Science.gov

Sample records for advanced continuous simulation

  1. A direct-execution parallel architecture for the Advanced Continuous Simulation Language (ACSL)

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Owen, Jeffrey E.

    1988-01-01

    A direct-execution parallel architecture for the Advanced Continuous Simulation Language (ACSL) is presented which overcomes the traditional disadvantages of simulations executed on a digital computer. The incorporation of parallel processing allows the mapping of simulations into a digital computer to be done in the same inherently parallel manner as they are currently mapped onto an analog computer. The direct-execution format maximizes the efficiency of the executed code since the need for a high level language compiler is eliminated. Resolution is greatly increased over that which is available with an analog computer without the sacrifice in execution speed normally expected with digitial computer simulations. Although this report covers all aspects of the new architecture, key emphasis is placed on the processing element configuration and the microprogramming of the ACLS constructs. The execution times for all ACLS constructs are computed using a model of a processing element based on the AMD 29000 CPU and the AMD 29027 FPU. The increase in execution speed provided by parallel processing is exemplified by comparing the derived execution times of two ACSL programs with the execution times for the same programs executed on a similar sequential architecture.

  2. A computer program for estimating the power-density spectrum of advanced continuous simulation language generated time histories

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1981-01-01

    A computer program for performing frequency analysis of time history data is presented. The program uses circular convolution and the fast Fourier transform to calculate power density spectrum (PDS) of time history data. The program interfaces with the advanced continuous simulation language (ACSL) so that a frequency analysis may be performed on ACSL generated simulation variables. An example of the calculation of the PDS of a Van de Pol oscillator is presented.

  3. Advancements for continuous miners

    SciTech Connect

    Fiscor, S.

    2007-06-15

    Design changes and new technology make the modern continuous miner more user friendly. Two of the major manufacturers, Joy Mining Machinery and DBT, both based near Pittsburgh, PA, USA, have recently acquired other OEMs to offer a greater product line. Joy's biggest development in terms of improving cutting time is the FACEBOSS Control System which has an operator assistance element and Joy Surface Reporting Software (JSRP). Joy's WetHead continuous miners have excellent performance. DBT is researching ways to make the machines more reliable with new drive systems. It has also been experimenting with water sprays to improve dust suppression. 4 photos.

  4. Designing and simulation smart multifunctional continuous logic device as a basic cell of advanced high-performance sensor systems with MIMO-structure

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolskyy, Aleksandr I.; Lazarev, Alexander A.

    2015-01-01

    We have proposed a design and simulation of hardware realizations of smart multifunctional continuous logic devices (SMCLD) as advanced basic cells of the sensor systems with MIMO- structure for images processing and interconnection. The SMCLD realize function of two-valued, multi-valued and continuous logics with current inputs and current outputs. Such advanced basic cells realize function nonlinear time-pulse transformation, analog-to-digital converters and neural logic. We showed advantages of such elements. It's have a number of advantages: high speed and reliability, simplicity, small power consumption, high integration level. The conception of construction of SMCLD consists in the use of a current mirrors realized on 1.5μm technology CMOS transistors. Presence of 50÷70 transistors, 1 PD and 1 LED makes the offered circuits quite compact. The simulation results of NOT, MIN, MAX, equivalence (EQ), normalize summation, averaging and other functions, that implemented SMCLD, showed that the level of logical variables can change from 0.1μA to 10μA for low-power consumption variants. The SMCLD have low power consumption <1mW and processing time about 1÷11μS at supply voltage 2.4÷3.3V.

  5. Simulation of reconfigurable multifunctional continuous logic devices as advanced components of the next generation high-performance MIMO-systems for the processing and interconnection

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolskyy, Aleksandr I.; Lazarev, Alexander A.

    2013-12-01

    We consider design and modeling of hardware realizations of reconfigurable multifunctional continuous logic devices (R MCL D) as advanced components of the next generation high-performance MIMO-systems for the processing and interconnection. The R MCL D realize function of two-valued and continuous logics with current inputs and current outputs on the basis of CMOS current mirrors and circuits which realize the limited difference functions. We show advantages of such elements consisting in encoding of variables by the photocurrent levels, that allows easily providing optical inputs (by photo-detectors (PD)) and optical outputs (by LED). The conception of construction of R MCL D consists in the use of a current mirrors realized on 1.5μm technology CMOS transistors. Presence of 55÷65 transistors, 1 PD and 1 LED makes the offered circuits quite compact and allows their integration in 1D and 2D arrays. In the presentation we consider the capabilities of the offered circuits, show the simulation results and possible prospects of application of the circuits in particular for time-pulse coding for multivalued, continuous, neuro-fuzzy and matrix logics. The simulation results of NOT, MIN, MAX, equivalence (EQ) and other functions, that implemented R MCL D, showed that the level of logical variables can change from 1 μA to 10 μA for low-power consumption variants. The base cell of the R MCL D have low power consumption <1mW and processing time about 1÷11μS at supply voltage 2.4÷3.3V. Modeling of such cells in OrCad is made.

  6. Simulation of a continuous rotary dissolver

    SciTech Connect

    Carnal, C.L.; Hardy, J.E.; Lewis, B.E.

    1989-01-01

    This paper describes the simulation of a rotating, multistage chemical reactor that dissolves spent nuclear fuel for reprocessing in a breeder cycle. The continuous, time-dependent process model of a dissolver was developed using the Advanced Continuous Simulation Language (ACSL) to calculate various temperatures and the masses of the chemical constituents of the solution in each stage. The Gear integration algorithm (Gear 1971) was used to accommodate the stiff dynamics. An arrangement of interacting discrete sections was employed to cause fresh fuel to be added and dissolver rotations to occur at appropriate times. By changing various constants, the model can simulate the effect of different fuel compositions and operational scenarios. The model code is a valuable tool for analysis of the performance of the dissolution system and has been instrumental in its design. 5 refs., 7 figs.

  7. Advanced Wellbore Thermal Simulator

    1992-03-04

    GEOTEMP2, which is based on the earlier GEOTEMP program, is a wellbore thermal simulator designed for geothermal well drilling and production applications. The code treats natural and forced convection and conduction within the wellbore and heat conduction within the surrounding rock matrix. A variety of well operations can be modeled including injection, production, forward and reverse circulation with gas or liquid, gas or liquid drilling, and two-phase steam injection and production. Well completion with severalmore » different casing sizes and cement intervals can be modeled. The code allows variables, such as flow rate, to change with time enabling a realistic treatment of well operations. Provision is made in the flow equations to allow the flow areas of the tubing to vary with depth in the wellbore. Multiple liquids can exist in GEOTEMP2 simulations. Liquid interfaces are tracked through the tubing and annulus as one liquid displaces another. GEOTEMP2, however, does not attempt to simulate displacement of liquids with a gas or two-phase steam or vice versa. This means that it is not possible to simulate an operation where the type of drilling fluid changes, e.g. mud going to air. GEOTEMP2 was designed primarily for use in predicting the behavior of geothermal wells, but it is flexible enough to handle many typical drilling, production, and injection problems in the oil industry as well. However, GEOTEMP2 does not allow the modeling of gas-filled annuli in production or injection problems. In gas or mist drilling, no radiation losses are included in the energy balance. No attempt is made to model flow in the formation. Average execution time is 50 CP seconds on a CDC CYBER170. This edition of GEOTEMP2 is designated as Version 2.0 by the contributors.« less

  8. Advanced continuous cultivation methods for systems microbiology.

    PubMed

    Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo

    2015-09-01

    Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories. PMID:26220303

  9. Advanced simulation of digital filters

    NASA Astrophysics Data System (ADS)

    Doyle, G. S.

    1980-09-01

    An Advanced Simulation of Digital Filters has been implemented on the IBM 360/67 computer utilizing Tektronix hardware and software. The program package is appropriate for use by persons beginning their study of digital signal processing or for filter analysis. The ASDF programs provide the user with an interactive method by which filter pole and zero locations can be manipulated. Graphical output on both the Tektronix graphics screen and the Versatec plotter are provided to observe the effects of pole-zero movement.

  10. High-fidelity simulation for continuing education in nurse anesthesia.

    PubMed

    Cannon-Diehl, M Roseann; Rugari, Susan M; Jones, Terri S

    2012-06-01

    Simulation represents a true paradigm shift in teaching and learning that has revolutionized healthcare education. However, few continuing education opportunities for anesthesia providers exist using simulation of any type. This article explores the usefulness of high-fidelity simulation (HFS) as a valuable tool for continuing education and reports the results of a needs assessment conducted among 22 practicing nurse anesthetists. The questions related to their exposure to HFS and asked them to rank their experience with 11 anesthesia events. Next, respondents were asked to rank a similar list of anesthesia events that would be useful for continuing education using simulation. Of participants, 71% ranked advanced cardiac life support scenarios, anesthesia machine mishaps, and malignant hyperthermia as highly effective choices for using HFS. Eighty-one percent of participants identified that they envision simulation as a valuable tool to assess competency, but respondents had mixed written responses when asked if simulation should be used for recertification. This needs assessment represents a beginning, grassroots attempt to establish nurse anesthetists' perceptions related to using HFS as a tool for continuing education. PMID:22848980

  11. Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling

    NASA Technical Reports Server (NTRS)

    Chu, Paul C. W.

    2004-01-01

    The research at Houston was focused on optimizing the design of superconducting magnets for advanced adiabatic demagnetization refrigerators (ADRs), assessing the feasibility of using high temperature superconducting (HTS) magnets in ADRs in the future, and developing techniques to deposit HTS thin and thick films on high strength, low thermal conductivity substrates for HTS magnet leads. Several approaches have been tested for the suggested superconducting magnets.

  12. Forcing continuous reconnection in hybrid simulations

    SciTech Connect

    Laitinen, T. V. Janhunen, P.; Jarvinen, R.; Kallio, E.

    2014-07-15

    We have performed hybrid simulations of driven continuous reconnection with open boundary conditions. Reconnection is started by a collision of two subsonic plasma fronts with opposite magnetic fields, without any specified magnetic field configuration as initial condition. Due to continued forced plasma inflow, a current sheet co-located with a dense and hot plasma sheet develops. The translational symmetry of the current sheet is broken by applying a spatial gradient in the inflow speed. We compare runs with and without localized resistivity: reconnection is initiated in both cases, but localized resistivity stabilizes it and enhances its efficiency. The outflow speed reaches about half of Alfvén speed. We quantify the conversion of magnetic energy to kinetic energy of protons and to Joule heating and show that with localized resistivity, kinetic energy of protons is increased on average five-fold in the reconnection in our simulation case.

  13. Continuation of advanced crew procedures development techniques

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Benbow, R. L.; Evans, M. E.; Mangiaracina, A. A.; Mcgavern, J. L.; Spangler, M. C.; Tatum, I. C.

    1976-01-01

    An operational computer program, the Procedures and Performance Program (PPP) which operates in conjunction with the Phase I Shuttle Procedures Simulator to provide a procedures recording and crew/vehicle performance monitoring capability was developed. A technical synopsis of each task resulting in the development of the Procedures and Performance Program is provided. Conclusions and recommendations for action leading to the improvements in production of crew procedures development and crew training support are included. The PPP provides real-time CRT displays and post-run hardcopy output of procedures, difference procedures, performance data, parametric analysis data, and training script/training status data. During post-run, the program is designed to support evaluation through the reconstruction of displays to any point in time. A permanent record of the simulation exercise can be obtained via hardcopy output of the display data and via transfer to the Generalized Documentation Processor (GDP). Reference procedures data may be transferred from the GDP to the PPP. Interface is provided with the all digital trajectory program, the Space Vehicle Dynamics Simulator (SVDS) to support initial procedures timeline development.

  14. Fault diagnosis based on continuous simulation models

    NASA Technical Reports Server (NTRS)

    Feyock, Stefan

    1987-01-01

    The results are described of an investigation of techniques for using continuous simulation models as basis for reasoning about physical systems, with emphasis on the diagnosis of system faults. It is assumed that a continuous simulation model of the properly operating system is available. Malfunctions are diagnosed by posing the question: how can we make the model behave like that. The adjustments that must be made to the model to produce the observed behavior usually provide definitive clues to the nature of the malfunction. A novel application of Dijkstra's weakest precondition predicate transformer is used to derive the preconditions for producing the required model behavior. To minimize the size of the search space, an envisionment generator based on interval mathematics was developed. In addition to its intended application, the ability to generate qualitative state spaces automatically from quantitative simulations proved to be a fruitful avenue of investigation in its own right. Implementations of the Dijkstra transform and the envisionment generator are reproduced in the Appendix.

  15. Advanced Space Shuttle simulation model

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; Smith, S. R.

    1982-01-01

    A non-recursive model (based on von Karman spectra) for atmospheric turbulence along the flight path of the shuttle orbiter was developed. It provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gusts gradients. Based on this model the time series for both gusts and gust gradients were generated and stored on a series of magnetic tapes, entitled Shuttle Simulation Turbulence Tapes (SSTT). The time series are designed to represent atmospheric turbulence from ground level to an altitude of 120,000 meters. A description of the turbulence generation procedure is provided. The results of validating the simulated turbulence are described. Conclusions and recommendations are presented. One-dimensional von Karman spectra are tabulated, while a discussion of the minimum frequency simulated is provided. The results of spectral and statistical analyses of the SSTT are presented.

  16. DEVELOPMENT OF THE ADVANCED UTILITY SIMULATION MODEL

    EPA Science Inventory

    The paper discusses the development of the Advanced Utility Simulation Model (AUSM), developed for the National Acid Precipitation Assessment Program (NAPAP), to forecast air emissions of pollutants from electric utilities. USM integrates generating unit engineering detail with d...

  17. An advanced dispatch simulator with advanced dispatch algorithm

    SciTech Connect

    Kafka, R.J. ); Fink, L.H. ); Balu, N.J. ); Crim, H.G. )

    1989-01-01

    This paper reports on an interactive automatic generation control (AGC) simulator. Improved and timely information regarding fossil fired plant performance is potentially useful in the economic dispatch of system generating units. Commonly used economic dispatch algorithms are not able to take full advantage of this information. The dispatch simulator was developed to test and compare economic dispatch algorithms which might be able to show improvement over standard economic dispatch algorithms if accurate unit information were available. This dispatch simulator offers substantial improvements over previously available simulators. In addition, it contains an advanced dispatch algorithm which shows control and performance advantages over traditional dispatch algorithms for both plants and electric systems.

