Science.gov

Sample records for advanced concepts group

  1. SCIENCE BRIEF: ADVANCED CONCEPTS

    EPA Science Inventory

    Research on advanced concepts will evaluate and demonstrate the application of innovative infrastructure designs, management procedures and operational approaches. Advanced concepts go beyond simple asset management. The infusion of these advanced concepts into established wastew...

  2. Advanced Airspace Concept

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2002-01-01

    A general overview of the Advanced Airspace Concept (AAC) is presented. The topics include: 1) Limitations of the existing system; 2) The Advanced Airspace Concept; 3) Candidate architecture for the AAC; 4) Separation assurance and conflict avoidance system (TSAFE); and 5) Ground-Air Interactions. This paper is in viewgraph form.

  3. Advanced propulsion concepts

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1991-01-01

    A variety of Advanced Propulsion Concepts (APC) is discussed. The focus is on those concepts that are sufficiently near-term that they could be developed for the Space Exploration Initiative. High-power (multi-megawatt) electric propulsion, solar sails, tethers, and extraterrestrial resource utilization concepts are discussed. A summary of these concepts and some general conclusions on their technology development needs are presented.

  4. Advanced concepts for acceleration

    SciTech Connect

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations. (LEW)

  5. Advanced space propulsion concepts

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1993-01-01

    The NASA Lewis Research Center has been actively involved in the evaluation and development of advanced spacecraft propulsion. Recent program elements have included high energy density propellants, electrode less plasma thruster concepts, and low power laser propulsion technology. A robust advanced technology program is necessary to develop new, cost-effective methods of spacecraft propulsion, and to continue to push the boundaries of human knowledge and technology.

  6. Advanced Civilian Aeronautical Concepts

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    1996-01-01

    Paper discusses alternatives to currently deployed systems which could provide revolutionary improvements in metrics applicable to civilian aeronautics. Specific missions addressed include subsonic transports, supersonic transports and personal aircraft. These alternative systems and concepts are enabled by recent and envisaged advancements in electronics, communications, computing and Designer Fluid Mechanics in conjunction with a design approach employing extensive synergistic interactions between propulsion, aerodynamics and structures.

  7. Advanced Concept Modeling

    NASA Technical Reports Server (NTRS)

    Chaput, Armand; Johns, Zachary; Hodges, Todd; Selfridge, Justin; Bevirt, Joeben; Ahuja, Vivek

    2015-01-01

    Advanced Concepts Modeling software validation, analysis, and design. This was a National Institute of Aerospace contract with a lot of pieces. Efforts ranged from software development and validation for structures and aerodynamics, through flight control development, and aeropropulsive analysis, to UAV piloting services.

  8. Advanced radiator concepts

    NASA Technical Reports Server (NTRS)

    Diem-Kirsop, P. S.

    1985-01-01

    The liquid droplet radiator and the liquid belt radiator currently under study by the NASA LeRC are discussed. These advanced concepts offer benefits in reduced mass, compact stowage, and ease of deployment. Operation and components of the radiators are described, heat transfer characteristics are discussed, and critical technologies are identified. The impact of the radiators on large power systems is also assessed.

  9. Advanced SCADA concepts

    SciTech Connect

    Sciacca, S.C. ); Block, W.R. )

    1995-01-01

    The typical utility system planner faces a wide variety of concepts and applications to consider when procuring a supervisory control and data acquisition (SCADA) system. The system's performance requirements are influenced by an arena of rapidly advancing technologies and a highly competitive business environment. Unlike other elements of the electric utility industry, these changes are not evolving specifically for the SCADA industry; they are being driven by other technology forums, with a profound impact on the SCADA system of the future. This article explores some of these concepts and suggests technology and business issues to consider when planning for the SCADA system of tomorrow.

  10. Advanced Sensor Concepts

    NASA Technical Reports Server (NTRS)

    Alhorn, D. C.; Howard, D. E.; Smith, D. A.

    2005-01-01

    The Advanced Sensor Concepts project was conducted under the Center Director's Discretionary Fund at the Marshall Space Flight Center. Its objective was to advance the technology originally developed for the Glovebox Integrated Microgravity Isolation Technology project. The objective of this effort was to develop and test several new motion sensors. To date, the investigators have invented seven new technologies during this endeavor and have conceived several others. The innovative basic sensor technology is an absolute position sensor. It employs only two active components, and it is simple, inexpensive, reliable, repeatable, lightweight, and relatively unobtrusive. Two sensors can be utilized in the same physical space to achieve redundancy. The sensor has micrometer positional accuracy and can be configured as a two- or three-dimensional sensor. The sensor technology has the potential to pioneer a new class of linear and rotary sensors. This sensor is the enabling technology for autonomous assembly of modular structures in space and on extraterrestrial locations.

  11. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  12. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  13. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  14. Advanced Concepts. Chapter 21

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Mulqueen, Jack

    2013-01-01

    Before there is a funded space mission, there must be a present need for the mission. Space science and exploration are expensive, and without a well-defined and justifiable need, no one is going to commit significant funding for any space endeavor. However, as discussed in Chapter 1, applications of space technology and many and broad, hence there are many ways to determine and establish a mission need. Robotic science missions are justified by their science return. To be selected for flight, questions like these must be addressed: What is the science question that needs answering, and will the proposed mission be the most cost-effective way to answer it? Why does answering the question require an expensive space flight, instead of some ground-based alternative? If the question can only be answered by flying in space, then why is this approach better than other potential approaches? How much will it cost? And is the technology required to answer the question in hand and ready to use? If not, then how much will it cost and how long will it take to mature the technology to a usable level? There are also many ways to justify human exploration missions, including science return, technology advancement, as well as intangible reasons, such as national pride. Nonetheless, many of the questions that need answering, are similar to those for robotic science missions: Where are the people going, why, and will the proposed mission be the most cost-effective way to get there? What is the safest method to achieve the goal? How much will it cost? And is the technology required to get there and keep the crew alive in hand and ready to use? If not, then how much will it cost and how long will it take to mature the technology to a usable level? Another reason for some groups sending spacecraft into space is for profit. Telecommunications, geospatial imaging, and tourism are examples of proven, market-driven space missions and applications. For this specific set of users, the

  15. Advanced Welding Concepts

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  16. Advanced ramjet concepts program

    NASA Technical Reports Server (NTRS)

    Leingang, J. L.

    1992-01-01

    Uniquely advantageous features, on both the performance and weight sides of the ledger, can be achieved through synergistic design integration of airbreathing and rocket technologies in the development of advanced orbital space transport propulsion systems of the combined cycle type. In the context of well understood advanced airbreathing and liquid rocket propulsion principles and practices, this precept of synergism is advanced mainly through six rather specific examples. These range from the detailed component level to the overall vehicle system level as follows: using jet compression; achieving a high area ratio rocket nozzle; ameliorating gas generator cycle rocket system deficiencies; using the in-duct special rocket thrust chamber assembly as the principal scramjet fuel injection operation; using the unstowed, covered fan as a duct closure for effecting high area ratio rocket mode operation; and creating a unique airbreathing rocket system via the onboard, cryogenic hydrogen induced air liquefaction process.

  17. Advanced sulfur control concepts

    SciTech Connect

    Harrison, D.P.; Lopez-Ortiz, A.; White, J.D.; Groves, F.R. Jr.

    1995-11-01

    The primary objective of this study is the direct production of elemental sulfur during the regeneration of high temperature desulfurization sorbents. Three possible regeneration concepts were identified as a result of a literature search. The potential for elemental sulfur production from a number of candidate metal oxide sorbents using each regeneration concept was evaluated on the basis of a thermodynamic analysis. Two candidate sorbents, Fe{sub 2}O{sub 3} and CeO{sub 2} were chosen for experimental testing. The experimental test program using both electrobalance and fixed-bed reactor sis now getting underway. The objective is to determine reaction conditions--temperature, pressure, space velocity, and regeneration feed gas composition--which will maximize the yield of elemental sulfur in the regeneration product gas. Experimental results are to be used to define a conceptual desulfurization-regeneration process and to provide a preliminary economic evaluation.

  18. Progress in advanced accelerator concepts

    SciTech Connect

    Sessler, A.M.

    1994-08-01

    A review is given of recent progress in this field, drawing heavily upon material presented at the Workshop on Advanced Accelerator Concepts, The Abbey, June 12--18, 1994. Attention is addressed to (1) plasma based concepts, (2) photo-cathodes, (3) radio frequency sources and Two-Beam Accelerators, (4) near and far-field schemes (including collective accelerators), (5) beam handling and conditioning, and (6) exotic collider concepts (such as photon colliders and muon colliders).

  19. Advanced Turbulence Modeling Concepts

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing

    2005-01-01

    The ZCET program developed at NASA Glenn Research Center is to study hydrogen/air injection concepts for aircraft gas turbine engines that meet conventional gas turbine performance levels and provide low levels of harmful NOx emissions. A CFD study for ZCET program has been successfully carried out. It uses the most recently enhanced National combustion code (NCC) to perform CFD simulations for two configurations of hydrogen fuel injectors (GRC- and Sandia-injector). The results can be used to assist experimental studies to provide quick mixing, low emission and high performance fuel injector designs. The work started with the configuration of the single-hole injector. The computational models were taken from the experimental designs. For example, the GRC single-hole injector consists of one air tube (0.78 inches long and 0.265 inches in diameter) and two hydrogen tubes (0.3 inches long and 0.0226 inches in diameter opposed at 180 degree). The hydrogen tubes are located 0.3 inches upstream from the exit of the air element (the inlet location for the combustor). To do the simulation, the single-hole injector is connected to a combustor model (8.16 inches long and 0.5 inches in diameter). The inlet conditions for air and hydrogen elements are defined according to actual experimental designs. Two crossing jets of hydrogen/air are simulated in detail in the injector. The cold flow, reacting flow, flame temperature, combustor pressure and possible flashback phenomena are studied. Two grid resolutions of the numerical model have been adopted. The first computational grid contains 0.52 million elements, the second one contains over 1.3 million elements. The CFD results have shown only about 5% difference between the two grid resolutions. Therefore, the CFD result obtained from the model of 1.3-million grid resolution can be considered as a grid independent numerical solution. Turbulence models built in NCC are consolidated and well tested. They can handle both coarse and

  20. Advanced Turbofan Duct Liner Concepts

    NASA Technical Reports Server (NTRS)

    Bielak, Gerald W.; Premo, John W.; Hersh, Alan S.

    1999-01-01

    The Advanced Subsonic Technology Noise Reduction Program goal is to reduce aircraft noise by 10 EPNdB by the year 2000 relative, to 1992 technology. The improvement goal for nacelle attenuation is 25% relative to 1992 technology by 1997 and 50% by 2000. The Advanced Turbofan Duct Liner Concepts Task work by Boeing presented in this document was in support of these goals. The basis for the technical approach was a Boeing study conducted in 1993-94 under NASA/FAA contract NAS1-19349, Task 6, investigating broadband acoustic liner concepts. As a result of this work, it was recommended that linear double layer, linear and perforate triple layer, parallel element, and bulk absorber liners be further investigated to improve nacelle attenuations. NASA LaRC also suggested that "adaptive" liner concepts that would allow "in-situ" acoustic impedance control also be considered. As a result, bias flow and high-temperature liner concepts were also added to the investigation. The major conclusion from the above studies is that improvements in nacelle liner average acoustic impedance characteristics alone will not result in 25% increased nacelle noise reduction relative to 1992 technology. Nacelle design advancements currently being developed by Boeing are expected to add 20-40% more acoustic lining to hardwall regions in current inlets, which is predicted to result in and additional 40-80% attenuation improvement. Similar advancements are expected to allow 10-30% more acoustic lining in current fan ducts with 10-30% more attenuation expected. In addition, Boeing is currently developing a scarf inlet concept which is expected to give an additional 40-80% attenuation improvement for equivalent lining areas.

  1. Advanced nuclear thermal propulsion concepts

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.

    1993-01-01

    In 1989, a Presidential directive created the Space Exploration Initiative (SEI) which had a goal of placing mankind on Mars in the early 21st century. The SEI was effectively terminated in 1992 with the election of a new administration. Although the initiative did not exist long enough to allow substantial technology development, it did provide a venue, for the first time in 20 years, to comprehensively evaluate advanced propulsion concepts which could enable fast, manned transits to Mars. As part of the SEI based investigations, scientists from NASA, DoE National Laboratories, universities, and industry met regularly and proceeded to examine a variety of innovative ideas. Most of the effort was directed toward developing a solid-core, nuclear thermal rocket and examining a high-power nuclear electric propulsion system. In addition, however, an Innovative Concepts committee was formed and charged with evaluating concepts that offered a much higher performance but were less technologically mature. The committee considered several concepts and eventually recommended that further work be performed in the areas of gas core fission rockets, inertial confinement fusion systems, antimatter based rockets, and gas core fission electric systems. Following the committee's recommendations, some computational modeling work has been performed at Los Alamos in certain of these areas and critical issues have been identified.

  2. NASA Institute for Advanced Concepts

    NASA Technical Reports Server (NTRS)

    Cassanova, Robert A.

    1999-01-01

    The purpose of NASA Institute for Advanced Concepts (NIAC) is to provide an independent, open forum for the external analysis and definition of space and aeronautics advanced concepts to complement the advanced concepts activities conducted within the NASA Enterprises. The NIAC will issue Calls for Proposals during each year of operation and will select revolutionary advanced concepts for grant or contract awards through a peer review process. Final selection of awards will be with the concurrence of NASA's Chief Technologist. The operation of the NIAC is reviewed biannually by the NIAC Science, Exploration and Technology Council (NSETC) whose members are drawn from the senior levels of industry and universities. The process of defining the technical scope of the initial Call for Proposals was begun with the NIAC "Grand Challenges" workshop conducted on May 21-22, 1998 in Columbia, Maryland. These "Grand Challenges" resulting from this workshop became the essence of the technical scope for the first Phase I Call for Proposals which was released on June 19, 1998 with a due date of July 31, 1998. The first Phase I Call for Proposals attracted 119 proposals. After a thorough peer review, prioritization by NIAC and technical concurrence by NASA, sixteen subgrants were awarded. The second Phase I Call for Proposals was released on November 23, 1998 with a due date of January 31, 1999. Sixty-three (63) proposals were received in response to this Call. On December 2-3, 1998, the NSETC met to review the progress and future plans of the NIAC. The next NSETC meeting is scheduled for August 5-6, 1999. The first Phase II Call for Proposals was released to the current Phase I grantees on February 3,1999 with a due date of May 31, 1999. Plans for the second year of the contract include a continuation of the sequence of Phase I and Phase II Calls for Proposals and hosting the first NIAC Annual Meeting and USRA/NIAC Technical Symposium in NASA HQ.

  3. Advanced fusion concepts: project summaries

    SciTech Connect

    1980-12-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac. (MOW)

  4. Concept for Space Technology Advancement

    NASA Astrophysics Data System (ADS)

    Hansen, Jeremiah J.

    2005-02-01

    The space industry is based on an antiquated concept of disposable rockets, earth construction, and non-repairable satellites. Current space vehicle concepts hearken from a time of Cold War animosity and expeditiousness. Space systems are put together in small, single-purpose chunks that are launched with mighty, single-use rockets. Spacecraft need to change to a more versatile, capable, reusable, and mission efficient design. The Crew Exploration Vehicle (CEV) that President Bush put forward in his space initiative on Jan. 14, 2004 is a small first step. But like all first steps, the risk of eventual failure is great without a complementary set of steps, a reliable handhold, and a goal, which are outlined in this paper. The system for space access and development needs to be overhauled to allow for the access to space to complement the building in space, which promotes the production of goods in space, which enhances the exploitation of space resources… and the list goes on. Without supplemental and complementary infrastructure, all political, scientific, and idealistic endeavors to explore and exploit the near solar system will result in quagmires of failures and indecision. Renewed focus on fundamentals, integration, total-system consideration, and solid engineering can avoid catastrophe. Mission success, simple solutions, mission efficiency, and proper testing all seem to have been lost in the chase for the nickels and dimes. These items will increase capabilities available from a system or combination of systems. New propulsion options and materials will enable vehicles previously unachievable. Future spacecraft should exploit modular designs for repeatability and reduced cost. Space construction should use these modular systems on major components built in orbit. All vehicles should apply smart designs and monitoring systems for increased reliability and system awareness. Crew safety systems must use this awareness in alerting the crew, aiding collision

  5. Advanced Concepts: Aneutronic Fusion Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2012-01-01

    Aneutronic Fusion for In-Space thrust, power. Clean energy & potential nuclear gains. Fusion plant concepts, potential to use advanced fuels. Methods to harness ionic momentum for high Isp thrust plus direct power conversion into electricity will be presented.

  6. Advanced Accelerator Concepts Final Report

    SciTech Connect

    Wurtele, Jonathan S.

    2014-05-13

    A major focus of research supported by this Grant has been on the ALPHA antihydrogen trap. We first trapped antihydrogen in 2010 and soon thereafter demonstrated trapping for 1000s. We now have observed resonant quantum interactions with antihydrogen. These papers in Nature and Nature Physics report the major milestones in anti-atom trapping. The success was only achieved through careful work that advanced our understanding of collective dynamics in charged particle systems, the development of new cooling and diagnostics, and in- novation in understanding how to make physics measurements with small numbers of anti-atoms. This research included evaporative cooling, autoresonant excitation of longitudinal motion, and centrifugal separation. Antihydrogen trapping by ALPHA is progressing towards the point when a important theories believed by most to hold for all physical systems, such as CPT (Charge-Parity-Time) invariance and the Weak Equivalence Principle (matter and antimatter behaving the same way under the influence of gravity) can be directly tested in a new regime. One motivation for this test is that most accepted theories of the Big Bang predict that we should observe equal amounts of matter and antimatter. However astrophysicists have found very little antimatter in the universe. Our experiment will, if successful over the next seven years, provide a new test of these ideas. Many earlier detailed and beautiful tests have been made, but the trapping of neutral antimatter allows us to explore the possibility of direct, model-independent tests. Successful cooling of the anti atoms, careful limits on systematics and increased trapping rates, all planned for our follow-up experiment (ALPHA-II) will reach unrivaled precision. CPT invariance implies that the spectra of hydrogen and antihydrogen should be identical. Spectra can be measured in principle with great precision, and any di erences we might observe would revolutionize fundamental physics. This is the

  7. Advanced instrumentation concepts for environmental control subsystems

    NASA Technical Reports Server (NTRS)

    Yang, P. Y.; Schubert, F. H.; Gyorki, J. R.; Wynveen, R. A.

    1978-01-01

    Design, evaluation and demonstration of advanced instrumentation concepts for improving performance of manned spacecraft environmental control and life support systems were successfully completed. Concepts to aid maintenance following fault detection and isolation were defined. A computer-guided fault correction instruction program was developed and demonstrated in a packaged unit which also contains the operator/system interface.

  8. Advanced Concepts in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Esposito, Giampiero; Marmo, Giuseppe; Miele, Gennaro; Sudarshan, George

    2014-11-01

    Preface; 1. Introduction: the need for a quantum theory; 2. Experimental foundations of quantum theory; 3. Waves and particles; 4. Schrödinger picture, Heisenberg picture and probabilistic aspects; 5. Integrating the equations of motion; 6. Elementary applications: 1-dimensional problems; 7. Elementary applications: multidimensional problems; 8. Coherent states and related formalism; 9. Introduction to spin; 10. Symmetries in quantum mechanics; 11. Approximation methods; 12. Modern pictures of quantum mechanics; 13. Formulations of quantum mechanics and their physical implications; 14. Exam problems; Glossary of geometric concepts; References; Index.

  9. Advanced concepts in knee arthrodesis

    PubMed Central

    Wood, Jennifer H; Conway, Janet D

    2015-01-01

    The aim is to describe advanced strategies that can be used to diagnose and treat complications after knee arthrodesis and to describe temporary knee arthrodesis to treat infected knee arthroplasty. Potential difficult complications include nonunited knee arthrodesis, limb length discrepancy after knee arthrodesis, and united but infected knee arthrodesis. If a nonunited knee arthrodesis shows evidence of implant loosening or failure, then bone grafting the nonunion site as well as exchange intramedullary nailing and/or supplemental plate fixation are recommended. If symptomatic limb length discrepancy cannot be satisfactorily treated with a shoe lift, then the patient should undergo tibial lengthening over nail with a monolateral fixator or exchange nailing with a femoral internal lengthening device. If a united knee arthrodesis is infected, the nail must be removed. Then the surgeon has the option of replacing it with a long, antibiotic cement-coated nail. The authors also describe temporary knee arthrodesis for infected knee arthroplasty in patients who have the potential to undergo insertion of a new implant. The procedure has two goals: eradication of infection and stabilization of the knee. A temporary knee fusion can be accomplished by inserting both an antibiotic cement-coated knee fusion nail and a static antibiotic cement-coated spacer. These advanced techniques can be helpful when treating difficult complications after knee arthrodesis and treating cases of infected knee arthroplasty. PMID:25793160

  10. Advanced Vehicle system concepts. [nonpetroleum passenger transportation

    NASA Technical Reports Server (NTRS)

    Hardy, K. S.; Langendoen, J. M.

    1983-01-01

    Various nonpetroleum vehicle system concepts for passenger vehicles in the 1990's are being considered as part of the Advanced Vehicle (AV) Assessment at the Jet Propulsion Laboratory. The vehicle system and subsystem performance requirements, the projected characteristics of mature subsystem candidates, and promising systems are presented. The system candidates include electric and hybrid vehicles powered by electricity with or without a nonpetroleum power source. The subsystem candidates include batteries (aqueous-mobile, flow, high-temperature, and metal-air), fuel cells (phosphoric acid, advanced acids, and solid polymer electrolyte), nonpetroleum heat engines, advanced dc and ac propulsion components, power-peaking devices, and transmissions.

  11. Proposed research on advanced accelerator concepts

    SciTech Connect

    Davidson, R.C.; Wurtele, J.S.

    1991-09-01

    This report summarizes technical progress and accomplishments during the proposed three-year research on advanced accelerator concepts supported by the Department of Energy under Contract No. DE-FG02-88ER40465. A vigorous theoretical program has been pursued in critical problem areas related to advanced accelerator concepts and the basic equilibrium, stability, and radiation properties of intense charged particle beams. Broadly speaking, our research has made significant contributions in the following three major areas: Investigations of physics issues related to particle acceleration including two-beam accelerators and cyclotron resonance laser (CRL) accelerators; Investigations of RF sources including the free- electron lasers, cyclotron resonance masers, and relativistic magnetrons; Studies of coherent structures in electron plasmas and beams ranging from a low-density, nonrelativistic, pure electron plasma column to high-density, relativistic, non-neutral electron flow in a high-voltage diode. The remainder of this report presents theoretical and computational advances in these areas.

  12. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    SciTech Connect

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-04-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability.

  13. Boeing EX Concept, Advanced Surveillance Aircraft

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The photograph shows a model of the Boeing EX Concept installed in the NASA Langley 16 foot Transonic Tunnel. The Boeing EX is an advanced surveillance aircraft proposed by Boeing to replace the Grumman E-2C Hawkeye. The concept employs the diamond-shape 'joined-wing'planform and active aperture radar arrays in each wing segment to create a more aerodynamic effective surveillance aircraft. Wind tunnel testing was conducted to evaulate longitudinal and lateral aerodynamic charcteristics and the effectiveness of control surface deflections. Measurements were made to determine the effects of the wings and fuselage on the inlet fan face total pressure distortions at angle of attack and sideslip.

  14. Research Opportunities in Advanced Aerospace Concepts

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Bangert, Linda S.; Garber, Donald P.; Huebner, Lawrence D.; McKinley, Robert E.; Sutton, Kenneth; Swanson, Roy C., Jr.; Weinstein, Leonard

    2000-01-01

    This report is a review of a team effort that focuses on advanced aerospace concepts of the 21st Century. The paper emphasis advanced technologies, rather than cataloging every unusual aircraft that has ever been attempted. To dispel the myth that "aerodynamics is a mature science" an extensive list of "What we cannot do, or do not know" was enumerated. A zeit geist, a feeling for the spirit of the times, was developed, based on existing research goals. Technological drivers and the constraints that might influence these technological developments in a future society were also examined. The present status of aeronautics, space exploration, and non-aerospace applications, both military and commercial, including enabling technologies are discussed. A discussion of non-technological issues affecting advanced concepts research is presented. The benefit of using the study of advanced vehicles as a tool to uncover new directions for technology development is often necessary. An appendix is provided containing examples of advanced vehicle configurations currently of interest.

  15. Loop Group Parakeet Virtual Cable Concept Demonstrator

    NASA Astrophysics Data System (ADS)

    Dowsett, T.; McNeill, T. C.; Reynolds, A. B.; Blair, W. D.

    2002-07-01

    The Parakeet Virtual Cable (PVC) concept demonstrator uses the Ethernet Local Area Network (LAN) laid for the Battle Command Support System (BCSS) to connect the Parakeet DVT(DA) (voice terminal) to the Parakeet multiplexer. This currently requires pairs of PVC interface units to be installed for each DVT(DA) . To reduce the cost of a PVC installation, the concept of a Loop Group Parakeet Virtual Cable (LGPVC) was proposed. This device was designed to replace the up to 30 PVC boxes and the multiplexer at the multiplexer side of a PVC installation. While the demonstrator is largely complete, testing has revealed an incomplete understanding of how to emulate the proprietary handshaking occurring between the circuit switch and the multiplexer. The LGPVC concept cannot yet be demonstrated.

  16. Advanced avionics concepts: Autonomous spacecraft control

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A large increase in space operations activities is expected because of Space Station Freedom (SSF) and long range Lunar base missions and Mars exploration. Space operations will also increase as a result of space commercialization (especially the increase in satellite networks). It is anticipated that the level of satellite servicing operations will grow tenfold from the current level within the next 20 years. This growth can be sustained only if the cost effectiveness of space operations is improved. Cost effectiveness is operational efficiency with proper effectiveness. A concept is presented of advanced avionics, autonomous spacecraft control, that will enable the desired growth, as well as maintain the cost effectiveness (operational efficiency) in satellite servicing operations. The concept of advanced avionics that allows autonomous spacecraft control is described along with a brief description of each component. Some of the benefits of autonomous operations are also described. A technology utilization breakdown is provided in terms of applications.

  17. Lay Conceptions of Sexual Minority Groups.

    PubMed

    Burke, Sara E; LaFrance, Marianne

    2016-04-01

    Bisexual people are often implored to "pick a side," implying that bisexuality is both more controllable and less desirable than heterosexuality or homosexuality. Bisexual people's status as a social group perceived to fall between a traditionally advantaged group and a traditionally disadvantaged group may have the potential to clarify lay conceptions of sexual orientation. We examined participants' views of groups varying in sexual orientation by randomly assigning participants (including heterosexual men and women as well as gay men and lesbian women) from four samples to evaluate heterosexual, bisexual, or homosexual targets (N = 1379). Results provided strong evidence for the previously untested theoretical argument that bisexuality is perceived as less stable than heterosexuality or homosexuality. In addition, participants low in Personal Need for Structure rated female (but not male) bisexuality as relatively stable, suggesting that a preference for simple, binary thinking can partially explain a negative conception of an ostensibly "intermediate" identity. Bisexual targets were perceived as falling between heterosexual and homosexual targets in terms of gender nonconformity, and less decisive, less monogamous, and lacking in positive traits that were associated with homosexual targets. In sum, views of bisexual people were both more negative than and qualitatively different from views of gay men and lesbian women. We discuss the results as an illustration of the complex ways that perceivers' attitudes can differ depending on which target groups they are considering, suggesting that intergroup bias cannot be fully understood without attending to social categories viewed as intermediate. PMID:26597649

  18. Interagency Advanced Power Group -- Steering group meeting minutes

    SciTech Connect

    Not Available

    1993-11-18

    This document contains the draft meeting minutes of the Steering Group of the Interagency Advanced Power Group. Included are the discussions resulting from the presentation of working group reports and the results of a discussion of IAPG policies and procedures. In the appendix are the reports of the following working groups: Electrical, Mechanical, Solar, and Systems.

  19. Outlook for advanced concepts in transport aircraft

    NASA Technical Reports Server (NTRS)

    Conner, D. W.

    1980-01-01

    Air transportation demand trends, air transportation system goals, and air transportation system trends well into the 21st century were examined in detail. The outlook is for continued growth in both air passenger travel and air freight movements. The present system, with some improvements, is expected to continue to the turn of the century and to utilize technologically upgraded, derivative versions of today's aircraft, plus possibly some new aircraft for supersonic long haul, short haul, and high density commuter service. Severe constraints of the system, expected by early in the 21st century, should lead to innovations at the airport, away from the airport, and in the air. The innovations are illustrated by descriptions of three candidate systems involving advanced aircraft concepts. Advanced technologies and vehicles expected to impact the airport are illustrated by descriptions of laminar flow control aircraft, very large air freighters and cryogenically fueled transports.

  20. Next Generation NASA GA Advanced Concept

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2006-01-01

    Not only is the common dream of frequent personal flight travel going unfulfilled, the current generation of General Aviation (GA) is facing tremendous challenges that threaten to relegate the Single Engine Piston (SEP) aircraft market to a footnote in the history of U.S. aviation. A case is made that this crisis stems from a generally low utility coupled to a high cost that makes the SEP aircraft of relatively low transportation value and beyond the means of many. The roots of this low value are examined in a broad sense, and a Next Generation NASA Advanced GA Concept is presented that attacks those elements addressable by synergistic aircraft design.

  1. Space Station concept development group studies

    NASA Technical Reports Server (NTRS)

    Powell, L. E.

    1984-01-01

    The NASA study activities in preparation for a Space Station began in the early 1970's. The early studies included many in-house NASA and contracted studies. A group of representatives from all the NASA Centers, titled the Space Station Concept Development Group (CDG) was involved in the studies which led to the initiation of the Space Station Program. The CDG studies were performed over a period of approximately one year and consisted of four phases. The initial phase had the objective to determine the functions required of the station as opposed to a configuration. The activities of the second phase were primarily concerned with a sizing of the facilities required for payloads and the resources necessary to support these mission payloads. The third phase of studies was designed to develop a philosophical approach to a number of areas related to autonomy, maintainability, operations and logistics, and verification. The fourth phase of the study was to be concerned with configuration assessment activities.

  2. ASME Material Challenges for Advanced Reactor Concepts

    SciTech Connect

    Piyush Sabharwall; Ali Siahpush

    2013-07-01

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.

  3. Advanced Gasifier Pilot Plant Concept Definition

    SciTech Connect

    Steve Fusselman; Alan Darby; Fred Widman

    2005-08-31

    This report presents results from definition of a preferred commercial-scale advanced gasifier configuration and concept definition for a gasification pilot plant incorporating those preferred technologies. The preferred commercial gasifier configuration was established based on Cost Of Electricity estimates for an IGCC. Based on the gasifier configuration trade study results, a compact plug flow gasifier, with a dry solids pump, rapid-mix injector, CMC liner insert and partial quench system was selected as the preferred configuration. Preliminary systems analysis results indicate that this configuration could provide cost of product savings for electricity and hydrogen ranging from 15%-20% relative to existing gasifier technologies. This cost of product improvement draws upon the efficiency of the dry feed, rapid mix injector technology, low capital cost compact gasifier, and >99% gasifier availability due to long life injector and gasifier liner, with short replacement time. A pilot plant concept incorporating the technologies associated with the preferred configuration was defined, along with cost and schedule estimates for design, installation, and test operations. It was estimated that a 16,300 kg/day (18 TPD) pilot plant gasifier incorporating the advanced gasification technology and demonstrating 1,000 hours of hot-fire operation could be accomplished over a period of 33 months with a budget of $25.6 M.

  4. ACTS advanced system concepts and experimentation

    NASA Technical Reports Server (NTRS)

    Abbe, Brian S.; Theofylaktos, Noulie

    1993-01-01

    Over the course of the first two years of experimentation with the Advanced Communications Technology Satellite (ACTS), many different K/Ka-band applications-oriented experiments will be conducted and evaluated for their commercial viability. In addition, the technological developments and advanced systems concepts associated with the various terminals and the satellite itself will also be examined. Beyond these existing experiments and the current terminal developments, many other new and exciting experiment ideas and advanced system concepts exist. With the additional use of ACTS for the last two years of its lifetime, many of these ideas could be explored. In the mobile satellite communications arena, a particular applications-oriented concept that has yet to be developed is a maritime-mobile experiment. Applications of K/Ka-band mobile satcom technologies to the pleasure cruise industry could provide similar communications services as those that are being developed for the broadband aeronautical experiments. A second applications-oriented experiment that could be of interest is the development of a hybrid satellite-cellular system experiment. In such an experimental system, a mobile K/Ka-band satellite service would extend the coverage of the already existing cellular network. Many new system concepts and terminal developments could also be accomplished. The initial characterization of the K/Ka-band mobile satellite communications propagation channel and evaluation of the currently existing rain compensation algorithms (RCA's) could lead to a second generation RCA development that would improve the overall ACTS Mobile Terminal (AMT) performance. In addition, the development of an enhanced modem to be used with the AMT that utilizes CDMA spread spectrum would also improve the overall terminal efficiency and provide a greater commercial potential for K/Ka-band applications. Other techniques worthy of further exploration and evaluation include the development of

  5. Advanced Group Support Systems and Facilities

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    The document contains the proceedings of the Workshop on Advanced Group Support Systems and Facilities held at NASA Langley Research Center, Hampton, Virginia, July 19-20, 1999. The workshop was jointly sponsored by the University of Virginia Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry, and universities. The objectives of the workshop were to assess the status of advanced group support systems and to identify the potential of these systems for use in future collaborative distributed design and synthesis environments. The presentations covered the current status and effectiveness of different group support systems.

  6. Advanced composite combustor structural concepts program

    NASA Technical Reports Server (NTRS)

    Sattar, M. A.; Lohmann, R. P.

    1984-01-01

    An analytical study was conducted to assess the feasibility of and benefits derived from the use of high temperature composite materials in aircraft turbine engine combustor liners. The study included a survey and screening of the properties of three candidate composite materials including tungsten reinforced superalloys, carbon-carbon and silicon carbide (SiC) fibers reinforcing a ceramic matrix of lithium aluminosilicate (LAS). The SiC-LAS material was selected as offering the greatest near term potential primarily on the basis of high temperature capability. A limited experimental investigation was conducted to quantify some of the more critical mechanical properties of the SiC-LAS composite having a multidirection 0/45/-45/90 deg fiber orientation favored for the combustor linear application. Rigorous cyclic thermal tests demonstrated that SiC-LAS was extremely resistant to the thermal fatigue mechanisms that usually limit the life of metallic combustor liners. A thermal design study led to the definition of a composite liner concept that incorporated film cooled SiC-LAS shingles mounted on a Hastelloy X shell. With coolant fluxes consistent with the most advanced metallic liner technology, the calculated hot surface temperatures of the shingles were within the apparent near term capability of the material. Structural analyses indicated that the stresses in the composite panels were low, primarily because of the low coefficient of expansion of the material and it was concluded that the dominant failure mode of the liner would be an as yet unidentified deterioration of the composite from prolonged exposure to high temperature. An economic study, based on a medium thrust size commercial aircraft engine, indicated that the SiC-LAS combustor liner would weigh 22.8N (11.27 lb) less and cost less to manufacture than advanced metallic liner concepts intended for use in the late 1980's.

  7. Group online mindfulness training: proof of concept.

    PubMed

    Kemper, Kathi J; Yun, Jonathan

    2015-01-01

    Mindfulness-based stress reduction training is attractive, but training with an expert teacher is often inconvenient and costly. This proof-of-concept project assessed the feasibility of providing a hybrid of free online mindfulness-based stress reduction training with small group peer facilitation. Six medical students asked a family medicine resident with 5 years of meditation experience but no formal training as a teacher to facilitate 8 weekly group sessions using a free online mindfulness-based stress reduction course. They completed pre- and posttraining questionnaires online. Six of the 7 trainees completed at least half the sessions. Completers and noncompleters had similar age (29 years), gender (about half male), and health status. Changes in the expected direction were observed for perceived stress, mindfulness, resilience, and confidence in providing calm, compassionate care. The hybrid of online mindfulness-based stress reduction training with peer support is feasible. Additional research is warranted to formally evaluate the impact of this approach. PMID:25305208

  8. Experimental assessment of advanced Stirling component concepts

    NASA Technical Reports Server (NTRS)

    Ziph, B.

    1985-01-01

    The results of an experimental assessment of some advanced Stirling engine component concepts are presented. High performance piston rings, reciprocating oil scrapers and heat pipes with getters and with mechanical couplings were tested. The tests yielded the following results: (1) Bonded, split, pumping piston rings, in preliminary testing, proved a promising concept, exhibiting low leakage and friction losses. Solid piston rings proved impractical in view of their sensitivity to the operating temperature; (2) A babbit oil scraper in a compliant housing performed well in atmospheric endurance testing. In pressurized tests the scraper did not perform well as a containment seal. The latter tests suggest modifications which may adapt Ti successfully to that application; and (3) Heat pipe endurance tests indicated the adequacy of simple, inexpensive fabrication and filling procedures. Getters were provided to increase the tolerance of the heat pipes to the presence of air and commercially available couplings were demonstrated to be suitable for heat pipe application. In addition to the above tests, the program also included a design effort for a split shaft applicable to a swashplate driven engine with a pressurized crank-case. The design is aimed, and does accomplish, an increase in component life to more than 10,000 hours.

  9. Advanced Nacelle Acoustic Lining Concepts Development

    NASA Technical Reports Server (NTRS)

    Bielak, G.; Gallman, J.; Kunze, R.; Murray, P.; Premo, J.; Kosanchick, M.; Hersh, A.; Celano, J.; Walker, B.; Yu, J.; Parrott, Tony L. (Technical Monitor)

    2002-01-01

    The work reported in this document consisted of six distinct liner technology development subtasks: 1) Analysis of Model Scale ADP Fan Duct Lining Data (Boeing): An evaluation of an AST Milestone experiment to demonstrate 1995 liner technology superiority relative to that of 1992 was performed on 1:5.9 scale model fan rig (Advanced Ducted Propeller) test data acquired in the NASA Glenn 9 x 15 foot wind tunnel. The goal of 50% improvement was deemed satisfied. 2) Bias Flow Liner Investigation (Boeing, VCES): The ability to control liner impedance by low velocity bias flow through liner was demonstrated. An impedance prediction model to include bias flow was developed. 3) Grazing Flow Impedance Testing (Boeing): Grazing flow impedance tests were conducted for comparison with results achieved at four different laboratories. 4) Micro-Perforate Acoustic Liner Technology (BFG, HAE, NG): Proof of concept testing of a "linear liner." 5) Extended Reaction Liners (Boeing, NG): Bandwidth improvements for non-locally reacting liner were investigated with porous honeycomb core test liners. 6) Development of a Hybrid Active/Passive Lining Concept (HAE): Synergism between active and passive attenuation of noise radiated by a model inlet was demonstrated.

  10. Introduction to Advanced Engine Control Concepts

    NASA Technical Reports Server (NTRS)

    Sanjay, Garg

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This presentation describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  11. The NASA Advanced Propulsion Concepts at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Leifer, S. D.; Frisbee, R. H.; Brophy, J. R.

    1997-01-01

    Research activities in advanced propulsion concepts at the Jet Propulsion Laboratory are reviewed. The concepts were selected for study because each offers the potential for either significantly enhancing space transportation capability or enabling bold, ambitious new missions.

  12. Advanced Technology Display House. Volume 2: Energy system design concepts

    NASA Technical Reports Server (NTRS)

    Maund, D. H.

    1981-01-01

    The preliminary design concept for the energy systems in the Advanced Technology Display House is analyzed. Residential energy demand, energy conservation, and energy concepts are included. Photovoltaic arrays and REDOX (reduction oxidation) sizes are discussed.

  13. Advanced-Ignition-Concept Exploration on OMEGA

    SciTech Connect

    Theobald, W; Anderson, K S; Betti, R; Craxton, R S; Delettrez, J A; Frenje, J A; Glebov, V Yu; Gotchev, O V; Kelly, J H; Li, C K; Mackinnon, A J; Marshall, F J; McCrory, R L; Meyerhofer, D D; Myatt, J F; Norreys, P A; Nilson, P M; Patel, P K; Petrasso, R D; Radha, P B; Ren, C; Sangster, T C; Seka, W; Smalyuk, V A; Solodov, A A; Stephens, R B; Stoeckl, C; Yaakobi, B

    2009-11-24

    Advanced ignition concepts, such as fast ignition and shock ignition, are being investigated at the Omega Laser Facility. Integrated fast-ignition experiments with room-temperature re-entrant cone targets have begun, using 18 kJ of 351 nm drive energy to implode empty 40μm thick CD shells, followed by 1.0 kJ of 1053 nm wavelength, short-pulse energy. Short pulses of 10 ps width have irradiated the inside of a hollow gold re-entrant cone at the time of peak compression. A threefold increase in the time-integrated, 2 to 7 keV x-ray emission was observed with x-ray pinhole cameras, indicating that energy is coupled from the short-pulse laser into the core by fast electrons. In shock-ignition experiments, spherical plastic-shell targets were compressed to high areal densities on a low adiabat, and a strong shock wave was sent into the converging, compressed capsule. In one experiment, 60 beams were used with an intensity spike at the end of the laser pulse, and the implosion performance was studied through neutron-yield and areal-density measurements. In a second experiment, the 60 OMEGA beams were split into a 40+20 configuration, with 40 low-intensity beams used for fuel assembly and 20 delayed beams with a short, high-intensity pulse shape (up to 1×1016 Wcm^-2) for shock generation.

  14. Advanced-Ignition-Concept Exploration on OMEGA

    SciTech Connect

    Theobald, W; Anderson, K S; Betti, R; Craxton, R S; Delettrez, J A; Frenje, J A; Glebov, V Yu; Gotchev, O V; Kelly, J H; Li, C K; Mackinnon, A J; Marshall, F J; McCrory, R L; Meyerhofer, D D; Myatt, J F; Norreys, P A; Nilson, P M; Patel, P K; Petrasso, R D; Radha, P B; Ren, C; Sangster, T C; Seka, W; Smalyuk, V A; Solodov, A A; Stephens, R B; Stoeckl, C; Yaakobi, B

    2009-11-24

    Advanced ignition concepts, such as fast ignition and shock ignition, are being investigated at the Omega Laser Facility. Integrated fast-ignition experiments with room-temperature re-entrant cone targets have begun, using 18 kJ of 351 nm drive energy to implode empty 40μm thick CD shells, followed by 1.0 kJ of 1053 nm wavelength, short-pulse energy. Short pulses of 10 ps width have irradiated the inside of a hollow gold re-entrant cone at the time of peak compression. A threefold increase in the time-integrated, 2 to 7 keV x-ray emission was observed with x-ray pinhole cameras, indicating that energy is coupled from the short-pulse laser into the core by fast electrons. In shock-ignition experiments, spherical plastic-shell targets were compressed to high areal densities on a low adiabat, and a strong shock wave was sent into the converging, compressed capsule. In one experiment, 60 beams were used with an intensity spike at the end of the laser pulse, and the implosion performance was studied through neutron-yield and areal-density measurements. In a second experiment, the 60 OMEGA beams were split into a 40+20 configuration, with 40 low-intensity beams used for fuel assembly and 20 delayed beams with a short, high-intensity pulse shape (up to 1×1016 Wcm-2) for shock generation.

  15. Group Counseling: Concepts and Procedures. Third Edition.

    ERIC Educational Resources Information Center

    Berg, Robert C.; Landreth, Garry L.; Fall, Kevin A.

    This third edition is designed to be used as a primary source for traditional courses in group counseling. Providing a thorough discussion of the rationale for using group counseling, this book examines the differing approaches of each author to group counseling, outlines practical suggestions on the skills needed for effective facilitation of…

  16. Technical and economic evaluation of advanced air cargo system concepts

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1977-01-01

    The paper reviews NASA air cargo market studies, reports on NASA and NASA-sponsored studies of advanced freighter concepts, and identifies the opportunities for the application of advanced technology. The air cargo market is studied to evaluate the timing for, and the potential market response to, advanced technology aircraft. The degree of elasticity in future air freight markets is also being investigated, since the demand for a new aircraft is most favorable in a price-sensitive environment. Aircraft design studies are considered with attention to mission and design requirements, incorporation of advanced technologies in transport aircraft, new cargo aircraft concepts, advanced freighter evaluation, and civil-military design commonality.

  17. Advanced sunflower antenna concept development. [stowable reflectors

    NASA Technical Reports Server (NTRS)

    Archer, J. S.

    1980-01-01

    The feasibility of stowing large solid antenna reflectors in the shuttle was demonstrated for applications with 40 foot apertures at frequencies of 100 GHz. Concepts allowing extension of the basic concept to 80-foot apertures operable at 60 GHz were identified.

  18. SERI Advanced and Innovative Wind-Energy-Concepts Program

    SciTech Connect

    Mitchell, R.L.; Jacobs, E.W.

    1983-06-01

    In 1978 the Solar Energy Research Institute (SERI) was given the responsibility of managing the Advanced and Innovative Wind Energy Concepts (AIWEC) Task by the US Department of Energy (DOE). The objective of this program has been to determine the technical and economic potential of advanced wind energy concepts. Assessment and R and D efforts in the AIWEC program have included theoretical performance analyses, wind tunnel testing, and/or costing studies. Concepts demonstrating sufficient potential undergo prototype testing in a Proof-of-Concept research phase. Several concepts, such as the Dynamic Inducer, the Diffuser Augmented wind Turbine, the Electrofluid Dynamic Wind-Driven Generator, the Passive Cyclic Pitch concept, and higher performance airfoil configurations for vertical axis wind turbines, have recently made significant progress. The latter has currently reached the Proof-of-Concept phase. The present paper provides an overview of the technical progress and current status of these concepts.

  19. Advanced Wind Turbine Drivetrain Concepts. Workshop Report

    SciTech Connect

    none,

    2010-12-01

    This report presents key findings from the Department of Energy’s Advanced Drivetrain Workshop, held on June 29-30, 2010, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

  20. High School Biology: A Group Approach to Concept Mapping.

    ERIC Educational Resources Information Center

    Brown, David S.

    2003-01-01

    Explains concept mapping as an instructional method in cooperative learning environments, and describes a study investigating the effectiveness of concept mapping on student learning during a photosynthesis and cellular respiration unit. Reports on the positive effects of concept mapping in the experimental group. (Contains 16 references.) (YDS)

  1. Advanced Extravehicular Activity Breakout Group Summary

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; Perka, Alan; Walz, Carl; Cobb, Sharon; Hanford, Anthony; Eppler, Dean

    2005-01-01

    This viewgraph document summarizes the workings of the Advanced Extravehicular Activity (AEVA) Breakout group in a Martian environment. The group was tasked with: identifying potential contaminants and pathways for AEVA systems with respect to forward and backward contamination; identifying plausible mitigation alternatives and obstacles for pertinent missions; identifying topics that require further research and technology development and discuss development strategies with uncertain Planetary Protection (PP) requirements; Identifying PP requirements that impose the greatest mission/development costs; Identifying PP requirements/topics that require further definition;

  2. Pre-Algebra Groups. Concepts & Applications.

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, Rockville, MD.

    Discussion material and exercises related to pre-algebra groups are provided in this five chapter manual. Chapter 1 (mappings) focuses on restricted domains, order of operations (parentheses and exponents), rules of assignment, and computer extensions. Chapter 2 considers finite number systems, including binary operations, clock arithmetic,…

  3. Racial Group Concept and Self-Esteem in Black Children.

    ERIC Educational Resources Information Center

    Clark, Maxine L.

    The relationship of racial group concepts (racial preference and racial attitudes) to general and specific self-esteem in black children was examined in this study. A secondary purpose of this study was to assess the validity of Nobles' (1973) theory that racial group attitudes influence the black American's concept of "self." The subjects were…

  4. Effects of Divorce Counseling Groups on Adjustment and Self Concept.

    ERIC Educational Resources Information Center

    Salts, Connie J.; Zongker, Calvin E.

    1983-01-01

    Tested whether self-concept and adjustment of separated or divorced individuals (N=64) could be enhanced by group counseling. Data showed individuals in either a structured or unstructured group had greater improvement in adjustment than individuals who dropped out. No significant differences in improvement in self-concept were noted. (JAC)

  5. Process Technology and Advanced Concepts: Organic Solar Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts: Organic Solar Cell that includes scope, core competencies and capabilities, and contact/web information.

  6. Aircraft concepts for advanced short haul systems

    NASA Technical Reports Server (NTRS)

    Galloway, T. L.

    1975-01-01

    The results of recent NASA-sponsored high-density and medium-density short-haul (less than 500 miles) air transportation systems studies are summarized. Trends in vehicle characteristics, in particular of RTOL and STOL concepts, are noted, and their economic suitability and impact on the community are examined.

  7. Body weight of advanced concept hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.; Terjesen, Eric J.; Roberts, Cathy D.; Chambers, Mark C.

    1991-01-01

    In this paper, preliminary qualitative and quantitative comparisons of the body weight of five hypersonic aircraft configurations are conducted. The five configurations are briefly described as follows: (1) a wing-and-body arrangement with a power-law, circular cross-section body and a delta wing; (2) an all-body vehicle with delta planform and elliptical cross-sections; (3) a wingless wave rider configuration; (4) a winged wave rider configuration; and (5) the spacewing concept, an oblique flying wing at low speed that yaws to 90 deg sweep and flies end-on at hypersonic speeds. The vehicles are defined by their external moldline geometries and by the interior arrangement of their fuel tanks and other components. Intersecting, circular-lobed tankage is used in vehicles with noncircular bodies. The nonusable volume of such concepts is calculated. The structural concept, structural materials, Thermal Protection System, and heat load are allowed to vary with vehicle longitudinal station. Relative strengths and weaknesses of the various hypersonic aircraft concepts in terms of body weight are summarized.

  8. Advanced Propulsion Concepts at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.

    1997-01-01

    Current interest in advanced propulsion within NASA and research activities in advanced propulsion concepts at the Jet Propulsion Laboratory are reviewed. The concepts, which include high power plasma thrusters such as lithuim-fueled Lorentz-Force-Accelerators, MEMS-scale propulsion systems, in-situ propellant utilization techniques, fusion propulsion systems and methods of using antimatter, offer the potential for either significantly enhancing space transportation capability as compared with that of traditional chemical propulsion, or enabling ambitious new missions.

  9. Screening studies of advanced control concepts for airbreathing engines

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.

    1993-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.

  10. Screening studies of advanced control concepts for airbreathing engines

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.

    1992-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.

  11. Advanced Interval Management (IM) Concepts of Operations

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Ahmad, Nash'at N.; Underwood, Matthew C.

    2014-01-01

    This document provides a high-level description of several advanced IM operations that NASA is considering for future research and development. It covers two versions of IM-CSPO and IM with Wake Mitigation. These are preliminary descriptions to support an initial benefits analysis

  12. Advanced concepts for controlling energy surety microgrids.

    SciTech Connect

    Menicucci, David F.; Ortiz-Moyet, Juan

    2011-05-01

    Today, researchers, engineers, and policy makers are seeking ways to meet the world's growing demand for energy while addressing critical issues such as energy security, reliability, and sustainability. Many believe that distributed generators operating within a microgrid have the potential to address most of these issues. Sandia National Laboratories has developed a concept called energy surety in which five of these 'surety elements' are simultaneously considered: energy security, reliability, sustainability, safety, and cost-effectiveness. The surety methodology leads to a new microgrid design that we call an energy surety microgrid (ESM). This paper discusses the unique control requirement needed to produce a microgrid system that has high levels of surety, describes the control system from the most fundamental level through a real-world example, and discusses our ideas and concepts for a complete system.

  13. Workshop II: Nanotechnology and Advanced Cell Concepts

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Workshop focused on few emerging concepts(beyond tandem cells): 1. Engineering incident sun spectrum and transparency losses a) Nano emitters (dot concentrator); b) Surface plasmonics; c) Up converters; d) Down converter. 2. Intermediate band solar cells a) Efficiency projections (detail energy balance projections); b) Inserting 0,1 and 2D semiconductor structures in solar cells 3. Polymer and hybrid cells a) Nanotubes/dot polymers; b) Exciton dissociation.

  14. Advanced General Aviation Turbine Engine (GATE) concepts

    NASA Technical Reports Server (NTRS)

    Lays, E. J.; Murray, G. L.

    1979-01-01

    Concepts are discussed that project turbine engine cost savings through use of geometrically constrained components designed for low rotational speeds and low stress to permit manufacturing economies. Aerodynamic development of geometrically constrained components is recommended to maximize component efficiency. Conceptual engines, airplane applications, airplane performance, engine cost, and engine-related life cycle costs are presented. The powerplants proposed offer encouragement with respect to fuel efficiency and life cycle costs, and make possible remarkable airplane performance gains.

