevance to the electronic structures and reactions of actinoids and their importance in the development of an advanced nuclear fuel cycle, we also mentioned the work on actinoid carbides and nitrides, which have been proposed to be candidates of the next generation of nuclear fuel, and the oxidation of PuO(x), which is important to understand the speciation of actinoids in the environment, followed by a brief discussion on the urgent need for a heavier involvement of computational actinoid chemistry in developing advanced reprocessing protocols of spent nuclear fuel. The paper is concluded with an outlook. PMID:22777520

  16. Computation and graphics in mathematical research. Progress report, June 1, 1991--May 31, 1992

    SciTech Connect

    Hoffman, D.A.; Spruck, J.

    1992-08-13

    This report discusses: The description of the GANG Project and results for prior research; the center for geometry, analysis, numerics and graphics; description of GANG Laboratory; software development at GANG; and mathematical and scientific research activities.

  17. The Effectiveness of an Interactive 3-Dimensional Computer Graphics Model for Medical Education

    PubMed Central

    Konishi, Takeshi; Tamura, Yoko; Moriguchi, Hiroki

    2012-01-01

    Background Medical students often have difficulty achieving a conceptual understanding of 3-dimensional (3D) anatomy, such as bone alignment, muscles, and complex movements, from 2-dimensional (2D) images. To this end, animated and interactive 3-dimensional computer graphics (3DCG) can provide better visual information to users. In medical fields, research on the advantages of 3DCG in medical education is relatively new. Objective To determine the educational effectiveness of interactive 3DCG. Methods We divided 100 participants (27 men, mean (SD) age 17.9 (0.6) years, and 73 women, mean (SD) age 18.1 (1.1) years) from the Health Sciences University of Mongolia (HSUM) into 3DCG (n = 50) and textbook-only (control) (n = 50) groups. The control group used a textbook and 2D images, while the 3DCG group was trained to use the interactive 3DCG shoulder model in addition to a textbook. We conducted a questionnaire survey via an encrypted satellite network between HSUM and Tokushima University. The questionnaire was scored on a 5-point Likert scale from strongly disagree (score 1) to strongly agree (score 5). Results Interactive 3DCG was effective in undergraduate medical education. Specifically, there was a significant difference in mean (SD) scores between the 3DCG and control groups in their response to questionnaire items regarding content (4.26 (0.69) vs 3.85 (0.68), P = .001) and teaching methods (4.33 (0.65) vs 3.74 (0.79), P < .001), but no significant difference in the Web category. Participants also provided meaningful comments on the advantages of interactive 3DCG. Conclusions Interactive 3DCG materials have positive effects on medical education when properly integrated into conventional education. In particular, our results suggest that interactive 3DCG is more efficient than textbooks alone in medical education and can motivate students to understand complex anatomical structures. PMID:23611759

  18. Guidelines in preparing computer-generated plots for NASA technical reports with the LaRC graphics output system

    NASA Technical Reports Server (NTRS)

    Taylor, N. L.

    1983-01-01

    To response to a need for improved computer-generated plots that are acceptable to the Langley publication process, the LaRC Graphics Output System has been modified to encompass the publication requirements, and a guideline has been established. This guideline deals only with the publication requirements of computer-generated plots. This report explains the capability that authors of NASA technical reports can use to obtain publication--quality computer-generated plots or the Langley publication process. The rules applied in developing this guideline and examples illustrating the rules are included.

  19. 75 FR 43518 - Advanced Scientific Computing Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... Advanced Scientific Computing Advisory Committee; Meeting AGENCY: Office of Science, DOE. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing Advisory..., Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U. S. Department of...

  20. 78 FR 6087 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing..., Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U. S. Department of...

  1. 76 FR 41234 - Advanced Scientific Computing Advisory Committee Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Advanced Scientific Computing Advisory Committee Charter Renewal AGENCY: Department of Energy, Office of... Administration, notice is hereby given that the Advanced Scientific Computing Advisory Committee will be renewed... concerning the Advanced Scientific Computing program in response only to charges from the Director of...

  2. 76 FR 9765 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... Advanced Scientific Computing Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing..., Office of Advanced Scientific Computing Research, SC-21/Germantown Building, U.S. Department of...

  3. 78 FR 41046 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION... hereby given that the Advanced Scientific Computing Advisory Committee will be renewed for a two-year... (DOE), on the Advanced Scientific Computing Research Program managed by the Office of...

  4. 75 FR 9887 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing... Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U.S. Department...

  5. 78 FR 56871 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Advanced Scientific Computing Advisory Committee AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific Computing... Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U.S. Department...

  6. Computational Design of Advanced Nuclear Fuels

    SciTech Connect

    Savrasov, Sergey; Kotliar, Gabriel; Haule, Kristjan

    2014-06-03

    The objective of the project was to develop a method for theoretical understanding of nuclear fuel materials whose physical and thermophysical properties can be predicted from first principles using a novel dynamical mean field method for electronic structure calculations. We concentrated our study on uranium, plutonium, their oxides, nitrides, carbides, as well as some rare earth materials whose 4f eletrons provide a simplified framework for understanding complex behavior of the f electrons. We addressed the issues connected to the electronic structure, lattice instabilities, phonon and magnon dynamics as well as thermal conductivity. This allowed us to evaluate characteristics of advanced nuclear fuel systems using computer based simulations and avoid costly experiments.

  7. ATCA for Machines-- Advanced Telecommunications Computing Architecture

    SciTech Connect

    Larsen, R.S.; /SLAC

    2008-04-22

    The Advanced Telecommunications Computing Architecture is a new industry open standard for electronics instrument modules and shelves being evaluated for the International Linear Collider (ILC). It is the first industrial standard designed for High Availability (HA). ILC availability simulations have shown clearly that the capabilities of ATCA are needed in order to achieve acceptable integrated luminosity. The ATCA architecture looks attractive for beam instruments and detector applications as well. This paper provides an overview of ongoing R&D including application of HA principles to power electronics systems.

  8. Advanced software development workstation. Engineering scripting language graphical editor: DRAFT design document

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Engineering Scripting Language (ESL) is a language designed to allow nonprogramming users to write Higher Order Language (HOL) programs by drawing directed graphs to represent the program and having the system generate the corresponding program in HOL. The ESL system supports user generation of HOL programs through the manipulation of directed graphs. The components of this graphs (nodes, ports, and connectors) are objects each of which has its own properties and property values. The purpose of the ESL graphical editor is to allow the user to create or edit graph objects which represent programs.

  9. Education System Using Interactive 3D Computer Graphics (3D-CG) Animation and Scenario Language for Teaching Materials

    ERIC Educational Resources Information Center

    Matsuda, Hiroshi; Shindo, Yoshiaki

    2006-01-01

    The 3D computer graphics (3D-CG) animation using a virtual actor's speaking is very effective as an educational medium. But it takes a long time to produce a 3D-CG animation. To reduce the cost of producing 3D-CG educational contents and improve the capability of the education system, we have developed a new education system using Virtual Actor.…

  10. Using Computer Graphics to Demonstrate the Origin and Applications of the "Reacting Bond Rules"

    NASA Astrophysics Data System (ADS)

    Tyler, David R.; Herrick, David R.

    2002-11-01

    The reacting bond rules, also known as Thornton's rules, describe how the structure and energy of a transition state vary as a function of changes in the energies of selected reaction parameters. The rules have many applications in the interpretation of reactivity. The derivation of the "reacting bond rules" is demonstrated using the graphics plotting routines available on programs such as Mathematica. Using these same graphics plotting programs, the relationship between three-dimensional energy plots, two-dimensional More O'Ferrall Jencks diagrams, and reaction coordinate diagrams is shown for the case of SN1 and SN2 substitution reactions. The graphical methods discussed herein are not restricted to substitution reactions but are easily extended to other types of reactions.

  11. High-performance image reconstruction in fluorescence tomography on desktop computers and graphics hardware.

    PubMed

    Freiberger, Manuel; Egger, Herbert; Liebmann, Manfred; Scharfetter, Hermann

    2011-11-01

    Image reconstruction in fluorescence optical tomography is a three-dimensional nonlinear ill-posed problem governed by a system of partial differential equations. In this paper we demonstrate that a combination of state of the art numerical algorithms and a careful hardware optimized implementation allows to solve this large-scale inverse problem in a few seconds on standard desktop PCs with modern graphics hardware. In particular, we present methods to solve not only the forward but also the non-linear inverse problem by massively parallel programming on graphics processors. A comparison of optimized CPU and GPU implementations shows that the reconstruction can be accelerated by factors of about 15 through the use of the graphics hardware without compromising the accuracy in the reconstructed images. PMID:22076279

  12. Computer architectures for computational physics work done by Computational Research and Technology Branch and Advanced Computational Concepts Group

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Slides are reproduced that describe the importance of having high performance number crunching and graphics capability. They also indicate the types of research and development underway at Ames Research Center to ensure that, in the near term, Ames is a smart buyer and user, and in the long-term that Ames knows the best possible solutions for number crunching and graphics needs. The drivers for this research are real computational physics applications of interest to Ames and NASA. They are concerned with how to map the applications, and how to maximize the physics learned from the results of the calculations. The computer graphics activities are aimed at getting maximum information from the three-dimensional calculations by using the real time manipulation of three-dimensional data on the Silicon Graphics workstation. Work is underway on new algorithms that will permit the display of experimental results that are sparse and random, the same way that the dense and regular computed results are displayed.

  13. Graphical Display of Clinical and Laboratory Data Using a Desktop Computer Interfaced with a Hospital Information System

    PubMed Central

    Cimino, J. J.; Munson, P. J.; Lewis, T.; Rodbard, D.

    1981-01-01

    A desktop computer has been used successfully to provide high quality graphical display of clinical data (e.g. vital signs) and laboratory data in conjunction with a hospital information system (Technicon MIS). This approach offers several advantages: 1) ease and speed of operation for physician with a pushbutton, menu-driven program; 2) ease and speed of system development; 3) versatility and flexibility. This approach also encourages use of the computer by physicians for a wide range of other applications. ImagesFigure 1

  14. Factors Influencing the Effectiveness of Note Taking on Computer-Based Graphic Organizers

    ERIC Educational Resources Information Center

    Crooks, Steven M.; White, David R.; Barnard, Lucy

    2007-01-01

    Previous research on graphic organizer (GO) note taking has shown that this method is most effective when the GO is presented to the student partially complete with provided notes. This study extended prior research by investigating the effects of provided note type (summary vs. verbatim) and GO bite size (large vs. small) on the transfer…

  15. Computer-Based Learning: Graphical Integration of Whole and Sectional Neuroanatomy Improves Long-Term Retention

    ERIC Educational Resources Information Center

    Naaz, Farah; Chariker, Julia H.; Pani, John R.

    2014-01-01

    A study was conducted to test the hypothesis that instruction with graphically integrated representations of whole and sectional neuroanatomy is especially effective for learning to recognize neural structures in sectional imagery (such as magnetic resonance imaging [MRI]). Neuroanatomy was taught to two groups of participants using computer…

  16. Text, Graphics, and Multimedia Materials Employed in Learning a Computer-Based Procedural Task

    ERIC Educational Resources Information Center

    Coffindaffer, Kari Christine Carlson

    2010-01-01

    The present research study investigated the interaction of graphic design students with different forms of software training materials. Four versions of the procedural task instructions were developed (A) Traditional Textbook with Still Images, (B) Modified Text with Integrated Still Images, (C) Onscreen Modified Text with Silent Onscreen Video…

  17. Raster graphics display library

    NASA Technical Reports Server (NTRS)

    Grimsrud, Anders; Stephenson, Michael B.

    1987-01-01

    The Raster Graphics Display Library (RGDL) is a high level subroutine package that give the advanced raster graphics display capabilities needed. The RGDL uses FORTRAN source code routines to build subroutines modular enough to use as stand-alone routines in a black box type of environment. Six examples are presented which will teach the use of RGDL in the fastest, most complete way possible. Routines within the display library that are used to produce raster graphics are presented in alphabetical order, each on a separate page. Each user-callable routine is described by function and calling parameters. All common blocks that are used in the display library are listed and the use of each variable within each common block is discussed. A reference on the include files that are necessary to compile the display library is contained. Each include file and its purpose are listed. The link map for MOVIE.BYU version 6, a general purpose computer graphics display system that uses RGDL software, is also contained.

  18. IMAGE information monitoring and applied graphics software environment. Volume 2. Software description

    SciTech Connect

    Hallam, J.W.; Ng, K.B.; Upham, G.L.

    1986-09-01

    The EPRI Information Monitoring and Applied Graphics Environment (IMAGE) system is designed for 'fast proto-typing' of advanced concepts for computer-aided plant operations tools. It is a flexible software system which can be used for rapidly creating, dynamically driving and evaluating advanced operator aid displays. The software is written to be both host computer and graphic device independent.

  19. Experience with computer-aided graphical analysis of sudden-short-circuit oscillograms of large synchronous machines

    SciTech Connect

    Kamwa, I.; Pilote, M.; Viarouge, P.; Mpanda-Mabwe, B.; Crappe, M.; Mahfoudi, R.

    1995-09-01

    In a companion paper, computer programs are proposed of automating the analysis of sudden-short-circuit oscillograms in accordance with present IEC and IEEE standards. In this paper, the authors will further illustrate the capabilities of computer-aided graphical methods with a view to their incorporation into modern testing practices. Using synthetic short-circuit data obtained from an exact solution of the network equations of known machines, it is first shown that use of the proposed software leads to satisfactory parameters in a number of realistic situations, including those where sub-subtransient effects are present. When faced with real data, it is shown that pre-filtering, without phase distortion, is often necessary and some useful tools are suggested for carrying this out. A thorough investigation of the automatic graphical method applied to three machines, differing widely in design, suggests that the new software is robust enough to be used on a regular basis, either in the field or in the design office. Using the Takeda and Adkins K-factor, derived graphically from the field current oscillogram, even a full second-order network is possible, matching the underlying phenomena, as seen from both the rotor and stator.

  20. Advanced Scientific Computing Research Network Requirements

    SciTech Connect

    Bacon, Charles; Bell, Greg; Canon, Shane; Dart, Eli; Dattoria, Vince; Goodwin, Dave; Lee, Jason; Hicks, Susan; Holohan, Ed; Klasky, Scott; Lauzon, Carolyn; Rogers, Jim; Shipman, Galen; Skinner, David; Tierney, Brian

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  1. A computer-graphic display for real-time operator feedback during interventional x-ray procedures

    NASA Astrophysics Data System (ADS)

    Chugh, Kevin; Dinu, Petru; Bednarek, Daniel R.; Wobschall, Darold; Rudin, Stephen; Hoffmann, Kenneth; Peterson, Ron; Zeng, Ming

    2004-05-01

    The harmful effects of ionizing radiation, as employed in a variety of medical imaging procedures, have been well studied and documented. To minimize risk to patients, operators must continually assess the dose rate and cumulative dose to the patient at each area of exposure. We have developed a computer graphic dose management display system which provides this operator feedback. The system is comprised of a signal processing module which reads the state of a fluoroscopy machine, a transmission ionization chamber for exposure measurement, and a visualization of the patient that displays the current level of radiation intensity and accumulated dose at every location on the body. The system shows the beam projection and orientation of the machine and color-coded dose metrics on the patient graphic model in real time. Additionally, a database system has been incorporated to allow for recording and playback of the entire procedure.

  2. 76 FR 45786 - Advanced Scientific Computing Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... Advanced Scientific Computing Advisory Committee; Meeting AGENCY: Office of Science, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Advanced Scientific... INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown...

  3. Graphics at DESY

    NASA Astrophysics Data System (ADS)

    Schilling, Peter K.

    1989-12-01

    After a short history of computer graphics at DESY the introduction of graphic workstations based on true and "quasi" standards is described. An overview of graphics hardware and software at DESY is given as well as the communication facilities used. Some remarks about current and future development finish the paper.

  4. Development of automation and robotics for space via computer graphic simulation methods

    NASA Technical Reports Server (NTRS)

    Fernandez, Ken

    1988-01-01

    A robot simulation system, has been developed to perform automation and robotics system design studies. The system uses a procedure-oriented solid modeling language to produce a model of the robotic mechanism. The simulator generates the kinematics, inverse kinematics, dynamics, control, and real-time graphic simulations needed to evaluate the performance of the model. Simulation examples are presented, including simulation of the Space Station and the design of telerobotics for the Orbital Maneuvering Vehicle.

  5. USSAERO version D computer program development using ANSI standard FORTRAN 77 and DI-3000 graphics

    NASA Technical Reports Server (NTRS)

    Wiese, M. R.

    1986-01-01

    The D version of the Unified Subsonic Supersonic Aerodynamic Analysis (USSAERO) program is the result of numerous modifications and enhancements to the B01 version. These changes include conversion to ANSI standard FORTRAN 77; use of the DI-3000 graphics package; removal of the overlay structure; a revised input format; the addition of an input data analysis routine; and increasing the number of aeronautical components allowed.

  6. OPENING REMARKS: Scientific Discovery through Advanced Computing

    NASA Astrophysics Data System (ADS)

    Strayer, Michael

    2006-01-01

    Good morning. Welcome to SciDAC 2006 and Denver. I share greetings from the new Undersecretary for Energy, Ray Orbach. Five years ago SciDAC was launched as an experiment in computational science. The goal was to form partnerships among science applications, computer scientists, and applied mathematicians to take advantage of the potential of emerging terascale computers. This experiment has been a resounding success. SciDAC has emerged as a powerful concept for addressing some of the biggest challenges facing our world. As significant as these successes were, I believe there is also significance in the teams that achieved them. In addition to their scientific aims these teams have advanced the overall field of computational science and set the stage for even larger accomplishments as we look ahead to SciDAC-2. I am sure that many of you are expecting to hear about the results of our current solicitation for SciDAC-2. I’m afraid we are not quite ready to make that announcement. Decisions are still being made and we will announce the results later this summer. Nearly 250 unique proposals were received and evaluated, involving literally thousands of researchers, postdocs, and students. These collectively requested more than five times our expected budget. This response is a testament to the success of SciDAC in the community. In SciDAC-2 our budget has been increased to about 70 million for FY 2007 and our partnerships have expanded to include the Environment and National Security missions of the Department. The National Science Foundation has also joined as a partner. These new partnerships are expected to expand the application space of SciDAC, and broaden the impact and visibility of the program. We have, with our recent solicitation, expanded to turbulence, computational biology, and groundwater reactive modeling and simulation. We are currently talking with the Department’s applied energy programs about risk assessment, optimization of complex systems - such

  7. GenSAA: A tool for advancing satellite monitoring with graphical expert systems

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.; Luczak, Edward C.

    1993-01-01

    During numerous contacts with a satellite each day, spacecraft analysts must closely monitor real time data for combinations of telemetry parameter values, trends, and other indications that may signify a problem or failure. As satellites become more complex and the number of data items increases, this task is becoming increasingly difficult for humans to perform at acceptable performance levels. At the NASA Goddard Space Flight Center, fault-isolation expert systems have been developed to support data monitoring and fault detection tasks in satellite control centers. Based on the lessons learned during these initial efforts in expert system automation, a new domain-specific expert system development tool named the Generic Spacecraft Analyst Assistant (GenSAA) is being developed to facilitate the rapid development and reuse of real-time expert systems to serve as fault-isolation assistants for spacecraft analysts. Although initially domain-specific in nature, this powerful tool will support the development of highly graphical expert systems for data monitoring purposes throughout the space and commercial industry.