  18. Advancing the LSST Operations Simulator

    NASA Astrophysics Data System (ADS)

    Saha, Abhijit; Ridgway, S. T.; Cook, K. H.; Delgado, F.; Chandrasekharan, S.; Petry, C. E.; Operations Simulator Group

    2013-01-01

    The Operations Simulator for the Large Synoptic Survey Telescope (LSST; http://lsst.org) allows the planning of LSST observations that obey explicit science driven observing specifications, patterns, schema, and priorities, while optimizing against the constraints placed by design-specific opto-mechanical system performance of the telescope facility, site specific conditions (including weather and seeing), as well as additional scheduled and unscheduled downtime. A simulation run records the characteristics of all observations (e.g., epoch, sky position, seeing, sky brightness) in a MySQL database, which can be queried for any desired purpose. Derivative information digests of the observing history database are made with an analysis package called Simulation Survey Tools for Analysis and Reporting (SSTAR). Merit functions and metrics have been designed to examine how suitable a specific simulation run is for several different science applications. This poster reports recent work which has focussed on an architectural restructuring of the code that will allow us to a) use "look-ahead" strategies that avoid cadence sequences that cannot be completed due to observing constraints; and b) examine alternate optimization strategies, so that the most efficient scheduling algorithm(s) can be identified and used: even few-percent efficiency gains will create substantive scientific opportunity. The enhanced simulator will be used to assess the feasibility of desired observing cadences, study the impact of changing science program priorities, and assist with performance margin investigations of the LSST system.

  19. Advanced Vadose Zone Simulations Using TOUGH

    SciTech Connect

    Finsterle, S.; Doughty, C.; Kowalsky, M.B.; Moridis, G.J.; Pan,L.; Xu, T.; Zhang, Y.; Pruess, K.

    2007-02-01

    The vadose zone can be characterized as a complex subsurfacesystem in which intricate physical and biogeochemical processes occur inresponse to a variety of natural forcings and human activities. Thismakes it difficult to describe, understand, and predict the behavior ofthis specific subsurface system. The TOUGH nonisothermal multiphase flowsimulators are well-suited to perform advanced vadose zone studies. Theconceptual models underlying the TOUGH simulators are capable ofrepresenting features specific to the vadose zone, and of addressing avariety of coupled phenomena. Moreover, the simulators are integratedinto software tools that enable advanced data analysis, optimization, andsystem-level modeling. We discuss fundamental and computationalchallenges in simulating vadose zone processes, review recent advances inmodeling such systems, and demonstrate some capabilities of the TOUGHsuite of codes using illustrative examples.

  20. Advances in atomic oxygen simulation

    NASA Technical Reports Server (NTRS)

    Froechtenigt, Joseph F.; Bareiss, Lyle E.

    1990-01-01

    Atomic oxygen (AO) present in the atmosphere at orbital altitudes of 200 to 700 km has been shown to degrade various exposed materials on Shuttle flights. The relative velocity of the AO with the spacecraft, together with the AO density, combine to yield an environment consisting of a 5 eV beam energy with a flux of 10(exp 14) to 10(exp 15) oxygen atoms/sq cm/s. An AO ion beam apparatus that produces flux levels and energy similar to that encountered by spacecraft in low Earth orbit (LEO) has been in existence since 1987. Test data was obtained from the interaction of the AO ion beam with materials used in space applications (carbon, silver, kapton) and with several special coatings of interest deposited on various surfaces. The ultimate design goal of the AO beam simulation device is to produce neutral AO at sufficient flux levels to replicate on-orbit conditions. A newly acquired mass spectrometer with energy discrimination has allowed 5 eV neutral oxygen atoms to be separated and detected from the background of thermal oxygen atoms of approx 0.2 eV. Neutralization of the AO ion beam at 5 eV was shown at the Martin Marietta AO facility.

  1. Continuously variable transmission: Assessment of applicability to advance electric vehicles

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Parker, R. J.

    1981-01-01

    A brief historical account of the evolution of continuously variable transmissions (CVT) for automotive use is given. The CVT concepts which are potentially suitable for application with electric and hybrid vehicles are discussed. The arrangement and function of several CVT concepts are cited along with their current developmental status. The results of preliminary design studies conducted on four CVT concepts for use in advanced electric vehicles are discussed.

  2. Judicious Use of Simulation Technology in Continuing Medical Education

    ERIC Educational Resources Information Center

    Curtis, Michael T.; DiazGranados, Deborah; Feldman, Moshe

    2012-01-01

    Use of simulation-based training is fast becoming a vital source of experiential learning in medical education. Although simulation is a common tool for undergraduate and graduate medical education curricula, the utilization of simulation in continuing medical education (CME) is still an area of growth. As more CME programs turn to simulation to…

  3. Center for Advanced Modeling and Simulation Intern

    SciTech Connect

    Gertman, Vanessa

    2010-01-01

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  4. Center for Advanced Modeling and Simulation Intern

    ScienceCinema

    Gertman, Vanessa

    2013-05-28

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  5. Advanced continuously variable transmissions for electric and hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1980-01-01

    A brief survey of past and present continuously variable transmissions (CVT) which are potentially suitable for application with electric and hybrid vehicles is presented. Discussion of general transmission requirements and benefits attainable with a CVT for electric vehicle use is given. The arrangement and function of several specific CVT concepts are cited along with their current development status. Lastly, the results of preliminary design studies conducted under a NASA contract for DOE on four CVT concepts for use in advanced electric vehicles are reviewed.

  6. Recent Advances in Simulation of Dendritic Polymers

    SciTech Connect

    Cagin, Tahir; Miklis, Paul J.; Wang, Guofeng; Zamanakos, Georgios; Martin, Ryan; Li, Hao; Mainz, Daniel T.; Nagarajan, V.; Goddard, William A.

    1999-05-11

    Dendrimers and hyperbranched polymers represent a revolution in methodology for directed synthesis of monodisperse polymers with enormous possibility of novel architectures. They demonstrate the ability to attain micelle-like structures with distinct internal and external character. Furthermore, the polyfunctional character of dendrimers allows varied response to environment and promise as selective sensors, carrier for drugs, encapsulation of toxic chemicals and metals. One of the key problems is the characterization of the structures. Theory and simulation can be essential to provide and predict structure and properties. We present some recent advances in theory, modeling and simulation of dendritic polymers.

  7. Technical Advances in the Continuous Melting of Phosphate Laser Glass

    SciTech Connect

    Suratwala, T; Thorsness, C; Campbell, J; Takeuchi, K; Suzuki, K; Yamamoto, K; Cimino, J; Thorne, A; Hayden, J

    2001-09-05

    Continuous melting of phosphate laser glass is now being used for the first time to prepare meter-scale amplifier optics for megajoule lasers. The scale-up to continuous melting from the previous one-at-a-time ''discontinuous'' batch process has allowed for the production of glass at rates more than 20 times faster, 5 times cheaper, and with 2-3 times better optical quality. Almost 8000 slabs of laser glass will be used in high-energy, high-peak-power laser systems that are being designed and built for fusion energy research. The success of this new continuous melting process, which is a result of a six year joint R&D program between government and industry, stems from numerous technical advances which include (1) dehydroxylating the glass to concentrations less than {approx}100 ppm OH; (2) minimizing damage-causing Pt-inclusions; (3) preventing glass fracture; (4) minimizing impurities such as Cu and Fe to <20 ppm; (5) improving forming methods to get high optical homogeneity glass; and (6) developing large aperture quality assurance tools to verify properties of the glass.

  8. Simulation of the continuous fermentation of manioc hydrolysate

    SciTech Connect

    Bonomi, A.; Aboutboul, H.; Schmidell, W.

    1981-01-01

    The simulation of the continuous fermentation of manioc hydrolysate utilizing a yeast strain of Saccharomyces cerevisiae isolated from the commercial pressed yeast largely employed in Brazilian distilleries is described. The model used in the simulation is derived from batch experimental runs. In order to assess the economical competitiveness of the continuous fermentation, some additional concepts, such as cell recycle, and two fermentors connected in series with and without feed division of fresh substrate, are analyzed and compared.

  9. Advanced Civil Transport Simulator Cockpit View

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Advanced Civil Transport Simulator (ACTS) is a futuristic aircraft cockpit simulator designed to provide full-mission capabilities for researching issues that will affect future transport aircraft flight stations and crews. The objective is to heighten the pilots situation awareness through improved information availability and ease of interpretation in order to reduce the possibility of misinterpreted data. The simulators five 13-inch Cathode Ray Tubes are designed to display flight information in a logical easy-to-see format. Two color flat panel Control Display Units with touch sensitive screens provide monitoring and modification of aircraft parameters, flight plans, flight computers, and aircraft position. Three collimated visual display units have been installed to provide out-the-window scenes via the Computer Generated Image system. The major research objectives are to examine needs for transfer of information to and from the flight crew; study the use of advanced controls and displays for all-weather flying; explore ideas for using computers to help the crew in decision making; study visual scanning and reach behavior under different conditions with various levels of automation and flight deck-arrangements.

  10. Onyx-Advanced Aeropropulsion Simulation Framework Created

    NASA Technical Reports Server (NTRS)

    Reed, John A.

    2001-01-01

    The Numerical Propulsion System Simulation (NPSS) project at the NASA Glenn Research Center is developing a new software environment for analyzing and designing aircraft engines and, eventually, space transportation systems. Its purpose is to dramatically reduce the time, effort, and expense necessary to design and test jet engines by creating sophisticated computer simulations of an aerospace object or system (refs. 1 and 2). Through a university grant as part of that effort, researchers at the University of Toledo have developed Onyx, an extensible Java-based (Sun Micro-systems, Inc.), objectoriented simulation framework, to investigate how advanced software design techniques can be successfully applied to aeropropulsion system simulation (refs. 3 and 4). The design of Onyx's architecture enables users to customize and extend the framework to add new functionality or adapt simulation behavior as required. It exploits object-oriented technologies, such as design patterns, domain frameworks, and software components, to develop a modular system in which users can dynamically replace components with others having different functionality.

  11. Continued Development of the Advanced Stirling Convertor (ASC)

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wood, J. Gary; Wilson, Kyle; Buffalino, Andrew; Frye, Patrick; Matejczyk, Dan; Penswick, L.B.

    2008-01-01

    The Advanced Stirling Convertor (ASC) is being developed under contract with the NASA Glenn Research Center (GRC) and is supported by NASA s Science Mission Directorate for potential use in future radioisotope power systems having significantly increased efficiency and higher specific power compared to the current thermoelectric systems. An ASC with a lower temperature (approx.650 C) Inconel heater head is currently being substituted into the DOE/Lockheed Martin Advanced Stirling Radioisotope Generator (ASRG) program with a predicted convertor efficiency of 34 percent (AC electrical out to heat input ) at a temperature ratio of 2.7 and is expected to deliver approximately 75 W(sub ac). Continued development of the higher temperature (approx.850 C) version using existing materials and fabrication techniques in the hot portions is reported on here. The higher temperature ASC is expected to have 38 percent efficiency (AC electrical out to heat input) at a temperature ratio of 3.1 and is expected to deliver approximately 88 W(sub ac). The high temperature ASC also has approximately 30 C higher rejection temperature, which allows for further reduced system mass because of the reduced radiator size. Six higher temperature and hermetically sealed convertors are being built under this effort for extended life testing at GRC.

  12. Assessing continued competency through simulation: A call for stringent action.

    PubMed

    Decker, Sharon; Utterback, Virginia Ann; Thomas, Mary Beth; Mitchell, Melinda; Sportsman, Susan

    2011-01-01

    This article proposes that simulation has potential as a method to validate critical and reflective thinking skills and continued competency of registered nurses. The authors recognize the challenges and benefits for using simulation in assessing competency. Furthermore, the authors stress that the potential use of simulation in competency testing cannot be achieved until educators and researchers acquire the specific knowledge and skills to make informed decisions and recommend policy. PMID:21667795

  13. Interoperable Technologies for Advanced Petascale Simulations

    SciTech Connect

    Li, Xiaolin

    2013-01-14

    Our final report on the accomplishments of ITAPS at Stony Brook during period covered by the research award includes component service, interface service and applications. On the component service, we have designed and implemented a robust functionality for the Lagrangian tracking of dynamic interface. We have migrated the hyperbolic, parabolic and elliptic solver from stage-wise second order toward global second order schemes. We have implemented high order coupling between interface propagation and interior PDE solvers. On the interface service, we have constructed the FronTier application programer's interface (API) and its manual page using doxygen. We installed the FronTier functional interface to conform with the ITAPS specifications, especially the iMesh and iMeshP interfaces. On applications, we have implemented deposition and dissolution models with flow and implemented the two-reactant model for a more realistic precipitation at the pore level and its coupling with Darcy level model. We have continued our support to the study of fluid mixing problem for problems in inertial comfinement fusion. We have continued our support to the MHD model and its application to plasma liner implosion in fusion confinement. We have simulated a step in the reprocessing and separation of spent fuels from nuclear power plant fuel rods. We have implemented the fluid-structure interaction for 3D windmill and parachute simulations. We have continued our collaboration with PNNL, BNL, LANL, ORNL, and other SciDAC institutions.

  14. Software Framework for Advanced Power Plant Simulations

    SciTech Connect

    John Widmann; Sorin Munteanu; Aseem Jain; Pankaj Gupta; Mark Moales; Erik Ferguson; Lewis Collins; David Sloan; Woodrow Fiveland; Yi-dong Lang; Larry Biegler; Michael Locke; Simon Lingard; Jay Yun

    2010-08-01

    This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. These include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.

  15. Process simulation for advanced composites production

    SciTech Connect

    Allendorf, M.D.; Ferko, S.M.; Griffiths, S.

    1997-04-01

    The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coating techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.

  16. Advances in NLTE modeling for integrated simulations

    NASA Astrophysics Data System (ADS)

    Scott, H. A.; Hansen, S. B.

    2010-01-01

    The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different atomic species for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly-excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with sufficient accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, Δ n = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short time steps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.

  17. Intervention Research in Social Work: Recent Advances and Continuing Challenges

    ERIC Educational Resources Information Center

    Fraser, Mark W.

    2004-01-01

    The purpose of this article is to review substantive and methodological advances in interventive research. Three substantive advances are discussed: (a) the growing use of a risk factor perspective, (b) the emergence of practice-relevant micro social theories, and (c) the increased acceptance of structured treatment protocols and manual. In…

  18. Advanced Modeling, Simulation and Analysis (AMSA) Capability Roadmap Progress Review

    NASA Technical Reports Server (NTRS)

    Antonsson, Erik; Gombosi, Tamas

    2005-01-01

    Contents include the following: NASA capability roadmap activity. Advanced modeling, simulation, and analysis overview. Scientific modeling and simulation. Operations modeling. Multi-special sensing (UV-gamma). System integration. M and S Environments and Infrastructure.

  19. Parallel algorithms for simulating continuous time Markov chains

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Heidelberger, Philip

    1992-01-01

    We have previously shown that the mathematical technique of uniformization can serve as the basis of synchronization for the parallel simulation of continuous-time Markov chains. This paper reviews the basic method and compares five different methods based on uniformization, evaluating their strengths and weaknesses as a function of problem characteristics. The methods vary in their use of optimism, logical aggregation, communication management, and adaptivity. Performance evaluation is conducted on the Intel Touchstone Delta multiprocessor, using up to 256 processors.