  15. Red Teaming of Advanced Information Assurance Concepts

    SciTech Connect

    DUGGAN,RUTH A.; WOOD,BRADLEY

    1999-10-07

    Red Teaming is an advanced form of assessment that can be used to identify weaknesses in a variety of cyber systems. it is especially beneficial when the target system is still in development when designers can readily affect improvements. This paper discusses the red team analysis process and the author's experiences applying this process to five selected Information Technology Office (ITO) projects. Some detail of the overall methodology, summary results from the five projects, and lessons learned are contained within this paper.

  16. An overview of the NASA Advanced Propulsion Concepts program

    SciTech Connect

    Curran, F.M.; Bennett, G.L.; Frisbee, R.H.; Sercel, J.C.; Lapointe, M.R. JPL, Pasadena, CA Sverdrup Technology, Inc., Brook Park, OH NASA, Lewis Research Center, Cleveland, OH )

    1992-07-01

    NASA Advanced Propulsion Concepts (APC) program for the development of long-term space propulsion system schemes is managed by both NASA-Lewis and the JPL and is tasked with the identification and conceptual development of high-risk/high-payoff configurations. Both theoretical and experimental investigations have been undertaken in technology areas deemed essential to the implementation of candidate concepts. These APC candidates encompass very high energy density chemical propulsion systems, advanced electric propulsion systems, and an antiproton-catalyzed nuclear propulsion concept. A development status evaluation is presented for these systems. 45 refs.

  17. An overview of the NASA Advanced Propulsion Concepts program

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Bennett, Gary L.; Frisbee, Robert H.; Sercel, Joel C.; Lapointe, Michael R.

    1992-01-01

    NASA Advanced Propulsion Concepts (APC) program for the development of long-term space propulsion system schemes is managed by both NASA-Lewis and the JPL and is tasked with the identification and conceptual development of high-risk/high-payoff configurations. Both theoretical and experimental investigations have been undertaken in technology areas deemed essential to the implementation of candidate concepts. These APC candidates encompass very high energy density chemical propulsion systems, advanced electric propulsion systems, and an antiproton-catalyzed nuclear propulsion concept. A development status evaluation is presented for these systems.

  18. Advanced technology application for combustion chamber concepts

    NASA Technical Reports Server (NTRS)

    Tygielski, Kathy S.

    1992-01-01

    NASA-Marshall is engaged in the development of an Advanced Main Combustion Chamber under the aegis of the Earth-to-Orbit Propulsion Technology Program. AMCC is to be a robust and highly reliable combustion-chamber prototype costing one-third as much as current designs of comparable performance; it will be associated with a reduction of fabrication time by one-half. Attention is presently given to the three component-manufacturing processes used: single-piece investment casting for the structural jacket and manifolds; vacuum plasma spraying, for the combustion liner, and an alternative, platelet-compounded liner.

  19. Advanced Polymers Containing the Phenyltrifluoroethylidene Connecting Group

    NASA Technical Reports Server (NTRS)

    Alstron, William B.; Sivko, Gloria S.

    2006-01-01

    A new, lower cost fluorinated dianhydride based on the phenyltrifluoroethylidene (3F) connecting linkage was invented by the principal author in the early 1980's. New 3F condensation and addition cured polyimides were synthesized with the newly discovered 3F dianhydride and the previously known 3F diamine. As controls, polyimides based on the somewhat analogous higher cost hexafluoroisopropylidene (6F) linkage were also prepared. The short term thermal oxidative stability (TOS), determined by thermal gravimetric analysis (TGA), and the glass transition temperatures (Tg) of 3F dianhydride polyimides were found to be similar to 6F dianhydride polyimides, but the Tg was slightly higher for 3F diamine polyimides than 6F diamine polyimides. Unfortunately, in real time testing, long term TOS of 3F polymers was clearly inferior to 6F polymers. This was due to a 3 to 5 fold greater rate of loss of trifluoromethyl group from 3F versus 6F linkages. However, at shorter times or lower temperatures, 3F TOS was almost comparable to 6F TOS. The wide scope of the 3F technology was also demonstrated to have distinct unique advantages over 6F technology through the use of the 3F pendant phenyl ring as a synthetic site to introduce other functional groups. These groups have been used for the control or modification of polymer properties; an advantage lacking within 6F technology. The synthetic ease by which 3F can be introduced into various types of monomers has lead to the explosion of advanced 3F polyimides and other high performance advanced 3F polymers in the prior decade of 3F polymer literature as cited herein; covering polyimides, substituted polyimides, at least ten types of nonpolyimide 3F polymer modifications, and also the government's nine 3F U.S. patents and corporations' nine 3F U.S. patents.

  20. Design considerations for advanced battery concepts

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; Thaller, L. H.

    1986-01-01

    A mathematical representation for the charge and discharge of a sodium-sulfur cell is developed. These equations are then used as the basis for a computerized model to examine the effects of cell arrangement in the design of a large multi-kilowatt battery from a group of hypothetical individual cells with known variations in their ampere hour capacity and internal resistance. The cycling characteristics of 216 individual cells arranged in six different configurations are evaluated with the view towards minimizing the adverse effects that are introduced due to the stoichastic aspects of groupings of cells, as well as the possibility of cell failures in both the open and shorted mode. Although battery systems based on sodium-sulfur cells are described in this example, any of the newer electrochemical systems can be fitted into this framework by making appropriate modifications to the basic equations.

  1. Parametric cost analysis for advanced energy concepts

    SciTech Connect

    Not Available

    1983-10-01

    This report presents results of an exploratory study to develop parametric cost estimating relationships for advanced fossil-fuel energy systems. The first of two tasks was to develop a standard Cost Chart of Accounts to serve as a basic organizing framework for energy systems cost analysis. The second task included development of selected parametric cost estimating relationships (CERs) for individual elements (or subsystems) of a fossil fuel plant, nominally for the Solvent-Refined Coal (SRC) process. Parametric CERs are presented for the following elements: coal preparation, coal slurry preparation, dissolver (reactor); gasification; oxygen production; acid gas/CO/sub 2/ removal; shift conversion; cryogenic hydrogen recovery; and sulfur removal. While the nominal focus of the study was on the SRC process, each of these elements is found in other fossil fuel processes. Thus, the results of this effort have broader potential application. However, it should also be noted that the CERs presented in this report are based upon a limited data base. Thus, they are applicable over a limited range of values (of the independent variables) and for a limited set of specific technologies (e.g., the gasifier CER is for the multi-train, Koppers-Totzek process). Additional work is required to extend the range of these CERs. 16 figures, 13 tables.

  2. Advanced progress concepts for direct coal liquefaction

    SciTech Connect

    Anderson, R.; Derbyshire, F.; Givens, E.

    1995-09-01

    Given the low cost of petroleum crude, direct coal liquefaction is still not an economically viable process. The DOE objectives are to further reduce the cost of coal liquefaction to a more competitive level. In this project the primary focus is on the use of low-rank coal feedstocks. A particular strength is the use of process-derived liquids rather than model compound solvents. The original concepts are illustrated in Figure 1, where they are shown on a schematic of the Wilsonville pilot plant operation. Wilsonville operating data have been used to define a base case scenario using run {number_sign}263J, and Wilsonville process materials have been used in experimental work. The CAER has investigated: low severity CO pretreatment of coal for oxygen rejection, increasing coal reactivity and mg inhibiting the propensity for regressive reactions; the application of more active. Low-cost Fe and Mo dispersed catalysts; and the possible use of fluid coking for solids rejection and to generate an overhead product for recycle. CONSOL has investigated: oil agglomeration for coal ash rejection, for the possible rejection of ash in the recycled resid, and for catalyst addition and recovery; and distillate dewaxing to remove naphthenes and paraffins, and to generate an improved quality feed for recycle distillate hydrogenation. At Sandia, research has been concerned with the production of active hydrogen donor distillate solvent fractions produced by the hydrogenation of dewaxed distillates and by fluid coking via low severity reaction with H{sub 2}/CO/H{sub 2}O mixtures using hydrous metal oxide and other catalysts.

  3. Advanced Concepts for Underwater Acoustic Channel Modeling

    NASA Astrophysics Data System (ADS)

    Etter, P. C.; Haas, C. H.; Ramani, D. V.

    2014-12-01

    This paper examines nearshore underwater-acoustic channel modeling concepts and compares channel-state information requirements against existing modeling capabilities. This process defines a subset of candidate acoustic models suitable for simulating signal propagation in underwater communications. Underwater-acoustic communications find many practical applications in coastal oceanography, and networking is the enabling technology for these applications. Such networks can be formed by establishing two-way acoustic links between autonomous underwater vehicles and moored oceanographic sensors. These networks can be connected to a surface unit for further data transfer to ships, satellites, or shore stations via a radio-frequency link. This configuration establishes an interactive environment in which researchers can extract real-time data from multiple, but distant, underwater instruments. After evaluating the obtained data, control messages can be sent back to individual instruments to adapt the networks to changing situations. Underwater networks can also be used to increase the operating ranges of autonomous underwater vehicles by hopping the control and data messages through networks that cover large areas. A model of the ocean medium between acoustic sources and receivers is called a channel model. In an oceanic channel, characteristics of the acoustic signals change as they travel from transmitters to receivers. These characteristics depend upon the acoustic frequency, the distances between sources and receivers, the paths followed by the signals, and the prevailing ocean environment in the vicinity of the paths. Properties of the received signals can be derived from those of the transmitted signals using these channel models. This study concludes that ray-theory models are best suited to the simulation of acoustic signal propagation in oceanic channels and identifies 33 such models that are eligible candidates.

  4. Brush seal numerical simulation: Concepts and advances

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Kudriavtsev, V. V.

    1994-01-01

    The development of the brush seal is considered to be most promising among the advanced type seals that are presently in use in the high speed turbomachinery. The brush is usually mounted on the stationary portions of the engine and has direct contact with the rotating element, in the process of limiting the 'unwanted' leakage flows between stages, or various engine cavities. This type of sealing technology is providing high (in comparison with conventional seals) pressure drops due mainly to the high packing density (around 100 bristles/sq mm), and brush compliance with the rotor motions. In the design of modern aerospace turbomachinery leakage flows between the stages must be minimal, thus contributing to the higher efficiency of the engine. Use of the brush seal instead of the labyrinth seal reduces the leakage flow by one order of magnitude. Brush seals also have been found to enhance dynamic performance, cost less, and are lighter than labyrinth seals. Even though industrial brush seals have been successfully developed through extensive experimentation, there is no comprehensive numerical methodology for the design or prediction of their performance. The existing analytical/numerical approaches are based on bulk flow models and do not allow the investigation of the effects of brush morphology (bristle arrangement), or brushes arrangement (number of brushes, spacing between them), on the pressure drops and flow leakage. An increase in the brush seal efficiency is clearly a complex problem that is closely related to the brush geometry and arrangement, and can be solved most likely only by means of a numerically distributed model.

  5. Brush seal numerical simulation: Concepts and advances

    NASA Astrophysics Data System (ADS)

    Braun, M. J.; Kudriavtsev, V. V.

    1994-07-01

    The development of the brush seal is considered to be most promising among the advanced type seals that are presently in use in the high speed turbomachinery. The brush is usually mounted on the stationary portions of the engine and has direct contact with the rotating element, in the process of limiting the 'unwanted' leakage flows between stages, or various engine cavities. This type of sealing technology is providing high (in comparison with conventional seals) pressure drops due mainly to the high packing density (around 100 bristles/sq mm), and brush compliance with the rotor motions. In the design of modern aerospace turbomachinery leakage flows between the stages must be minimal, thus contributing to the higher efficiency of the engine. Use of the brush seal instead of the labyrinth seal reduces the leakage flow by one order of magnitude. Brush seals also have been found to enhance dynamic performance, cost less, and are lighter than labyrinth seals. Even though industrial brush seals have been successfully developed through extensive experimentation, there is no comprehensive numerical methodology for the design or prediction of their performance. The existing analytical/numerical approaches are based on bulk flow models and do not allow the investigation of the effects of brush morphology (bristle arrangement), or brushes arrangement (number of brushes, spacing between them), on the pressure drops and flow leakage. An increase in the brush seal efficiency is clearly a complex problem that is closely related to the brush geometry and arrangement, and can be solved most likely only by means of a numerically distributed model.

  6. Atmospheric fluidized bed combustion advanced concept system

    SciTech Connect

    Not Available

    1992-05-01

    DONLEE Technologies Inc. is developing with support of the US Department of Energy an advanced circulating fluidized bed technology known as the Vortex{trademark} Fluidized Bed Combustor (VFBC). The unique feature of the VFBC is the injection of a significant portion of the combustion air into the cyclone. Since as much as one-half of the total combustion air is injected into the cyclone, the cross-sectional area of the circulating fluidized bed is considerably smaller than typical circulating fluidized beds. The technology is being developed for two applications: Industrial-scale boilers ranging from 20,000 to 100,000 pounds per hour steam generating capacity; and two-stage combustion in which a substoichiometric Vortex Fluidized Bed Combustor (2VFBC) or precombustor is used to generate a combustible gas for use primarily in boiler retrofit applications. This Level II analysis of these two applications indicates that both have merit. An industrial-scale VFBC boiler (60,000 lb/hr of steam) is projected to be economically attractive with coal prices as high as $40 per ton and gas prices between $4 and $5 per thousand cubic feet. The payback time is between 3 and 4 years. The 2VFBC system was evaluated at three capacities of application: 20,000; 60,000 and 100,000 lb/hr of steam. The payback times for these three capacities are 4.5, 2.1 and 1.55 years, respectively. The 2VFBC has potential applications for retrofit of existing pulverized coal-fired boilers or as a new large (utility) boiler. Pressurized operation of the 2VFBC has considerable potential for combined cycle power generation applications. Experimental development of both applications is presented here to demonstrate the potential of these two technologies.

  7. Advanced Optical Burst Switched Network Concepts

    NASA Astrophysics Data System (ADS)

    Nejabati, Reza; Aracil, Javier; Castoldi, Piero; de Leenheer, Marc; Simeonidou, Dimitra; Valcarenghi, Luca; Zervas, Georgios; Wu, Jian

    In recent years, as the bandwidth and the speed of networks have increased significantly, a new generation of network-based applications using the concept of distributed computing and collaborative services is emerging (e.g., Grid computing applications). The use of the available fiber and DWDM infrastructure for these applications is a logical choice offering huge amounts of cheap bandwidth and ensuring global reach of computing resources [230]. Currently, there is a great deal of interest in deploying optical circuit (wavelength) switched network infrastructure for distributed computing applications that require long-lived wavelength paths and address the specific needs of a small number of well-known users. Typical users are particle physicists who, due to their international collaborations and experiments, generate enormous amounts of data (Petabytes per year). These users require a network infrastructures that can support processing and analysis of large datasets through globally distributed computing resources [230]. However, providing wavelength granularity bandwidth services is not an efficient and scalable solution for applications and services that address a wider base of user communities with different traffic profiles and connectivity requirements. Examples of such applications may be: scientific collaboration in smaller scale (e.g., bioinformatics, environmental research), distributed virtual laboratories (e.g., remote instrumentation), e-health, national security and defense, personalized learning environments and digital libraries, evolving broadband user services (i.e., high resolution home video editing, real-time rendering, high definition interactive TV). As a specific example, in e-health services and in particular mammography applications due to the size and quantity of images produced by remote mammography, stringent network requirements are necessary. Initial calculations have shown that for 100 patients to be screened remotely, the network

  8. Advanced beamed-energy and field propulsion concepts

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.

    1983-01-01

    Specific phenomena which might lead to major advances in payload, range and terminal velocity of very advanced vehicle propulsion are studied. The effort focuses heavily on advanced propulsion spinoffs enabled by current government-funded investigations in directed-energy technology: i.e., laser, microwave, and relativistic charged particle beams. Futuristic (post-year 2000) beamed-energy propulsion concepts which indicate exceptional promise are identified and analytically investigated. The concepts must be sufficiently developed to permit technical understanding of the physical processes involved, assessment of the enabling technologies, and evaluation of their merits over conventional systems. Propulsion concepts that can be used for manned and/or unmanned missions for purposes of solar system exploration, planetary landing, suborbital flight, transport to orbit, and escape are presented. Speculations are made on the chronology of milestones in beamed-energy propulsion development, such as in systems applications of defense, satellite orbit-raising, global aerospace transportation, and manned interplanetary carriers.

  9. Preliminary Sizing of 120-Passenger Advanced Civil Rotorcraft Concepts

    NASA Technical Reports Server (NTRS)

    vanAken, Johannes M.; Sinsay, Jeffrey D.

    2006-01-01

    The results of a preliminary sizing study of advanced civil rotorcraft concepts that are capable of carrying 120 passengers over a range of 1,200 nautical miles are presented. The cruise altitude of these rotorcraft is 30,000 ft and the cruise velocity is 350 knots. The mission requires a hover capability, creating a runway independent solution, which might aid in reducing strain on the existing airport infrastructure. Concepts studied are a tiltrotor, a tandem rotor compound, and an advancing blade concept. The first objective of the study is to determine the relative merits of these designs in terms of mission gross weight, engine size, fuel weight, aircraft purchase price, and direct operating cost. The second objective is to identify the enabling technology for these advanced heavy lift civil rotorcraft.

  10. Overview of an Advanced Hypersonic Structural Concept Test Program

    NASA Technical Reports Server (NTRS)

    Stephens, Craig A.; Hudson, Larry D.; Piazza, Anthony

    2007-01-01

    This viewgraph presentation provides an overview of hypersonics M&S advanced structural concepts development and experimental methods. The discussion on concepts development includes the background, task objectives, test plan, and current status of the C/SiC Ruddervator Subcomponent Test Article (RSTA). The discussion of experimental methods examines instrumentation needs, sensors of interest, and examples of ongoing efforts in the development of extreme environment sensors.

  11. Heuristics Applied in the Development of Advanced Space Mission Concepts

    NASA Technical Reports Server (NTRS)

    Nilsen, Erik N.

    1998-01-01

    Advanced mission studies are the first step in determining the feasibility of a given space exploration concept. A space scientist develops a science goal in the exploration of space. This may be a new observation method, a new instrument or a mission concept to explore a solar system body. In order to determine the feasibility of a deep space mission, a concept study is convened to determine the technology needs and estimated cost of performing that mission. Heuristics are one method of defining viable mission and systems architectures that can be assessed for technology readiness and cost. Developing a viable architecture depends to a large extent upon extending the existing body of knowledge, and applying it in new and novel ways. These heuristics have evolved over time to include methods for estimating technical complexity, technology development, cost modeling and mission risk in the unique context of deep space missions. This paper examines the processes involved in performing these advanced concepts studies, and analyzes the application of heuristics in the development of an advanced in-situ planetary mission. The Venus Surface Sample Return mission study provides a context for the examination of the heuristics applied in the development of the mission and systems architecture. This study is illustrative of the effort involved in the initial assessment of an advance mission concept, and the knowledge and tools that are applied.

  12. AREAL test facility for advanced accelerator and radiation source concepts

    NASA Astrophysics Data System (ADS)

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  13. A rotor technology assessment of the advancing blade concept

    NASA Technical Reports Server (NTRS)

    Pleasants, W. A.

    1983-01-01

    A rotor technology assessment of the Advancing Blade Concept (ABC) was conducted in support of a preliminary design study. The analytical methodology modifications and inputs, the correlation, and the results of the assessment are documented. The primary emphasis was on the high-speed forward flight performance of the rotor. The correlation data base included both the wind tunnel and the flight test results. An advanced ABC rotor design was examined; the suitability of the ABC for a particular mission was not considered. The objective of this technology assessment was to provide estimates of the performance potential of an advanced ABC rotor designed for high speed forward flight.

  14. Overview on NASA's Advanced Electric Propulsion Concepts Activities

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1999-01-01

    Advanced electric propulsion research activities are currently underway that seek to addresses feasibility issues of a wide range of advanced concepts, and may result in the development of technologies that will enable exciting new missions within our solar system and beyond. Each research activity is described in terms of the present focus and potential future applications. Topics include micro-electric thrusters, electrodynamic tethers, high power plasma thrusters and related applications in materials processing, variable specific impulse plasma thrusters, pulsed inductive thrusters, computational techniques for thruster modeling, and advanced electric propulsion missions and systems studies.

  15. Advancing Your Career: Concepts of Professional Nursing. Second Edition.

    ERIC Educational Resources Information Center

    Kearney, Rose

    This textbook, intended for registered nurses (RN's) returning to school, is designed to provide practicing RN's with professional concepts to advance their careers. The book contains 22 chapters organized in five sections. Each chapter includes chapter objectives, key terms, key points, chapter exercises, references, and a bibliography. Section I…

  16. Advanced laser sensing receiver concepts based on FPA technology.

    SciTech Connect

    Jacobson, P. L.; Petrin, R. R.; Jolin, J. L.; Foy, B. R.; Lowrance, J. L.; Renda, G.

    2002-01-01

    The ultimate performance of any remote sensor is ideally governed by the hardware signal-to-noise capability and allowed signal-averaging time. In real-world scenarios, this may not be realizable and the limiting factors may suggest the need for more advanced capabilities. Moving from passive to active remote sensors offers the advantage of control over the illumination source, the laser. Added capabilities may include polarization discrimination, instantaneous imaging, range resolution, simultaneous multi-spectral measurement, or coherent detection. However, most advanced detection technology has been engineered heavily towards the straightforward passive sensor requirements, measuring an integrated photon flux. The need for focal plane array technology designed specifically for laser sensing has been recognized for some time, but advances have only recently made the engineering possible. This paper will present a few concepts for laser sensing receiver architectures, the driving specifications behind those concepts, and test/modeling results of such designs.

  17. MSFC Advanced Concepts Office and the Iterative Launch Vehicle Concept Method

    NASA Technical Reports Server (NTRS)

    Creech, Dennis

    2011-01-01

    This slide presentation reviews the work of the Advanced Concepts Office (ACO) at Marshall Space Flight Center (MSFC) with particular emphasis on the method used to model launch vehicles using INTegrated ROcket Sizing (INTROS), a modeling system that assists in establishing the launch concept design, and stage sizing, and facilitates the integration of exterior analytic efforts, vehicle architecture studies, and technology and system trades and parameter sensitivities.

  18. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    SciTech Connect

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  19. Using Group Performances to Demonstrate Concepts in Large Biology Classes

    ERIC Educational Resources Information Center

    Wellnitz, Todd

    2006-01-01

    While a voluminous lecture hall can present obstacles to effective teaching and learning, large classrooms containing more than 100 students also present teaching opportunities. The lecture hall offers an excellent arena for demonstrating concepts that lend themselves to demonstrations and something this author refers to as "group performances."…

  20. Validation Database Based Thermal Analysis of an Advanced RPS Concept

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Emis, Nickolas D.

    2006-01-01

    Advanced RPS concepts can be conceived, designed and assessed using high-end computational analysis tools. These predictions may provide an initial insight into the potential performance of these models, but verification and validation are necessary and required steps to gain confidence in the numerical analysis results. This paper discusses the findings from a numerical validation exercise for a small advanced RPS concept, based on a thermal analysis methodology developed at JPL and on a validation database obtained from experiments performed at Oregon State University. Both the numerical and experimental configurations utilized a single GPHS module enabled design, resembling a Mod-RTG concept. The analysis focused on operating and environmental conditions during the storage phase only. This validation exercise helped to refine key thermal analysis and modeling parameters, such as heat transfer coefficients, and conductivity and radiation heat transfer values. Improved understanding of the Mod-RTG concept through validation of the thermal model allows for future improvements to this power system concept.

  1. NASA Advanced Supercomputing (NAS) User Services Group

    NASA Technical Reports Server (NTRS)

    Pandori, John; Hamilton, Chris; Niggley, C. E.; Parks, John W. (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides an overview of NAS (NASA Advanced Supercomputing), its goals, and its mainframe computer assets. Also covered are its functions, including systems monitoring and technical support.

  2. THE 13TH ADVANCED ACCELERATOR CONCEPTS WORKSHOP (AAC'8)

    SciTech Connect

    Leemans, Wim; Schroder, Carl B.; Esarey, Eric

    2008-07-15

    The Thirteenth Workshop on Advanced Accelerator Concepts (AAC) was held from July 27 to August 2, 2008 at the Chaminade Conference Center in Santa Cruz, California, USA, organized by the Lawrence Berkeley National Laboratory and the University of California at Berkeley. There were unprecedented levels of interest in the 2008 AAC Workshop, and participation was by invitation, with 215 workshop attendees, including 58 students. Reflecting the world-wide growth of the advanced accelerator community, there was significant international participation, with participants from twelve countries attending.

  3. NASA advanced turboprop research and concept validation program

    NASA Technical Reports Server (NTRS)

    Whitlow, John B., Jr.; Sievers, G. Keith

    1988-01-01

    NASA has determined by experimental and analytical effort that use of advanced turboprop propulsion instead of the conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. In cooperation with industry, NASA has defined and implemented an Advanced Turboprop (ATP) program to develop and validate the technology required for these new high-speed, multibladed, thin, swept propeller concepts. This paper presents an overview of the analysis, model-scale test, and large-scale flight test elements of the program together with preliminary test results, as available.

  4. Selected advanced aerodynamic and active control concepts development

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A summary is presented of results obtained during analysis, design and test activities on six selected technical tasks directed at exploratory improvement of fuel efficiency for new and derivative transports. The work included investigations into the potential offered by natural laminar flow, improved surface coatings and advanced high lift concepts. Similar investigations covering optimum low-energy flight path control, integrated application of active controls and evaluation of primary flight control systems reliability and maintenance are also summarized. Recommendations are included for future work needed to exploit potential advancements.

  5. Advanced fuel cell concepts for future NASA missions

    NASA Astrophysics Data System (ADS)

    Stedman, J. K.

    1987-09-01

    Studies of primary fuel cells for advanced all electric shuttle type vehicles show an all fuel cell power system with peak power capability of 100's of kW to be potentially lighter and have lower life cycle costs than a hybrid system using advanced H2O2 APU's for peak power and fuel cells for low power on orbit. Fuel cell specific weights of 1 to 3 lb/kW, a factor of 10 improvement over the orbiter power plant, are projected for the early 1990's. For satellite applications, a study to identify high performance regenerative hydrogen oxygen fuel cell concepts for geosynchronous orbit was completed. Emphasis was placed on concepts with the potential for high energy density (Wh/lb) and passive means for water and heat management to maximize system reliability. Both alkaline electrolyte and polymer membrane fuel cells were considered.

  6. Advanced fuel cell concepts for future NASA missions

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1987-01-01

    Studies of primary fuel cells for advanced all electric shuttle type vehicles show an all fuel cell power system with peak power capability of 100's of kW to be potentially lighter and have lower life cycle costs than a hybrid system using advanced H2O2 APU's for peak power and fuel cells for low power on orbit. Fuel cell specific weights of 1 to 3 lb/kW, a factor of 10 improvement over the orbiter power plant, are projected for the early 1990's. For satellite applications, a study to identify high performance regenerative hydrogen oxygen fuel cell concepts for geosynchronous orbit was completed. Emphasis was placed on concepts with the potential for high energy density (Wh/lb) and passive means for water and heat management to maximize system reliability. Both alkaline electrolyte and polymer membrane fuel cells were considered.

  7. Associations among self-concept, verbal behaviors, and group climate early in the group counseling process.

    PubMed

    Jen Der Pan, Peter; Fan, Ai Chun; Bhat, Christine Suniti; Chang, Shona Shih Hua

    2012-12-01

    In this study, relations among group members' self-concept, verbal behaviors, and group climate early in the group counseling process were assessed for college students who were randomly assigned to four counseling groups. Based on measures from the hill interaction matrix, it was observed that family, social, and action self-concepts, as well as engagement, avoidance, and conflict group climate, were correlated with several verbal behaviors. Silence and quadrant 4 (Q4), which consists of speculative and confrontative verbal behaviors at personal and relationship levels, significantly predicted and explained 43% of the variance in engagement group climate. Silence and Q3, comprised of conventional and assertive verbal behaviors at personal and relationship levels, and Q1, conventional and assertive verbal behaviors at topic and group levels, explained 66% of variance in avoidance climate. Q4 and Silence explained 33% of conflict climate variance early in the group sessions. Implications for research and counseling practice are suggested. PMID:23402043

  8. Development of environmentally advanced hydropower turbine system design concepts

    SciTech Connect

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr.

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

  9. Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Welstead, Jason R.; Quinlan, Jesse R.; Guynn, Mark D.

    2016-01-01

    Structural configuration analysis of an advanced aircraft fuselage concept is investigated. This concept is characterized by a double-bubble section fuselage with rear mounted engines. Based on lessons learned from structural systems analysis of unconventional aircraft, high-fidelity finite-element models (FEM) are developed for evaluating structural performance of three double-bubble section configurations. Structural sizing and stress analysis are applied for design improvement and weight reduction. Among the three double-bubble configurations, the double-D cross-section fuselage design was found to have a relatively lower structural weight. The structural FEM weights of these three double-bubble fuselage section concepts are also compared with several cylindrical fuselage models. Since these fuselage concepts are different in size, shape and material, the fuselage structural FEM weights are normalized by the corresponding passenger floor area for a relative comparison. This structural systems analysis indicates that an advanced composite double-D section fuselage may have a relative structural weight ratio advantage over a conventional aluminum fuselage. Ten commercial and conceptual aircraft fuselage structural weight estimates, which are empirically derived from the corresponding maximum takeoff gross weight, are also presented and compared with the FEM- based estimates for possible correlation. A conceptual full vehicle FEM model with a double-D fuselage is also developed for preliminary structural analysis and weight estimation.

  10. Design and analysis of advanced flight planning concepts

    NASA Technical Reports Server (NTRS)

    Sorensen, John A.

    1987-01-01

    The objectives of this continuing effort are to develop and evaluate new algorithms and advanced concepts for flight management and flight planning. This includes the minimization of fuel or direct operating costs, the integration of the airborne flight management and ground-based flight planning processes, and the enhancement of future traffic management systems design. Flight management (FMS) concepts are for on-board profile computation and steering of transport aircraft in the vertical plane between a city pair and along a given horizontal path. Flight planning (FPS) concepts are for the pre-flight ground based computation of the three-dimensional reference trajectory that connects the city pair and specifies the horizontal path, fuel load, and weather profiles for initializing the FMS. As part of these objectives, a new computer program called EFPLAN has been developed and utilized to study advanced flight planning concepts. EFPLAN represents an experimental version of an FPS. It has been developed to generate reference flight plans compatible as input to an FMS and to provide various options for flight planning research. This report describes EFPLAN and the associated research conducted in its development.

  11. Interagency Advanced Power Group Steering Group meeting minutes

    SciTech Connect

    Not Available

    1992-11-18

    This document contains presentation overviews and viewgraphs from a meeting military personnel on the subject of power generation and distribution systems for military applications. Mission analysis and directional plans were given for each working group (chemical, mechanical, electrical, nuclear, solar and systems). Attendees represented the US Air Force, Army, Navy, and NASA.

  12. Summary report: Working Group 2 on 'Plasma Based Acceleration Concepts'

    SciTech Connect

    Leemans, W. P.; Esarey, E.

    1999-07-12

    A summary of the talks, papers and discussion sessions presented in the Working Group on Plasma Based Acceleration Concepts is given within the context of the progress towards a 1 GeV laser driven accelerator module. The topics covered within the Working Group were self-modulated laser wakefield acceleration, standard laser wakefield acceleration, plasma beatwave acceleration, laser guiding and wake excitation in plasma channels, plasma wakefield acceleration, plasma lenses and optical injection techniques for laser wakefield accelerators. An overview will be given of the present status of experimental and theoretical progress as well as an outlook towards the future physics and technological challenges for the development of an optimized accelerator module.

  13. Advance Approach to Concept and Design Studies for Space Missions

    NASA Technical Reports Server (NTRS)

    Deutsch, M.; Nichols, J.

    1999-01-01

    Recent automated and advanced techniques developed at JPL have created a streamlined and fast-track approach to initial mission conceptualization and system architecture design, answering the need for rapid turnaround of trade studies for potential proposers, as well as mission and instrument study groups.

  14. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  15. Group selection and the development of the biological species concept.

    PubMed

    Mallet, James

    2010-06-12

    The development of what became known as the biological species concept began with a paper by Theodosius Dobzhansky in 1935, and was amplified by a mutualistic interaction between Dobzhansky, Alfred Emerson and Ernst Mayr after the second world war. By the 1950s and early 1960s, these authors had developed an influential concept of species as coadapted genetic complexes at equilibrium. At this time many features of species were seen as group advantages maintained by selection to avoid breakdown of beneficial coadaptation and the 'gene pool'. Speciation thus seemed difficult. It seemed to require, more so than today, an external deus ex machina, such as allopatry or the founder effect, rather than ordinary within-species processes of natural selection, sexual selection, drift and gene flow. In the mid-1960s, the distinctions between group and individual selection were clarified. Dobzhansky and Mayr both understood the implications, but their views on species changed little. These group selectionist ideas now seem peculiar, and are becoming distinctly less popular today. Few vestiges of group selectionism and species-level adaptationism remain in recent reviews of speciation. One wonders how many of our own cherished views on evolution will seem as odd to future biologists. PMID:20439286

  16. Toward a medical-concept representation language. The Canon Group.

    PubMed Central

    Evans, D A; Cimino, J J; Hersh, W R; Huff, S M; Bell, D S

    1994-01-01

    The Canon Group is an informal organization of medical informatics researchers who are working on the problem of developing a "deeper" representation formalism for use in exchanging data and developing applications. Individuals in the group represent experts in such areas as knowledge representation and computational linguistics, as well as in a variety of medical subdisciplines. All share the view that current mechanisms for the characterization of medical phenomena are either inadequate (limited or rigid) or idiosyncratic (useful for a specific application but incapable of being generalized or extended). The Group proposes to focus on the design of a general schema for medical-language representation including the specification of the resources and associated procedures required to map language (including standard terminologies) into representations that make all implicit relations "visible," reveal "hidden attributes," and generally resolve ambiguous or vague references. The Group is proceeding by examining large numbers of texts (records) in medical sub-domains to identify candidate "concepts" and by attempting to develop general rules and representations for elements such as attributes and values so that all concepts may be expressed uniformly. PMID:7719804

  17. Group selection and the development of the biological species concept

    PubMed Central

    Mallet, James

    2010-01-01

    The development of what became known as the biological species concept began with a paper by Theodosius Dobzhansky in 1935, and was amplified by a mutualistic interaction between Dobzhansky, Alfred Emerson and Ernst Mayr after the second world war. By the 1950s and early 1960s, these authors had developed an influential concept of species as coadapted genetic complexes at equilibrium. At this time many features of species were seen as group advantages maintained by selection to avoid breakdown of beneficial coadaptation and the ‘gene pool’. Speciation thus seemed difficult. It seemed to require, more so than today, an external deus ex machina, such as allopatry or the founder effect, rather than ordinary within-species processes of natural selection, sexual selection, drift and gene flow. In the mid-1960s, the distinctions between group and individual selection were clarified. Dobzhansky and Mayr both understood the implications, but their views on species changed little. These group selectionist ideas now seem peculiar, and are becoming distinctly less popular today. Few vestiges of group selectionism and species-level adaptationism remain in recent reviews of speciation. One wonders how many of our own cherished views on evolution will seem as odd to future biologists. PMID:20439286

  18. New Developments in the Simulation of Advanced Accelerator Concepts

    SciTech Connect

    Bruhwiler, David L.; Cary, John R.; Cowan, Benjamin M.; Paul, Kevin; Mullowney, Paul J.; Messmer, Peter; Geddes, Cameron G. R.; Esarey, Eric; Cormier-Michel, Estelle; Leemans, Wim; Vay, Jean-Luc

    2009-01-22

    Improved computational methods are essential to the diverse and rapidly developing field of advanced accelerator concepts. We present an overview of some computational algorithms for laser-plasma concepts and high-brightness photocathode electron sources. In particular, we discuss algorithms for reduced laser-plasma models that can be orders of magnitude faster than their higher-fidelity counterparts, as well as important on-going efforts to include relevant additional physics that has been previously neglected. As an example of the former, we present 2D laser wakefield accelerator simulations in an optimal Lorentz frame, demonstrating >10 GeV energy gain of externally injected electrons over a 2 m interaction length, showing good agreement with predictions from scaled simulations and theory, with a speedup factor of {approx}2,000 as compared to standard particle-in-cell.

  19. New Developments in the Simulation of Advanced Accelerator Concepts

    SciTech Connect

    Paul, K.; Cary, J.R.; Cowan, B.; Bruhwiler, D.L.; Geddes, C.G.R.; Mullowney, P.J.; Messmer, P.; Esarey, E.; Cormier-Michel, E.; Leemans, W.P.; Vay, J.-L.

    2008-09-10

    Improved computational methods are essential to the diverse and rapidly developing field of advanced accelerator concepts. We present an overview of some computational algorithms for laser-plasma concepts and high-brightness photocathode electron sources. In particular, we discuss algorithms for reduced laser-plasma models that can be orders of magnitude faster than their higher-fidelity counterparts, as well as important on-going efforts to include relevant additional physics that has been previously neglected. As an example of the former, we present 2D laser wakefield accelerator simulations in an optimal Lorentz frame, demonstrating>10 GeV energy gain of externally injected electrons over a 2 m interaction length, showing good agreement with predictions from scaled simulations and theory, with a speedup factor of ~;;2,000 as compared to standard particle-in-cell.

  20. A system concept for an advanced vehicle control system

    SciTech Connect

    Mackey, D.E.; Mackey, W.F. Jr.; Mackey, W.F.

    1996-12-01

    This paper explores a system concept for an Advanced Vehicle Control System (AVCS). The progression of highway design and construction has resulted from an evolution of technologies, inventions, organizational creations, and legislative acts supporting the development of a national interstate transportation system. Until now, highway design and construction has been the domain of civil engineers concerned with highway structures, materials loading, traffic patterns, and supporting facilities. However, the growing need for intelligent vehicle-highway systems (IVHS) requires that traditional civil engineering disciplines be integrated with computers, communications, and eventually fully automated vehicles. This paper`s thesis suggests that the complex highway transportation of the late 20th century and the 21st century can benefit from the collaboration of systems engineers and civil engineers. This paper identifies and prototypes an AVCS concept with roadside computers controlling the lateral and longitudinal movements of a vehicle.

  1. Advanced launch vehicle system concepts: An historical overview

    SciTech Connect

    Ehrlich, C.F. Jr.

    1997-01-01

    Many studies leading to advanced launch vehicle system concepts have been undertaken during the years leading to the Space Shuttle development and since it was started. All of these have focused on nebulous and wide-ranging mission requirements. As a result, many launch system concepts have been defined, each addressing a different mission, yielding a wide range of points of departure once the {open_quotes}real{close_quotes} mission, or missions, have been identified. Future studies have this database available from which to depart once the {open_quotes}real{close_quotes} next generation mission is defined. This paper discusses some of the main issues surrounding the development of future systems. This subject really addresses the three principal requirements needed to be resolved for these systems to come into being: system architecture{emdash}what does the system look like and what is its makeup?, technologies{emdash}what are the technologies required to make the new system a successful venture and meet the requirements set forth in the mission statement?, and finally, the mission{emdash}what do we need to do and when?. The principal focus here will be on the past studies reviewing past concepts which address particular aspects of potential mission requirements with technology development and concepts discussed as we go along. {copyright} {ital 1997 American Institute of Physics.}

  2. Advanced launch vehicle system concepts: An historical overview

    NASA Astrophysics Data System (ADS)

    Ehrlich, Carl F.

    1997-01-01

    Many studies leading to advanced launch vehicle system concepts have been undertaken during the years leading to the Space Shuttle development and since it was started. All of these have focused on nebulous and wide-ranging mission requirements. As a result, many launch system concepts have been defined, each addressing a different mission, yielding a wide range of points of departure once the "real" mission, or missions, have been identified. Future studies have this database available from which to depart once the "real" next generation mission is defined. This paper discusses some of the main issues surrounding the development of future systems. This subject really addresses the three principal requirements needed to be resolved for these systems to come into being: system architecture—what does the system look like and what is its makeup?, technologies—what are the technologies required to make the new system a successful venture and meet the requirements set forth in the mission statement?, and finally, the mission—what do we need to do and when?. The principal focus here will be on the past studies reviewing past concepts which address particular aspects of potential mission requirements with technology development and concepts discussed as we go along.

  3. Advanced liquid oxygen (LO2) propellant conditioning concept testing

    NASA Technical Reports Server (NTRS)

    Perry, G. L. E.; Suter, J. D.; Turner, S. G.

    1995-01-01

    Advanced methods of liquid oxygen (LO2) propellant conditioning were studied as part of an effort for increasing reliability and operability while reducing cost of future heavy lift launch vehicles. The most promising conditioning concept evaluated was no-bleed (passive recirculation) followed by low-bleed, helium injection, and use of a recirculation line. Full-scale cryogenic testing was performed with a sloped feedline test article to validate models of behavior of LO2 in the feedline and to prove no-bleed feasibility. Test data are also intended to help generate design guidelines for the development of a main propulsion system feed duct. A design-of-experiments matrix of over 100 tests was developed to test all four propellant conditioning concepts and the impact of design parameters on the concepts. Liquid nitrogen was used as the test fluid. The work for this project was conducted from October 1992 through January 1994 at the hydrogen cold flow facility of the west test area of MSFC. Test data have shown that satisfactory temperatures are being obtained for the no-bleed conditioning concept.

  4. Aeronautical technology 2000 - A projection of advanced vehicle concepts

    NASA Technical Reports Server (NTRS)

    Rosen, C. C., III; Burger, R. J.; Sigalla, A.

    1984-01-01

    At the request of NASA and under the aegis of the National Research Council, representatives from industry, academic institutions and government have participated in a workshop to consider opportunities for the exploitation of aircraft technology in such fields as aerodynamics, materials, structures, guidance, navigation and control, human factors, propulsion, computers and data processing, and systems integration. Attention is given to the advanced vehicle concepts that have emerged for possible year-2000 implementation, which encompass such diverse aircraft types as supersonic transports, hypersonic airliners, missiles, and interceptors, transatmospheric vehicles, next-generation space shuttles, subsonic transports and attack aircraft, advanced helicopter, tilt-rotor VTOL configurations, and solar- and microwave beam-powered extremely high altitude aircraft.

  5. Concepts first-A small group approach to physics learning

    NASA Astrophysics Data System (ADS)

    Gautreau, Ronald; Novemsky, Lisa

    1997-05-01

    Since 1991, we have been using Alan Van Heuvelen's Overview, Case Study: Physics (OCS physics) methodology in introductory physics courses at New Jersey Institute of Technology (NJIT) with remarkable success. With the OCS method, physics concepts are presented first, with no mathematics. Only after the concepts are understood is math brought into the picture at the appropriate level. In addition, much of the learning is accomplished with students working together in small groups of three or four. In these collaborative settings, students actively engage each other in the learning process, working on specially designed small group problems, while the instructor acts as a facilitator of the on-going learning. We present various comparisons showing the effectiveness of OCS instruction over traditional teaching. In particular, since the introduction of OCS physics into NJIT's summer Educational Opportunity Program (EOP), which involves mostly minority students, EOP students have significantly outperformed non-EOP students in their fall physics courses. Interviews with students and observations of videotapes suggest that "second teaching" takes place in small groups following "first teaching" by the instructor. Second teaching is interpreted on the basis of ideas developed by Vygotsky.

  6. Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles

    SciTech Connect

    Hardin, Ernest; Blink, James; Carter, Joe; Massimiliano, Fratoni; Greenberg, Harris; Howard, Rob L

    2011-01-01

    The current posture of the used nuclear fuel management program in the U.S. following termination of the Yucca Mountain Project, is to pursue research and development (R&D) of generic (i.e., non-site specific) technologies for storage, transportation and disposal. Disposal R&D is directed toward understanding and demonstrating the performance of reference geologic disposal concepts selected to represent the current state-of-the-art in geologic disposal. One of the principal constraints on waste packaging and emplacement in a geologic repository is management of the waste-generated heat. This paper describes the selection of reference disposal concepts, and thermal management strategies for waste from advanced fuel cycles. A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE) Used Fuel Disposition Campaign, for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. We performed thermal analysis of these concepts using waste inventory cases representing a range of advanced fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress and previous experience in the U.S. repository program. All of the disposal concepts selected for this study use enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. The encapsulating materials (typically clay-based or rock salt) have low intrinsic permeability and plastic rheology that closes voids so that low permeability is maintained. Uniformly low permeability also contributes to chemically reducing conditions common in soft clay, shale, and salt formations. Enclosed modes are associated

  7. The impact of holistic medicine, medical groups, and health concepts.

    PubMed

    Yahn, G

    1979-11-16

    Holistic medicine (Greek, holos, meaning entire or whole) focuses on the whole person--mind-body-spirit, well-being, and wellness. It is a new health care movement or medical approach that is gaining momentum. The basic concepts are simple and clear, avoiding a piecemeal approach to health with treatment of one disease. Two or three physicians may form holistic medical groups, sometimes inviting nonphysician health care professionals to join. Some of these nonphysicians are not licensed, and standards need to be devised. Governmental agencies are impressed by low-cost resuits, especially with chronically ill patients. There are also groups that have spiritual health care modalities and ministrations. Nevertheless, there are commercialistic tendencies and faddism in some centers, and the literature has been criticized as being for laymen by laymen; however, the movement deserves a sympathetic hearing. PMID:490807

  8. An advanced concept secondary power systems study for an advanced transport technology aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The application of advanced technology to the design of an integrated secondary power system for future near-sonic long-range transports was investigated. The study showed that the highest payoff is achieved by utilizing secondary power equipment that contributes to minimum cruise drag. This is best accomplished by the use of the dedicated auxiliary power unit concept (inflight APU) as the prime power source for an airplane with a body-mounted engine or by the use of the internal engine generator concept (electrical power extraction from the propulsion engine) for an airplane with a wing-pod-mounted engine.

  9. Advanced Vehicle Concepts and Implications for NextGen

    NASA Technical Reports Server (NTRS)

    Blake, Matt; Smith, Jim; Wright, Ken; Mediavilla Ricky; Kirby, Michelle; Pfaender, Holger; Clarke, John-Paul; Volovoi, Vitali; Dorbian, Christopher; Ashok, Akshay; Reynolds, Tom; Waitz, Ian; Hileman, James; Arunachalam, Sarav; Hedrick, Matt; Vempati, Lakshmi; Laroza, Ryan; denBraven, Wim; Henderson, Jeff

    2010-01-01

    This report presents the results of a major NASA study of advanced vehicle concepts and their implications for the Next Generation Air Transportation System (NextGen). Comprising the efforts of dozens of researchers at multiple institutions, the analyses presented here cover a broad range of topics including business-case development, vehicle design, avionics, procedure design, delay, safety, environmental impacts, and metrics. The study focuses on the following five new vehicle types: Cruise-efficient short takeoff and landing (CESTOL) vehicles Large commercial tiltrotor aircraft (LCTRs) Unmanned aircraft systems (UAS) Very light jets (VLJs) Supersonic transports (SST). The timeframe of the study spans the years 2025-2040, although some analyses are also presented for a 3X scenario that has roughly three times the number of flights as today. Full implementation of NextGen is assumed.

  10. Advanced direct liquefaction concepts for PETC generic units

    SciTech Connect

    Not Available

    1992-04-01

    In the Advance Coal Liquefaction Concept Proposal (ACLCP) carbon monoxide (CO) and water have been proposed as the primary reagents in the pretreatment process. The main objective of this project is to develop a methodology for pretreating coal under mild conditions based on a combination of existing processes which have shown great promise in liquefaction, extraction and pyrolysis studies. The aim of this pretreatment process is to partially depolymerise the coal, eliminate oxygen and diminish the propensity for retograde reactions during subsequent liquefaction. The desirable outcome of the CO pretreatment step should be: (1) enhanced liquefaction activity and/or selectivity toward products of higher quality due to chemical modification of the coal structure; (2) cleaner downstream products; (3) overall improvement in operability and process economics.

  11. Advanced Gas Storage Concepts: Technologies for the Future

    SciTech Connect

    Freeway, Katy; Rogers, R.E.; DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D.

    2000-02-01

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  12. Advanced composite combustor structural concepts program. Final Report

    SciTech Connect

    Sattar, M.A.; Lohmann, R.P.

    1984-12-01

    An analytical study was conducted to assess the feasibility of and benefits derived from the use of high temperature composite materials in aircraft turbine engine combustor liners. The study included a survey and screening of the properties of three candidate composite materials including tungsten reinforced superalloys, carbon-carbon and silicon carbide (SiC) fibers reinforcing a ceramic matrix of lithium aluminosilicate (LAS). The SiC-LAS material was selected as offering the greatest near term potential primarily on the basis of high temperature capability. A limited experimental investigation was conducted to quantify some of the more critical mechanical properties of the SiC-LAS composite having a multidirection 0/45/-45/90 deg fiber orientation favored for the combustor linear application. Rigorous cyclic thermal tests demonstrated that SiC-LAS was extremely resistant to the thermal fatigue mechanisms that usually limit the life of metallic combustor liners. A thermal design study led to the definition of a composite liner concept that incorporated film cooled SiC-LAS shingles mounted on a Hastelloy X shell. With coolant fluxes consistent with the most advanced metallic liner technology, the calculated hot surface temperatures of the shingles were within the apparent near term capability of the material. Structural analyses indicated that the stresses in the composite panels were low, primarily because of the low coefficient of expansion of the material and it was concluded that the dominant failure mode of the liner would be an as yet unidentified deterioration of the composite from prolonged exposure to high temperature. An economic study, based on a medium thrust size commercial aircraft engine, indicated that the SiC-LAS combustor liner would weigh 22.8N (11.27 lb) less and cost less to manufacture than advanced metallic liner concepts intended for use in the late 1980's.

  13. Aeronautical technology 2000: A projection of advanced vehicle concepts

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Aeronautics and Space Engineering Board (ASEB) of the National Research Council conducted a Workshop on Aeronautical Technology: a Projection to the Year 2000 (Aerotech 2000 Workshop). The panels were asked to project advances in aeronautical technologies that could be available by the year 2000. As the workshop was drawing to a close, it became evident that a more comprehensive investigation of advanced air vehicle concepts than was possible in the limited time available at the workshop would be valuable. Thus, a special panel on vehicle applications was organized. In the course of two meetings, the panel identified and described representative types of aircraft judged possible with the workshop's technology projections. These representative aircraft types include: military aircraft; transport aircraft; rotorcraft; extremely high altitude aircraft; and transatmospheric aircraft. Improvements in performance, efficiency, and operational characteristics possible through the application of the workshop's year 2000 technology projections were discussed. The subgroups also identified the technologies considered essential and enhancing or supporting to achieve the projected aircraft improvements.

  14. Advanced Short Takeoff and Vertical Landing (ASTOVL) Concepts Tested

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In this cooperative program between NASA, Lockheed Corporation, and the Advanced Research and Projects Agency (ARPA), an advanced short takeoff and vertical landing (ASTOVL) model was tested in the 9- by 15-Foot Low-Speed Wind Tunnel at the NASA Lewis Research Center. The 10-percent scaled model was tested over a range of headwind velocities from 25 to 120 kn. This inlet/forebody test was a key part of an important Department of Defense program investigation enabling technologies for future high-performance ASTOVL aircraft. The Lockheed concept is focused on a shaft-coupled lift fan system centered around Pratt & Whitney's F119 power plant. As envisioned, a conventional takeoff and landing version (CTOL) would replace the U.S. Air Force's F-16's. The ASTOVL version would eventually replace Marine and, possibly, British Harrier aircraft. The ASTOVL and CTOL versions are scheduled to begin their manufacturing development phases in 2000. The purpose of this test was to acquire data pertinent to the inlet-forebody model. The test was very successful. Both steady-state and dynamic data were obtained. This small-scale testing, which is directed at reducing risks, may greatly reduce the risks on a full-scale aircraft.