  8. Effectiveness of using CADD (Computer-Aided Design Drafting) to learn engineering design graphics

    SciTech Connect

    Bertoline, G.R.

    1987-01-01

    One commercial CADD software and one educational CADD software was compared to the use of traditional tools. Engineering-graphics students were divided into three groups. The control group used traditional tools for all their drawings. One experimental group used a commercial CADD software to supplement hand tools and one group used an educational CADD software to supplement traditional tools. These groups were then post-tested using a standardized drafting test. The main findings were: (1) There was no significant difference in the learning of engineering graphics as measured by the post-tests. Supplementing traditional tools with CADD is effective for teaching engineering design graphics. (2) Using CADD for detail drawings such as simple orthographic drawings, sections, and dimensions could be produced in approximately the same amount of time as using traditional tools. (3) It was found that the amount of time needed to solve descriptive geometry problems using CADD was prohibitive. The amount of time to solve some descriptive geometry problems was two or three times greater using CADD versus traditional tools.

  9. 75 FR 57742 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION... Scientific Computing Advisory Committee (ASCAC). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770...: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building;...

  10. Making Advanced Computer Science Topics More Accessible through Interactive Technologies

    ERIC Educational Resources Information Center

    Shao, Kun; Maher, Peter

    2012-01-01

    Purpose: Teaching advanced technical concepts in a computer science program to students of different technical backgrounds presents many challenges. The purpose of this paper is to present a detailed experimental pedagogy in teaching advanced computer science topics, such as computer networking, telecommunications and data structures using…

  11. 77 FR 12823 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... final report, Advanced Networking update Status from Computer Science COV Early Career technical talks Summary of Applied Math and Computer Science Workshops ASCR's new SBIR awards Data-intensive Science... Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy, Office of Science....

  12. NASTRAN data generation of helicopter fuselages using interactive graphics. [preprocessor system for finite element analysis using IBM computer

    NASA Technical Reports Server (NTRS)

    Sainsbury-Carter, J. B.; Conaway, J. H.

    1973-01-01

    The development and implementation of a preprocessor system for the finite element analysis of helicopter fuselages is described. The system utilizes interactive graphics for the generation, display, and editing of NASTRAN data for fuselage models. It is operated from an IBM 2250 cathode ray tube (CRT) console driven by an IBM 370/145 computer. Real time interaction plus automatic data generation reduces the nominal 6 to 10 week time for manual generation and checking of data to a few days. The interactive graphics system consists of a series of satellite programs operated from a central NASTRAN Systems Monitor. Fuselage structural models including the outer shell and internal structure may be rapidly generated. All numbering systems are automatically assigned. Hard copy plots of the model labeled with GRID or elements ID's are also available. General purpose programs for displaying and editing NASTRAN data are included in the system. Utilization of the NASTRAN interactive graphics system has made possible the multiple finite element analysis of complex helicopter fuselage structures within design schedules.

  13. Application of advanced electronics to a future spacecraft computer design

    NASA Technical Reports Server (NTRS)

    Carney, P. C.

    1980-01-01

    Advancements in hardware and software technology are summarized with specific emphasis on spacecraft computer capabilities. Available state of the art technology is reviewed and candidate architectures are defined.

  14. 77 FR 45345 - DOE/Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... Update from Committee of Visitors for Computer Science activities Facilities update including early science efforts ] Early Career technical talks Recompetition results for Scientific Discovery through.../Advanced Scientific Computing Advisory Committee AGENCY: Office of Science, Department of Energy....

  15. Developing an Advanced Environment for Collaborative Computing

    NASA Technical Reports Server (NTRS)

    Becerra-Fernandez, Irma; Stewart, Helen; DelAlto, Martha; DelAlto, Martha; Knight, Chris

    1999-01-01

    Knowledge management in general tries to organize and make available important know-how, whenever and where ever is needed. Today, organizations rely on decision-makers to produce "mission critical" decisions that am based on inputs from multiple domains. The ideal decision-maker has a profound understanding of specific domains that influence the decision-making process coupled with the experience that allows them to act quickly and decisively on the information. In addition, learning companies benefit by not repeating costly mistakes, and by reducing time-to-market in Research & Development projects. Group-decision making tools can help companies make better decisions by capturing the knowledge from groups of experts. Furthermore, companies that capture their customers preferences can improve their customer service, which translates to larger profits. Therefore collaborative computing provides a common communication space, improves sharing of knowledge, provides a mechanism for real-time feedback on the tasks being performed, helps to optimize processes, and results in a centralized knowledge warehouse. This paper presents the research directions. of a project which seeks to augment an advanced collaborative web-based environment called Postdoc, with workflow capabilities. Postdoc is a "government-off-the-shelf" document management software developed at NASA-Ames Research Center (ARC).

  16. Man-Computer Symbiosis Through Interactive Graphics: A Survey and Identification of Critical Research Areas.

    ERIC Educational Resources Information Center

    Knoop, Patricia A.

    The purpose of this report was to determine the research areas that appear most critical to achieving man-computer symbiosis. An operational definition of man-computer symbiosis was developed by: (1) reviewing and summarizing what others have said about it, and (2) attempting to distinguish it from other types of man-computer relationships. From…

  17. Advanced computational research in materials processing for design and manufacturing

    SciTech Connect

    Zacharia, T.

    1995-04-01

    Advanced mathematical techniques and computer simulation play a major role in providing enhanced understanding of conventional and advanced materials processing operations. Development and application of mathematical models and computer simulation techniques can provide a quantitative understanding of materials processes and will minimize the need for expensive and time consuming trial- and error-based product development. As computer simulations and materials databases grow in complexity, high performance computing and simulation are expected to play a key role in supporting the improvements required in advanced material syntheses and processing by lessening the dependence on expensive prototyping and re-tooling. Many of these numerical models are highly compute-intensive. It is not unusual for an analysis to require several hours of computational time on current supercomputers despite the simplicity of the models being studied. For example, to accurately simulate the heat transfer in a 1-m{sup 3} block using a simple computational method requires 10`2 arithmetic operations per second of simulated time. For a computer to do the simulation in real time would require a sustained computation rate 1000 times faster than that achievable by current supercomputers. Massively parallel computer systems, which combine several thousand processors able to operate concurrently on a problem are expected to provide orders of magnitude increase in performance. This paper briefly describes advanced computational research in materials processing at ORNL. Continued development of computational techniques and algorithms utilizing the massively parallel computers will allow the simulation of conventional and advanced materials processes in sufficient generality.

  18. Invisible photonic printing: computer designing graphics, UV printing and shown by a magnetic field.

    PubMed

    Hu, Haibo; Tang, Jian; Zhong, Hao; Xi, Zheng; Chen, Changle; Chen, Qianwang

    2013-01-01

    Invisible photonic printing, an emerging printing technique, is particularly useful for steganography and watermarking for anti-counterfeiting purposes. However, many challenges exist in order to realize this technique. Herein, we describe a novel photonic printing strategy targeting to overcome these challenges and realize fast and convenient fabrication of invisible photonic prints with good tenability and reproducibility. With this novel photonic printing technique, a variety of graphics with brilliant colors can be perfectly hidden in a soft and waterproof photonic-paper. The showing and hiding of the latent photonic prints are instantaneous with magnet as the only required instrument. In addition, this strategy has excellent practicality and allows end-user control of the structural design utilizing simple software on a PC. PMID:23508071

  19. Invisible photonic printing: computer designing graphics, UV printing and shown by a magnetic field

    PubMed Central

    Hu, Haibo; Tang, Jian; Zhong, Hao; Xi, Zheng; Chen, Changle; Chen, Qianwang

    2013-01-01

    Invisible photonic printing, an emerging printing technique, is particularly useful for steganography and watermarking for anti-counterfeiting purposes. However, many challenges exist in order to realize this technique. Herein, we describe a novel photonic printing strategy targeting to overcome these challenges and realize fast and convenient fabrication of invisible photonic prints with good tenability and reproducibility. With this novel photonic printing technique, a variety of graphics with brilliant colors can be perfectly hidden in a soft and waterproof photonic-paper. The showing and hiding of the latent photonic prints are instantaneous with magnet as the only required instrument. In addition, this strategy has excellent practicality and allows end-user control of the structural design utilizing simple software on a PC. PMID:23508071

  20. Advanced flight computers for planetary exploration

    NASA Astrophysics Data System (ADS)

    Stephenson, R. Rhoads

    Research concerning flight computers for use on interplanetary probes is reviewed. The history of these computers from the Viking mission to the present is outlined. The differences between ground commercial computers and computers for planetary exploration are listed. The development of a computer for the Mariner Mark II comet rendezvous asteroid flyby mission is described. Various aspects of recently developed computer systems are examined, including the Max real time, embedded computer, a hypercube distributed supercomputer, a SAR data processor, a processor for the High Resolution IR Imaging Spectrometer, and a robotic vision multiresolution pyramid machine for processsing images obtained by a Mars Rover.

  1. Advanced flight computers for planetary exploration

    NASA Technical Reports Server (NTRS)

    Stephenson, R. Rhoads

    1988-01-01

    Research concerning flight computers for use on interplanetary probes is reviewed. The history of these computers from the Viking mission to the present is outlined. The differences between ground commercial computers and computers for planetary exploration are listed. The development of a computer for the Mariner Mark II comet rendezvous asteroid flyby mission is described. Various aspects of recently developed computer systems are examined, including the Max real time, embedded computer, a hypercube distributed supercomputer, a SAR data processor, a processor for the High Resolution IR Imaging Spectrometer, and a robotic vision multiresolution pyramid machine for processsing images obtained by a Mars Rover.

  2. Computation and graphics in mathematical research. Progress report, September 15, 1992--September 15, 1993

    SciTech Connect

    Hoffman, D.A.; Spruck, J.

    1993-06-01

    Current research is described on: grain boundaries and dislocations in compound polymers, boundary value problems for hypersurfaces constant Gaussian curvature, and discrete computational geometry. 19 refs, 4 figs.

  3. Advanced Scientific Computing Environment Team new scientific database management task

    SciTech Connect

    Church, J.P.; Roberts, J.C.; Sims, R.N.; Smetana, A.O.; Westmoreland, B.W.

    1991-06-01

    The mission of the ASCENT Team is to continually keep pace with, evaluate, and select emerging computing technologies to define and implement prototypic scientific environments that maximize the ability of scientists and engineers to manage scientific data. These environments are to be implemented in a manner consistent with the site computing architecture and standards and NRTSC/SCS strategic plans for scientific computing. The major trends in computing hardware and software technology clearly indicate that the future computer'' will be a network environment that comprises supercomputers, graphics boxes, mainframes, clusters, workstations, terminals, and microcomputers. This network computer'' will have an architecturally transparent operating system allowing the applications code to run on any box supplying the required computing resources. The environment will include a distributed database and database managing system(s) that permits use of relational, hierarchical, object oriented, GIS, et al, databases. To reach this goal requires a stepwise progression from the present assemblage of monolithic applications codes running on disparate hardware platforms and operating systems. The first steps include converting from the existing JOSHUA system to a new J80 system that complies with modern language standards, development of a new J90 prototype to provide JOSHUA capabilities on Unix platforms, development of portable graphics tools to greatly facilitate preparation of input and interpretation of output; and extension of Jvv'' concepts and capabilities to distributed and/or parallel computing environments.

  4. 76 FR 64330 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... Workshop on Mathematics for the Analysis, Simulation, and Optimization of Complex Systems Report from ASCR..., Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U. S. Department of Energy... Department of Energy on scientific priorities within the field of advanced scientific computing...

  5. John Herschel's Graphical Method

    NASA Astrophysics Data System (ADS)

    Hankins, Thomas L.

    2011-01-01

    In 1833 John Herschel published an account of his graphical method for determining the orbits of double stars. He had hoped to be the first to determine such orbits, but Felix Savary in France and Johann Franz Encke in Germany beat him to the punch using analytical methods. Herschel was convinced, however, that his graphical method was much superior to analytical methods, because it used the judgment of the hand and eye to correct the inevitable errors of observation. Line graphs of the kind used by Herschel became common only in the 1830s, so Herschel was introducing a new method. He also found computation fatiguing and devised a "wheeled machine" to help him out. Encke was skeptical of Herschel's methods. He said that he lived for calculation and that the English would be better astronomers if they calculated more. It is difficult to believe that the entire Scientific Revolution of the 17th century took place without graphs and that only a few examples appeared in the 18th century. Herschel promoted the use of graphs, not only in astronomy, but also in the study of meteorology and terrestrial magnetism. Because he was the most prominent scientist in England, Herschel's advocacy greatly advanced graphical methods.

  6. Computer Graphics and the Educator: New Forms of Involvement for the Practitioner.

    ERIC Educational Resources Information Center

    Nieves-Squires, Leslie C.; And Others

    The scenario of instructional development presented makes a case for relying on recent refinements of the computer as a tool for giving form to human knowledge. The computer is described as having a high capability to form ideas into a variety of shapes, and vary those shapes to appeal to people's sense of abstraction. The history of the…

  7. Visualizing History: Computer Technology and the Graphic Presentation of the Past

    ERIC Educational Resources Information Center

    Moss, Mark

    2004-01-01

    Computer technology has impacted both the study and idea of history in a number of ways. The Internet has provided numerous web-sites for students to read, see and look into for historical information. Historians, both professional and public have also begun to utilize the computer in a variety of ways, both in academic terms as well as leisure…

  8. The Effects of Advance Graphic Organizers Strategy Intervention on Academic Achievement, Self Efficacy, and Motivation to Learn Social Studies in Learning Disabled Second Year Prep Students

    ERIC Educational Resources Information Center

    Eissa, Mourad Ali

    2012-01-01

    This study investigated the effect of using advance graphic organizers on academic achievement, self efficacy, and motivation to learn social studies in learning disabled second year prep students. A total of 60 students identified with LD were invited to participate. The sample was randomly divided into two groups; experimental (n = 30, 23 boys,…

  9. Performance evaluation for volumetric segmentation of multiple sclerosis lesions using MATLAB and computing engine in the graphical processing unit (GPU)

    NASA Astrophysics Data System (ADS)

    Le, Anh H.; Park, Young W.; Ma, Kevin; Jacobs, Colin; Liu, Brent J.

    2010-03-01

    Multiple Sclerosis (MS) is a progressive neurological disease affecting myelin pathways in the brain. Multiple lesions in the white matter can cause paralysis and severe motor disabilities of the affected patient. To solve the issue of inconsistency and user-dependency in manual lesion measurement of MRI, we have proposed a 3-D automated lesion quantification algorithm to enable objective and efficient lesion volume tracking. The computer-aided detection (CAD) of MS, written in MATLAB, utilizes K-Nearest Neighbors (KNN) method to compute the probability of lesions on a per-voxel basis. Despite the highly optimized algorithm of imaging processing that is used in CAD development, MS CAD integration and evaluation in clinical workflow is technically challenging due to the requirement of high computation rates and memory bandwidth in the recursive nature of the algorithm. In this paper, we present the development and evaluation of using a computing engine in the graphical processing unit (GPU) with MATLAB for segmentation of MS lesions. The paper investigates the utilization of a high-end GPU for parallel computing of KNN in the MATLAB environment to improve algorithm performance. The integration is accomplished using NVIDIA's CUDA developmental toolkit for MATLAB. The results of this study will validate the practicality and effectiveness of the prototype MS CAD in a clinical setting. The GPU method may allow MS CAD to rapidly integrate in an electronic patient record or any disease-centric health care system.

  10. ADVANCED COMPUTATIONAL METHODS IN DOSE MODELING: APPLICATION OF COMPUTATIONAL BIOPHYSICAL TRANSPORT, COMPUTATIONAL CHEMISTRY, AND COMPUTATIONAL BIOLOGY

    EPA Science Inventory

    Computational toxicology (CompTox) leverages the significant gains in computing power and computational techniques (e.g., numerical approaches, structure-activity relationships, bioinformatics) realized over the last few years, thereby reducing costs and increasing efficiency i...

  11. Advanced display object selection methods for enhancing user-computer productivity

    NASA Technical Reports Server (NTRS)

    Osga, Glenn A.

    1993-01-01

    The User-Interface Technology Branch at NCCOSC RDT&E Division has been conducting a series of studies to address the suitability of commercial off-the-shelf (COTS) graphic user-interface (GUI) methods for efficiency and performance in critical naval combat systems. This paper presents an advanced selection algorithm and method developed to increase user performance when making selections on tactical displays. The method has also been applied with considerable success to a variety of cursor and pointing tasks. Typical GUI's allow user selection by: (1) moving a cursor with a pointing device such as a mouse, trackball, joystick, touchscreen; and (2) placing the cursor on the object. Examples of GUI objects are the buttons, icons, folders, scroll bars, etc. used in many personal computer and workstation applications. This paper presents an improved method of selection and the theoretical basis for the significant performance gains achieved with various input devices tested. The method is applicable to all GUI styles and display sizes, and is particularly useful for selections on small screens such as notebook computers. Considering the amount of work-hours spent pointing and clicking across all styles of available graphic user-interfaces, the cost/benefit in applying this method to graphic user-interfaces is substantial, with the potential for increasing productivity across thousands of users and applications.

  12. Design Standards for Instructional Computer Programs. Physical Processes in Terrestrial and Aquatic Ecosystems, Computer Programs and Graphics Capabilities.

    ERIC Educational Resources Information Center

    Gales, Larry

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. The report describes design standards for the computer programs. They are designed to be…

  13. Advancing crime scene computer forensics techniques

    NASA Astrophysics Data System (ADS)

    Hosmer, Chet; Feldman, John; Giordano, Joe

    1999-02-01

    Computers and network technology have become inexpensive and powerful tools that can be applied to a wide range of criminal activity. Computers have changed the world's view of evidence because computers are used more and more as tools in committing `traditional crimes' such as embezzlements, thefts, extortion and murder. This paper will focus on reviewing the current state-of-the-art of the data recovery and evidence construction tools used in both the field and laboratory for prosection purposes.