  20. Precision Casting via Advanced Simulation and Manufacturing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A two-year program was conducted to develop and commercially implement selected casting manufacturing technologies to enable significant reductions in the costs of castings, increase the complexity and dimensional accuracy of castings, and reduce the development times for delivery of high quality castings. The industry-led R&D project was cost shared with NASA's Aerospace Industry Technology Program (AITP). The Rocketdyne Division of Boeing North American, Inc. served as the team lead with participation from Lockheed Martin, Ford Motor Company, Howmet Corporation, PCC Airfoils, General Electric, UES, Inc., University of Alabama, Auburn University, Robinson, Inc., Aracor, and NASA-LeRC. The technical effort was organized into four distinct tasks. The accomplishments reported herein. Task 1.0 developed advanced simulation technology for core molding. Ford headed up this task. On this program, a specialized core machine was designed and built. Task 2.0 focused on intelligent process control for precision core molding. Howmet led this effort. The primary focus of these experimental efforts was to characterize the process parameters that have a strong impact on dimensional control issues of injection molded cores during their fabrication. Task 3.0 developed and applied rapid prototyping to produce near net shape castings. Rocketdyne was responsible for this task. CAD files were generated using reverse engineering, rapid prototype patterns were fabricated using SLS and SLA, and castings produced and evaluated. Task 4.0 was aimed at developing technology transfer. Rocketdyne coordinated this task. Casting related technology, explored and evaluated in the first three tasks of this program, was implemented into manufacturing processes.

  1. Using CONFIG for Simulation of Operation of Water Recovery Subsystems for Advanced Control Software Evaluation

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Flores, Luis; Fleming, Land; Throop, Daiv

    2002-01-01

    A hybrid discrete/continuous simulation tool, CONFIG, has been developed to support evaluation of the operability life support systems. CON FIG simulates operations scenarios in which flows and pressures change continuously while system reconfigurations occur as discrete events. In simulations, intelligent control software can interact dynamically with hardware system models. CONFIG simulations have been used to evaluate control software and intelligent agents for automating life support systems operations. A CON FIG model of an advanced biological water recovery system has been developed to interact with intelligent control software that is being used in a water system test at NASA Johnson Space Center

  2. Advanced Simulation Capability for Environmental Management: Development and Demonstrations - 12532

    SciTech Connect

    Freshley, Mark D.; Freedman, Vicky; Gorton, Ian; Hubbard, Susan S.; Moulton, J. David; Dixon, Paul

    2012-07-01

    The U.S. Department of Energy Office of Environmental Management (EM), Technology Innovation and Development is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of capabilities, which are organized into Platform and Integrated Tool-sets and a High-Performance Computing Multi-process Simulator. The Platform capabilities target a level of functionality to allow end-to-end model development, starting with definition of the conceptual model and management of data for model input. The High-Performance Computing capabilities target increased functionality of process model representations, tool-sets for interaction with Platform, and verification and model confidence testing. The new capabilities are demonstrated through working groups, including one focused on the Hanford Site Deep Vadose Zone. The ASCEM program focused on planning during the first year and executing a prototype tool-set for an early demonstration of individual components. Subsequently, ASCEM has focused on developing and demonstrating an integrated set of capabilities, making progress toward a version of the capabilities that can be used to engage end users. Demonstration of capabilities continues to be implemented through working groups. Three different working groups, one focused on EM problems in the deep vadose zone, another investigating attenuation mechanisms for metals and radionuclides, and a third focusing on waste tank performance assessment, continue to make progress. The project

  3. Simulation of Dilated Heart Failure with Continuous Flow Circulatory Support

    PubMed Central

    Wang, Yajuan; Loghmanpour, Natasha; Vandenberghe, Stijn; Ferreira, Antonio; Keller, Bradley; Gorcsan, John; Antaki, James

    2014-01-01

    Lumped parameter models have been employed for decades to simulate important hemodynamic couplings between a left ventricular assist device (LVAD) and the native circulation. However, these studies seldom consider the pathological descending limb of the Frank-Starling response of the overloaded ventricle. This study introduces a dilated heart failure model featuring a unimodal end systolic pressure-volume relationship (ESPVR) to address this critical shortcoming. The resulting hemodynamic response to mechanical circulatory support are illustrated through numerical simulations of a rotodynamic, continuous flow ventricular assist device (cfVAD) coupled to systemic and pulmonary circulations with baroreflex control. The model further incorporated septal interaction to capture the influence of left ventricular (LV) unloading on right ventricular function. Four heart failure conditions were simulated (LV and bi-ventricular failure with/without pulmonary hypertension) in addition to normal baseline. Several metrics of LV function, including cardiac output and stroke work, exhibited a unimodal response whereby initial unloading improved function, and further unloading depleted preload reserve thereby reducing ventricular output. The concept of extremal loading was introduced to reflect the loading condition in which the intrinsic LV stroke work is maximized. Simulation of bi-ventricular failure with pulmonary hypertension revealed inadequacy of LV support alone. These simulations motivate the implementation of an extremum tracking feedback controller to potentially optimize ventricular recovery. PMID:24465511

  4. Simulation Results for Airborne Precision Spacing along Continuous Descent Arrivals

    NASA Technical Reports Server (NTRS)

    Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.; Baxley, Brian T.

    2008-01-01

    This paper describes the results of a fast-time simulation experiment and a high-fidelity simulator validation with merging streams of aircraft flying Continuous Descent Arrivals through generic airspace to a runway at Dallas-Ft Worth. Aircraft made small speed adjustments based on an airborne-based spacing algorithm, so as to arrive at the threshold exactly at the assigned time interval behind their Traffic-To-Follow. The 40 aircraft were initialized at different altitudes and speeds on one of four different routes, and then merged at different points and altitudes while flying Continuous Descent Arrivals. This merging and spacing using flight deck equipment and procedures to augment or implement Air Traffic Management directives is called Flight Deck-based Merging and Spacing, an important subset of a larger Airborne Precision Spacing functionality. This research indicates that Flight Deck-based Merging and Spacing initiated while at cruise altitude and well prior to the Terminal Radar Approach Control entry can significantly contribute to the delivery of aircraft at a specified interval to the runway threshold with a high degree of accuracy and at a reduced pilot workload. Furthermore, previously documented work has shown that using a Continuous Descent Arrival instead of a traditional step-down descent can save fuel, reduce noise, and reduce emissions. Research into Flight Deck-based Merging and Spacing is a cooperative effort between government and industry partners.

  5. Advancing Public Health through Continuing Education of Health Care Professionals

    ERIC Educational Resources Information Center

    Hudmon, Karen Suchanek; Addleton, Robert L.; Vitale, Frank M.; Christiansen, Bruce A.; Mejicano, George C.

    2011-01-01

    This article describes how the CS2day (Cease Smoking Today) initiative positioned continuing education (CE) in the intersection between medicine and public health. The authors suggest that most CE activities address the medical challenges that clinicians confront, often to the neglect of the public health issues that are key risk factors for the…

  6. Advanced altitude simulation facility P8 - current status

    NASA Astrophysics Data System (ADS)

    Pauly, C.; Suslov, D.; Haidn, O. J.

    2011-10-01

    The paper reports the current status of a DLR Lampoldshausen project towards the design, erection, and operation of an advanced altitude simulation facility at the European R&T Facility P8. The system will allow for testing subscale thrust chamber assemblies (TCAs) including surrounding supersonic flow around the nozzle. This facility will allow for investigation into the specific features of altitude simulation facilities but also on the interaction of nozzle and its exhaust plume and the surrounding coflow for subsonic, transitional, and low supersonic coflow conditions. The design bases entirely on the broad experience on design and operation of various altitude simulation facilities such as the satellite engine bench P1.0, the cryogenic and storable upper-stage engine facilities P4.1 and P4.2, sophisticated engineering design tools and continuous numerical effort. Knowledge about nozzle and thrust chamber design and operation bases on broad investigations carried out at the cold-flow facility P6.2 and the hot-fire M3 and P8 test benches.

  7. Advanced in turbulence physics and modeling by direct numerical simulations

    NASA Technical Reports Server (NTRS)

    Reynolds, W. C.

    1987-01-01

    The advent of direct numerical simulations of turbulence has opened avenues for research on turbulence physics and turbulence modeling. Direct numerical simulation provides values for anything that the scientist or modeler would like to know about the flow. An overview of some recent advances in the physical understanding of turbulence and in turbulence modeling obtained through such simulations is presented.

  8. Quantum simulation of quantum field theory using continuous variables

    NASA Astrophysics Data System (ADS)

    Marshall, Kevin; Pooser, Raphael; Siopsis, George; Weedbrook, Christian

    2015-12-01

    The year 1982 is often credited as the year that theoretical quantum computing was started with a keynote speech by Richard Feynman, who proposed a universal quantum simulator, the idea being that if you had such a machine you could in principle "imitate any quantum system, including the physical world." With that in mind, we present an algorithm for a continuous-variable quantum computing architecture which gives an exponential speedup over the best-known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonic quantum field theory, a problem that is believed to be hard using a classical computer. Building on this, we give an experimental implementation based on continuous-variable states that is feasible with today's technology.

  9. Coalescent simulation in continuous space: algorithms for large neighbourhood size.

    PubMed

    Kelleher, J; Etheridge, A M; Barton, N H

    2014-08-01

    Many species have an essentially continuous distribution in space, in which there are no natural divisions between randomly mating subpopulations. Yet, the standard approach to modelling these populations is to impose an arbitrary grid of demes, adjusting deme sizes and migration rates in an attempt to capture the important features of the population. Such indirect methods are required because of the failure of the classical models of isolation by distance, which have been shown to have major technical flaws. A recently introduced model of extinction and recolonisation in two dimensions solves these technical problems, and provides a rigorous technical foundation for the study of populations evolving in a spatial continuum. The coalescent process for this model is simply stated, but direct simulation is very inefficient for large neighbourhood sizes. We present efficient and exact algorithms to simulate this coalescent process for arbitrary sample sizes and numbers of loci, and analyse these algorithms in detail. PMID:24910324

  10. A review on continuous-flow microfluidic PCR in droplets: Advances, challenges and future.

    PubMed

    Zhang, Yonghao; Jiang, Hui-Rong

    2016-03-31

    Significant advances have been made in developing microfluidic polymerase chain reaction (PCR) devices in the last two decades. More recently, microfluidic microdroplet technology has been exploited to perform PCR in droplets because of its unique features. For example, it can prevent crossover contamination and PCR inhibition, is suitable for single-cell and single-molecule analyses, and has the potential for system integration and automation. This review will therefore focus on recent developments on droplet-based continuous-flow microfluidic PCR, and the major research challenges. This paper will also discuss a new way of on-chip flow control and a rational design simulation tool, which are required to underpin fully integrated and automated droplet-based microfluidic systems. We will conclude with a scientific speculation of future autonomous scientific discoveries enabled by microfluidic microdroplet technologies. PMID:26965323

  11. The advanced computational testing and simulation toolkit (ACTS)

    SciTech Connect

    Drummond, L.A.; Marques, O.

    2002-05-21

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  12. Advanced photovoltaic system simulator to demonstrate the performance of advanced photovoltaic cells and devices

    SciTech Connect

    Mrig, L.; DeBlasio, R.; O'Sullivan, G.A.; Tomko, R.P.

    1983-05-01

    This paper describes a photovoltaic system simulator for characterizing and evaluating the performance of advanced photovoltaic cells, modules, and arrays as well as for simulating the operation of advanced conceptual photovoltaic systems. The system simulator is capable of extrapolating the performance from a single laboratory cell, or of a module to power levels up to 10 kW. The major subsystems comprising the system simulator are (1) Solar Array Simulator, (2) Power Conditioning Unit, (3) Load Controller and Resistive Load Unit, (4) Data Acquisition and Control Unit, and (5) Cell Test Bed.

  13. SiSAR: advanced SAR simulation

    NASA Astrophysics Data System (ADS)

    Klaus, Ferdinand

    1995-11-01

    SiSAR was planned as a realistic as possible, modular, user-friendly and fast SAR raw data simulator running on ordinary workstations. Interest in (interferometric) SAR products is growing on an international scale. There is a concentration of manpower and financial resources. Dead ends, respectively failures, have to be avoided during design and mission of every SAR project by simulating the system thoroughly before the experiment. Another reason to make use of extensive reproducible simulations during design and development is the reduction of time and manpower costs. As it comes down to verifying and comparing different processing algorithms we see that (interferometric) SAR simulation is an indispensable tool for testing individual processing steps. SiSAR is a modular SAR raw data simulator for realistic description of the functions of a SAR-system. It contains an implementation of diverse models to characterize radar targets, various approaches to describe the trajectory and the motion of the footprint on the target surface and different raw data formation algorithms. Beyond there is a wide supply of tools for manipulation, analysis and user-friendly simulation handling. Results obtained by SiSAR and some first simulated interferometric SAR raw data are shown in the paper.

  14. Continuously on-going hindcast simulations for impact applications

    NASA Astrophysics Data System (ADS)

    Anders, Ivonne; Geyer, Beate

    2016-04-01

    Observations for e.g. temperature, precipitation, radiation, or wind are often used as meteorological forcing for different impact models, like e.g. crop models, urban models, economic models and energy system models. To assess a climate signal, the time period covered by the observation is often too short, they have gaps in between, and are inhomogeneous over time, due to changes in the measurements itself or in the near surrounding. Thus output from global and regional climate models can close the gap and provide homogeneous and physically consistent time series of meteorological parameters. CORDEX evaluation runs performed for the IPCC-AR5 provide a good base for the regional scale. However, with respect to climate services, continuously on-going hindcast simulations are required for regularly updated applications. In this study two projects are presented where hindcast-simulations optimized for a region of interest are performed continuously. The hindcast simulation performed by HZG covering Europe includes the EURO-CORDEX domain with a wider extend to the north to cover the ice edge. The simulation under consideration of the coastDat-experiences is available for the period of 1979 - 2015, prolonged ongoing and fulfills the customer's needs with respect of output variables, levels, intervals and statistical measures. CoastDat - customers are dealing e.g. with naval architecture, renewable energies, offshore wind farming, shipping emissions, coastal flood risk and others. The evaluation of the hindcast is done for Europe by using the EVAL-tool of the CCLM community and by comparison with HYRAS - data for Germany and neighbouring countries. The Climate Research group at the national Austrian weather service, ZAMG, is focusing on high mountain regions and, especially on the Alps. The hindcast-simulation is forced by ERA-interim and optimized for the Alpine Region. One of the main tasks is to capture strong precipitation events which often occur during summer when

  15. Hybrid and Electric Advanced Vehicle Systems Simulation

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  16. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Advanced Simulation H Appendix H to Part... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Pt. 121, App. H Appendix H to Part 121—Advanced... airmen used in appendix H training and checking are highly qualified to provide the training required...