  15. Advanced Concept Exploration for Fast Ignition Science Program, Final Report

    SciTech Connect

    Stephens, Richard Burnite; McLean, Harry M.; Theobald, Wolfgang; Akli, Kramer U.; Beg, Farhat N.; Sentoku, Yasuhiko; Schumacher, Douglass W.; Wei, Mingsheng

    2013-09-04

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10’s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends critically on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: • Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. • Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. • Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: • Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density

  16. Advanced concepts in ground thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Woods, Kevin David

    In recent years, ground thermal energy storage has become a topic of interest in the energy community for solar thermal energy storage systems, ground sourced heat pump systems, and data center thermal management systems due to an increase in the energy efficiency of such systems utilizing the ground as a thermal reservoir. The most common method for transferring thermal energy to the ground formation is the geothermal borehole. This dissertation presents the state of the art in geothermal borehole modeling and derives novel analytical functions to model advanced concepts concerning their operation. The novel solutions derived allow a geothermal borehole designer to better understand and design ground energy storage systems. The state of the art in geothermal borehole modeling is the stationary line source solution which is limited to boreholes operating without groundwater flow. Novel solutions for modeling a geothermal borehole with groundwater advection are presented through derivation of a transient moving line source solution as well as a transient moving cylindrical surface source solution. These solutions are applied to model a specific type of open loop geothermal borehole called a standing column well with groundwater advection and are compared to empirical and numerical data for validation. The dissertation then moves into derivation of a property determination method for geothermal boreholes with groundwater advection. The traditional property determination method used to obtain ground formation properties is based on the stationary transient line source method and fails in the presence of groundwater flow. The proposed novel property determination method calculates the thermal conductivity, thermal diffusivity, and superficial flow velocity of groundwater within a ground formation. These methods and solutions are novel tools allowing for geothermal borehole designers to grasp a better understanding of the systems they are designing as well as open other

  17. Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts

    SciTech Connect

    Shuets, G.

    2004-05-21

    Theoretical investigations of plasma-based accelerators and other advanced accelerator concepts. The focus of the work was on the development of plasma based and structure based accelerating concepts, including laser-plasma, plasma channel, and microwave driven plasma accelerators.

  18. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Garcia, Jessica; Beers, Benjamin; Philips, Alan; Holt, James B.; Threet, Grady E., Jr.

    2013-01-01

    The Earth to Orbit (ETO) Team of the Advanced Concepts Office (ACO) at NASA Marshal Space Flight Center (MSFC) is considered the preeminent group to go to for prephase A and phase A concept definition. The ACO team has been at the forefront of a multitude of launch vehicle studies determining the future direction of the Agency as a whole due, in part, to their rapid turnaround time in analyzing concepts and their ability to cover broad trade spaces of vehicles in that limited timeframe. Each completed vehicle concept includes a full mass breakdown of each vehicle to tertiary subsystem components, along with a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. Additionally, a structural analysis of the vehicle based on material properties and geometries is performed as well as an analysis to determine the flight loads based on the trajectory outputs. As mentioned, the ACO Earth to Orbit Team prides themselves on their rapid turnaround time and often need to fulfill customer requests within limited schedule or little advanced notice. Due to working in this fast paced environment, the ETO team has developed some finely honed skills and methods to maximize the delivery capability to meet their customer needs. This paper will describe the interfaces between the 3 primary disciplines used in the design process; weights and sizing, trajectory, and structural analysis, as well as the approach each discipline employs to streamline their particular piece of the design process.

  19. Advanced fusion MHD power conversion using the CFAR (compact fusion advanced Rankine) cycle concept

    SciTech Connect

    Hoffman, M.A.; Campbell, R.; Logan, B.G.; Lawrence Livermore National Lab., CA )

    1988-10-01

    The CFAR (compact fusion advanced Rankine) cycle concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high- temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium. 40 refs., 8 figs., 3 tabs.

  20. Proof-of-Concept for an Advanced Sunphotometer

    NASA Astrophysics Data System (ADS)

    Brill, R.; Strawa, A. W.; Papdopoulos, P.; Le, T.

    2007-12-01

    Aerosols have a profound effect on the radiation balance of the atmosphere. Current estimates of the direct and indirect effects are -0.9 to -0.1 and -1.8 to -0.3 W m-2, respectively, but remain highly uncertain (IPCC, 2007). These uncertainties are tied to our inability to accurately estimate spatial and temporal distributions of aerosol concentrations, size, and composition. Measurements of aerosol optical depth (AOD) are needed from widely distributed locations, both over land and ocean. AOD measurements from the surface are routinely made by sunphotometers. Most notably, NASA's AERONET system makes routine measurements of AOD at many sites throughout the globe. The problem is that very few measurements are made over the ocean because of operational considerations, i.e. ships do not present a stable platform and the salt water spray is damaging to the mechanisms used by the sunphotometers to track the sun. This paper reports on the development of a sunphotometer that can obtain AOD without moving parts. Such an instrument has the potential to be small, lightweight, and rugged. Potential applications are use in extreme environments, on ships and ocean buoys, and perhaps in unmanned aerial systems (UAS). Due to its small size and light weight, the Advanced Sun Photometer can be adapted for use on extraterrestrial bodies with sensible atmospheres, such as Mars or Titan. Concept: Eliminating the need for a tracking mechanism can significantly reduce instrument weight and size while increasing system robustness. The Advanced Sunphotometer uses a compact optical system to provide a hemispherical field of view, removing the need for a sun tracking mechanism. A CCD array is placed at the base of the optical system captures and records the light. Measurements at specific wavelengths are achieved by interposing various interference filters into the light path by means of a filter wheel. The instrument measures the diffuse radiation as well as the direct sun beam. Computer

  1. Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologi

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologies Project - Preliminary Manufacturing Demonstration Articles for Ares V Payload Shroud Barrel Acreage Structure

  2. Advanced transportation system studies. Alternate propulsion subsystem concepts: Propulsion database

    NASA Technical Reports Server (NTRS)

    Levack, Daniel

    1993-01-01

    The Advanced Transportation System Studies alternate propulsion subsystem concepts propulsion database interim report is presented. The objective of the database development task is to produce a propulsion database which is easy to use and modify while also being comprehensive in the level of detail available. The database is to be available on the Macintosh computer system. The task is to extend across all three years of the contract. Consequently, a significant fraction of the effort in this first year of the task was devoted to the development of the database structure to ensure a robust base for the following years' efforts. Nonetheless, significant point design propulsion system descriptions and parametric models were also produced. Each of the two propulsion databases, parametric propulsion database and propulsion system database, are described. The descriptions include a user's guide to each code, write-ups for models used, and sample output. The parametric database has models for LOX/H2 and LOX/RP liquid engines, solid rocket boosters using three different propellants, a hybrid rocket booster, and a NERVA derived nuclear thermal rocket engine.

  3. Advanced energy conversion concept for beamed-energy propulsion

    NASA Astrophysics Data System (ADS)

    Myrabo, Leik N.

    1987-08-01

    Basic research was performed on an innovative power conversion concept for trans atmospheric, beamed energy propulsion: a new class of External Surface Impulse (ESI) thrusters. This advanced thruster principle could be used for atmospheric VTOL, high acceleration, and lateral flight (e.g., short-term cruise) propulsion of Single-Stage-To-Orbit (SSTO) beam-powered shuttlecraft of the next century. Three classes of ESI thrusters were initially examined: (1) simple thermal, (2) electrostatic, and (3) electromagnetic. Beam power wavelengths from 10 cm (microwave) to 0.3 micron (laser) were considered. The subsequent effort concentrated on the simple thermal repetitively-pulsed ESI thrusters, energized with laser power and using air as the working fluid. Laser frequencies were selected because of the relative wealth of experimental data and theoretical research on laser impulse coupling existing in the literature. The first year analytical effort has proven conclusively that such an engine can deliver high levels of thrust-to-beam-power at liftoff (e.g., at least an order of magnitude greater than beam-powered hydrogen-fueled rockets), with infinite specific impulse (decreased only, perhaps, by ablation of the thruster surface). Later along an orbital trajectory, the primary propulsion function would transition to other modes; upon leaving the atmosphere, the SSTO vehicle would continue in a pure rocket mode.

  4. Advanced transportation system studies. Alternate propulsion subsystem concepts: Propulsion database

    NASA Astrophysics Data System (ADS)

    Levack, Daniel

    1993-04-01

    The Advanced Transportation System Studies alternate propulsion subsystem concepts propulsion database interim report is presented. The objective of the database development task is to produce a propulsion database which is easy to use and modify while also being comprehensive in the level of detail available. The database is to be available on the Macintosh computer system. The task is to extend across all three years of the contract. Consequently, a significant fraction of the effort in this first year of the task was devoted to the development of the database structure to ensure a robust base for the following years' efforts. Nonetheless, significant point design propulsion system descriptions and parametric models were also produced. Each of the two propulsion databases, parametric propulsion database and propulsion system database, are described. The descriptions include a user's guide to each code, write-ups for models used, and sample output. The parametric database has models for LOX/H2 and LOX/RP liquid engines, solid rocket boosters using three different propellants, a hybrid rocket booster, and a NERVA derived nuclear thermal rocket engine.

  5. Investigations and advanced concepts on gyrotron interaction modeling and simulations

    SciTech Connect

    Avramidis, K. A.

    2015-12-15

    In gyrotron theory, the interaction between the electron beam and the high frequency electromagnetic field is commonly modeled using the slow variables approach. The slow variables are quantities that vary slowly in time in comparison to the electron cyclotron frequency. They represent the electron momentum and the high frequency field of the resonant TE modes in the gyrotron cavity. For their definition, some reference frequencies need to be introduced. These include the so-called averaging frequency, used to define the slow variable corresponding to the electron momentum, and the carrier frequencies, used to define the slow variables corresponding to the field envelopes of the modes. From the mathematical point of view, the choice of the reference frequencies is, to some extent, arbitrary. However, from the numerical point of view, there are arguments that point toward specific choices, in the sense that these choices are advantageous in terms of simulation speed and accuracy. In this paper, the typical monochromatic gyrotron operation is considered, and the numerical integration of the interaction equations is performed by the trajectory approach, since it is the fastest, and therefore it is the one that is most commonly used. The influence of the choice of the reference frequencies on the interaction simulations is studied using theoretical arguments, as well as numerical simulations. From these investigations, appropriate choices for the values of the reference frequencies are identified. In addition, novel, advanced concepts for the definitions of these frequencies are addressed, and their benefits are demonstrated numerically.

  6. Advanced 3D imaging lidar concepts for long range sensing

    NASA Astrophysics Data System (ADS)

    Gordon, K. J.; Hiskett, P. A.; Lamb, R. A.

    2014-06-01

    Recent developments in 3D imaging lidar are presented. Long range 3D imaging using photon counting is now a possibility, offering a low-cost approach to integrated remote sensing with step changing advantages in size, weight and power compared to conventional analogue active imaging technology. We report results using a Geiger-mode array for time-of-flight, single photon counting lidar for depth profiling and determination of the shape and size of tree canopies and distributed surface reflections at a range of 9km, with 4μJ pulses with a frame rate of 100kHz using a low-cost fibre laser operating at a wavelength of λ=1.5 μm. The range resolution is less than 4cm providing very high depth resolution for target identification. This specification opens up several additional functionalities for advanced lidar, for example: absolute rangefinding and depth profiling for long range identification, optical communications, turbulence sensing and time-of-flight spectroscopy. Future concepts for 3D time-of-flight polarimetric and multispectral imaging lidar, with optical communications in a single integrated system are also proposed.

  7. A review of accelerator concepts for the Advanced Hydrotest Facility

    SciTech Connect

    Toepfer, A.J.

    1998-08-01

    The Advanced Hydrotest Facility (AHF) is a facility under consideration by the Department of Energy (DOE) for conducting explosively-driven hydrodynamic experiments. The major diagnostic tool at AHF will be a radiography accelerator having radiation output capable of penetrating very dense dynamic objects on multiple viewing axes with multiple pulses on each axis, each pulse having a time resolution capable of freezing object motion ({approx}50-ns) and achieving a spatial resolution {approx}1 mm at the object. Three accelerator technologies are being considered for AHF by the DOE national laboratories at Los Alamos (LANL), Livermore (LLNL), and Sandia (SNL). Two of these are electron accelerators that will produce intense x-ray pulses from a converter target yielding a dose {approx}1,000--2,000 Rads {at} 1 meter. LLNL has proposed a 16--20 MeV, 3--6 kA linear induction accelerator (LIA) driven by FET-switched modulators driving metglas loaded cavities. SNL has proposed a 12-MeV, 40-kA Inductive Voltage Adder (IVA) accelerator based on HERMES III pulsed power technology. The third option is a 25--50-GeV proton accelerator capable of {approx}10{sup 13} protons/pulse proposed by LANL. This paper will review the current status of the three accelerator concepts for AHF.

  8. Investigations and advanced concepts on gyrotron interaction modeling and simulations

    NASA Astrophysics Data System (ADS)

    Avramidis, K. A.

    2015-12-01

    In gyrotron theory, the interaction between the electron beam and the high frequency electromagnetic field is commonly modeled using the slow variables approach. The slow variables are quantities that vary slowly in time in comparison to the electron cyclotron frequency. They represent the electron momentum and the high frequency field of the resonant TE modes in the gyrotron cavity. For their definition, some reference frequencies need to be introduced. These include the so-called averaging frequency, used to define the slow variable corresponding to the electron momentum, and the carrier frequencies, used to define the slow variables corresponding to the field envelopes of the modes. From the mathematical point of view, the choice of the reference frequencies is, to some extent, arbitrary. However, from the numerical point of view, there are arguments that point toward specific choices, in the sense that these choices are advantageous in terms of simulation speed and accuracy. In this paper, the typical monochromatic gyrotron operation is considered, and the numerical integration of the interaction equations is performed by the trajectory approach, since it is the fastest, and therefore it is the one that is most commonly used. The influence of the choice of the reference frequencies on the interaction simulations is studied using theoretical arguments, as well as numerical simulations. From these investigations, appropriate choices for the values of the reference frequencies are identified. In addition, novel, advanced concepts for the definitions of these frequencies are addressed, and their benefits are demonstrated numerically.

  9. NASA Advanced Explorations Systems: Concepts for Logistics to Living

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Howe, A. Scott; Flynn, Michael T.; Howard, Robert

    2012-01-01

    , Howard 2010]. Several of the L2L concepts that have shown the most potential in the past are based on NASA cargo transfer bags (CTBs) or their equivalents which are currently used to transfer cargo to and from the ISS. A high percentage of all logistics supplies are packaging mass and for a 6-month mission a crew of four might need over 100 CTBs. These CTBs are used for on-orbit transfer and storage but eventually becomes waste after use since down mass is very limited. The work being done in L2L also considering innovative interior habitat construction that integrate the CTBs into the walls of future habitats. The direct integration could provide multiple functions: launch packaging, stowage, radiation protection, water processing, life support augmentation, as well as structure. Reuse of these CTBs would reduce the amount of waste generated and also significantly reduce future up mass requirements for exploration missions. Also discussed here is the L2L water wall , an innovative reuse of an unfolded CTB as a passive water treatment system utilizing forward osmosis. The bags have been modified to have an inner membrane liner that allows them to purify wastewater. They may also provide a structural water-wall element that can be used to provide radiation protection and as a structural divider. Integration of the components into vehicle/habitat architecture and consideration of operations concepts and human factors will be discussed. In the future these bags could be designed to treat wastewater, concentrated brines, and solid wastes, and to dewater solid wastes and produce a bio-stabilized construction element. This paper will describe the follow-on work done in design, fabrication and demonstrations of various L2L concepts, including advanced CTBs for reuse/repurposing, internal outfitting studies and the CTB-based forward osmosis water wall.

  10. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Creech, Dennis M.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan

    2012-01-01

    The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent go-to group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA s design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer s needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces

  11. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan

    2013-01-01

    The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent "go-to" group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA's design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer's needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces

  12. Applying marketing concepts to promote health in vulnerable groups.

    PubMed

    Fontana, S A

    1991-06-01

    Public health nurses must have a valid marketing orientation. Two marketing concepts, exchange relationships and channels of distribution and their application for public health nursing practice, have relevance in this context. In spite of the complexities inherent in applying them, they can be used to promote health in at-risk populations. By incorporating these concepts in planning and delivering public health nursing services, it is hoped that the health goals of a larger number of vulnerable individuals can be achieved. PMID:1924108

  13. Academic Self-Concepts in Adolescence: Relations with Achievement and Ability Grouping in Schools

    ERIC Educational Resources Information Center

    Ireson, Judith; Hallam, Susan

    2009-01-01

    The effects of ability grouping in schools on students' self-concept were examined in a sample of 23 secondary schools with a range of structured ability groupings. Measures of general self-concept, academic self-concept, and achievement were collected from over 1600 students aged 14-15 years and again two years later. Students' academic…

  14. Prescriptive concepts for advanced nuclear materials control and accountability systems

    SciTech Connect

    Whitty, W.J.; Strittmatter, R.B.; Ford, W.; Tisinger, R.M.; Meyer, T.H.

    1987-06-01

    Networking- and distributed-processing hardware and software have the potential of greatly enhancing nuclear materials control and accountability (MC and A) systems, from both safeguards and process operations perspectives, while allowing timely integrated safeguards activities and enhanced computer security at reasonable cost. A hierarchical distributed system is proposed consisting of groups of terminal and instruments in plant production and support areas connected to microprocessors that are connected to either larger microprocessors or minicomputers. These micros and/or minis are connected to a main machine, which might be either a mainframe or a super minicomputer. Data acquisition, preliminary input data validation, and transaction processing occur at the lowest level. Transaction buffering, resource sharing, and selected data processing occur at the intermediate level. The host computer maintains overall control of the data base and provides routine safeguards and security reporting and special safeguards analyses. The research described outlines the distribution of MC and A system requirements in the hierarchical system and distributed processing applied to MC and A. Implications of integrated safeguards and computer security concepts for the distributed system design are discussed. 10 refs., 4 figs.

  15. Advanced-power-reactor design concepts and performance characteristics

    NASA Technical Reports Server (NTRS)

    Davison, H. W.; Kirchgessner, T. A.; Springborn, R. H.; Yacobucci, H. G.

    1974-01-01

    Five reactor cooling concepts which allow continued reactor operation following a single rupture of the coolant system are presented for application with the APR. These concepts incorporate convective cooling, double containment, or heat pipes to ensure operation after a coolant line rupture. Based on an evaluation of several control system concepts, a molybdenum clad, beryllium oxide sliding reflector located outside the pressure vessel is recommended.

  16. NASA's Advanced Information Systems Technology (AIST) Program: Advanced Concepts and Disruptive Technologies

    NASA Astrophysics Data System (ADS)

    Little, M. M.; Moe, K.; Komar, G.

    2014-12-01

    NASA's Earth Science Technology Office (ESTO) manages a wide range of information technology projects under the Advanced Information Systems Technology (AIST) Program. The AIST Program aims to support all phases of NASA's Earth Science program with the goal of enabling new observations and information products, increasing the accessibility and use of Earth observations, and reducing the risk and cost of satellite and ground based information systems. Recent initiatives feature computational technologies to improve information extracted from data streams or model outputs and researchers' tools for Big Data analytics. Data-centric technologies enable research communities to facilitate collaboration and increase the speed with which results are produced and published. In the future NASA anticipates more small satellites (e.g., CubeSats), mobile drones and ground-based in-situ sensors will advance the state-of-the-art regarding how scientific observations are performed, given the flexibility, cost and deployment advantages of new operations technologies. This paper reviews the success of the program and the lessons learned. Infusion of these technologies is challenging and the paper discusses the obstacles and strategies to adoption by the earth science research and application efforts. It also describes alternative perspectives for the future program direction and for realizing the value in the steps to transform observations from sensors to data, to information, and to knowledge, namely: sensor measurement concepts development; data acquisition and management; data product generation; and data exploitation for science and applications.

  17. Lacking a Formal Concept of Limit: Advanced Non-Mathematics Students' Personal Concept Definitions

    ERIC Educational Resources Information Center

    Beynon, Kenneth A.; Zollman, Alan

    2015-01-01

    This mixed-methods study examines the conceptual understanding of limit among 22 undergraduate engineering students from two different sections of the same introductory differential equations course. The participants' concepts of limit (concept images and personal concept definitions) were examined using written tasks followed by one-on-one…

  18. Advanced composites structural concepts and materials technologies for primary aircraft structures: Design/manufacturing concept assessment

    NASA Technical Reports Server (NTRS)

    Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.

    1992-01-01

    Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.

  19. Enriching Group Counseling through Integrating Yoga Concepts and Practices

    ERIC Educational Resources Information Center

    Rybak, Christopher; Deuskar, Megha

    2010-01-01

    Integrating practices from yoga with group counseling offers many creative paths of therapeutic learning. While yoga emphasizes the increased sense of connection with the self, group counseling emphasizes the increased sense of authenticity in relationship with oneself and with others. Common aims of both yoga and counseling are liberation from…

  20. Advanced design concepts in nuclear electric propulsion. [and spacecraft configurations

    NASA Technical Reports Server (NTRS)

    Peelgren, M. L.; Mondt, J. F.

    1974-01-01

    Conceptual designs of the nuclear propulsion programs are reported. Major areas of investigation were (1) design efforts on spacecraft configuration and heat rejection subsystem, (2) high-voltage thermionic reactor concepts, and (3) dual-mode spacecraft configuration study.

  1. Reference Operational Concepts for Advanced Nuclear Power Plants

    SciTech Connect

    Hugo, Jacques Victor; Farris, Ronald Keith

    2015-09-01

    This report represents the culmination of a four-year research project that was part of the Instrumentation and Control and Human Machine Interface subprogram of the DOE Advanced Reactor Technologies program.

  2. Advanced Turbine Systems Program industrial system concept development

    SciTech Connect

    Gates, S.

    1995-10-01

    The objective of Phase II of the Advanced Turbine Systems Program is to develop conceptual designs of gas fired advanced turbine systems that can be adapted for operation on coal and biomass fuels. The technical, economic, and environmental performance operating on natural gas and in a coal fueled mode is to be assessed. Detailed designs and test work relating to critical components are to be completed and a market study is to be conducted.

  3. Advances in pathogenic concepts and therapeutic agents in Rasmussen's encephalitis.

    PubMed

    Bien, Christian G; Elger, Christian E; Wiendl, Heinz

    2002-07-01

    Rasmussen's encephalitis is a rare inflammatory brain disease which occurs mainly in children and is characterised by affection of only one hemisphere. Pathogenetic concepts have considered three different, not mutually exclusive, key factors contributing to the initiating or perpetuating events in the central nervous system. These include viruses, autoimmune antibodies and autoimmune cytotoxic T lymphocytes. Based on these concepts, different therapeutic strategies have been pursued, such as antiviral agents, plasmapheresis, immuno-adsorption, immunosuppression or immunomodulation with intravenous immunoglobulins. However, due to the lack of larger studies, to date there is no established therapeutic strategy of this devastating disease. An overview of the current state of immunepathogenic concepts for Rasmussen's encephalitis is given and past and present treatment attempts are discussed, including an outline of future perspectives. An opinion on symptomatic treatment with anticonvulsive drugs is included. PMID:12084008

  4. Advanced radiator concepts utilizing honeycomb panel heat pipes (stainless steel)

    NASA Technical Reports Server (NTRS)

    Fleischman, G. L.; Tanzer, H. J.

    1985-01-01

    The feasibility of fabricating and processing moderate temperature range heat pipes in a low mass honeycomb sandwich panel configuration for highly efficient radiator fins for the NASA space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include: type of material, material and panel thicknesses, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. In addition, the overall performance of the honeycomb panel heat pipe was evaluated analytically.

  5. Advanced transportation concept for round-trip space travel

    NASA Technical Reports Server (NTRS)

    Yen, Chen-Wan L.

    1988-01-01

    A departure from the conventional concept of round-trip space travel is introduced. It is shown that a substantial reduction in the initial load required of the Shuttle or other launch vehicle can be achieved by staging the ascent orbit and leaving fuel for the return trip at each stage of the orbit. Examples of round trips from a low-inclination LEO to a high-inclination LEO and from an LEO to a GEO are used to show the merits of the new concept. Potential problem areas and research needed for the development of an efficient space transportation network are discussed.

  6. Conceptions on genetics in a group of college students.

    PubMed

    Correia, Patrícia Santana; Vitiello, Pedro; Cardoso, Maria Helena Cabral de Almeida; Horovitz, Dafne Dain Gandelman

    2013-01-01

    The purpose of this study was to investigate awareness, beliefs, and opinions on genetics in a group of Brazilian college students from several courses. The study used the focus group technique with the participation of 19 students, divided into four groups. Also, it used the isotopic reading technique to analyze the material. The results were divided in four themes: the basic knowledge of genetics, the "new genetics," including molecular biology and testing, genetic manipulation, and genetics and the media. The participants showed reasonable knowledge on the subject, obtained from various sources, including the printed press, the internet, documentaries, and fictional TV shows. Ethical issues were discussed comprehensively and the groups showed awareness on the hazards brought by genetic reductionism and the need to have some type of regulation regarding genetic manipulation and testing. It is necessary to broaden the debate about the progress in genetics because some of them will affect a significant number of people. This debate should include the lay public, which has been actively participating in decisions involving research and the use of new technologies. PMID:23114841

  7. Technological advances in perioperative monitoring: Current concepts and clinical perspectives

    PubMed Central

    Chilkoti, Geetanjali; Wadhwa, Rachna; Saxena, Ashok Kumar

    2015-01-01

    Minimal mandatory monitoring in the perioperative period recommended by Association of Anesthetists of Great Britain and Ireland and American Society of Anesthesiologists are universally acknowledged and has become an integral part of the anesthesia practice. The technologies in perioperative monitoring have advanced, and the availability and clinical applications have multiplied exponentially. Newer monitoring techniques include depth of anesthesia monitoring, goal-directed fluid therapy, transesophageal echocardiography, advanced neurological monitoring, improved alarm system and technological advancement in objective pain assessment. Various factors that need to be considered with the use of improved monitoring techniques are their validation data, patient outcome, safety profile, cost-effectiveness, awareness of the possible adverse events, knowledge of technical principle and ability of the convenient routine handling. In this review, we will discuss the new monitoring techniques in anesthesia, their advantages, deficiencies, limitations, their comparison to the conventional methods and their effect on patient outcome, if any. PMID:25788767

  8. Parachute systems technology: Fundamentals, concepts, and applications: Advanced parachute design

    SciTech Connect

    Peterson, C.W.; Johnson, D.W.

    1987-01-01

    Advances in high-performance parachute systems and the technologies needed to design them are presented in this paper. New parachute design and performance prediction codes are being developed to assist the designer in meeting parachute system performance requirements after a minimum number of flight tests. The status of advanced design codes under development at Sandia National Laboratories is summarized. An integral part of parachute performance prediction is the rational use of existing test data. The development of a data base for parachute design has been initiated to illustrate the effects of inflated diameter, geometric porosity, reefing line length, suspension line length, number of gores, and number of ribbons on parachute drag. Examples of advancements in parachute materials are presented, and recent problems with Mil-Spec broadgoods are reviewed. Finally, recent parachute systems tested at Sandia are summarized to illustrate new uses of old parachutes, new parachute configurations, and underwater recovery of payloads.

  9. Effects of Videotaped Feedback on Self-Concept of Patients in Group Psychotherapy.

    ERIC Educational Resources Information Center

    Cooker, Philip G.; Nero, Randall S.

    1987-01-01

    Examined effects of videotaped feedback on aspects of self-concept of patients in an aftercare psychotherapy group. All subjects (N=62) completed three administrations of the Tennessee Self-Concept Scale; the 32 treatment patients also viewed videotaped interactions of their group therapy. The results suggest that videotaped feedback produces…

  10. Ultra-Efficient Engine Technology (UEET), Proof of Concept Compressor, Advanced Compressor Casing T

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Ultra-Efficient Engine Technology (UEET), Proof of Concept Compressor, Advanced Compressor Casing Treatment testing; close up - throttle valve -wide open; oil and air lines plus instrumentation between collector and gearbox.

  11. Methodological Advances in the Study of Self-Concept.

    ERIC Educational Resources Information Center

    Schwartz, Terrence J.

    Critical review of previous techniques for the measurement of an individual's self-concept (SC) is a necessary prelude to the development of more adequate methodologies. This paper focuses on recent methodological innovations in the study of the self, namely, those derived from cognitive social psychology. A view of the self as a cognitive…

  12. Advanced Level Physics Students' Conceptions of Quantum Physics.

    ERIC Educational Resources Information Center

    Mashhadi, Azam

    This study addresses questions about particle physics that focus on the nature of electrons. Speculations as to whether they are more like particles or waves or like neither illustrate the difficulties with which students are confronted when trying to incorporate the concepts of quantum physics into their overall conceptual framework. Such…

  13. Report on the Lake Arrowhead workshop on advanced acceleration concepts

    SciTech Connect

    Pellegrini, C.

    1989-03-01

    We review the present status of the field of New Acceleration Concepts, as presented at the Lake Arrowhead workshop, held at the beginning of 1989. Many new and promising results have been obtained recently, and the field is actively developing. We discuss briefly some of the main results presented at the workshop. 43 refs., 2 tabs.

  14. Concept selection for advanced low-emission coal fired boiler

    SciTech Connect

    Gorrell, R.L.; Rodgers, L.W.; Farthing, G.A.

    1993-12-31

    The Babcock & Wilcox Company (B&W), under contract to the US Department of Energy (DOE) with subcontract to Physical Sciences, Inc. (PSIT), the Massachusetts Institute of Technology (MIT) and United Engineers and Constructors (UE&C) has begun development of an advanced low-emission boiler system (LEBS). The initial phase of this multi-phase program required a thorough review and assessment of potential advanced technologies and techniques for control of combustion and flue gas emissions. Results of this assessment are presented in this paper.

  15. Summary of the advanced high efficiency concepts subcontractors review meeting

    SciTech Connect

    Not Available

    1983-10-01

    Brief summaries are given of presentations on the topics of: new ideas for photovoltaic conversion; a high efficiency bulk graded band gap/pn junction solar cell structure at high concentration ratios; development of high efficiency graded band gap p+-p-n GaAlAs/GaAs solar cells; an advanced AlGaAs-GaAs high efficiency concentrator solar cell; GaAs solar cell with low surface recombination; theory of advanced high-efficiency concentrator cells; III-V high efficiency photovoltaic cells; advanced high efficiency concentrator cells; monolithic two-color/three-terminal GaAsP/GaAsSb solar cells; high-efficiency thin-film and multijunction solar cells; review of the NASA space photovoltaic program; review of the Air Force space photovoltaic program; the Air Force manufacturing program; an overview of Sandia FY84 advanced concentrator cell research; thin film gallium arsenide solar cell research; fabrication of monocrystalline GaAs solar cells utilizing sacrificial NaCl substrates; and progress toward development of high efficiency GaAs solar cells on silicon substrates. (LEW)

  16. Study of advanced fuel system concepts for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.

    1985-01-01

    An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broadened property fuels. The DC-10-30 wide-body tri-jet aircraft and the CF6-8OX engine were used as a baseline design for the study. Three advanced systems were considered and were specifically aimed at addressing freezing point, thermal stability and lubricity fuel properties. Actual DC-10-30 routes and flight profiles were simulated by computer modeling and resulted in prediction of aircraft and engine fuel system temperatures during a nominal flight and during statistical one-day-per-year cold and hot flights. Emergency conditions were also evaluated. Fuel consumption and weight and power extraction results were obtained. An economic analysis was performed for new aircraft and systems. Advanced system means for fuel tank heating included fuel recirculation loops using engine lube heat and generator heat. Environmental control system bleed air heat was used for tank heating in a water recirculation loop. The results showed that fundamentally all of the three advanced systems are feasible but vary in their degree of compatibility with broadened-property fuel.

  17. Fostering Visions for the Future: A Review of the NASA Institute for Advanced Concepts

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The NASA Institute for Advanced Concepts (NIAC) was formed in 1998 to provide an independent source of advanced aeronautical and space concepts that could dramatically impact how NASA develops and conducts its missions. Until the program's termination in August 2007, NIAC provided an independent open forum, a high-level point of entry to NASA for an external community of innovators, and an external capability for analysis and definition of advanced aeronautics and space concepts to complement the advanced concept activities conducted within NASA. Throughout its 9-year existence, NIAC inspired an atmosphere for innovation that stretched the imagination and encouraged creativity. As requested by Congress, this volume reviews the effectiveness of NIAC and makes recommendations concerning the importance of such a program to NASA and to the nation as a whole, including the proper role of NASA and the federal government in fostering scientific innovation and creativity and in developing advanced concepts for future systems. Key findings and recommendations include that in order to achieve its mission, NASA must have, and is currently lacking, a mechanism to investigate visionary, far-reaching advanced concepts. Therefore, a NIAC-like entity should be reestablished to fill this gap.

  18. Development of advanced concepts for DIR-MCFC cogeneration applications in the European Market

    SciTech Connect

    Kortbeek, P.J.; Ottervanger, R.G.; Dicks, A.L.

    1996-12-31

    Early 1996 a three year (1996 - 1998) joint European project was launched under the name {open_quote}Advanced DIR-MCFC Development{close_quote}, aiming at the development of Direct Internal Reforming (DIR) Molten Carbonate Fuel Cell (MCFC) systems for cogeneration applications for the European market. In this project participate: Brandstofcel Nederland BV (BCN), British Gas pic (BG), Gaz de France (GDF), Netherlands Energy Research foundation (ECN), Stork, Royal Schelde and Sydkraft AB. The European Fuel Cell User Group (EFCUG) supports the project as an advisory board. Whereas the US and Japanese programmes are aimed at large-scale demonstrations of the MCFC technology, this project focusses on the development of concepts and technology, required for MCFC systems that will be competative on the cogeneration market. The project partners provide the essential expertise: from end-user, system engineering, stack development up to fundamental material research.

  19. Concepts first—a small group approach to physics learning

    NASA Astrophysics Data System (ADS)

    Gautreau, Ronald; Novemsky, Lisa

    1997-03-01

    We have been using Alan Van Heuvelen's "Overview, Case Study: Physics" (OCS Physics) methodology in introductory physics courses since 1991 at New Jersey Institute of Technology (NJIT) with remarkable success. We present various comparisons showing the effectiveness of OCS instruction over traditional teaching. In particular, since the introduction of OCS physics into NJIT's summer Educational Opportunity Program (EOP), which consists of mostly minority participants, EOP students have significantly outperformed non-EOP students in their fall physics courses. Interviews with students and observations suggest that "second teaching" takes place in small groups following "first teaching" by the instructor. Second teaching is based on ideas of Vygotsky.

  20. Recent advances in approximation concepts for optimum structural design

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.; Haftka, Raphael T.

    1991-01-01

    The basic approximation concepts used in structural optimization are reviewed. Some of the most recent developments in that area since the introduction of the concept in the mid-seventies are discussed. The paper distinguishes between local, medium-range, and global approximations; it covers functions approximations and problem approximations. It shows that, although the lack of comparative data established on reference test cases prevents an accurate assessment, there have been significant improvements. The largest number of developments have been in the areas of local function approximations and use of intermediate variable and response quantities. It also appears that some new methodologies are emerging which could greatly benefit from the introduction of new computer architecture.

  1. An advanced concept that promises ecological and economic viability

    NASA Technical Reports Server (NTRS)

    Wright, B. R.; Sedgwick, T. A.; Urie, D. M.

    1976-01-01

    The actuality of supersonic commercial service being provided by Concorde is demonstrating to the world the advantages offered by supersonic travel for both business and recreation. Public acceptance will gradually and persistently stimulate interest to proceed with a second generation design that meets updated economic and ecological standards. It is estimated that this concept could operate profitably on world-wide routes with a revenue structure based upon economy fares. Airplanes will meet all present day ecological requirements regarding noise and emissions.

  2. Concept for advanced satellite communications and required technologies

    NASA Technical Reports Server (NTRS)

    Ramler, J. R.; Salzman, J. A.

    1982-01-01

    The advanced communications technology satellite (ACTS) program of NASA is aimed at the development of high risk technologies that will enable exploiting higher frequency bands and techniques for improving frequency reuse. The technologies under development include multiple beam spacecraft antennas, on-board switching and processing, RF devices and components and advanced earth stations. The program focus is on the Ka-band (30/20 GHz) as the implementing frequency since it has five times the bandwidth of either the C- or Ku-bands. However, the technology being developed is applicable to other frequency bands as well and will support a wide range of future communications systems required by NASA, other Government agencies and the commercial sector. An overview is presented of an operational 30/20 GHz satellite system that may evolve. How the system addresses service requirements is discussed, and the technology required and being developed is considered. Previously announced in STAR as N83-11210

  3. Concept for advanced satellite communications and required technologies

    NASA Technical Reports Server (NTRS)

    Ramler, J. R.; Salzman, J. A.

    1982-01-01

    The advanced communications technology satellite (ACTS) program of NASA is aimed at the development of high risk technologies that will enable exploiting higher frequency bands and techniques for improving frequency reuse. The technologies under development include multiple beam spacecraft antennas, on-board switching and processing, RF devices and components and advanced Earth stations. The program focus is on the Ka-band (30/20 GHz) as the implementing frequency since it has five times the bandwidth of either the C- or Ku-bands. However, the technology being developed is applicable to other frequency bands as well and will support a wide range of future communications systems required by NASA, other Government agencies and the commercial sector. An overview is presented of an operational 30/20 GHz satellite system that may evolve. How the system addresses service requirements is discussed, and the technology required and being developed is considered.

  4. The Effects of Using Concept Mapping for Improving Advanced Level Biology Students' Lower- and Higher-Order Cognitive Skills

    NASA Astrophysics Data System (ADS)

    Bramwell-Lalor, Sharon; Rainford, Marcia

    2014-03-01

    This paper reports on teachers' use of concept mapping as an alternative assessment strategy in advanced level biology classes and its effects on students' cognitive skills on selected biology concepts. Using a mixed methods approach, the study employed a pre-test/post-test quasi-experimental design involving 156 students and 8 teachers from intact classes. A researcher-constructed Biology Cognitive Skills Test was used to collect the quantitative data. Qualitative data were collected through interviews and students' personal documents. The data showed that the participants utilized concept mapping in various ways and they described positive experiences while being engaged in its use. The main challenge cited by teachers was the limited time available for more consistent use. The results showed that the use of concept mapping in advanced level biology can lead to learning gains that exceed those achieved in classes where mainly traditional methods are used. The students in the concept mapping experimental groups performed significantly better than their peers in the control group on both the lower-order (F(1) = 21.508; p < .001) and higher-order (F(1) = 42.842, p < .001) cognitive items of the biology test. A mean effect size of .56 was calculated representing the contribution of treatment to the students' performance on the test items.

  5. Evaluation of ADAM/1 model for advanced coal extraction concepts

    NASA Technical Reports Server (NTRS)

    Deshpande, G. K.; Gangal, M. D.

    1982-01-01

    Several existing computer programs for estimating life cycle cost of mining systems were evaluated. A commercially available program, ADAM/1 was found to be satisfactory in relation to the needs of the advanced coal extraction project. Two test cases were run to confirm the ability of the program to handle nonconventional mining equipment and procedures. The results were satisfactory. The model, therefore, is recommended to the project team for evaluation of their conceptual designs.

  6. ADVANCED DIRECT LIQUEFACTION CONCEPTS FOR PETC GENERIC UNITS

    SciTech Connect

    Adam J. Berkovich

    2001-08-01

    The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 are reported for the period April 1, 2001 to June 30 2001. This work involves the introduction into the basic two-stage liquefaction process several novel concepts, which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. This project has been modified to include an investigation into the production of value added materials from coal using low-severity liquefaction based technologies.

  7. ADVANCED DIRECT LIQUEFACTION CONCEPTS FOR PETC GENERIC UNITS

    SciTech Connect

    Adam J. Berkovich

    2001-11-01

    The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 are reported for the period July 1, 2001 to September 30 2001. This work involves the introduction into the basic two-stage liquefaction process several novel concepts, which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. This project has been modified to include an investigation into the production of value added materials from coal using low-severity liquefaction based technologies.

  8. ADVANCED DIRECT LIQUEFACTION CONCEPTS FOR PETC GENERIC UNITS

    SciTech Connect

    Adam J. Berkovich

    2000-03-01

    The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 is reported for the period April 1, 1998 to June 30, 1998. This contract is with the University of kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Researc, CONSOL, Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work involves the introduction into the basic two-stage liquefaction process several novel concepts, which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing.

  9. Advanced Direct Liquefaction Concepts for PETC Generic Units - Phase II

    SciTech Connect

    1997-02-01

    Reported here are the results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC9104O during the period October 1, 1996 to December 31, 1996. This contract is with the University of Kentucky Research Foundation which supports work with the University of Kentucky Center for Applied Energy Research, CONSOI+ Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work invoives the introduction into the basic two stage liquefaction process several novel concepts which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing.

  10. Commercial space opportunities - Advanced concepts and technology overview

    NASA Technical Reports Server (NTRS)

    Reck, Gregory M.

    1993-01-01

    The paper discusses the status of current and future commercial space opportunities. The goal is to pioneer innovative, customer-focused space concepts and technologies, leveraged through industrial, academic, and government alliance, to ensure U.S. commercial competitiveness and preeminence in space. The strategy is to develop technologies which enable new products and processes, deploy existing technology into commercial and military products and processes, and integrate military and commercial research and production activities. Technology development areas include information infrastructure, electronics design and manufacture, health care technology, environment technology, and aeronautical technologies.

  11. Advanced supersonic technology concept study: Hydrogen fueled configuration

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.

    1974-01-01

    Conceptual designs of hydrogen fueled supersonic transport configurations for the 1990 time period were developed and compared with equivalent technology Jet A-1 fueled vehicles to determine the economic and performance potential of liquid hydrogen as an alternate fuel. Parametric evaluations of supersonic cruise vehicles with varying design and transport mission characteristics established the basis for selecting a preferred configuration which was then studied in greater detail. An assessment was made of the general viability of the selected concept including an evaluation of costs and environmental considerations, i.e., exhaust emissions and sonic boom characteristics. Technology development requirements and suggested implementation schedules are presented.

  12. ADVANCED DIRECT LIQUEFACTION CONCEPTS FOR PETC GENERIC UNITS

    SciTech Connect

    Adam J. Berkovich

    2001-04-01

    The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 are reported for the period January 1, 2001 to March 31 2001. This work involves the introduction into the basic two-stage liquefaction process several novel concepts, which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. This project has been modified to include an investigation into the production of value added materials from coal using low-severity liquefaction based technologies.

  13. Advanced radiator concepts utilizing honeycomb panel heat pipes

    NASA Astrophysics Data System (ADS)

    Fleischman, G. L.; Peck, S. J.; Tanzer, H. J.

    1987-10-01

    The feasibility of fabricating and processing moderate temperature range vapor chamber type heat pipes in a low mass honeycomb panel configuration for highly efficient radiator fins for potential use on the space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include type of material, material and panel thickness, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. A thin-wall all-welded stainless steel design with methanol as the working fluid was the initial prototype unit. It was found that an aluminum panel could not be fabricated in the same manner as a stainless steel panel due to diffusion bonding and resistance welding considerations. Therefore, a formed and welded design was developed. The prototype consists of ten panels welded together into a large panel 122 by 24 by 0.15 in., with a heat rejection capability of 1000 watts and a fin efficiency of essentially 1.0.

  14. New virtual laboratories presenting advanced motion control concepts

    NASA Astrophysics Data System (ADS)

    Goubej, Martin; Krejčí, Alois; Reitinger, Jan

    2015-11-01

    The paper deals with development of software framework for rapid generation of remote virtual laboratories. Client-server architecture is chosen in order to employ real-time simulation core which is running on a dedicated server. Ordinary web browser is used as a final renderer to achieve hardware independent solution which can be run on different target platforms including laptops, tablets or mobile phones. The provided toolchain allows automatic generation of the virtual laboratory source code from the configuration file created in the open- source Inkscape graphic editor. Three virtual laboratories presenting advanced motion control algorithms have been developed showing the applicability of the proposed approach.

  15. Proof-of-concept and advancement of the CellFlux concept

    NASA Astrophysics Data System (ADS)

    Odenthal, Christian; Steinmann, Wolf-Dieter

    2016-05-01

    The CellFlux storage system is a new concept for reducing the costs of medium to high temperature thermal energy storage. Initially designed for solar thermal power plants, the concept is suitable for industrial processes and power to heat applications as well. This paper gives first results of a new pilot scale plant set up at DLR in Stuttgart as a proof of concept. Experimental results are used for the validation of a simplified model. The model is apllied to calculate pareto optimal storage configurations in terms of necessary storage mass and exergetic efficiency, suitable for two types of solar thermal power plants. Particularly for applications having larger temperature differences, high exergetic efficiencies at low costs for the storage material can be achieved.

  16. Engine Concept Study for an Advanced Single-Aisle Transport

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which mission fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. The results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  17. From bacterial genomics to metagenomics: concept, tools and recent advances.

    PubMed

    Sharma, Pooja; Kumari, Hansi; Kumar, Mukesh; Verma, Mansi; Kumari, Kirti; Malhotra, Shweta; Khurana, Jitendra; Lal, Rup

    2008-06-01

    In the last 20 years, the applications of genomics tools have completely transformed the field of microbial research. This has primarily happened due to revolution in sequencing technologies that have become available today. This review therefore, first describes the discoveries, upgradation and automation of sequencing techniques in a chronological order, followed by a brief discussion on microbial genomics. Some of the recently sequenced bacterial genomes are described to explain how complete genome data is now being used to derive interesting findings. Apart from the genomics of individual microbes, the study of unculturable microbiota from different environments is increasingly gaining importance. The second section is thus dedicated to the concept of metagenomics describing environmental DNA isolation, metagenomic library construction and screening methods to look for novel and potentially important genes, enzymes and biomolecules. It also deals with the pioneering studies in the area of metagenomics that are offering new insights into the previously unappreciated microbial world. PMID:23100712

  18. ADVANCED DIRECT LIQUEFACTION CONCEPTS FOR PETC GENERIC UNITS

    SciTech Connect

    Adam J. Berkovich

    2000-02-01

    The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 is reported for the period July 1, 1998 to September 30, 1998. This contract is with the University of kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Researc, CONSOL, Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work involves the introduction into the basic two-stage liquefaction process several novel concepts, which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. This project has been modified to include an investigation into the production of value added materials from coal using liquefaction based technologies.

  19. Advanced Turbine Systems Program industrial system concept development

    SciTech Connect

    Gates, S.

    1995-12-31

    Solar approached Phase II of ATS program with the goal of 50% thermal efficiency. An intercolled and recuperated gas turbine was identified as the ultimate system to meet this goal in a commercial gas turbine environment. With commercial input from detailed market studies and DOE`s ATS program, Solar redefined the company`s proposed ATS to fit both market and sponsor (DOE) requirements. Resulting optimized recuperated gas turbine will be developed in two sizes, 5 and 15 MWe. It will show a thermal efficiency of about 43%, a 23% improvement over current industrial gas turbines. Other ATS goals--emissions, RAMD (reliability, availability, maintainability, durability), cost of power--will be met or exceeded. During FY95, advanced development of key materials, combustion and component technologies proceeded to the point of acceptance for inclusion in ATS Phase III.

  20. Mission planning and scheduling concept for the Advanced X-ray Astrophysics Facility (AXAF)

    NASA Technical Reports Server (NTRS)

    Newhouse, M.; Guffin, O. T.

    1994-01-01

    Projected for launch in the latter part of 1998, the Advanced X-ray Astrophysics Facility (AXAF), the third satellite in the Great Observatory series, promises to dramatically open the x-ray sky as the Hubble and Compton observatories have done in their respective realms. Unlike its companions, however, AXAF will be placed in a high altitude, highly elliptical orbit (10,000 x 100,000 km), and will therefore be subject to its own unique environment, spacecraft and science instrument constraints and communication network interactions. In support of this mission, ground operations personnel have embarked on the development of the AXAF Offline System (OFLS), a body of software divided into four basic functional elements: (1) Mission Planning and Scheduling, (2) Command Management, (3) Altitude Determination and Sensor Calibration and (4) Spacecraft Support and Engineering Analysis. This paper presents an overview concept for one of these major elements, the Mission Planning and Scheduling subsystem (MPS). The derivation of this concept is described in terms of requirements driven by spacecraft and science instrument characteristics, orbital environment and ground system capabilities. The flowdown of these requirements through the systems analysis process and the definition of MPS interfaces has resulted in the modular grouping of functional subelements depicted in the design implementation approach. The rationale for this design solution is explained and capabilities for the initial prototype system are proposed from the user perspective.

  1. The Effect of Science Activities on Concept Acquisition of Age 5-6 Children Groups

    ERIC Educational Resources Information Center

    Dogru, Mustafa; Seker, Fatih

    2012-01-01

    Present research aims to determine the effect of science activities on concept development of preschool period age 5-6 children groups. Parallel to research objective, qualitative research pattern has been the selected method. Study group comprises of collectively 48 children from 5-6 age group attending to a private education institution in city…

  2. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT-GAS DESULFURIZATION TECHNOLOGY

    SciTech Connect

    A. LOPEZ ORTIZ; D.P. HARRISON; F.R. GROVES; J.D. WHITE; S. ZHANG; W.-N. HUANG; Y. ZENG

    1998-10-31

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500°C to 700°C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800°C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700°C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in

  3. A 100 MWe advanced sodium-cooled fast reactor core concept

    SciTech Connect

    Kim, T. K.; Grandy, C.; Hill, R. N.

    2012-07-01

    An Advanced sodium-cooled Fast Reactor core concept (AFR-100) was developed targeting a small electrical grid to be transportable to the plant site and operable for a long time without frequent refueling. The reactor power rating was strategically decided to be 100 MWe, and the core barrel diameter was limited to 3.0 m for transportability. The design parameters were determined by relaxing the peak fast fluence limit and bulk coolant outlet temperature to beyond irradiation experience assuming that advanced cladding and structural materials developed under US-DOE programs would be available when the AFR-100 is deployed. With a de-rated power density and U-Zr binary metallic fuel, the AFR-100 can maintain criticality for 30 years without refueling. The average discharge burnup of 101 MWd/kg is comparable to conventional design values, but the peak discharge fast fluence of {approx}6x10{sup 23} neutrons/cm{sup 2} is beyond the current irradiation experiences with HT-9 cladding. The evaluated reactivity coefficients provide sufficient negative feedbacks and the reactivity control systems provide sufficient shutdown margins. The integral reactivity parameters obtained from quasi-static reactivity balance analysis indicate that the AFR-100 meets the sufficient conditions for acceptable asymptotic core outlet temperature following postulated unprotected accidents. Additionally, the AFR-100 has sufficient thermal margins by grouping the fuel assemblies into eight orifice zones. (authors)

  4. Treatment Effectiveness of Large Group Basic Concept Instruction with Head Start Students.

    ERIC Educational Resources Information Center

    Seifert, Holly; Schwarz, Ilsa

    1991-01-01

    The study, with 57 children (ages 3-6) enrolled in 3 Head Start classes, demonstrated that short-term, large-group basic concept instruction combining direct instruction with interactive and incidental teaching techniques resulted in significantly improved scores on the Boehm Test of Basic Concepts-Revised. (Author/DB)

  5. Using a Virtual Class to Demonstrate Computer-Mediated Group Dynamics Concepts

    ERIC Educational Resources Information Center

    Franz, Timothy M.; Vicker, Lauren A.

    2010-01-01

    We report about an active learning demonstration designed to use a virtual class to present computer-mediated group communication course concepts to show that students can learn about these concepts in a virtual class. We designated 1 class period as a virtual rather than face-to-face class, when class members "attended" virtually using…

  6. "It's Insanely Useful!" Students' Use of Instructional Concepts in Group Work and Individual Writing

    ERIC Educational Resources Information Center

    Rodnes, Kari Anne

    2012-01-01

    This study investigates students' work on analyzing a literary text, a cartoon strip, with focus on their use of instructional, analytical concepts. Excerpts from a group conversation and from individually written texts are analyzed from a sociocultural, dialogical perspective. The analysis of the conversation shows how such concepts help the…

  7. Advanced concept considerations for STOL short-haul systems

    NASA Technical Reports Server (NTRS)

    Sweet, H. S.; Renshaw, J. H.

    1975-01-01

    Design, performance, and economic tradeoffs for STOL short-haul systems are presented. The analyses showed that quiet, short-field aircraft can be economically viable and provide benefits to airport congestion and to community noise relief. The objective of the studies was to compare and evaluate propulsive-lift systems and low-wing-loading aircraft provided with ride quality control and gust load alleviation, and to determine fuel consumption and cost tradeoffs, along with recommendations for development of technology, noise criteria, and airport planning. In the low density arena, the optimum aircraft sized for less than 50 passengers have active controls for ride quality and gust alleviation; turboprop propulsion offers significant cost and fuel saving with no appreciable block time penalty for the short typical stage lengths (on the order of 150 miles). In the high density arena, high bypass-ratio fan-powered aircraft, with design cruise speed of 0.7 to 0.75M and range capability to 1500 miles, are considered to be optimum. Field performance of 3000 feet or better can be achieved by the hybrid over-the-wing/internally blown flap concept with viable economics and low fuel consumption. Mechanical flap aircraft with high bypass-ratio engines are indicated to be superior for field lengths of 3500 feet or more. Technology development of propulsive lift is required, and further definition of the best fan-powered engine for low noise and low fuel consumption is needed.

  8. Advanced liquid Oxygen (LO2) propellant conditioning concept testing. 2

    NASA Technical Reports Server (NTRS)

    Hasting, J. H.; Perry, G. L. E.; Mehta, G. K.