  14. Electromagnetic tracking of motion in the proximity of computer generated graphical stimuli: a tutorial.

    PubMed

    Schnabel, Ulf H; Hegenloh, Michael; Müller, Hermann J; Zehetleitner, Michael

    2013-09-01

    Electromagnetic motion-tracking systems have the advantage of capturing the tempo-spatial kinematics of movements independently of the visibility of the sensors. However, they are limited in that they cannot be used in the proximity of electromagnetic field sources, such as computer monitors. This prevents exploiting the tracking potential of the sensor system together with that of computer-generated visual stimulation. Here we present a solution for presenting computer-generated visual stimulation that does not distort the electromagnetic field required for precise motion tracking, by means of a back projection medium. In one experiment, we verify that cathode ray tube monitors, as well as thin-film-transistor monitors, distort electro-magnetic sensor signals even at a distance of 18 cm. Our back projection medium, by contrast, leads to no distortion of the motion-tracking signals even when the sensor is touching the medium. This novel solution permits combining the advantages of electromagnetic motion tracking with computer-generated visual stimulation. PMID:23239066

  15. A Computer-Graphic Method for Teaching Protein Chemical Score Concepts.

    ERIC Educational Resources Information Center

    Dublin, Stephen; And Others

    1982-01-01

    Describes the database, calculations, and various display modes of a computer subroutine that calculates the chemical score (or index of degree of balance) of essential amino acids in a protein and presents displays useful in illustrating concepts of protein complementarity. (DC)

  16. Graphic Representation of Musical Concepts: A Computer Assisted Instructional System. Final Report.

    ERIC Educational Resources Information Center

    Heller, Jack J.; And Others

    Computer Assisted Synthesizer System (CASS), a portable music synthesizer system which can produce tones from ordinary paper and pencil graphs, was developed and its usefulness for music instruction evaluated in this study. After completion of a pilot study to determine the feasibility of developing CASS and to run a trail test period, 28 fifth…

  17. p88110: A Graphical Simulator for Computer Architecture and Organization Courses

    ERIC Educational Resources Information Center

    Garcia, M. I.; Rodriguez, S.; Perez, A.; Garcia, A.

    2009-01-01

    Studying fundamental Computer Architecture and Organization topics requires a significant amount of practical work if students are to acquire a good grasp of the theoretical concepts presented in classroom lectures or textbooks. The use of simulators is commonly adopted in order to reach this objective. However, as most of the available…

  18. Programmer's Guide for FFORM. Physical Processes in Terrestrial and Aquatic Ecosystems, Computer Programs and Graphics Capabilities.

    ERIC Educational Resources Information Center

    Anderson, Lougenia; Gales, Larry

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. FFORM is a portable format-free input subroutine package written in ANSI Fortran IV…

  19. A Computer Graphics Approach to the Use of the Integral Method in Kinetics.

    ERIC Educational Resources Information Center

    Skattes, J. M.

    1986-01-01

    Describes the use of a microcomputer program which was written to analyze batch reactor data by the integral method. Discusses how the program is structured and used by students in engineering kinetics. An example problem is included along with the computer's solution. (TW)

  20. Computer Graphics for Use in the Classroom to Illustrate Basic Concepts and Spatial Distributions.

    ERIC Educational Resources Information Center

    Smith, Alan D.

    The computer packages of PLOTALL, SYMAP, SURFACE II, QUSMO, QUSMO2, QUCRS, and QUTAB are commercially available plotting programs that provide aids for visualizing spatial distributed data and concepts. The incremental drum and line printer plots communicate often vast and difficult-to-interpret tabular data with or without geographic coordinates.…

  1. Computer aided graphics simulation modelling using seismogeologic approach in sequence stratigraphy of Early Cretaceous Punjab platform, Central Indus Basin, Pakistan

    SciTech Connect

    Qureshi, T.M.; Khan, K.A.

    1996-08-01

    Modelling stratigraphic sequence by using seismo-geologic approach, integrated with cyclic transgressive-regressive deposits, helps to identify a number of non-structural subtle traps. Most of the hydrocarbons found in Early Cretaceous of Central Indus Basin pertain to structural entrapments of upper transgressive sands. A few wells are producing from middle and basal regressive sands, but the massive regressive sands have not been tested so far. The possibility of stratigraphic traps like wedging or pinch-out, a lateral gradation, an uplift, truncation and overlapping of reservoir rocks is quite promising. The natural basin physiography at times has been modified by extensional episodic events into tectono-morphic terrain. Thus, seismo scanning of tectonically controlled sedimentation might delineate some subtle stratigraphic traps. Amplitude maps representing stratigraphic sequences are generated to identify the traps. Seismic expressions indicate the reservoir quality in terms of amplitude increase or decrease. The data is modelled on computer using graphics simulation techniques.

  2. Rotational and Translational Components of Motion Parallax: Observers' Sensitivity and Implications for Three-Dimensional Computer Graphics

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Montegut, Michael J.; Proffitt, Dennis R.

    1995-01-01

    The motion of objects during motion parallax can be decomposed into 2 observer-relative components: translation and rotation. The depth ratio of objects in the visual field is specified by the inverse ratio of their angular displacement (from translation) or equivalently by the inverse ratio of their rotations. Despite the equal mathematical status of these 2 information sources, it was predicted that observers would be far more sensitive to the translational than rotational component. Such a differential sensitivity is implicitly assumed by the computer graphics technique billboarding, in which 3-dimensional (3-D) objects are drawn as planar forms (i.e., billboards) maintained normal to the line of sight. In 3 experiments, observers were found to be consistently less sensitive to rotational anomalies. The implications of these findings for kinetic depth effect displays and billboarding techniques are discussed.

  3. ADVANCED COMPUTATIONAL METHODS IN DOSE MODELING

    EPA Science Inventory

    The overall goal of the EPA-ORD NERL research program on Computational Toxicology (CompTox) is to provide the Agency with the tools of modern chemistry, biology, and computing to improve quantitative risk assessments and reduce uncertainties in the source-to-adverse outcome conti...

  4. Computer graphics synthesis for inferring artist studio practice: an application to Diego Velázquez's Las Meninas[

    NASA Astrophysics Data System (ADS)

    Stork, David G.; Furuichi, Yasuo

    2009-02-01

    Diego Velázquez's Las meninas (1656) has been called by some art experts "the most important painting of the 17th century," "a theology of painting," and even "the world's greatest painting"; it has been the subject of intensive study. The work depicts a complex scene in the Alcázar palace of King Philip IV of Spain, and includes mirror reflections of the king and queen, apparently standing in place of the viewer, as well as the artist himself standing before an enormous canvas on an easel. Nevertheless, questions remain about the studio and the proper viewing configuration: Is the artist looking toward the perspectivally correct position of the viewer in the museum space (center of projection), outside the picture space? Does the perspectivally correct position correspond to the locations of the king and queen seen reflected in the mirror? Is the bright illumination on the king and queen (as revealed in the mirror) consistent with the lighting in the tableau itself? We addressed these questions in a new way: by building a full computer graphics model of the figures and tableau as well as the viewer's space outside the painting. In our full model, the painting itself is represented as a translucent window onto which the picture space is projected toward the center of projection, that is, the viewer. Our geometric and (new) lighting evidence confirm Janson's and Snyder's contention that the plane mirror on the back wall reflects the other side of the large painting depicted within the tableau, not the king and queen themselves in the studio. We believe our computer graphics synthesis of both the tableau within the painting and the viewer's space in the real world is the first of its kind to address such problems in the history of art.

  5. Transonic wing analysis using advanced computational methods

    NASA Technical Reports Server (NTRS)

    Henne, P. A.; Hicks, R. M.

    1978-01-01

    This paper discusses the application of three-dimensional computational transonic flow methods to several different types of transport wing designs. The purpose of these applications is to evaluate the basic accuracy and limitations associated with such numerical methods. The use of such computational methods for practical engineering problems can only be justified after favorable evaluations are completed. The paper summarizes a study of both the small-disturbance and the full potential technique for computing three-dimensional transonic flows. Computed three-dimensional results are compared to both experimental measurements and theoretical results. Comparisons are made not only of pressure distributions but also of lift and drag forces. Transonic drag rise characteristics are compared. Three-dimensional pressure distributions and aerodynamic forces, computed from the full potential solution, compare reasonably well with experimental results for a wide range of configurations and flow conditions.

  6. Application of advanced computational technology to propulsion CFD

    NASA Astrophysics Data System (ADS)

    Szuch, John R.

    The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid dynamics (ICFM) to a state of practical application for aerospace propulsion system design. This paper presents an overview of efforts underway at NASA Lewis to advance and apply computational technology to ICFM. These efforts include the use of modern, software engineering principles for code development, the development of an AI-based user-interface for large codes, the establishment of a high-performance, data communications network to link ICFM researchers and facilities, and the application of parallel processing to speed up computationally intensive and/or time-critical ICFM problems. A multistage compressor flow physics program is cited as an example of efforts to use advanced computational technology to enhance a current NASA Lewis ICFM research program.

  7. Graphical workstation capability for reliability modeling

    NASA Technical Reports Server (NTRS)

    Bavuso, Salvatore J.; Koppen, Sandra V.; Haley, Pamela J.

    1992-01-01

    In addition to computational capabilities, software tools for estimating the reliability of fault-tolerant digital computer systems must also provide a means of interfacing with the user. Described here is the new graphical interface capability of the hybrid automated reliability predictor (HARP), a software package that implements advanced reliability modeling techniques. The graphics oriented (GO) module provides the user with a graphical language for modeling system failure modes through the selection of various fault-tree gates, including sequence-dependency gates, or by a Markov chain. By using this graphical input language, a fault tree becomes a convenient notation for describing a system. In accounting for any sequence dependencies, HARP converts the fault-tree notation to a complex stochastic process that is reduced to a Markov chain, which it can then solve for system reliability. The graphics capability is available for use on an IBM-compatible PC, a Sun, and a VAX workstation. The GO module is written in the C programming language and uses the graphical kernal system (GKS) standard for graphics implementation. The PC, VAX, and Sun versions of the HARP GO module are currently in beta-testing stages.

  8. Computing Algorithms for Nuffield Advanced Physics.

    ERIC Educational Resources Information Center

    Summers, M. K.

    1978-01-01

    Defines all recurrence relations used in the Nuffield course, to solve first- and second-order differential equations, and describes a typical algorithm for computer generation of solutions. (Author/GA)

  9. Aerodynamic optimization studies on advanced architecture computers

    NASA Technical Reports Server (NTRS)

    Chawla, Kalpana

    1995-01-01

    The approach to carrying out multi-discipline aerospace design studies in the future, especially in massively parallel computing environments, comprises of choosing (1) suitable solvers to compute solutions to equations characterizing a discipline, and (2) efficient optimization methods. In addition, for aerodynamic optimization problems, (3) smart methodologies must be selected to modify the surface shape. In this research effort, a 'direct' optimization method is implemented on the Cray C-90 to improve aerodynamic design. It is coupled with an existing implicit Navier-Stokes solver, OVERFLOW, to compute flow solutions. The optimization method is chosen such that it can accomodate multi-discipline optimization in future computations. In the work , however, only single discipline aerodynamic optimization will be included.

  10. Advanced Crew Personal Support Computer (CPSC) task

    NASA Technical Reports Server (NTRS)

    Muratore, Debra

    1991-01-01

    The topics are presented in view graph form and include: background; objectives of task; benefits to the Space Station Freedom (SSF) Program; technical approach; baseline integration; and growth and evolution options. The objective is to: (1) introduce new computer technology into the SSF Program; (2) augment core computer capabilities to meet additional mission requirements; (3) minimize risk in upgrading technology; and (4) provide a low cost way to enhance crew and ground operations support.

  11. Frontiers of research in advanced computations

    SciTech Connect

    1996-07-01

    The principal mission of the Institute for Scientific Computing Research is to foster interactions among LLNL researchers, universities, and industry on selected topics in scientific computing. In the area of computational physics, the Institute has developed a new algorithm, GaPH, to help scientists understand the chemistry of turbulent and driven plasmas or gases at far less cost than other methods. New low-frequency electromagnetic models better describe the plasma etching and deposition characteristics of a computer chip in the making. A new method for modeling realistic curved boundaries within an orthogonal mesh is resulting in a better understanding of the physics associated with such boundaries and much quicker solutions. All these capabilities are being developed for massively parallel implementation, which is an ongoing focus of Institute researchers. Other groups within the Institute are developing novel computational methods to address a range of other problems. Examples include feature detection and motion recognition by computer, improved monitoring of blood oxygen levels, and entirely new models of human joint mechanics and prosthetic devices.

  12. Advances in computing, and their impact on scientific computing.

    PubMed

    Giles, Mike

    2002-01-01

    This paper begins by discussing the developments and trends in computer hardware, starting with the basic components (microprocessors, memory, disks, system interconnect, networking and visualization) before looking at complete systems (death of vector supercomputing, slow demise of large shared-memory systems, rapid growth in very large clusters of PCs). It then considers the software side, the relative maturity of shared-memory (OpenMP) and distributed-memory (MPI) programming environments, and new developments in 'grid computing'. Finally, it touches on the increasing importance of software packages in scientific computing, and the increased importance and difficulty of introducing good software engineering practices into very large academic software development projects. PMID:12539947

  13. Computer graphical analysis method proves beneficial in lost soldier field deviated well application

    SciTech Connect

    Smith, D.L.

    1982-06-01

    Results are presented of using computer-generated plots of directional drilling data as a tool in planning the directional and normal drilling operations in a testat at Lost Soldier Field, WY. Emphasis is placed on their application to deviation-controlled wells in areas experiencing crooked-hole drilling. Results show that their use in conjunction with dipmeter data and structural contour maps of shallow horizons penetrated is effective in projecting wellbore trajectory. With these data, surface locations can be engineered to minimize corrective mud motor runs and to allow for optimal bit conditions. 2 refs.

  14. A study of real-time computer graphic display technology for aeronautical applications

    NASA Technical Reports Server (NTRS)

    Rajala, S. A.

    1981-01-01

    The development, simulation, and testing of an algorithm for anti-aliasing vector drawings is discussed. The pseudo anti-aliasing line drawing algorithm is an extension to Bresenham's algorithm for computer control of a digital plotter. The algorithm produces a series of overlapping line segments where the display intensity shifts from one segment to the other in this overlap (transition region). In this algorithm the length of the overlap and the intensity shift are essentially constants because the transition region is an aid to the eye in integrating the segments into a single smooth line.

  15. Graphics mini manual

    NASA Technical Reports Server (NTRS)

    Taylor, Nancy L.; Randall, Donald P.; Bowen, John T.; Johnson, Mary M.; Roland, Vincent R.; Matthews, Christine G.; Gates, Raymond L.; Skeens, Kristi M.; Nolf, Scott R.; Hammond, Dana P.

    1990-01-01

    The computer graphics capabilities available at the Center are introduced and their use is explained. More specifically, the manual identifies and describes the various graphics software and hardware components, details the interfaces between these components, and provides information concerning the use of these components at LaRC.

  16. Molecular Graphics and Chemistry.

    ERIC Educational Resources Information Center

    Weber, Jacques; And Others

    1992-01-01

    Explains molecular graphics, i.e., the application of computer graphics techniques to investigate molecular structure, function, and interaction. Structural models and molecular surfaces are discussed, and a theoretical model that can be used for the evaluation of intermolecular interaction energies for organometallics is described. (45…

  17. Recent advances in optical computing in Japan

    NASA Astrophysics Data System (ADS)

    Ishihara, Satoshi

    The results of recent Japanese research in optical and hybrid computer systems and components are summarized and illustrated with drawings and diagrams, and the organizational structure of the research efforts is outlined. Topics addressed include optical logic devices, spatial light modulators, two-dimensional lasers, optical bistable devices, device theory, optically controlled array processing, an optical bus for a multiprocessor system, real-time multiple-matrix-product processing, optical numerical processing, optical parallel-array logic systems, optical associative memory, and neural-network computation. Consideration is given to the roles of the Optical Computer Group of the Japan Society of Applied Physics, industry, and government (through the universities and Ministry of Education and through the Ministry of International Trade and Industry).

  18. BEAMR: An interactive graphic computer program for design of charged particle beam transport systems

    NASA Technical Reports Server (NTRS)

    Leonard, R. F.; Giamati, C. C.

    1973-01-01

    A computer program for a PDP-15 is presented which calculates, to first order, the characteristics of charged-particle beam as it is transported through a sequence of focusing and bending magnets. The maximum dimensions of the beam envelope normal to the transport system axis are continuously plotted on an oscilloscope as a function of distance along the axis. Provision is made to iterate the calculation by changing the types of magnets, their positions, and their field strengths. The program is especially useful for transport system design studies because of the ease and rapidity of altering parameters from panel switches. A typical calculation for a system with eight elements is completed in less than 10 seconds. An IBM 7094 version containing more-detailed printed output but no oscilloscope display is also presented.

  19. GASPLOT - A computer graphics program that draws a variety of thermophysical property charts

    NASA Technical Reports Server (NTRS)

    Trivisonno, R. J.; Hendricks, R. C.

    1977-01-01

    A FORTRAN V computer program, written for the UNIVAC 1100 series, is used to draw a variety of precision thermophysical property charts on the Calcomp plotter. In addition to the program (GASPLOT), which requires (15 160) sub 10 storages, a thermophysical properties routine needed to produce plots. The program is designed so that any two of the state variables, the derived variables, or the transport variables may be plotted as the ordinate - abscissa pair with as many as five parametric variables. The parameters may be temperature, pressure, density, enthalpy, and entropy. Each parameter may have as many a 49 values, and the range of the variables is limited only by the thermophysical properties routine.

  20. Characterizing W-2 SLSF experiment temperature oscillations using computer graphics. [Sodium Loop Safety Facility

    SciTech Connect

    Smith, D.E.

    1983-06-23

    The W-2 SLSF (Sodium Loop Safety Facility) experiment was an instrumented in-reactor test performed to characterize the failure response of full-length, preconditioned LMFBR prototypic fuel pins to slow transient overpower (TOP) conditions. Although the test results were expected to confirm analytical predictions of upper level failure and fuel expulsion, an axial midplane failure was experienced. Extensive post-test analyses were conducted to understand all of the unexpected behavior in the experiment. (1) The initial post-test effort focused on the temperature oscillations recorded by the 54 thermocouples used in the experiment. In order to synthesize the extensive data records and identify patterns of behavior in the data records, a computer-generated film was used to present the temperature data recorded during the experiment.

  1. Compute-unified device architecture implementation of a block-matching algorithm for multiple graphical processing unit cards.

    PubMed

    Massanes, Francesc; Cadennes, Marie; Brankov, Jovan G

    2011-07-01

    In this paper we describe and evaluate a fast implementation of a classical block matching motion estimation algorithm for multiple Graphical Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) computing engine. The implemented block matching algorithm (BMA) uses summed absolute difference (SAD) error criterion and full grid search (FS) for finding optimal block displacement. In this evaluation we compared the execution time of a GPU and CPU implementation for images of various sizes, using integer and non-integer search grids.The results show that use of a GPU card can shorten computation time by a factor of 200 times for integer and 1000 times for a non-integer search grid. The additional speedup for non-integer search grid comes from the fact that GPU has built-in hardware for image interpolation. Further, when using multiple GPU cards, the presented evaluation shows the importance of the data splitting method across multiple cards, but an almost linear speedup with a number of cards is achievable.In addition we compared execution time of the proposed FS GPU implementation with two existing, highly optimized non-full grid search CPU based motion estimations methods, namely implementation of the Pyramidal Lucas Kanade Optical flow algorithm in OpenCV and Simplified Unsymmetrical multi-Hexagon search in H.264/AVC standard. In these comparisons, FS GPU implementation still showed modest improvement even though the computational complexity of FS GPU implementation is substantially higher than non-FS CPU implementation.We also demonstrated that for an image sequence of 720×480 pixels in resolution, commonly used in video surveillance, the proposed GPU implementation is sufficiently fast for real-time motion estimation at 30 frames-per-second using two NVIDIA C1060 Tesla GPU cards. PMID:22347787

  2. Compute-unified device architecture implementation of a block-matching algorithm for multiple graphical processing unit cards

    NASA Astrophysics Data System (ADS)

    Massanes, Francesc; Cadennes, Marie; Brankov, Jovan G.