  17. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Advanced Simulation H Appendix H to Part... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Pt. 121, App. H Appendix H to Part 121—Advanced... ensure that all instructors and check airmen used in appendix H training and checking are...

  18. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Advanced Simulation H Appendix H to Part... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Pt. 121, App. H Appendix H to Part 121—Advanced... ensure that all instructors and check airmen used in appendix H training and checking are...

  19. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Advanced Simulation H Appendix H to Part... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Pt. 121, App. H Appendix H to Part 121—Advanced... ensure that all instructors and check airmen used in appendix H training and checking are...

  20. 14 CFR Appendix H to Part 121 - Advanced Simulation

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Advanced Simulation H Appendix H to Part... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Pt. 121, App. H Appendix H to Part 121—Advanced... ensure that all instructors and check airmen used in appendix H training and checking are...

  1. Simulator design for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerald R.

    1992-01-01

    This simulation design task completion report documents the simulation techniques associated with the network models of both the Interim Service ISDN (integrated services digital network) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures. The ISIS network model design represents satellite systems like the Advanced Communication Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) program, moves all control and switching functions on-board the next generation ISDN communication satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete events simulation experiments will be performed with these models using various traffic scenarios, design parameters and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  2. ADVANCED UTILITY SIMULATION MODEL, DESCRIPTION OF THE NATIONAL LOOP (VERSION 3.0)

    EPA Science Inventory

    The report is one of 11 in a series describing the initial development of the Advanced Utility Simulation Model (AUSM) by the Universities Research Group on Energy (URGE) and its continued development by the Science Applications International Corporation (SAIC) research team. The...

  3. Experimental and Numerical Simulations of Phase Transformations Occurring During Continuous Annealing of DP Steel Strips

    NASA Astrophysics Data System (ADS)

    Wrożyna, Andrzej; Pernach, Monika; Kuziak, Roman; Pietrzyk, Maciej

    2016-04-01

    Due to their exceptional strength properties combined with good workability the Advanced High-Strength Steels (AHSS) are commonly used in automotive industry. Manufacturing of these steels is a complex process which requires precise control of technological parameters during thermo-mechanical treatment. Design of these processes can be significantly improved by the numerical models of phase transformations. Evaluation of predictive capabilities of models, as far as their applicability in simulation of thermal cycles thermal cycles for AHSS is considered, was the objective of the paper. Two models were considered. The former was upgrade of the JMAK equation while the latter was an upgrade of the Leblond model. The models can be applied to any AHSS though the examples quoted in the paper refer to the Dual Phase (DP) steel. Three series of experimental simulations were performed. The first included various thermal cycles going beyond limitations of the continuous annealing lines. The objective was to validate models behavior in more complex cooling conditions. The second set of tests included experimental simulations of the thermal cycle characteristic for the continuous annealing lines. Capability of the models to describe properly phase transformations in this process was evaluated. The third set included data from the industrial continuous annealing line. Validation and verification of models confirmed their good predictive capabilities. Since it does not require application of the additivity rule, the upgrade of the Leblond model was selected as the better one for simulation of industrial processes in AHSS production.

  4. Continued advancement of laser damage resistant optically functional microstructures

    NASA Astrophysics Data System (ADS)

    Hobbs, Douglas S.; MacLeod, Bruce D.; Sabatino, Ernest

    2012-11-01

    Micro- and nano-structured optically functional surface textures continue to exhibit higher performance and longer term survivability than thin-film coatings for an increasing number of materials used within high energy laser (HEL) systems. Anti-reflection (AR) microstructures (ARMs) produce a graded refractive index yielding high transmission over wide spectral ranges along with a chemical, mechanical and laser damage resistance inherited from the bulk optic material. In this study, ARMs were fabricated in the relevant HEL materials sapphire, neodymium-doped YAG, fused silica, BK7 glass, and the magnesium aluminate known as SPINEL. Standardized pulsed laser induced damage threshold (LiDT) measurements were made using commercial testing services to directly compare the damage resistance of ARMs-treated optics to uncoated and thin-film-AR-coated (TFARC) optics at wavelengths of 532nm, 694nm, 800nm, 1064nm, and 1538nm. As found with prior work, the LiDT of ARMs etched in fused silica was typically in the range of 35 J/cm2 at a wavelength of 1064nm and a pulse width of 10ns, a level that is comparable to uncoated samples and 3.5 times greater than the level specified by six prominent TFARC providers. The Army Research Laboratory measured the pulsed LiDT at 532nm (10ns) of ARMs in fused silica to be up to 5 times the level of the ion beam sputtered TFARC previously employed in their HEL system, and 2 times higher than a low performance single layer MgF2 TFARC. This result was repeated and expanded using a commercial LiDT testing service for ARMs in two types of fused silica and for Schott N-BK7 glass. An average damage threshold of 26.5 J/cm2 was recorded for the ARMs-treated glass materials, a level 4 times higher than the commercial IBS TFARCs tested.

  5. Reliable simulation of metal surface penetration by lightning continuing currents

    SciTech Connect

    Zischank, W.; Drumm, F.; Fisher, R.J.; Schnetzer, G.H.; Morris, M.E.

    1995-08-01

    Of specific interest to Sandia National Laboratories is the assessment and reduction of the potential safety threat posed by the penetration of metallic casings of munitions due to the direct attachment of lightning strikes. A program with the ultimate aim of quantifying the fidelity of laboratory test techniques used to simulate the penetration of metallic surfaces by lightning continuing currents has been undertaken. Descriptions of the program methodology, dominant factors found to influence test results, and data obtained so far are given. Based on considerations of fundamental arc phenomenology and on the acquired experimental data, a standard test configuration has been established, which has been demonstrated at two independent laboratories to produce consistent results that are generally corroborative of techniques suggested elsewhere in the lightning literature.

  6. Molecular dynamics simulations: advances and applications

    PubMed Central

    Hospital, Adam; Goñi, Josep Ramon; Orozco, Modesto; Gelpí, Josep L

    2015-01-01

    Molecular dynamics simulations have evolved into a mature technique that can be used effectively to understand macromolecular structure-to-function relationships. Present simulation times are close to biologically relevant ones. Information gathered about the dynamic properties of macromolecules is rich enough to shift the usual paradigm of structural bioinformatics from studying single structures to analyze conformational ensembles. Here, we describe the foundations of molecular dynamics and the improvements made in the direction of getting such ensemble. Specific application of the technique to three main issues (allosteric regulation, docking, and structure refinement) is discussed.

  7. Interactive visualization to advance earthquake simulation

    USGS Publications Warehouse

    Kellogg, L.H.; Bawden, G.W.; Bernardin, T.; Billen, M.; Cowgill, E.; Hamann, B.; Jadamec, M.; Kreylos, O.; Staadt, O.; Sumner, D.

    2008-01-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. Virtual mapping tools allow virtual "field studies" in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations. ?? Birkhaueser 2008.

  8. Advanced Simulation and Computing Business Plan

    SciTech Connect

    Rummel, E.

    2015-07-09

    To maintain a credible nuclear weapons program, the National Nuclear Security Administration’s (NNSA’s) Office of Defense Programs (DP) needs to make certain that the capabilities, tools, and expert staff are in place and are able to deliver validated assessments. This requires a complete and robust simulation environment backed by an experimental program to test ASC Program models. This ASC Business Plan document encapsulates a complex set of elements, each of which is essential to the success of the simulation component of the Nuclear Security Enterprise. The ASC Business Plan addresses the hiring, mentoring, and retaining of programmatic technical staff responsible for building the simulation tools of the nuclear security complex. The ASC Business Plan describes how the ASC Program engages with industry partners—partners upon whom the ASC Program relies on for today’s and tomorrow’s high performance architectures. Each piece in this chain is essential to assure policymakers, who must make decisions based on the results of simulations, that they are receiving all the actionable information they need.

  9. Simulation Toolkit for Renewable Energy Advanced Materials Modeling

    2013-11-13

    STREAMM is a collection of python classes and scripts that enables and eases the setup of input files and configuration files for simulations of advanced energy materials. The core STREAMM python classes provide a general framework for storing, manipulating and analyzing atomic/molecular coordinates to be used in quantum chemistry and classical molecular dynamics simulations of soft materials systems. The design focuses on enabling the interoperability of materials simulation codes such as GROMACS, LAMMPS and Gaussian.

  10. Advancements in Afterbody Radiative Heating Simulations for Earth Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Panesi, Marco; Brandis, Aaron M.

    2016-01-01

    Four advancements to the simulation of backshell radiative heating for Earth entry are presented. The first of these is the development of a flow field model that treats electronic levels of the dominant backshell radiator, N, as individual species. This is shown to allow improvements in the modeling of electron-ion recombination and two-temperature modeling, which are shown to increase backshell radiative heating by 10 to 40%. By computing the electronic state populations of N within the flow field solver, instead of through the quasi-steady state approximation in the radiation code, the coupling of radiative transition rates to the species continuity equations for the levels of N, including the impact of non-local absorption, becomes feasible. Implementation of this additional level of coupling between the flow field and radiation codes represents the second advancement presented in this work, which is shown to increase the backshell radiation by another 10 to 50%. The impact of radiative transition rates due to non-local absorption indicates the importance of accurate radiation transport in the relatively complex flow geometry of the backshell. This motivates the third advancement, which is the development of a ray-tracing radiation transport approach to compute the radiative transition rates and divergence of the radiative flux at every point for coupling to the flow field, therefore allowing the accuracy of the commonly applied tangent-slab approximation to be assessed for radiative source terms. For the sphere considered at lunar-return conditions, the tangent-slab approximation is shown to provide a sufficient level of accuracy for the radiative source terms, even for backshell cases. This is in contrast to the agreement between the two approaches for computing the radiative flux to the surface, which differ by up to 40%. The final advancement presented is the development of a nonequilibrium model for NO radiation, which provides significant backshell

  11. Parallel continuous simulated tempering and its applications in large-scale molecular simulations

    SciTech Connect

    Zang, Tianwu; Yu, Linglin; Zhang, Chong; Ma, Jianpeng

    2014-07-28

    In this paper, we introduce a parallel continuous simulated tempering (PCST) method for enhanced sampling in studying large complex systems. It mainly inherits the continuous simulated tempering (CST) method in our previous studies [C. Zhang and J. Ma, J. Chem. Phys. 130, 194112 (2009); C. Zhang and J. Ma, J. Chem. Phys. 132, 244101 (2010)], while adopts the spirit of parallel tempering (PT), or replica exchange method, by employing multiple copies with different temperature distributions. Differing from conventional PT methods, despite the large stride of total temperature range, the PCST method requires very few copies of simulations, typically 2–3 copies, yet it is still capable of maintaining a high rate of exchange between neighboring copies. Furthermore, in PCST method, the size of the system does not dramatically affect the number of copy needed because the exchange rate is independent of total potential energy, thus providing an enormous advantage over conventional PT methods in studying very large systems. The sampling efficiency of PCST was tested in two-dimensional Ising model, Lennard-Jones liquid and all-atom folding simulation of a small globular protein trp-cage in explicit solvent. The results demonstrate that the PCST method significantly improves sampling efficiency compared with other methods and it is particularly effective in simulating systems with long relaxation time or correlation time. We expect the PCST method to be a good alternative to parallel tempering methods in simulating large systems such as phase transition and dynamics of macromolecules in explicit solvent.

  12. Parallel continuous simulated tempering and its applications in large-scale molecular simulations

    PubMed Central

    Zang, Tianwu; Yu, Linglin; Zhang, Chong; Ma, Jianpeng

    2014-01-01

    In this paper, we introduce a parallel continuous simulated tempering (PCST) method for enhanced sampling in studying large complex systems. It mainly inherits the continuous simulated tempering (CST) method in our previous studies [C. Zhang and J. Ma, J. Chem. Phys.141, 194112 (2009); C. Zhang and J. Ma, J. Chem. Phys.141, 244101 (2010)], while adopts the spirit of parallel tempering (PT), or replica exchange method, by employing multiple copies with different temperature distributions. Differing from conventional PT methods, despite the large stride of total temperature range, the PCST method requires very few copies of simulations, typically 2–3 copies, yet it is still capable of maintaining a high rate of exchange between neighboring copies. Furthermore, in PCST method, the size of the system does not dramatically affect the number of copy needed because the exchange rate is independent of total potential energy, thus providing an enormous advantage over conventional PT methods in studying very large systems. The sampling efficiency of PCST was tested in two-dimensional Ising model, Lennard-Jones liquid and all-atom folding simulation of a small globular protein trp-cage in explicit solvent. The results demonstrate that the PCST method significantly improves sampling efficiency compared with other methods and it is particularly effective in simulating systems with long relaxation time or correlation time. We expect the PCST method to be a good alternative to parallel tempering methods in simulating large systems such as phase transition and dynamics of macromolecules in explicit solvent. PMID:25084887

  13. Parallel continuous simulated tempering and its applications in large-scale molecular simulations

    NASA Astrophysics Data System (ADS)

    Zang, Tianwu; Yu, Linglin; Zhang, Chong; Ma, Jianpeng

    2014-07-01

    In this paper, we introduce a parallel continuous simulated tempering (PCST) method for enhanced sampling in studying large complex systems. It mainly inherits the continuous simulated tempering (CST) method in our previous studies [C. Zhang and J. Ma, J. Chem. Phys. 130, 194112 (2009); C. Zhang and J. Ma, J. Chem. Phys. 132, 244101 (2010)], while adopts the spirit of parallel tempering (PT), or replica exchange method, by employing multiple copies with different temperature distributions. Differing from conventional PT methods, despite the large stride of total temperature range, the PCST method requires very few copies of simulations, typically 2-3 copies, yet it is still capable of maintaining a high rate of exchange between neighboring copies. Furthermore, in PCST method, the size of the system does not dramatically affect the number of copy needed because the exchange rate is independent of total potential energy, thus providing an enormous advantage over conventional PT methods in studying very large systems. The sampling efficiency of PCST was tested in two-dimensional Ising model, Lennard-Jones liquid and all-atom folding simulation of a small globular protein trp-cage in explicit solvent. The results demonstrate that the PCST method significantly improves sampling efficiency compared with other methods and it is particularly effective in simulating systems with long relaxation time or correlation time. We expect the PCST method to be a good alternative to parallel tempering methods in simulating large systems such as phase transition and dynamics of macromolecules in explicit solvent.

  14. Use of advanced computers for aerodynamic flow simulation

    NASA Technical Reports Server (NTRS)

    Bailey, F. R.; Ballhaus, W. F.