    1996-01-01

    Extensive testing was performed on the promising L02 propellant conditioning concept of passive recirculation (no-bleed). Data from the project is being used to further anchor models in L02 conditioning behavior and broaden the data base of no-bleed and low-bleed conditioning. Data base expansion includes results from testing the limits of no-bleed and low-bleed conditioning with various configuration changes to the test facility and designed test article. Configuration changes include low velocity effects in the recirculation loop above the test article, test article internal constriction impacts, test article out-of-plane effects, impact from an actual Titan L02 pump attachment, feed duct slope effects, and up-leg booster effects. LN2 was used as the test fluid. The testing was conducted between July 1994 and January 1995 at the west test area of Marshall Space Flight Center. Data have shown that in most cases passive recirculation was demonstrated when the aforementioned limits were applied.

  9. Advanced electric propulsion system concept for electric vehicles

    NASA Technical Reports Server (NTRS)

    Raynard, A. E.; Forbes, F. E.

    1979-01-01

    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  10. Advanced Nuclear Power Concepts for Human Exploration Missions

    SciTech Connect

    Robert L. Cataldo; Lee S. Mason

    2000-06-04

    The design reference mission for the National Aeronautics and Space Administration's (NASA's) human mission to Mars supports a philosophy of living off the land in order to reduce crew risk, launch mass, and life-cycle costs associated with logistics resupply to a Mars base. Life-support materials, oxygen, water, and buffer gases, and the crew's ascent-stage propellant would not be brought from Earth but rather manufactured from the Mars atmosphere. The propellants would be made over {approx}2 yr, the time between Mars mission launch window opportunities. The production of propellants is very power intensive and depends on type, amount, and time to produce the propellants. Closed-loop life support and food production are also power intensive. With the base having several habitats, a greenhouse, and propellant production capability, total power levels reach well over 125 kW(electric). The most mass-efficient means of satisfying these requirements is through the use of nuclear power. Studies have been performed to identify a potential system concept, described in this paper, using a mobile cart to transport the power system away from the Mars lander and provide adequate separation between the reactor and crew. The studies included an assessment of reactor and power conversion technology options, selection of system and component redundancy, determination of optimum separation distance, and system performance sensitivity to some key operating parameters.

  11. Advanced composite structural concepts and material technologies for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony

    1991-01-01

    Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.

  12. The Effects of a Structured Academic Support Group on GPA and Self-Concept of Ability.

    ERIC Educational Resources Information Center

    Cooper, Stewart E.; Robinson, Debra A. G.

    1987-01-01

    A structured academic support group for 21 high ability but underachieving undergraduate students resulted in improved study and self management skills, peer support, improvements in student grade point averages, and improved self concept scores. (Author/DB)

  13. RASC-AL (Revolutionary Aerospace Systems Concepts-Academic Linkage): 2002 Advanced Concept Design Presentation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Revolutionary Aerospace Systems Concepts-Academic Linkage (RASC-AL) is a program of the Lunar and Planetary Institute (LPI) in collaboration with the Universities Space Research Association's (USRA) ICASE institute through the NASA Langley Research Center. The RASC-AL key objectives are to develop relationships between universities and NASA that lead to opportunities for future NASA research and programs, and to develop aerospace systems concepts and technology requirements to enable future NASA missions. The program seeks to look decades into the future to explore new mission capabilities and discover what's possible. NASA seeks concepts and technologies that can make it possible to go anywhere, at anytime, safely, reliably, and affordably to accomplish strategic goals for science, exploration, and commercialization. University teams were invited to submit research topics from the following themes: Human and Robotic Space Exploration, Orbital Aggregation & Space Infrastructure Systems (OASIS), Zero-Emissions Aircraft, and Remote Sensing. RASC-AL is an outgrowth of the HEDS-UP (University Partners) Program sponsored by the LPI. HEDS-UP was a program of the Lunar and Planetary Institute designed to link universities with NASA's Human Exploration and Development of Space (HEDS) enterprise. The first RASC-AL Forum was held November 5-8, 2002, at the Hilton Cocoa Beach Oceanfront Hotel in Cocoa Beach, Florida. Representatives from 10 university teams presented student research design projects at this year's Forum. Each team contributed a written report and these reports are presented.

  14. Advanced direct coal liquefaction concepts. Final report, Volume 2

    SciTech Connect

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    1994-07-01

    Integration of innovative steps into new advanced processes have the potential to reduce costs for producing liquid fuels. In this program, objective is to develop a new approach to liquefaction that generates an all distillate product slate at a reduced cost of about US$25/barrel of crude oil equivalent. A Counterflow Reactor was developed in cooperation with GfK mbH, Germany. Advantages are low hydrogen recycle rates and low feed preheating requirements. Coal/heavy oil slurry is injected into the top of the reactor while the recycle gas and make up hydrogen is introduced into the bottom; hydrogenation products are withdrawn from the top. PU study resulted in distillable oil yields up to 74 wt % on feed (dry ash free) from coprocessing feed slurries containing 40 wt % Vesta subbituminous coal and 60 wt % Cold Lake heavy vacuum tower bottoms. Technologies developed separately by CED and ARC were combined. A 1-kg/hr integrated continuous flow bench scale unit was constructed at the ARC site in Devon, Alberta, based on modifications to a unit at Nisku, Alberta (the modified unit was used in the preliminary economic evaluation).

  15. Innovative Networking Concepts Tested on the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Friedman, Daniel; Gupta, Sonjai; Zhang, Chuanguo; Ephremides, Anthony

    1996-01-01

    This paper describes a program of experiments conducted over the advanced communications technology satellite (ACTS) and the associated TI-VSAT (very small aperture terminal). The experiments were motivated by the commercial potential of low-cost receive only satellite terminals that can operate in a hybrid network environment, and by the desire to demonstrate frame relay technology over satellite networks. The first experiment tested highly adaptive methods of satellite bandwidth allocation in an integrated voice-data service environment. The second involved comparison of forward error correction (FEC) and automatic repeat request (ARQ) methods of error control for satellite communication with emphasis on the advantage that a hybrid architecture provides, especially in the case of multicasts. Finally, the third experiment demonstrated hybrid access to databases and compared the performance of internetworking protocols for interconnecting local area networks (LANs) via satellite. A custom unit termed frame relay access switch (FRACS) was developed by COMSAT Laboratories for these experiments; the preparation and conduct of these experiments involved a total of 20 people from the University of Maryland, the University of Colorado and COMSAT Laboratories, from late 1992 until 1995.

  16. Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.

    2003-01-01

    An efficient incremental iterative approach for differentiating advanced flow codes is successfully demonstrated on a two-dimensional inviscid model problem. The method employs the reverse-mode capability of the automatic differentiation software tool ADIFOR 3.0 and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straightforward, black-box reverse-mode applicaiton of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-rder aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoinct) procedures; then, a very efficient noniterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hesian matrices) of lift, wave drag, and pitching-moment coefficients are calculated with respect to geometric shape, angle of attack, and freestream Mach number.

  17. Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.

    2001-01-01

    An efficient incremental-iterative approach for differentiating advanced flow codes is successfully demonstrated on a 2D inviscid model problem. The method employs the reverse-mode capability of the automatic- differentiation software tool ADIFOR 3.0, and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straight-forward, black-box reverse- mode application of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-order aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoint) procedures; then, a very efficient non-iterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hessian matrices) of lift, wave-drag, and pitching-moment coefficients are calculated with respect to geometric- shape, angle-of-attack, and freestream Mach number

  18. Selected advanced aerodynamic and active control concepts development

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A task for the Energy Efficient Transport program conducted: (1) The design and wind tunnel development of high-aspect-ratio supercritical wings, investigating the cruise speed regime and also high-lift. (2) The preliminary design and evaluation of an aircraft combining a high-aspect-ratio supercritical wing with a winglet. (3) Active Controls: The determination of criteria, configuration, and flying qualities associated with augmented longitudinal stability of a level likely to be acceptable for the next generation transport; and the design of a practical augmentation system. The baseline against which the work was performed and evaluated was the Douglas DC-X-200 twin engine derivative of the DC-10 transport. The supercritical wing development showed that the cruise and buffet requirements could be achieved and that the wing could be designed to realize a sizable advantage over today's technology. Important advances in high lift performance were shown. The design study of an aircraft with supercritical wing and winglet suggested advantages in weight and fuel economy could be realized. The study of augmented stability, conducted with the aid of a motion base simulator, concluded that a negative static margin was acceptable for the baseline unaugmented aircraft.

  19. Composite Fan Blade Design for Advanced Engine Concepts

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Kuguoglu, Latife H.; Chamis, Christos C.

    2004-01-01

    The aerodynamic and structural viability of composite fan blades of the revolutionary Exo-Skeletal engine are assessed for an advanced subsonic mission using the NASA EST/BEST computational simulation system. The Exo-Skeletal Engine (ESE) calls for the elimination of the shafts and disks completely from the engine center and the attachment of the rotor blades in spanwise compression to a rotating casing. The fan rotor overall adiabatic efficiency obtained from aerodynamic analysis is estimated at 91.6 percent. The flow is supersonic near the blade leading edge but quickly transitions into a subsonic flow without any turbulent boundary layer separation on the blade. The structural evaluation of the composite fan blade indicates that the blade would buckle at a rotor speed that is 3.5 times the design speed of 2000 rpm. The progressive damage analysis of the composite fan blade shows that ply damage is initiated at a speed of 4870 rpm while blade fracture takes place at 7640 rpm. This paper describes and discusses the results for the composite blade that are obtained from aerodynamic, displacement, stress, buckling, modal, and progressive damage analyses. It will be demonstrated that a computational simulation capability is readily available to evaluate new and revolutionary technology such as the ESE.

  20. Use of Protecting Groups in Carbohydrate Chemistry: An Advanced Organic Synthesis Experiment

    NASA Astrophysics Data System (ADS)

    Cunha, Anna C.; Pereira, Leticia O. R.; de Souza, Maria Cecília B. V.; Ferreira, Vitor F.

    1999-01-01

    A simple and inexpensive three-step reaction sequence for advanced experimental organic chemistry using D-glucosamine hydrochloride as starting material for the synthesis of 2-amino-2-deoxy-1,3,4,6-tetra-O-acetyl-b-D-glucopyranose hydrochloride is described. D-Glucosamine hydrochloride is a carbohydrate derivative isolated from crab shells. It is inexpensive and readily available from most chemical companies. This reaction sequence is appropriate for teaching undergraduate students the correct use of protecting groups. This is a major concept in organic synthesis and one of the determinant factors in the successful realization of multiple-step synthetic projects. The aim of the experiment is to protect the hydroxyl groups of D-glucosamine leaving its amino group as hydrochloride salt. The experiment deals only with protection and deprotection reactions. All products are crystalline substances. The amino group of d-glucosamine hydrochloride is protected by a condensation reaction with p-methoxybenzaldehyde to produce the Schiff's base as a mixture of a- and b-anomers. The second step involves the protection of all hydroxyl groups by esterification reaction using acetic anhydride, forming the imino-tetraacetate derivative as the b-anomer. The stereospecificity of this reaction at the anomeric center is due to the voluminous imino group at C-2. Removal of the amino protection group of this derivative is the final step, which can be accomplished by a selective acid hydrolysis affording the desired peracylated D-glucosamine hydrochloride.

  1. Atmospheric fluidized bed combustion advanced concept system. Final report

    SciTech Connect

    Not Available

    1992-05-01

    DONLEE Technologies Inc. is developing with support of the US Department of Energy an advanced circulating fluidized bed technology known as the Vortex{trademark} Fluidized Bed Combustor (VFBC). The unique feature of the VFBC is the injection of a significant portion of the combustion air into the cyclone. Since as much as one-half of the total combustion air is injected into the cyclone, the cross-sectional area of the circulating fluidized bed is considerably smaller than typical circulating fluidized beds. The technology is being developed for two applications: Industrial-scale boilers ranging from 20,000 to 100,000 pounds per hour steam generating capacity; and two-stage combustion in which a substoichiometric Vortex Fluidized Bed Combustor (2VFBC) or precombustor is used to generate a combustible gas for use primarily in boiler retrofit applications. This Level II analysis of these two applications indicates that both have merit. An industrial-scale VFBC boiler (60,000 lb/hr of steam) is projected to be economically attractive with coal prices as high as $40 per ton and gas prices between $4 and $5 per thousand cubic feet. The payback time is between 3 and 4 years. The 2VFBC system was evaluated at three capacities of application: 20,000; 60,000 and 100,000 lb/hr of steam. The payback times for these three capacities are 4.5, 2.1 and 1.55 years, respectively. The 2VFBC has potential applications for retrofit of existing pulverized coal-fired boilers or as a new large (utility) boiler. Pressurized operation of the 2VFBC has considerable potential for combined cycle power generation applications. Experimental development of both applications is presented here to demonstrate the potential of these two technologies.

  2. Advanced Direct Liquefaction Concepts for PETC Generic Units - Phase II

    SciTech Connect

    1997-12-01

    The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 are reported for the period July 1, 1997 to September 30, 1997. This contract is with the University of Kentucky Research Foundation which supports work with the University of Kentucky Center for Applied Energy Research, CONSOL, Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work involves the introduction into the basic two stage liquefaction process several novel concepts which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. Results are reported from experiments in which various methods were tested to activate dispersed Mo precursors. Several oxothiomolybdates precursors having S/Mo ratios from two to six were prepared. Another having a S/Mo ratio of eleven was also prepared that contained an excess of sulfur. In the catalyst screening test, none of these precursors exhibited an activity enhancement that might suggest that adding sulfur into the structure of the Mo precursors would be beneficial to the process. In another series of experiments, AHM impregnated coal slurried in the reaction mixture was pretreated withH S/H under pressure and successively heated for 30 min at 120, 250 2 2 and 360 C. THF conversions in the catalyst screening test were not affected while resid conversions o increased such that pretreated coals impregnated with 100 ppm Mo gave conversions equivalent to untreated coals impregnated with 300 ppm fresh Mo. Cobalt, nickel and potassium phosphomolybdates were prepared and tested as bimetallic precursors. The thermal stability of these compounds was evaluated in TG/MS to determine whether the presence of the added metal would stabilize the Keggin structure at reaction temperature. Coals impregnated with these salts showed the Ni and Co salts gave the same THF conversion as PMA while the Ni salt gave higher

  3. Concept of advanced spent fuel reprocessing based on ion exchange

    SciTech Connect

    Suzuki, Tatsuya; Takahashi, Kazuyuki; Nogami, Masanobu; Nomura, Masao; Fujii, Yasuhiko; Ozawa, Masaki |; Koyama, Shinichi; Mimura, Hitosi; Fujita, Reiko

    2007-07-01

    Reprocessing based on ion exchange separation is proposed as a safe, proliferation-resistant technology. Tertiary pyridine resin was developed for ion exchange reprocessing. Working medium of the separation system is not nitric acid but hydrochloric acid aqueous solution. The system does not involve strong oxidizing reagent, such as nitric acid but involve chloride ions which works as the week neutron absorbers. The system can be operated at ambient temperatures and pressure. Thus the HCl-ion-exchange reprocessing is regarded as an inherently safe technology. Another advantage of HCl ion-exchange reprocessing is the proliferation-resistant nature. Both U(VI) and Pu(IV) ions are adsorbed in the pyridine type anion exchange resin at relatively high HCl concentration of 6 M. At this condition, the adsorption distribution coefficient of Pu(IV) is smaller than that of U(VI). When uranium is eluted from the resin in the column, plutonium is simultaneously eluted from the column; Pu is recovered with uranium in the front part of uranium adsorption band. Pu(IV) can not be left in the resin after elution of uranium. The use of HCl in the ion-exchange reprocessing causes the problem of the plant materials. Sophisticated material technology is necessary to realize the ion exchange reprocessing using HCl. The technology is so sophisticated that only highly developed countries can hold the technology, thus the technology holding countries will be limited. The plant, therefore, cannot be built under hidden state. In addition, another merit of the process would be the simplicity in operation. One phase, i.e., ion exchange resin is immobile, and the aqueous solution is the only mobile phase. Plant operation is made by the control of one aqueous solution phase. The plant simplicity would ease the international safeguard inspection efforts to be applicable to this kind of reprocessing plant. The present work shows the basic concept of ion exchange reprocessing using HCl medium

  4. Development and testing of advanced cryogenic thermal switch concepts

    NASA Astrophysics Data System (ADS)

    Marland, B.; Bugby, D.; Stouffer, C.

    2000-01-01

    This paper describes the development and testing of two advanced cryogenic thermal switch (CTSW) options for use in long-life cryogenic space systems. The principal application for these two CTSW options in such systems is in implementing cryocooler redundancy with a minimum parasitic heating penalty. The two CTSW configurations covered in the paper are a hydrogen gas-gap (H2-GG) design, flown on STS-95 in October 1998 as part of the CRYOTSU Hitchhiker flight experiment, and a differential thermal expansion (DTE) design. Both options are constructed primarily of beryllium for CTE compatibility with beryllium cryogenic components. The H2-GG design utilizes a flat 2-mil gap between two cylindrical beryllium halves that are supported by a thin-walled titanium tube. A highly convoluted stainless steel bellows seals the unit. The H2-GG CTSW is nominally ``off'' (evacuated) until actuated ``on'' by heating a metal hydride getter, which evolves hydrogen and provides thermal conductance across the gap. The H2-GG design has demonstrated an ``on'' conductance of 1.0 W/K, an ``off'' resistance of 1000-1500 K/W and a range of operation from 15K-300K. The DTE design, which has just three parts, is very similar to the H2-GG design except that a stainless steel tube replaces the titanium tube and the bellows and getter are no longer needed. The DTE CSTW is actuated ``on'' (both sides cold) by the higher CTE of stainless steel compared to beryllium and actuated ``off'' by temporarily applying power to a small heater on the stainless steel tube to expand the tube enough to open the gap. After the smaller of the two beryllium parts warms sufficiently, the heater is no longer needed and the DTE CTSW remains ``off'' (one side cold, one side warm). The DTE design has demonstrated the potential for an ``on'' conductance greater than 1.0 W/K, an ``off'' resistance of 1400 K/W and a range of operation from less than 4K to 300K. This paper describes the design of each CTSW option and the

  5. Advanced materials and concepts for energy storage devices

    NASA Astrophysics Data System (ADS)

    Teng, Shiang Jen

    Over the last decade, technological progress and advances in the miniaturization of electronic devices have increased demands for light-weight, high-efficiency, and carbon-free energy storage devices. These energy storage devices are expected to play important roles in automobiles, the military, power plants, and consumer electronics. Two main types of electrical energy storage systems studied in this research are Li ion batteries and supercapacitors. Several promising solid state electrolytes and supercapacitor electrode materials are investigated in this research. The first section of this dissertation is focused on the novel results on pulsed laser annealing of Li7La3Zr2O12 (LLZO). LLZO powders with a tetragonal structure were prepared by a sol-gel technique, then a pulsed laser annealing process was employed to convert the tetragonal powders to cubic LLZO without any loss of lithium. The second section of the dissertation reports on how Li5La 3Nb2O12 (LLNO) was successfully synthesized via a novel molten salt synthesis (MSS) method at the relatively low temperature of 900°C. The low sintering temperature prevented the loss of lithium that commonly occurs during synthesis using conventional solid state or wet chemical reactions. The second type of energy storage device studied is supercapacitors. Currently, research on supercapacitors is focused on increasing their energy densities and lowering their overall production costs by finding suitable electrode materials. The third section of this dissertation details how carbonized woods electrodes were used as supercapacitor electrode materials. A high energy density of 45.6 Wh/kg and a high power density of 2000 W/kg were obtained from the supercapacitor made from carbonized wood electrodes. The high performance of the supercapacitor was discovered to originate from the hierarchical porous structures of the carbonized wood. Finally, the fourth section of this dissertation is on the electrochemical effects of

  6. ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE

    SciTech Connect

    1998-09-01

    Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered

  7. Earth's Critical Zone and hydropedology: concepts, characteristics, and advances

    NASA Astrophysics Data System (ADS)

    Lin, H. S.

    2009-04-01

    The Critical Zone (CZ) is a holistic framework for integrated studies of water with soil, rock, air, and biotic resources in terrestrial environments. This is consistent with the recognition of water as a unifying theme for research on complex environmental systems. The CZ ranges from the top of the vegetation down to the bottom of the aquifer, with a highly variable thickness (from <0.001 to >10 km). The pedosphere is the foundation of the CZ, which represents a geomembrance across which water and solutes, as well as energy, gases, solids, and organisms are actively exchanged with the atmosphere, biosphere, hydrosphere, and lithosphere to create a life-sustaining environment. Hydropedology - the science of the behaviour and distribution of soil-water interactions in contact with mineral and biological materials in the CZ - is an important contributor to CZ research. This article reviews and discusses the basic ideas and fundamental features of the CZ and hydropedology, and suggests ways for their advances. An "outward" growth model, instead of an "inward" contraction, is suggested for propelling soil science forward. The CZ is the right platform for synergistic collaborations across disciplines. The reconciliation of the geological (or "big") cycle and the biological (or "small") cycle that are orders of magnitude different in space and time is a key to understanding and predicting complex CZ processes. Because of the layered nature of the CZ and the general trend of increasing density with depth, response and feedback to climate change take longer from the above-ground zone down to the soil zone and further to the groundwater zone. Interfaces between layers and cycles are critical controls of the landscape-soil-water-ecosystem dynamics, which present fertile grounds for interdisciplinary research. Ubiquitous heterogeneity in the CZ can be addressed by environmental gradients and landscape patterns, where hierarchical structures control the landscape complex of

  8. Proceedings of the Workshop on Advanced Network and Technology Concepts for Mobile, Micro, and Personal Communications

    NASA Technical Reports Server (NTRS)

    Paul, Lori (Editor)

    1991-01-01

    The Workshop on Advanced Network and Technology Concepts for Mobile, Micro, and Personal Communications was held at NASA's JPL Laboratory on 30-31 May 1991. It provided a forum for reviewing the development of advanced network and technology concepts for turn-of-the-century telecommunications. The workshop was organized into three main categories: (1) Satellite-Based Networks (L-band, C-band, Ku-band, and Ka-band); (2) Terrestrial-Based Networks (cellular, CT2, PCN, GSM, and other networks); and (3) Hybrid Satellite/Terrestrial Networks. The proceedings contain presentation papers from each of the above categories.

  9. An advanced bioprocessing concept for the conversion of wastepaper to ethanol

    SciTech Connect

    Scott, C.D.; Davison, B.H.; Scott, T.C.; Woodward, J.; Dees, C.; Rothrock, D.S.

    1993-06-01

    Wastepaper is a plentiful and low-cost lignocellulosic feed material that may represent the most direct way to penetrate the market with an advanced bioprocessing system. Innovative bioprocessing concepts integrated into such a system for the production of ethanol should be economically viable. Several of the proposed processing advances for such a system have only been studied on a laboratory scale, so a more thorough process development and scale-up effort will be required.

  10. Organization of the 16th Advanced Accelerator Concepts (AAC) Workshop by Stanford University

    SciTech Connect

    Huang, Zhirong; Hogan, Mark

    2015-09-30

    Essentially all we know today and will learn in the future about the fundamental nature of matter is derived from probing it with directed beams of particles such as electrons, protons, neutrons, heavy ions, and photons. The resulting ability to “see” the building blocks of matter has had an immense impact on society and our standard of living. Over the last century, particle accelerators have changed the way we look at nature and the universe we live in and have become an integral part of the Nation’s technical infrastructure. Today, particle accelerators are essential tools of modern science and technology. The cost and capabilities of accelerators would be greatly enhanced by breakthroughs in acceleration methods and technology. For the last 32 years, the Advanced Accelerator Concepts (AAC) Workshop has acted as the focal point for discussion and development of the most promising acceleration physics and technology. It is a particularly effective forum where the discussion is leveraged and promoted by the unique and demanding feature of the AAC Workshop: the working group structure, in which participants are asked to consider their contributions in terms of even larger problems to be solved. The 16th Advanced Accelerator Concepts (AAC2014) Workshop was organized by Stanford University from July 13 - 18, 2014 at the Dolce Hays Mansion in San Jose, California. The conference had a record 282 attendees including 62 students. Attendees came from 11 countries representing 66 different institutions. The workshop format consisted of plenary sessions in the morning with topical leaders from around the world presenting the latest breakthroughs to the entire workshop. In the late morning and afternoons attendees broke out into eight different working groups for more detailed presentations and discussions that were summarized on the final day of the workshop. In addition, there were student tutorial presentations on two afternoons to provide in depth education and

  11. The Effects of Within Class Reading Grouping on the Self-Concept of Third Grade Children.

    ERIC Educational Resources Information Center

    Wonsiewicz, Ann Elizabeth

    The relationship between within-class reading grouping and self-concept was investigated in a sample of 257 third-grade children in 12 classes that employed within-class grouping. Pupils were tested at the beginning and end of the school year, using the Piers-Harris Test, a semantic differential, and an inventory containing four items about…

  12. Student Perceptions and Use of an Assessment Rubric for a Group Concept Map in Physiology

    ERIC Educational Resources Information Center

    Moni, Roger W.; Moni, Karen B.

    2008-01-01

    We previously reported how the opinions of second-year dentistry students and faculty members can be used to construct an assessment rubric to grade group-based concept maps in physiology (14). This article describes the second phase of this study of the subsequent year's cohort. A case study approach was used to investigate how groups of students…

  13. Development of a metal-clad advanced composite shear web design concept

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.

    1974-01-01

    An advanced composite web concept was developed for potential application to the Space Shuttle Orbiter main engine thrust structure. The program consisted of design synthesis, analysis, detail design, element testing, and large scale component testing. A concept was sought that offered significant weight saving by the use of Boron/Epoxy (B/E) reinforced titanium plate structure. The desired concept was one that was practical and that utilized metal to efficiently improve structural reliability. The resulting development of a unique titanium-clad B/E shear web design concept is described. Three large scale components were fabricated and tested to demonstrate the performance of the concept: a titanium-clad plus or minus 45 deg B/E web laminate stiffened with vertical B/E reinforced aluminum stiffeners.

  14. NOVEL CONCEPTS, METHODS AND ADVANCED TECHNOLOGY IN PARTICULATE/GAS SEPARATION

    EPA Science Inventory

    This paper discusses presentations made during a symposium on novel concepts, methods, and advanced technology in particulate/gas separation. The symposium, held at the University of Notre Dame and sponsored by the National Science Foundation and the Environmental Protection Agen...

  15. An Exploration of Learners' Conceptions of Language, Culture, and Learning in Advanced-Level Spanish Courses

    ERIC Educational Resources Information Center

    Drewelow, Isabelle; Mitchell, Claire

    2015-01-01

    This article reports on an exploratory study, which examines learners' rating of culture in relation to other concepts in advanced Spanish courses and their justification of the ratings attributed. Open-ended responses, elicited from a questionnaire completed by 179 respondents, were analysed line by line using an interpretive approach. Data…

  16. The Effect of Background Experience and an Advance Organizer on the Attainment of Certain Science Concepts.

    ERIC Educational Resources Information Center

    McAdaragh, Mary Kathleen

    This study examined the effects of an advance organizer and background experience in science on the attainment of science concepts. Ninth-grade earth science students (N=90) were given the Dubbins Earth Science Test (DEST) and a Science Background Experience Inventory (SBEI) developed by the author. They were then placed into high, medium, and low…

  17. Recognizing and Managing Complexity: Teaching Advanced Programming Concepts and Techniques Using the Zebra Puzzle

    ERIC Educational Resources Information Center

    Crabtree, John; Zhang, Xihui

    2015-01-01

    Teaching advanced programming can be a challenge, especially when the students are pursuing different majors with diverse analytical and problem-solving capabilities. The purpose of this paper is to explore the efficacy of using a particular problem as a vehicle for imparting a broad set of programming concepts and problem-solving techniques. We…

  18. LOW NOX COMBUSTION CONCEPTS FOR ADVANCED POWER GENERATION SYSTEMS FIRING LOW-BTU GAS

    EPA Science Inventory

    The report gives results of an analysis of several advanced power generating concepts firing low-Btu gasified coal. A combined gas-turbine/steam-cycle power plant with integrated gasifier was the most promising from fuel utilization and economic viewpoints. Two representative com...

  19. Teaching Advanced Concepts in Computer Networks: VNUML-UM Virtualization Tool

    ERIC Educational Resources Information Center

    Ruiz-Martinez, A.; Pereniguez-Garcia, F.; Marin-Lopez, R.; Ruiz-Martinez, P. M.; Skarmeta-Gomez, A. F.

    2013-01-01

    In the teaching of computer networks the main problem that arises is the high price and limited number of network devices the students can work with in the laboratories. Nowadays, with virtualization we can overcome this limitation. In this paper, we present a methodology that allows students to learn advanced computer network concepts through…

  20. Advanced Monobore Concept, Development of CFEX Self-Expanding Tubular Technology

    SciTech Connect

    Jeff Spray

    2007-09-30

    The Advanced Monobore Concept--CFEX{copyright} Self-Expanding Tubular Technology Development was a successfully executed fundamental research through field demonstration project. This final report is presented as a progression, according to basic technology development steps. For this project, the research and development steps used were: concept development, engineering analysis, manufacturing, testing, demonstration, and technology transfer. The CFEX{copyright} Technology Development--Advanced Monobore Concept Project successfully completed all of the steps for technology development, covering fundamental research, conceptual development, engineering design, advanced-level prototype construction, mechanical testing, and downhole demonstration. Within an approximately two year period, a partially defined, broad concept was evolved into a substantial new technological area for drilling and production engineering applicable a variety of extractive industries--which was also successfully demonstrated in a test well. The demonstration achievement included an actual mono-diameter placement of two self-expanding tubulars. The fundamental result is that an economical and technically proficient means of casing any size of drilling or production well or borehole is indicated as feasible based on the results of the project. Highlighted major accomplishments during the project's Concept, Engineering, Manufacturing, Demonstration, and Technology Transfer phases, are given.

  1. The Use of Visual Advance Organizers for Learning Earth Science Concepts.

    ERIC Educational Resources Information Center

    Weisberg, Joseph S.

    This study was designed to determine whether advance organizers in the form of visual aids might serve the same function as Ausubel's verbal advance organizers. The basic design of the study consisted of a 4 X 3 X 2 ANOVA factorial design. Ninety-six eighth-grade students were involved in the study. One group was exposed to a physiographic diagram…

  2. The Influence of Group Work Discussion on Scores of the Force Concept Inventory in Lao PDR

    NASA Astrophysics Data System (ADS)

    Luangrath, Phimpho; Pettersson, Sune

    2010-07-01

    In this study, we investigated if freshman student's participation in small group discussions in the tutorial sessions would influence their score of the Lao version of the Force Concept Inventory test (LFCI). We used the LFCI version to test 188 students" understanding of mechanics concepts before and after they studied mechanics at university. In three classes the students used group discussions when they solved the end-of-chapter questions in the textbook during tutorials and they also used group discussions to answer the LFCI. We video recorded three groups when they solved end-of-chapter questions. In two classes the students both solved the problems and answered the LFCI individually. A questionnaire about advantages and disadvantages of cooperative group and individual problem solving were handed out to the students. The questionnaire was supplemented by interviews with four students and three groups. We found that almost all students would like to work with group discussions; only 3% of them were negative. Students that worked with group discussions obtained an average score of 26% correct answers to the LFCI which was slightly higher than the average score of 23% for students that worked individually. The improvement from the pre- to the post-test in average score was 7 percentage points for classes with group discussions and 6 percentage points for classes with individual problem solving. It is not possible to claim that one of these ways of study will result in a larger improvement in the LFCI-score. Apparently, the group discussions did not help the students to improve their theoretical understanding of mechanics concepts as it is tested by the LFCI. However, it was observed in the video analysis that group discussions helped students to better understand mechanics concepts in the context of solving the end-of-chapter questions in the textbook. This observation was also supported by the students' answers to the questionnaire and the interview.

  3. Advanced Spacesuit Portable Life Support System Packaging Concept Mock-Up Design & Development

    NASA Technical Reports Server (NTRS)

    O''Connell, Mary K.; Slade, Howard G.; Stinson, Richard G.

    1998-01-01

    A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.

  4. A critical appraisal of existing concepts for the grouping of nanomaterials.

    PubMed

    Arts, Josje H E; Hadi, Mackenzie; Keene, Athena M; Kreiling, Reinhard; Lyon, Delina; Maier, Monika; Michel, Karin; Petry, Thomas; Sauer, Ursula G; Warheit, David; Wiench, Karin; Landsiedel, Robert

    2014-11-01

    The grouping of substances serves to streamline testing for regulatory purposes. General grouping approaches for chemicals have been implemented in, e.g., the EU chemicals regulation. While specific regulatory frameworks for the grouping of nanomaterials are unavailable, this topic is addressed in different publications, and preliminary guidance is provided in the context of substance-related legislation or the occupational setting. The European Centre for Ecotoxicology and Toxicology of Chemicals Task Force on the Grouping of Nanomaterials reviewed available concepts for the grouping of nanomaterials for human health risk assessment. In their broad conceptual design, the evaluated approaches are consistent or complement each other. All go beyond the determination of mere structure-activity relationships and are founded on different aspects of the nanomaterial life cycle. These include the NM's material properties and biophysical interactions, specific types of use and exposure, uptake and kinetics, and possible early and apical biological effects. None of the evaluated grouping concepts fully take into account all of these aspects. Subsequent work of the Task Force will aim at combining the available concepts into a comprehensive 'multiple perspective' framework for the grouping of nanomaterials that will address all of the mentioned aspects of their life cycles. PMID:25108058

  5. Learning Through Doing: Teaching Advanced Physics Concepts Through Freshmen Research Immersion

    NASA Astrophysics Data System (ADS)

    Wahila, Matthew; Piper, Louis; Amey, Jennifer; Jones, Wayne; Fegley, Megan; Stamp, Nancy

    Often undergraduates have difficulty grasping advanced concepts in physics due to the seemingly abstract and foreign nature of the time and length scales involved. The ``Smart Energy'' Freshmen Research Immersion (FRI) program at Binghamton University was created as a way to address this issue and, in turn, improve undergraduate performance and retention in physics and chemistry. Using real-world research problems as a wider context to frame their understanding, we have developed a course sequence providing a more intuitive and comprehensive understanding of core physics and chemistry concepts over the course of the program. Advanced condensed matter topics, such as optical band gaps, crystal and electronic structure, and electron/hole conduction are introduced to students through hands-on, authentic research activities incorporating materials for real-world device applications. I will discuss how employing p-n junctions as a model device can allow for a natural and intuitive progression from basic to advanced physics and chemistry concepts. This approach illustrates how shifting exotic concepts into a more relatable form through the use of analogy is important for fostering a more intuitive understanding of physical phenomena.

  6. Advanced Radioisotope Power System Enabled Titan Rover Concept with Inflatable Wheels

    NASA Astrophysics Data System (ADS)

    Balint, Tibor S.; Schriener, Timothy M.; Shirley, James H.

    2006-01-01

    The Decadal Survey identified Titan as one of the top priority science destinations in the large moons category, while NASA's proposed Design Reference Mission Set ranked a Titan in-situ explorer second, after a recommended Europa Geophysical Explorer mission. This paper discusses a Titan rover concept, enabled by a single advanced Radioisotope Power System that could provide about 110 We (BOL). The concept targets the smaller Flagship or potentially the New Frontiers mission class. This MSL class rover would traverse on four 1.5 m diameter inflatable wheels during its 3 years mission duration and would use as much design and flight heritage as possible to reduce mission cost. Direct to Earth communication would remove the need for a relay orbiter. Details on the strawman instrument payload, and rover subsystems are given for this science driven mission concept. In addition, power system trades between Advanced RTG, TPV, and Advanced-Stirling and Brayton RPSs are outlined. While many possible approaches exist for Titan in-situ exploration, the Titan rover concept presented here could provide a scientifically interesting and programmatically affordable solution.

  7. A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts

    SciTech Connect

    Jacques V Hugo; David I Gertman; Jeffrey C Joe

    2014-08-01

    This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operating experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.

  8. Advanced EVA Capabilities: A Study for NASA's Revolutionary Aerospace Systems Concept Program

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2004-01-01

    This report documents the results of a study carried out as part of NASA s Revolutionary Aerospace Systems Concepts Program examining the future technology needs of extravehicular activities (EVAs). The intent of this study is to produce a comprehensive report that identifies various design concepts for human-related advanced EVA systems necessary to achieve the goals of supporting future space exploration and development customers in free space and on planetary surfaces for space missions in the post-2020 timeframe. The design concepts studied and evaluated are not limited to anthropomorphic space suits, but include a wide range of human-enhancing EVA technologies as well as consideration of coordination and integration with advanced robotics. The goal of the study effort is to establish a baseline technology "road map" that identifies and describes an investment and technical development strategy, including recommendations that will lead to future enhanced synergistic human/robot EVA operations. The eventual use of this study effort is to focus evolving performance capabilities of various EVA system elements toward the goal of providing high performance human operational capabilities for a multitude of future space applications and destinations. The data collected for this study indicate a rich and diverse history of systems that have been developed to perform a variety of EVA tasks, indicating what is possible. However, the data gathered for this study also indicate a paucity of new concepts and technologies for advanced EVA missions - at least any that researchers are willing to discuss in this type of forum.

  9. Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm

    NASA Technical Reports Server (NTRS)

    Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.

    2013-01-01

    This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.

  10. An ABC status report. [Advancing Blade Concept for XH-59A rotors

    NASA Technical Reports Server (NTRS)

    Linden, A. W.; Ruddell, A. J.

    1981-01-01

    The Advancing Blade Concept (ABC) uses two rigid counterrotating rotors in a coaxial arrangement to provide advancing blades on both sides of the aircraft. This makes use of the high dynamic pressure on the advancing side of the rotors at high forward speed, virtually ignoring the low dynamic pressure on the retreating side, while still keeping the rotor system in roll trim. Theoretically such a rotor system will maintain its lift potential as speed increases. The XH-59A was designed to investigate this theory. A description is provided of the flight test program from May, 1980 to January, 1981. A summary is presented of the knowledge gained throughout the entire program, and current pitfalls are reviewed. It is concluded that the ABC has been verified, with the XH-59A envelope of blade lift coefficient as a function of advance ratio greatly exceeding that of conventional helicopter rotor systems.

  11. Quality Nursing Care for Hospitalized Patients with Advanced Illness: Concept Development

    PubMed Central

    Izumi, Shigeko; Baggs, Judith G.; Knafl, Kathleen A.

    2011-01-01

    The quality of nursing care as perceived by hospitalized patients with advanced illness has not been examined. A concept of quality nursing care for this population was developed by integrating the literature on constructs defining quality nursing care with empirical findings from interviews of 16 patients with advanced illness. Quality nursing care was characterized as competence and personal caring supported by professionalism and delivered with an appropriate demeanor. Although the attributes of competence, caring, professionalism, and demeanor were identified as common components of quality care across various patient populations, the caring domain increased in importance when patients with advanced illness perceived themselves as vulnerable. Assessment of quality nursing care for patients with advanced illness needs to include measures of patient perceptions of vulnerability. PMID:20572095

  12. Mission Concepts Enabled by Solar Electric Propulsion and Advanced Modular Power Systems

    NASA Astrophysics Data System (ADS)

    Klaus, Kurt K.; Elsperman, M. S.; Rogers, F.

    2013-10-01

    Introduction: Over the last several years we have introduced a number of planetary mission concepts enabled by Solar Electric Propulsion and Advanced Modular Power systems. The Boeing 702 SP: Using a common spacecraft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. Hosted payloads allow launch and operations costs to be shared. Advanced Modular Power System (AMPS): The 702 SP for deep space is designed to be able to use the Advanced Modular Power System (AMPS) solar array, producing multi Kw power levels with significantly lower system mass than current solar power system technologies. Mission Concepts: Outer Planets. 1) Europa Explorer - Our studies demonstrate that New Frontiers-class science missions to the Jupiter and Saturn systems are possible with commercial solar powered spacecraft. 2) Trojan Tour -The mission objective is 1143 Odysseus, consistent with the Decadal Survey REP (Radioisotope Electric Propulsion) mission objective. Small Body. 1) NEO Precursor Mission - NEO missions benefit greatly by using high ISP (Specific Impulse) Solar Electric Propulsion (SEP) coupled with high power generation systems. This concept further sets the stage for human exploration by doing the type of science exploration needed and flight demonstrating technology advances (high power generation, SEP). 2) Multiple NEO Rendezvous, Reconnaissance and In Situ Exploration - We propose a two spacecraft mission (Mother Ship and Small Body Lander) rendezvous with multiple Near Earth Objects (NEO). Mars. Our concept involved using the Boeing 702SP with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Conclusion: Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute baseline science missions and conduct Technology Demonstrations in

  13. Mission Concepts Enabled by Solar Electric Propulsion and Advanced Modular Power Systems

    NASA Astrophysics Data System (ADS)

    Elsperman, M. S.; Klaus, K.; Rogers, F.

    2013-12-01

    Introduction: Over the last several years we have introduced a number of planetary mission concepts enabled by Solar Electric Propulsion and Advanced Modular Power systems. The Boeing 702 SP: Using a common spacecraft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. Hosted payloads allow launch and operations costs to be shared. Advanced Modular Power System (AMPS): The 702 SP for deep space is designed to be able to use the Advanced Modular Power System (AMPS) solar array, producing multi Kw power levels with significantly lower system mass than current solar power system technologies. Mission Concepts: Outer Planets. 1) Europa Explorer - Our studies demonstrate that New Frontiers-class science missions to the Jupiter and Saturn systems are possible with commercial solar powered spacecraft. 2) Trojan Tour -The mission objective is 1143 Odysseus, consistent with the Decadal Survey REP (Radioisotope Electric Propulsion) mission objective. Small Body. 1) NEO Precursor Mission - NEO missions benefit greatly by using high ISP (Specific Impulse) Solar Electric Propulsion (SEP) coupled with high power generation systems. This concept further sets the stage for human exploration by doing the type of science exploration needed and flight demonstrating technology advances (high power generation, SEP). 2) Multiple NEO Rendezvous, Reconnaissance and In Situ Exploration - We propose a two spacecraft mission (Mother Ship and Small Body Lander) rendezvous with multiple Near Earth Objects (NEO). Mars. Our concept involved using the Boeing 702SP with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Conclusion: Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute baseline science missions and conduct Technology Demonstrations in

  14. Advanced Instruction: Facilitation of Individual Learning Processes in Large Groups

    ERIC Educational Resources Information Center

    Putz, Claus; Intveen, Geesche

    2009-01-01

    By supplying various combinations of advanced instructions and different forms of exercises individual learning processes within the impartation of basic knowledge can be activated and supported at best. The fundamentals of our class "Introduction to spatial-geometric cognition using CAD" are constructional inputs, which systematically induce the…

  15. Chemistry concepts and group cognitive structure: A study of undergraduate nursing students

    NASA Astrophysics Data System (ADS)

    Wilson, Janice M.

    1990-01-01

    The long term aim of this study is to document changes in the nature and level of conceptual understanding revealed by a cohort of undergraduate nursing students. The outcome of such a study may be used in future review and redesign processes by curriculum planners. Conceptual understanding of physiology and pharmacology, areas which are central to nursing studies depends, in turn, on an understanding of certain chemical concepts. This paper describes the group cognitive structure of 60 first year preservice nursing students, with respect to 21 basic chemistry concepts. Group cognitive structure is represented by non-metric multidimensional scaling of data obtained from individual concept maps prepared by students. The impact of prior studies in chemistry on the level of understanding revealed is discussed.

  16. Conceptions of Mathematics in Different Ability and Achievement Groups among 7th Grade Students

    ERIC Educational Resources Information Center

    Lepmann, Lea; Afanasjev, Juri

    2005-01-01

    This report deals with 7th grade pupils' conceptions of mathematics, its learning and teaching. The report focuses on the identification and comparison of views expressed by pupil groups of different mathematical ability and achievement. The analysis is based on the results of the ability tests, subject tests and a questionnaire conducted among…

  17. Ability Grouping of Gifted Students: Effects on Academic Self-Concept and Boredom

    ERIC Educational Resources Information Center

    Preckel, Franzis; Gotz, Thomas; Frenzel, Anne

    2010-01-01

    Background: Securing appropriate challenge or preventing boredom is one of the reasons frequently used to justify ability grouping of gifted students, which has been shown to have beneficial effects for achievement. On the other hand, critics stress psychosocial costs, such as detrimental effects on academic self-concept (contrast or…

  18. Advanced crew station concepts, displays, and input/output technology for civil aircraft of the future

    NASA Technical Reports Server (NTRS)

    Hatfield, J. J.; Robertson, J. B.; Batson, V. M.

    1979-01-01

    Current efforts on a new Cockpit Avionics Research program are described. The major thrusts of the program presented include: a comparative analysis of advanced display media and development of promising selected media, development of flight display generation techniques, and identification and development of promising I/O technology. In addition, the advanced integrated display concepts described include a 'tunnel in the sky' display and a traffic situation display with associated keyboard. Finally, the Cockpit Avionics Research program is summarized, future research plans are presented, and the need for an expanded program is discussed.

  19. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    NASA Technical Reports Server (NTRS)

    Duffy, James B.

    1993-01-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  20. The articulation of integration of clinical and basic sciences in concept maps: differences between experienced and resident groups.

    PubMed

    Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan

    2016-08-01

    To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesized to be less complex, to reveal more tacit basic science concepts and these basic science concepts are expected to be used for the organization of the maps. These hypotheses are derived from studies about knowledge development of individuals. However, integrated curricula require a high degree of cooperation between clinicians and basic scientists. This study examined whether there are consistent variations regarding the articulation of integration when groups of experienced clinicians and basic scientists and groups of residents and basic scientists-in-training construct concept maps. Seven groups of three clinicians and basic scientists on experienced level and seven such groups on resident level constructed concept maps illuminating clinical problems. They were guided by instructions that focused them on articulation of integration. The concept maps were analysed by features that described integration. Descriptive statistics showed consistent variations between the two expertise levels. The concept maps of the resident groups exceeded those of the experienced groups in articulated integration. First, they used significantly more links between clinical and basic science concepts. Second, these links connected basic science concepts with a greater variety of clinical concepts than the experienced groups. Third, although residents did not use significantly more basic science concepts, they used them significantly more frequent to organize the clinical concepts. The conclusion was drawn that not all hypotheses could be confirmed and that the resident concept maps were more elaborate than expected. This article discusses the implications for the role that residents and

  1. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration, task 3

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A structural design study was conducted to assess the relative merits of structural concepts using advanced composite materials for an advanced supersonic aircraft cruising at Mach 2.7. The configuration and structural arrangement developed during Task I and II of the study, was used as the baseline configuration. Allowable stresses and strains were established for boron and advanced graphite fibers based on projected fiber properties available in the next decade. Structural concepts were designed and analyzed using graphite polyimide and boron polyimide, applied to stiffened panels and conventional sandwich panels. The conventional sandwich panels were selected as the structural concept to be used on the wing structure. The upper and lower surface panels of the Task I arrow wing were redesigned using high-strength graphite polyimide sandwich panels over the titanium spars and ribs. The ATLAS computer system was used as the basis for stress analysis and resizing the surface panels using the loads from the Task II study, without adjustment for change in aeroelastic deformation. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter speed was increased to that of the titanium wing, with a weight penalty less than that of the metallic airplane.

  2. Prestressed concrete pressure vessels and their applicability to advanced energy system concepts

    SciTech Connect

    Naus, D.J.

    1983-01-01

    Prestressed concrete pressure vessels (PCPVs) are, in essence, spaced steel structures since their strength is derived from a multitude of steel elements made up of deformed reinforcing bars and prestressing tendons which are present in sufficient quantities to carry tension loads imposed on the vessel. Other major components of a PCPV include the concrete, liner and cooling system, and insulation. PCPVs exhibit a number of advantages which make them ideally suited for application to advanced energy concepts: fabricability in virtually any size and shape using available technology, improved safety, reduced capital costs, and a history of proven performance. PCPVs have many applications to both nuclear- and non-nuclear-based energy systems concepts. Several of these concepts are discussed as well as the research and development activities conducted at ORNL in support of PCPV development.

  3. Prestressed-concrete pressure vessels and their applicability to advanced-energy-system concepts

    SciTech Connect

    Naus, D.J

    1983-01-01

    Prestressed concrete pressure vessels (PCPVs) are, in essence, spaced steel structures since their strength is derived from a multitude of steel elements made up of deformed reinforcing bars and prestressing tendons which are present in sufficient quantities to carry tension loads imposed on the vessel. Other major components of a PCPV include the concrete, liner and cooling system, and insulation. PCPVs exhibit a number of advantages which make them ideally suited for application to advanced energy concepts: fabricability in virtually any size and shape using available technology, improved safety, reduced capital costs, and a history of proven performance. PCPVs have many applications to both nuclear- and non-nuclear-based energy systems concepts. Several of these concepts will be discussed as well as the research and development activities conducted at ORNL in support of PCPV development.

  4. Study of advanced electric propulsion system concept using a flywheel for electric vehicles

    NASA Technical Reports Server (NTRS)

    Younger, F. C.; Lackner, H.

    1979-01-01

    Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.

  5. Applications of advanced V/STOL aircraft concepts to civil utility missions, volume 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The suitability of advanced V/STOL aircraft to civil utility applications was assessed for offshore oil support, forest fire support, transport, and humanitarian missions. The aircraft concepts considered were a lift fan aircraft, a tilt rotor aircraft, and an advanced helicopter. All the aircraft had a design payload of 2,268 kg. (5,000 lb.) with the maximum range varying from 2,224 km. (1,800 nm) for the lift fan STOL to 1,482 km (800 nm) for the advanced helicopter. The analysis of these missions considered such factors as aircraft performance, annual utilization, initial cost, and operating cost. It is concluded that all the advanced V/STOL aircraft concepts generally performed these missions better than contemporary aircraft. The lift fan aircraft and the tilt rotor aircraft were found to be effective for the offshore oil and the forest fire support missions. The lift fan aircraft in the VTOL mode was also found to be very attractive for the executive transport mission where the passenger time value was $30/hr. or more.

  6. Noise and economic characteristics of an advanced blended supersonic transport concept

    NASA Technical Reports Server (NTRS)

    Molloy, J. K.; Grantham, W. D.; Neubauer, M. J., Jr.

    1982-01-01

    Noise and economic characteristics were obtained for an advanced supersonic transport concept that utilized wing body blending, a double bypass variable cycle engine, superplastically formed and diffusion bonded titanium in both the primary and secondary structures, and an alternative interior arrangement that provides increased seating capacity. The configuration has a cruise Mach number of 2.62, provisions for 290 passengers, a mission range of 8.19 Mm (4423 n.mi.), and an average operating cruise lift drag ratio of 9.23. Advanced operating procedures, which have the potential to reduce airport community noise, were explored by using a simulator. Traded jet noise levels of 105.7 and 103.4 EPNdB were obtained by using standard and advanced takeoff operational procedures, respectively. A new method for predicting lateral attenuation was utilized in obtaining these jet noise levels.

  7. Recruiting, retaining, and advancing careers for employees from underrepresented groups.

    PubMed

    Smith, Toni C; Ingersoll, Gail L; Robinson, Regina; Hercules, Hazeldene; Carey, Janet

    2008-04-01

    In response to the need to increase the number of persons from underrepresented groups working in acute care settings, 2 hospitals in upstate New York implemented a multidimensional workforce development project targeting existing and new employees meeting federally defined poverty levels. The authors describe the project and its outcomes, which surpassed original expectations. PMID:18403992

  8. SMAHTR - A Concept for a Small, Modular Advanced High Temperaure Reactor

    SciTech Connect

    Gehin, Jess C; Greene, Sherrell R; Holcomb, David Eugene; Carbajo, Juan J; Cisneros, Anselmo T; Corwin, William R; Ilas, Dan; Wilson, Dane F; Varma, Venugopal Koikal; Bradley, Eric Craig; Yoder, III, Graydon L

    2010-01-01

    Several new high temperature reactor concepts, referred to as Fluoride Salt Cooled High Temperature Reactors (FHRs), have been developed over the past decade. These FHRs use a liquid salt coolant combined with high temperature gas-cooled reactor fuels (TRISO) and graphite structural materials to provide a reactor that operates at very high temperatures and is scalable to large sizes perhaps exceeding 2400 MWt. This paper presents a new small FHR the Small Modular Advanced High Temperature Reactor or SmAHTR . SmAHTR is targeted at applications that require compact, high temperature heat sources either for high efficiency electricity production or process heat applications. A preliminary SmAHTR concept has been developed that delivers 125 MWt of energy in an integral primary system design that places all primary and decay heat removal heat exchangers inside the reactor vessel. The current reactor baseline concept utilizes a prismatic fuel block core, but multiple removable fuel assembly concepts are under evaluation as well. The reactor vessel size is such that it can be transported on a standard tractor-trailer to support simplified deployment. This paper will provide a summary of the current SmAHTR system concept and on-going technology and system architecture trades studies.