    2011-07-01

    We describe and evaluate a fast implementation of a classical block-matching motion estimation algorithm for multiple graphical processing units (GPUs) using the compute unified device architecture computing engine. The implemented block-matching algorithm uses summed absolute difference error criterion and full grid search (FS) for finding optimal block displacement. In this evaluation, we compared the execution time of a GPU and CPU implementation for images of various sizes, using integer and noninteger search grids. The results show that use of a GPU card can shorten computation time by a factor of 200 times for integer and 1000 times for a noninteger search grid. The additional speedup for a noninteger search grid comes from the fact that GPU has built-in hardware for image interpolation. Further, when using multiple GPU cards, the presented evaluation shows the importance of the data splitting method across multiple cards, but an almost linear speedup with a number of cards is achievable. In addition, we compared the execution time of the proposed FS GPU implementation with two existing, highly optimized nonfull grid search CPU-based motion estimations methods, namely implementation of the Pyramidal Lucas Kanade Optical flow algorithm in OpenCV and simplified unsymmetrical multi-hexagon search in H.264/AVC standard. In these comparisons, FS GPU implementation still showed modest improvement even though the computational complexity of FS GPU implementation is substantially higher than non-FS CPU implementation. We also demonstrated that for an image sequence of 720 × 480 pixels in resolution commonly used in video surveillance, the proposed GPU implementation is sufficiently fast for real-time motion estimation at 30 frames-per-second using two NVIDIA C1060 Tesla GPU cards.

  3. Advances in Computer-Supported Learning

    ERIC Educational Resources Information Center

    Neto, Francisco; Brasileiro, Francisco

    2007-01-01

    The Internet and growth of computer networks have eliminated geographic barriers, creating an environment where education can be brought to a student no matter where that student may be. The success of distance learning programs and the availability of many Web-supported applications and multimedia resources have increased the effectiveness of…

  4. Space data systems: Advanced flight computers

    NASA Technical Reports Server (NTRS)

    Benz, Harry F.

    1991-01-01

    The technical objectives are to develop high-performance, space-qualifiable, onboard computing, storage, and networking technologies. The topics are presented in viewgraph form and include the following: technology challenges; state-of-the-art assessment; program description; relationship to external programs; and cooperation and coordination effort.

  5. Performance of heterogeneous computing with graphics processing unit and many integrated core for hartree potential calculations on a numerical grid.

    PubMed

    Choi, Sunghwan; Kwon, Oh-Kyoung; Kim, Jaewook; Kim, Woo Youn

    2016-09-15

    We investigated the performance of heterogeneous computing with graphics processing units (GPUs) and many integrated core (MIC) with 20 CPU cores (20×CPU). As a practical example toward large scale electronic structure calculations using grid-based methods, we evaluated the Hartree potentials of silver nanoparticles with various sizes (3.1, 3.7, 4.9, 6.1, and 6.9 nm) via a direct integral method supported by the sinc basis set. The so-called work stealing scheduler was used for efficient heterogeneous computing via the balanced dynamic distribution of workloads between all processors on a given architecture without any prior information on their individual performances. 20×CPU + 1GPU was up to ∼1.5 and ∼3.1 times faster than 1GPU and 20×CPU, respectively. 20×CPU + 2GPU was ∼4.3 times faster than 20×CPU. The performance enhancement by CPU + MIC was considerably lower than expected because of the large initialization overhead of MIC, although its theoretical performance is similar with that of CPU + GPU. © 2016 Wiley Periodicals, Inc. PMID:27431905

  6. Evaluation of Advanced Computing Techniques and Technologies: Reconfigurable Computing

    NASA Technical Reports Server (NTRS)

    Wells, B. Earl

    2003-01-01

    The focus of this project was to survey the technology of reconfigurable computing determine its level of maturity and suitability for NASA applications. To better understand and assess the effectiveness of the reconfigurable design paradigm that is utilized within the HAL-15 reconfigurable computer system. This system was made available to NASA MSFC for this purpose, from Star Bridge Systems, Inc. To implement on at least one application that would benefit from the performance levels that are possible with reconfigurable hardware. It was originally proposed that experiments in fault tolerance and dynamically reconfigurability would be perform but time constraints mandated that these be pursued as future research.

  7. Computer Graphic Design Using Auto-CAD and Plug Nozzle Research

    NASA Technical Reports Server (NTRS)

    Rogers, Rayna C.

    2004-01-01

    The purpose of creating computer generated images varies widely. They can be use for computational fluid dynamics (CFD), or as a blueprint for designing parts. The schematic that I will be working on the summer will be used to create nozzles that are a part of a larger system. At this phase in the project, the nozzles needed for the systems have been fabricated. One part of my mission is to create both three dimensional and two dimensional models on Auto-CAD 2002 of the nozzles. The research on plug nozzles will allow me to have a better understanding of how they assist in the thrust need for a missile to take off. NASA and the United States military are working together to develop a new design concept. On most missiles a convergent-divergent nozzle is used to create thrust. However, the two are looking into different concepts for the nozzle. The standard convergent-divergent nozzle forces a mixture of combustible fluids and air through a smaller area in comparison to where the combination was mixed. Once it passes through the smaller area known as A8 it comes out the end of the nozzle which is larger the first or area A9. This creates enough thrust for the mechanism whether it is an F-18 fighter jet or a missile. The A9 section of the convergent-divergent nozzle has a mechanism that controls how large A9 can be. This is needed because the pressure of the air coming out nozzle must be equal to that of the ambient pressure other wise there will be a loss of performance in the machine. The plug nozzle however does not need to have an A9 that can vary. When the air flow comes out it can automatically sense what the ambient pressure is and will adjust accordingly. The objective of this design is to create a plug nozzle that is not as complicated mechanically as it counterpart the convergent-divergent nozzle.

  8. Design Graphics

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A mathematician, David R. Hedgley, Jr. developed a computer program that considers whether a line in a graphic model of a three-dimensional object should or should not be visible. Known as the Hidden Line Computer Code, the program automatically removes superfluous lines and displays an object from a specific viewpoint, just as the human eye would see it. An example of how one company uses the program is the experience of Birdair which specializes in production of fabric skylights and stadium covers. The fabric called SHEERFILL is a Teflon coated fiberglass material developed in cooperation with DuPont Company. SHEERFILL glazed structures are either tension structures or air-supported tension structures. Both are formed by patterned fabric sheets supported by a steel or aluminum frame or cable network. Birdair uses the Hidden Line Computer Code, to illustrate a prospective structure to an architect or owner. The program generates a three- dimensional perspective with the hidden lines removed. This program is still used by Birdair and continues to be commercially available to the public.

  9. Development of an interactive computer program for advance care planning

    PubMed Central

    Green, Michael J.; Levi, Benjamin H.

    2013-01-01

    Objective To describe the development of an innovative, multimedia decision aid for advance care planning. Background Advance care planning is an important way for people to articulate their wishes for medical care when they are not able to speak for themselves. Living wills and other types of advance directives are the most commonly used tools for advance care planning, but have been criticized for being vague, difficult to interpret, and inconsistent with individuals’ core beliefs and values. Results We developed a multimedia, computer-based decision aid for advance care planning (‘Making Your Wishes Known: Planning Your Medical Future’) to overcome many of the limitations of standard advance directive forms. This computer program guides individuals through the process of advance care planning, and unlike standard advance directives, provides tailored education, values clarification exercises, and a decision-making tool that translates an individual’s values and preferences into a specific medical plan that can be implemented by a health-care team. Pilot testing with 50 adult volunteers recruited from an outpatient primary care clinic showed high levels of satisfaction with the program. Further pilot testing with 34 cancer patients indicated that the program was perceived to be highly accurate at representing patients’ wishes. Conclusions This paper describes the development of an innovative decision aid for advance care planning that was designed to overcome common problems with standard advance directives. Preliminary testing suggests that it is acceptable to users and is accurate. PMID:18823445

  10. Advanced Computing Tools and Models for Accelerator Physics

    SciTech Connect

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  11. Advances in Computationally Modeling Human Oral Bioavailability

    PubMed Central

    Wang, Junmei; Hou, Tingjun

    2015-01-01

    Although significant progress has been made in experimental high throughput screening (HTS) of ADME (absorption, distribution, metabolism, excretion) and pharmacokinetic properties, the ADME and Toxicity (ADME-Tox) in silico modeling is still indispensable in drug discovery as it can guide us to wisely select drug candidates prior to expensive ADME screenings and clinical trials. Compared to other ADME-Tox properties, human oral bioavailability (HOBA) is particularly important but extremely difficult to predict. In this paper, the advances in human oral bioavailability modeling will be reviewed. Moreover, our deep insight on how to construct more accurate and reliable HOBA QSAR and classification models will also discussed. PMID:25582307

  12. Advances in computationally modeling human oral bioavailability.

    PubMed

    Wang, Junmei; Hou, Tingjun

    2015-06-23

    Although significant progress has been made in experimental high throughput screening (HTS) of ADME (absorption, distribution, metabolism, excretion) and pharmacokinetic properties, the ADME and Toxicity (ADME-Tox) in silico modeling is still indispensable in drug discovery as it can guide us to wisely select drug candidates prior to expensive ADME screenings and clinical trials. Compared to other ADME-Tox properties, human oral bioavailability (HOBA) is particularly important but extremely difficult to predict. In this paper, the advances in human oral bioavailability modeling will be reviewed. Moreover, our deep insight on how to construct more accurate and reliable HOBA QSAR and classification models will also discussed. PMID:25582307

  13. ASDA - Advanced Suit Design Analyzer computer program

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Conger, Bruce C.; Iovine, John V.; Chang, Chi-Min

    1992-01-01

    An ASDA model developed to evaluate the heat and mass transfer characteristics of advanced pressurized suit design concepts for low pressure or vacuum planetary applications is presented. The model is based on a generalized 3-layer suit that uses the Systems Integrated Numerical Differencing Analyzer '85 in conjunction with a 41-node FORTRAN routine. The latter simulates the transient heat transfer and respiratory processes of a human body in a suited environment. The user options for the suit encompass a liquid cooled garment, a removable jacket, a CO2/H2O permeable layer, and a phase change layer.

  14. Advances in Computer-Based Autoantibodies Analysis

    NASA Astrophysics Data System (ADS)

    Soda, Paolo; Iannello, Giulio

    Indirect Immunofluorescence (IIF) imaging is the recommended me-thod to detect autoantibodies in patient serum, whose common markers are antinuclear autoantibodies (ANA) and autoantibodies directed against double strand DNA (anti-dsDNA). Since the availability of accurately performed and correctly reported laboratory determinations is crucial for the clinicians, an evident medical demand is the development of Computer Aided Diagnosis (CAD) tools supporting physicians' decisions.

  15. Advances in computational fluid dynamics solvers for modern computing environments

    NASA Astrophysics Data System (ADS)

    Hertenstein, Daniel; Humphrey, John R.; Paolini, Aaron L.; Kelmelis, Eric J.

    2013-05-01

    EM Photonics has been investigating the application of massively multicore processors to a key problem area: Computational Fluid Dynamics (CFD). While the capabilities of CFD solvers have continually increased and improved to support features such as moving bodies and adjoint-based mesh adaptation, the software architecture has often lagged behind. This has led to poor scaling as core counts reach the tens of thousands. In the modern High Performance Computing (HPC) world, clusters with hundreds of thousands of cores are becoming the standard. In addition, accelerator devices such as NVIDIA GPUs and Intel Xeon Phi are being installed in many new systems. It is important for CFD solvers to take advantage of the new hardware as the computations involved are well suited for the massively multicore architecture. In our work, we demonstrate that new features in NVIDIA GPUs are able to empower existing CFD solvers by example using AVUS, a CFD solver developed by the Air Force Research Labratory (AFRL) and the Volcanic Ash Advisory Center (VAAC). The effort has resulted in increased performance and scalability without sacrificing accuracy. There are many well-known codes in the CFD space that can benefit from this work, such as FUN3D, OVERFLOW, and TetrUSS. Such codes are widely used in the commercial, government, and defense sectors.

  16. Advanced computational techniques for hypersonic propulsion

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    1989-01-01

    Computational Fluid Dynamics (CFD) has played a major role in the resurgence of hypersonic flight, on the premise that numerical methods will allow performance of simulations at conditions for which no ground test capability exists. Validation of CFD methods is being established using the experimental data base available, which is below Mach 8. It is important, however, to realize the limitations involved in the extrapolation process as well as the deficiencies that exist in numerical methods at the present time. Current features of CFD codes are examined for application to propulsion system components. The shortcomings in simulation and modeling are identified and discussed.

  17. Image analysis of paintings by computer graphics synthesis: an investigation of the illumination in Georges de la Tour's Christ in the carpenter's studio

    NASA Astrophysics Data System (ADS)

    Stork, David G.; Furuichi, Yasuo

    2008-02-01

    Computer graphics models of tableaus in paintings provide a principled and controlled method for exploring alternate explanations of artists' praxis. We illustrate the power of computer graphics by testing the recent claim that Georges de la Tour secretly built an optical projector to execute Christ in the carpenter's studio, specifically that he traced projected images in two "exposures," with the illuminant in a different position in each. The theory's originator adduces as evidence his informal impressions that the shadows and highlights in the depicted image imply that the illuminant is in positions other than that of the depicted candle. We tested this projection claim by creating a computer graphics model of the tableau and adjusting the location of the model's illuminants so as to reproduce as closely as possible the pattern of shadows and highlights in the depicted scene. We found that for one "exposure" the model illuminant was quite close to the depicted candle, rather than in the position demanded by the projection theory. We found that for the other "exposure" no single illuminant location explained all highlights perfectly but the evidence was most consistent with the illuminant being in the location of the candle. Our simulation evidence therefore argues against the projection theory for this painting, a conclusion that comports with those from earlier studies of this and other paintings by de la Tour. We conclude with general lessons and suggestions on the use of computer graphics in the study of two-dimensional visual art.

  18. Intelligent Software Tools for Advanced Computing

    SciTech Connect

    Baumgart, C.W.

    2001-04-03

    Feature extraction and evaluation are two procedures common to the development of any pattern recognition application. These features are the primary pieces of information which are used to train the pattern recognition tool, whether that tool is a neural network, a fuzzy logic rulebase, or a genetic algorithm. Careful selection of the features to be used by the pattern recognition tool can significantly streamline the overall development and training of the solution for the pattern recognition application. This report summarizes the development of an integrated, computer-based software package called the Feature Extraction Toolbox (FET), which can be used for the development and deployment of solutions to generic pattern recognition problems. This toolbox integrates a number of software techniques for signal processing, feature extraction and evaluation, and pattern recognition, all under a single, user-friendly development environment. The toolbox has been developed to run on a laptop computer, so that it may be taken to a site and used to develop pattern recognition applications in the field. A prototype version of this toolbox has been completed and is currently being used for applications development on several projects in support of the Department of Energy.

  19. Artist concept computer graphic of Lockheed Martin X-33 Advance Technology Demonstrator vehicle in f

    NASA Technical Reports Server (NTRS)

    1998-01-01

    An artist's conception of the X-33 in flight, with the aerospike engine firing. The X-33 demonstrator was designed to test a wide range of new technologies (including the aerospike engine), that would be used in a future single-stage-to-orbit reusable launch vehicle called the VentureStar. Due to technical problems with the liquid hydrogen tank, however, the X-33 program was cancelled in February 2001.

  20. Recent advances in transonic computational aeroelasticity

    NASA Technical Reports Server (NTRS)

    Batina, John T.; Bennett, Robert M.; Seidel, David A.; Cunningham, Herbert J.; Bland, Samuel R.

    1988-01-01

    A transonic unsteady aerodynamic and aeroelasticity code called CAP-TSD was developed for application to realistic aircraft configurations. The code permits the calculation of steady and unsteady flows about complete aircraft configurations for aeroelastic analysis in the flutter critical transonic speed range. The CAP-TSD code uses a time accurate approximate factorization algorithm for solution of the unsteady transonic small disturbance potential equation. An overview is given of the CAP-TSD code development effort and results are presented which demonstrate various capabilities of the code. Calculations are presented for several configurations including the General Dynamics 1/9 scale F-16 aircraft model and the ONERA M6 wing. Calculations are also presented from a flutter analysis of a 45 deg sweptback wing which agrees well with the experimental data. Descriptions are presented of the CAP-TSD code and algorithm details along with results and comparisons which demonstrate these recent developments in transonic computational aeroelasticity.

  1. Tensor3D: A computer graphics program to simulate 3D real-time deformation and visualization of geometric bodies

    NASA Astrophysics Data System (ADS)

    Pallozzi Lavorante, Luca; Dirk Ebert, Hans

    2008-07-01

    Tensor3D is a geometric modeling program with the capacity to simulate and visualize in real-time the deformation, specified through a tensor matrix and applied to triangulated models representing geological bodies. 3D visualization allows the study of deformational processes that are traditionally conducted in 2D, such as simple and pure shears. Besides geometric objects that are immediately available in the program window, the program can read other models from disk, thus being able to import objects created with different open-source or proprietary programs. A strain ellipsoid and a bounding box are simultaneously shown and instantly deformed with the main object. The principal axes of strain are visualized as well to provide graphical information about the orientation of the tensor's normal components. The deformed models can also be saved, retrieved later and deformed again, in order to study different steps of progressive strain, or to make this data available to other programs. The shape of stress ellipsoids and the corresponding Mohr circles defined by any stress tensor can also be represented. The application was written using the Visualization ToolKit, a powerful scientific visualization library in the public domain. This development choice, allied to the use of the Tcl/Tk programming language, which is independent on the host computational platform, makes the program a useful tool for the study of geometric deformations directly in three dimensions in teaching as well as research activities.

  2. Improvement of MS (multiple sclerosis) CAD (computer aided diagnosis) performance using C/C++ and computing engine in the graphical processing unit (GPU)

    NASA Astrophysics Data System (ADS)

    Suh, Joohyung; Ma, Kevin; Le, Anh

    2011-03-01

    Multiple Sclerosis (MS) is a disease which is caused by damaged myelin around axons of the brain and spinal cord. Currently, MR Imaging is used for diagnosis, but it is very highly variable and time-consuming since the lesion detection and estimation of lesion volume are performed manually. For this reason, we developed a CAD (Computer Aided Diagnosis) system which would assist segmentation of MS to facilitate physician's diagnosis. The MS CAD system utilizes K-NN (k-nearest neighbor) algorithm to detect and segment the lesion volume in an area based on the voxel. The prototype MS CAD system was developed under the MATLAB environment. Currently, the MS CAD system consumes a huge amount of time to process data. In this paper we will present the development of a second version of MS CAD system which has been converted into C/C++ in order to take advantage of the GPU (Graphical Processing Unit) which will provide parallel computation. With the realization of C/C++ and utilizing the GPU, we expect to cut running time drastically. The paper investigates the conversion from MATLAB to C/C++ and the utilization of a high-end GPU for parallel computing of data to improve algorithm performance of MS CAD.