    1980-01-01

    The current and projected use of advanced computers for large-scale aerodynamic flow simulation applied to engineering design and research is discussed. The design use of mature codes run on conventional, serial computers is compared with the fluid research use of new codes run on parallel and vector computers. The role of flow simulations in design is illustrated by the application of a three dimensional, inviscid, transonic code to the Sabreliner 60 wing redesign. Research computations that include a more complete description of the fluid physics by use of Reynolds averaged Navier-Stokes and large-eddy simulation formulations are also presented. Results of studies for a numerical aerodynamic simulation facility are used to project the feasibility of design applications employing these more advanced three dimensional viscous flow simulations.

  15. Simulation study of PET detector limitations using continuous crystals

    NASA Astrophysics Data System (ADS)

    Cabello, Jorge; Etxebeste, Ane; Llosá, Gabriela; Ziegler, Sibylle I.

    2015-05-01

    Continuous crystals can potentially obtain better intrinsic detector spatial resolution compared to pixelated crystals, additionally providing depth of interaction (DoI) information from the light distribution. To achieve high performance sophisticated interaction position estimation algorithms are required. There are a number of algorithms in the literature applied to different crystal dimensions and different photodetectors. However, the different crystal properties and photodetector array geometries have an impact on the algorithm performance. In this work we analysed, through Monte Carlo simulations, different combinations of realistic crystals and photodetector parameters to better understand their influence on the interaction position estimation accuracy, with special emphasis on the DoI. We used an interaction position estimation based on an analytical model for the present work. Different photodetector granulation schemes were investigated. The impact of the number of crystal faces readout by photodetectors was studied by simulating scenarios with one and two photodetectors. In addition, crystals with different levels of reflection and aspect ratios (AR) were analysed. Results showed that the impact of photodetector granularity is mainly shown near the edges and specially in the corners of the crystal. The resulting intrinsic spatial resolution near the centre with a 12 × 12 × 10 mm3 LYSO crystal was 0.7-0.9 mm, while the average spatial resolution calculated on the entire crystal was 0.77 ± 0.18 mm for all the simulated geometries with one and two photodetectors. Having front and back photodetectors reduced the DoI bias (Euclidean distance between estimated DoI and real DoI) and improved the transversal resolution near the corners. In scenarios with one photodetector, small AR resulted in DoI inaccuracies for absorbed events at the entrance of the crystal. These inaccuracies were slightly reduced either by increasing the AR or reducing the amount of

  16. Advances in free-energy-based simulations of protein folding and ligand binding.

    PubMed

    Perez, Alberto; Morrone, Joseph A; Simmerling, Carlos; Dill, Ken A

    2016-02-01

    Free-energy-based simulations are increasingly providing the narratives about the structures, dynamics and biological mechanisms that constitute the fabric of protein science. Here, we review two recent successes. It is becoming practical: first, to fold small proteins with free-energy methods without knowing substructures and second, to compute ligand-protein binding affinities, not just their binding poses. Over the past 40 years, the timescales that can be simulated by atomistic MD are doubling every 1.3 years--which is faster than Moore's law. Thus, these advances are not simply due to the availability of faster computers. Force fields, solvation models and simulation methodology have kept pace with computing advancements, and are now quite good. At the tip of the spear recently are GPU-based computing, improved fast-solvation methods, continued advances in force fields, and conformational sampling methods that harness external information. PMID:26773233

  17. Modelling and Simulation of the Advanced Plasma Source

    SciTech Connect

    Schroeder, Benjamin; Peter, Ralf; Harhausen, Jens; Ohl, Andreas

    2011-08-15

    Plasma ion assisted-deposition (PIAD) is a combination of conventional thermal evaporation deposition and plasma-beam surface modification; it serves as a well-established technology for the creation of high quality coatings on mirrors, lenses, and other optical devices. It is closely related to ion-assisted deposition to the extent that electrons preserve quasineutrality of the ion beam. This paper investigates the Advanced Plasma Source (APS), a plasma beam source employed for PIAD. A field enhanced glow discharge generates a radially expanding plasma flow with an ion energy of about 80-120 eV. Charge exchange collisions with the neutral background gas (pressure 0.1 Pa and below) produce a cold secondary plasma, which expands as well. A model is developed which describes the primary ions by a simplified Boltzmann equation, the secondary ions by the equations of continuity and momentum balance, and the electrons by the condition of Boltzmann equilibrium. Additionally, quasineutrality is assumed. The model can be reduced to a single nonlinear differential equation for the velocity of the secondary ions, which has several removable singularities and one essential singularity, identified as the Bohm singularity. Solving the model yields macroscopic plasma features, such as fluxes, densities, and the electrical field. An add-on Monte-Carlo simulation is employed to calculate the ion energy distribution function at the substrate. All results compare well to experiments conducted at a commercial APS system.

  18. Alignment and Initial Operation of an Advanced Solar Simulator

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Jefferies, Kent S.; Mason, Lee S.

    1996-01-01

    A solar simulator utilizing nine 30-kW xenon arc lamps was built to provide radiant power for testing a solar dynamic space power system in a thermal vacuum environment. The advanced solar simulator achieved the following values specific to the solar dynamic system: (1) a subtense angle of 1 deg; (2) the ability to vary solar simulator intensity up to 1.7 kW/sq m; (3) a beam diameter of 4.8 m; and (4) uniformity of illumination on the order of +/-10%. The flexibility of the solar simulator design allows for other potential uses of the facility.

  19. ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS

    SciTech Connect

    Helmberger, Donald V.; Tromp, Jeroen; Rodgers, Arthur J.

    2008-04-15

    The recent Nevada Earthquake (M=6) produced an extraordinary set of crustal guided waves. In this study, we examine the three-component data at all the USArray stations in terms of how well existing models perform in predicting the various phases, Rayleigh waves, Love waves, and Pnl waves. To establish the source parameters, we applied the Cut and Paste Code up to distance of 5° for an average local crustal model which produced a normal mechanism (strike=35°,dip=41°,rake=-85°) at a depth of 9 km and Mw=5.9. Assuming this mechanism, we generated synthetics at all distances for a number of 1D and 3D models. The Pnl observations fit the synthetics for the simple models well both in timing (VPn=7.9km/s) and waveform fits out to a distance of about 5°. Beyond this distance a great deal of complexity can be seen to the northwest apparently caused by shallow subducted slab material. These paths require considerable crustal thinning and higher P-velocities. Small delays and advances outline the various tectonic province to the south, Colorado Plateau, etc. with velocities compatible with that reported on by Song et al.(1996). Five-second Rayleigh waves (Airy Phase) can be observed throughout the whole array and show a great deal of variation ( up to 30s). In general, the Love waves are better behaved than the Rayleigh waves. We are presently adding higher frequency to the source description by including source complexity. Preliminary inversions suggest rupture to northeast with a shallow asperity. We are, also, inverting the aftershocks to extend the frequencies to 2 Hz and beyond following the calibration method outlined in Tan and Helmberger (2007). This will allow accurate directivity measurements for events with magnitude larger than 3.5. Thus, we will address the energy decay with distance as s function of frequency band for the various source types.

  20. Brush seal numerical simulation: Concepts and advances

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Kudriavtsev, V. V.

    1994-01-01

    The development of the brush seal is considered to be most promising among the advanced type seals that are presently in use in the high speed turbomachinery. The brush is usually mounted on the stationary portions of the engine and has direct contact with the rotating element, in the process of limiting the 'unwanted' leakage flows between stages, or various engine cavities. This type of sealing technology is providing high (in comparison with conventional seals) pressure drops due mainly to the high packing density (around 100 bristles/sq mm), and brush compliance with the rotor motions. In the design of modern aerospace turbomachinery leakage flows between the stages must be minimal, thus contributing to the higher efficiency of the engine. Use of the brush seal instead of the labyrinth seal reduces the leakage flow by one order of magnitude. Brush seals also have been found to enhance dynamic performance, cost less, and are lighter than labyrinth seals. Even though industrial brush seals have been successfully developed through extensive experimentation, there is no comprehensive numerical methodology for the design or prediction of their performance. The existing analytical/numerical approaches are based on bulk flow models and do not allow the investigation of the effects of brush morphology (bristle arrangement), or brushes arrangement (number of brushes, spacing between them), on the pressure drops and flow leakage. An increase in the brush seal efficiency is clearly a complex problem that is closely related to the brush geometry and arrangement, and can be solved most likely only by means of a numerically distributed model.

  1. Brush seal numerical simulation: Concepts and advances

    NASA Astrophysics Data System (ADS)

    Braun, M. J.; Kudriavtsev, V. V.

    1994-07-01

    The development of the brush seal is considered to be most promising among the advanced type seals that are presently in use in the high speed turbomachinery. The brush is usually mounted on the stationary portions of the engine and has direct contact with the rotating element, in the process of limiting the 'unwanted' leakage flows between stages, or various engine cavities. This type of sealing technology is providing high (in comparison with conventional seals) pressure drops due mainly to the high packing density (around 100 bristles/sq mm), and brush compliance with the rotor motions. In the design of modern aerospace turbomachinery leakage flows between the stages must be minimal, thus contributing to the higher efficiency of the engine. Use of the brush seal instead of the labyrinth seal reduces the leakage flow by one order of magnitude. Brush seals also have been found to enhance dynamic performance, cost less, and are lighter than labyrinth seals. Even though industrial brush seals have been successfully developed through extensive experimentation, there is no comprehensive numerical methodology for the design or prediction of their performance. The existing analytical/numerical approaches are based on bulk flow models and do not allow the investigation of the effects of brush morphology (bristle arrangement), or brushes arrangement (number of brushes, spacing between them), on the pressure drops and flow leakage. An increase in the brush seal efficiency is clearly a complex problem that is closely related to the brush geometry and arrangement, and can be solved most likely only by means of a numerically distributed model.

  2. Interoperable Technologies for Advanced Petascale Simulations (ITAPS)

    SciTech Connect

    Shephard, Mark S

    2010-02-05

    Efforts during the past year have contributed to the continued development of the ITAPS interfaces and services as well as specific efforts to support ITAPS applications. The ITAPS interface efforts have two components. The first is working with the ITAPS team on improving the ITAPS software infrastructure and level of compliance of our implementations of ITAPS interfaces (iMesh, iMeshP, iRel and iGeom). The second is being involved with the discussions on the design of the iField fields interface. Efforts to move the ITAPS technologies to petascale computers has identified a number of key technical developments that are required to effectively execute the ITAPS interfaces and services. Research to address these parallel method developments has been a major emphasis of the RPI’s team efforts over the past year. Efforts to move the ITAPS technologies to petascale computers has identified a number of key technical developments that are required to effectively execute the ITAPS interfaces and services. Research to address these parallel method developments has been a major emphasis of the RPI’s team efforts over the past year. The development of parallel unstructured mesh methods has considered the need to scale unstructured mesh solves to massively parallel computers. These efforts, summarized in section 2.1 show that with the addition of the ITAPS procedures described in sections 2.2 and 2.3 we are able to obtain excellent strong scaling with our unstructured mesh CFD code on up to 294,912 cores of IBM Blue Gene/P which is the highest core count machine available. The ITAPS developments that have contributed to the scaling and performance of PHASTA include an iterative migration algorithm to improve the combined region and vertex balance of the mesh partition, which increases scalability, and mesh data reordering, which improves computational performance. The other developments are associated with the further development of the ITAPS parallel unstructured mesh

  3. Flood frequency estimation by hydrological continuous simulation and classical methods

    NASA Astrophysics Data System (ADS)

    Brocca, L.; Camici, S.; Melone, F.; Moramarco, T.; Tarpanelli, A.

    2009-04-01

    In recent years, the effects of flood damages have motivated the development of new complex methodologies for the simulation of the hydrologic/hydraulic behaviour of river systems, fundamental to direct the territorial planning as well as for the floodplain management and risk analysis. The valuation of the flood-prone areas can be carried out through various procedures that are usually based on the estimation of the peak discharge for an assigned probability of exceedence. In the case of ungauged or scarcely gauged catchments this is not straightforward, as the limited availability of historical peak flow data induces a relevant uncertainty in the flood frequency analysis. A possible solution to overcome this problem is the application of hydrological simulation studies in order to generate long synthetic discharge time series. For this purpose, recently, new methodologies based on the stochastic generation of rainfall and temperature data have been proposed. The inferred information can be used as input for a continuous hydrological model to generate a synthetic time series of peak river flow and, hence, the flood frequency distribution at a given site. In this study stochastic rainfall data have been generated via the Neyman-Scott Rectangular Pulses (NSRP) model characterized by a flexible structure in which the model parameters broadly relate to underlying physical features observed in rainfall fields and it is capable of preserving statistical properties of a rainfall time series over a range of time scales. The peak river flow time series have been generated through a continuous hydrological model aimed at flood prediction and developed for the purpose (hereinafter named MISDc) (Brocca, L., Melone, F., Moramarco, T., Singh, V.P., 2008. A continuous rainfall-runoff model as tool for the critical hydrological scenario assessment in natural channels. In: M. Taniguchi, W.C. Burnett, Y. Fukushima, M. Haigh, Y. Umezawa (Eds), From headwater to the ocean

  4. Advanced ERS design using computer simulation

    SciTech Connect

    Melhem, G.A.

    1995-12-31

    There are two schools of thought regarding pressure relief design, shortcut/simplified methods and detailed methods. The shortcut/simplified methods are mostly applicable to non-reactive systems. These methods use direct scale-up techniques to obtain a vent size. Little useful information can be obtained for reaction data such as onset temperatures, activation energy, decompositon stoichiometry, etc. In addition, this approach does not readily provide the ability to perform what-if and sensitivity analysis or data that can be used for post-release mitigation design. The detailed approach advocates a more fundamental approach to pressure relief design, especially for reactive systems. First, the reaction chemistry is qualified using small scale experiments and then this data is coupled with fluid dynamics to design the emergency relief system. In addition to vent sizing information, this approach provides insights into process modification and refinement as well as the establishment of a safe operating envelope. This approach provides necessary flow data for vent containment design (if required), structural support, etc. This approach also allows the direct evaluation of design sensitivity to variables such as temperature, pressure, composition, fill level, etc. on vent sizing while the shortcut approach requires an additional experiment per what-if scenario. This approach meets DIERS technology requirements for two-phase flow and vapor/liquid disengagement and exceeds it in many key areas for reacting systems such as stoichiometry estimation for decomposition reactions, non-ideal solutions effects, continuing reactions in piping and vent containment systems, etc. This paper provides an overview of our proposed equation of state based modeling approach and its computer code implementation. Numerous examples and model validations are also described. 42 refs., 23 figs., 9 tabs.

  5. Simple Continuous and Discrete Models for Simulating Replica Exchange Simulations of Protein Folding

    PubMed Central

    Zheng, Weihua; Andrec, Michael; Gallicchio, Emilio; Levy, Ronald M.