  9. Evaluation of Four Advanced Nozzle Concepts for Short Takeoff and Landing Performance

    NASA Technical Reports Server (NTRS)

    Quinto, P. Frank; Kemmerly, Guy T.; Paulson, John W., Jr.

    1993-01-01

    Four advanced nozzle concepts were tested on a canard-wing fighter in the Langley 14- by 22-Foot Subsonic Tunnel. The four vectoring-nozzle concepts were as follows: (1) an axisymmetric nozzle (AXI); (2) an asymmetric, load balanced exhaust nozzle (ALBEN); (3) a low aspect ratio, single expansion ramp nozzle (LASERN); and (4) a high aspect ratio, single expansion ramp nozzle (HASERN). The investigation was conducted to determine the most suitable nozzle concept for short takeoff and landing (STOL) performance. The criterion for the best STOL performance was a takeoff ground roll of less than 1000 ft. At approach, the criteria were high lift and sufficient drag to maintain a glide slope of -3 to -6 deg with enough pitching-moment control from the canards. The test was performed at a dynamic pressure of 45 lb/sq ft and an angle-of-attack range of 0 to 20 deg. The nozzle pressure ratio was varied from 1.0 to 4.3 at both dry power and after burning nozzle configurations with nozzle vectoring to 60 deg. In addition, the model was tested in and out of ground effects. The ALBEN concept was the best of the four nozzle concepts tested for STOL performance.

  10. Grouped actinide separation in advanced nuclear fuel cycles

    SciTech Connect

    Glatz, J.P.; Malmbeck, R.; Ougier, M.; Soucek, P.; Murakamin, T.; Tsukada, T.; Koyama, T.

    2013-07-01

    Aiming at cleaner waste streams (containing only the short-lived fission products) a partitioning and transmutation (P-T) scheme can significantly reduce the quantities of long-lived radionuclides consigned to waste. Many issues and options are being discussed and studied at present in view of selecting the optimal route. The choice is between individual treatment of the relevant elements and a grouped treatment of all actinides together. In the European Collaborative Project ACSEPT (Actinide recycling by Separation and Transmutation), grouped separation options derived from an aqueous extraction or from a dry pyroprocessing route were extensively investigated. Successful demonstration tests for both systems have been carried out in the frame of this project. The aqueous process called GANEX (Grouped Actinide Extraction) is composed of 2 cycles, a first one to recover the major part of U followed by a co-extraction of Np, Pu, Am, and Cm altogether. The pyro-reprocessing primarily applicable to metallic fuels such as the U-Pu-Zr alloy originally developed by the Argonne National Laboratory (US) in the mid 1980s, has also been applied to the METAPHIX fuels containing up to 5% of minor actinides and 5% of lanthanides (e.g. U{sub 60}Pu{sub 20}-Zr{sub 10}Am{sub 2}Nd{sub 3.5}Y{sub 0.5}Ce{sub 0.5}Gd{sub 0.5}). A grouped actinide separation has been successfully carried out by electrorefining on solid Al cathodes. At present the recovery of the actinides from the alloy formed with Al upon electrodeposition is under investigation, because an efficient P-T cycle requires multiple re-fabrication and re-irradiation. (authors)

  11. Summary report: working group 2 on 'Plasma Based AccelerationConcepts'

    SciTech Connect

    Esarey, E.; Leemans, Wim

    1998-09-01

    A summary of the talks, papers and discussion sessions presented in the Working Group on Plasma Based Acceleration Concepts is given within the context of the progress towards a 1 GeV laser driven accelerator module. The topics covered within the Working Group were self-modulated laser wakefield acceleration, standard laser wakefield acceleration, plasma beatwave acceleration, laser guiding and wake excitation in plasma channels, plasma wakefield acceleration, plasma lenses and optical injection techniques for laser wakefield accelerators. An overview will be given of the present status of experimental and theoretical progress as well as an outlook towards the future physics and technological challenges for the development of an optimized accelerator module.

  12. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 3: Advanced networks and economics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  13. Summer Support of the Advanced Structures and Measurements Group

    NASA Technical Reports Server (NTRS)

    Stuber, Alexander Lee

    2010-01-01

    This presentation is my exit presentation summarizing the work that I did this summer during my 10 week summer internship. It is primarily focused on tensile testing of composite coupons including the use of the ARAMIS optical strain measurement system, but it also includes some discussion of other support that I provided for the Dryden composites working group effort. My main efforts in that area were focused on T-joint design for an upcoming hands-on-workshop as well as design of a fixture to test joint coupons. Finally, there is a brief discussion of the other small projects that I worked on, including support of structurally integrated thermal protection system (STIPS) research and the Global Observer wing loads test.

  14. Investigation of trailing-edge-flap, spanwise-blowing concepts on an advanced fighter configuration

    NASA Technical Reports Server (NTRS)

    Paulson, J. W., Jr.; Quinto, P. F.; Banks, D. W.

    1984-01-01

    The aerodynamic effects of spanwise blowing on the trailing edge flap of an advanced fighter aircraft configuration were determined in the 4 by 7 Meter Tunnel. A series of tests were conducted with variations in spanwise-blowing vector angle, nozzle exit area, nozzle location, thrust coefficient, and flap deflection in order to determine a superior configuration for both an underwing cascade concept and an overwing port concept. This screening phase of the testing was conducted at a nominal approach angle of attack from 12 deg to 16 deg; and then the superior configurations were tested over a more complete angle of attack range from 0 deg to 20 deg at tunnel free stream dynamic pressures from 20 to 40 lbf/sq ft at thrust coefficients from 0 to 2.

  15. Work Domain Analysis Methodology for Development of Operational Concepts for Advanced Reactors

    SciTech Connect

    Hugo, Jacques

    2015-05-01

    This report describes a methodology to conduct a Work Domain Analysis in preparation for the development of operational concepts for new plants. This method has been adapted from the classical method described in the literature in order to better deal with the uncertainty and incomplete information typical of first-of-a-kind designs. The report outlines the strategy for undertaking a Work Domain Analysis of a new nuclear power plant and the methods to be used in the development of the various phases of the analysis. Basic principles are described to the extent necessary to explain why and how the classical method was adapted to make it suitable as a tool for the preparation of operational concepts for a new nuclear power plant. Practical examples are provided of the systematic application of the method and the various presentation formats in the operational analysis of advanced reactors.

  16. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration

    NASA Technical Reports Server (NTRS)

    Turner, M. J.; Grande, D. L.

    1978-01-01

    Based on estimated graphite and boron fiber properties, allowable stresses and strains were established for advanced composite materials. Stiffened panel and conventional sandwich panel concepts were designed and analyzed, using graphite/polyimide and boron/polyimide materials. The conventional sandwich panel was elected as the structural concept for the modified wing structure. Upper and lower surface panels of the arrow wing structure were then redesigned, using high strength graphite/polyimide sandwich panels, retaining the titanium spars and ribs from the prior study. The ATLAS integrated analysis and design system was used for stress analysis and automated resizing of surface panels. Flutter analysis of the hybrid structure showed a significant decrease in flutter speed relative to the titanium wing design. The flutter speed was increased to that of the titanium design by selective increase in laminate thickness and by using graphite fibers with properties intermediate between high strength and high modulus values.

  17. Advanced leading edge thermal-structure concept. Direct bond reusable surface insulation to a composite structure

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Figueroa, H.; Coe, C. F.; Kuo, C. P.

    1984-01-01

    An advanced leading-edge concept was analyzed using the space shuttle leading edge system as a reference model. The comparison indicates that a direct-bond system utilizing a high temperature (2700 F) fibrous refractory composite insulation tile bonded to a high temperature (PI/graphite) composite structure can result in a weight savings of up to 800 lb. The concern that tile damage or loss during ascent would result in adverse entry aerodynamics if a leading edge tile system were used is addressed. It was found from experiment that missing tiles (as many as 22) on the leading edge would not significantly affect the basic force-and-moment aerodynamic coefficients. Additionally, this concept affords a degree of redundancy to a thermal protection system in that the base structure (being a composite material) ablates and neither melts nor burns through when subjected to entry heating in the event tiles are actually lost or damaged during ascent.

  18. Optimization of an Advanced Hybrid Wing Body Concept Using HCDstruct Version 1.2

    NASA Technical Reports Server (NTRS)

    Quinlan, Jesse R.; Gern, Frank H.

    2016-01-01

    Hybrid Wing Body (HWB) aircraft concepts continue to be promising candidates for achieving the simultaneous fuel consumption and noise reduction goals set forth by NASA's Environmentally Responsible Aviation (ERA) project. In order to evaluate the projected benefits, improvements in structural analysis at the conceptual design level were necessary; thus, NASA researchers developed the Hybrid wing body Conceptual Design and structural optimization (HCDstruct) tool to perform aeroservoelastic structural optimizations of advanced HWB concepts. In this paper, the authors present substantial updates to the HCDstruct tool and related analysis, including: the addition of four inboard and eight outboard control surfaces and two all-movable tail/rudder assemblies, providing a full aeroservoelastic analysis capability; the implementation of asymmetric load cases for structural sizing applications; and a methodology for minimizing control surface actuation power using NASTRAN SOL 200 and HCDstruct's aeroservoelastic finite-element model (FEM).

  19. DEVELOPMENT OF OPERATIONAL CONCEPTS FOR ADVANCED SMRs: THE ROLE OF COGNITIVE SYSTEMS ENGINEERING

    SciTech Connect

    Jacques Hugo; David Gertman

    2014-04-01

    Advanced small modular reactors (AdvSMRs) will use advanced digital instrumentation and control systems, and make greater use of automation. These advances not only pose technical and operational challenges, but will inevitably have an effect on the operating and maintenance (O&M) cost of new plants. However, there is much uncertainty about the impact of AdvSMR designs on operational and human factors considerations, such as workload, situation awareness, human reliability, staffing levels, and the appropriate allocation of functions between the crew and various automated plant systems. Existing human factors and systems engineering design standards and methodologies are not current in terms of human interaction requirements for dynamic automated systems and are no longer suitable for the analysis of evolving operational concepts. New models and guidance for operational concepts for complex socio-technical systems need to adopt a state-of-the-art approach such as Cognitive Systems Engineering (CSE) that gives due consideration to the role of personnel. This approach we report on helps to identify and evaluate human challenges related to non-traditional concepts of operations. A framework - defining operational strategies was developed based on the operational analysis of Argonne National Laboratory’s Experimental Breeder Reactor-II (EBR-II), a small (20MWe) sodium-cooled reactor that was successfully operated for thirty years. Insights from the application of the systematic application of the methodology and its utility are reviewed and arguments for the formal adoption of CSE as a value-added part of the Systems Engineering process are presented.

  20. Development and proof-testing of advanced absorption refrigeration cycle concepts

    SciTech Connect

    Modahl, R.J.; Hayes, F.C. . Applied Unitary/Refrigeration Systems Div.)

    1992-03-01

    The overall objectives of this project are to evaluate, develop, and proof-test advanced absorption refrigeration cycles that are applicable to residential and commercial heat pumps for space conditioning. The heat pump system is to be direct-fired with natural gas and is to use absorption working fluids whose properties are known. Target coefficients of performance (COPs) are 1.6 at 47{degrees}F and 1.2 at 17{degrees} in the heating mode, and 0.7 at 95{degree}F in the cooling mode, including the effect of flue losses. The project is divided into three phases. Phase I entailed the analytical evaluation of advanced cycles and included the selection of preferred concepts for further development. Phase II involves the development and testing of critical components and of a complete laboratory breadboard version of the selected system. Phase III calls for the development of a prototype unit and is contingent on the successful completion of Phase II. This report covers Phase I work on the project. In Phase 1, 24 advanced absorption cycle/fluid combinations were evaluated, and computer models were developed to predict system performance. COP, theoretical pump power, and internal heat exchange were calculated for each system, and these calculations were used as indicators of operating and installed costs in order to rank the relative promise of each system. The highest ranking systems involve the cycle concept of absorber/generator heat exchange, generator heat exchanger/absorber heat exchange, regeneration, and resorption/desorption, in combination with the NH{sub 3}/H{sub 2}O/LiBr ternary absorption fluid mixture or with the NH{sub 3}/H{sub 2}O binary solution. Based upon these conclusions, the recommendation was made to proceed to Phase II, the laboratory breadboard proof-of- concept.

  1. Target selection and comparison of mission design for space debris removal by DLR's advanced study group

    NASA Astrophysics Data System (ADS)

    van der Pas, Niels; Lousada, Joao; Terhes, Claudia; Bernabeu, Marc; Bauer, Waldemar

    2014-09-01

    Space debris is a growing problem. Models show that the Kessler syndrome, the exponential growth of debris due to collisions, has become unavoidable unless an active debris removal program is initiated. The debris population in LEO with inclination between 60° and 95° is considered as the most critical zone. In order to stabilize the debris population in orbit, especially in LEO, 5 to 10 objects will need to be removed every year. The unique circumstances of such a mission could require that several objects are removed with a single launch. This will require a mission to rendezvous with a multitude of objects orbiting on different altitudes, inclinations and planes. Removal models have assumed that the top priority targets will be removed first. However this will lead to a suboptimal mission design and increase the ΔV-budget. Since there is a multitude of targets to choose from, the targets can be selected for an optimal mission design. In order to select a group of targets for a removal mission the orbital parameters and political constraints should also be taken into account. Within this paper a number of the target selection criteria are presented. The possible mission targets and their order of retrieval is dependent on the mission architecture. A comparison between several global mission architectures is given. Under consideration are 3 global missions of which a number of parameters are varied. The first mission launches multiple separate deorbit kits. The second launches a mother craft with deorbit kits. The third launches an orbital tug which pulls the debris in a lower orbit, after which a deorbit kit performs the final deorbit burn. A RoM mass and cost comparison is presented. The research described in this paper has been conducted as part of an active debris removal study by the Advanced Study Group (ASG). The ASG is an interdisciplinary student group working at the DLR, analyzing existing technologies and developing new ideas into preliminary

  2. Advanced Hybrid Spacesuit Concept Featuring Integrated Open Loop and Closed Loop Ventilation Systems

    NASA Technical Reports Server (NTRS)

    Daniel, Brian A.; Fitzpatrick, Garret R.; Gohmert, Dustin M.; Ybarra, Rick M.; Dub, Mark O.

    2013-01-01

    A document discusses the design and prototype of an advanced spacesuit concept that integrates the capability to function seamlessly with multiple ventilation system approaches. Traditionally, spacesuits are designed to operate both dependently and independently of a host vehicle environment control and life support system (ECLSS). Spacesuits that operate independent of vehicle-provided ECLSS services must do so with equipment selfcontained within or on the spacesuit. Suits that are dependent on vehicle-provided consumables must remain physically connected to and integrated with the vehicle to operate properly. This innovation is the design and prototype of a hybrid spacesuit approach that configures the spacesuit to seamlessly interface and integrate with either type of vehicular systems, while still maintaining the ability to function completely independent of the vehicle. An existing Advanced Crew Escape Suit (ACES) was utilized as the platform from which to develop the innovation. The ACES was retrofitted with selected components and one-off items to achieve the objective. The ventilation system concept was developed and prototyped/retrofitted to an existing ACES. Components were selected to provide suit connectors, hoses/umbilicals, internal breathing system ducting/ conduits, etc. The concept utilizes a lowpressure- drop, high-flow ventilation system that serves as a conduit from the vehicle supply into the suit, up through a neck seal, into the breathing helmet cavity, back down through the neck seal, out of the suit, and returned to the vehicle. The concept also utilizes a modified demand-based breathing system configured to function seamlessly with the low-pressure-drop closed-loop ventilation system.

  3. Advanced direct liquefaction concepts for PETC generic units. Final report, Phase I

    SciTech Connect

    1995-03-01

    The Advanced Concepts for Direct Coal Liquefaction program was initiated by the Department of Energy in 1991 to develop technologies that could significantly reduce the cost of producing liquid fuels by the direct liquefaction of coal. The advanced 2-stage liquefaction technology that was developed at Wilsonville over the past 10 years has contributed significantly toward decreasing the cost of producing liquids from coal to about $33/bbl. It remains, however, the objective of DOE to further reduce this cost to a level more competitive with petroleum based products. This project, among others, was initiated to investigate various alternative approaches to develop technologies that might ultimately lead to a 25 % reduction in cost of product. In this project a number of novel concepts were investigated, either individually or in a coupled configuration that had the potential to contribute toward meeting the DOE goal. The concepts included mature technologies or ones closely related to them, such as coal cleaning by oil agglomeration, fluid coking and distillate hydrotreating and dewaxing. Other approaches that were either embryonic or less developed were chemical pretreatment of coal to remove oxygen, and dispersed catalyst development for application in the 2-stage liquefaction process. This report presents the results of this project. It is arranged in four sections which were prepared by participating organizations responsible for that phase of the project. A summary of the overall project and the principal results are given in this section. First, however, an overview of the process economics and the process concepts that were developed during the course of this program is presented.

  4. Feasibility of a Networked Air Traffic Infrastructure Validation Environment for Advanced NextGen Concepts

    NASA Technical Reports Server (NTRS)

    McCormack, Michael J.; Gibson, Alec K.; Dennis, Noah E.; Underwood, Matthew C.; Miller,Lana B.; Ballin, Mark G.

    2013-01-01

    Abstract-Next Generation Air Transportation System (NextGen) applications reliant upon aircraft data links such as Automatic Dependent Surveillance-Broadcast (ADS-B) offer a sweeping modernization of the National Airspace System (NAS), but the aviation stakeholder community has not yet established a positive business case for equipage and message content standards remain in flux. It is necessary to transition promising Air Traffic Management (ATM) Concepts of Operations (ConOps) from simulation environments to full-scale flight tests in order to validate user benefits and solidify message standards. However, flight tests are prohibitively expensive and message standards for Commercial-off-the-Shelf (COTS) systems cannot support many advanced ConOps. It is therefore proposed to simulate future aircraft surveillance and communications equipage and employ an existing commercial data link to exchange data during dedicated flight tests. This capability, referred to as the Networked Air Traffic Infrastructure Validation Environment (NATIVE), would emulate aircraft data links such as ADS-B using in-flight Internet and easily-installed test equipment. By utilizing low-cost equipment that is easy to install and certify for testing, advanced ATM ConOps can be validated, message content standards can be solidified, and new standards can be established through full-scale flight trials without necessary or expensive equipage or extensive flight test preparation. This paper presents results of a feasibility study of the NATIVE concept. To determine requirements, six NATIVE design configurations were developed for two NASA ConOps that rely on ADS-B. The performance characteristics of three existing in-flight Internet services were investigated to determine whether performance is adequate to support the concept. Next, a study of requisite hardware and software was conducted to examine whether and how the NATIVE concept might be realized. Finally, to determine a business case

  5. Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES

    NASA Astrophysics Data System (ADS)

    Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team

    2015-11-01

    Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.

  6. Research directions and progress in the SERI advanced high efficiency concept program

    SciTech Connect

    Cole, L A; Benner, J P

    1984-06-01

    The inherent electro-optical properties of gallium arsenide (GaAs) and related III-V compounds make this class of semiconductors an optimum choice for use in very high efficiency solar cells. The ability to alloy GaAs with other column III and V elements while maintaining the single crystal zincblende structure allows the photovoltaic properties to be tailored to specific needs. The current understanding and control of the properties of these materials is more advanced than for any other semiconductor except single crystal silicon. For these reasons, the Advanced High Efficiency Concepts Program supports materials research to improve the properties of III-V semiconductors needed to achieve the maximum attainable photovoltaic conversion efficiencies.

  7. Draft Function Allocation Framework and Preliminary Technical Basis for Advanced SMR Concepts of Operations

    SciTech Connect

    Jacques Hugo; John Forester; David Gertman; Jeffrey Joe; Heather Medema; Julius Persensky; April Whaley

    2013-08-01

    This report presents preliminary research results from the investigation into the development of new models and guidance for Concepts of Operations in advanced small modular reactor (AdvSMR) designs. AdvSMRs are nuclear power plants (NPPs), but unlike conventional large NPPs that are constructed on site, AdvSMRs systems and components will be fabricated in a factory and then assembled on site. AdvSMRs will also use advanced digital instrumentation and control systems, and make greater use of automation. Some AdvSMR designs also propose to be operated in a multi-unit configuration with a single central control room as a way to be more cost-competitive with existing NPPs. These differences from conventional NPPs not only pose technical and operational challenges, but they will undoubtedly also have regulatory compliance implications, especially with respect to staffing requirements and safety standards.

  8. Stereotactic radiosurgery of glomus jugulare tumors: current concepts, recent advances and future perspectives.

    PubMed

    Sager, Omer; Dincoglan, Ferrat; Beyzadeoglu, Murat

    2015-01-01

    Stereotactic radiosurgery (SRS), a very highly focused form of therapeutic irradiation, has been widely recognized as a viable treatment option in the management of intracranial pathologies including benign tumors, malign tumors, vascular malformations and functional disorders. The applications of SRS are continuously expanding thanks to the ever-increasing advances and corresponding improvements in neuroimaging, radiation treatment techniques, equipment, treatment planning and delivery systems. In the context of glomus jugulare tumors (GJT), SRS is being more increasingly used both as the upfront management modality or as a complementary or salvage treatment option. As its safety and efficacy is being evident with compiling data from studies with longer follow-up durations, SRS appears to take the lead in the management of most patients with GJT. Herein, we address current concepts, recent advances and future perspectives in SRS of GJT in light of the literature. PMID:25768334

  9. Evaluation of advanced lift concepts and fuel conservative short-haul aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Renshaw, J. H.; Bowden, M. K.; Narucki, C. W.; Bennett, J. A.; Smith, P. R.; Ferrill, R. S.; Randall, C. C.; Tibbetts, J. G.; Patterson, R. W.; Meyer, R. T.

    1974-01-01

    The performance and economics of a twin-engine augmentor wing airplane were evaluated in two phases. Design aspects of the over-the-wing/internally blown flap hybrid, augmentor wing, and mechanical flap aircraft were investigated for 910 m. field length with parametric extension to other field lengths. Fuel savings achievable by application of advanced lift concepts to short-haul aircraft were evaluated and the effect of different field lengths, cruise requirements, and noise levels on fuel consumption and airplane economics at higher fuel prices were determined. Conclusions and recommendations are presented.

  10. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystem Concepts

    NASA Technical Reports Server (NTRS)

    Levack, Daniel J. H.

    2000-01-01

    The Alternate Propulsion Subsystem Concepts contract had seven tasks defined for this report. The tasks were: F-1A Restart Study, J-2S Restart Study, Propulsion Database Development, SSME Upper Stage Use, CERs for Liquid Propellant Rocket Engines, Advanced Low Cost Engines, and Tripropellant Comparison Study. The detailed study results, with the data to support the conclusions from various analyses, are being reported as a series of five separate Final Task Reports. Consequently, this volume only reports the required programmatic information concerning Computer Aided Design Documentation, and New Technology Reports. A detailed Executive Summary, covering all the tasks, is also available as Volume I of this report.

  11. Work Domain Analysis and Operational Concepts for Advanced Nuclear Power Plants

    SciTech Connect

    Jacques Hugo

    2001-02-01

    The nuclear industry is currently designing and building a new generation of reactors that will differ in important respects from the older generation. Differences in new plants will include different structural, functional, and environmental aspects, all of which are likely to have a significant impact on the way these plants are operated. In order to meet economic and safety objectives, these new reactors will all use advanced technologies to some extent, including new materials and advanced digital instrumentation and control systems. Examples of these advances include distribution of load-following demand among multiple units, different product streams (steam, process heat, or electricity), increased use of passive safety systems, high levels of automation with humans in supervisory roles, integration of computerized procedures for control room and field work, and remote surveillance and on-line monitoring. New technologies will affect not only operational strategies, but will also require a new approach to how functions are allocated to humans or machines to ensure optimal performance. There is still much uncertainty about the effect of large scale changes in plant design on operations and human tasks, such as workload, situation awareness, human reliability, staffing levels, and the appropriate allocation of functions between the crew and various automated plant systems. This uncertainty will remain until sound technical bases are developed for new operational concepts and strategies. Existing human factors and systems engineering design standards and methodologies are not current in terms of human interaction requirements for dynamic automated systems and are no longer suitable for the analysis of evolving operational concepts. Up-to-date models and guidance are required for the development of operational concepts for complex socio-technical systems. Designers need to be able to identify and evaluate specific human factors challenges related to non

  12. Transcultural group performance in extreme environment: Issues, concepts and emerging theory

    NASA Astrophysics Data System (ADS)

    Lapierre, Judith; Bouchard, Stéphane; Martin, Thibault; Perreault, Michel

    2009-06-01

    A simulation for flight of international crew on space station took place in Moscow from July 1999 to April 2000 (SFINCS) at the State Biomedical Institute of Russia (IBMP) isolation chambers. Objectives of this study were to identify concepts of psychosocial adaptation and of social interactions to develop an explanation of the transcultural group performance. Method: constructivist epistemology with grounded theory research and fourth generation evaluation were used. Data on processes and interactions were gathered during 110 days of confinement as a subject and extended to 240 days as an outside scientist. Results indicate that coping is influenced by usual coping strategies and coping behaviors inside. Several stresses and human factor issues were identified altering well being and performance inside the chambers. Enabling and limiting forces are discussed. A theory on transcultural group performance is proposed. Issues are raised that appear critical to selection, training and group performance.

  13. Advanced onboard storage concepts for natural gas-fueled automotive vehicles

    NASA Technical Reports Server (NTRS)

    Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.

    1984-01-01

    The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.

  14. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystem Concepts. Volume 1; Executive Summary

    NASA Technical Reports Server (NTRS)

    Levack, Daniel J. H.

    2000-01-01

    The Alternate Propulsion Subsystem Concepts contract had seven tasks defined that are reported under this contract deliverable. The tasks were: FAA Restart Study, J-2S Restart Study, Propulsion Database Development. SSME Upper Stage Use. CERs for Liquid Propellant Rocket Engines. Advanced Low Cost Engines, and Tripropellant Comparison Study. The two restart studies, F-1A and J-2S, generated program plans for restarting production of each engine. Special emphasis was placed on determining changes to individual parts due to obsolete materials, changes in OSHA and environmental concerns, new processes available, and any configuration changes to the engines. The Propulsion Database Development task developed a database structure and format which is easy to use and modify while also being comprehensive in the level of detail available. The database structure included extensive engine information and allows for parametric data generation for conceptual engine concepts. The SSME Upper Stage Use task examined the changes needed or desirable to use the SSME as an upper stage engine both in a second stage and in a translunar injection stage. The CERs for Liquid Engines task developed qualitative parametric cost estimating relationships at the engine and major subassembly level for estimating development and production costs of chemical propulsion liquid rocket engines. The Advanced Low Cost Engines task examined propulsion systems for SSTO applications including engine concept definition, mission analysis. trade studies. operating point selection, turbomachinery alternatives, life cycle cost, weight definition. and point design conceptual drawings and component design. The task concentrated on bipropellant engines, but also examined tripropellant engines. The Tripropellant Comparison Study task provided an unambiguous comparison among various tripropellant implementation approaches and cycle choices, and then compared them to similarly designed bipropellant engines in the

  15. Tribopolymerization: An advanced lubrication concept for automotive engines and systems of the future

    SciTech Connect

    Furey, M.J.; Kajdas, C.; Kaltenbach, K.W.

    1997-12-31

    Advanced lubrication technologies based on the concept of tribopolymerization as a mechanism of boundary lubrication are described. Advantages of this approach as well as potential applications which could have an impact on the design, manufacture, and performance of existing and future automotive engines are presented and discussed. Tribopolymerization, a novel concept of molecular design developed by Furey and Kajdas, involves the continuous formation of thin polymeric films on rubbing surfaces; the protective films formed are self-replenishing. The antiwear compounds developed from this technology are effective with metals as well as ceramics and in the liquid as well as vapor phases. Furthermore, they are ashless and contain no harmful phosphorus or sulfur; and many are biodegradable. Thus, potential applications of this technology are diverse and include a variety of cost/performance/energy/environmental advantages. Examples include the following: (a) machining and cutting applications using thin films to reduce friction and ceramic tool wear; (b) the lubrication of ceramic engines (e.g., low heat rejection diesel engines) or ceramic components; (c) the development of ashless lubricants for existing and future automotive engines to reduce exhaust catalyst poisoning and environmental emissions; (d) ashless antiwear or ``lubricity`` additives for fuels, including gasoline, diesel and jet fuel; (e) vapor phase applications of this technology to high temperature gaseous systems or to fuel injector wear problems associated with the use of natural gas engines; and (f) the use of the concept of tribopolymerization as an enabling technology in the development of new engines and new automotive propulsion systems.

  16. Draft Function Allocation Framework and Preliminary Technical Basis for Advanced SMR Concepts of Operations

    SciTech Connect

    Jacques Hugo; John Forester; David Gertman; Jeffrey Joe; Heather Medema; Julius Persensky; April Whaley

    2013-04-01

    This report presents preliminary research results from the investigation in to the development of new models and guidance for concepts of operations (ConOps) in advanced small modular reactor (aSMR) designs. In support of this objective, three important research areas were included: operating principles of multi-modular plants, functional allocation models and strategies that would affect the development of new, non-traditional concept of operations, and the requiremetns for human performance, based upon work domain analysis and current regulatory requirements. As part of the approach for this report, we outline potential functions, including the theoretical and operational foundations for the development of a new functional allocation model and the identification of specific regulatory requirements that will influence the development of future concept of operations. The report also highlights changes in research strategy prompted by confirmationof the importance of applying the work domain analysis methodology to a reference aSMR design. It is described how this methodology will enrich the findings from this phase of the project in the subsequent phases and help in identification of metrics and focused studies for the determination of human performance criteria that can be used to support the design process.

  17. Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles - 12477

    SciTech Connect

    Hardin, Ernest; Blink, James; Carter, Joe; Fratoni, Massimiliano; Greenberg, Harris; Sutton, Mark; Howard, Robert

    2012-07-01

    A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE), Used Fuel Disposition campaign. Reference concepts are identified for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. These were analyzed for waste inventory cases representing a range of waste types that could be produced by advanced nuclear fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress. All of these disposal concepts are enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. Enclosed modes have less capacity to dissipate heat than open modes such as that proposed for a repository at Yucca Mountain. Thermal analysis has identified important relationships between waste package size and capacity, and the duration of surface decay storage needed to meet temperature limits for different disposal concepts. For the crystalline rock and clay/shale repository concepts, a waste package surface temperature limit of 100 deg. C was assumed to prevent changes in clay-based buffer material or clay-rich host rock. Surface decay storage of 50 to 100 years is needed for disposal of high-burnup LWR SNF in 4-PWR packages, or disposal of HLW glass from reprocessing LWR uranium oxide (UOX) fuel. High-level waste (HLW) from reprocessing of metal fuel used in a fast reactor could be disposed after decay storage of 50 years or less. For disposal in salt the rock thermal conductivity is significantly greater, and higher temperatures (200 deg. C) can be tolerated at the waste package surface. Decay storage of 10 years or less is needed for high-burnup LWR SNF in 4-PWR

  18. Summary report: Working Group 2 on {open_quotes}Plasma Based Acceleration Concepts{close_quotes}

    SciTech Connect

    Leemans, W.P.; Esarey, E.; Esarey, E.

    1999-07-01

    A summary of the talks, papers and discussion sessions presented in the Working Group on Plasma Based Acceleration Concepts is given within the context of the progress towards a 1 GeV laser driven accelerator module. The topics covered within the Working Group were self-modulated laser wakefield acceleration, standard laser wakefield acceleration, plasma beatwave acceleration, laser guiding and wake excitation in plasma channels, plasma wakefield acceleration, plasma lenses and optical injection techniques for laser wakefield accelerators. An overview will be given of the present status of experimental and theoretical progress as well as an outlook towards the future physics and technological challenges for the development of an optimized accelerator module. {copyright} {ital 1999 American Institute of Physics.}

  19. Advanced Concepts, Technologies and Flight Experiments for NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Meredith, Barry D.

    2000-01-01

    Over the last 25 years, NASA Langley Research Center (LaRC) has established a tradition of excellence in scientific research and leading-edge system developments, which have contributed to improved scientific understanding of our Earth system. Specifically, LaRC advances knowledge of atmospheric processes to enable proactive climate prediction and, in that role, develops first-of-a-kind atmospheric sensing capabilities that permit a variety of new measurements to be made within a constrained enterprise budget. These advances are enabled by the timely development and infusion of new, state-of-the-art (SOA), active and passive instrument and sensor technologies. In addition, LaRC's center-of-excellence in structures and materials is being applied to the technological challenges of reducing measurement system size, mass, and cost through the development and use of space-durable materials; lightweight, multi-functional structures; and large deployable/inflatable structures. NASA Langley is engaged in advancing these technologies across the full range of readiness levels from concept, to components, to prototypes, to flight experiments, and on to actual science mission infusion. The purpose of this paper is to describe current activities and capabilities, recent achievements, and future plans of the integrated science, engineering, and technology team at Langley Research Center who are working to enable the future of NASA's Earth Science Enterprise.

  20. Advanced payload concepts and system architecture for emerging services in Indian National Satellite Systems

    NASA Astrophysics Data System (ADS)

    Balasubramanian, E. P.; Rao, N. Prahlad; Sarkar, S.; Singh, D. K.

    2008-07-01

    Over the past two decades Indian Space Research Organization (ISRO) has developed and operationalized satellites to generate a large capacity of transponders for telecommunication service use in INSAT system. More powerful on-board transmitters are built to usher-in direct-to-home broadcast services. These have transformed the Satcom application scenario in the country. With the proliferation of satellite technology, a shift in the Indian market is witnessed today in terms of demand for new services like Broadband Internet, Interactive Multimedia, etc. While it is imperative to pay attention to market trends, ISRO is also committed towards taking the benefits of technological advancement to all round growth of our population, 70% of which dwell in rural areas. The initiatives already taken in space application related to telemedicine, tele-education and Village Resource Centres are required to be taken to a greater height of efficiency. These targets pose technological challenges to build a large capacity and cost-effective satellite system. This paper addresses advanced payload concepts and system architecture along with the trade-off analysis on design parameters in proposing a new generation satellite system capable of extending the reach of the Indian broadband structure to individual users, educational and medical institutions and enterprises for interactive services. This will be a strategic step in the evolution of INSAT system to employ advanced technology to touch every human face of our population.

  1. Understanding the concept of the key worker: do focus groups help?

    PubMed

    Hull, Ken; Turton, Pat

    2014-08-12

    The concept of the 'key-worker role' within paediatric haematology and oncology services is recognised in the UK through inclusion in published policies and guidance. Such guidance originates from both statutory and voluntary sector organisations. Within the policy direction itself, references are made to both 'designated' and 'non-designated' key workers, and there remains ongoing confusion within the professional field about the exact nature of the process of 'key-working' and how this should operate. This confusion therefore also exists for parents, carers and service users. The project described here aimed to examine the concept of the key-worker role through consultation with users as part of local service development. Focus group discussion was identified as the methodology of choice. Careful planning and delivery ensured that meaningful data emerged. Active participation by those attending the focus group discussion was observed. The focus group was in two sessions, both of which were digitally recorded and transcribed, with contemporaneous notes taken. These were subjected to thematic analysis and clear themes emerged regarding the importance of terminology, communication, skill mix and the use of technology. This local project achieved greater clarity about how to develop the key-worker role to best meet the needs of users through highlighting the need to include both the key-worker role, and the process of key-working. It is concluded that the use of focus groups is both a valid and valuable mechanism of consultation, as user consultation regarding service design and evaluation of care delivered is high on the wider agenda of the NHS. PMID:25119328

  2. Advanced Technology Subsonic Transport Study: N+3 Technologies and Design Concepts

    NASA Technical Reports Server (NTRS)

    Raymer, Daniel P.; Wilson, Jack; Perkins, H. Douglas; Rizzi, Arthur; Zhang, Mengmeng; RamirezPuentes, Alfredo

    2011-01-01

    Conceptual Research Corporation, the Science of the Possible, has completed a two-year study of concepts and technologies for future airliners in the 180-passenger class. This NASA-funded contract was primarily focused on the ambitious goal of a 70 percent reduction in fuel consumption versus the market-dominating Boeing 737-800. The study is related to the N+3 contracts awarded in 2008 by NASA s Aeronautics Research Mission Directorate to teams led by Boeing, GE Aviation, MIT, and Northrop Grumman, but with more modest goals and funding. CRC s contract featured a predominant emphasis on propulsion and fuel consumption, but since fuel consumption depends upon air vehicle design as much as on propulsion technology, the study included notional vehicle design, analysis, and parametric studies. Other NASA goals including NOx and noise reduction are of long-standing interest but were not highlighted in this study, other than their inclusion in the propulsion system provided to CRC by NASA. The B-737-800 was used as a benchmark, parametric tool, and design point of departure. It was modeled in the RDS-Professional aircraft design software then subjected to extensive parametric variations of parasitic drag, drag-due-to-lift, specific fuel consumption, and unsized empty weight. These studies indicated that the goal of a 70 percent reduction in fuel consumption could be attained with roughly a 30 percent improvement in all four parameters. The results were then fit to a Response Surface and coded for ease of use in subsequent trade studies. Potential technologies to obtain such savings were identified and discussed. More than 16 advanced concept designs were then prepared, attempting to investigate almost every possible emerging concept for application to this class airliner. A preliminary assessment of these concepts was done based on their total wetted area after design normalization of trimmed maximum lift. This assessment points towards a Tailless Airliner concept which

  3. Space transfer vehicle concepts and requirements study. Volume 2, book 4: Integrated advanced technology development

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    The Space Transfer Vehicle (STV) program provides both an opportunity and a requirement to increase our upper stage capabilities with the development and applications of new technologies. Issues such as man rating, space basing, reusability, and long lunar surface storage times drive the need for new technology developments and applications. In addition, satisfaction of mission requirements such as lunar cargo delivery capability and lunar landing either require new technology development or can be achieved in a more cost-effective manner with judicious applications of advanced technology. During the STV study, advanced technology development requirements and plans have been addressed by the Technology/Advanced Development Working Group composed of NASA and contractor representatives. This report discusses the results to date of this working group. The first section gives an overview of the technologies that have potential or required applications for the STV and identifies those technologies baselined for the STV. Figures are provided that list the technology categories and show the priority placed on those technology categories for either the space-based or ground-based options. The second section covers the plans and schedules for incorporating the technologies into the STV program.

  4. Gender Segregation among Disciplinary Groups in Liberal Arts Colleges: An Examination of Differences in Career Concepts and Work Values.

    ERIC Educational Resources Information Center

    Neal, John E.

    The study reported in this paper examined the level of gender segregation between disciplinary groupings in faculty members' career concepts and in the job characteristics they value in their work. Specifically, the study contrasted perceptions of faculty members in female-dominated disciplinary groupings with those in male-dominated groups. The…

  5. Study of advanced fuel system concepts for commercial aircraft and engines

    NASA Technical Reports Server (NTRS)

    Versaw, E. F.; Brewer, G. D.; Byers, W. D.; Fogg, H. W.; Hanks, D. E.; Chirivella, J.

    1983-01-01

    The impact on a commercial transport aircraft of using fuels which have relaxed property limits relative to current commercial jet fuel was assessed. The methodology of the study is outlined, fuel properties are discussed, and the effect of the relaxation of fuel properties analyzed. Advanced fuel system component designs that permit the satisfactory use of fuel with the candidate relaxed properties in the subject aircraft are described. The two fuel properties considered in detail are freezing point and thermal stability. Three candidate fuel system concepts were selected and evaluated in terms of performance, cost, weight, safety, and maintainability. A fuel system that incorporates insulation and electrical heating elements on fuel tank lower surfaces was found to be most cost effective for the long term.

  6. Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, January--March 1992

    SciTech Connect

    Not Available

    1992-04-01

    In the Advance Coal Liquefaction Concept Proposal (ACLCP) carbon monoxide (CO) and water have been proposed as the primary reagents in the pretreatment process. The main objective of this project is to develop a methodology for pretreating coal under mild conditions based on a combination of existing processes which have shown great promise in liquefaction, extraction and pyrolysis studies. The aim of this pretreatment process is to partially depolymerise the coal, eliminate oxygen and diminish the propensity for retograde reactions during subsequent liquefaction. The desirable outcome of the CO pretreatment step should be: (1) enhanced liquefaction activity and/or selectivity toward products of higher quality due to chemical modification of the coal structure; (2) cleaner downstream products; (3) overall improvement in operability and process economics.

  7. The x-ray advanced concepts testbed (XACT) sounding rocket payload

    NASA Astrophysics Data System (ADS)

    Gendreau, Keith; Arzoumanian, Zaven; Asami, Fumi; Baker, Robert; Balsamo, Erin; Black, Kevin; Duran-Aviles, Carlos; Enoto, Teruaki; Gregory, Kyle; Hahne, Devin; Hayato, Asami; Hill, Joe; Huegel, Fred; Iwahashi, Takanori; Iwakiri, Wataru; Jahoda, Keith; Jalota, Lalit; Kaaret, Philip; Kaneko, Kenta; Kenyon, Steven; Kitaguchi, Takao; Koenecke, Richard; Kohmura, Takayoshi; Okajima, Takashi; Olsen, Larry; Porter, F. Scott; Rush, Kurt; Serlemitsos, Peter; Soong, Yang; Takeuchi, Yoko; Tamagawa, Toru; Yamada, Shin'ya; Yoshikawa, Akifumi

    2012-09-01

    The scientific objective of the X-ray Advanced Concepts Testbed (XACT) is to measure the X-ray polarization properties of the Crab Nebula, the Crab pulsar, and the accreting binary Her X-1. Polarimetry is a powerful tool for astrophysical investigation that has yet to be exploited in the X-ray band, where it promises unique insights into neutron stars, black holes, and other extreme-physics environments. With powerful new enabling technologies, XACT will demonstrate X-ray polarimetry as a practical and flight-ready astronomical technique. Additional technologies that XACT will bring to flight readiness will also provide new X-ray optics and calibration capabilities for NASA missions that pursue space-based X-ray spectroscopy, timing, and photometry.

  8. Development of a VOR/DME model for an advanced concepts simulator

    NASA Technical Reports Server (NTRS)

    Steinmetz, G. G.; Bowles, R. L.

    1984-01-01

    The report presents a definition of a VOR/DME, airborne and ground systems simulation model. This description was drafted in response to a need in the creation of an advanced concepts simulation in which flight station design for the 1980 era can be postulated and examined. The simulation model described herein provides a reasonable representation of VOR/DME station in the continental United States including area coverage by type and noise errors. The detail in which the model has been cast provides the interested researcher with a moderate fidelity level simulator tool for conducting research and evaluation of navigator algorithms. Assumptions made within the development are listed and place certain responsibilities (data bases, communication with other simulation modules, uniform round earth, etc.) upon the researcher.

  9. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    SciTech Connect

    Petersen, G.; Bair, K.; Ross, J.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  10. Advanced X-ray Astrophysics Facility (AXAF): Science working group report. [space shuttle payload

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Advanced X-Ray Astrophysics Facility (AXAF) mission concept is examined from a scientific viewpoint. A brief description of the development of X-ray astronomy and a summary description of AXAF, the scientific objectives of the facility, a description of representative scientific instruments, requirements for X-ray ground testing, and a summary of studies related to spacecraft and support subsystems, are included.

  11. Can Self-Concept Be Improved in a Group of Children by Changing Certain Handwriting Strokes in Their Writing?

    ERIC Educational Resources Information Center

    Stoller, Richard J.

    This study explores the possibilities of graphotherapy, which uses handwriting analysis and instruction to change or improve such character traits as self-concept. Three fourth-grade classes were involved, one as the experimental group and the other two as controls. A pretest ascertained self-concept, as well as physical handwriting changes that…

  12. Composite transport wing technology development: Design development tests and advanced structural concepts

    NASA Technical Reports Server (NTRS)

    Griffin, Charles F.; Harvill, William E.

    1988-01-01

    Numerous design concepts, materials, and manufacturing methods were investigated for the covers and spars of a transport box wing. Cover panels and spar segments were fabricated and tested to verify the structural integrity of design concepts and fabrication techniques. Compression tests on stiffened panels demonstrated the ability of graphite/epoxy wing upper cover designs to achieve a 35 percent weight savings compared to the aluminum baseline. The impact damage tolerance of the designs and materials used for these panels limits the allowable compression strain and therefore the maximum achievable weight savings. Bending and shear tests on various spar designs verified an average weight savings of 37 percent compared to the aluminum baseline. Impact damage to spar webs did not significantly degrade structural performance. Predictions of spar web shear instability correlated well with measured performance. The structural integrity of spars manufactured by filament winding equalled or exceeded those fabricated by hand lay-up. The information obtained will be applied to the design, fabrication, and test of a full-scale section of a wing box. When completed, the tests on the technology integration box beam will demonstrate the structural integrity of an advanced composite wing design which is 25 percent lighter than the metal baseline.

  13. Tradespace Exploration of Distributed Propulsors for Advanced On-Demand Mobility Concepts

    NASA Technical Reports Server (NTRS)

    Borer, Nicholas K.; Moore, Mark D.; Turnbull, Andrew R.

    2014-01-01

    Combustion-based sources of shaft power tend to significantly penalize distributed propulsion concepts, but electric motors represent an opportunity to advance the use of integrated distributed propulsion on an aircraft. This enables use of propellers in nontraditional, non-thrust-centric applications, including wing lift augmentation, through propeller slipstream acceleration from distributed leading edge propellers, as well as wingtip cruise propulsors. Developing propellers for these applications challenges long-held constraints within propeller design, such as the notion of optimizing for maximum propulsive efficiency, or the use of constant-speed propellers for high-performance aircraft. This paper explores the design space of fixed-pitch propellers for use as (1) lift augmentation when distributed about a wing's leading edge, and (2) as fixed-pitch cruise propellers with significant thrust at reduced tip speeds for takeoff. A methodology is developed for evaluating the high-level trades for these types of propellers and is applied to the exploration of a NASA Distributed Electric Propulsion concept. The results show that the leading edge propellers have very high solidity and pitch well outside of the empirical database, and that the cruise propellers can be operated over a wide RPM range to ensure that thrust can still be produced at takeoff without the need for a pitch change mechanism. To minimize noise exposure to observers on the ground, both the leading edge and cruise propellers are designed for low tip-speed operation during takeoff, climb, and approach.

  14. Design, simulation and evaluation of advanced display concepts for the F-16 control configured vehicle

    NASA Technical Reports Server (NTRS)

    Klein, R. W.; Hollister, W. M.

    1982-01-01

    Advanced display concepts to augment the tracking ability of the F-16 Control Configured Vehicle (CCV) were designed, simulated, and evaluated. A fixed-base simulator was modified to represent the F-16 CCV. An isometric sidearm control stick and two-axis CCV thumb button were installed in the cockpit. The forward cockpit CRT was programmed to present an external scene (numbered runway, horizon) and the designed Heads Up Display. The cockpit interior was modified to represent a fighter and the F-16 CCV dynamics and direct lift and side force modes were programmed. Compensatory displays were designed from man-machine considerations. Pilots evaluated the Heads up Display and compensatory displays during simulated descents in the presence of several levels of filtered, zero-mean winds gusts. During a descent from 2500 feet to the runway, the pilots tracked a point on the runway utilizing the basic F-16, F-16 CCV, and F-16 CCV with advanced displays. Substantial tracking improvements resulted utilizing the CCV modes, and the displays were found to even further enhance the tracking ability of the F-16 CCV.

  15. Affordable In-Space Transportation Phase 2: An Advanced Concepts Project

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Affordable In-Space Transportation (AIST) program was established by the NASA Office of Space Access to improve transportation and lower the costs from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO) and beyond (to Lunar orbit, Mars orbit, inner solar system missions, and return to LEO). A goal was established to identify and develop radically innovative concepts for new upper stages for Reusable Launch Vehicles (RLV) and Highly Reusable Space Transportation (HRST) systems. New architectures and technologies are being identified which have the potential to meet a cost goal of $1,000 to $2,000 per pound for transportation to GEO and beyond for overall mission cost (including the cost to LEO). A Technical Interchange Meeting (TTM) was held on October 16 and 17, 1996 in Huntsville, Alabama to review previous studies, present advanced concepts and review technologies that could be used to meet the stated goals. The TIN4 was managed by NASA-Marshall Space Flight Center (MSFC) Advanced Concepts Office with Mr. Alan Adams providing TIM coordination. Mr. John C. Mankins of NASA Headquarters provided overall sponsorship. The University of Alabama in Huntsville (UAH) Propulsion Research Center hosted the TIM at the UAH Research Center. Dr. Clark Hawk, Center Director, was the principal investigator. Technical support was provided by Christensen Associates. Approximately 70 attendees were present at the meeting. This Executive Summary provides a record of the key discussions and results of the TIN4 in a summary for-mat. It incorporates the response to the following basic issues of the TDVL which addressed the following questions: 1. What are the cost drivers and how can they be reduced? 2. What are the operational issues and their impact on cost? 3. What is the current technology readiness level (TRL) and what will it take to reach TRL 6? 4. What are the key enabling technologies and sequence for their accomplishment? 5 . What is the proposed implementation time

  16. Affordable In-Space Transportation. Phase 2; An Advanced Concepts Project

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Affordable In-Space Transportation (AIST) program was established by the NASA Office of Space Access to improve transportation and lower the costs from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO) and beyond (to Lunar orbit, Mars orbit, inner solar system missions, and return to LEO). A goal was established to identify and develop radically innovative concepts for new upper stages for Reusable Launch Vehicles (RLV) and Highly Reusable Space Transportation (HRST) systems. New architectures and technologies are being identified which have the potential to meet a cost goal of $1,000 to $2,000 per pound for transportation to GEO and beyond for overall mission cost (including the cost to LEO). A Technical Interchange Meeting (ITM) was held on October 16 and 17, 1996 in Huntsville, Alabama to review previous studies, present advanced concepts and review technologies that could be used to meet the stated goals. The TIM was managed by NASA-Mar-shaU Space Flight Center (MSFC) Advanced Concepts Office with Mr. Alan Adams providing TIM coordination. Mr. John C. Manidns of NASA Headquarters provided overall sponsorship. The University of Alabama in Huntsville (UAH) Propulsion Research Center hosted the TM at the UAH Research Center. Dr. Clark Hawk, Center Director, was the principal investigator. Technical support was provided by Christensen Associates. Approximately 70 attendees were present at the meeting. This Executive Summary provides a record of the key discussions and results of the TIM in a summary format. It incorporates the response to the following basic issues of the TPA, which addressed the following questions: 1. What are the cost drivers and how can they be reduced? 2. What are the operational issues and their impact on cost? What is the current Technology Readiness Level (TRL) and what will it take to reach TRL 6? 4. What are the key enabling technologies and sequence for their accomplishment? 5. What is the proposed implementation time frame

  17. Technology Alignment and Portfolio Prioritization (TAPP): Advanced Methods in Strategic Analysis, Technology Forecasting and Long Term Planning for Human Exploration and Operations, Advanced Exploration Systems and Advanced Concepts

    NASA Technical Reports Server (NTRS)

    Funaro, Gregory V.; Alexander, Reginald A.

    2015-01-01

    The Advanced Concepts Office (ACO) at NASA, Marshall Space Flight Center is expanding its current technology assessment methodologies. ACO is developing a framework called TAPP that uses a variety of methods, such as association mining and rule learning from data mining, structure development using a Technological Innovation System (TIS), and social network modeling to measure structural relationships. The role of ACO is to 1) produce a broad spectrum of ideas and alternatives for a variety of NASA's missions, 2) determine mission architecture feasibility and appropriateness to NASA's strategic plans, and 3) define a project in enough detail to establish an initial baseline capable of meeting mission objectives ACO's role supports the decision­-making process associated with the maturation of concepts for traveling through, living in, and understanding space. ACO performs concept studies and technology assessments to determine the degree of alignment between mission objectives and new technologies. The first step in technology assessment is to identify the current technology maturity in terms of a technology readiness level (TRL). The second step is to determine the difficulty associated with advancing a technology from one state to the next state. NASA has used TRLs since 1970 and ACO formalized them in 1995. The DoD, ESA, Oil & Gas, and DoE have adopted TRLs as a means to assess technology maturity. However, "with the emergence of more complex systems and system of systems, it has been increasingly recognized that TRL assessments have limitations, especially when considering [the] integration of complex systems." When performing the second step in a technology assessment, NASA requires that an Advancement Degree of Difficulty (AD2) method be utilized. NASA has used and developed or used a variety of methods to perform this step: Expert Opinion or Delphi Approach, Value Engineering or Value Stream, Analytical Hierarchy Process (AHP), Technique for the Order of

  18. The Science Advancement through Group Engagement Program: Leveling the Playing Field and Increasing Retention in Science

    ERIC Educational Resources Information Center

    Hall, Donna M.; Curtin-Soydan, Amanda J.; Canelas, Dorian A.