  3. TOPICAL REVIEW: Advances and challenges in computational plasma science

    NASA Astrophysics Data System (ADS)

    Tang, W. M.; Chan, V. S.

    2005-02-01

    Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This

  4. Advanced ERS design using computer simulation

    SciTech Connect

    Melhem, G.A.

    1995-12-31

    There are two schools of thought regarding pressure relief design, shortcut/simplified methods and detailed methods. The shortcut/simplified methods are mostly applicable to non-reactive systems. These methods use direct scale-up techniques to obtain a vent size. Little useful information can be obtained for reaction data such as onset temperatures, activation energy, decompositon stoichiometry, etc. In addition, this approach does not readily provide the ability to perform what-if and sensitivity analysis or data that can be used for post-release mitigation design. The detailed approach advocates a more fundamental approach to pressure relief design, especially for reactive systems. First, the reaction chemistry is qualified using small scale experiments and then this data is coupled with fluid dynamics to design the emergency relief system. In addition to vent sizing information, this approach provides insights into process modification and refinement as well as the establishment of a safe operating envelope. This approach provides necessary flow data for vent containment design (if required), structural support, etc. This approach also allows the direct evaluation of design sensitivity to variables such as temperature, pressure, composition, fill level, etc. on vent sizing while the shortcut approach requires an additional experiment per what-if scenario. This approach meets DIERS technology requirements for two-phase flow and vapor/liquid disengagement and exceeds it in many key areas for reacting systems such as stoichiometry estimation for decomposition reactions, non-ideal solutions effects, continuing reactions in piping and vent containment systems, etc. This paper provides an overview of our proposed equation of state based modeling approach and its computer code implementation. Numerous examples and model validations are also described. 42 refs., 23 figs., 9 tabs.

  5. Use of advanced computers for aerodynamic flow simulation

    NASA Technical Reports Server (NTRS)

    Bailey, F. R.; Ballhaus, W. F.

    1980-01-01

    The current and projected use of advanced computers for large-scale aerodynamic flow simulation applied to engineering design and research is discussed. The design use of mature codes run on conventional, serial computers is compared with the fluid research use of new codes run on parallel and vector computers. The role of flow simulations in design is illustrated by the application of a three dimensional, inviscid, transonic code to the Sabreliner 60 wing redesign. Research computations that include a more complete description of the fluid physics by use of Reynolds averaged Navier-Stokes and large-eddy simulation formulations are also presented. Results of studies for a numerical aerodynamic simulation facility are used to project the feasibility of design applications employing these more advanced three dimensional viscous flow simulations.

  6. Graphic Storytelling

    ERIC Educational Resources Information Center

    Thompson, John

    2009-01-01

    Graphic storytelling is a medium that allows students to make and share stories, while developing their art communication skills. American comics today are more varied in genre, approach, and audience than ever before. When considering the impact of Japanese manga on the youth, graphic storytelling emerges as a powerful player in pop culture. In…

  7. Using R in Introductory Statistics Courses with the pmg Graphical User Interface

    ERIC Educational Resources Information Center

    Verzani, John

    2008-01-01

    The pmg add-on package for the open source statistics software R is described. This package provides a simple to use graphical user interface (GUI) that allows introductory statistics students, without advanced computing skills, to quickly create the graphical and numeric summaries expected of them. (Contains 9 figures.)

  8. Advanced Placement Computer Science with Pascal. Volume 2. Experimental Edition.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY.

    This curriculum guide presents 100 lessons for an advanced placement course on programming in Pascal. Some of the topics covered include arrays, sorting, strings, sets, records, computers in society, files, stacks, queues, linked lists, binary trees, searching, hashing, and chaining. Performance objectives, vocabulary, motivation, aim,…

  9. The Federal Government's Role in Advancing Computer Technology

    ERIC Educational Resources Information Center

    Information Hotline, 1978

    1978-01-01

    As part of the Federal Data Processing Reorganization Study submitted by the Science and Technology Team, the Federal Government's role in advancing and diffusing computer technology is discussed. Findings and conclusions assess the state-of-the-art in government and in industry, and five recommendations provide directions for government policy…

  10. Computer-Assisted Foreign Language Teaching and Learning: Technological Advances

    ERIC Educational Resources Information Center

    Zou, Bin; Xing, Minjie; Wang, Yuping; Sun, Mingyu; Xiang, Catherine H.

    2013-01-01

    Computer-Assisted Foreign Language Teaching and Learning: Technological Advances highlights new research and an original framework that brings together foreign language teaching, experiments and testing practices that utilize the most recent and widely used e-learning resources. This comprehensive collection of research will offer linguistic…

  11. Advances in reversed field pinch theory and computation

    SciTech Connect

    Schnack, D.D.; Ho, Y.L.; Carreras, B.A.; Sidikman, K.; Craddock, G.G.; Mattor, N.; Nebel, R.A.; Prager, S.C.; Terry, P.W.; Zita, E.J.

    1992-12-31

    Advances in theory and computations related to the reversed field pinch (RFP) are presented. These are: (1) the effect of the dynamo on thermal transport; (2) a theory of ion heating due to dynamo fluctuations; (3) studies of active and passive feedback schemes for controlling dynamo fluctuations; and (4) an analytic model for coupled g-mode and rippling turbulence in the RFP edge.

  12. Advanced computational research in materials processing for design and manufacturing

    SciTech Connect

    Zacharia, T.

    1994-12-31

    The computational requirements for design and manufacture of automotive components have seen dramatic increases for producing automobiles with three times the mileage. Automotive component design systems are becoming increasingly reliant on structural analysis requiring both overall larger analysis and more complex analyses, more three-dimensional analyses, larger model sizes, and routine consideration of transient and non-linear effects. Such analyses must be performed rapidly to minimize delays in the design and development process, which drives the need for parallel computing. This paper briefly describes advanced computational research in superplastic forming and automotive crash worthiness.

  13. Advanced computational tools for 3-D seismic analysis

    SciTech Connect

    Barhen, J.; Glover, C.W.; Protopopescu, V.A.

    1996-06-01

    The global objective of this effort is to develop advanced computational tools for 3-D seismic analysis, and test the products using a model dataset developed under the joint aegis of the United States` Society of Exploration Geophysicists (SEG) and the European Association of Exploration Geophysicists (EAEG). The goal is to enhance the value to the oil industry of the SEG/EAEG modeling project, carried out with US Department of Energy (DOE) funding in FY` 93-95. The primary objective of the ORNL Center for Engineering Systems Advanced Research (CESAR) is to spearhead the computational innovations techniques that would enable a revolutionary advance in 3-D seismic analysis. The CESAR effort is carried out in collaboration with world-class domain experts from leading universities, and in close coordination with other national laboratories and oil industry partners.

  14. [Activities of Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2001-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  15. Advances in Numerical Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.

    1997-01-01

    Advances in Computational Aeroacoustics (CAA) depend critically on the availability of accurate, nondispersive, least dissipative computation algorithm as well as high quality numerical boundary treatments. This paper focuses on the recent developments of numerical boundary conditions. In a typical CAA problem, one often encounters two types of boundaries. Because a finite computation domain is used, there are external boundaries. On the external boundaries, boundary conditions simulating the solution outside the computation domain are to be imposed. Inside the computation domain, there may be internal boundaries. On these internal boundaries, boundary conditions simulating the presence of an object or surface with specific acoustic characteristics are to be applied. Numerical boundary conditions, both external or internal, developed for simple model problems are reviewed and examined. Numerical boundary conditions for real aeroacoustic problems are also discussed through specific examples. The paper concludes with a description of some much needed research in numerical boundary conditions for CAA.

  16. Visual presentation and computer animation

    SciTech Connect

    Wang, Hua.

    1991-01-01

    This paper presents an assessment of the current computer graphics and video technologies as they applied to the fields of visual presentation and computer animation, including a discussion of inherent incompatibilities between computer graphics and video systems. The near-term technology trend is directed towards the integration of sound, video and computer graphics into a multimedia, desktop presentation system. With the forthcoming High-Definition Television (HDTV) standard, it can be predicted that computer graphics and video will eventually be integrated to a desktop video system. Recent advances in technology development to achieve these goals are described. 3 tabs.

  17. Parallel computing in genomic research: advances and applications

    PubMed Central

    Ocaña, Kary; de Oliveira, Daniel

    2015-01-01

    Today’s genomic experiments have to process the so-called “biological big data” that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities. PMID:26604801

  18. Development and evaluation of a new 3-D digitization and computer graphic system to study the anatomic tissue and restoration surfaces.

    PubMed

    Dastane, A; Vaidyanathan, T K; Vaidyanathan, J; Mehra, R; Hesby, R

    1996-01-01

    It is necessary to visualize and reconstruct tissue anatomic surfaces accurately for a variety of oral rehabilitation applications such as surface wear characterization and automated fabrication of dental restorations, accuracy of reproduction of impression and die materials, etc. In this investigation, a 3-D digitization and computer-graphic system was developed for surface characterization. The hardware consists of a profiler assembly for digitization in an MTS biomechanical test system with an artificial mouth, an IBM PS/2 computer model 70 for data processing and a Hewlett-Packard laser printer for hardcopy outputs. The software used includes a commercially available Surfer 3-D graphics package, a public domain data-fitting alignment software and an inhouse Pascal program for intercommunication plus some other limited tasks. Surfaces were digitized before and after rotation by angular displacement, the digital data were interpolated by Surfer to provide a data grid and the surfaces were computer graphically reconstructed: Misaligned surfaces were aligned by the data-fitting alignment software under different choices of parameters. The effect of different interpolation parameters (e.g. grid size, method of interpolation) and extent of rotation on the alignment accuracy was determined. The results indicate that improved alignment accuracy results from optimization of interpolation parameters and minimization of the initial misorientation between the digitized surfaces. The method provides important advantages for surface reconstruction and visualization, such as overlay of sequentially generated surfaces and accurate alignment of pairs of surfaces with small misalignment. PMID:8850158

  19. Modernization of the graphics post-processors of the Hamburg German Climate Computer Center Carbon Cycle Codes

    SciTech Connect

    Stevens, E.J.; McNeilly, G.S.

    1994-03-01

    The existing National Center for Atmospheric Research (NCAR) code in the Hamburg Oceanic Carbon Cycle Circulation Model and the Hamburg Large-Scale Geostrophic Ocean General Circulation Model was modernized and reduced in size while still producing an equivalent end result. A reduction in the size of the existing code from more than 50,000 lines to approximately 7,500 lines in the new code has made the new code much easier to maintain. The existing code in Hamburg model uses legacy NCAR (including even emulated CALCOMP subrountines) graphics to display graphical output. The new code uses only current (version 3.1) NCAR subrountines.

  20. Activities of the Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1994-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) high performance networks; and (4) learning systems. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period January 1, 1994 through December 31, 1994 is in the Reports and Abstracts section of this report.

  1. Advanced computer architecture specification for automated weld systems

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1994-01-01

    This report describes the requirements for an advanced automated weld system and the associated computer architecture, and defines the overall system specification from a broad perspective. According to the requirements of welding procedures as they relate to an integrated multiaxis motion control and sensor architecture, the computer system requirements are developed based on a proven multiple-processor architecture with an expandable, distributed-memory, single global bus architecture, containing individual processors which are assigned to specific tasks that support sensor or control processes. The specified architecture is sufficiently flexible to integrate previously developed equipment, be upgradable and allow on-site modifications.

  2. Advanced computer modeling techniques expand belt conveyor technology

    SciTech Connect

    Alspaugh, M.

    1998-07-01

    Increased mining production is continuing to challenge engineers and manufacturers to keep up. The pressure to produce larger and more versatile equipment is increasing. This paper will show some recent major projects in the belt conveyor industry that have pushed the limits of design and engineering technology. Also, it will discuss the systems engineering discipline and advanced computer modeling tools that have helped make these achievements possible. Several examples of technologically advanced designs will be reviewed. However, new technology can sometimes produce increased problems with equipment availability and reliability if not carefully developed. Computer modeling techniques that help one design larger equipment can also compound operational headaches if engineering processes and algorithms are not carefully analyzed every step of the way.

  3. Soft computing in design and manufacturing of advanced materials

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  4. Graphical Methods of Exploratory Data Analysis

    NASA Astrophysics Data System (ADS)

    Friedman, J. H.; McDonald, J. A.; Stuetzle, W.

    This paper describes briefly Orion I, a graphic system used to study applications of computer graphics - especially interactive motion graphics - in statistics. Orion I is the newest of a family of "Prim" systems whose most striking common feature is the use of real-time motion graphics to display three-dimensional scatterplots.

  5. The advanced computational testing and simulation toolkit (ACTS)

    SciTech Connect

    Drummond, L.A.; Marques, O.

    2002-05-21

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  6. High-Performance Computing for Advanced Smart Grid Applications

    SciTech Connect

    Huang, Zhenyu; Chen, Yousu

    2012-07-06

    The power grid is becoming far more complex as a result of the grid evolution meeting an information revolution. Due to the penetration of smart grid technologies, the grid is evolving as an unprecedented speed and the information infrastructure is fundamentally improved with a large number of smart meters and sensors that produce several orders of magnitude larger amounts of data. How to pull data in, perform analysis, and put information out in a real-time manner is a fundamental challenge in smart grid operation and planning. The future power grid requires high performance computing to be one of the foundational technologies in developing the algorithms and tools for the significantly increased complexity. New techniques and computational capabilities are required to meet the demands for higher reliability and better asset utilization, including advanced algorithms and computing hardware for large-scale modeling, simulation, and analysis. This chapter summarizes the computational challenges in smart grid and the need for high performance computing, and present examples of how high performance computing might be used for future smart grid operation and planning.

  7. Computation of the tip vortex flowfield for advanced aircraft propellers

    NASA Technical Reports Server (NTRS)

    Tsai, Tommy M.; Dejong, Frederick J.; Levy, Ralph

    1988-01-01

    The tip vortex flowfield plays a significant role in the performance of advanced aircraft propellers. The flowfield in the tip region is complex, three-dimensional and viscous with large secondary velocities. An analysis is presented using an approximate set of equations which contains the physics required by the tip vortex flowfield, but which does not require the resources of the full Navier-Stokes equations. A computer code was developed to predict the tip vortex flowfield of advanced aircraft propellers. A grid generation package was developed to allow specification of a variety of advanced aircraft propeller shapes. Calculations of the tip vortex generation on an SR3 type blade at high Reynolds numbers were made using this code and a parametric study was performed to show the effect of tip thickness on tip vortex intensity. In addition, calculations of the tip vortex generation on a NACA 0012 type blade were made, including the flowfield downstream of the blade trailing edge. Comparison of flowfield calculations with experimental data from an F4 blade was made. A user's manual was also prepared for the computer code (NASA CR-182178).

  8. High resolution computed tomography of advanced composite and ceramic materials

    NASA Technical Reports Server (NTRS)

    Yancey, R. N.; Klima, S. J.

    1991-01-01

    Advanced composite and ceramic materials are being developed for use in many new defense and commercial applications. In order to achieve the desired mechanical properties of these materials, the structural elements must be carefully analyzed and engineered. A study was conducted to evaluate the use of high resolution computed tomography (CT) as a macrostructural analysis tool for advanced composite and ceramic materials. Several samples were scanned using a laboratory high resolution CT scanner. Samples were also destructively analyzed at the locations of the scans and the nondestructive and destructive results were compared. The study provides useful information outlining the strengths and limitations of this technique and the prospects for further research in this area.

  9. Whole-genome CNV analysis: advances in computational approaches

    PubMed Central

    Pirooznia, Mehdi; Goes, Fernando S.; Zandi, Peter P.

    2015-01-01

    Accumulating evidence indicates that DNA copy number variation (CNV) is likely to make a significant contribution to human diversity and also play an important role in disease susceptibility. Recent advances in genome sequencing technologies have enabled the characterization of a variety of genomic features, including CNVs. This has led to the development of several bioinformatics approaches to detect CNVs from next-generation sequencing data. Here, we review recent advances in CNV detection from whole genome sequencing. We discuss the informatics approaches and current computational tools that have been developed as well as their strengths and limitations. This review will assist researchers and analysts in choosing the most suitable tools for CNV analysis as well as provide suggestions for new directions in future development. PMID:25918519

  10. Graphical programming of telerobotic tasks

    SciTech Connect

    Small, D.E.; McDonald, M.J.

    1996-11-01

    With a goal of producing faster, safer, and cheaper technologies for nuclear waste cleanup, Sandia is actively developing and extending intelligent systems technologies through the US Department of Energy Office of Technology Development (DOE OTD) Robotic Technology Development Program (RTDP). Graphical programming is a key technology for robotic waste cleanup that Sandia is developing for this goal. Graphical programming uses simulation such as TELEGRIP `on-line` to program and control robots. Characterized by its model-based control architecture, integrated simulation, `point-and-click` graphical user interfaces, task and path planning software, and network communications, Sandia`s Graphical Programming systems allow operators to focus on high-level robotic tasks rather than the low-level details. Use of scripted tasks, rather than customized programs minimizes the necessity of recompiling supervisory control systems and enhances flexibility. Rapid world-modelling technologies allow Graphical Programming to be used in dynamic and unpredictable environments including digging and pipe-cutting. This paper describes Sancho, Sandia`s most advanced graphical programming supervisory software. Sancho, now operational on several robot systems, incorporates all of Sandia`s recent advances in supervisory control. Graphical programming uses 3-D graphics models as intuitive operator interfaces to program and control complex robotic systems. The goal of the paper is to help the reader understand how Sandia implements graphical programming systems and which key features in Sancho have proven to be most effective.

  11. Fast point-based method of a computer-generated hologram for a triangle-patch model by using a graphics processing unit.

    PubMed

    Sugawara, Takuya; Ogihara, Yuki; Sakamoto, Yuji

    2016-01-20

    The point-based method and fast-Fourier-transform-based method are commonly used for calculation methods of computer-generation holograms. This paper proposes a novel fast calculation method for a patch model, which uses the point-based method. The method provides a calculation time that is proportional to the number of patches but not to that of the point light sources. This means that the method is suitable for calculating a wide area covered by patches quickly. Experiments using a graphics processing unit indicated that the proposed method is about 8 times or more faster than the ordinary point-based method. PMID:26835949

  12. Advances in Computational Stability Analysis of Composite Aerospace Structures

    SciTech Connect

    Degenhardt, R.; Araujo, F. C. de

    2010-09-30

    European aircraft industry demands for reduced development and operating costs. Structural weight reduction by exploitation of structural reserves in composite aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis of real structures under realistic loading conditions. This paper presents different advances from the area of computational stability analysis of composite aerospace structures which contribute to that field. For stringer stiffened panels main results of the finished EU project COCOMAT are given. It investigated the exploitation of reserves in primary fibre composite fuselage structures through an accurate and reliable simulation of postbuckling and collapse. For unstiffened cylindrical composite shells a proposal for a new design method is presented.