    2010-01-01

    The efficiency of temperature replica exchange (RE) simulations hinge on their ability to enhance conformational sampling at physiological temperatures by taking advantage of more rapid conformational interconversions at higher temperatures. While temperature RE is a parallel simulation technique that is relatively straightforward to implement, kinetics in the RE ensemble is complicated and there is much to learn about how best to employ RE simulations in computational biophysics. Protein folding rates often slow down above a certain temperature due to entropic bottlenecks. This “anti-Arrhenius” behavior represents a challenge for RE. However, it is far from straightforward to systematically explore the impact of this on RE by brute force molecular simulations, since RE simulations of protein folding are very difficult to converge. To understand some of the basic mechanisms that determine the efficiency of RE it is useful to study simplified low dimensionality systems that share some of the key characteristics of molecular systems. Results are presented concerning the efficiency of temperature RE on a continuous two-dimensional potential that contains an entropic bottleneck. Optimal efficiency was obtained when the temperatures of the replicas did not exceed the temperature at which the harmonic mean of the folding and unfolding rates is maximized. This confirms a result we previously obtained using a discrete network model of RE. Comparison of the efficiencies obtained using the continuous and discrete models makes it possible to identify non-Markovian effects which slow down equilibration of the RE ensemble on the more complex continuous potential. In particular, the rate of temperature diffusion and also the efficiency of RE is limited by the timescale of conformational rearrangements within free energy basins. PMID:18251533

  6. An advanced photovoltaic system simulator to demonstrate the performance of advanced photovoltaic cells and devices

    SciTech Connect

    Mrig, L.; DeBlasio, R.; O'Sullivan, G.A.; Tomko, R.P.

    1982-09-01

    This paper describes a photovoltaic system simulator for characterizing and evaluating the performance of advanced photovoltaic cells, modules, and arrays as well as for simulating the operation of advanced conceptual photovoltaic systems. The system simulator is capable of extrapolating the performance from a single laboratory cell, or of a module to power levels up to 10 kw. The major subsystems comprising the system simulator are Solar Array Simulator, Power Conditioning Unit, Load Controller and Resistive Load Unit, Data Acquisition and Control Unit, and Cell Test Bed. The system was designed and fabricated by Abacus Controls, Inc., Somerville, NJ, under subcontract to SERI, and has recently been installed (except the cell test bed) at SERI, where initial operation is taking place.

  7. High-Fidelity Simulation for Advanced Cardiac Life Support Training

    PubMed Central

    Davis, Lindsay E.; Storjohann, Tara D.; Spiegel, Jacqueline J.; Beiber, Kellie M.

    2013-01-01

    Objective. To determine whether a high-fidelity simulation technique compared with lecture would produce greater improvement in advanced cardiac life support (ACLS) knowledge, confidence, and overall satisfaction with the training method. Design. This sequential, parallel-group, crossover trial randomized students into 2 groups distinguished by the sequence of teaching technique delivered for ACLS instruction (ie, classroom lecture vs high-fidelity simulation exercise). Assessment. Test scores on a written examination administered at baseline and after each teaching technique improved significantly from baseline in all groups but were highest when lecture was followed by simulation. Simulation was associated with a greater degree of overall student satisfaction compared with lecture. Participation in a simulation exercise did not improve pharmacy students’ knowledge of ACLS more than attending a lecture, but it was associated with improved student confidence in skills and satisfaction with learning and application. Conclusions. College curricula should incorporate simulation to complement but not replace lecture for ACLS education. PMID:23610477

  8. Advances in modeling and simulation of vacuum electronic devices

    SciTech Connect

    Antonsen, T.M. Jr.; Mondelli, A.A.; Levush, B.; Verboncoeur, J.P.; Birdsall, C.K.

    1999-05-01

    Recent advances in the modeling and simulation of vacuum electronic devices are reviewed. Design of these devices makes use of a variety of physical models and numerical code types. Progress in the development of these models and codes is outlined and illustrated with specific examples. The state of the art in device simulation is evolving to the point such that devices can be designed on the computer, thereby eliminating many trial and error fabrication and test steps. The role of numerical simulation in the design process can be expected to grow further in the future.

  9. Advanced computer graphic techniques for laser range finder (LRF) simulation

    NASA Astrophysics Data System (ADS)

    Bedkowski, Janusz; Jankowski, Stanislaw

    2008-11-01

    This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.

  10. Gasification CFD Modeling for Advanced Power Plant Simulations

    SciTech Connect

    Zitney, S.E.; Guenther, C.P.

    2005-09-01

    In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

  11. How to generate continuous cascade models with zero values: theory and simulations for a continuous beta-multifractal model

    NASA Astrophysics Data System (ADS)

    Schmitt, F. G.

    2014-12-01

    Multiplicative cascade models, when densified (continuous scale invariance) correspond to the exponential of a linear process. Hence this cannot generate zero values. Such framework is not complete and not purely multiplicative. We present here a stochastic framework which stays in the multiplicative realm and can be used to generate zero values. The multiplicative continuous model for multifractal fields with zero values is built using infinitely multiplicative random variables, the multiplicative analog to infinitely divisible distributions for addition. It also needs stochastic multiplicative measures and multiplicative stochastic integrals. The model hence generates continuous multiplicative cascades. The model produced possesses as special case a continuous generalization of the classical discrete beta-model. Applications are numerous in many fields of applied sciences, including smallscale rainfall, soil sciences. The theory is first proposed, then simulation algorithm is presented and simulations are shown in 1D and in 2D. Figure: a continuous lognormal multifractal with zero values (512x512).

  12. Production of continuous glass fiber using lunar simulant

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Ethridge, Edwin C.; Curreri, Peter A.

    1991-01-01

    The processing parameters and mechanical properties of glass fibers pulled from simulated lunar basalt are tested. The simulant was prepared using a plasma technique. The composition is representative of a low titanium mare basalt (Apollo sample 10084). Lunar gravity experiments are to be performed utilizing parabolic aircraft free-fall maneuvers which yield 30 seconds of 1/6-g per maneuver.

  13. Formacion, Perfeccionamiento y Actualizacion Docente (Training and Advanced and Continuing Education for Teachers).

    ERIC Educational Resources Information Center

    Boletin del Centro Nacional de Documentacion e Informacion Educativa, 1970

    1970-01-01

    This document describes the teacher education reform implemented in Argentina beginning in 1968. Details of the changes are provided for: types of schools and degrees, new programs, admission criteria, career training opportunities, special fields, advanced and continuing education, and opportunities for educational research and experiments. (VM)

  14. Continued advancement of the programming language HAL to an operational status

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The continued advancement of the programming language HAL to operational status is reported. It is demonstrated that the compiler itself can be written in HAL. A HAL-in-HAL experiment proves conclusively that HAL can be used successfully as a compiler implementation tool.

  15. Simulating advanced life support systems to test integrated control approaches

    NASA Astrophysics Data System (ADS)

    Kortenkamp, D.; Bell, S.

    Simulations allow for testing of life support control approaches before hardware is designed and built. Simulations also allow for the safe exploration of alternative control strategies during life support operation. As such, they are an important component of any life support research program and testbed. This paper describes a specific advanced life support simulation being created at NASA Johnson Space Center. It is a discrete-event simulation that is dynamic and stochastic. It simulates all major components of an advanced life support system, including crew (with variable ages, weights and genders), biomass production (with scalable plantings of ten different crops), water recovery, air revitalization, food processing, solid waste recycling and energy production. Each component is modeled as a producer of certain resources and a consumer of certain resources. The control system must monitor (via sensors) and control (via actuators) the flow of resources throughout the system to provide life support functionality. The simulation is written in an object-oriented paradigm that makes it portable, extensible and reconfigurable.

  16. CASL: The Consortium for Advanced Simulation of Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Kothe, Douglas B.

    2010-11-01

    Like the fusion community, the nuclear engineering community is embarking on a new computational effort to create integrated, multiphysics simulations. The Consortium for Advanced Simulation of Light Water Reactors (CASL), one of 3 newly-funded DOE Energy Innovation Hubs, brings together an exceptionally capable team that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated the Virtual Reactor (VR), will: 1) Enable the use of leadership-class computing for engineering design and analysis to improve reactor capabilities, 2) Promote an enhanced scientific basis and understanding by replacing empirically based design and analysis tools with predictive capabilities, 3) Develop a highly integrated multiphysics environment for engineering analysis through increased fidelity methods, and 4) Incorporate UQ as a basis for developing priorities and supporting, application of the VR tools for predictive simulation. In this presentation, we present the plans for CASL and comment on the similarity and differences with the proposed Fusion Simulation Project (FSP).

  17. Patient Simulation Software to Augment an Advanced Pharmaceutics Course

    PubMed Central

    Schonder, Kristine

    2011-01-01

    Objective To implement and assess the effectiveness of adding a pharmaceutical care simulation program to an advanced therapeutics course. Design PharmaCAL (University of Pittsburgh), a software program that uses a branched-outcome decision making model, was used to create patient simulations to augment lectures given in the course. In each simulation, students were presented with a challenge, given choices, and then provided with consequences specific to their choices. Assessments A survey was administered at the end of the course and students indicated the simulations were enjoyable (92%), easy to use (90%), stimulated interest in critically ill patients (82%), and allowed for application of lecture material (91%). A 5-item presimulation and postsimulation test on the anemia simulation was administered to assess learning. Students answered significantly more questions correctly on the postsimulation test than on the presimulation test (p < 0.001). Seventy-eight percent of students answered the same 5 questions correctly on the final examination. Conclusion Patient simulation software that used a branched-outcome decision model was an effective supplement to class lectures in an advanced pharmaceutics course and was well-received by pharmacy students. PMID:21519411

  18. Integration of Advanced Simulation and Visualization for Manufacturing Process Optimization

    NASA Astrophysics Data System (ADS)

    Zhou, Chenn; Wang, Jichao; Tang, Guangwu; Moreland, John; Fu, Dong; Wu, Bin

    2016-05-01

    The integration of simulation and visualization can provide a cost-effective tool for process optimization, design, scale-up and troubleshooting. The Center for Innovation through Visualization and Simulation (CIVS) at Purdue University Northwest has developed methodologies for such integration with applications in various manufacturing processes. The methodologies have proven to be useful for virtual design and virtual training to provide solutions addressing issues on energy, environment, productivity, safety, and quality in steel and other industries. In collaboration with its industrial partnerships, CIVS has provided solutions to companies, saving over US38 million. CIVS is currently working with the steel industry to establish an industry-led Steel Manufacturing Simulation and Visualization Consortium through the support of National Institute of Standards and Technology AMTech Planning Grant. The consortium focuses on supporting development and implementation of simulation and visualization technologies to advance steel manufacturing across the value chain.

  19. Requirements for advanced simulation of nuclear reactor and chemicalseparation plants.

    SciTech Connect

    Palmiotti, G.; Cahalan, J.; Pfeiffer, P.; Sofu, T.; Taiwo, T.; Wei,T.; Yacout, A.; Yang, W.; Siegel, A.; Insepov, Z.; Anitescu, M.; Hovland,P.; Pereira, C.; Regalbuto, M.; Copple, J.; Willamson, M.

    2006-12-11

    This report presents requirements for advanced simulation of nuclear reactor and chemical processing plants that are of interest to the Global Nuclear Energy Partnership (GNEP) initiative. Justification for advanced simulation and some examples of grand challenges that will benefit from it are provided. An integrated software tool that has its main components, whenever possible based on first principles, is proposed as possible future approach for dealing with the complex problems linked to the simulation of nuclear reactor and chemical processing plants. The main benefits that are associated with a better integrated simulation have been identified as: a reduction of design margins, a decrease of the number of experiments in support of the design process, a shortening of the developmental design cycle, and a better understanding of the physical phenomena and the related underlying fundamental processes. For each component of the proposed integrated software tool, background information, functional requirements, current tools and approach, and proposed future approaches have been provided. Whenever possible, current uncertainties have been quoted and existing limitations have been presented. Desired target accuracies with associated benefits to the different aspects of the nuclear reactor and chemical processing plants were also given. In many cases the possible gains associated with a better simulation have been identified, quantified, and translated into economical benefits.

  20. Hybrid and electric advanced vehicle systems (heavy) simulation

    NASA Technical Reports Server (NTRS)

    Hammond, R. A.; Mcgehee, R. K.

    1981-01-01

    A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

  1. Advanced Simulation Capability for Environmental Management (ASCEM) Phase II Demonstration

    SciTech Connect

    Freshley, M.; Hubbard, S.; Flach, G.; Freedman, V.; Agarwal, D.; Andre, B.; Bott, Y.; Chen, X.; Davis, J.; Faybishenko, B.; Gorton, I.; Murray, C.; Moulton, D.; Meyer, J.; Rockhold, M.; Shoshani, A.; Steefel, C.; Wainwright, H.; Waichler, S.

    2012-09-28

    In 2009, the National Academies of Science (NAS) reviewed and validated the U.S. Department of Energy Office of Environmental Management (EM) Technology Program in its publication, Advice on the Department of Energy’s Cleanup Technology Roadmap: Gaps and Bridges. The NAS report outlined prioritization needs for the Groundwater and Soil Remediation Roadmap, concluded that contaminant behavior in the subsurface is poorly understood, and recommended further research in this area as a high priority. To address this NAS concern, the EM Office of Site Restoration began supporting the development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific approach that uses an integration of toolsets for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM modeling toolset is modular and open source. It is divided into three thrust areas: Multi-Process High Performance Computing (HPC), Platform and Integrated Toolsets, and Site Applications. The ASCEM toolsets will facilitate integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. During fiscal year 2012, the ASCEM project continued to make significant progress in capabilities development. Capability development occurred in both the Platform and Integrated Toolsets and Multi-Process HPC Simulator areas. The new Platform and Integrated Toolsets capabilities provide the user an interface and the tools necessary for end-to-end model development that includes conceptual model definition, data management for model input, model calibration and uncertainty analysis, and model output processing including visualization. The new HPC Simulator capabilities target increased functionality of process model representations, toolsets for interaction with the Platform, and model confidence testing and verification for

  2. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Obland, M. D.; Liu, Z.; Browell, E. V.; Chen, S.; Kooi, S. A.; Fan, T. F.

    2015-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and Atmospheric Carbon and Transport (ACT) - America airborne investigation are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are being investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the mission science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of intervening optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the Earth's surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These techniques are used in a new data processing architecture to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.