    2014-01-01

    How can colleges and universities keep an open gateway to the science disciplines for the least experienced first-year science students while also maintaining high standards that challenge the students with the strongest possible high school backgrounds? The Science Advancement through Group Engagement (SAGE) project targets cohorts of less…

  19. Final Project Report "Advanced Concept Exploration For Fast Ignition Science Program"

    SciTech Connect

    STEPHENS, Richard B.; McLEAN, Harry M.; THEOBALD, Wolfgang; AKLI, Kramer; BEG, Farhat N.; SENTOKU, Yasuiko; SCHUMACHER, Douglas; WEI, Mingsheng S.

    2014-01-31

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy (IFE) reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using the laser (or heavy ion beam or Z pinch) drive pulse (10’s of ns) to create a dense fuel and a second, much shorter (~10 ps) high intensity pulse to ignite a small region of it. There are two major physics issues concerning this concept; controlling the laser-induced generation of large electron currents and their propagation through high density plasmas. This project has addressed these two significant scientific issues in Relativistic High Energy Density (RHED) physics. Learning to control relativistic laser matter interaction (and the limits and potential thereof) will enable a wide range of applications. While these physics issues are of specific interest to inertial fusion energy science, they are also important for a wide range of other HED phenomena, including high energy ion beam generation, isochoric heating of materials, and the development of high brightness x-ray sources. Generating, controlling, and understanding the extreme conditions needed to advance this science has proved to be challenging: Our studies have pushed the boundaries of physics understanding and are at the very limits of experimental, diagnostic, and simulation capabilities in high energy density laboratory physics (HEDLP). Our research strategy has been based on pursuing the fundamental physics underlying the Fast Ignition (FI) concept. We have performed comprehensive study of electron generation and transport in fast-ignition targets with experiments, theory, and numerical modeling. A major issue is that the electrons produced in these experiments cannot be measured directly—only effects due to their transport. We focused mainly on x-ray continuum photons from bremsstrahlung

  20. Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances

    SciTech Connect

    Faybishenko, B.

    1999-02-01

    This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.

  1. The Impacts of Friendship Groups' Racial Composition When Perceptions of Prejudice Threaten Students' Academic Self-Concept

    ERIC Educational Resources Information Center

    Lehman, Brett

    2012-01-01

    Literature on racially prejudiced stereotypes suggests that students' academic self-concepts (ASC) can be damaged when a stereotype demeans the intelligence of their racial or ethnic group. There is little research on how students overcome this burden, but there is some evidence that the racial composition of friendship groups play a role. One…

  2. Parabolic Flight Investigation for Advanced Exercise Concept Hardware Hybrid Ultimate Lifting Kit (HULK)

    NASA Technical Reports Server (NTRS)

    Weaver, A. S.; Funk, J. H.; Funk, N. W.; Sheehan, C. C.; Humphreys, B. T.; Perusek, G. P.

    2015-01-01

    Long-duration space flight poses many hazards to the health of the crew. Among those hazards is the physiological deconditioning of the musculoskeletal and cardiovascular systems due to prolonged exposure to microgravity. To combat this erosion of physical condition space flight may take on the crew, the Human Research Program (HRP) is charged with developing Advanced Exercise Concepts to maintain astronaut health and fitness during long-term missions, while keeping device mass, power, and volume to a minimum. The goal of this effort is to preserve the physical capability of the crew to perform mission critical tasks in transit and during planetary surface operations. The HULK is a pneumatic-based exercise system, which provides both resistive and aerobic modes to protect against human deconditioning in microgravity. Its design targeted the International Space Station (ISS) Advanced Resistive Exercise Device (ARED) high level performance characteristics and provides up to 600 foot pounds resitive loading with the capability to allow for eccentric to concentric (E:C) ratios of higher than 1:1 through a DC motor assist component. The device's rowing mode allows for high cadence aerobic activity. The HULK parabolic flight campaign, conducted through the NASA Flight Opportunities Program at Ellington Field, resulted in the creation of device specific data sets including low fidelity motion capture, accelerometry and both inline and ground reaction forces. These data provide a critical link in understanding how to vibration isolate the device in both ISS and space transit applications. Secondarily, the study of human exercise and associated body kinematics in microgravity allows for more complete understanding of human to machine interface designs to allow for maximum functionality of the device in microgravity.

  3. Advanced Concepts for Pressure-Channel Reactors: Modularity, Performance and Safety

    NASA Astrophysics Data System (ADS)

    Duffey, Romney B.; Pioro, Igor L.; Kuran, Sermet

    Based on an analysis of the development of advanced concepts for pressure-tube reactor technology, we adapt and adopt the pressure-tube reactor advantage of modularity, so that the subdivided core has the potential for optimization of the core, safety, fuel cycle and thermal performance independently, while retaining passive safety features. In addition, by adopting supercritical water-cooling, the logical developments from existing supercritical turbine technology and “steam” systems can be utilized. Supercritical and ultra-supercritical boilers and turbines have been operating for some time in coal-fired power plants. Using coolant outlet temperatures of about 625°C achieves operating plant thermal efficiencies in the order of 45-48%, using a direct turbine cycle. In addition, by using reheat channels, the plant has the potential to produce low-cost process heat, in amounts that are customer and market dependent. The use of reheat systems further increases the overall thermal efficiency to 55% and beyond. With the flexibility of a range of plant sizes suitable for both small (400 MWe) and large (1400 MWe) electric grids, and the ability for co-generation of electric power, process heat, and hydrogen, the concept is competitive. The choice of core power, reheat channel number and exit temperature are all set by customer and materials requirements. The pressure channel is a key technology that is needed to make use of supercritical water (SCW) in CANDU®1 reactors feasible. By optimizing the fuel bundle and fuel channel, convection and conduction assure heat removal using passive-moderator cooling. Potential for severe core damage can be almost eliminated, even without the necessity of activating the emergency-cooling systems. The small size of containment structure lends itself to a small footprint, impacts economics and building techniques. Design features related to Canadian concepts are discussed in this paper. The main conclusion is that development of

  4. The conceptions of learning science for science-mathematics groups and literature-mathematics groups in Turkey

    NASA Astrophysics Data System (ADS)

    Sadi, Ozlem; Lee, Min-Hsien

    2015-05-01

    Background:The conceptions of learning have a deep effect on the learning process, and accordingly on learning outcomes. Some researchers emphasize that conceptions of learning are domain-dependent and there should be more research in different domains (e.g. science, literature) to enhance students' understanding of conceptions of learning science. Purpose:The purpose of this research was to examine and compare science-major and literature-major students' conceptions of learning science (COLS). Also, gender differences in COLS were examined for two majors. Sample:The sample for this study comprised of 503 high school students in 10th, 11th, and 12th grades (244 females, 259 males) in a district of Karaman in Turkey. Design and methods:The questionnaire, the Conceptions of Learning Science (COLS), developed by Lee, Johanson, and Tsai, was used to identify students' COLS. The data obtained via the questionnaire were analyzed by means of SPSS 15.0 statistical software. Exploratory and confirmatory factor analyses were used to examine the factor structure of the questionnaire. Then, two-way MANOVA was conducted to compare the mean scores regarding the students' majors and genders in terms of the factors of COLS. Results:The results of the study revealed that students in Science-Mathematics field tended to express more agreement with lower-level COLS, such as learning science by 'memorizing,' 'preparing for exams,' and 'increasing one's knowledge' than those in Literature-Mathematics field. Second, more female students conceptualized learning science as 'increasing one's knowledge,' 'applying,' 'understanding,' or 'seeing in a new way' than male students in both majors. Third, the findings of two-way MANOVA, in general, revealed that there were significant differences in the average scores of conceptions of 'memorizing,' 'calculating and practicing,' and 'increasing one's knowledge' between two majors. Furthermore, there was a statistically significant mean difference

  5. Innovative concept for an advanced hadron facility based on a 2 GeV H/sup -/ linac

    SciTech Connect

    Thiessen, H.A.

    1987-01-01

    This report presents parameters for an innovative new concept for the design of an advanced hadron facility. We propose combining a cold neutron source with a kaon factory. We also discuss the possibility of a shared target for neutron and neutrino experiments. An initial cost estimate is presented.

  6. Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period

    NASA Technical Reports Server (NTRS)

    Morgenstern, John; Norstrud, Nicole; Sokhey, Jack; Martens, Steve; Alonso, Juan J.

    2013-01-01

    Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR), Rolls-Royce Liberty Works (RRLW), and Stanford University, herein presents results from the "N+2 Supersonic Validations" contract s initial 22 month phase, addressing the NASA solicitation "Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period." This report version adds documentation of an additional three month low boom test task. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies. These capabilities aspired to produce a viable supersonic vehicle design with environmental and performance characteristics. Supersonic testing of both airframe and propulsion technologies (including LM3: 97-023 low boom testing and April-June nozzle acoustic testing) verified LM s supersonic low-boom design methodologies and both GE and RRLW's nozzle technologies for future implementation. The N+2 program is aligned with NASA s Supersonic Project and is focused on providing system-level solutions capable of overcoming the environmental and performance/efficiency barriers to practical supersonic flight. NASA proposed "Initial Environmental Targets and Performance Goals for Future Supersonic Civil Aircraft". The LM N+2 studies are built upon LM s prior N+3 100 passenger design studies. The LM N+2 program addresses low boom design and methodology validations with wind tunnel testing, performance and efficiency goals with system level analysis, and low noise validations with two nozzle (GE and RRLW) acoustic tests.

  7. A review of design concepts for the Advanced Fluids Module (AFM) project

    NASA Technical Reports Server (NTRS)

    Hill, Myron E.; Tschen, Peter S.

    1993-01-01

    This paper reviews preliminary fluid module design concepts for the Advanced Fluids Module (AFM) project. The objective of this effort is to provide a facility that can handle a wide variety of fluids experiments. Sample science requirements were written and conceptual designs were subsequently generated during the last year. Experiments from the following fluid physics subject areas were used as conceptual design drivers: static and dynamic interfacial phenomena; bubble/droplet thermocapillary migration; surface tension convection and instabilities; thermal/solutal convection; pool boiling; and multiphase flow. After the conceptual designs were completed, the next phase attempted to combine experiments capabilities into a multipurpose, multiuser apparatus configured for the Space Station Freedom. It was found that all the fluid subject areas considered could be accommodated by three basic types of fluids modules. These modules are the Static Fluid Cell Module, the Dynamic Fluid Cell Module, and the Multiphase Flow Module. Descriptions of these preliminary modules designs and their particular sub-systems (e.g., fluid and thermal systems) are discussed. These designs will be refined as the nature of the flight program becomes clearer over the next six to twelve months.

  8. Real-time manned simulation of advanced terminal area guidance concepts for short-haul operations

    NASA Technical Reports Server (NTRS)

    Tobias, L.; Obrien, P. J.

    1977-01-01

    A real-time simulation was conducted of three-dimensional area navigation and four-dimensional area navigation equipped (STOL) aircraft operating in a high-density terminal area traffic environment. The objectives were to examine the effects of 3D RNAV and 4D RNAV equipped aircraft on the terminal area traffic efficiency, and to examine the performance of an air traffic control system concept and associated controller display proposed for use with advanced RNAV systems. Three types of STOL aircraft were simulated each with different performance capabilities. System performance was measured in both the 4D mode and in a 3D mode; the 3D mode, used as a baseline, was simply the 4D mode less any time specification. The results show that communications workload in the 4D mode was reduced by about 35 percent compared to the 3D, while 35 percent more traffic was handled with the 4D. Aircraft holding time in the 4D mode was only 30 percent of that required in the 3D mode. In addition, the orderliness of traffic was improved significantly in the 4D mode.

  9. Lessons learned from U.S. Department of Defense 911-Bio Advanced Concept Technology Demonstrations.

    SciTech Connect

    Baldwin, T.; Gasper, W.; Lacher, L.; Newsom, D.; Yantosik, G.

    1999-07-06

    The US Department of Defense (DoD), in cooperation with other federal agencies, has taken many initiatives to improve its ability to support civilian response to a domestic biological terrorism incident. This paper discusses one initiative, the 911-Bio Advanced Concept Technology Demonstrations (ACTDs), conducted by the Office of the Secretary of Defense during 1997 to better understand: (1) the capability of newly developed chemical and biological collection and identification technologies in a field environment; (2) the ability of specialized DoD response teams to use these new technologies within the structure of cooperating DoD and civilian consequence management organizations; and (3) the adequacy of current modeling tools for predicting the dispersal of biological hazards. This paper discusses the experience of the ACTDs from the civilian community support perspective. The 911-Bio ACTD project provided a valuable opportunity for DoD and civilian officials to learn how they should use their combined capabilities to manage the aftermath of a domestic biological terrorism incident.

  10. Advanced life support control/monitor instrumentation concepts for flight application

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dahlhausen, M. J.; Fell, R. B.

    1986-01-01

    Development of regenerative Environmental Control/Life Support Systems requires instrumentation characteristics which evolve with successive development phases. As the development phase moves toward flight hardware, the system availability becomes an important design aspect which requires high reliability and maintainability. This program was directed toward instrumentation designs which incorporate features compatible with anticipated flight requirements. The first task consisted of the design, fabrication and test of a Performance Diagnostic Unit. In interfacing with a subsystem's instrumentation, the Performance Diagnostic Unit is capable of determining faulty operation and components within a subsystem, perform on-line diagnostics of what maintenance is needed and accept historical status on subsystem performance as such information is retained in the memory of a subsystem's computerized controller. The second focus was development and demonstration of analog signal conditioning concepts which reduce the weight, power, volume, cost and maintenance and improve the reliability of this key assembly of advanced life support instrumentation. The approach was to develop a generic set of signal conditioning elements or cards which can be configured to fit various subsystems. Four generic sensor signal conditioning cards were identified as being required to handle more than 90 percent of the sensors encountered in life support systems. Under company funding, these were detail designed, built and successfully tested.

  11. Concepts for 3D print productivity systems with advanced DLP photoheads

    NASA Astrophysics Data System (ADS)

    Jacobsen, Alfred; Jorgensen, Trond; Tafjord, Øyvind; Kirkhorn, Endre

    2015-03-01

    Direct Imaging with DLP® Photoheads is becoming an established technology in productivity systems for PCB Lithography and similar applications. Scrolling technology is used to expose large areas and is enabling highest levels of productivity and efficiency, while maintaining full flexibility of direct imaging concepts. Specific features such as SPX (subpixelation) and PPC (pixel power control) technologies have further enhanced resolution of printed structures, as well as precision and uniformity of the exposure across the entire field. 3D print systems with photosensitive resins can conceptually be seen as an extension of 2D Direct Imaging systems into the third dimension. The scrolling technique then allows to enlarge the build area by freely multiplying the photohead's static build area with native pixel pitch in both, x and y dimensions. In addition, SPX technology in 3D print systems would enable 2 different advanced options. Either it offers improved (reduced) edge roughness of structures, by fine pitching the native pixel pitch. Or a larger native pixel pitch can be chosen, still providing the same fine pitched edge roughness and surface finish as a native system with proportionally smaller build area.

  12. Advances and New Concepts in Alcohol-Induced Organelle Stress, Unfolded Protein Responses and Organ Damage

    PubMed Central

    Ji, Cheng

    2015-01-01

    Alcohol is a simple and consumable biomolecule yet its excessive consumption disturbs numerous biological pathways damaging nearly all organs of the human body. One of the essential biological processes affected by the harmful effects of alcohol is proteostasis, which regulates the balance between biogenesis and turnover of proteins within and outside the cell. A significant amount of published evidence indicates that alcohol and its metabolites directly or indirectly interfere with protein homeostasis in the endoplasmic reticulum (ER) causing an accumulation of unfolded or misfolded proteins, which triggers the unfolded protein response (UPR) leading to either restoration of homeostasis or cell death, inflammation and other pathologies under severe and chronic alcohol conditions. The UPR senses the abnormal protein accumulation and activates transcription factors that regulate nuclear transcription of genes related to ER function. Similarly, this kind of protein stress response can occur in other cellular organelles, which is an evolving field of interest. Here, I review recent advances in the alcohol-induced ER stress response as well as discuss new concepts on alcohol-induced mitochondrial, Golgi and lysosomal stress responses and injuries. PMID:26047032

  13. Predicted reliability of aerospace electronics: Application of two advanced probabilistic concepts

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    Two advanced probabilistic design-for-reliability (PDfR) concepts are addressed and discussed in application to the prediction, quantification and assurance of the aerospace electronics reliability: 1) Boltzmann-Arrhenius-Zhurkov (BAZ) model, which is an extension of the currently widely used Arrhenius model and, in combination with the exponential law of reliability, enables one to obtain a simple, easy-to-use and physically meaningful formula for the evaluation of the probability of failure (PoF) of a material or a device after the given time in operation at the given temperature and under the given stress (not necessarily mechanical), and 2) Extreme Value Distribution (EVD) technique that can be used to assess the number of repetitive loadings that result in the material/device degradation and eventually lead to its failure by closing, in a step-wise fashion, the gap between the bearing capacity (stress-free activation energy) of the material or the device and the demand (loading). It is shown that the material degradation (aging, damage accumulation, flaw propagation, etc.) can be viewed, when BAZ model is considered, as a Markovian process, and that the BAZ model can be obtained as the ultimate steady-state solution to the well-known Fokker-Planck equation in the theory of Markovian processes. It is shown also that the BAZ model addresses the worst, but a reasonably conservative, situation. It is suggested therefore that the transient period preceding the condition addressed by the steady-state BAZ model need not be accounted for in engineering evaluations. However, when there is an interest in understanding the transient degradation process, the obtained solution to the Fokker-Planck equation can be used for this purpose. As to the EVD concept, it attributes the degradation process to the accumulation of damages caused by a train of repetitive high-level loadings, while loadings of levels that are considerably lower than their extreme values do not contribute

  14. A System Concept for the Advanced Post-TRMM Rainfall Profiling Radars

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Smith, Eric A.

    1998-01-01

    ultimate goal. The Precipitation Radar (PR) aboard the TRMM satellite is the first ever spaceborne radar dedicated to three-dimensional, global precipitation measurements over the tropics and the subtropics, as well as the detailed synopsis of a wide range of tropical rain storm systems. In only twelve months since launch, the PR, together with other science instruments abroad the satellite have already provided unprecedented insights into the rainfall systems. It is anticipated the a lot more exciting and important rain observations would be made by TRMM throughout its mission duration. While TRMM has provided invaluable data to the user community, it is only the first step towards advancing our knowledge on rain processes and its contributions to climate variability. It is envisioned that a TRMM follow-on mission is needed in such a way to capitalize on the pioneering information provided by TRMM, and its instrument capability must be extended beyond TRMM in such a way to fully address the key science questions from microphysical to climatic time scale. In fact, a number of new and innovative mission concepts have recently put forth for this purpose. Almost all of these new concepts have suggested the utility of a more advanced, high-resolution, Doppler-enabled, vertical profiling radar that can provide multi-parameter observations of precipitation. In this paper, a system concept for a second- gene ration precipitation radar (PR-2) which addresses the above requirements will be described.

  15. Consilience and a Hierarchy of Species Concepts: Advances Toward Closure on the Species Puzzle

    PubMed Central

    Mayden, Richard L.

    1999-01-01

    Numerous concepts exist for biological species. This diversity of ideas derives from a number of sources ranging from investigative study of particular taxa and character sets to philosophical aptitude and world view to operationalism and nomenclatorial rules. While usually viewed as counterproductive, in reality these varied concepts can greatly enhance our efforts to discover and understand biological diversity. Moreover, this continued "turf war" and dilemma over species can be resolved if the various concepts are viewed in a hierarchical system and each evaluated for its inherent level of consilience. Under this paradigm a theoretically appropriate, highly consilient concept of species capable of colligating the abundant types of species diversity offers the best guidance for developing and employing secondary operational concepts for identifying diversity. Of all the concepts currently recognized, only the non-operational Evolutionary Species Concept corresponds to the requisite parameters and, therefore, should serve as the theoretical concept appropriate for the category Species. As operational concepts, the remaining ideas have been incompatible with one another in their ability to encompass species diversity because each has restrictive criteria as to what qualifies as a species. However, the operational concepts can complement one another and do serve a vital role under the Evolutionary Species Concept as fundamental tools necessary for discovering diversity compatible with the primary theoretical concept. Thus, the proposed hierarchical system of primary and secondary concepts promises both the most productive framework for mutual respect for varied concepts and the most efficient and effective means for revealing species diversity. PMID:19270881

  16. Self-Concept and Academic Achievement of Central and Western European Groups of Adolescents.

    ERIC Educational Resources Information Center

    Kobal-Palcic, Darja; Musek, Janek

    This study examined the hypothesis that academic achievement affects different components of self-concept. Also investigated was the possible influence of nationality in modifying the relationship between academic achievement and self-concept, by comparing Slovenian and French subjects. The findings of two-factor (academic achievement x…

  17. Highly reusable space transportation: Advanced concepts and the opening of the space frontier

    NASA Astrophysics Data System (ADS)

    Mankins, John C.

    2002-11-01

    Revolutionary changes in how cargo and people are transported into space are needed to enable the affordable development and exploration of space in the 21st century. Diverse efforts to achieve major, but incremental Earth-to-orbit (ETO) improvements in the relatively near term have been undertaken in recent years in the US, including the Department of Defense evolved expendable launch vehicle system development project. The NASA-industry reusable launch vehicle (RLV) program is addressing this challenge for the mid-term. The RLV program will validate the technology to enable industry to develop all-rocket reusable launch systems that can deliver payloads from the current Civil Needs Data Base in the 20,000-40,000 pounds class and smaller to low Earth orbit (LEO) at costs of approximately 1000-2000 per pound. This represents a factor of 5 (or more) reduction below existing launch services. This "next generation" improvement in launch capability is a vital element of the US National Space Transportation policy for current and planned government and commercial payloads. The longer-term challenge is also being addressed. During 1995-1997, NASA conducted the highly reusable space transportation (HRST) study project to address the longer-term challenge: how to achieve an additional factor of 10 reduction in launch costs—to approximately 100-200 per payload pound to LEO—thus enabling a revolutionary expansion of space activity and enterprise. The HRST study has identified a "grand strategy" for achieving these cost goals, based on pursuing a revolutionary advance in main propulsion architectures and technology for ETO systems to enable a dramatic improvements in subsystem operability. The HRST study has examined diverse approaches, including combination propulsion systems, combined cycle propulsion, launch assist systems, and revolutionary rocket propulsion. An integrated assessment has been conducted, including both the concepts defined as part of the study as well

  18. Liminality in cultural transition: applying ID-EA to advance a concept into theory-based practice.

    PubMed

    Baird, Martha B; Reed, Pamela G

    2015-01-01

    As global migration increases worldwide, nursing interventions are needed to address the effects of migration on health. The concept of liminality emerged as a pivotal concept in the situation-specific theory of well-being in refugee women experiencing cultural transition. As a relatively new concept in the discipline of nursing, liminality is explored using a method, called ID-EA, which we developed to advance a theoretical concept for application to nursing practice. Liminality in the context of cultural transition is further developed using the five steps of inquiry of the ID-EA method. The five steps are as follows: (1) inductive inquiry: qualitative research, (2) deductive inquiry: literature review, (3) synthesis of inductive and deductive inquiry, (4) evaluation inquiry, and (5) application-to-practice inquiry. The overall goal of this particular work was to develop situation-specific, theory-based interventions that facilitate cultural transitions for immigrants and refugees. PMID:25799694

  19. Patients Presenting with Advanced Human Immunodeficiency Virus Disease: Epidemiological Features by Age Group

    PubMed Central

    2016-01-01

    We explored factors influencing presentation with advanced human immunodeficiency virus (HIV) disease by age group. Data were derived from a city-wide cross-sectional survey of 759 HIV-infected adults living in Seoul, Korea. The significance of each observed factor was assessed via multivariate logistic regression. Of subjects aged 20-34 years, lower educational level had a positive influence on presentation with advanced HIV disease (adjusted odds ratio [aOR], 2.43; 95% confidence interval [CI], 1.36-4.34); those recently diagnosed with HIV were more likely to be presented with advanced HIV disease (aOR, 3.17; 95% CI, 0.99-10.2). Of the subjects aged 35-49 years, those w ith advanced HIV disease were more likely to have been diagnosed during health check-ups (aOR, 2.91; 95% CI, 1.15-7.32) or via clinical manifestations (aOR, 3.61; 95% CI, 1.39-9.36). Of the subjects aged ≥ 50 years, presentation with advanced HIV disease was significantly more common in older subjects (aOR per increment of 5 years, 2.06; 95% CI, 1.32-3.23) and less common among individuals diagnosed with HIV in 2000-2006 (aOR, 0.18; 95% CI, 0.04-0.83). In conclusion, a lower educational level in younger subjects and more advanced age in older subjects positively influence the presentation of advanced HIV disease. PMID:26839469

  20. Computer-assisted generation of individual training concepts for advanced education in manufacturing metrology

    NASA Astrophysics Data System (ADS)

    Werner, Teresa; Weckenmann, Albert

    2010-05-01

    Due to increasing requirements on the accuracy and reproducibility of measurement results together with a rapid development of novel technologies for the execution of measurements, there is a high demand for adequately qualified metrologists. Accordingly, a variety of training offers are provided by machine manufacturers, universities and other institutions. Yet, for an interested learner it is very difficult to define an optimal training schedule for his/her individual demands. Therefore, a computer-based assistance tool is developed to support a demand-responsive scheduling of training. Based on the difference between the actual and intended competence profile and under consideration of amending requirements, an optimally customized qualification concept is derived. For this, available training offers are categorized according to different dimensions: regarding contents of the course, but also intended target groups, focus of the imparted competences, implemented methods of learning and teaching, expected constraints for learning and necessary preknowledge. After completing a course, the achieved competences and the transferability of gathered knowledge are evaluated. Based on the results, recommendations for amending measures of learning are provided. Thus, a customized qualification for manufacturing metrology is facilitated, adapted to the specific needs and constraints of each individual learner.

  1. Shape of the self-concept clarity change during group psychotherapy predicts the outcome: an empirical validation of the theoretical model of the self-concept change

    PubMed Central

    Styła, Rafał

    2015-01-01

    Background: Self-Concept Clarity (SCC) describes the extent to which the schemas of the self are internally integrated, well defined, and temporally stable. This article presents a theoretical model that describes how different shapes of SCC change (especially stable increase and “V” shape) observed in the course of psychotherapy are related to the therapy outcome. Linking the concept of Jean Piaget and the dynamic systems theory, the study postulates that a stable SCC increase is needed for the participants with a rather healthy personality structure, while SCC change characterized by a “V” shape or fluctuations is optimal for more disturbed patients. Method: Correlational study in a naturalistic setting with repeated measurements (M = 5.8) was conducted on the sample of 85 patients diagnosed with neurosis and personality disorders receiving intensive eclectic group psychotherapy under routine inpatient conditions. Participants filled in the Self-Concept Clarity Scale (SCCS), Symptoms' Questionnaire KS-II, and Neurotic Personality Questionnaire KON-2006 at the beginning and at the end of the course of psychotherapy. The SCCS was also administered every 2 weeks during psychotherapy. Results: As hypothesized, among the relatively healthiest group of patients the stable SCC increase was related to positive treatment outcome, while more disturbed patients benefited from the fluctuations and “V” shape of SCC change. Conclusions: The findings support the idea that for different personality dispositions either a monotonic increase or transient destabilization of SCC is a sign of a good treatment prognosis. PMID:26579001

  2. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO. Program cost estimates document

    NASA Technical Reports Server (NTRS)

    Duffy, James B.

    1993-01-01

    This report describes Rockwell International's cost analysis results of manned launch vehicle concepts for two way transportation system payloads to low earth orbit during the basic and option 1 period of performance for contract NAS8-39207, advanced transportation system studies. Vehicles analyzed include the space shuttle, personnel launch system (PLS) with advanced launch system (ALS) and national launch system (NLS) boosters, foreign launch vehicles, NLS-2 derived launch vehicles, liquid rocket booster (LRB) derived launch vehicle, and cargo transfer and return vehicle (CTRV).

  3. 26 CFR 1.1563-1 - Definition of controlled group of corporations and component members and related concepts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... contained in 26 CFR part 1 in effect on April 1, 2009. Paragraph (a)(1)(ii) of this section applies to... 26 Internal Revenue 13 2013-04-01 2013-04-01 false Definition of controlled group of corporations and component members and related concepts. 1.1563-1 Section 1.1563-1 Internal Revenue...

  4. 26 CFR 1.1563-1 - Definition of controlled group of corporations and component members and related concepts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... contained in 26 CFR part 1 in effect on April 1, 2009. ... 26 Internal Revenue 13 2011-04-01 2011-04-01 false Definition of controlled group of corporations and component members and related concepts. 1.1563-1 Section 1.1563-1 Internal Revenue...

  5. 26 CFR 1.1563-1 - Definition of controlled group of corporations and component members and related concepts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... contained in 26 CFR part 1 in effect on April 1, 2009. Paragraph (a)(1)(ii) of this section applies to... 26 Internal Revenue 13 2012-04-01 2012-04-01 false Definition of controlled group of corporations and component members and related concepts. 1.1563-1 Section 1.1563-1 Internal Revenue...

  6. 26 CFR 1.1563-1 - Definition of controlled group of corporations and component members and related concepts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... contained in 26 CFR part 1 in effect on April 1, 2009. Paragraph (a)(1)(ii) of this section applies to... 26 Internal Revenue 13 2014-04-01 2014-04-01 false Definition of controlled group of corporations and component members and related concepts. 1.1563-1 Section 1.1563-1 Internal Revenue...

  7. Full-Time Ability Grouping of Gifted Students: Impacts on Social Self-Concept and School-Related Attitudes

    ERIC Educational Resources Information Center

    Vogl, Katharina; Preckel, Franzis

    2014-01-01

    Positive socioemotional outcomes and developments represent important educational goals. Full-time ability grouping of gifted students has been criticized for potentially detrimental socioemotional effects. Therefore, in the present longitudinal study, we investigated whether or not social self-concepts and school-related attitudes and beliefs are…

  8. Self-Concept and Native Language Background: A Study of Measurement Invariance and Cross-Group Comparisons in Third Grade

    ERIC Educational Resources Information Center

    Niehaus, Kate; Adelson, Jill L.

    2013-01-01

    This study examined the measurement and interpretation of self-concept among the growing population of children who are English Language Learners (ELLs). More specifically, a 3-group analysis was conducted comparing native English-speaking children, Spanish-speaking ELLs, and ELLs from Asian language backgrounds. Data were drawn from the Early…

  9. Effect of occupation-based groups on self-concept of children aged 5-8: a pilot study.

    PubMed

    Scurlock, Debra

    2015-01-01

    The goal of this pilot study was to ascertain the effectiveness of an occupation-based after-school program for improving self-concept in children, ages five through eight. Fifty-four randomly selected children ages five through eight from two schools (one being the control group) with similar socioeconomic status along the Ohio River were involved in this research study. The Pictorial Scale of Perceived Competence and Social Acceptance for Young Children (PCSA; Harter & Pike, 1984) was administered to all participants (N = 54), four subtests were analyzed: cognitive competence, social competence with peers, physical competence in sports, and maternal acceptance. The experimental group (n = 25) attended occupation-based groups two times a week after school. The control group (n = 29) did not participate in an after-school program. Data from pre-test and post-test were analyzed using a t-test. Findings demonstrated that the experimental group improved their self-concept scores when compared to the control group in the areas of peer acceptance and cognitive competence. This would offer tentative evidence that an after-school program directed by occupational therapists that is designed to improve self-concept may be successful. PMID:25338266

  10. Advanced Information Processing System (AIPS) proof-of-concept system functional design I/O network system services

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The function design of the Input/Output (I/O) services for the Advanced Information Processing System (AIPS) proof of concept system is described. The data flow diagrams, which show the functional processes in I/O services and the data that flows among them, are contained. A complete list of the data identified on the data flow diagrams and in the process descriptions are provided.

  11. Improved best estimate plus uncertainty methodology including advanced validation concepts to license evolving nuclear reactors

    SciTech Connect

    Unal, Cetin; Williams, Brian; Mc Clure, Patrick; Nelson, Ralph A

    2010-01-01

    Many evolving nuclear energy programs plan to use advanced predictive multi-scale multi-physics simulation and modeling capabilities to reduce cost and time from design through licensing. Historically, the role of experiments was primary tool for design and understanding of nuclear system behavior while modeling and simulation played the subordinate role of supporting experiments. In the new era of multi-scale multi-physics computational based technology development, the experiments will still be needed but they will be performed at different scales to calibrate and validate models leading predictive simulations. Cost saving goals of programs will require us to minimize the required number of validation experiments. Utilization of more multi-scale multi-physics models introduces complexities in the validation of predictive tools. Traditional methodologies will have to be modified to address these arising issues. This paper lays out the basic aspects of a methodology that can be potentially used to address these new challenges in design and licensing of evolving nuclear technology programs. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. An enhanced calibration concept is introduced and is accomplished through data assimilation. The goal is to enable best-estimate prediction of system behaviors in both normal and safety related environments. To achieve this goal requires the additional steps of estimating the domain of validation and quantification of uncertainties that allow for extension of results to areas of the validation domain that are not directly tested with experiments, which might include extension of the modeling and simulation (M&S) capabilities for application to full-scale systems. The new methodology suggests a formalism to quantify an adequate level of validation (predictive maturity) with respect to required selective data so that required testing can be minimized for cost

  12. Working Group summary reports from the Advanced Photon Source reliability workshop

    SciTech Connect

    Not Available

    1992-05-01

    A workshop was held at APS to address reliability goals for accelerator systems. Seventy-one individuals participated in the workshop, including 30 from other institutions. The goals of the workshop were to: (1) Give attendees an introduction to the basic concepts of reliability analysis. (2) Exchange information on operating experience at existing accelerator facilities and strategies for achieving reliability at facilities under design or in construction. (3) Discuss reliability goals for APS and the means of their achievement. This report contains the working group summary report an APS`s following systems: RF Systems; Power Supplies; Magnet Systems; Interlock and Diagnostics; and Vacuum Systems.

  13. Working Group summary reports from the Advanced Photon Source reliability workshop

    SciTech Connect

    Not Available

    1992-05-01

    A workshop was held at APS to address reliability goals for accelerator systems. Seventy-one individuals participated in the workshop, including 30 from other institutions. The goals of the workshop were to: (1) Give attendees an introduction to the basic concepts of reliability analysis. (2) Exchange information on operating experience at existing accelerator facilities and strategies for achieving reliability at facilities under design or in construction. (3) Discuss reliability goals for APS and the means of their achievement. This report contains the working group summary report an APS's following systems: RF Systems; Power Supplies; Magnet Systems; Interlock and Diagnostics; and Vacuum Systems.

  14. Using Concept Mapping Techniques to Compare Stakeholder Groups' Perceptions of Tech Prep.

    ERIC Educational Resources Information Center

    Roegge, Chris A.; And Others

    A study was conducted to develop a conceptual framework for tech prep programs based on the perceptions of personnel involved in the planning and implementation of local tech prep programs. A structured conceptualization process called concept mapping was used to develop a pictorial representation of stakeholders' perceptions of tech prep. Using a…

  15. Advanced Wind Turbine Drivetrain Concepts: Workshop Report, June 29-30, 2010

    SciTech Connect

    DOE, EERE

    2010-12-01

    This report presents key findings from the Department of Energy's Advanced Drivetrain Workshop, held on June 29-30, 2010 in Broomfield, Colorado, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

  16. Overview of the 3rd isirv-Antiviral Group Conference – advances in clinical management

    PubMed Central

    Hurt, Aeron C; Hui, David S; Hay, Alan; Hayden, Frederick G

    2015-01-01

    This review highlights the main points which emerged from the presentations and discussions at the 3rd isirv-Antiviral Group Conference - advances in clinical management. The conference covered emerging and potentially pandemic influenza viruses and discussed novel/pre-licensure therapeutics and currently approved antivirals and vaccines for the control of influenza. Current data on approved and novel treatments for non-influenza respiratory viruses such as MERS-CoV, respiratory syncytial virus (RSV) and rhinoviruses and the challenges of treating immunocompromised patients with respiratory infections was highlighted. PMID:25399715

  17. The effects of advance organizer and prerequisite knowledge passages on the learning and retention of science concepts

    NASA Astrophysics Data System (ADS)

    Healy, Vivian C.

    Fifty-five ninth-grade science students participated in this study which compared the effects of two pretreatments, an advance organizer and a prerequisite knowledge passage, on learning and retention measured at low (knowledge and comprehension) and high (application and analysis) levels of the cognitive domain. The effectiveness of the pretreatments was measured by a framework test and a prerequisite knowledge test prior to the beginning of instruction. An analysis of covariance, with IQ as the covariate, was performed on the framework test and the prerequisite knowledge test. It was found that the advance organizer group performed significantly better than the prerequisite knowledge group (p < 0.001) on the first framework test, and the prerequisite knowledge group performed significantly better (p < 0.001) than the advance organizer group on the prerequisite knowledge test. These results provide evidence that both passages were read and understood by the students and that the passages had their intended effects as preinstructional treatments. An analysis of covariance, with IQ as the covariate, was performed on the low-level questions, high-level questions, and total score for the posttest and retention test. The group means for the two question levels and the total score were not found to be significantly different (p > 0.05) for either the posttest or retention test. The results of this study do not provide evidence that an advance organizer facilitates learning and retention more than a preinstructional treatment that concentrates on developing prerequisite knowledge.

  18. Duct wall impedance control as an advanced concept for acoustic suppression enhancement. [engine noise reduction

    NASA Technical Reports Server (NTRS)

    Dean, P. D.

    1978-01-01

    A systems concept procedure is described for the optimization of acoustic duct liner design for both uniform and multisegment types. The concept was implemented by the use of a double reverberant chamber flow duct facility coupled with sophisticated computer control and acoustic analysis systems. The optimization procedure for liner insertion loss was based on the concept of variable liner impedance produced by bias air flow through a multilayer, resonant cavity liner. A multiple microphone technique for in situ wall impedance measurements was used and successfully adapted to produce automated measurements for all liner configurations tested. The complete validation of the systems concept was prevented by the inability to optimize the insertion loss using bias flow induced wall impedance changes. This inability appeared to be a direct function of the presence of a higher order energy carrying modes which were not influenced significantly by the wall impedance changes.

  19. Duct wall impedance control as an advanced concept for acoustic impression

    NASA Technical Reports Server (NTRS)

    Dean, P. D.; Tester, B. J.

    1975-01-01

    Models and tests on an acoustic duct liner system which has the property of controlled-variable acoustic impedance are described. This is achieved by a novel concept which uses the effect of steady air flow through a multi-layer, locally reacting, resonant-cavity absorber. The scope of this work was limited to a 'proof of concept.' The test of the concept was implemented by means of a small-scale, square-section flow duct facility designed specifically for acoustic measurements, with one side of the duct acoustically lined. The test liners were designed with the aid of previously established duct acoustic theory and a semi-empirical impedance model of the liner system. Over the limited range tested, the liner behaved primarily as predicted, exhibiting significant changes in resistance and reactance, thus providing the necessary concept validation.

  20. Advanced sulfur control concepts in hot-gas desulfurization technology. Quarterly report, April--June 1994

    SciTech Connect

    Harrison, D.P.

    1994-07-01

    The primary objective of this research project is the direct production of elemental sulfur during the regeneration of known high temperature desulfurization sorbents. The contract was awarded to LSU on April 12, 1994, and this quarterly report covers accomplishments during the first 2 1/2 months of the project. Effort during the initial 2 1/2 month period has been limited to Tasks 1 and 2, and involves a search of the literature to identify concepts for producing elemental sulfur during regeneration of known metal oxide sorbents and a thermodynamic evaluation of these concepts. While searching and evaluating the literature is a continuing process, concentrated effort on that phase is now complete and a detailed summary is included in this report. Three possible concepts for the direct production of elemental sulfur were identified in the LSU proposal, and the literature search has not uncovered any additional concepts. Thus, the three concepts being investigated involve: (1) regeneration with SO{sub 2}, (2) regeneration with mixtures Of 02 and H{sub 2}O, and (3) regeneration with H{sub 2}O. While concept (3) directly produces H{sub 2}S instead of elemental sulfur, the concept is included because the possibility exists for converting H{sub 2}S to elemental sulfur using the Claus process. Each of the concepts will ultimately be compared to the Direct Sulfur Recovery Process (DSRP) under development by RTI. DSRP involves initial sorbent regeneration to SO{sub 2}, and the inclusion of additional processing steps to reduce the SO{sub 2} to elemental sulfur.

  1. Number Concepts without Number Lines in an Indigenous Group of Papua New Guinea

    PubMed Central

    Núñez, Rafael; Cooperrider, Kensy; Wassmann, Jürg

    2012-01-01

    Background The generic concept of number line, which maps numbers to unidimensional space, is a fundamental concept in mathematics, but its cognitive origins are uncertain. Two defining criteria of the number line are that (i) there is a mapping of each individual number (or numerosity) under consideration onto a specific location on the line, and (ii) that the mapping defines a unidimensional space representing numbers with a metric — a distance function. It has been proposed that the number line is based on a spontaneous universal human intuition, rooted directly in brain evolution, that maps number magnitude to linear space with a metric. To date, no culture lacking this intuition has been documented. Methodology/Principal Findings By means of a number line task, we investigated the universality proposal with the Yupno of Papua New Guinea. Unschooled adults did exhibit a number-to-space mapping (criterion i) but, strikingly, despite having precise cardinal number concepts, they located numbers only on the endpoints, thus failing to use the extent of the line. The produced mapping was bi-categorical and metric-free, in violation of criterion ii. In contrast, Yupnos with scholastic experience used the extent of the segment according to known standards, but they did so not as evenly as western controls, exhibiting a bias towards the endpoints. Conclusions/Significance Results suggest that cardinal number concepts can exist independently from number line representations. They also suggest that the number line mapping, although ubiquitous in the modern world, is not universally spontaneous, but rather seems to be learned through — and continually reinforced by — specific cultural practices. PMID:22558193

  2. Interagency Advanced Power Group (IAPG) meeting compendium. October 1991--December 1992

    SciTech Connect

    Not Available

    1993-01-01

    Under the direction of the Interagency Advanced Power Group (IAPG), the Power Information Center (PIC) provides support services for each IAPG information exchange session. IAPG members meet a minimum of once each year to share programmatic and technical information on federally funded research and development (R&D) projects in the area of advanced power. This R&D is directed by one of the five IAPG member agencies-the US Army, US Navy, US Air Force, US Department of Energy, and the National Aeronautics and Space Administration. Affiliated Federal groups and federally funded research and development centers can also participate. To enhance the exchange of information between Government researchers, this 1992 IAPG Meeting Compendium has been assembled. This publication is a re-printing of abstracts of each IAPG presentation offered during 1991-1992. The information is arranged chronologically by IAPG meeting. During the 1992 IAPG meeting year, there were presentations restricted to Government audiences only. These ``Restricted`` minutes have not been included in this compilation.

  3. Meaning-centered group psychotherapy for patients with advanced cancer: a pilot randomized controlled trial

    PubMed Central

    Breitbart, William; Rosenfeld, Barry; Gibson, Christopher; Pessin, Hayley; Poppito, Shannon; Nelson, Christian; Tomarken, Alexis; Timm, Anne Kosinski; Berg, Amy; Jacobson, Colleen; Sorger, Brooke; Abbey, Jennifer; Olden, Megan

    2013-01-01

    Objectives An increasingly important concern for clinicians who care for patients at the end of life is their spiritual well-being and sense of meaning and purpose in life. In response to the need for short-term interventions to address spiritual well-being, we developed Meaning Centered Group Psychotherapy (MCGP) to help patients with advanced cancer sustain or enhance a sense of meaning, peace and purpose in their lives, even as they approach the end of life. Methods Patients with advanced (stage III or IV) solid tumor cancers (N = 90) were randomly assigned to either MCGP or a supportive group psychotherapy (SGP). Patients were assessed before and after completing the 8-week intervention, and again 2 months after completion. Outcome assessment included measures of spiritual well-being, meaning, hopelessness, desire for death, optimism/pessimism, anxiety, depression and overall quality of life. Results MCGP resulted in significantly greater improvements in spiritual well-being and a sense of meaning. Treatment gains were even more substantial (based on effect size estimates) at the second follow-up assessment. Improvements in anxiety and desire for death were also significant (and increased over time). There was no significant improvement on any of these variables for patients participating in SGP. Conclusions MCGP appears to be a potentially beneficial intervention for patients’ emotional and spiritual suffering at the end of life. Further research, with larger samples, is clearly needed to better understand the potential benefits of this novel intervention. PMID:19274623

  4. Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry

    SciTech Connect

    none,

    2005-11-01

    The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

  5. Using Adult Learning Concepts To Assist Patients in Completing Advance Directives.

    ERIC Educational Resources Information Center

    Meyer, Rose Mary

    2000-01-01

    Advance directives that enable individuals to control their health care are underused due to lack of patient knowledge. Nurses can teach patients about them using adult learning principles, transformation theory, and skills for learning how to learn. (SK)

  6. Status and future directions for advanced accelerator research - conventional and non-conventional collider concepts

    SciTech Connect

    Siemann, R.H.

    1997-01-01

    The relationship between advanced accelerator research and future directions for particle physics is discussed. Comments are made about accelerator research trends in hadron colliders, muon colliders, and e{sup +}3{sup {minus}} linear colliders.

  7. Adaptive Radiation in Socially Advanced Stem-Group Ants from the Cretaceous.

    PubMed

    Barden, Phillip; Grimaldi, David A

    2016-02-22

    Across terrestrial ecosystems, modern ants are ubiquitous. As many as 94 out of every 100 individual arthropods in rainforests are ants, and they constitute up to 15% of animal biomass in the Amazon. Moreover, ants are pervasive agents of natural selection as over 10,000 arthropod species are specialized inquilines or myrmecomorphs living among ants or defending themselves through mimicry. Such impact is traditionally explained by sociality: ants are the first major group of ground-dwelling predatory insects to become eusocial, increasing efficiency of tasks and establishing competitive superiority over solitary species. A wealth of specimens from rich deposits of 99 million-year-old Burmese amber resolves ambiguity regarding sociality and diversity in the earliest ants. The stem-group genus Gerontoformica maintained distinct reproductive castes including morphotypes unknown in solitary aculeate (stinging) wasps, providing insight into early behavior. We present rare aggregations of workers, indicating group recruitment as well as an instance of interspecific combat; such aggression is a social feature of modern ants. Two species and an unusual new genus are described, further expanding the remarkable diversity of early ants. Stem-group ants are recovered as a paraphyletic assemblage at the base of modern lineages varying greatly in size, form, and mouthpart structure, interpreted here as an adaptive radiation. Though Cretaceous stem-group ants were eusocial and adaptively diverse, we hypothesize that their extinction resulted from the rise of competitively superior crown-group taxa that today form massive colonies, consistent with Wilson and Hölldobler's concept of "dynastic succession." PMID:26877084

  8. Preliminary design concepts for an advanced gas distribution system. Task report, August 1989-August 1990

    SciTech Connect

    Lipinsky, E.S.; Hattery, G.R.; Newaz, G.

    1991-01-01

    Studies that were conducted in 1989 (GRI-89/0107.2) showed that the major problems that face the industry are third-party damage, locatability, and pipe supportability. These needs were translated into performance criteria for materials and designs of gas distribution system components. In Phase 2 to date, the performance criteria were refined and used as the basis for generation of concepts for materials and designs for enhancement of the gas distribution system. The screening criteria include long service life, damage tolerance, installation, and manufacturability. A scoring model that allows the criteria to have variable weights was applied to attain normalized scores and rankings for the concepts. The leading concepts include puncture-resistant polyethylene pipe via wrapping with an ultrahigh molecular weight polyethylene fabric or fiber, toughened thermoplastics (especially polyamides or acetal resin or polyester), thermoplastic fiber-reinforced thermoplastic resins, fiberglass-reinforced hose designs, and honeycomb-reinforced thermoplastic elastomer designs. Tentative research and development plans were developed for the leading concepts in which simple tests of manufacturability, impact resistance, and joinability are to be used to determine which concepts should be pursued further and which appear to have serious flaws.

  9. Modeling and predicting abstract concept or idea introduction and propagation through geopolitical groups

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger M.; Handley, James W.; Hicklen, Michael L.

    2007-04-01

    This paper describes a novel capability for modeling known idea propagation transformations and predicting responses to new ideas from geopolitical groups. Ideas are captured using semantic words that are text based and bear cognitive definitions. We demonstrate a unique algorithm for converting these into analytical predictive equations. Using the illustrative idea of "proposing a gasoline price increase of 1 per gallon from 2" and its changing perceived impact throughout 5 demographic groups, we identify 13 cost of living Diplomatic, Information, Military, and Economic (DIME) features common across all 5 demographic groups. This enables the modeling and monitoring of Political, Military, Economic, Social, Information, and Infrastructure (PMESII) effects of each group to this idea and how their "perception" of this proposal changes. Our algorithm and results are summarized in this paper.

  10. Evaluating the Effects of Dimensionality in Advanced Avionic Display Concepts for Synthetic Vision Systems

    NASA Technical Reports Server (NTRS)

    Alexander, Amy L.; Prinzel, Lawrence J., III; Wickens, Christopher D.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.

    2007-01-01

    Synthetic vision systems provide an in-cockpit view of terrain and other hazards via a computer-generated display representation. Two experiments examined several display concepts for synthetic vision and evaluated how such displays modulate pilot performance. Experiment 1 (24 general aviation pilots) compared three navigational display (ND) concepts: 2D coplanar, 3D, and split-screen. Experiment 2 (12 commercial airline pilots) evaluated baseline 'blue sky/brown ground' or synthetic vision-enabled primary flight displays (PFDs) and three ND concepts: 2D coplanar with and without synthetic vision and a dynamic multi-mode rotatable exocentric format. In general, the results pointed to an overall advantage for a split-screen format, whether it be stand-alone (Experiment 1) or available via rotatable viewpoints (Experiment 2). Furthermore, Experiment 2 revealed benefits associated with utilizing synthetic vision in both the PFD and ND representations and the value of combined ego- and exocentric presentations.

  11. Invited article: advanced drag-free concepts for future space-based interferometers: acceleration noise performance.

    PubMed

    Gerardi, D; Allen, G; Conklin, J W; Sun, K-X; DeBra, D; Buchman, S; Gath, P; Fichter, W; Byer, R L; Johann, U

    2014-01-01

    Future drag-free missions for space-based experiments in gravitational physics require a Gravitational Reference Sensor with extremely demanding sensing and disturbance reduction requirements. A configuration with two cubical sensors is the current baseline for the Laser Interferometer Space Antenna (LISA) and has reached a high level of maturity. Nevertheless, several promising concepts have been proposed with potential applications beyond LISA and are currently investigated at HEPL, Stanford, and EADS Astrium, Germany. The general motivation is to exploit the possibility of achieving improved disturbance reduction, and ultimately understand how low acceleration noise can be pushed with a realistic design for future mission. In this paper, we discuss disturbance reduction requirements for LISA and beyond, describe four different payload concepts, compare expected strain sensitivities in the "low-frequency" region of the frequency spectrum, dominated by acceleration noise, and ultimately discuss advantages and disadvantages of each of those concepts in achieving disturbance reduction for space-based detectors beyond LISA. PMID:24517738

  12. Recent advances in aerodynamic energy concept for flutter suppression and gust alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1977-01-01

    Control laws are derived, by using realizable transfer functions, which permit relaxation of the stability requirements of the aerodynamic energy concept. The resulting aerodynamic eigenvalues indicate that both the trailing edge and the leading edge-trailing edge control systems can be made more effective. These control laws permit the introduction of aerodynamic damping and stiffness terms in accordance with the requirements of any specific system. Flutter suppression and gust alleviation problems can now be treated by either a trailing edge control system or by a leading edge-trailing edge control system by using the aerodynamic energy concept. Results are applicable to a wide class of aircraft operating at subsonic Mach numbers.

  13. Concept of functionally graded materials for advanced thermal barrier coating applications

    SciTech Connect

    Lee, W.Y.; Stinton, D.P.; Berndt, C.C.; Erdogan, F.; Lee, Y.D.; Mutasim, Z.

    1996-12-01

    This article explores the concept of creating functionally graded metal-ceramic composite microstructures for thermal barrier coatings used in gas-turbine applications. From a thermomechanical perspective, this concept offers the possibility of significantly improving the life and reliability of thermal barrier coatings. However, prior research reveals that progress has been somewhat limited because of the oxidative instability exhibited by some metal-ceramic composite microstructures. The present study addresses some of the materials criteria and research issues associated with preparing chemically stable, yet mechanically durable, graded metal-ceramic microstructures for realistic application environments.