  13. Advances in Electromagnetic Modelling through High Performance Computing

    SciTech Connect

    Ko, K.; Folwell, N.; Ge, L.; Guetz, A.; Lee, L.; Li, Z.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.; Xiao, L.; /SLAC

    2006-03-29

    Under the DOE SciDAC project on Accelerator Science and Technology, a suite of electromagnetic codes has been under development at SLAC that are based on unstructured grids for higher accuracy, and use parallel processing to enable large-scale simulation. The new modeling capability is supported by SciDAC collaborations on meshing, solvers, refinement, optimization and visualization. These advances in computational science are described and the application of the parallel eigensolver Omega3P to the cavity design for the International Linear Collider is discussed.

  14. Computer modeling for advanced life support system analysis.

    PubMed

    Drysdale, A

    1997-01-01

    This article discusses the equivalent mass approach to advanced life support system analysis, describes a computer model developed to use this approach, and presents early results from modeling the NASA JSC BioPlex. The model is built using an object oriented approach and G2, a commercially available modeling package Cost factor equivalencies are given for the Volosin scenarios. Plant data from NASA KSC and Utah State University (USU) are used, together with configuration data from the BioPlex design effort. Initial results focus on the importance of obtaining high plant productivity with a flight-like configuration. PMID:11540448

  15. ABrIL - Advanced Brain Imaging Lab : a cloud based computation environment for cooperative neuroimaging projects.

    PubMed

    Neves Tafula, Sérgio M; Moreira da Silva, Nádia; Rozanski, Verena E; Silva Cunha, João Paulo

    2014-01-01

    Neuroscience is an increasingly multidisciplinary and highly cooperative field where neuroimaging plays an important role. Neuroimaging rapid evolution is demanding for a growing number of computing resources and skills that need to be put in place at every lab. Typically each group tries to setup their own servers and workstations to support their neuroimaging needs, having to learn from Operating System management to specific neuroscience software tools details before any results can be obtained from each setup. This setup and learning process is replicated in every lab, even if a strong collaboration among several groups is going on. In this paper we present a new cloud service model - Brain Imaging Application as a Service (BiAaaS) - and one of its implementation - Advanced Brain Imaging Lab (ABrIL) - in the form of an ubiquitous virtual desktop remote infrastructure that offers a set of neuroimaging computational services in an interactive neuroscientist-friendly graphical user interface (GUI). This remote desktop has been used for several multi-institution cooperative projects with different neuroscience objectives that already achieved important results, such as the contribution to a high impact paper published in the January issue of the Neuroimage journal. The ABrIL system has shown its applicability in several neuroscience projects with a relatively low-cost, promoting truly collaborative actions and speeding up project results and their clinical applicability. PMID:25570014

  16. Graphics Software For VT Terminals

    NASA Technical Reports Server (NTRS)

    Wang, Caroline

    1991-01-01

    VTGRAPH graphics software tool for DEC/VT computer terminal or terminals compatible with it, widely used by government and industry. Callable in FORTRAN or C language, library program enabling user to cope with many computer environments in which VT terminals used for window management and graphic systems. Provides PLOT10-like package plus color or shade capability for VT240, VT241, and VT300 terminals. User can easily design more-friendly user-interface programs and design PLOT10 programs on VT terminals with different computer systems. Requires ReGis graphics set terminal and FORTRAN compiler.

  17. Computational ocean acoustics: Advances in 3D ocean acoustic modeling

    NASA Astrophysics Data System (ADS)

    Schmidt, Henrik; Jensen, Finn B.

    2012-11-01

    The numerical model of ocean acoustic propagation developed in the 1980's are still in widespread use today, and the field of computational ocean acoustics is often considered a mature field. However, the explosive increase in computational power available to the community has created opportunities for modeling phenomena that earlier were beyond reach. Most notably, three-dimensional propagation and scattering problems have been prohibitive computationally, but are now addressed routinely using brute force numerical approaches such as the Finite Element Method, in particular for target scattering problems, where they are being combined with the traditional wave theory propagation models in hybrid modeling frameworks. Also, recent years has seen the development of hybrid approaches coupling oceanographic circulation models with acoustic propagation models, enabling the forecasting of sonar performance uncertainty in dynamic ocean environments. These and other advances made over the last couple of decades support the notion that the field of computational ocean acoustics is far from being mature. [Work supported by the Office of Naval Research, Code 321OA].

  18. (Advanced materials, robotics, and advanced computers for use in nuclear power plants)

    SciTech Connect

    White, J.D.

    1989-11-17

    The aim of the IAEA Technical Committee Workshop was to provide an opportunity to exchange information on the status of advances in technologies such as improved materials, robotics, and advanced computers already used or expected to be used in the design of nuclear power plants, and to review possible applications of advanced technologies in future reactor designs. Papers were given in these areas by Belgium, France, Mexico, Canada, Russia, India, and the United States. Notably absent from this meeting were Japan, Germany, Italy, Spain, the United Kingdom, and the Scandinavian countries -- all of whom are working in the areas of interest to this meeting. Most of the workshop discussion, however, was focused on advanced controls (including human-machine interface and software development and testing) and electronic descriptions of power plants. Verification and validation of design was also a topic of considerable discussion. The traveler was surprised at the progress made in 3-D electronic images of nuclear power plants and automatic updating of these images to reflect as-built conditions. Canadian plants and one Mexican plant have used photogrammetry to update electronic drawings automatically. The Canadians also have started attaching other electronic data bases to the electronic drawings. These data bases include parts information and maintenance work. The traveler observed that the Advanced Controls Program is better balanced and more forward looking than other nuclear controls R D activities described. The French participants made this observation in the meeting and expressed interest in collaborative work in this area.

  19. Development of Improved Graphical Displays for an Advanced Outage Control Center, Employing Human Factors Principles for Outage Schedule Management

    SciTech Connect

    St Germain, Shawn Walter; Farris, Ronald Keith; Thomas, Kenneth David

    2015-09-01

    The long-term viability of existing nuclear power plants in the United States (U.S.) is dependent upon a number of factors, including maintaining high capacity factors, maintaining nuclear safety, and reducing operating costs, particularly those associated with refueling outages. Refueling outages typically take 20-30 days, and for existing light water NPPs in the U.S., the reactor cannot be in operation during the outage. Furthermore, given that many NPPs generate between $1-1.5 million/day in revenue when in operation, there is considerable interest in shortening the length of refueling outages. Yet refueling outages are highly complex operations, involving multiple concurrent and dependent activities that are somewhat challenging to coordinate; therefore, finding ways to improve refueling outage performance, while maintaining nuclear safety has proven to be difficult. The Advanced Outage Control Center (AOCC) project is a research and development (R&D) demonstration activity under the LWRS Program. LWRS is an R&D program that works closely with industry R&D programs to establish technical foundations for the licensing and managing of long-term, safe, and economical operation of current fleet of NPPs. As such, the LWRS Advanced Outage Control Center project has the goal of improving the management of commercial NPP refueling outages. To accomplish this goal, INL is developing an advanced outage control center (OCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. The overall focus is on developing an AOCC with the following capabilities that enables plant and OCC staff to; Collaborate in real-time to address emergent issues; Effectively communicate outage status to all workers involved in the outage; Effectively communicate discovered conditions in the field to the OCC; Provide real-time work status; Provide automatic pending support notifications

  20. Advances in computed tomography evaluation of skull base diseases.

    PubMed

    Prevedello, Luciano M

    2014-10-01

    Introduction Computed tomography (CT) is a key component in the evaluation of skull base diseases. With its ability to clearly delineate the osseous anatomy, CT can provide not only important tips to diagnosis but also key information for surgical planning. Objectives The purpose of this article is to describe some of the main CT imaging features that contribute to the diagnosis of skull base tumors, review recent knowledge related to bony manifestations of these conditions, and summarize recent technological advances in CT that contribute to image quality and improved diagnosis. Data Synthesis Recent advances in CT technology allow fine-detailed evaluation of the bony anatomy using submillimetric sections. Dual-energy CT material decomposition capabilities allow clear separation between contrast material, bone, and soft tissues with many clinical applications in the skull base. Dual-energy technology has also the ability to decrease image degradation from metallic hardwares using some techniques that can result in similar or even decreased radiation to patients. Conclusions CT is very useful in the evaluation of skull base diseases, and recent technological advances can increase disease conspicuity resulting in improved diagnostic capabilities and enhanced surgical planning. PMID:25992136

  1. Graphic engine resource management

    NASA Astrophysics Data System (ADS)

    Bautin, Mikhail; Dwarakinath, Ashok; Chiueh, Tzi-cker

    2008-01-01

    Modern consumer-grade 3D graphic cards boast a computation/memory resource that can easily rival or even exceed that of standard desktop PCs. Although these cards are mainly designed for 3D gaming applications, their enormous computational power has attracted developers to port an increasing number of scientific computation programs to these cards, including matrix computation, collision detection, cryptography, database sorting, etc. As more and more applications run on 3D graphic cards, there is a need to allocate the computation/memory resource on these cards among the sharing applications more fairly and efficiently. In this paper, we describe the design, implementation and evaluation of a Graphic Processing Unit (GPU) scheduler based on Deficit Round Robin scheduling that successfully allocates to every process an equal share of the GPU time regardless of their demand. This scheduler, called GERM, estimates the execution time of each GPU command group based on dynamically collected statistics, and controls each process's GPU command production rate through its CPU scheduling priority. Measurements on the first GERM prototype show that this approach can keep the maximal GPU time consumption difference among concurrent GPU processes consistently below 5% for a variety of application mixes.

  2. Recent Advances in Computational Mechanics of the Human Knee Joint

    PubMed Central

    Kazemi, M.; Dabiri, Y.; Li, L. P.

    2013-01-01

    Computational mechanics has been advanced in every area of orthopedic biomechanics. The objective of this paper is to provide a general review of the computational models used in the analysis of the mechanical function of the knee joint in different loading and pathological conditions. Major review articles published in related areas are summarized first. The constitutive models for soft tissues of the knee are briefly discussed to facilitate understanding the joint modeling. A detailed review of the tibiofemoral joint models is presented thereafter. The geometry reconstruction procedures as well as some critical issues in finite element modeling are also discussed. Computational modeling can be a reliable and effective method for the study of mechanical behavior of the knee joint, if the model is constructed correctly. Single-phase material models have been used to predict the instantaneous load response for the healthy knees and repaired joints, such as total and partial meniscectomies, ACL and PCL reconstructions, and joint replacements. Recently, poromechanical models accounting for fluid pressurization in soft tissues have been proposed to study the viscoelastic response of the healthy and impaired knee joints. While the constitutive modeling has been considerably advanced at the tissue level, many challenges still exist in applying a good material model to three-dimensional joint simulations. A complete model validation at the joint level seems impossible presently, because only simple data can be obtained experimentally. Therefore, model validation may be concentrated on the constitutive laws using multiple mechanical tests of the tissues. Extensive model verifications at the joint level are still crucial for the accuracy of the modeling. PMID:23509602

  3. DOE Advanced Scientific Computing Advisory Committee (ASCAC) Report: Exascale Computing Initiative Review

    SciTech Connect

    Reed, Daniel; Berzins, Martin; Pennington, Robert; Sarkar, Vivek; Taylor, Valerie

    2015-08-01

    On November 19, 2014, the Advanced Scientific Computing Advisory Committee (ASCAC) was charged with reviewing the Department of Energy’s conceptual design for the Exascale Computing Initiative (ECI). In particular, this included assessing whether there are significant gaps in the ECI plan or areas that need to be given priority or extra management attention. Given the breadth and depth of previous reviews of the technical challenges inherent in exascale system design and deployment, the subcommittee focused its assessment on organizational and management issues, considering technical issues only as they informed organizational or management priorities and structures. This report presents the observations and recommendations of the subcommittee.

  4. Real-Space Density Functional Theory on Graphical Processing Units: Computational Approach and Comparison to Gaussian Basis Set Methods.

    PubMed

    Andrade, Xavier; Aspuru-Guzik, Alán

    2013-10-01

    We discuss the application of graphical processing units (GPUs) to accelerate real-space density functional theory (DFT) calculations. To make our implementation efficient, we have developed a scheme to expose the data parallelism available in the DFT approach; this is applied to the different procedures required for a real-space DFT calculation. We present results for current-generation GPUs from AMD and Nvidia, which show that our scheme, implemented in the free code Octopus, can reach a sustained performance of up to 90 GFlops for a single GPU, representing a significant speed-up when compared to the CPU version of the code. Moreover, for some systems, our implementation can outperform a GPU Gaussian basis set code, showing that the real-space approach is a competitive alternative for DFT simulations on GPUs. PMID:26589153

  5. Measuring Cognitive Load in Test Items: Static Graphics versus Animated Graphics

    ERIC Educational Resources Information Center

    Dindar, M.; Kabakçi Yurdakul, I.; Inan Dönmez, F.

    2015-01-01

    The majority of multimedia learning studies focus on the use of graphics in learning process but very few of them examine the role of graphics in testing students' knowledge. This study investigates the use of static graphics versus animated graphics in a computer-based English achievement test from a cognitive load theory perspective. Three…

  6. NASA Trapezoidal Wing Computations Including Transition and Advanced Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Lee-Rausch, E. M.

    2012-01-01

    Flow about the NASA Trapezoidal Wing is computed with several turbulence models by using grids from the first High Lift Prediction Workshop in an effort to advance understanding of computational fluid dynamics modeling for this type of flowfield. Transition is accounted for in many of the computations. In particular, a recently-developed 4-equation transition model is utilized and works well overall. Accounting for transition tends to increase lift and decrease moment, which improves the agreement with experiment. Upper surface flap separation is reduced, and agreement with experimental surface pressures and velocity profiles is improved. The predicted shape of wakes from upstream elements is strongly influenced by grid resolution in regions above the main and flap elements. Turbulence model enhancements to account for rotation and curvature have the general effect of increasing lift and improving the resolution of the wing tip vortex as it convects downstream. However, none of the models improve the prediction of surface pressures near the wing tip, where more grid resolution is needed.

  7. Using compute unified device architecture-enabled graphic processing unit to accelerate fast Fourier transform-based regression Kriging interpolation on a MODIS land surface temperature image

    NASA Astrophysics Data System (ADS)

    Hu, Hongda; Shu, Hong; Hu, Zhiyong; Xu, Jianhui

    2016-04-01

    Kriging interpolation provides the best linear unbiased estimation for unobserved locations, but its heavy computation limits the manageable problem size in practice. To address this issue, an efficient interpolation procedure incorporating the fast Fourier transform (FFT) was developed. Extending this efficient approach, we propose an FFT-based parallel algorithm to accelerate regression Kriging interpolation on an NVIDIA® compute unified device architecture (CUDA)-enabled graphic processing unit (GPU). A high-performance cuFFT library in the CUDA toolkit was introduced to execute computation-intensive FFTs on the GPU, and three time-consuming processes were redesigned as kernel functions and executed on the CUDA cores. A MODIS land surface temperature 8-day image tile at a resolution of 1 km was resampled to create experimental datasets at eight different output resolutions. These datasets were used as the interpolation grids with different sizes in a comparative experiment. Experimental results show that speedup of the FFT-based regression Kriging interpolation accelerated by GPU can exceed 1000 when processing datasets with large grid sizes, as compared to the traditional Kriging interpolation running on the CPU. These results demonstrate that the combination of FFT methods and GPU-based parallel computing techniques greatly improves the computational performance without loss of precision.

  8. SciDAC Advances and Applications in Computational Beam Dynamics

    SciTech Connect

    Ryne, R.; Abell, D.; Adelmann, A.; Amundson, J.; Bohn, C.; Cary, J.; Colella, P.; Dechow, D.; Decyk, V.; Dragt, A.; Gerber, R.; Habib, S.; Higdon, D.; Katsouleas, T.; Ma, K.-L.; McCorquodale, P.; Mihalcea, D.; Mitchell, C.; Mori, W.; Mottershead, C.T.; Neri, F.; Pogorelov, I.; Qiang, J.; Samulyak, R.; Serafini, D.; Shalf, J.; Siegerist, C.; Spentzouris, P.; Stoltz, P.; Terzic, B.; Venturini, M.; Walstrom, P.

    2005-06-26

    SciDAC has had a major impact on computational beam dynamics and the design of particle accelerators. Particle accelerators--which account for half of the facilities in the DOE Office of Science Facilities for the Future of Science 20 Year Outlook--are crucial for US scientific, industrial, and economic competitiveness. Thanks to SciDAC, accelerator design calculations that were once thought impossible are now carried routinely, and new challenging and important calculations are within reach. SciDAC accelerator modeling codes are being used to get the most science out of existing facilities, to produce optimal designs for future facilities, and to explore advanced accelerator concepts that may hold the key to qualitatively new ways of accelerating charged particle beams. In this poster we present highlights from the SciDAC Accelerator Science and Technology (AST) project Beam Dynamics focus area in regard to algorithm development, software development, and applications.

  9. Advanced information processing system: Inter-computer communication services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Masotto, Tom; Sims, J. Terry; Whittredge, Roy; Alger, Linda S.

    1991-01-01

    The purpose is to document the functional requirements and detailed specifications for the Inter-Computer Communications Services (ICCS) of the Advanced Information Processing System (AIPS). An introductory section is provided to outline the overall architecture and functional requirements of the AIPS and to present an overview of the ICCS. An overview of the AIPS architecture as well as a brief description of the AIPS software is given. The guarantees of the ICCS are provided, and the ICCS is described as a seven-layered International Standards Organization (ISO) Model. The ICCS functional requirements, functional design, and detailed specifications as well as each layer of the ICCS are also described. A summary of results and suggestions for future work are presented.

  10. Computer and graphics modeling of heat transfer and phase change in a wall with randomly imbibed PCM

    SciTech Connect

    Solomon, A.D.

    1989-03-01

    We describe the theoretical basis and computer implementation of a simulation code for heat transfer and phase change in a rectangular 2-dimensional region in which PCM has been randomly placed with a preassigned volume fraction.

  11. Recent advances in computational structural reliability analysis methods

    NASA Technical Reports Server (NTRS)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-01-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  12. Optical design and characterization of an advanced computational imaging system

    NASA Astrophysics Data System (ADS)

    Shepard, R. Hamilton; Fernandez-Cull, Christy; Raskar, Ramesh; Shi, Boxin; Barsi, Christopher; Zhao, Hang

    2014-09-01

    We describe an advanced computational imaging system with an optical architecture that enables simultaneous and dynamic pupil-plane and image-plane coding accommodating several task-specific applications. We assess the optical requirement trades associated with custom and commercial-off-the-shelf (COTS) optics and converge on the development of two low-cost and robust COTS testbeds. The first is a coded-aperture programmable pixel imager employing a digital micromirror device (DMD) for image plane per-pixel oversampling and spatial super-resolution experiments. The second is a simultaneous pupil-encoded and time-encoded imager employing a DMD for pupil apodization or a deformable mirror for wavefront coding experiments. These two testbeds are built to leverage two MIT Lincoln Laboratory focal plane arrays - an orthogonal transfer CCD with non-uniform pixel sampling and on-chip dithering and a digital readout integrated circuit (DROIC) with advanced on-chip per-pixel processing capabilities. This paper discusses the derivation of optical component requirements, optical design metrics, and performance analyses for the two testbeds built.