  3. Quantum simulation of quantum field theory using continuous variables

    SciTech Connect

    Marshall, Kevin; Pooser, Raphael C.; Siopsis, George; Weedbrook, Christian

    2015-12-14

    Much progress has been made in the field of quantum computing using continuous variables over the last couple of years. This includes the generation of extremely large entangled cluster states (10,000 modes, in fact) as well as a fault tolerant architecture. This has lead to the point that continuous-variable quantum computing can indeed be thought of as a viable alternative for universal quantum computing. With that in mind, we present a new algorithm for continuous-variable quantum computers which gives an exponential speedup over the best known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonic quantum field theory, a problem that is known to be hard using a classical computer. Thus, we give an experimental implementation based on cluster states that is feasible with today's technology.

  4. Quantum simulation of quantum field theory using continuous variables

    DOE PAGESBeta

    Marshall, Kevin; Pooser, Raphael C.; Siopsis, George; Weedbrook, Christian

    2015-12-14

    Much progress has been made in the field of quantum computing using continuous variables over the last couple of years. This includes the generation of extremely large entangled cluster states (10,000 modes, in fact) as well as a fault tolerant architecture. This has lead to the point that continuous-variable quantum computing can indeed be thought of as a viable alternative for universal quantum computing. With that in mind, we present a new algorithm for continuous-variable quantum computers which gives an exponential speedup over the best known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonicmore » quantum field theory, a problem that is known to be hard using a classical computer. Thus, we give an experimental implementation based on cluster states that is feasible with today's technology.« less

  5. Advanced 3D Photocathode Modeling and Simulations Final Report

    SciTech Connect

    Dimitre A Dimitrov; David L Bruhwiler

    2005-06-06

    High brightness electron beams required by the proposed Next Linear Collider demand strong advances in photocathode electron gun performance. Significant improvement in the production of such beams with rf photocathode electron guns is hampered by the lack high-fidelity simulations. The critical missing piece in existing gun codes is a physics-based, detailed treatment of the very complex and highly nonlinear photoemission process.

  6. SIMULATION OF CONTINUOUS-CONTACT SEPARATION PROCESSES: MULTICOMPONENT, ADIABATIC ABSORPTION

    EPA Science Inventory

    A new algorithm has been developed for the steady-state simulation of multicomponent, adiabatic absorption in packed columns. The system of differential model equations that describe the physical absorption process is reduced to algebraic equations by using a finite difference me...

  7. The Consortium for Advanced Simulation of Light Water Reactors

    SciTech Connect

    Ronaldo Szilard; Hongbin Zhang; Doug Kothe; Paul Turinsky

    2011-10-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

  8. Simulation-Based Prediction of Equivalent Continuous Noises during Construction Processes

    PubMed Central

    Zhang, Hong; Pei, Yun

    2016-01-01

    Quantitative prediction of construction noise is crucial to evaluate construction plans to help make decisions to address noise levels. Considering limitations of existing methods for measuring or predicting the construction noise and particularly the equivalent continuous noise level over a period of time, this paper presents a discrete-event simulation method for predicting the construction noise in terms of equivalent continuous level. The noise-calculating models regarding synchronization, propagation and equivalent continuous level are presented. The simulation framework for modeling the noise-affected factors and calculating the equivalent continuous noise by incorporating the noise-calculating models into simulation strategy is proposed. An application study is presented to demonstrate and justify the proposed simulation method in predicting the equivalent continuous noise during construction. The study contributes to provision of a simulation methodology to quantitatively predict the equivalent continuous noise of construction by considering the relevant uncertainties, dynamics and interactions. PMID:27529266

  9. Simulation-Based Prediction of Equivalent Continuous Noises during Construction Processes.

    PubMed

    Zhang, Hong; Pei, Yun

    2016-01-01

    Quantitative prediction of construction noise is crucial to evaluate construction plans to help make decisions to address noise levels. Considering limitations of existing methods for measuring or predicting the construction noise and particularly the equivalent continuous noise level over a period of time, this paper presents a discrete-event simulation method for predicting the construction noise in terms of equivalent continuous level. The noise-calculating models regarding synchronization, propagation and equivalent continuous level are presented. The simulation framework for modeling the noise-affected factors and calculating the equivalent continuous noise by incorporating the noise-calculating models into simulation strategy is proposed. An application study is presented to demonstrate and justify the proposed simulation method in predicting the equivalent continuous noise during construction. The study contributes to provision of a simulation methodology to quantitatively predict the equivalent continuous noise of construction by considering the relevant uncertainties, dynamics and interactions. PMID:27529266

  10. Simulation of continuous and batch hydrolysis of willow

    SciTech Connect

    Zacchi, G.; Dahlbom, J.; Scott, C.D.

    1986-01-01

    The influence of product and enzyme concentrations on the kinetics of the enzymic hydrolysis of alkali-pretreated willow is studied. The hydrolysis was performed in a UF-membrane reactor in which the product concentration was kept constant. An empirical 4-parameter rate equation that gives a good correlation to both continuous and batch hydrolysis data is presented. The model comprises the effects of enzyme concentration and product inhibition. (Refs. 11).

  11. Two-Dimensional Dynamic Simulation of a Continuous Foil Bearing

    NASA Technical Reports Server (NTRS)

    Braun, M. Jack; Choy, F. K.; Dzodzo, Milorad; Hsu, J.

    1996-01-01

    In this paper, the two dimensional(radial and circumferential) transient Navier-Stokes equations are used to solve the hydrodynamic problem in conjunction with the time dependent motion of the journal, and the deformable, spring supported foil. The elastic deformation of the foil and its supports are simulated by a finite element model. The time-dependent Navier-Stokes formulation is used to solve for the interaction between the fluid lubricant, the motion of the journal and the deformable foil boundary. The steady state, the quasi-transient and the full transient dynamic simulation of the foil-fluid journal interaction are examined on a comparative basis. For the steady state simulation, the fluid lubricant pressures are evaluated for a particular journal position, by means of an iterative scheme until convergence is achieved in both the fluid pressures and the corresponding foil deformation. For the quasi-transient case, the transient motion of the journal is calculated using a numerical integration scheme for the velocity and displacement of the journal. The deformation of the foil is evaluated through numerical iteration in feedback mode with the fluid film pressure generated by the journal motion until convergence at every time step is achieved. For the full transient simulation, a parallel real-time integration scheme is used to evaluate simultaneously the new journal position and the new deformed shape of the foil at each time step. The pressure of the fluid lubricant is iterated jointly with the corresponding journal position and the deformed foil geometry until convergence is achieved. A variable time-stepping Newmark-Beta integration procedure is used to evaluate the transient dynamics at each time step of the bearing.

  12. Advanced simulation study on bunch gap transient effect

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tetsuya; Akai, Kazunori

    2016-06-01

    Bunch phase shift along the train due to a bunch gap transient is a concern in high-current colliders. In KEKB operation, the measured phase shift along the train agreed well with a simulation and a simple analytical form in most part of the train. However, a rapid phase change was observed at the leading part of the train, which was not predicted by the simulation or by the analytical form. In order to understand the cause of this observation, we have developed an advanced simulation, which treats the transient loading in each of the cavities of the three-cavity system of the accelerator resonantly coupled with energy storage (ARES) instead of the equivalent single cavities used in the previous simulation, operating in the accelerating mode. In this paper, we show that the new simulation reproduces the observation, and clarify that the rapid phase change at the leading part of the train is caused by a transient loading in the three-cavity system of ARES. KEKB is being upgraded to SuperKEKB, which is aiming at 40 times higher luminosity than KEKB. The gap transient in SuperKEKB is investigated using the new simulation, and the result shows that the rapid phase change at the leading part of the train is much larger due to higher beam currents. We will also present measures to mitigate possible luminosity reduction or beam performance deterioration due to the rapid phase change caused by the gap transient.

  13. Advanced Simulation and Computing FY10-11 Implementation Plan Volume 2, Rev. 0

    SciTech Connect

    Carnes, B

    2009-06-08

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that

  14. Advanced Simulation & Computing FY09-FY10 Implementation Plan Volume 2, Rev. 0

    SciTech Connect

    Meisner, R; Perry, J; McCoy, M; Hopson, J

    2008-04-30

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future nonnuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one

  15. Advanced Simulation and Computing Fiscal Year 2011-2012 Implementation Plan, Revision 0

    SciTech Connect

    McCoy, M; Phillips, J; Hpson, J; Meisner, R

    2010-04-22

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model

  16. Advanced Simulation and Computing FY08-09 Implementation Plan Volume 2 Revision 0

    SciTech Connect

    McCoy, M; Kusnezov, D; Bikkel, T; Hopson, J

    2007-04-25

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future nonnuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one

  17. Advanced Simulation and Computing FY09-FY10 Implementation Plan Volume 2, Rev. 1

    SciTech Connect

    Kissel, L

    2009-04-01

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that

  18. Advanced Simulation and Computing FY09-FY10 Implementation Plan, Volume 2, Revision 0.5

    SciTech Connect

    Meisner, R; Hopson, J; Peery, J; McCoy, M

    2008-10-07

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one

  19. Advanced Simulation and Computing FY08-09 Implementation Plan, Volume 2, Revision 0.5

    SciTech Connect

    Kusnezov, D; Bickel, T; McCoy, M; Hopson, J

    2007-09-13

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from

  20. Advanced Simulation and Computing FY10-FY11 Implementation Plan Volume 2, Rev. 0.5

    SciTech Connect

    Meisner, R; Peery, J; McCoy, M; Hopson, J

    2009-09-08

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model

  1. Advanced Simulation and Computing FY07-08 Implementation Plan Volume 2

    SciTech Connect

    Kusnezov, D; Hale, A; McCoy, M; Hopson, J

    2006-06-22

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future nonnuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program will require the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from

  2. Simulation of Watts Bar Unit 1 Initial Startup Tests with Continuous Energy Monte Carlo Methods

    SciTech Connect

    Godfrey, Andrew T; Gehin, Jess C; Bekar, Kursat B; Celik, Cihangir

    2014-01-01

    The Consortium for Advanced Simulation of Light Water Reactors* is developing a collection of methods and software products known as VERA, the Virtual Environment for Reactor Applications. One component of the testing and validation plan for VERA is comparison of neutronics results to a set of continuous energy Monte Carlo solutions for a range of pressurized water reactor geometries using the SCALE component KENO-VI developed by Oak Ridge National Laboratory. Recent improvements in data, methods, and parallelism have enabled KENO, previously utilized predominately as a criticality safety code, to demonstrate excellent capability and performance for reactor physics applications. The highly detailed and rigorous KENO solutions provide a reliable nu-meric reference for VERAneutronics and also demonstrate the most accurate predictions achievable by modeling and simulations tools for comparison to operating plant data. This paper demonstrates the performance of KENO-VI for the Watts Bar Unit 1 Cycle 1 zero power physics tests, including reactor criticality, control rod worths, and isothermal temperature coefficients.

  3. Pseudo-transient Continuation Based Variable Relaxation Solve in Nonlinear Magnetohydrodynamic Simulations

    SciTech Connect

    Jin Chen

    2009-12-07

    Efficient and robust Variable Relaxation Solver, based on pseudo-transient continuation, is developed to solve nonlinear anisotropic thermal conduction arising from fusion plasma simulations. By adding first and/or second order artificial time derivatives to the system, this type of method advances the resulting time-dependent nonlinear PDEs to steady state, which is the solution to be sought. In this process, only the stiffness matrix itself is involved so that the numerical complexity and errors can be greatly reduced. In fact, this work is an extension of integrating efficient linear elliptic solvers for fusion simulation on Cray XIE. Two schemes are derived in this work, first and second order Variable Relaxations. Four factors are observed to be critical for efficiency and preservation of solution's symmetric structure arising from periodic boundary condition: refining meshes in different coordinate directions, initializing nonlinear process, varying time steps in both temporal and spatial directions, and accurately generating nonlinear stiffness matrix. First finer mesh scale should be taken in strong transport direction; Next the system is carefully initialized by the solution with linear conductivity; Third, time step and relaxation factor are vertex-based varied and optimized at each time step; Finally, the nonlinear stiffness matrix is updated by just scaling corresponding linear one with the vector generated from nonlinear thermal conductivity.

  4. Interoperable mesh and geometry tools for advanced petascale simulations

    SciTech Connect

    Diachin, L; Bauer, A; Fix, B; Kraftcheck, J; Jansen, K; Luo, X; Miller, M; Ollivier-Gooch, C; Shephard, M; Tautges, T; Trease, H

    2007-07-04

    SciDAC applications have a demonstrated need for advanced software tools to manage the complexities associated with sophisticated geometry, mesh, and field manipulation tasks, particularly as computer architectures move toward the petascale. The Center for Interoperable Technologies for Advanced Petascale Simulations (ITAPS) will deliver interoperable and interchangeable mesh, geometry, and field manipulation services that are of direct use to SciDAC applications. The premise of our technology development goal is to provide such services as libraries that can be used with minimal intrusion into application codes. To develop these technologies, we focus on defining a common data model and datastructure neutral interfaces that unify a number of different services such as mesh generation and improvement, front tracking, adaptive mesh refinement, shape optimization, and solution transfer operations. We highlight the use of several ITAPS services in SciDAC applications.

  5. FY05-FY06 Advanced Simulation and Computing Implementation Plan, Volume 2

    SciTech Connect

    Baron, A L

    2004-07-19

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program will require the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapon design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile life extension programs and the resolution of significant finding investigations (SFIs). This requires a balanced system of technical staff, hardware, simulation software, and computer science solutions.

  6. Understanding pool-riffle dynamics through continuous morphological simulations

    NASA Astrophysics Data System (ADS)

    de Almeida, Gustavo Adolfo Mazza; RodríGuez, José F.

    2011-01-01

    Pool-riffle dynamics is governed by complex time and spatial interactions between water and sediment flows. In the last few decades, significant advances have been made in characterizing and modeling the hydrodynamics of pool-riffle sequences, and this information has been extensively used as the basis of conceptual models to describe or infer pool-riffle morphodynamics. A lot less attention, however, has been paid to the coupled dynamics of flow and sediment, which is essential to fully understand these complex geomorphic systems. This paper uses an unsteady 1-D flow-morphology and bed-sorting model to analyze pool-riffle dynamics. The model is first applied to a pool-riffle sequence on a 1.1 km reach of the lower Bear Creek, Arkansas, United States. After showing the model's ability to describe the general reach hydrodynamics and morphological evolution over 1 year, the detailed sediment and flow information is used to investigate pool-riffle dynamics in terms of self-maintenance mechanisms. Two effects that have been only marginally explored in the past, i.e., bed sediment sorting and downstream riffle control, are explained and quantified with the help of the model's outputs. The results show that self-maintenance occurs more frequently than previously thought as a result of grain sorting and that erosion or deposition of contiguous riffles also constitutes a self-maintenance mechanism. These findings provide the support for a physically based, integral description of pool-riffle morphodynamics and highlight the importance of flow and sediment variability on pool-riffle self-maintenance. The morphodynamic analysis bridges the gap between observations and current theories based mainly on hydrodynamic information.