  14. Implementation of contemporary radiation therapy planning concepts for pediatric Hodgkin lymphoma: Guidelines from the International Lymphoma Radiation Oncology Group.

    PubMed

    Hodgson, David C; Dieckmann, Karin; Terezakis, Stephanie; Constine, Louis

    2015-01-01

    The optimal management of children with Hodgkin lymphoma (HL) should limit the risk of treatment-related toxicity without compromising disease control. Consequently, increasing effort is being directed to retaining the demonstrated efficacy of radiation therapy (RT) in maximizing the cure of HL while reducing the radiation exposure of normal tissues. Historically, guidelines for RT volume definition used in pediatric HL trials have referenced 2-dimensional imaging and bony landmarks to define classical involved field RT. With recognition of the efficacy of chemotherapy, the data on the adverse late effects of radiation, and the evolution of advanced imaging techniques that reveal the location of both tumor and normal tissues, it is necessary that radiation techniques for children and adolescents be refined. The concepts described by the International Commission on Radiation Units provide a common approach for field definition using 3-dimensional computed tomographic--based RT planning and volumetric image guidance. Here we describe the application of these concepts in the planning of RT for pediatric HL. This will be increasingly important as current and upcoming pediatric HL trials will employ these concepts to deliver RT. PMID:25413415

  15. Advanced composites: Design and application. Proceedings of the meeting of the Mechanical Failures Prevention Group

    NASA Technical Reports Server (NTRS)

    Shives, T. R.; Willard, W. A.

    1979-01-01

    The design and application of advanced composites is discussed with emphasis on aerospace, aircraft, automotive, marine, and industrial applications. Failure modes in advanced composites are also discussed.

  16. Development of Proof-of-Concept Units for the Advanced Medium-Sized Mobile Power Sources (AMMPS) Program

    SciTech Connect

    Andriulli, JB

    2002-04-03

    The purpose of this report is to document the development of the proof-of-concept units within the Advanced Medium-sized Mobile Power Sources (AMMPS) program. The design used a small, lightweight diesel engine, a permanent magnet alternator, power electronics and digital controls as outlined in the philosophy detailed previously. One small proof-of-concept unit was completed and delivered to the military. The unit functioned well but was not optimized at the time of delivery to the military. A tremendous amount of experience was gained during this phase that can be used in the development of any follow-on AMMPS production systems. Lessons learned and recommendations for follow-on specifications are provided. The unit demonstrated that significant benefits are possible with the new design philosophy. Trade-offs will have to be made but many of the advantages appear to be within the technical grasp of the market.

  17. Advancement of proprotor technology. Task 1: Design study summary. [aerodynamic concept of minimum size tilt proprotor research aircraft

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A tilt-proprotor proof-of-concept aircraft design study has been conducted. The results are presented. The ojective of the contract is to advance the state of proprotor technology through design studies and full-scale wind-tunnel tests. The specific objective is to conduct preliminary design studies to define a minimum-size tilt-proprotor research aircraft that can perform proof-of-concept flight research. The aircraft that results from these studies is a twin-engine, high-wing aircraft with 25-foot, three-bladed tilt proprotors mounted on pylons at the wingtips. Each pylon houses a Pratt and Whitney PT6C-40 engine with a takeoff rating of 1150 horsepower. Empty weight is estimated at 6876 pounds. The normal gross weight is 9500 pounds, and the maximum gross weight is 12,400 pounds.

  18. Design and fabrication of an advanced, lightweight, high stiffness, railgun barrel concept

    SciTech Connect

    Vrable, D.L.; Rosenwasser, S.N.; Korican, J.A. )

    1991-01-01

    An advanced lightweight and high stiffness railgun barrel design and incorporates several new design features and advanced materials is being developed by SPARTA, Inc. The program is sponsored by the U.S. Army Armament Research, Development, and Engineering Center ARDEC and by the Defense Advanced Research Projects Agency (DARPA). The railgun is 7 m long and has a 90 mm round bore. It is designed to accommodate both solid and plasma armatures. Muzzle energies are expected in the range of 9 to 15 MJ. Analysis and final design has been completed and the barrel and other railgun subassemblies are in the fabrication stage at SPARTA, Inc. in San Diego, California. Initial testing will be conducted at Maxwell Laboratories Green Farm facility in September 1990 and will subsequently be shipped to the ARDEC Railgun Laboratory in October 1990 for full power operation and testing. This paper discusses the design features and fabrication approaches for this high performance, lightweight railgun barrel system.

  19. Development and proof-testing of advanced absorption refrigeration cycle concepts. Report on Phases 1 and 1A

    SciTech Connect

    Modahl, R.J.; Hayes, F.C.

    1992-03-01

    The overall objectives of this project are to evaluate, develop, and proof-test advanced absorption refrigeration cycles that are applicable to residential and commercial heat pumps for space conditioning. The heat pump system is to be direct-fired with natural gas and is to use absorption working fluids whose properties are known. Target coefficients of performance (COPs) are 1.6 at 47{degrees}F and 1.2 at 17{degrees} in the heating mode, and 0.7 at 95{degree}F in the cooling mode, including the effect of flue losses. The project is divided into three phases. Phase I entailed the analytical evaluation of advanced cycles and included the selection of preferred concepts for further development. Phase II involves the development and testing of critical components and of a complete laboratory breadboard version of the selected system. Phase III calls for the development of a prototype unit and is contingent on the successful completion of Phase II. This report covers Phase I work on the project. In Phase 1, 24 advanced absorption cycle/fluid combinations were evaluated, and computer models were developed to predict system performance. COP, theoretical pump power, and internal heat exchange were calculated for each system, and these calculations were used as indicators of operating and installed costs in order to rank the relative promise of each system. The highest ranking systems involve the cycle concept of absorber/generator heat exchange, generator heat exchanger/absorber heat exchange, regeneration, and resorption/desorption, in combination with the NH{sub 3}/H{sub 2}O/LiBr ternary absorption fluid mixture or with the NH{sub 3}/H{sub 2}O binary solution. Based upon these conclusions, the recommendation was made to proceed to Phase II, the laboratory breadboard proof-of- concept.

  20. 40 CFR 35.4085 - Can my group get an “advance payment” to help us get started?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Can my group get an âadvance paymentâ to help us get started? 35.4085 Section 35.4085 Protection of Environment ENVIRONMENTAL PROTECTION... You Get the Money § 35.4085 Can my group get an “advance payment” to help us get started? Yes,...

  1. 40 CFR 35.4085 - Can my group get an “advance payment” to help us get started?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Can my group get an âadvance paymentâ to help us get started? 35.4085 Section 35.4085 Protection of Environment ENVIRONMENTAL PROTECTION... You Get the Money § 35.4085 Can my group get an “advance payment” to help us get started? Yes,...

  2. 40 CFR 35.4085 - Can my group get an “advance payment” to help us get started?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Can my group get an âadvance paymentâ to help us get started? 35.4085 Section 35.4085 Protection of Environment ENVIRONMENTAL PROTECTION... You Get the Money § 35.4085 Can my group get an “advance payment” to help us get started? Yes,...

  3. 40 CFR 35.4085 - Can my group get an “advance payment” to help us get started?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Can my group get an âadvance paymentâ to help us get started? 35.4085 Section 35.4085 Protection of Environment ENVIRONMENTAL PROTECTION... You Get the Money § 35.4085 Can my group get an “advance payment” to help us get started? Yes,...

  4. 40 CFR 35.4085 - Can my group get an “advance payment” to help us get started?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Can my group get an âadvance paymentâ to help us get started? 35.4085 Section 35.4085 Protection of Environment ENVIRONMENTAL PROTECTION... You Get the Money § 35.4085 Can my group get an “advance payment” to help us get started? Yes,...

  5. Study of an advanced transport airplane design concept known as Flatbed

    NASA Technical Reports Server (NTRS)

    Smethers, R. G.; Caldwell, E. W.; Warnock, W. E.; Wilson, J. M., Jr.

    1980-01-01

    The design concept and configuration of the Flatbed transport aircraft are presented. The Flatbed configuration combines into one frame, the ability to haul cargo, virtually unrestrained by cross sectional dimensions of the fuselage. The feasibility and capability of the Flatbed is discussed in depth.

  6. Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Mayer, H. L.; Wolfe, M. G.

    1976-01-01

    The likely system concepts which might be representative of NASA and DoD space programs in the 1980-2000 time period were studied along with the programs' likely needs for major space transportation vehicles, orbital support vehicles, and technology developments which could be shared by the military and civilian space establishments in that time period. Such needs could then be used by NASA as an input in determining the nature of its long-range development plan. The approach used was to develop a list of possible space system concepts (initiatives) in parallel with a list of needs based on consideration of the likely environments and goals of the future. The two lists thus obtained represented what could be done, regardless of need; and what should be done, regardless of capability, respectively. A set of development program plans for space application concepts was then assembled, matching needs against capabilities, and the requirements of the space concepts for support vehicles, transportation, and technology were extracted. The process was pursued in parallel for likely military and civilian programs, and the common support needs thus identified.

  7. Preliminary definition and evaluation of advanced space concepts. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1978-01-01

    A study was made to develop the characteristics, cost, and performance of a few of the more attractive application concepts, and to compare them against leading terrestrial alternatives, in order to determine their potential, identify those deserving further NASA attention and possible inclusion into the formal development planning sequence, and serve to initiate a dialogue with the using community and agencies.

  8. Evaluation of advanced lift concepts and potential fuel conservation for short-haul aircraft

    NASA Technical Reports Server (NTRS)

    Sweet, H. S.; Renshaw, J. H.; Bowden, M. K.

    1975-01-01

    The effect of different field lengths, cruise requirements, noise level, and engine cycle characteristics on minimizing fuel consumption and minimizing operating cost at high fuel prices were evaluated for some advanced short-haul aircraft. The conceptual aircraft were designed for 148 passengers using the upper surface-internally blown jet flap, the augmentor wing, and the mechanical flap lift systems. Advanced conceptual STOL engines were evaluated as well as a near-term turbofan and turboprop engine. Emphasis was given to designs meeting noise levels equivalent to 95-100 EPNdB at 152 m (500 ft) sideline.

  9. Development of a Pharmacy Capstone Course From Focus Groups to Advanced Patient Care

    PubMed Central

    Cooley, Janet H; Tanner, Natalee E; Hanauer, Courtney N; Schiefer, Danielle M; Herrier, Richard N

    2014-01-01

    Objective. To describe the development of a capstone course using qualitative results of focus groups and to determine the impact of the course using a pre- and postcourse surveys. Design. A course titled Advanced Patient Care was developed using themes emerged from 3 stakeholder focus groups and implemented with case-based sessions, interactive exercises, and Objective Structured Clinical Examinations (OSCEs). Pre- and postcourse surveys were conducted to assess the students’ confidence and knowledge in managing 8 commonly-encountered conditions. Assessment. During the 2-year course implementation, a total of 169 students participated in the pre- and postcourse surveys (87.6% response rate). The mean total confidence score increased significantly from 54.3 (±9.2) to 69.0 (±8.6, p<0.001), and the total mean knowledge score increased significantly from 6.3 to 6.9 (p<0.001). Conclusion. The capstone course, fueled by focus group findings and implemented using interactive sessions and simulations, positively impacted students’ confidence and knowledge for clinical practice experiences and professional practice. PMID:25386021

  10. Advanced concepts in coal liquefaction: Optimization of reactor configuration in coal liquefaction. Final report

    SciTech Connect

    Pradhan, V.R.; Comolli, A.G.; Lee, L.K.

    1994-11-01

    The overall objective of this Project was to find the ways to effectively reduce the cost of coal liquids to about dollar 25 per barrel of crude oil equivalent. The work described herein is primarily concerned with the testing at the laboratory scale of three reactor configuration concepts, namely (1) a fixed-bed plug-flow reactor as a ``finishing reactor`` in coal liquefaction, (2) three-stage well-mixed reactors in series, and (3) interstage stream concentration/product separation. The three reactor configurations listed above were tested during this project using a 20 cc tubing microreactor, a fixed-bed plug flow reactor, and a two-stage modified Robinson-Mahoney reactor system. The reactor schemes were first evaluated based on theoretical modelling studies, then experimentally evaluated at the microautoclave level and laboratory scale continuous operations. The fixed-bed ``finishing reactor`` concept was evaluated in both the upflow and the downflow modes of operation using a partially converted coal-solvent slurry as feed. For most of the testing of concepts at the microautoclave level, simulated coal, recycle oil, and slurry feedstocks were either specially prepared (to represent a specific state of coal/resid conversion) and/or obtained from HRI`s other ongoing bench-scale and PDU scale coal liquefaction experiments. The three-stage continuous stirred tank reactors (CSTR) and interstage product stream separation/concentration concepts were tested using a simulated three-stage CSTR system by employing a laboratory-scale ebullated-bed system and a modified version of the HRI`s existing Robinson-Mahoney fixed catalyst basket reactor system. This testing was conducted as a fourteen day long continuous run, divided into four Conditions to allow for a comparison of the new three-stage CSTR and interstage product concentration concepts with a two-stage CSTR baseline configuration.

  11. The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror Status Study Group

    SciTech Connect

    Simonen, T; Cohen, R; Correll, D; Fowler, K; Post, D; Berk, H; Horton, W; Hooper, E B; Fisch, N; Hassam, A; Baldwin, D; Pearlstein, D; Logan, G; Turner, B; Moir, R; Molvik, A; Ryutov, D; Ivanov, A A; Kesner, J; Cohen, B; McLean, H; Tamano, T; Tang, X Z; Imai, T

    2008-10-24

    Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT

  12. CCD detector development projects by the Beamline Technical Support Group at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Lee, John H.; Fernandez, Patricia; Madden, Tim; Molitsky, Michael; Weizeorick, John

    2007-11-01

    This paper will describe two ongoing detector projects being developed by the Beamline Technical Support Group at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The first project is the design and construction of two detectors: a single-CCD system and a two-by-two Mosaic CCD camera for Small-Angle X-ray Scattering (SAXS). Both of these systems utilize the Kodak KAF-4320E CCD coupled to fiber optic tapers, custom mechanical hardware, electronics, and software developed at ANL. The second project is a Fast-CCD (FCCD) detector being developed in a collaboration between ANL and Lawrence Berkeley National Laboratory (LBNL). This detector will use ANL-designed readout electronics and a custom LBNL-designed CCD, with 480×480 pixels and 96 outputs, giving very fast readout.

  13. CCD detector development projects by the beamline technical support group at the Advanced Photon Source.

    SciTech Connect

    Lee, J. H.; Fernandez, P.; Madden, T.; Molitsky, M.; Weizeorick, J.

    2007-11-11

    This paper will describe two ongoing detector projects being developed by the Beamline Technical Support Group at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The first project is the design and construction of two detectors: a single-CCD system and a two-by-two Mosaic CCD camera for Small-Angle X-ray Scattering (SAXS). Both of these systems utilize the Kodak KAF-4320E CCD coupled to fiber optic tapers, custom mechanical hardware, electronics, and software developed at ANL. The second project is a Fast-CCD (FCCD) detector being developed in a collaboration between ANL and Lawrence Berkeley National Laboratory (LBNL). This detector will use ANL-designed readout electronics and a custom LBNL-designed CCD, with 480 x 480 pixels and 96 outputs, giving very fast readout.

  14. Variable stream control engine concept for advanced supersonic aircraft: Features and benefits

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.

    1976-01-01

    The Variable Stream Control Engine is studied for advanced supersonic cruise aircraft. Significant environmental and performance improvements relative to first generation supersonic turbojet engines are cited. Two separate flow streams, each with independent burner and nozzle systems are incorporated within the engine. By unique control of the exhaust temperatures and velocities in two coannular streams, significant reduction in jet noise is obtained.

  15. A Model for Infusing Energy Concepts into Vocational Education Programs. Advanced Solar Systems.

    ERIC Educational Resources Information Center

    Delta Vocational Technical School, Marked Tree, AR.

    This instructional unit consists of materials designed to help students understand terms associated with solar energy; identify components of advanced solar systems; and identify applications of solar energy in business, industry, agriculture, and photovoltaics. Included in the unit are the following materials: suggested activities, instructional…

  16. Teaching Pediatric Nursing Concepts to Non-Pediatric Nurses Using an Advance Organizer

    ERIC Educational Resources Information Center

    Bell, Julie Ann

    2013-01-01

    Non-pediatric nurses in rural areas often care for children in adult units, emergency departments, and procedural areas. A half-day program about pediatric nursing using constructivist teaching strategies including an advance organizer, case studies, and simulation was offered at a community hospital in Western North Carolina. Nurses reported a…

  17. Advanced Technologies as Educational Tools in Science: Concepts, Applications, and Issues. Monograph Series Number 8.

    ERIC Educational Resources Information Center

    Kumar, David D.; And Others

    Systems incorporating two advanced technologies, hypermedia systems and intelligent tutors, are examined with respect to their potential impact on science education. The conceptual framework underlying these systems is discussed first. Applications of systems are then presented with examples of each in operation within the context of science…

  18. Application of advanced on-board processing concepts to future satellite communications systems

    NASA Technical Reports Server (NTRS)

    Katz, J. L.; Hoffman, M.; Kota, S. L.; Ruddy, J. M.; White, B. F.

    1979-01-01

    An initial definition of on-board processing requirements for an advanced satellite communications system to service domestic markets in the 1990's is presented. An exemplar system architecture with both RF on-board switching and demodulation/remodulation baseband processing was used to identify important issues related to system implementation, cost, and technology development.

  19. Applications of advanced V/STOL aircraft concepts to civil utility missions. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The linear performance definition curves for the lift fan aircraft, tilt rotor aircraft, and advanced helicopter are given. The computer program written to perform the mission analysis for this study is also documented, and examples of its use are shown. Methods used to derive the performance coefficients for use in the mission analysis of the lift fan aircraft are described.

  20. Working Group 7 Summary

    SciTech Connect

    Nagaitsev S.; Berg J.

    2012-06-10

    The primary subject of working group 7 at the 2012 Advanced Accelerator Concepts Workshop was muon accelerators for a muon collider or neutrino factory. Additionally, this working group included topics that did not fit well into other working groups. Two subjects were discussed by more than one speaker: lattices to create a perfectly integrable nonlinear lattice, and a Penning trap to create antihydrogen.

  1. Damage tolerance of a geodesically stiffened advanced composite structural concept for aircraft structural applications

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Ambur, Damodar R.

    1992-01-01

    This paper describes the features of a geodesically stiffened panel concept that was designed for a fuselage application with a combined axial compression loading of 3,000 lb/in. and a shear loading of 600 lb/in. Specimens representative of this panel concept were tested in uniaxial compression both with and without low-speed impact damage to study the buckling and postbuckling response of the structure. Experimental results that describe the stiffness and failure characteristics of undamaged and impacted damage specimens are presented. A finite element analysis model that captures the principal details of the specimens was developed and used to predict the panel response. Analytical results on panel end-shortening are compared with the experimental results. Analytical results that describe panel end-shortening, out-of-plane displacement and stress resultants are presented.

  2. Artist concept computer graphic of Lockheed Martin X-33 Advance Technology Demonstrator vehicle in f

    NASA Technical Reports Server (NTRS)

    1998-01-01

    An artist's conception of the X-33 in flight, with the aerospike engine firing. The X-33 demonstrator was designed to test a wide range of new technologies (including the aerospike engine), that would be used in a future single-stage-to-orbit reusable launch vehicle called the VentureStar. Due to technical problems with the liquid hydrogen tank, however, the X-33 program was cancelled in February 2001.

  3. Summary report : working group 5 on 'electron beam-driven plasma and structure based acceleration concepts'.

    SciTech Connect

    Conde, M. E.; Katsouleas, T.

    2000-10-19

    The talks presented and the work performed on electron beam-driven accelerators in plasmas and structures are summarized. Highlights of the working group include new experimental results from the E-157 Plasma Wakefield Experiment, the E-150 Plasma Lens Experiment and the Argonne Dielectric Structure Wakefield experiments. The presentations inspired discussion and analysis of three working topics: electron hose instability, ion channel lasers and the plasma afterburner.

  4. Structural evaluation of concepts for a solar energy concentrator for Space Station advanced development program

    NASA Technical Reports Server (NTRS)

    Kenner, Winfred S.; Rhodes, Marvin D.

    1994-01-01

    Solar dynamic power systems have a higher thermodynamic efficiency than conventional photovoltaic systems; therefore they are attractive for long-term space missions with high electrical power demands. In an investigation conducted in support of a preliminary concept for Space Station Freedom, an approach for a solar dynamic power system was developed and a number of the components for the solar concentrator were fabricated for experimental evaluation. The concentrator consists of hexagonal panels comprised of triangular reflective facets which are supported by a truss. Structural analyses of the solar concentrator and the support truss were conducted using finite-element models. A number of potential component failure scenarios were postulated and the resulting structural performance was assessed. The solar concentrator and support truss were found to be adequate to meet a 1.0-Hz structural dynamics design requirement in pristine condition. However, for some of the simulated component failure conditions, the fundamental frequency dropped below the 1.0-Hz design requirement. As a result, two alternative concepts were developed and assessed. One concept incorporated a tetrahedral ring truss support for the hexagonal panels: the second incorporated a full tetrahedral truss support for the panels. The results indicate that significant improvements in stiffness can be obtained by attaching the panels to a tetrahedral truss, and that this concentrator and support truss will meet the 1.0-Hz design requirement with any of the simulated failure conditions.

  5. [Recent advances in pathogenic concepts and therapeutic strategies in Rasmussen's encephalitis].

    PubMed

    Bahi-Buisson, N; Nabbout, R; Plouin, P; Bulteau, C; Delalande, O; Hertz Pannier, L; Dulac, O; Chiron, C

    2005-04-01

    Rasmussen's encephalitis (RE) is a rare inflammatory brain disease mainly affecting children and characterised by intractable epilepsy involving a single hemisphere that undergoes progressive atrophy. RE is characterized by refractory focal seizures, often associated with epilepsia partialis continua, progressive unilateral motor defect, slow EEG activity over the entire contralateral hemisphere, with focal white matter hyperintensity and insular cortical atrophy on neuroimaging. Surgical exclusion of the affected hemisphere is the only treatment that interrupts progression of the disease. Pathogenic concepts have considered viruses, autoimmune antibodies and autoimmune cytotoxic T lymphocytes that might contribute to the initiating or perpetuating events in the central nervous system. Based on these concepts, different therapeutic strategies have been pursued, such as antiviral agents, plasmapheresis, immuno-adsorption, immunosuppression or immunomodulation with intravenous immunoglobulins. However, due to the lack of large studies, to date there is no established therapeutic strategy for this devastating condition. In this review, we give an overview of the current state of immunopathogenic concepts for Rasmussen's encephalitis and discuss the different therapeutic options for future perspectives. PMID:15924075

  6. Self-Concept, School Satisfaction, and Other Selected Correlates of Subjective Well-Being for Advanced High School Learners Enrolled in Two Challenging Academic Settings

    ERIC Educational Resources Information Center

    Robertson, Janice C.

    2013-01-01

    Global self-concept, freedom from anxiety, happiness, popularity, and school satisfaction were examined for 224 partial-day Governor's School students attending public Governor's Schools as well as classes in their home high schools, and 56 students taking advanced classes in regular high schools. On average, self-concept appeared…

  7. The Effects of Using Concept Mapping for Improving Advanced Level Biology Students' Lower- and Higher-Order Cognitive Skills

    ERIC Educational Resources Information Center

    Bramwell-Lalor, Sharon; Rainford, Marcia

    2014-01-01

    This paper reports on teachers' use of concept mapping as an alternative assessment strategy in advanced level biology classes and its effects on students' cognitive skills on selected biology concepts. Using a mixed methods approach, the study employed a pre-test/post-test quasi-experimental design involving 156 students and 8 teachers…

  8. Advanced concepts for a 1200-kV shunt reactor. Volume I. Exploration of new concepts for inductive shunt reactor designs for integration into a 1200-kV gas insulated substation. Final report

    SciTech Connect

    Not Available

    1981-03-27

    The objective of this program is to explore new concepts for inductive shunt reactor designs for integration into a 1200 kV gas insulated substation. The most promising design should exhibit low dimensional profile with reduced weight, lower losses, and lower noise level when compared with units of equivalent rating designed with present day technology. To meet the objectives several advanced concepts of shunt reactor design were studied. The major concepts explored in this project reactor design were studied. The major concepts explored in this project included: sulfur hexafluoride gas insulated, foil type windings, high reluctance core materials, and heat transfer via the gaseous medium. As a result of the study, a shunt reactor was designed through an application of the advanced concepts with the conclusions that the program objectives could be attained.

  9. Advanced transportation system studies technical area 3: Alternate propulsion subsystem concepts, volume 3

    NASA Technical Reports Server (NTRS)

    Levak, Daniel

    1993-01-01

    The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F-1A Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results, and the program cost estimates are described in more detail in Volume 1 - Executive Summary and in individual Final Task Reports.

  10. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystems Concepts. Volume 3; Program Cost Estimates

    NASA Technical Reports Server (NTRS)

    Levack, Daniel J. H.

    2000-01-01

    The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F- IA Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results , and the program cost estimates are described in more detail in Volume I - Executive Summary and in individual Final Task Reports.

  11. Development of Predictive Models of Advanced Propulsion Concepts for Low Cost Space Transportation

    NASA Technical Reports Server (NTRS)

    Morrell, Michael Randy

    2002-01-01

    This final report presents the Graduate Student Research Program (GSRP) work Mr. Morrell was able to complete as a summer intern at NASA MSFS during the summer of 2001, and represents work completed from inception through project termination. The topics include: 1) NASA TD40 Organization; 2) Combustion Physics Lab; 3) Advanced Hydrocarbon Fuels; 4) GSRP Summer Tasks; 5) High Pressure Facility Installation; 6) High Pressure Combustion Issues; 7) High Energy Density Matter (HEDM) Hydrocarbons; and 8) GSRP Summer Intern Summary.

  12. Development of advanced NO sub x control concepts for coal-fired utility boilers

    SciTech Connect

    Newhall, J.; England, G.; Seeker, W.R.

    1991-12-23

    Energy and Environmental Research Corporation (EER) is currently conducting a test program to develop an advanced NO{sub x} control method utilizing reburning, promoted selective noncatalytic agent injection. The study will consist of fundamental and process testing over a large enough range of operating parameters to significantly reduce the risk of a full scale demonstration project. The test plan for the fundamental testing phase of the program is presented here.

  13. Evaluation of ADAM/1 model for advanced coal-extraction concepts

    SciTech Connect

    Deshpande, G. K.; Gangal, M. D.

    1982-01-15

    The Advanced Coal Extraction Project is sponsored by the Department of Energy at the Jet Propulsion Laboratory to define and develop advanced underground coal extraction systems which: (1) are suitable for significant remaining resources after the year 2000, and (2) promise a significant improvement in production cost and miner safety, with no degradation in miner health, environmental quality and resource recovery. System requirements in the five performance areas have been defined by Goldsmith and Lavin (1980). Several existing computer programs for estimating life-cycle cost of mining systems have been evaluated. A commercially available program ADAM/1 was found to be satisfactory in relation to the needs of the Advanced Coal Extraction Project. Two test cases were run to confirm the ability of the program to handle non-conventional mining equipment and procedures. The results were satisfactory. The model, therefore, is recommended to the project team for evaluation of their conceptual designs. Since the model is commercially available, data preparation instructions are not reproduced in this document; instead the reader is referred to the original documents for this information.

  14. Teaching Groups as Foci for Evaluating Performance in Cost-Effectiveness of GCE Advanced Level Provision: Some Practical Methodological Innovations.

    ERIC Educational Resources Information Center

    Fielding, Antony

    2002-01-01

    Analyzes subject teaching-group effectiveness in English and Welsh General Certification of Education (GCE) Advanced Level prior to a linking to resources; suggests cross-classified multilevel models with weighted random effects for disentangling student, group, and teacher effects; finds that teacher effects are considerable, but cannot find…

  15. Materials technology for an advanced space power nuclear reactor concept: Program summary

    NASA Technical Reports Server (NTRS)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  16. Space Station propulsion - Advanced development testing of the water electrolysis concept at MSFC

    NASA Technical Reports Server (NTRS)

    Jones, Lee W.; Bagdigian, Deborah R.

    1989-01-01

    The successful demonstration at Marshall Space Flight Center (MSFC) that the water electrolysis concept is sufficiently mature to warrant adopting it as the baseline propulsion design for Space Station Freedom is described. In particular, the test results demonstrated that oxygen/hydrogen thruster, using gaseous propellants, can deliver more than two million lbf-seconds of total impulse at mixture ratios of 3:1 to 8:1 without significant degradation. The results alao demonstrated succcessful end-to-end operation of an integrated water electrolysis propulsion system.

  17. Figure of merit studies of beam power concepts for advanced space exploration

    NASA Technical Reports Server (NTRS)

    Miller, Gabriel; Kadiramangalam, Murali N.

    1990-01-01

    Surface to surface, millimeter wavelength beam power systems for power transmission on the lunar base were investigated. Qualitative/quantitative analyses and technology assessment of 35, 110 and 140 GHz beam power systems were conducted. System characteristics including mass, stowage volume, cost and efficiency as a function of range and power level were calculated. A simple figure of merit analysis indicates that the 35 GHz system would be the preferred choice for lunar base applications, followed closely by the 110 GHz system. System parameters of a 35 GHz beam power system appropriate for power transmission on a recent lunar base concept studied by NASA-Johnson and the necessary deployment sequence are suggested.

  18. Accuracy Improvement Capability of Advanced Projectile Based on Course Correction Fuze Concept

    PubMed Central

    Elsaadany, Ahmed; Wen-jun, Yi

    2014-01-01

    Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake) and the second is devoted to drift correction (canard based-correction fuze). The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion. PMID:25097873

  19. Accuracy improvement capability of advanced projectile based on course correction fuze concept.

    PubMed

    Elsaadany, Ahmed; Wen-jun, Yi

    2014-01-01

    Improvement in terminal accuracy is an important objective for future artillery projectiles. Generally it is often associated with range extension. Various concepts and modifications are proposed to correct the range and drift of artillery projectile like course correction fuze. The course correction fuze concepts could provide an attractive and cost-effective solution for munitions accuracy improvement. In this paper, the trajectory correction has been obtained using two kinds of course correction modules, one is devoted to range correction (drag ring brake) and the second is devoted to drift correction (canard based-correction fuze). The course correction modules have been characterized by aerodynamic computations and flight dynamic investigations in order to analyze the effects on deflection of the projectile aerodynamic parameters. The simulation results show that the impact accuracy of a conventional projectile using these course correction modules can be improved. The drag ring brake is found to be highly capable for range correction. The deploying of the drag brake in early stage of trajectory results in large range correction. The correction occasion time can be predefined depending on required correction of range. On the other hand, the canard based-correction fuze is found to have a higher effect on the projectile drift by modifying its roll rate. In addition, the canard extension induces a high-frequency incidence angle as canards reciprocate at the roll motion. PMID:25097873

  20. A Review of Significant Advances in Neutron Imaging from Conception to the Present

    NASA Astrophysics Data System (ADS)

    Brenizer, J. S.

    This review summarizes the history of neutron imaging with a focus on the significant events and technical advancements in neutron imaging methods, from the first radiograph to more recent imaging methods. A timeline is presented to illustrate the key accomplishments that advanced the neutron imaging technique. Only three years after the discovery of the neutron by English physicist James Chadwick in 1932, neutron imaging began with the work of Hartmut Kallmann and Ernst Kuhn in Berlin, Germany, from 1935-1944. Kallmann and Kuhn were awarded a joint US Patent issued in January 1940. Little progress was made until the mid-1950's when Thewlis utilized a neutron beam from the BEPO reactor at Harwell, marking the beginning of the application of neutron imaging to practical applications. As the film method was improved, imaging moved from a qualitative to a quantitative technique, with applications in industry and in nuclear fuels. Standards were developed to aid in the quantification of the neutron images and the facility's capabilities. The introduction of dynamic neutron imaging (initially called real-time neutron radiography and neutron television) in the late 1970's opened the door to new opportunities and new challenges. As the electronic imaging matured, the introduction of the CCD imaging devices and solid-state light intensifiers helped address some of these challenges. Development of improved imaging devices for the medical community has had a major impact on neutron imaging. Additionally, amorphous silicon sensors provided improvements in temporal resolution, while providing a reasonably large imaging area. The development of new neutron imaging sensors and the development of new neutron imaging techniques in the past decade has advanced the technique's ability to provide insight and understanding of problems that other non-destructive techniques could not provide. This rapid increase in capability and application would not have been possible without the

  1. Electric vehicle traction motors - The development of an advanced motor concept

    NASA Technical Reports Server (NTRS)

    Campbell, P.

    1980-01-01

    An axial-field permanent magnet traction motor is described, similar to several advanced motors that are being developed in the United States. This type of machine has several advantages over conventional dc motors, particularly in the electric vehicle application. The rapidly changing cost of magnetic materials, particularly cobalt, makes it important to study the utilization of permanent magnet materials in such machines. The impact of different magnets on machine design is evaluated, and the advantages of using iron powder composites in the armature are assessed.

  2. Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2012-01-01

    This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.

  3. Advanced Concepts and Controversies in Emergency Department Pain Management.

    PubMed

    Motov, Sergey M; Nelson, Lewis S

    2016-06-01

    Pain is the most common complaint for which patients come to the emergency department (ED). Emergency physicians are responsible for pain relief in a timely, efficient, and safe manner in the ED. The improvement in our understanding of the neurobiology of pain has balanced the utilization of nonopioid and opioid analgesia, and simultaneously has led to more rational and safer opioid prescribing practices. This article reviews advances in pain management in the ED for patients with acute and chronic pain as well as describes several newer strategies and controversies. PMID:27208710

  4. Advanced analytical facilities report of the planetary materials and geochemistry working group

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The role of advanced analytical facilities; upgrading/replacement of the existing facilities; the relationship of advanced facilities to the present program; and possible facilities are examined. Major conclusions and recommendations are presented.

  5. Operation of the power information center: Performance of secretariat functions and information exchange activities in the advanced power field of the interagency advanced power group

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Highlights of activities conducted during the reporting period to facilitate the exchange of technical information among scientists and engineers both within the federal government and within industry are cited. Interagency Advanced Power Group meetings and special efforts, project briefs, and organization development are considered.

  6. Advanced Ionospheric Sensing using GROUP-C and LITES aboard the ISS

    NASA Astrophysics Data System (ADS)

    Budzien, S. A.; Stephan, A. W.; Chakrabarti, S.; Finn, S. C.; Cook, T.; Powell, S. P.; O'Hanlon, B.; Bishop, R. L.

    2015-12-01

    The GPS Radio Occultation and Ultraviolet Photometer Co-located (GROUP-C) and Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) experiments are manifested for flight aboard the International Space Station (ISS) in 2016 as part of the Space Test Program Houston #5 payload. The two experiments provide technical development and risk-reduction for future DoD space weather sensors suitable for ionospheric specification, space situational awareness, and data products for global ionosphere assimilative models. In addition, the combined instrument complement of these two experiments offers a unique opportunity to study structures of the nighttime ionosphere. GROUP-C includes an advanced GPS receiver providing ionospheric electron density profiles and scintillation measurements and a high-sensitivity far-ultraviolet photometer measuring horizontal ionospheric gradients. LITES is an imaging spectrograph that spans 60-140 nm and will obtain high-cadence limb profiles of the ionosphere and thermosphere from 150-350 km altitude. In the nighttime ionosphere, recombination of O+ and electrons produces optically thin emissions at 91.1 and 135.6 nm that can be used to tomographically reconstruct the two-dimensional plasma distribution in the orbital plane below ISS altitudes. Ionospheric irregularities, such as plasma bubbles and blobs, are transient features of the low and middle latitude ionosphere with important implications for operational systems. Irregularity structures have been studied primarily using ground-based systems, though some spaced-based remote and in-situ sensing has been performed. An ionospheric observatory aboard the ISS would provide new capability to study low- and mid-latitude ionospheric structures on a global scale. By combining for the first time high-sensitivity in-track photometry, vertical ionospheric airglow spectrographic imagery, and recent advancements in UV tomography, high-fidelity tomographic reconstruction of

  7. Advanced Concepts for Ultrahigh Brightness and Low Temperature Beams. Final Report

    SciTech Connect

    Wurtele, Jonathan S.; Fajans, Joel

    2015-06-01

    This grant supported research on techniques to manipulate and combine positrons and antiprotons to synthesize, and to probe, antihydrogen. The majority of the research was conducted as part of the ALPHA Collaboration at CERN. Using ideas and techniques from accelerator physics, we proposed a new method for measuring the the gravitational attraction of antihydrogen to the Earth's field. ALPHA reported the first precision charge measurement on antihydrogen and a crude bound on its gravitational dynamics in the Earth's field. We proposed using a stochastic acceleration method to measure any putative charge of antihydrogen and built numerical models of the mixing of antiprotons and positrons. Further research included proposing the radiator-first concept for operating an X-ray free electron laser driven by a high repetition rate bunch source and studying scattering in passive foil-based ion focusing systems.

  8. Proof-of concept testing of the advanced NOXSO flue gas cleanup process. Final report

    SciTech Connect

    Not Available

    1993-04-01

    The NOXSO Process uses a regenerable sorbent that removes SO{sub 2} and NO{sub x} simultaneously from flue gas. The sorbent is a stabilized {gamma}-alumina bed impregnated with sodium carbonate. The process was successfully tested at three different scales, equivalent to 0.017, 0.06 and 0.75 MW of flue gas generated from a coal-fired power plant. The Proof-of-Concept (POC) Test is the last test prior to a full-scale demonstration. A slip stream of flue gas equivalent to a 5 MW coal-fired power plant was used for the POC test. This paper summarizes the NOXSO POC plant and its test results.

  9. Carbon honeycomb grids for advanced lead-acid batteries. Part I: Proof of concept

    NASA Astrophysics Data System (ADS)

    Kirchev, Angel; Kircheva, Nina; Perrin, Marion

    2011-10-01

    The carbon honeycomb grid is proposed as innovative solution for high energy density lead acid battery. The proof of concept is demonstrated, developing grids suitable for the small capacity, scale of valve-regulated lead acid batteries with 2.5-3 Ah plates. The manufacturing of the grids, includes fast, known and simple processes which can be rescaled for mass production with a minimum, investment costs. The most critical process of green composite carbonisation by heating in inert, atmosphere from 200 to 1000 °C takes about 5 h, guaranteeing the low cost of the grids. An AGM-VRLA, cell with prototype positive plate based on the lead-2% tin electroplated carbon honeycomb grid and, conventional negative plates is cycled demonstrating 191 deep cycles. The impedance spectroscopy, measurements indicate the grid performance remains acceptable despite the evolution of the corrosion, processes during the cycling.

  10. Advanced air transport concepts. [review of design methods for very large aircraft

    NASA Technical Reports Server (NTRS)

    Molloy, J. K.

    1979-01-01

    The concepts of laminar flow control, very large all-wing aircraft, an aerial relay transportation system and alternative fuels, which would enable large improvements in fuel conservation in air transportation in the 1990's are discussed. Laminar boundary layer control through suction would greatly reduce skin friction and has been reported to reduce fuel consumption by up to 29%. Distributed load aircraft, in which all fuel and payload are carried in the wing and the fuselage is absent, permit the use of lighter construction materials and the elimination of fuselage and tail drag. Spanloader aircraft with laminar flow control could be used in an aerial relay transportation system which would employ a network of continuously flying liners supplied with fuel, cargo and crews by smaller feeder aircraft. Liquid hydrogen and methane fuels derived from coal are shown to be more weight efficient and less costly than coal-derived synthetic jet fuels.

  11. The European SILEX project and other advanced concepts for optical space communications

    NASA Astrophysics Data System (ADS)

    Oppenhaeuser, G.; Wittig, M.; Popescu, A.

    1991-05-01

    The European Space Agency (ESA) is developing an optical inter-orbit communication system enabling a link between a low earth orbiting (LEO) and a geostationary (GEO) spacecraft. The link allows the transmission of 50 Mbps between LEO and GEO in an experimental and pre-operational mode. The system uses laser diodes of typically 100 mW optical power at a wavelength of 830 nanometer. Direct intensity modulation is applied. Telescopes of 25 cm diameter are used on both terminals. The breadboard phase has been completed and the launch of both terminals is scheduled for 1994. Other concepts for optical space communication links using Nd:YAG lasers and heterodyne receive systems are outlined.

  12. Selected advanced aerodynamics and active controls technology concepts development on a derivative B-747

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The feasibility of applying wing tip extensions, winglets, and active control wing load alleviation to the Boeing 747 is investigated. Winglet aerodynamic design methods and high speed wind tunnel test results of winglets and of symmetrically deflected ailerons are presented. Structural resizing analyses to determine weight and aeroelastic twist increments for all the concepts and flutter model test results for the wing with winglets are included. Control law development, system mechanization/reliability studies, and aileron balance tab trade studies for active wing load alleviation systems are discussed. Results are presented in the form of incremental effects on L/D, structural weight, block fuel savings, stability and control, airplane price, and airline operating economics.

  13. More Than Pretty Pictures: How Translating Science Concepts into Pictures Advances Scientific Thinking

    NASA Astrophysics Data System (ADS)

    Frankel, Felice

    2010-02-01

    The judgment and decision-making required to render science visual clarifies thinking. One must decide on a hierarchy of information--what must be included and what might be left out? What is the main point of the visual? Just as in writing an article or responding to an essay question, we must understand and then plan what we want to ``say'' in a drawing or other forms of representation. And since a visual representation of a scientific concept (or data) is a re-presentation, and not the thing itself, interpretation or translation is involved. The process tends to transcend barriers of linguistic facility and educational background; it attracts and communicates students and teachers of all backgrounds, where other methods intimidate. The rendered images are, in essence More Than Pretty Pictures. )

  14. Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Mayer, H. L.; Wolfe, M. G.

    1976-01-01

    The results are presented of a study which identifies over 100 new and highly capable space systems for the 1980-2000 time period: civilian systems which could bring benefits to large numbers of average citizens in everyday life, much enhance the kinds and levels of public services, increase the economic motivation for industrial investment in space, expand scientific horizons; and, in the military area, systems which could materially alter current concepts of tactical and strategic engagements. The requirements for space transportation, orbital support, and technology for these systems are derived, and those requirements likely to be shared between NASA and the DoD in the time period identified. The high leverage technologies for the time period are identified as very large microwave antennas and optics, high energy power subsystems, high precision and high power lasers, microelectronic circuit complexes and data processors, mosaic solid state sensing devices, and long-life cryogenic refrigerators.

  15. Wind-tunnel studies of advanced cargo aircraft concepts. [leading edge vortex flaps for drag reduction

    NASA Technical Reports Server (NTRS)

    Rao, D. M.; Goglia, G. L.

    1981-01-01

    Accomplishments in vortex flap research are summarized. A singular feature of the vortex flap is that, throughout the range of angle of attack range, the flow type remains qualitatively unchanged. Accordingly, no large or sudden change in the aerodynamic characteristics, as happens when forcibly maintained attached flow suddenly reverts to separation, will occur with the vortex flap. Typical wind tunnel test data are presented which show the drag reduction potential of the vortex flap concept applied to a supersonic cruise airplane configuration. The new technology offers a means of aerodynamically augmenting roll-control effectiveness on slender wings at higher angles of attack by manipulating the vortex flow generated from leading edge separation. The proposed manipulator takes the form of a flap hinged at or close to the leading edge, normally retracted flush with the wing upper surface to conform to the airfoil shape.

  16. Development of selected advanced aerodynamics and active control concepts for commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, A. B.

    1984-01-01

    Work done under the Energy Efficient Transport project in the field of advanced aerodynamics and active controls is summarized. The project task selections focused on the following: the investigation of long-duct nacelle shape variation on interference drag; the investigation of the adequacy of a simple control law for the elastic modes of a wing; the development of the aerodynamic technology at cruise and low speed of high-aspect-ratio supercritical wings of high performance; and the development of winglets for a second-generation jet transport. All the tasks involved analysis and substantial wind tunnel testing. The winglet program also included flight evaluation. It is considered that the technology base has been built for the application of high-aspect-ratio supercritical wings and for the use of winglets on second-generation transports.

  17. Advanced sulfur control concepts for hot gas desulfurization technology. Quarterly report, October--December 1994

    SciTech Connect

    Harrison, D.P.

    1995-01-01

    The goal is the development of simpler and economically superior processing of regenerable sorbents used for control of hydrogen sulfide in hot, high-pressure gas streams in advanced power generating systems. The improved processing will produce an elemental sulfur byproduct. Progress during the past quarter was limited by delays in identifying an appropriate analytical instrument for measuring the concentration of sulfur species (S{sub x}(g), H{sub 2}S, and SO{sub 2} in the regeneration product gas. The ability to carry out this analysis on a real-time basis is an important component of the overall project and we feel that a satisfactory gas analysis procedure should be available before forging ahead with other experimental activities. The primary accomplishment, therefore, was the completion and submission of the Task 3 Project Plan. This plan, which assumed a satisfactory solution to sulfur analysis problem, is included in this quarterly report.

  18. Aerodynamic performance investigation of advanced mechanical suppressor and ejector nozzle concepts for jet noise reduction

    NASA Technical Reports Server (NTRS)

    Wagenknecht, C. D.; Bediako, E. D.

    1985-01-01

    Advanced Supersonic Transport jet noise may be reduced to Federal Air Regulation limits if recommended refinements to a recently developed ejector shroud exhaust system are successfully carried out. A two-part program consisting of a design study and a subscale model wind tunnel test effort conducted to define an acoustically treated ejector shroud exhaust system for supersonic transport application is described. Coannular, 20-chute, and ejector shroud exhaust systems were evaluated. Program results were used in a mission analysis study to determine aircraft takeoff gross weight to perform a nominal design mission, under Federal Aviation Regulation (1969), Part 36, Stage 3 noise constraints. Mission trade study results confirmed that the ejector shroud was the best of the three exhaust systems studied with a significant takeoff gross weight advantage over the 20-chute suppressor nozzle which was the second best.

  19. Analysis of quasi-hybrid solid rocket booster concepts for advanced earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Zurawski, Robert L.; Rapp, Douglas C.

    1987-01-01

    A study was conducted to assess the feasibility of quasi-hybrid solid rocket boosters for advanced Earth-to-orbit vehicles. Thermochemical calculations were conducted to determine the effect of liquid hydrogen addition, solids composition change plus liquid hydrogen addition, and the addition of an aluminum/liquid hydrogen slurry on the theoretical performance of a PBAN solid propellant rocket. The space shuttle solid rocket booster was used as a reference point. All three quasi-hybrid systems theoretically offer higher specific impulse when compared with the space shuttle solid rocket boosters. However, based on operational and safety considerations, the quasi-hybrid rocket is not a practical choice for near-term Earth-to-orbit booster applications. Safety and technology issues pertinent to quasi-hybrid rocket systems are discussed.

  20. Cross-coupling reactions of organosilicon compounds: new concepts and recent advances.

    PubMed

    Denmark, Scott Eric; Sweis, Ramzi Farah

    2002-12-01

    This review highlights the rapid evolution of the newly-developed class of palladium-catalyzed cross-coupling reactions of organosilicon compounds. A myriad of heteroatom-containing silicon moieties (silyl hydrides, siletanes, silanols, silyl ethers, orthosiliconates, di- and polysiloxanes and pyridylsilanes) undergo mild and stereospecific cross-coupling. The diversity of methods for introduction of silicon groups into organic molecules and the range of organic electrophiles that can be used are emphasized. PMID:12499586

  1. Heat-Pipe Development for Advanced Energy Transport Concepts Final Report Covering the Period January 1999 through September 2001

    SciTech Connect

    R.S.Reid; J.F.Sena; A.L.Martinez

    2002-10-01

    This report summarizes work in the Heat-pipe Technology Development for the Advanced Energy Transport Concepts program for the period January 1999 through September 2001. A gas-loaded molybdenum-sodium heat pipe was built to demonstrate the active pressure-control principle applied to a refractory metal heat pipe. Other work during the period included the development of processing procedures for and fabrication and testing of three types of sodium heat pipes using Haynes 230, MA 754, and MA 956 wall materials to assess the compatibility of these materials with sodium. Also during this period, tests were executed to measure the response of a sodium heat pipe to the penetration of water.

  2. Advanced direct liquefaction concepts for PETC generic units, Phase 2. Quarterly technical progress report, January--March 1996

    SciTech Connect

    1996-05-01

    The aims of this research program are to advance to bench-scale testing, concepts that have the potential for making net reductions in direct coal liquefaction process costs. The research involves a teaming arrangement between the University of Kentucky Center for Applied Energy Research (CAER), Consolidation Coal Company (CONSOL), Sandia National Laboratories (SNL), and LDP Associates. Progress reports are presented for: Task 2.1.1 development of a catalyst screening test (UK/CAER); Task 2.1.2 activation of impregnated catalysts (UK/CAER); Task 2.2 laboratory support (CONSOL); Task 3 continuous operations/parametric studies (Hydrocarbon Technologies, Inc.) and; Task 4.4 conceptual design, preliminary technical assessment (LDP Associates).

  3. Parameter identification studies on the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mckavitt, Thomas P., Jr.

    1990-01-01

    The results of an aircraft parameters identification study conducted on the National Aeronautics and Space Administration/Ames Research Center Advanced Concepts Flight Simulator (ACFS) in conjunction with the Navy-NASA Joint Institute of Aeronautics are given. The ACFS is a commercial airline simulator with a design based on future technology. The simulator is used as a laboratory for human factors research and engineering as applied to the commercial airline industry. Parametric areas examined were engine pressure ratio (EPR), optimum long range cruise Mach number, flap reference speed, and critical take-off speeds. Results were compared with corresponding parameters of the Boeing 757 and 767 aircraft. This comparison identified two areas where improvements can be made: (1) low maximum lift coefficients (on the order of 20-25 percent less than those of a 757); and (2) low optimum cruise Mach numbers. Recommendations were made to those anticipated with the application of future technologies.

  4. An Aerodynamic Performance Evaluation of the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Donohue, Paul F.

    1987-01-01

    The results of an aerodynamic performance evaluation of the National Aeronautics and Space Administration (NASA)/Ames Research Center Advanced Concepts Flight Simulator (ACFS), conducted in association with the Navy-NASA Joint Institute of Aeronautics, are presented. The ACFS is a full-mission flight simulator which provides an excellent platform for the critical evaluation of emerging flight systems and aircrew performance. The propulsion and flight dynamics models were evaluated using classical flight test techniques. The aerodynamic performance model of the ACFS was found to realistically represent that of current day, medium range transport aircraft. Recommendations are provided to enhance the capabilities of the ACFS to a level forecast for 1995 transport aircraft. The graphical and tabular results of this study will establish a performance section of the ACFS Operation's Manual.

  5. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 2: Fiber optic technology and long distance networks

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the Executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  6. Rocket-Induced Magnetohydrodynamic Ejector: A Single-Stage-to-Orbit Advanced Propulsion Concept

    NASA Technical Reports Server (NTRS)

    Cole, John; Campbell, Jonathan; Robertson, Anthony

    1995-01-01

    During the atmospheric boost phase of a rocket trajectory, magnetohydrodynamic (MHD) principles can be utilized to augment the thrust by several hundred percent without the input of additional energy. The concept is an MHD implementation of a thermodynamic ejector. Some ejector history is described and some test data showing the impressive thrust augmentation capabilities of thermodynamic ejectors are provided. A momentum and energy balance is used to derive the equations to predict the MHD ejector performance. Results of these equations are compared with the test data and then applied to a specific performance example. The rocket-induced MHD ejector (RIME) engine is described and a status of the technology and availability of the engine components is provided. A top level vehicle sizing analysis is performed by scaling existing MHD designs to the required flight vehicle levels. The vehicle can achieve orbit using conservative technology. Modest improvements are suggested using recently developed technologies, such as superconducting magnets, which can improve predicted performance well beyond those expected for current single-stage-to-orbit (SSTO) designs.

  7. Recent advances in wavelet analyses: Part 1. A review of concepts

    NASA Astrophysics Data System (ADS)

    Labat, David

    2005-11-01

    This contribution provides a review of the most recent wavelet applications in the field of earth sciences and is devoted to introducing and illustrating new wavelet analysis methods in the field of hydrology. Wavelet analysis remains unknown in the field of hydrology even though it clearly overcomes the well-known limits of the classical Fourier analysis. New wavelet-based tools are proposed to hydrologists in order to make wavelet analysis more attractive. First, a multiresolution continuous wavelet analysis method is shown to significantly improve the determination of the temporal-scale structure of a given signal. Second, the concept of wavelet entropy in both continuous and multiresolution frameworks is introduced allowing for an estimation of the temporal evolution of a given hydrological or climatologic signal's complexity. New insights in the scale-dependence of the relationship are exposed by introducing wavelet cross-correlation and wavelet coherence. Continuous wavelet cross-correlation provides a time-scale distribution of the correlation between two signals, whereas continuous wavelet coherence provides a qualitative estimator of the temporal evolution of the degree of linearity of the relationship between two signals on a given scale. These methods are applied to four large river runoffs and two global climatic indexes in a companion paper.