  13. Reliability of an interactive computer program for advance care planning.

    PubMed

    Schubart, Jane R; Levi, Benjamin H; Camacho, Fabian; Whitehead, Megan; Farace, Elana; Green, Michael J

    2012-06-01

    Despite widespread efforts to promote advance directives (ADs), completion rates remain low. Making Your Wishes Known: Planning Your Medical Future (MYWK) is an interactive computer program that guides individuals through the process of advance care planning, explaining health conditions and interventions that commonly involve life or death decisions, helps them articulate their values/goals, and translates users' preferences into a detailed AD document. The purpose of this study was to demonstrate that (in the absence of major life changes) the AD generated by MYWK reliably reflects an individual's values/preferences. English speakers ≥30 years old completed MYWK twice, 4 to 6 weeks apart. Reliability indices were assessed for three AD components: General Wishes; Specific Wishes for treatment; and Quality-of-Life values (QoL). Twenty-four participants completed the study. Both the Specific Wishes and QoL scales had high internal consistency in both time periods (Knuder Richardson formula 20 [KR-20]=0.83-0.95, and 0.86-0.89). Test-retest reliability was perfect for General Wishes (κ=1), high for QoL (Pearson's correlation coefficient=0.83), but lower for Specific Wishes (Pearson's correlation coefficient=0.57). MYWK generates an AD where General Wishes and QoL (but not Specific Wishes) statements remain consistent over time. PMID:22512830

  14. Reliability of an Interactive Computer Program for Advance Care Planning

    PubMed Central

    Levi, Benjamin H.; Camacho, Fabian; Whitehead, Megan; Farace, Elana; Green, Michael J

    2012-01-01

    Abstract Despite widespread efforts to promote advance directives (ADs), completion rates remain low. Making Your Wishes Known: Planning Your Medical Future (MYWK) is an interactive computer program that guides individuals through the process of advance care planning, explaining health conditions and interventions that commonly involve life or death decisions, helps them articulate their values/goals, and translates users' preferences into a detailed AD document. The purpose of this study was to demonstrate that (in the absence of major life changes) the AD generated by MYWK reliably reflects an individual's values/preferences. English speakers ≥30 years old completed MYWK twice, 4 to 6 weeks apart. Reliability indices were assessed for three AD components: General Wishes; Specific Wishes for treatment; and Quality-of-Life values (QoL). Twenty-four participants completed the study. Both the Specific Wishes and QoL scales had high internal consistency in both time periods (Knuder Richardson formula 20 [KR-20]=0.83–0.95, and 0.86–0.89). Test-retest reliability was perfect for General Wishes (κ=1), high for QoL (Pearson's correlation coefficient=0.83), but lower for Specific Wishes (Pearson's correlation coefficient=0.57). MYWK generates an AD where General Wishes and QoL (but not Specific Wishes) statements remain consistent over time. PMID:22512830

  15. TerraFERMA: Harnessing Advanced Computational Libraries in Earth Science

    NASA Astrophysics Data System (ADS)

    Wilson, C. R.; Spiegelman, M.; van Keken, P.

    2012-12-01

    Many important problems in Earth sciences can be described by non-linear coupled systems of partial differential equations. These "multi-physics" problems include thermo-chemical convection in Earth and planetary interiors, interactions of fluids and magmas with the Earth's mantle and crust and coupled flow of water and ice. These problems are of interest to a large community of researchers but are complicated to model and understand. Much of this complexity stems from the nature of multi-physics where small changes in the coupling between variables or constitutive relations can lead to radical changes in behavior, which in turn affect critical computational choices such as discretizations, solvers and preconditioners. To make progress in understanding such coupled systems requires a computational framework where multi-physics problems can be described at a high-level while maintaining the flexibility to easily modify the solution algorithm. Fortunately, recent advances in computational science provide a basis for implementing such a framework. Here we present the Transparent Finite Element Rapid Model Assembler (TerraFERMA), which leverages several advanced open-source libraries for core functionality. FEniCS (fenicsproject.org) provides a high level language for describing the weak forms of coupled systems of equations, and an automatic code generator that produces finite element assembly code. PETSc (www.mcs.anl.gov/petsc) provides a wide range of scalable linear and non-linear solvers that can be composed into effective multi-physics preconditioners. SPuD (amcg.ese.ic.ac.uk/Spud) is an application neutral options system that provides both human and machine-readable interfaces based on a single xml schema. Our software integrates these libraries and provides the user with a framework for exploring multi-physics problems. A single options file fully describes the problem, including all equations, coefficients and solver options. Custom compiled applications are

  16. Advances in computer technology: impact on the practice of medicine.

    PubMed

    Groth-Vasselli, B; Singh, K; Farnsworth, P N

    1995-01-01

    Advances in computer technology provide a wide range of applications which are revolutionizing the practice of medicine. The development of new software for the office creates a web of communication among physicians, staff members, health care facilities and associated agencies. This provides the physician with the prospect of a paperless office. At the other end of the spectrum, the development of 3D work stations and software based on computational chemistry permits visualization of protein molecules involved in disease. Computer assisted molecular modeling has been used to construct working 3D models of lens alpha-crystallin. The 3D structure of alpha-crystallin is basic to our understanding of the molecular mechanisms involved in lens fiber cell maturation, stabilization of the inner nuclear region, the maintenance of lens transparency and cataractogenesis. The major component of the high molecular weight aggregates that occur during cataractogenesis is alpha-crystallin subunits. Subunits of alpha-crystallin occur in other tissues of the body. In the central nervous system accumulation of these subunits in the form of dense inclusion bodies occurs in pathological conditions such as Alzheimer's disease, Huntington's disease, multiple sclerosis and toxoplasmosis (Iwaki, Wisniewski et al., 1992), as well as neoplasms of astrocyte origin (Iwaki, Iwaki, et al., 1991). Also cardiac ischemia is associated with an increased alpha B synthesis (Chiesi, Longoni et al., 1990). On a more global level, the molecular structure of alpha-crystallin may provide information pertaining to the function of small heat shock proteins, hsp, in maintaining cell stability under the stress of disease. PMID:8721907

  17. Activities and operations of Argonne's Advanced Computing Research Facility: February 1990 through April 1991

    SciTech Connect

    Pieper, G.W.

    1991-05-01

    This report reviews the activities and operations of the Advanced Computing Research Facility (ACRF) from February 1990 through April 1991. The ACRF is operated by the Mathematics and Computer Science Division at Argonne National Laboratory. The facility's principal objective is to foster research in parallel computing. Toward this objective, the ACRF operates experimental advanced computers, supports investigations in parallel computing, and sponsors technology transfer efforts to industry and academia. 5 refs., 1 fig.

  18. Programmer's Guide for Subroutine PRNT3D. Physical Processes in Terrestrial and Aquatic Ecosystems, Computer Programs and Graphics Capabilities.

    ERIC Educational Resources Information Center

    Gales, Larry

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. PRNT3D is a subroutine package which generates a variety of printed plot displays. The displays…

  19. User's Guide for Subroutine PLOT3D. Physical Processes in Terrestrial and Aquatic Ecosystems, Computer Programs and Graphics Capabilities.

    ERIC Educational Resources Information Center

    Gales, Larry

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. PLOT3D is a subroutine package which generates a variety of three dimensional hidden…

  20. User's Guide for Subroutine FFORM. Physical Processes in Terrestrial and Aquatic Ecosystems, Computer Programs and Graphics Capabilities.

    ERIC Educational Resources Information Center

    Gales, Larry; Anderson, Lougenia

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. FFORM is a portable format-free input subroutine package which simplifies the input of values…

  1. Programmer's Guide for Subroutine PLOT3D. Physical Processes in Terrestrial and Aquatic Ecosystems, Computer Programs and Graphics Capabilities.

    ERIC Educational Resources Information Center

    Gales, Larry

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. PLOT3D is a subroutine package which generates a variety of three-dimensional hidden…

  2. The Use of a Computer Graphic Organizer for Persuasive Composition Writing by Hispanic Students with Specific Learning Disabilities

    ERIC Educational Resources Information Center

    Unzueta, Caridad H.

    2009-01-01

    Many culturally and linguistically diverse (CLD) students with specific learning disabilities (SLD) struggle with the writing process. Particularly, they have difficulties developing and expanding ideas, organizing and elaborating sentences, and revising and editing their compositions (Graham, Harris, & Larsen, 2001; Myles, 2002). Computer graphic…

  3. User's Guide for Subroutine PRNT3D. Physical Processes in Terrestrial and Aquatic Ecosystems, Computer Programs and Graphics Capabilities.

    ERIC Educational Resources Information Center

    Gales, Larry

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. PRNT3D is a subroutine package which generates a variety of printer plot displays. The displays…

  4. Experimental and computer graphics simulation analyses of the DNA interaction of 1,8-bis-(2-diethylaminoethylamino)-anthracene-9,10-dione, a compound modelled on doxorubicin.

    PubMed

    Islam, S A; Neidle, S; Gandecha, B M; Brown, J R

    1983-09-15

    The crystal structure of the anthraquinone derivative 1,8-bis-(2-diethylaminoethylamino)-anthracene-9,10-dione has been established. This compound was prepared as a potential DNA-intercalating agent based on the proven intercalators doxorubicin and mitoxantrone. Its DNA-binding properties have been examined experimentally by spectroscopic, thermal denaturation and ccc-DNA unwinding techniques: the results are consistent with an intercalative mode of binding to DNA. Computer graphics stimulation of the intercalative docking of this compound into the self-complementary dimer of d(CpG) has provided a minimum energy geometrical arrangement for the bound drug in the intercalation site comparable to that for proflavine when intercalated into the same d(CpG) model system. Entry of the compound into the site can only occur via the major groove. PMID:6626250

  5. Graphic Design Is Not a Medium.

    ERIC Educational Resources Information Center

    Gruber, John Edward, Jr.

    2001-01-01

    Discusses graphic design and reviews its development from analog processes to a digital tool with the use of computers. Topics include graphical user interfaces; the need for visual communication concepts; transmedia as opposed to repurposing; and graphic design instruction in higher education. (LRW)

  6. [Hardware for graphics systems].

    PubMed

    Goetz, C

    1991-02-01

    In all personal computer applications, be it for private or professional use, the decision of which "brand" of computer to buy is of central importance. In the USA Apple computers are mainly used in universities, while in Europe computers of the so-called "industry standard" by IBM (or clones thereof) have been increasingly used for many years. Independently of any brand name considerations, the computer components purchased must meet the current (and projected) needs of the user. Graphic capabilities and standards, processor speed, the use of co-processors, as well as input and output devices such as "mouse", printers and scanners are discussed. This overview is meant to serve as a decision aid. Potential users are given a short but detailed summary of current technical features. PMID:2042260

  7. Computational algorithms for increased control of depth-viewing volume for stereo three-dimensional graphic displays

    NASA Technical Reports Server (NTRS)

    Williams, Steven P.; Parrish, Russell V.

    1992-01-01

    Three-dimensional pictorial displays incorporating depth cues by means of stereopsis offer a potential means of presenting information in a natural way to enhance situational awareness and improve operator performance. Conventional computational techniques rely on asymptotic projection transformations and symmetric clipping to produce the stereo display. Implementation of two new computational techniques, as asymmetric clipping algorithm and piecewise linear projection transformation, provides the display designer with more control and better utilization of the effective depth-viewing volume to allow full exploitation of stereopsis cuing. Asymmetric clipping increases the perceived field of view (FOV) for the stereopsis region. The total horizontal FOV provided by the asymmetric clipping algorithm is greater throughout the scene viewing envelope than that of the symmetric algorithm. The new piecewise linear projection transformation allows the designer to creatively partition the depth-viewing volume, with freedom to place depth cuing at the various scene distances at which emphasis is desired.

  8. Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing

    SciTech Connect

    Fletcher, James H.; Cox, Philip; Harrington, William J; Campbell, Joseph L

    2013-09-03

    ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focused on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel

  9. Application of computer graphics to generate coal resources of the Cache coal bed, Recluse geologic model area, Campbell County, Wyoming

    USGS Publications Warehouse

    Schneider, G.B.; Crowley, S.S.; Carey, M.A.

    1982-01-01

    Low-sulfur subbituminous coal resources have been calculated, using both manual and computer methods, for the Cache coal bed in the Recluse Model Area, which covers the White Tail Butte, Pitch Draw, Recluse, and Homestead Draw SW 7 1/2 minute quadrangles, Campbell County, Wyoming. Approximately 275 coal thickness measurements obtained from drill hole data are evenly distributed throughout the area. The Cache coal and associated beds are in the Paleocene Tongue River Member of the Fort Union Formation. The depth from the surface to the Cache bed ranges from 269 to 1,257 feet. The thickness of the coal is as much as 31 feet, but in places the Cache coal bed is absent. Comparisons between hand-drawn and computer-generated isopach maps show minimal differences. Total coal resources calculated by computer show the bed to contain 2,316 million short tons or about 6.7 percent more than the hand-calculated figure of 2,160 million short tons.

  10. Monitoring of seismic time-series with advanced parallel computational tools and complex networks

    NASA Astrophysics Data System (ADS)

    Kechaidou, M.; Sirakoulis, G. Ch.; Scordilis, E. M.

    2012-04-01

    Earthquakes have been in the focus of human and research interest for several centuries due to their catastrophic effect to the everyday life as they occur almost all over the world demonstrating a hard to be modelled unpredictable behaviour. On the other hand, their monitoring with more or less technological updated instruments has been almost continuous and thanks to this fact several mathematical models have been presented and proposed so far to describe possible connections and patterns found in the resulting seismological time-series. Especially, in Greece, one of the most seismically active territories on earth, detailed instrumental seismological data are available from the beginning of the past century providing the researchers with valuable and differential knowledge about the seismicity levels all over the country. Considering available powerful parallel computational tools, such as Cellular Automata, these data can be further successfully analysed and, most important, modelled to provide possible connections between different parameters of the under study seismic time-series. More specifically, Cellular Automata have been proven very effective to compose and model nonlinear complex systems resulting in the advancement of several corresponding models as possible analogues of earthquake fault dynamics. In this work preliminary results of modelling of the seismic time-series with the help of Cellular Automata so as to compose and develop the corresponding complex networks are presented. The proposed methodology will be able to reveal under condition hidden relations as found in the examined time-series and to distinguish the intrinsic time-series characteristics in an effort to transform the examined time-series to complex networks and graphically represent their evolvement in the time-space. Consequently, based on the presented results, the proposed model will eventually serve as a possible efficient flexible computational tool to provide a generic

  11. Graphic displays of vector magnetograph data

    NASA Technical Reports Server (NTRS)

    Rabin, D. M.; West, E. A.

    1985-01-01

    Graphic displays that have proved useful in dealing with vector magnetograph data are summarized in three settings: real-time control, analysis, and final presentation. Among the topics discussed are: flexible, implicit data-scaling; geometrical transformations; methods of comparing fields (e.g., transverse vs. longitudinal; observed vs. computed; one time vs. another); displaying the magnitude and direction of the transverse field; minimizing the display time of serial graphics devices; graphic file structure; and graphic interaction with operators and observers.

  12. IMAGE information monitoring and applied graphics software environment. Volume 1. Executive overview

    SciTech Connect

    Hallam, J.W.; Ng, K.B.; Upham, G.L.

    1986-09-01

    The EPRI Information Monitoring and Applied Graphics Environment (IMAGE) system is designed for 'fast proto-typing' of advanced concepts for computer-aided plant operations tools. It is a flexible software system which can be used for rapidly creating, dynamically driving and evaluating advanced operator aid displays. The software is written to be both host computer and graphic device independent. This four volume report includes an Executive Overview of the IMAGE package (Volume 1), followed by Software Description (Volume II), User's Guide (Volume III), and Description of Example Applications (Volume IV).

  13. IMAGE information monitoring and applied graphics software environment. Volume 4. Applications description

    SciTech Connect

    Hallam, J.W.; Ng, K.B.; Upham, G.L.

    1986-09-01

    The EPRI Information Monitoring and Applied Graphics Environment (IMAGE) system is designed for 'fast proto-typing' of advanced concepts for computer-aided plant operations tools. It is a flexible software system which can be used for rapidly creating, dynamically driving and evaluating advanced operator aid displays. The software is written to be both host computer and graphic device independent. This four volume report includes an Executive Overview of the IMAGE package (Volume 1), followed by Software Description (Volume II), User's Guide (Volume III), and Description of Example Applications (Volume IV).

  14. IMAGE information monitoring and applied graphics software environment. Volume 3. User's guide

    SciTech Connect

    Hallam, J.W.; Ng, K.B.; Upham, G.L.

    1986-09-01

    The EPRI Information Monitoring and Applied Graphics Environment (IMAGE) system is designed for 'fast proto-typing' of advanced concepts for computer-aided plant operations tools. It is a flexible software system which can be used for rapidly creating, dynamically driving and evaluating advanced operator aid displays. The software is written to be host computer and graphic device independent. This four volume report includes an Executive Overview of the IMAGE package (Volume 1), followed by Software Description (Volume II), User's Guide (Volume III), and Description of Example Applications (Volume IV).

  15. Activities and operations of the Advanced Computing Research Facility, October 1986-October 1987

    SciTech Connect

    Pieper, G.W.

    1987-01-01

    This paper contains a description of the work being carried out at the advanced computing research facility at Argonne National Laboratory. Topics covered are upgrading of computers, networking changes, algorithms, parallel programming, programming languages, and user training. (LSP)

  16. Advanced electric field computation for RF sheaths prediction with TOPICA

    NASA Astrophysics Data System (ADS)

    Milanesio, Daniele; Maggiora, Riccardo

    2012-10-01

    The design of an Ion Cyclotron (IC) launcher is not only driven by its coupling properties, but also by its capability of maintaining low parallel electric fields in front of it, in order to provide good power transfer to plasma and to reduce the impurities production. However, due to the impossibility to verify the antenna performances before the starting of the operations, advanced numerical simulation tools are the only alternative to carry out a proper antenna design. With this in mind, it should be clear that the adoption of a code, such as TOPICA [1], able to precisely take into account a realistic antenna geometry and an accurate plasma description, is extremely important to achieve these goals. Because of the recently introduced features that allow to compute the electric field distribution everywhere inside the antenna enclosure and in the plasma column, the TOPICA code appears to be the only alternative to understand which elements may have a not negligible impact on the antenna design and then to suggest further optimizations in order to mitigate RF potentials. The present work documents the evaluation of the electric field map from actual antennas, like the Tore Supra Q5 and the JET A2 launchers, and the foreseen ITER IC antenna. [4pt] [1] D. Milanesio et al., Nucl. Fusion 49, 115019 (2009).