  8. Advanced limiter test (ALT-1) in the TEXTOR tokamak: concept and experimental design

    SciTech Connect

    Conn, R.W.; Grontz, S.P.; Prinja, A.K.; Gauster, W.B.; Malinowski, H.E.; Pontau, A.E.; Blewer, R.S.; Whitley, J.B.; Dippel, K.H.; Fuchs, G.

    1983-01-01

    The concept and experimental design of a pump-limiter for the TEXTOR tokamak is described. The module is constructed of stainless steel with a compound curvature head designed to limit the maximum heat flux to 300 W/cm/sup 2/. The head is made of TiC-coated graphite containing a variable-aperture slot to admit plasma to a deflector plate for ballistic pumping action. The assembly is actively pumped using Zr-Al getters with an estimated hydrogen pumping speed of 3 x 10/sup 4/ 1/s. The aspect ratio of the pump duct and the length of the plasma channel are both variable to permit study of plasma plugging, ballistic scattering, and enhanced gas-conduction effects. The module can be moved radially by 10 cm to permit its operation either as the primary or secondary limiter. Major diagnostics include Langmuir and solid state probes, bolometers, infrared thermography, thermocouples, ion gauges, manometers, and a gas mass analyzer.

  9. Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    NASA Technical Reports Server (NTRS)

    Montag, Bruce C.; Bishop, Alfred M.; Redfield, Joe B.

    1989-01-01

    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power.

  10. Advancing One Health Policy and Implementation Through the Concept of One Medicine One Science

    PubMed Central

    Cardona, Carol; Travis, Dominic A.; Berger, Kavita; Coat, Gwenaële; Kennedy, Shaun; Steer, Clifford J.; Murtaugh, Michael P.

    2015-01-01

    Numerous interspecies disease transmission events, Ebola virus being a recent and cogent example, highlight the complex interactions between human, animal, and environmental health and the importance of addressing medicine and health in a comprehensive scientific manner. The diversity of information gained from the natural, social, behavioral, and systems sciences is critical to developing and sustainably promoting integrated health approaches that can be implemented at the local, national, and international levels to meet grand challenges. The Concept of One Medicine One Science (COMOS) as outlined herein describes the interplay between scientific knowledge that underpins health and medicine and efforts toward stabilizing local systems using 2 linked case studies: the food system and emerging infectious disease. Forums such as the International Conference of One Medicine One Science (iCOMOS), where science and policy can be debated together, missing pieces identified, and science-based collaborations formed among industry, governmental, and nongovernmental policy makers and funders, is an essential step in addressing global health. The expertise of multiple disciplines and research foci to support policy development is critical to the implementation of one health and the successful achievement of global health security goals. PMID:26421234

  11. On-sun test results from second-generation and advanced-concepts alkali-metal pool-boiler receivers

    SciTech Connect

    Moreno, J.B.; Andraka, C.E.; Moss, T.A.; Cordeiro, P.G.; Dudley, V.E.; Rawlinson, K.S.

    1994-05-01

    Two 75-kW{sub t} alkali-metal pool-boiler solar receivers have been successfully tested at Sandia National Laboratories` National Solar Thermal Test Facility. The first one, Sandia`s `` second-generation pool-boiler receiver,`` was designed to address commercialization issues identified during post-test assessment of Sandia`s first-generation pool-boiler receiver. It was constructed from Haynes alloy 230 and contained the alkali-metal alloy NaK-78. The absorber`s wetted side had a brazed-on powder-metal coating to stabilize boiling. This receiver was evaluated for boiling stability, hot- and warm-restart behavior, and thermal efficiency. Boiling was stable under all conditions. All of the hot restarts were successful. Mild transient hot spots observed during some hot restarts were eliminated by the addition of 1/3 torr of xenon to the vapor space. All of the warm restarts were also successful. The heat-transfer crisis that damaged the first receiver did not recur. Thermal efficiency was 92.3% at 750{degrees}C with 69.6 kW{sub t} solar input. The second receiver tested, Sandia`s ``advanced-concepts receiver,`` was a replica of the first-generation receiver except that the cavities, which were electric-discharge-machined in the absorber for boiling stability, were eliminated. This step was motivated by bench-scale test results that showed that boiling stability improved with increased heated-surface area, tilt of the heated surface from vertical, and added xenon. The bench-scale results suggested that stable boiling might be possible without heated-surface modification in a 75-kW{sub t} receiver. Boiling in the advanced-concepts receiver with 1/3 torr of xenon added has been stable under all conditions, confirming the bench-scale tests.

  12. Advanced and innovative wind energy energy concept development: dynamic inducer system. Research report

    SciTech Connect

    Lissaman, P.B.S.; Zalay, A.D.; Hibbs, B.H.

    1981-05-01

    The performance benefits of the dynamic inducer tip vane system have been experimentally demonstrated for the first time. Tow-tests conducted on a three-bladed, 3.6-meter diameter rotor have shown that a dynamic inducer can achieve a power coefficient (based upon power blade swept area) of 0.5, which exceeds that of a plain rotor by about 35%. Wind tunnel tests conducted on a one-third scale model of the dynamic inducer achieved a power coefficient of 0.62 which exceeded that of a plain rotor by about 70%. The dynamic inducer substantially improves the performance of conventional rotors and indications are that higher power coefficients can be achieved through additional aerodynamic optimization. It is noted that the wind turbine system used as a baseline unit is the Kedco 1200, a conventional propeller-type wind turbine with power blades designed for optimum performance without tip vane augmentation. In addition, the tip vane utilized a standard conventional NACA airfoil selected on conservative grounds to guarantee acceptable performance. More advanced high life-to-drag airfoil sections are expected to improve the tip vane effectiveness.

  13. Development of advanced NO[sub x] control concepts for coal-fired utility boilers

    SciTech Connect

    Evans, A.; Pont, J.N.; England, G.; Seeker, W.R.

    1993-03-04

    The complete CombiNO[sub x], process has now been demonstrated at a level that is believed to be representative of a full-scale boiler in terms of mixing capabilities. A summary of the results is displayedin Figure 5-1. While firing Illinois Coal on the Reburn Tower, Advanced Reburning was capable of reducing NO[sub x], by 83 percent. The injection of methanol oxidized 50--58 percent of the existing NO to N0[sub 2]. Assuming that 85 percent of the newly formed N0[sub 2] can be scrubbed in a liquor modified wet-limestone scrubber, the CombiNO[sub x], process has been shown capable of reducing NO[sub 2], by 90--91 percent in a large pilot-scale coal-fired furnace. There is still uncertainty regarding the fate of the N0[sub 2] formed with methanol injection. Tests should be conducted to determine whether the reconversion is thermodynamic or catalytic, and what steps can be taken (such as quench rate) to prevent it from happening.

  14. Challenging and Future of Homogeneous Charge Compression Ignition Engines; an Advanced and Novel Concepts Review

    NASA Astrophysics Data System (ADS)

    Elkelawy, Medhat; Yu-Sheng, Zhang; Hagar, Alm El-Din; Yu, Jing-Zhou

    The potential of HCCI combustion to reduce the internal combustion engines exhaust emissions, particularly NOX and soot emissions, and to delimit the application range of this technique as well as a detailed analysis of previous and current results of combustion chemistry, emission behaviors, the challenging facing this technique, and all controlling parameters including transient states are introduced. From HCCI combustion chemistry and emissions analysis it was found that, the heavy fuels displays two-stage heat release or two stage combustion process involving low temperature oxidation (LTO) stage followed by high temperature oxidation (HTO) stage separated by a time delay between them is attributed to negative temperature coefficient (NTC), the advantage of NOX emissions reduction from HCCI engine diminishing at high load condition, HC production is reduced with increasing the engine load, and the soot ejection is negligible during all operating conditions. Valve timing, compression ratio, inlet air temperature, and EGR show an advanced control on the HCCI combustion behaviors over a wide range of speed and load. The use of EGR in HCCI operation is limited at EGR-rates about 70% at this point the reaction rates and ignition timing are so much reduced and retarded, respectively, and leads to misfiring and production of HC-emissions. Homogenization of fuel, air, and recycled burnt gases prior to ignition in addition to the control of ignition and combustion timing, and heat release rates are obstructs that must be overcome in order to realize the advantages of HCCI engine in the future.

  15. Benefits associated with advanced technologies applied to a high-speed civil transport concept

    NASA Technical Reports Server (NTRS)

    Ozoroski, L. P.; Shields, E. W.; Fenbert, J. W.; Mcelroy, M. O.

    1993-01-01

    Results of a first-order assessment of the mission performance benefits associated with the technology improvements and goals of the Phase II High-Speed Research (HSR) Program are presented. A breakdown of the four major disciplines resulted in the following estimated TOGW savings from the 1990 vehicle: propulsion at 14.3 percent, structures at 11.7 percent, flight-deck systems at 4.0 percent, and aerodynamics at 15.0 percent. Based on 100 percent success of the HSR Phase II proposed technology advancements, the overall combined impact is estimated to result in a 45 percent reduction in TOGW from a 1990 entry-into-service (EIS) date, which could result in a viable 2005 EIS vehicle with an acceptable TOGW that meets Stage III community noise restrictions. Through supersonic laminar flow control and the possible reduction in reserve fuel requirements resulting from synthetic vision capability, the potential exists for an additional 9.6 percent reduction in TOGW.

  16. Advanced Supersonic Technology concept AST-100 characteristics developed in a baseline-update study

    NASA Technical Reports Server (NTRS)

    Baber, H. T., Jr.; Swanson, E. E.

    1976-01-01

    The advanced supersonic technology configuration, AST-100, is described. The combination of wing thickness reduction, nacelle recontouring for minimum drag at cruise, and the use of the horizontal tail to produce lift during climb and cruise resulted in an increase in maximum lift-to-drag ratio. Lighter engines and lower fuel weight associated with this resizing result in a six percent reduction in takeoff gross weight. The AST-100 takeoff maximum effective perceived noise at the runway centerline and sideline measurement stations was 114.4 decibels. Since 1.5-decibels tradeoff is available from the approach noise, the required engine noise supression is 4.9 decibels. The AST-100 largest maximum overpressure would occur during transonic climb acceleration when the aircraft was at relatively low altitude. Calculated standard +8 C day range of the AST-100, with a 292 passenger payload, is 7348 km (3968 n.mi). Fuel price is the largest contributor to direct operating cost. However, if the AST-100 were flown subsonically (M = 0.9), direct operating costs would increase approximately 50 percent because of time related costs.

  17. An Analysis of the Effects of a Bilingual Curriculum on a Selected Group of Ninth Graders with Regards to Attitude toward School and Self Concept.

    ERIC Educational Resources Information Center

    Prewitt-Diaz, Joseph O.

    A study was made of a group of ninth grade students to investigate the effects of a bilingual curriculum on monolingual Spanish (MS) students with regard to their self concept and attitude toward school. The research used one treatment group (MS) and two comparison groups: monolingual English Students (ME) and Bilingual Students (BI). The ME and…

  18. Advanced concepts in biomass production and biological pretreatment. Annual report, April 1988 to March 1989

    SciTech Connect

    Hiler, E.A.

    1989-04-01

    The overall objective of the research is to investigate fundamental processes for enhancing the efficiency of methane from sorghum systems. The report provides specifics of research activities in the Texas A and M biomass and biological pretreatment program sponsored by Gas Research Institute and co-funded by Texas Agricultural Experiment Station. Four research groups, each with specific tasks, are involved in the project: biomass production, quantity and quality, biological pretreatment and processing, long-term effects of land application of digester effluent, and systems modeling and analysis.

  19. Feasibility and Safety Assessment for Advanced Reactor Concepts Using Vented Fuel

    SciTech Connect

    Klein, Andrew; Matthews, Topher; Lenhof, Renae; Deason, Wesley; Harter, Jackson

    2015-01-16

    Recent interest in fast reactor technology has led to renewed analysis of past reactor concepts such as Gas Fast Reactors and Sodium Fast Reactors. In an effort to make these reactors more economic, the fuel is required to stay in the reactor for extended periods of time; the longer the fuel stays within the core, the more fertile material is converted into usable fissile material. However, as burnup of the fuel-rod increases, so does the internal pressure buildup due to gaseous fission products. In order to reach the 30 year lifetime requirements of some reactor designs, the fuel pins must have a vented-type design to allow the buildup of fission products to escape. The present work aims to progress the understanding of the feasibility and safety issues related to gas reactors that incorporate vented fuel. The work was separated into three different work-scopes: 1. Quantitatively determine fission gas release from uranium carbide in a representative helium cooled fast reactor; 2. Model the fission gas behavior, transport, and collection in a Fission Product Vent System; and, 3. Perform a safety analysis of the Fission Product Vent System. Each task relied on results from the previous task, culminating in a limited scope Probabilistic Risk Assessment (PRA) of the Fission Product Vent System. Within each task, many key parameters lack the fidelity needed for comprehensive or accurate analysis. In the process of completing each task, the data or methods that were lacking were identified and compiled in a Gap Analysis included at the end of the report.

  20. Combustion modifications and advanced concepts for NO{sub x} emission control

    SciTech Connect

    Hein, K.R.G.; Spliethoff, H.

    1996-12-31

    Systematic investigations made at a small scale utility could demonstrate the influence that the parameters of stoichiometry, temperature, and residence time have on NO{sub x} emissions and burnout in air staging and reburning. Depending on the degree of coalification, the suitability for NO{sub x} reduction varies from method to method. Taking coals with low coalification degree, e.g., brown coals or lignite, but also biomass, low NO{sub x} emissions of less than 200 mg/Nm{sup 3} can be achieved alone by air staging using a sufficient residence time in the primary zone. By applying in-furnace NO{sub x}-reduction techniques, the attainable NO{sub x}-emission level on industrial scale ranges between 250 mg/m{sup 3} in the case of pulverized coal-fired furnaces and distinctly below 200 mg/m{sup 3} with lignite fired furnaces, without having disadvantageous effects such as deteriorated burnout. Recent developments intended to increase the combustion efficiency of brown coal with a high moisture content pursue the concept of predrying so that higher temperatures are expected than with hitherto practiced methods. The experiments carried out at the small scale facility, in spite of the higher temperature, make lower NO{sub x} emissions likely. To complete the presentation, the authors show the method of Fuel Splitting and Staging, abbreviated to BTS in German. In BTS, gaseous fuels can be used as a reduction means, but gases produced with fuels of little coalification degree may also turn out to be advantageous.

  1. Advanced direct liquefaction concepts for PETC generic units: Phase 2. Quarterly technical progress report, July--September, 1996

    SciTech Connect

    1996-11-01

    The Advanced Direct Liquefaction Concepts Program sponsored by the DOE Pittsburgh Energy Technology Center was initiated in 1991 with the objective of promoting the development of new and emerging technology that has the potential for reducing the cost of producing liquid fuels by direct coal liquefaction. The laboratory research program (Phase I) was completed in 1995 by UK/CAER, CONSOL, Sandia National Laboratories and LDP Associates. A three year extension was subsequently awarded in October 1995 to further develop several promising concepts derived from the laboratory program. During Phase II, four continuous bench scale runs will be conducted at Hydrocarbon Technologies, Inc. using a 2 kg/hr continuous bench scale unit located at their facility in Lawrenceville, NJ. The first run in this program (ALC-1), conducted between April 19 and May 14, 1996, consisted of five test conditions to evaluate the affect of coal cleaning and recycle solvent modification. A detailed discussion of this run is included in Section Two of this report. Results obtained during this reporting period for all participants in this program are summarized.

  2. Concept and Language Development of a Group of Five Year Olds Who Have Attended the Syracuse University Children's Center Intervention Program.

    ERIC Educational Resources Information Center

    Lindstrom, David; Tannenbaum, Jordan

    Two groups of 5-year-old children were evaluated using several measures of language and concept ability: Stanford-Binet, Form L-M; Preschool Inventory (PSI); Boehm Test of Basic Concepts; Peabody Picture Vocabulary Test, Form B (PPVT); and the Auditory-Vocal Automatic, Motor Encoding, Auditory-Vocal Association, and Vocal Encoding subtests of the…

  3. Realization of an advanced nozzle concept for compact chemical oxygen iodine laser

    NASA Astrophysics Data System (ADS)

    Singhal, Gaurav; Subbarao, P. M. V.; Rajesh, R.; Mainuddin; Tyagi, R. K.; Dawar, A. L.

    2007-04-01

    Conventional supersonic chemical oxygen-iodine lasers (SCOIL) are not only low-pressure systems, with cavity pressure of 2-3 Torr and Mach number of approximately 1.5, but also are high-throughput systems with a typical laser power per unit evacuation capacity of nearly 1 J/l, thus demanding high capacity vacuum systems which mainly determine the compactness of the system. These conventional nozzle-based systems usually require a minimum of a two-stage ejector system for realization of atmospheric pressure recovery in a SCOIL. Typically for a 500 W class SCOIL, a first stage requires a motive gas flow (air) of 120 gm/s to entrain a laser gas flow of 3 g/s and is capable of achieving the pressure recovery in the range of 60-80 Torr. On the other hand, the second stage ejector requires 4.5 kg/s of motive gas (air) to achieve atmospheric pressure recovery. An advanced nozzle, also known as ejector nozzle, suitable for a 500 W-class SCOIL employing an active medium flow of nearly 12 g/s, has been developed and used instead of a conventional slit nozzle. The nozzle has been tested in both cold as well as hot run conditions of SCOIL, achieving a typical cavity pressure of nearly 10 Torr, stagnation pressure of approximately 85 Torr and a cavity Mach number of 2.5. The present study details the gas dynamic aspects of this ejector nozzle and highlights its potential as a SCOIL pressure recovery device. This nozzle in conjunction with a diffuser is capable of achieving pressure recovery equivalent to a more cumbersome first stage of the pressure recovery system used in the case of a conventional slit nozzle-based system. Thus, use of this nozzle in place of a conventional slit nozzle can achieve atmospheric discharge using a single stage ejector system, thereby making the pressure recovery system quite compact.

  4. Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report

    SciTech Connect

    1998-09-30

    Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting storage

  5. The Articulation of Integration of Clinical and Basic Sciences in Concept Maps: Differences between Experienced and Resident Groups

    ERIC Educational Resources Information Center

    Vink, Sylvia; van Tartwijk, Jan; Verloop, Nico; Gosselink, Manon; Driessen, Erik; Bolk, Jan

    2016-01-01

    To determine the content of integrated curricula, clinical concepts and the underlying basic science concepts need to be made explicit. Preconstructed concept maps are recommended for this purpose. They are mainly constructed by experts. However, concept maps constructed by residents are hypothesized to be less complex, to reveal more tacit basic…

  6. Advanced Offshore Wind Turbine/Foundation Concept for the Great Lakes

    SciTech Connect

    Afjeh, Abdollah A.; Windpower, Nautica; Marrone, Joseph; Wagner, Thomas

    2013-08-29

    This project investigated a conceptual 2-bladed rotor wind turbine design and assessed its feasibility for installation in the Great Lakes. The levelized cost of energy was used for this purpose. A location in Lake Erie near the coast of Cleveland, Ohio was selected as the application site. The loading environment was defined using wind and wave data collected at a weather station in Lake Erie near Cleveland. In addition, the probability distributions of the annual significant wave height and wind speed were determined. A model of the dependence of the above two quantities was also developed and used in the study of wind turbine system loads. Loads from ice floes and ridges were also included.The NREL 5 MW 3-bladed rotor wind turbine concept was used as the baseline design. The proposed turbine design employs variable pitch blade control with tip-brakes and a teeter mechanism. The rotor diameter, rated power and the tower dimensions were selected to closely match those of the NREL 5 MW wind turbine.A semi-floating gravity base foundation was designed for this project primarily to adapt to regional logistical constraints to transport and install the gravity base foundation. This foundation consists of, from bottom to top, a base plate, a buoyancy chamber, a taper zone, a column (with ice cone), and a service platform. A compound upward-downward ice cone was selected to secure the foundation from moving because of ice impact.The turbine loads analysis was based on International ElectroTechnical Committee (IEC) Standard 61400-1, Class III winds. The NREL software FAST was the primary computational tool used in this study to determine all design load cases. An initial set of studies of the dynamics of wind turbines using Automatic Dynamic Analysis of Mechanical Systems (ADAMS) demonstrated that FAST and ADAMS load predictions were comparable. Because of its relative simplicity and short run times, FAST was selected for this study. For ice load calculations, a method

  7. Atmospheric fluidized bed combustion advanced system concepts applicable to small industrial and commercial markets. Topical report, Level 2

    SciTech Connect

    Ake, T.R.; Dixit, V.B.; Mongeon, R.K.

    1992-09-01

    As part of an overall strategy to promote FBC coal combustion and to improve the marketability of the eastern coals, the US Department of Energy`s Morgantown Energy Research Center awarded a three level contract to Riley Stoker Corporation to develop advanced Multi Solids Fluidized Bed (MSFB) boiler designs. The first level of this contract targeted the small package boiler (10,000--50,000 lb/hr steam) and industrial size boiler (75,000--150,000 lb/hr steam) markets. Two representative sizes, 30,000 lb/hr and 110,000 lb/hr of steam, were selected for the two categories for a detailed technical and economic evaluation. Technically, both the designs showed promise, however, the advanced industrial design was favored on economic considerations. It was thus selected for further study in the second level of the contract. Results of this Level-2 effort, presented in this report, consisted of testing the design concept in Riley`s 4.4 MBtu/hr pilot MSFB facility located at Riley Research Center in Worcester, Mass. The design and economics of the proof of concept facility developed in Level-1 of the contract were then revised in accordance with the findings of the pilot test program. A host site for commercial demonstration in Level-3 of the contract was also secured. It was determined that co-firing coal in combination with paper de-inking sludge will broaden the applicability of the design beyond conventional markets. International Paper (IP), the largest paper company in the world, is willing to participate in this part of the program. IP has offered its Hammermill operation at Lockhaven, Pa, site of a future paper de-inking plant, for the proof of concept installation. This plant will go in operation in 1994. It is recommended that METC proceed to the commercial demonstration of the design developed. The approach necessary to satisfy the needs of the customer while meeting the objectives of this program is presented along with a recommended plan of action.

  8. {A Review of Working Group 2 (Advanced Terrestrial Systems) of the COST 296 Action}

    NASA Astrophysics Data System (ADS)

    Warrington, E. M.; Tulunay, E.

    2009-04-01

    E.M. Warrington, E. Tulunay, N.M. Abbasi, J. Azevedo, L. Bertel, A. Bourdillon, E. Benito, C. Bianchi, A. Casimiro, L. Economou, Y. Erhel, S.M. Feeney, S.D. Gunashekar, H. Haralambous, D. Lemur, F. Marie, J.P. Monilie, M. Muriuki, M. Oger M. Pietrella, V. Rannou, H. Rothkaehl, S. Saillant, S. Salous, O. Sari, A.J. Stocker, H.J. Strangeways, Y. Tulunay and N.Y. Zaalov This paper deals with the research undertaken during the COST 296 Action in Working Group 2 on Advanced Terrestrial Systems. The Working Group comprised three work packages covering various topics: Radar and Radiolocation, HF/MF Communications, and Spectrum Management. Results from this Working Group are presented in this paper, and may be summarised as follows. Aspects of HF propagation The propagation characteristics of radio signals are important parameters to consider when designing and operating radio systems. From the point of view Working Group 2 of the COST-296 Action, interest lies with effects associated with propagation via the ionosphere of signals within the HF band. Several aspects were covered: The directions of arrival and times of flight of signals received over a path oriented along the trough have been examined and several types of propagation effects identified. Of particular note, combining the HF observations with satellite measurements has identified the presence of irregularities within the floor of the trough that result in propagation displaced from the great circle direction. An understanding of the propagation effects that result in deviations of the signal path from the great circle direction are of particular relevance to the operation of HF radiolocation systems. Inclusion of the results from the above mentioned measurements into a propagation model of the northerly ionosphere (i.e. those regions of the ionosphere located poleward of, and including, the mid-latitude trough) and the use of this model to predict the coverage expected from transmitters where the signals

  9. The Integrated Safety-Critical Advanced Avionics Communication and Control (ISAACC) System Concept: Infrastructure for ISHM

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Briscoe, Jeri M.

    2005-01-01

    Integrated System Health Management (ISHM) architectures for spacecraft will include hard real-time, critical subsystems and soft real-time monitoring subsystems. Interaction between these subsystems will be necessary and an architecture supporting multiple criticality levels will be required. Demonstration hardware for the Integrated Safety-Critical Advanced Avionics Communication & Control (ISAACC) system has been developed at NASA Marshall Space Flight Center. It is a modular system using a commercially available time-triggered protocol, ?Tp/C, that supports hard real-time distributed control systems independent of the data transmission medium. The protocol is implemented in hardware and provides guaranteed low-latency messaging with inherent fault-tolerance and fault-containment. Interoperability between modules and systems of modules using the TTP/C is guaranteed through definition of messages and the precise message schedule implemented by the master-less Time Division Multiple Access (TDMA) communications protocol. "Plug-and-play" capability for sensors and actuators provides automatically configurable modules supporting sensor recalibration and control algorithm re-tuning without software modification. Modular components of controlled physical system(s) critical to control algorithm tuning, such as pumps or valve components in an engine, can be replaced or upgraded as "plug and play" components without modification to the ISAACC module hardware or software. ISAACC modules can communicate with other vehicle subsystems through time-triggered protocols or other communications protocols implemented over Ethernet, MIL-STD- 1553 and RS-485/422. Other communication bus physical layers and protocols can be included as required. In this way, the ISAACC modules can be part of a system-of-systems in a vehicle with multi-tier subsystems of varying criticality. The goal of the ISAACC architecture development is control and monitoring of safety critical systems of a

  10. Interagency Advanced Power Group, Joint Electrical and Nuclear Working Group, meeting minutes, November 16--17, 1993

    SciTech Connect

    Not Available

    1993-12-31

    Reports on soldier power R&D review, N-MCT power electronic building blocks, silicon carbide power semiconductor work, and ground based radar were made to the Power Conditioning Panel. An introduction to high temperature electronics needs, research and development was made to the High Temperature Electronics Subcommittee. The Pulse Power Panel received reports on the navy ETC gun, and army pulse power. The Superconductivity Panel received reports on high-tc superconducting wires, superconducting magnetic energy storage, and superconducting applications. The Nuclear Working Group received presentations on the Topaz nuclear power program, and space nuclear work in the Department of Energy.

  11. Unattended network operations technology assessment study. Technical support for defining advanced satellite systems concepts

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Holdridge, Mark; Odubiyi, Jide; Jaworski, Allan; Morgan, Herbert K.

    1991-01-01

    The results are summarized of an unattended network operations technology assessment study for the Space Exploration Initiative (SEI). The scope of the work included: (1) identified possible enhancements due to the proposed Mars communications network; (2) identified network operations on Mars; (3) performed a technology assessment of possible supporting technologies based on current and future approaches to network operations; and (4) developed a plan for the testing and development of these technologies. The most important results obtained are as follows: (1) addition of a third Mars Relay Satellite (MRS) and MRS cross link capabilities will enhance the network's fault tolerance capabilities through improved connectivity; (2) network functions can be divided into the six basic ISO network functional groups; (3) distributed artificial intelligence technologies will augment more traditional network management technologies to form the technological infrastructure of a virtually unattended network; and (4) a great effort is required to bring the current network technology levels for manned space communications up to the level needed for an automated fault tolerance Mars communications network.

  12. ROBOTICALLY ENHANCED ADVANCED MANUFACTURING CONCEPTS TO OPTIMIZE ENERGY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE

    SciTech Connect

    Larry L. Keller; Joseph M. Pack; Robert V. Kolarik II

    2007-11-05

    In the first phase of the REML project, major assets were acquired for a manufacturing line for follow-on installation, capability studies and optimization. That activity has been documented in the DE-FC36-99ID13819 final report. In this the second phase of the REML project, most of the major assets have been installed in a manufacturing line arrangement featuring a green cell, a thermal treatment cell and a finishing cell. Most of the secondary and support assets have been acquired and installed. Assets have been integrated with a commercial, machine-tending gantry robot in the thermal treatment cell and with a low-mass, high-speed gantry robot in the finish cell. Capabilities for masterless gauging of product’s dimensional and form characteristics were advanced. Trial production runs across the entire REML line have been undertaken. Discrete event simulation modeling has aided in line balancing and reduction of flow time. Energy, productivity and cost, and environmental comparisons to baselines have been made. Energy The REML line in its current state of development has been measured to be about 22% (338,000 kVA-hrs) less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume of approximately 51,000 races. The reduction in energy consumption is largely attributable to the energy reduction in the REML thermal treatment cell where the heating devices are energized on demand and are appropriately sized to the heating load of a near single piece flow line. If additional steps such as power factor correction and use of high-efficiency motors were implemented to further reduce energy consumption, it is estimated, but not yet demonstrated, that the REML line would be about 30% less energy intensive than the baseline conventional low volume line assuming equivalent annual production volume. Productivity The capital cost of an REML line would be roughly equivalent to the capital cost of a new conventional line. The

  13. 40 CFR 35.4095 - What can my group pay for with an advance payment?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... used only for the purchase of supplies, postage, the payment of the first deposit to open a bank... for contracts for technical advisors or other contractors. (c) Advance payments are not available...

  14. Final Report for the Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period, N+3 Supersonic Program

    NASA Technical Reports Server (NTRS)

    Morgenstern, John; Norstrud, Nicole; Stelmack, Marc; Skoch, Craig

    2010-01-01

    The N+3 Final Report documents the work and progress made by Lockheed Martin Aeronautics in response to the NASA sponsored program "N+3 NRA Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period." The key technical objective of this effort was to generate promising supersonic concepts for the 2030 to 2035 timeframe and to develop plans for maturing the technologies required to make those concepts a reality. The N+3 program is aligned with NASA's Supersonic Project and is focused on providing alternative system-level solutions capable of overcoming the efficiency, environmental, and performance barriers to practical supersonic flight

  15. {A Review of Working Group 2 (Advanced Terrestrial Systems) of the COST 296 Action}

    NASA Astrophysics Data System (ADS)

    Warrington, E. M.; Tulunay, E.

    2009-04-01

    E.M. Warrington, E. Tulunay, N.M. Abbasi, J. Azevedo, L. Bertel, A. Bourdillon, E. Benito, C. Bianchi, A. Casimiro, L. Economou, Y. Erhel, S.M. Feeney, S.D. Gunashekar, H. Haralambous, D. Lemur, F. Marie, J.P. Monilie, M. Muriuki, M. Oger M. Pietrella, V. Rannou, H. Rothkaehl, S. Saillant, S. Salous, O. Sari, A.J. Stocker, H.J. Strangeways, Y. Tulunay and N.Y. Zaalov This paper deals with the research undertaken during the COST 296 Action in Working Group 2 on Advanced Terrestrial Systems. The Working Group comprised three work packages covering various topics: Radar and Radiolocation, HF/MF Communications, and Spectrum Management. Results from this Working Group are presented in this paper, and may be summarised as follows. Aspects of HF propagation The propagation characteristics of radio signals are important parameters to consider when designing and operating radio systems. From the point of view Working Group 2 of the COST-296 Action, interest lies with effects associated with propagation via the ionosphere of signals within the HF band. Several aspects were covered: The directions of arrival and times of flight of signals received over a path oriented along the trough have been examined and several types of propagation effects identified. Of particular note, combining the HF observations with satellite measurements has identified the presence of irregularities within the floor of the trough that result in propagation displaced from the great circle direction. An understanding of the propagation effects that result in deviations of the signal path from the great circle direction are of particular relevance to the operation of HF radiolocation systems. Inclusion of the results from the above mentioned measurements into a propagation model of the northerly ionosphere (i.e. those regions of the ionosphere located poleward of, and including, the mid-latitude trough) and the use of this model to predict the coverage expected from transmitters where the signals

  16. Meaning-Centered Group Psychotherapy: An Effective Intervention for Improving Psychological Well-Being in Patients With Advanced Cancer

    PubMed Central

    Breitbart, William; Rosenfeld, Barry; Pessin, Hayley; Applebaum, Allison; Kulikowski, Julia; Lichtenthal, Wendy G.

    2015-01-01

    Purpose To test the efficacy of meaning-centered group psychotherapy (MCGP) to reduce psychological distress and improve spiritual well-being in patients with advanced or terminal cancer. Patients and Methods Patients with advanced cancer (N = 253) were randomly assigned to manualized eight-session interventions of either MCGP or supportive group psychotherapy (SGP). Patients were assessed before and after completing the treatment and 2 months after treatment. The primary outcome measures were spiritual well-being and overall quality of life, with secondary outcome measures assessing depression, hopelessness, desire for hastened death, anxiety, and physical symptom distress. Results Hierarchical linear models that included a priori covariates and only participants who attended ≥ three sessions indicated a significant group × time interaction for most outcome variables. Specifically, patients receiving MCGP showed significantly greater improvement in spiritual well-being and quality of life and significantly greater reductions in depression, hopelessness, desire for hastened death, and physical symptom distress compared with those receiving SGP. No group differences were observed for changes in anxiety. Analyses that included all patients, regardless of whether they attended any treatment sessions (ie, intent-to-treat analyses), and no covariates still showed significant treatment effects (ie, greater benefit for patients receiving MCGP v SGP) for quality of life, depression, and hopelessness but not for other outcome variables. Conclusion This large randomized controlled study provides strong support for the efficacy of MCGP as a treatment for psychological and existential or spiritual distress in patients with advanced cancer. PMID:25646186

  17. The Effects of Group Play Therapy on Self-Concept Among 7 to 11 Year-Old Children Suffering From Thalassemia Major

    PubMed Central

    Tomaj, Ome Kolsoum; Estebsari, Fatemeh; Taghavi, Taraneh; Borim Nejad, Leili; Dastoorpoor, Maryam; Ghasemi, Afsaneh

    2016-01-01

    Background Children suffering from thalassemia have higher levels of depression and lower levels of self-concept. Objectives The aim of this study was to determine if group play therapy could significantly increase self-concept among children with thalassemia major ages 7 to 11 years old in teaching hospitals of Golestan province, Iran, in 2012. Patients and Methods In this randomized, controlled clinical trial, 60 children with thalassemia major were randomly assigned to intervention (30 children) and control (30 children) groups. The intervention included eight 45 to 60 minute sessions during four weeks, during which the intervention group received group play therapy. The control group received no interventions. Self-concept was measured three times using the Piers-Harris children’s self-concept scale: before, immediately after, and a month after the intervention. Results For the intervention group, results showed that the mean self-concept score was significantly higher at the second point in time compared to the baseline (P < 0.001), going from 60.539 to 69.908. Likewise, comparing the first and third time points, the mean score significantly increased and reached 70.611 (P < 0.001). Furthermore, changes in the mean score from the second to the third time point, though non-significant (P = 0.509), followed the trend, going from 69.908 to 70.611. For the control group, comparing the first, second, and third time points did not result in any significant change in the mean score (P > 0.05). Conclusions The results showed that group play therapy improves self-concept in children suffering from thalassemia major. PMID:27275402

  18. Self-consistent Green's function embedding for advanced electronic structure methods based on a dynamical mean-field concept

    NASA Astrophysics Data System (ADS)

    Chibani, Wael; Ren, Xinguo; Scheffler, Matthias; Rinke, Patrick

    2016-04-01

    We present an embedding scheme for periodic systems that facilitates the treatment of the physically important part (here a unit cell or a supercell) with advanced electronic structure methods, that are computationally too expensive for periodic systems. The rest of the periodic system is treated with computationally less demanding approaches, e.g., Kohn-Sham density-functional theory, in a self-consistent manner. Our scheme is based on the concept of dynamical mean-field theory formulated in terms of Green's functions. Our real-space dynamical mean-field embedding scheme features two nested Dyson equations, one for the embedded cluster and another for the periodic surrounding. The total energy is computed from the resulting Green's functions. The performance of our scheme is demonstrated by treating the embedded region with hybrid functionals and many-body perturbation theory in the GW approach for simple bulk systems. The total energy and the density of states converge rapidly with respect to the computational parameters and approach their bulk limit with increasing cluster (i.e., computational supercell) size.

  19. Fuel Cells for Portable Power: 1. Introduction to DMFCs; 2. Advanced Materials and Concepts for Portable Power Fuel Cells

    SciTech Connect

    Zelenay, Piotr

    2012-07-16

    Thanks to generally less stringent cost constraints, portable power fuel cells, the direct methanol fuel cell (DMFC) in particular, promise earlier market penetration than higher power polymer electrolyte fuel cells (PEFCs) for the automotive and stationary applications. However, a large-scale commercialization of DMFC-based power systems beyond niche applications already targeted by developers will depend on improvements to fuel cell performance and performance durability as well as on the reduction in cost, especially of the portable systems on the higher end of the power spectrum (100-250 W). In this part of the webinar, we will focus on the development of advanced materials (catalysts, membranes, electrode structures, and membrane electrode assemblies) and fuel cell operating concepts capable of fulfilling two key targets for portable power systems: the system cost of $5/W and overall fuel conversion efficiency of 2.0-2.5 kWh/L. Presented research will concentrate on the development of new methanol oxidation catalysts, hydrocarbon membranes with reduced methanol crossover, and improvements to component durability. Time permitted, we will also present a few highlights from the development of electrocatalysts for the oxidation of two alternative fuels for the direct-feed fuel cells: ethanol and dimethyl ether.

  20. Advanced Concepts Research Initiative

    EPA Science Inventory

    This initiative is investigating various approaches to controlling and treating wet-weather flow (WWF) discharges in the urban watershed. WWF, including combined sewer overflow (CSO), sanitary sewer overflow (SSO) and stormwater discharges are leading causes of receiving water q...

  1. Advanced propulsion concepts

    NASA Technical Reports Server (NTRS)

    Sercel, Joel C.

    1991-01-01

    The topics presented are covered in viewgraph form. The programmatic objective is to establish the feasibility of propulsion technologies for vastly expanded space activity. The technical objective is a revolutionary performance sought, such as: (1) about 1 kg/kW specific mass; (2) specific impulse tailored to mission requirements; (3) ability to use in-situ resources; (4) round-trips to Mars in months; (5) round-trips to outer planets in 1 to 2 years; and (6) the capability for robotic mission beyond the solar system.

  2. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    NASA Technical Reports Server (NTRS)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  3. Facebook and Classroom Group Work: A Trial Study Involving University of Botswana Advanced Oral Presentation Students

    ERIC Educational Resources Information Center

    Magogwe, Joel M.; Ntereke, Beauty; Phetlhe, Keith R.

    2015-01-01

    In the 21st century, the use of information technology in the classroom is advancing rapidly, especially in higher education. The Internet, through social networking, has made it possible for students to learn and teachers to teach outside the classroom walls. Facebook in particular has made it possible for students to interact and communicate…

  4. 40 CFR 35.4090 - If my group is eligible for an advance payment, how do we get our funds?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false If my group is eligible for an advance payment, how do we get our funds? 35.4090 Section 35.4090 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Technical Assistance How You Get the Money § 35.4090 If...

  5. 40 CFR 35.4090 - If my group is eligible for an advance payment, how do we get our funds?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false If my group is eligible for an advance payment, how do we get our funds? 35.4090 Section 35.4090 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Technical Assistance How You Get the Money § 35.4090 If...

  6. 40 CFR 35.4090 - If my group is eligible for an advance payment, how do we get our funds?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false If my group is eligible for an advance payment, how do we get our funds? 35.4090 Section 35.4090 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Technical Assistance How You Get the Money § 35.4090 If...

  7. Advancing Entrepreneurship Education. A Report of the Youth Entrepreneurship Strategy Group

    ERIC Educational Resources Information Center

    Aspen Institute, 2008

    2008-01-01

    The Youth Entrepreneurship Strategy Group convened its inaugural meeting from September 26-28, 2007 at the Aspen Institute in Aspen, Colorado. A group of dynamic national leaders from the fields of education, entrepreneurship and business, public policy, media, and philanthropy met over three days to explore the promise of, and obstacles to,…

  8. MHD Simulation of Magnetic Nozzle Plasma with the NIMROD Code: Applications to the VASIMR Advanced Space Propulsion Concept

    NASA Astrophysics Data System (ADS)

    Tarditi, Alfonso G.; Shebalin, John V.

    2002-11-01

    A simulation study with the NIMROD code [1] is being carried on to investigate the efficiency of the thrust generation process and the properties of the plasma detachment in a magnetic nozzle. In the simulation, hot plasma is injected in the magnetic nozzle, modeled as a 2D, axi-symmetric domain. NIMROD has two-fluid, 3D capabilities but the present runs are being conducted within the MHD, 2D approximation. As the plasma travels through the magnetic field, part of its thermal energy is converted into longitudinal kinetic energy, along the axis of the nozzle. The plasma eventually detaches from the magnetic field at a certain distance from the nozzle throat where the kinetic energy becomes larger than the magnetic energy. Preliminary NIMROD 2D runs have been benchmarked with a particle trajectory code showing satisfactory results [2]. Further testing is here reported with the emphasis on the analysis of the diffusion rate across the field lines and of the overall nozzle efficiency. These simulation runs are specifically designed for obtaining comparisons with laboratory measurements of the VASIMR experiment, by looking at the evolution of the radial plasma density and temperature profiles in the nozzle. VASIMR (Variable Specific Impulse Magnetoplasma Rocket, [3]) is an advanced space propulsion concept currently under experimental development at the Advanced Space Propulsion Laboratory, NASA Johnson Space Center. A plasma (typically ionized Hydrogen or Helium) is generated by a RF (Helicon) discharge and heated by an Ion Cyclotron Resonance Heating antenna. The heated plasma is then guided into a magnetic nozzle to convert the thermal plasma energy into effective thrust. The VASIMR system has no electrodes and a solenoidal magnetic field produced by an asymmetric mirror configuration ensures magnetic insulation of the plasma from the material surfaces. By powering the plasma source and the heating antenna at different levels it is possible to vary smoothly of the

  9. “You can get there from here”: Advanced low cost propulsion concepts for small satellites beyond LEO

    NASA Astrophysics Data System (ADS)

    Baker, Adam M.; da Silva Curiel, Alex; Schaffner, Jake; Sweeting, Martin

    2005-07-01

    microsatellite from a typical 700 km sun-synchronous orbit to a lower or higher orbit using a low cost 40 N thrust concentrated hydrogen peroxide/kerosene bipropellant engine. A spin stabilized 'tug' concept capable of providing between 130 and 300 m/s of deltaV to the payload is described. Transfer of an enhanced microsatellite from LEO to lunar orbit using a novel, storable propellant solar thermal propulsion system under development at the Surrey Space Centre. The solar thermal propulsion unit is designed for low cost small satellite support and will be compared with a more traditional approach using and industry standard storable bipropellant chemical engine. Nanosatellite manoeuvring for formation flying using advanced low power electric propulsion. A colloid thruster system concept is planned for development jointly between SSTL, Queen Mary University London and Rutherford Appleton Laboratory, UK. The colloid thruster system is designed to complement an existing butane resistojet to give full 3-axis manoeuvrability to an upgraded SNAP nanosatellite platform which could be reflown in 2007 alongside ESA's Proba 2 technology demonstrator microsatellite. A comparison between low power resistojets, a colloid thruster system, and pulsed plasma thrusters for orbit manoeuvring of microsatellites will be made. This paper's final section will briefly describe some of the interplanetary missions which have been considered at the Surrey Space Centre, and will highlight the few as yet practical solutions for sending small spacecraft on high deltaV missions without the use of a costly upper stage.

  10. Achieving Harmony among Different Social Identities within the Self-Concept: The Consequences of Internalising a Group-Based Philosophy of Life

    PubMed Central

    Turner-Zwinkels, Felicity M.; Postmes, Tom; van Zomeren, Martijn

    2015-01-01

    It can be hard for individuals to manage multiple group identities within their self-concept (e.g., being a Christian and a woman). We examine how the inter-identity fit between potentially conflicting identities can become more harmonious through a self-defining group philosophy for life. Specifically, we test the hypothesis that holistic group identities (based in group philosophies for life that prescribe the behavior of their members in any situation, such as religion) become more strongly related to other identities in the self-concept (e.g., gender) when they are strongly self-defining (i.e., devotedly applied to daily life). In three studies we investigated the inter-identity fit between individuals’ (highly holistic) religious identity and (less holistic) gender identity. Results provided converging support for our hypothesis across diverging methods (explicit questionnaires, more implicit associations, and a novel network analysis of group traits). We discuss the importance of understanding how some (i.e., holistic and self-defining) group identities may harmonize otherwise less harmonious group identities within one’s self-concept. PMID:26618917

  11. Achieving Harmony among Different Social Identities within the Self-Concept: The Consequences of Internalising a Group-Based Philosophy of Life.

    PubMed

    Turner-Zwinkels, Felicity M; Postmes, Tom; van Zomeren, Martijn

    2015-01-01

    It can be hard for individuals to manage multiple group identities within their self-concept (e.g., being a Christian and a woman). We examine how the inter-identity fit between potentially conflicting identities can become more harmonious through a self-defining group philosophy for life. Specifically, we test the hypothesis that holistic group identities (based in group philosophies for life that prescribe the behavior of their members in any situation, such as religion) become more strongly related to other identities in the self-concept (e.g., gender) when they are strongly self-defining (i.e., devotedly applied to daily life). In three studies we investigated the inter-identity fit between individuals' (highly holistic) religious identity and (less holistic) gender identity. Results provided converging support for our hypothesis across diverging methods (explicit questionnaires, more implicit associations, and a novel network analysis of group traits). We discuss the importance of understanding how some (i.e., holistic and self-defining) group identities may harmonize otherwise less harmonious group identities within one's self-concept. PMID:26618917

  12. Factors associated with attrition from a randomized controlled trial of meaning-centered group psychotherapy for patients with advanced cancer

    PubMed Central

    Applebaum, Allison J.; Lichtenthal, Wendy G.; Pessin, Hayley A.; Radomski, Julia N.; Gökbayrak, N. Simay; Katz, Aviva M.; Rosenfeld, Barry; Breitbart, William

    2013-01-01

    Objective The generalizability of palliative care intervention research is often limited by high rates of study attrition. This study examined factors associated with attrition from a randomized controlled trial comparing meaning-centered group psychotherapy (MCGP), an intervention designed to help advanced cancer patients sustain or enhance their sense of meaning to the supportive group psychotherapy (SGP), a standardized support group. Methods Patients with advanced solid tumor cancers (n = 153) were randomized to eight sessions of either the MCGP or SGP. They completed assessments of psychosocial, spiritual, and physical well-being pretreatment, midtreatment, and 2 months post-treatment. Attrition was assessed in terms of the percent of participants who failed to complete these assessments, and demographic, psychiatric, medical, and study-related correlates of attrition were examined for the participants in each of these categories. Results The rates of attrition at these time points were 28.1%, 17.7%, and 11.1%, respectively; 43.1% of the participants (66 of 153) completed the entire study. The most common reason for dropout was patients feeling too ill. Attrition rates did not vary significantly between study arms. The participants who dropped out pretreatment reported less financial concerns than post-treatment dropouts, and the participants who dropped out of the study midtreatment had poorer physical health than treatment completers. There were no other significant associations between attrition and any demographic, medical, psychiatric, or study-related variables. Conclusions These findings highlight the challenge of maintaining advanced cancer patients in longitudinal research and suggest the need to consider alternative approaches (e.g., telemedicine) for patients who might benefit from group interventions but are too ill to travel. PMID:21751295

  13. Caribbean Families: Diversity among Ethnic Groups. Advances in Applied Developmental Psychology, Volume 14.

    ERIC Educational Resources Information Center

    Roopnarine, Jaipaul L., Ed.; Brown, Janet, Ed.

    Little is known about the development and function of families in major Caribbean communities, an area composed of diverse ethnic and political groups, the majority of whom live on the edge of poverty. This edited book provides an interdisciplinary examination of Caribbean families, each chapter detailing studies dealing with family structures and…

  14. Group Work during International Disaster Outreach Projects: A Model to Advance Cultural Competence

    ERIC Educational Resources Information Center

    West-Olatunji, Cirecie; Henesy, Rachel; Varney, Melanie

    2015-01-01

    Given the rise in disasters worldwide, counselors will increasingly be called upon to respond. Current accreditation standards require that programs train students to become skillful in disaster/crisis interventions. Group processing to enhance self-awareness and improve conceptualization skills is an essential element of such training. This…

  15. Can a Targeted, Group-Based CBT Intervention Reduce Depression and Anxiety and Improve Self-Concept in Primary-Age Children?

    ERIC Educational Resources Information Center

    O'Callaghan, Paul; Cunningham, Enda

    2015-01-01

    This pilot study examined the impact of a 10 session, group-based, early-intervention cognitive behavioural therapy (CBT) programme (Cool Connections) on anxiety, depression and self-concept in nine 8-11 year old pupils in Northern Ireland. The intervention was facilitated by a teacher, education welfare officer and two classroom assistants, with…

  16. Tracking, Grading, and Student Motivation: Using Group Composition and Status to Predict Self-Concept and Interest in Ninth-Grade Mathematics

    ERIC Educational Resources Information Center

    Trautwein, Ulrich; Ludtke, Oliver; Marsh, Herbert W.; Koller, Olaf; Baumert, Jurgen

    2006-01-01

    Assigning students to different classes on the basis of their achievement levels (tracking, streaming, or ability grouping) is an extensively used strategy with widely debated consequences. The authors developed a model of the effects of tracking on self-concept and interest that integrates the opposing predictions of "assimilation" and "contrast"…

  17. The Effects of Two Types of Group Counseling Upon the Academic Achievement and Self-Concept of Mexican-American Pupils in the Elementary School.

    ERIC Educational Resources Information Center

    Leo, Paul F.

    A 20-week experimental study investigated effects of 2 group counseling techniques as aids in improvement of academic achievement and self-concept of 144 Mexican American pupils from the 4th, 5th, and 6th grades of 2 elementary schools. Also used in the study were results of a pilot project conducted with Mexican American pupils to compare the…

  18. Effects of a Group Counseling Model on Self-Concept and Related Variables with Adult Members of Disadvantaged Families. An Affective Evaluation Study. Counseling Services Report No. 20.

    ERIC Educational Resources Information Center

    Mayotte, Alan C.; Conrad, Rowan W.

    The study examines the effectiveness of theme-centered group counseling conducted by experienced professional counselors in impacting the self-confidence of disadvantaged adults and also the development of interpersonal and intrapersonal sensitivity. Major questions focused on ascertaining if: (1) self-concept developments of a sample of entering…

  19. Facilitating advance care planning with ethnically diverse groups of frail, low-income elders in the USA: perspectives of care managers on challenges and recommendations.

    PubMed

    Kwak, Jung; Ko, Eunjeong; Kramer, Betty J

    2014-03-01

    This study examined care managers' perspectives on facilitating advance care planning (ACP) with ethnically diverse elders enrolled in a managed long-term care programme that coordinates medical and long-term care for frail, poor elders in the USA. Seven in-depth interviews and two focus groups were conducted with 24 lead supervisors and care managers of care management teams between July and August 2008; data were analysed with qualitative thematic analysis method. Participants identified four main sources of challenges: death and dying are taboo discussion topics; the dying process is beyond human control; family and others hold decision-making responsibility; and planning for death and dying is a foreign concept. Participants' recommendations to address these challenges were to develop trust with elders over time; cultivate cultural knowledge and sensitivity to respect value orientations; promote designating a healthcare proxy; recognise and educate families and community leaders as critical partners in ACP and provide practical support as needed throughout the illness experience. These findings suggest important practice implications for care managers working with increasingly diverse cultural groups of elders at the end of life. PMID:24495270

  20. Computer architectures for computational physics work done by Computational Research and Technology Branch and Advanced Computational Concepts Group

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Slides are reproduced that describe the importance of having high performance number crunching and graphics capability. They also indicate the types of research and development underway at Ames Research Center to ensure that, in the near term, Ames is a smart buyer and user, and in the long-term that Ames knows the best possible solutions for number crunching and graphics needs. The drivers for this research are real computational physics applications of interest to Ames and NASA. They are concerned with how to map the applications, and how to maximize the physics learned from the results of the calculations. The computer graphics activities are aimed at getting maximum information from the three-dimensional calculations by using the real time manipulation of three-dimensional data on the Silicon Graphics workstation. Work is underway on new algorithms that will permit the display of experimental results that are sparse and random, the same way that the dense and regular computed results are displayed.