  17. Quantitative Computed Tomography and Image Analysis for Advanced Muscle Assessment

    PubMed Central

    Edmunds, Kyle Joseph; Gíslason, Magnus K.; Arnadottir, Iris D.; Marcante, Andrea; Piccione, Francesco; Gargiulo, Paolo

    2016-01-01

    Medical imaging is of particular interest in the field of translational myology, as extant literature describes the utilization of a wide variety of techniques to non-invasively recapitulate and quantity various internal and external tissue morphologies. In the clinical context, medical imaging remains a vital tool for diagnostics and investigative assessment. This review outlines the results from several investigations on the use of computed tomography (CT) and image analysis techniques to assess muscle conditions and degenerative process due to aging or pathological conditions. Herein, we detail the acquisition of spiral CT images and the use of advanced image analysis tools to characterize muscles in 2D and 3D. Results from these studies recapitulate changes in tissue composition within muscles, as visualized by the association of tissue types to specified Hounsfield Unit (HU) values for fat, loose connective tissue or atrophic muscle, and normal muscle, including fascia and tendon. We show how results from these analyses can be presented as both average HU values and compositions with respect to total muscle volumes, demonstrating the reliability of these tools to monitor, assess and characterize muscle degeneration. PMID:27478562

  18. Activities and operations of the Advanced Computing Research Facility, January 1989--January 1990

    SciTech Connect

    Pieper, G.W.

    1990-02-01

    This report reviews the activities and operations of the Advanced Computing Research Facility (ACRF) for the period January 1, 1989, through January 31, 1990. The ACRF is operated by the Mathematics and Computer Science Division at Argonne National Laboratory. The facility's principal objective is to foster research in parallel computing. Toward this objective, the ACRF continues to operate experimental advanced computers and to sponsor new technology transfer efforts and new research projects. 4 refs., 8 figs.

  19. Graphical Planning Of Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Jeletic, J. F.; Ruley, L. T.

    1991-01-01

    Mission Planning Graphical Tool (MPGT) computer program provides analysts with graphical representations of spacecraft and environmental data used in planning missions. Designed to be generic software tool configured to analyze any specified Earth-orbiting spacecraft mission. Data presented as series of overlays on top of two-dimensional or three-dimensional projection of Earth. Includes spacecraft-orbit tracks, ground-station-antenna masks, solar and lunar ephemerides, and coverage by Tracking Data and Relay Satellite System (TDRSS). From graphical representations, analyst determines such spacecraft-related constraints as communication coverage, infringement upon zones of interference, availability of sunlight, and visibility of targets to instruments.

  20. Astronomy Graphics.

    ERIC Educational Resources Information Center

    Hubin, W. N.

    1982-01-01

    Various microcomputer-generated astronomy graphs are presented, including those of constellations and planetary motions. Graphs were produced on a computer-driver plotter and then reproduced for class use. Copies of the programs that produced the graphs are available from the author. (Author/JN)

  1. Development of microgravity, full body functional reach envelope using 3-D computer graphic models and virtual reality technology

    NASA Technical Reports Server (NTRS)

    Lindsey, Patricia F.

    1994-01-01

    In microgravity conditions mobility is greatly enhanced and body stability is difficult to achieve. Because of these difficulties, optimum placement and accessibility of objects and controls can be critical to required tasks on board shuttle flights or on the proposed space station. Anthropometric measurement of the maximum reach of occupants of a microgravity environment provide knowledge about maximum functional placement for tasking situations. Calculations for a full body, functional reach envelope for microgravity environments are imperative. To this end, three dimensional computer modeled human figures, providing a method of anthropometric measurement, were used to locate the data points that define the full body, functional reach envelope. Virtual reality technology was utilized to enable an occupant of the microgravity environment to experience movement within the reach envelope while immersed in a simulated microgravity environment.

  2. Unique digital imagery interface between a silicon graphics computer and the kinetic kill vehicle hardware-in-the-loop simulator (KHILS) wideband infrared scene projector (WISP)

    NASA Astrophysics Data System (ADS)

    Erickson, Ricky A.; Moren, Stephen E.; Skalka, Marion S.

    1998-07-01

    Providing a flexible and reliable source of IR target imagery is absolutely essential for operation of an IR Scene Projector in a hardware-in-the-loop simulation environment. The Kinetic Kill Vehicle Hardware-in-the-Loop Simulator (KHILS) at Eglin AFB provides the capability, and requisite interfaces, to supply target IR imagery to its Wideband IR Scene Projector (WISP) from three separate sources at frame rates ranging from 30 - 120 Hz. Video can be input from a VCR source at the conventional 30 Hz frame rate. Pre-canned digital imagery and test patterns can be downloaded into stored memory from the host processor and played back as individual still frames or movie sequences up to a 120 Hz frame rate. Dynamic real-time imagery to the KHILS WISP projector system, at a 120 Hz frame rate, can be provided from a Silicon Graphics Onyx computer system normally used for generation of digital IR imagery through a custom CSA-built interface which is available for either the SGI/DVP or SGI/DD02 interface port. The primary focus of this paper is to describe our technical approach and experience in the development of this unique SGI computer and WISP projector interface.

  3. Computer graphic of Lockheed Martin X-33 Reusable Launch Vehicle (RLV) mounted on NASA 747 ferry air

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is an artist's conception of the NASA/Lockheed Martin X-33 Advanced Technology Demonstrator being carried on the back of the 747 Shuttle Carrier Aircraft. This was a concept for moving the X-33 from its landing site back to NASA's Dryden Flight Research Center, Edwards, California. The X-33 was a technology demonstrator vehicle for the Reusable Launch Vehicle (RLV). The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that will improve U.S. economic competitiveness. NASA Headquarter's Office of Space Access and Technology oversaw the RLV program, which was being managed by the RLV Office at NASA's Marshall Space Flight Center, located in Huntsville, Alabama. Responsibilities of other NASA Centers included: Johnson Space Center, Houston, Texas, guidance navigation and control technology, manned space systems, and health technology; Ames Research Center, Mountain View, CA., thermal protection system testing; Langley Research Center, Langley, Virginia, wind tunnel testing and aerodynamic analysis; and Kennedy Space Center, Florida, RLV operations and health management. Lockheed Martin's industry partners in the X-33 program are: Astronautics, Inc., Denver, Colorado, and Huntsville, Alabama; Engineering & Science Services, Houston, Texas; Manned Space Systems, New Orleans, LA; Sanders, Nashua, NH; and Space Operations, Titusville, Florida. Other industry partners are: Rocketdyne, Canoga Park, California; Allied Signal Aerospace, Teterboro, NJ; Rohr, Inc., Chula Vista, California; and Sverdrup Inc., St. Louis, Missouri.

  4. Advanced Scientific Computing Environment Team new scientific database management task. Progress report

    SciTech Connect

    Church, J.P.; Roberts, J.C.; Sims, R.N.; Smetana, A.O.; Westmoreland, B.W.

    1991-06-01

    The mission of the ASCENT Team is to continually keep pace with, evaluate, and select emerging computing technologies to define and implement prototypic scientific environments that maximize the ability of scientists and engineers to manage scientific data. These environments are to be implemented in a manner consistent with the site computing architecture and standards and NRTSC/SCS strategic plans for scientific computing. The major trends in computing hardware and software technology clearly indicate that the future ``computer`` will be a network environment that comprises supercomputers, graphics boxes, mainframes, clusters, workstations, terminals, and microcomputers. This ``network computer`` will have an architecturally transparent operating system allowing the applications code to run on any box supplying the required computing resources. The environment will include a distributed database and database managing system(s) that permits use of relational, hierarchical, object oriented, GIS, et al, databases. To reach this goal requires a stepwise progression from the present assemblage of monolithic applications codes running on disparate hardware platforms and operating systems. The first steps include converting from the existing JOSHUA system to a new J80 system that complies with modern language standards, development of a new J90 prototype to provide JOSHUA capabilities on Unix platforms, development of portable graphics tools to greatly facilitate preparation of input and interpretation of output; and extension of ``Jvv`` concepts and capabilities to distributed and/or parallel computing environments.

  5. Raster Graphics in Support of Medical Education

    PubMed Central

    Tidball, C. S.; Glass, M. L.

    1984-01-01

    After a brief review of approaches available for the creation of computer-driven graphic displays, a raster graphics method was selected for further description. The components of this system include: a host computer; an intelligent terminal containing imaging RAM as well as a graphics interpreter in ROM; and a medium-resolution, color, video monitor. Three illustrations with appropriate program fragments to demonstrate coding technique are presented: a simple flowchart, a figure for an article, and a teaching display. The examples selected are progressively more sophisticated and demonstrate many of the features of the computer language ReGIS (Remote Graphics Instruction Set) developed by the Digital Equipment Corporation (DEC).

  6. General-Purpose Graphics-Library Program

    NASA Technical Reports Server (NTRS)

    Rogers, Joseph E.

    1993-01-01

    NASA Device Independent Graphics Library (NASADIG) computer program is general-purpose graphics-library program for use with many computer-based-engineering and management application programs. Software offers many features providing user with flexibility in creating graphics. Includes two- and three-dimensional plotting, splines and polynomial interpolation, area blanking control, multiple log/linear axes, legends and text control, curve-thickness control, and multiple text fonts. Written in ANSI FORTRAN 77.

  7. PHIGS PLUS for scientific graphics

    SciTech Connect

    Crawfis, R.A.

    1991-01-14

    This paper gives a brief overview of the use of computer graphics standards in the scientific community. It particularly details how how PHIGS PLUS meets the needs of users at the Lawrence Livermore National Laboratory. Although standards for computer graphics have improved substantially over the past decade, their acceptance in the scientific community has been slow. As the use and diversity of computers has increased, the scientific graphics libraries have not been able to keep pace with the additional capabilities these new machines offer. Therefore, several organizations have or are now working on converting their scientific libraries to reset upon a portable standard. This paper will address why is transition has been so slow and offer suggestions for future standards work to enhance scientific visualization. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  8. Graphical programming of telerobotic tasks

    SciTech Connect

    Small, D.E.; McDonald, M.J.

    1997-02-01

    With a goal of producing faster, safer, and cheaper technologies for nuclear waste cleanup, Sandia is actively developing and extending intelligent systems technologies. Graphical Programming is a key technology for robotic waste cleanup that Sandia is developing for this goal. This paper describes Sancho, Sandia most advanced Graphical Programming supervisory software. Sancho, now operational on several robot systems, incorporates all of Sandia`s recent advances in supervisory control. Sancho, developed to rapidly apply Graphical Programming on a diverse set of robot systems, uses a general set of tools to implement task and operational behavior. Sancho can be rapidly reconfigured for new tasks and operations without modifying the supervisory code. Other innovations include task-based interfaces, event-based sequencing, and sophisticated GUI design. These innovations have resulted in robot control programs and approaches that are easier and safer to use than teleoperation, off-line programming, or full automation.

  9. Graphics with Special Interfaces for Disabled People.

    ERIC Educational Resources Information Center

    Tronconi, A.; And Others

    The paper describes new software and special input devices to allow physically impaired children to utilize the graphic capabilities of personal computers. Special input devices for computer graphics access--the voice recognition card, the single switch, or the mouse emulator--can be used either singly or in combination by the disabled to control…

  10. A Laboratory Application of Microcomputer Graphics.

    ERIC Educational Resources Information Center

    Gehring, Kalle B.; Moore, John W.

    1983-01-01

    A PASCAL graphics and instrument interface program for a Z80/S-100 based microcomputer was developed. The computer interfaces to a stopped-flow spectrophotometer replacing a storage oscilloscope and polaroid camera. Applications of this system are discussed, indicating that graphics and analog-to-digital boards have transformed the computer into…

  11. Important Advances in Technology and Unique Applications to Cardiovascular Computed Tomography

    PubMed Central

    Chaikriangkrai, Kongkiat; Choi, Su Yeon; Nabi, Faisal; Chang, Su Min

    2014-01-01

    For the past decade, multidetector cardiac computed tomography and its main application, coronary computed tomography angiography, have been established as a noninvasive technique for anatomical assessment of coronary arteries. This new era of coronary artery evaluation by coronary computed tomography angiography has arisen from the rapid advancement in computed tomography technology, which has led to massive diagnostic and prognostic clinical studies in various patient populations. This article gives a brief overview of current multidetector cardiac computed tomography systems, developing cardiac computed tomography technologies in both hardware and software fields, innovative radiation exposure reduction measures, multidetector cardiac computed tomography functional studies, and their newer clinical applications beyond coronary computed tomography angiography. PMID:25574342

  12. Important advances in technology and unique applications to cardiovascular computed tomography.

    PubMed

    Chaikriangkrai, Kongkiat; Choi, Su Yeon; Nabi, Faisal; Chang, Su Min

    2014-01-01

    For the past decade, multidetector cardiac computed tomography and its main application, coronary computed tomography angiography, have been established as a noninvasive technique for anatomical assessment of coronary arteries. This new era of coronary artery evaluation by coronary computed tomography angiography has arisen from the rapid advancement in computed tomography technology, which has led to massive diagnostic and prognostic clinical studies in various patient populations. This article gives a brief overview of current multidetector cardiac computed tomography systems, developing cardiac computed tomography technologies in both hardware and software fields, innovative radiation exposure reduction measures, multidetector cardiac computed tomography functional studies, and their newer clinical applications beyond coronary computed tomography angiography. PMID:25574342

  13. Computer Aided Design: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    ERIC Educational Resources Information Center

    Cheng, Wan-Lee

    This instructional manual contains 12 learning activity packets for use in a workshop in computer-aided design and drafting (CADD). The lessons cover the following topics: introduction to computer graphics and computer-aided design/drafting; coordinate systems; advance space graphics hardware configuration and basic features of the IBM PC…

  14. Generalized Advanced Propeller Analysis System (GAPAS). Volume 2: Computer program user manual

    NASA Technical Reports Server (NTRS)

    Glatt, L.; Crawford, D. R.; Kosmatka, J. B.; Swigart, R. J.; Wong, E. W.

    1986-01-01

    The Generalized Advanced Propeller Analysis System (GAPAS) computer code is described. GAPAS was developed to analyze advanced technology multi-bladed propellers which operate on aircraft with speeds up to Mach 0.8 and altitudes up to 40,000 feet. GAPAS includes technology for analyzing aerodynamic, structural, and acoustic performance of propellers. The computer code was developed for the CDC 7600 computer and is currently available for industrial use on the NASA Langley computer. A description of all the analytical models incorporated in GAPAS is included. Sample calculations are also described as well as users requirements for modifying the analysis system. Computer system core requirements and running times are also discussed.

  15. Graphical user interface based computer simulation of self-similar modes of a paraxial slow self-focusing laser beam for saturating plasma nonlinearities

    SciTech Connect

    Batra, Karuna; Mitra, Sugata; Subbarao, D.; Sharma, R.P.; Uma, R.

    2005-01-01

    The task for the present study is to make an investigation of self-similarity in a self-focusing laser beam both theoretically and numerically using graphical user interface based interactive computer simulation model in MATLAB (matrix laboratory) software in the presence of saturating ponderomotive force based and relativistic electron quiver based plasma nonlinearities. The corresponding eigenvalue problem is solved analytically using the standard eikonal formalism and the underlying dynamics of self-focusing is dictated by the corrected paraxial theory for slow self-focusing. The results are also compared with computer simulation of self-focusing by the direct fast Fourier transform based spectral methods. It is found that the self-similar solution obtained analytically oscillates around the true numerical solution equating it at regular intervals. The simulation results are the main ones although a feasible semianalytical theory under many assumptions is given to understand the process. The self-similar profiles are called as self-organized profiles (not in a strict sense), which are found to be close to Laguerre-Gaussian curves for all the modes, the shape being conserved. This terminology is chosen because it has already been shown from a phase space analysis that the width of an initially Gaussian beam undergoes periodic oscillations that are damped when any absorption is added in the model, i.e., the beam width converges to a constant value. The research paper also tabulates the specific values of the normalized phase shift for solutions decaying to zero at large transverse distances for first three modes which can, however, be extended to higher order modes.

  16. Engineering Design Graphics: Into the 21st Century

    ERIC Educational Resources Information Center

    Harris, La Verne Abe; Meyers, Frederick

    2007-01-01

    Graphical plans for construction of machinery and architecture have evolved over the last 6,000 years beginning from hieroglyphics to drawings on printable media, from the "Golden Age" of engineering graphics to the innovation of computer graphics and prototyping. The evolution of engineering design graphics as a profession has also evolved. Years…

  17. Demographic Mapping via Computer Graphics.

    ERIC Educational Resources Information Center

    Banghart, Frank W.; And Others

    A computerized system, developed at Florida State University, is designed to locate students and resources on a geographic network. Using addresses of resources and students as input, the system quickly and accurately locates the addresses on a grid and creates a map showing their distribution. This geographical distribution serves as an…

  18. The Advance of Computing from the Ground to the Cloud

    ERIC Educational Resources Information Center

    Breeding, Marshall

    2009-01-01

    A trend toward the abstraction of computing platforms that has been developing in the broader IT arena over the last few years is just beginning to make inroads into the library technology scene. Cloud computing offers for libraries many interesting possibilities that may help reduce technology costs and increase capacity, reliability, and…

  19. OPENING REMARKS: SciDAC: Scientific Discovery through Advanced Computing

    NASA Astrophysics Data System (ADS)

    Strayer, Michael

    2005-01-01

    Good morning. Welcome to SciDAC 2005 and San Francisco. SciDAC is all about computational science and scientific discovery. In a large sense, computational science characterizes SciDAC and its intent is change. It transforms both our approach and our understanding of science. It opens new doors and crosses traditional boundaries while seeking discovery. In terms of twentieth century methodologies, computational science may be said to be transformational. There are a number of examples to this point. First are the sciences that encompass climate modeling. The application of computational science has in essence created the field of climate modeling. This community is now international in scope and has provided precision results that are challenging our understanding of our environment. A second example is that of lattice quantum chromodynamics. Lattice QCD, while adding precision and insight to our fundamental understanding of strong interaction dynamics, has transformed our approach to particle and nuclear science. The individual investigator approach has evolved to teams of scientists from different disciplines working side-by-side towards a common goal. SciDAC is also undergoing a transformation. This meeting is a prime example. Last year it was a small programmatic meeting tracking progress in SciDAC. This year, we have a major computational science meeting with a variety of disciplines and enabling technologies represented. SciDAC 2005 should position itself as a new corner stone for Computational Science and its impact on science. As we look to the immediate future, FY2006 will bring a new cycle to SciDAC. Most of the program elements of SciDAC will be re-competed in FY2006. The re-competition will involve new instruments for computational science, new approaches for collaboration, as well as new disciplines. There will be new opportunities for virtual experiments in carbon sequestration, fusion, and nuclear power and nuclear waste, as well as collaborations

  20. Advances in Software Tools for Pre-processing and Post-processing of Overset Grid Computations

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    2004-01-01

    Recent developments in three pieces of software for performing pre-processing and post-processing work on numerical computations using overset grids are presented. The first is the OVERGRID graphical interface which provides a unified environment for the visualization, manipulation, generation and diagnostics of geometry and grids. Modules are also available for automatic boundary conditions detection, flow solver input preparation, multiple component dynamics input preparation and dynamics animation, simple solution viewing for moving components, and debris trajectory analysis input preparation. The second is a grid generation script library that enables rapid creation of grid generation scripts. A sample of recent applications will be described. The third is the OVERPLOT graphical interface for displaying and analyzing history files generated by the flow solver. Data displayed include residuals, component forces and moments, number of supersonic and reverse flow points, and various dynamics parameters.