  7. Simulated herbivory advances autumn phenology in Acer rubrum

    NASA Astrophysics Data System (ADS)

    Forkner, Rebecca E.

    2014-05-01

    To determine the degree to which herbivory contributes to phenotypic variation in autumn phenology for deciduous trees, red maple ( Acer rubrum) branches were subjected to low and high levels of simulated herbivory and surveyed at the end of the season to assess abscission and degree of autumn coloration. Overall, branches with simulated herbivory abscised ˜7 % more leaves at each autumn survey date than did control branches within trees. While branches subjected to high levels of damage showed advanced phenology, abscission rates did not differ from those of undamaged branches within trees because heavy damage induced earlier leaf loss on adjacent branch nodes in this treatment. Damaged branches had greater proportions of leaf area colored than undamaged branches within trees, having twice the amount of leaf area colored at the onset of autumn and having ˜16 % greater leaf area colored in late October when nearly all leaves were colored. When senescence was scored as the percent of all leaves abscised and/or colored, branches in both treatments reached peak senescence earlier than did control branches within trees: dates of 50 % senescence occurred 2.5 days earlier for low herbivory branches and 9.7 days earlier for branches with high levels of simulated damage. These advanced rates are of the same time length as reported delays in autumn senescence and advances in spring onset due to climate warming. Thus, results suggest that should insect damage increase as a consequence of climate change, it may offset a lengthening of leaf life spans in some tree species.

  8. The Advanced Gamma-ray Imaging System (AGIS) - Simulation Studies

    SciTech Connect

    Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Vassiliev, V. V.; Funk, S.; Konopelko, A.

    2008-12-24

    The Advanced Gamma-ray Imaging System (AGIS) is a US-led concept for a next-generation instrument in ground-based very-high-energy gamma-ray astronomy. The most important design requirement for AGIS is a sensitivity of about 10 times greater than current observatories like Veritas, H.E.S.S or MAGIC. We present results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.

  9. The Advanced Gamma-ray Imaging System (AGIS): Simulation studies

    SciTech Connect

    Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Funk, S.; Konopelko, A.; Vassiliev, V.V.; /UCLA

    2011-06-14

    The Advanced Gamma-ray Imaging System (AGIS) is a next-generation ground-based gamma-ray observatory being planned in the U.S. The anticipated sensitivity of AGIS is about one order of magnitude better than the sensitivity of current observatories, allowing it to measure gamma-ray emission from a large number of Galactic and extra-galactic sources. We present here results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance - collecting area, angular resolution, background rejection, and sensitivity - are discussed.

  10. Direct Simulation Monte Carlo: Recent Advances and Applications

    NASA Astrophysics Data System (ADS)

    Oran, E. S.; Oh, C. K.; Cybyk, B. Z.

    The principles of and procedures for implementing direct simulation Monte Carlo (DSMC) are described. Guidelines to inherent and external errors common in DSMC applications are provided. Three applications of DSMC to transitional and nonequilibrium flows are considered: rarefied atmospheric flows, growth of thin films, and microsystems. Selected new, potentially important advances in DSMC capabilities are described: Lagrangian DSMC, optimization on parallel computers, and hybrid algorithms for computations in mixed flow regimes. Finally, the limitations of current computer technology for using DSMC to compute low-speed, high-Knudsen-number flows are outlined as future challenges.

  11. Dental Interactive Simulations Corporation (DISC): Simulations for Education, Continuing Education, and Assessment.

    ERIC Educational Resources Information Center

    Johnson, Lynn A.; Wohlgemuth, Barry; Cameron, Cheryl A.; Caughman, Frank; Koertge, Tom; Barna, Julie; Schulz, Joe

    1998-01-01

    The Dental Interactive Simulations Corporation (DISC) is a nonprofit organization that creates interactive patient simulations for dental and dental hygiene education. The simulations present highly realistic patient care delivery scenarios. Twelve organizations representing the education, practitioner, examination, and student communities…

  12. New Developments in the Simulation of Advanced Accelerator Concepts

    SciTech Connect

    Bruhwiler, David L.; Cary, John R.; Cowan, Benjamin M.; Paul, Kevin; Mullowney, Paul J.; Messmer, Peter; Geddes, Cameron G. R.; Esarey, Eric; Cormier-Michel, Estelle; Leemans, Wim; Vay, Jean-Luc

    2009-01-22

    Improved computational methods are essential to the diverse and rapidly developing field of advanced accelerator concepts. We present an overview of some computational algorithms for laser-plasma concepts and high-brightness photocathode electron sources. In particular, we discuss algorithms for reduced laser-plasma models that can be orders of magnitude faster than their higher-fidelity counterparts, as well as important on-going efforts to include relevant additional physics that has been previously neglected. As an example of the former, we present 2D laser wakefield accelerator simulations in an optimal Lorentz frame, demonstrating >10 GeV energy gain of externally injected electrons over a 2 m interaction length, showing good agreement with predictions from scaled simulations and theory, with a speedup factor of {approx}2,000 as compared to standard particle-in-cell.

  13. New Developments in the Simulation of Advanced Accelerator Concepts

    SciTech Connect

    Paul, K.; Cary, J.R.; Cowan, B.; Bruhwiler, D.L.; Geddes, C.G.R.; Mullowney, P.J.; Messmer, P.; Esarey, E.; Cormier-Michel, E.; Leemans, W.P.; Vay, J.-L.

    2008-09-10

    Improved computational methods are essential to the diverse and rapidly developing field of advanced accelerator concepts. We present an overview of some computational algorithms for laser-plasma concepts and high-brightness photocathode electron sources. In particular, we discuss algorithms for reduced laser-plasma models that can be orders of magnitude faster than their higher-fidelity counterparts, as well as important on-going efforts to include relevant additional physics that has been previously neglected. As an example of the former, we present 2D laser wakefield accelerator simulations in an optimal Lorentz frame, demonstrating>10 GeV energy gain of externally injected electrons over a 2 m interaction length, showing good agreement with predictions from scaled simulations and theory, with a speedup factor of ~;;2,000 as compared to standard particle-in-cell.

  14. Advanced simulations of optical transition and diffraction radiation

    NASA Astrophysics Data System (ADS)

    Aumeyr, T.; Billing, M. G.; Bobb, L. M.; Bolzon, B.; Bravin, E.; Karataev, P.; Kruchinin, K.; Lefevre, T.; Mazzoni, S.

    2015-04-01

    Charged particle beam diagnostics is a key task in modern and future accelerator installations. The diagnostic tools are practically the "eyes" of the operators. The precision and resolution of the diagnostic equipment are crucial to define the performance of the accelerator. Transition and diffraction radiation (TR and DR) are widely used for electron beam parameter monitoring. However, the precision and resolution of those devices are determined by how well the production, transport and detection of these radiation types are understood. This paper reports on simulations of TR and DR spatial-spectral characteristics using the physical optics propagation (POP) mode of the Zemax advanced optics simulation software. A good consistency with theory is demonstrated. Also, realistic optical system alignment issues are discussed.

  15. Advanced radiometric millimeter-wave scene simulation: ARMSS

    NASA Astrophysics Data System (ADS)

    Hauss, Bruce I.; Agravante, Hiroshi H.; Chaiken, Steven

    1997-06-01

    In order to predict the performance of a passive millimeter wave sensor under a variety of weather, terrain and sensor operational conditions, TRW has developed the Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code. This code provides a comprehensive, end-to-end scene simulation capability based on rigorous, `first-principle' physics models of the passive millimeter wave phenomenology and sensor characteristics. The ARMSS code has been extensively benchmarked against both data in the literature and a wide array of millimeter-wave-field-imaging data. The code has been used in support of numerous passive millimeter wave technology programs for interpreting millimeter wave data, establishing scene signatures, performing mission analyses, and developing system requirements for the design of millimeter wave sensor systems. In this paper, we will present details of the ARMSS code and describe its current use in defining system requirements for the passive millimeter wave camera being developed under the Passive Millimeter Wave Camera Consortium led by TRW.

  16. Recent advances of strong-strong beam-beam simulation

    SciTech Connect

    Qiang, Ji; Furman, Miguel A.; Ryne, Robert D.; Fischer, Wolfram; Ohmi,Kazuhito

    2004-09-15

    In this paper, we report on recent advances in strong-strong beam-beam simulation. Numerical methods used in the calculation of the beam-beam forces are reviewed. A new computational method to solve the Poisson equation on nonuniform grid is presented. This method reduces the computational cost by a half compared with the standard FFT based method on uniform grid. It is also more accurate than the standard method for a colliding beam with low transverse aspect ratio. In applications, we present the study of coherent modes with multi-bunch, multi-collision beam-beam interactions at RHIC. We also present the strong-strong simulation of the luminosity evolution at KEKB with and without finite crossing angle.

  17. ADVANCED UTILITY SIMULATION MODEL, REPORT OF SENSITIVITY TESTING, CALIBRATION, AND MODEL OUTPUT COMPARISONS (VERSION 3.0) TAPE

    EPA Science Inventory

    The report is one of 11 in a series describing the initial development of the Advanced Utility Simulation Model (AUSM) by the Universities Research Group on Energy (URGE) and its continued development by the Science Applications International Corporation (SAIC) research team. The...

  18. Advanced radiometric and interferometric milimeter-wave scene simulations

    NASA Technical Reports Server (NTRS)

    Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.

    1993-01-01

    Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.

  19. Advanced radiometric and interferometric milimeter-wave scene simulations

    NASA Astrophysics Data System (ADS)

    Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.

    1993-12-01

    Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.

  20. Co-Simulation for Advanced Process Design and Optimization

    SciTech Connect

    Stephen E. Zitney

    2009-01-01

    Meeting the increasing demand for clean, affordable, and secure energy is arguably the most important challenge facing the world today. Fossil fuels can play a central role in a portfolio of carbon-neutral energy options provided CO{sub 2} emissions can be dramatically reduced by capturing CO{sub 2} and storing it safely and effectively. Fossil energy industry faces the challenge of meeting aggressive design goals for next-generation power plants with CCS. Process designs will involve large, highly-integrated, and multipurpose systems with advanced equipment items with complex geometries and multiphysics. APECS is enabling software to facilitate effective integration, solution, and analysis of high-fidelity process/equipment (CFD) co-simulations. APECS helps to optimize fluid flow and related phenomena that impact overall power plant performance. APECS offers many advanced capabilities including ROMs, design optimization, parallel execution, stochastic analysis, and virtual plant co-simulations. NETL and its collaborative R&D partners are using APECS to reduce the time, cost, and technical risk of developing high-efficiency, zero-emission power plants with CCS.

  1. Graphics simulation and training aids for advanced teleoperation

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Schenker, Paul S.; Bejczy, Antal K.

    1993-01-01

    Graphics displays can be of significant aid in accomplishing a teleoperation task throughout all three phases of off-line task analysis and planning, operator training, and online operation. In the first phase, graphics displays provide substantial aid to investigate work cell layout, motion planning with collision detection and with possible redundancy resolution, and planning for camera views. In the second phase, graphics displays can serve as very useful tools for introductory training of operators before training them on actual hardware. In the third phase, graphics displays can be used for previewing planned motions and monitoring actual motions in any desired viewing angle, or, when communication time delay prevails, for providing predictive graphics overlay on the actual camera view of the remote site to show the non-time-delayed consequences of commanded motions in real time. This paper addresses potential space applications of graphics displays in all three operational phases of advanced teleoperation. Possible applications are illustrated with techniques developed and demonstrated in the Advanced Teleoperation Laboratory at JPL. The examples described include task analysis and planning of a simulated Solar Maximum Satellite Repair task, a novel force-reflecting teleoperation simulator for operator training, and preview and predictive displays for on-line operations.

  2. Continuous subcutaneous infusion of lidocaine for persistent hiccup in advanced cancer.

    PubMed

    Kaneishi, Keisuke; Kawabata, Masahiro

    2013-03-01

    Persistent hiccup can cause anorexia, weight loss, disabling sleep deprivation, anxiety, and depression. Therefore, relief of persistent hiccup is important for advanced cancer patients and their family. Most reports on this condition are case series reports advocating the use of baclofen, haloperidol, gabapentin, and midazolam. However, these medications are occasionally ineffective or accompanied by intolerable side effects. The sodium channel blocker lidocaine has been shown to be effective in treating a variety of disorders thought to involve neuropathic mechanisms. Intravenous administration of lidocaine is common but efficacy has also been reported for subcutaneous infusion. In advanced cancer patients, subcutaneous infusion is easy, advantageous, and accompanied by less discomfort. We report a case of severe and sustained hiccup caused by gastric cancer that was successfully treated with a continuous subcutaneous infusion of lidocaine (480 mg (24 ml)/day) without severe side effects. PMID:22661318

  3. A Virtual Engineering Framework for Simulating Advanced Power System

    SciTech Connect

    Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

    2008-06-18

    In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering

  4. Design and Test of Advanced Thermal Simulators for an Alkali Metal-Cooled Reactor Simulator

    NASA Technical Reports Server (NTRS)

    Garber, Anne E.; Dickens, Ricky E.

    2011-01-01

    The Early Flight Fission Test Facility (EFF-TF) at NASA Marshall Space Flight Center (MSFC) has as one of its primary missions the development and testing of fission reactor simulators for space applications. A key component in these simulated reactors is the thermal simulator, designed to closely mimic the form and function of a nuclear fuel pin using electric heating. Continuing effort has been made to design simple, robust, inexpensive thermal simulators that closely match the steady-state and transient performance of a nuclear fuel pin. A series of these simulators have been designed, developed, fabricated and tested individually and in a number of simulated reactor systems at the EFF-TF. The purpose of the thermal simulators developed under the Fission Surface Power (FSP) task is to ensure that non-nuclear testing can be performed at sufficiently high fidelity to allow a cost-effective qualification and acceptance strategy to be used. Prototype thermal simulator design is founded on the baseline Fission Surface Power reactor design. Recent efforts have been focused on the design, fabrication and test of a prototype thermal simulator appropriate for use in the Technology Demonstration Unit (TDU). While designing the thermal simulators described in this paper, effort were made to improve the axial power profile matching of the thermal simulators. Simultaneously, a search was conducted for graphite materials with higher resistivities than had been employed in the past. The combination of these two efforts resulted in the creation of thermal simulators with power capacities of 2300-3300 W per unit. Six of these elements were installed in a simulated core and tested in the alkali metal-cooled Fission Surface Power Primary Test Circuit (FSP-PTC) at a variety of liquid metal flow rates and temperatures. This paper documents the design of the thermal simulators, test program, and test results.

  5. Investigations and advanced concepts on gyrotron interaction modeling and simulations

    SciTech Connect

    Avramidis, K. A.

    2015-12-15

    In gyrotron theory, the interaction between the electron beam and the high frequency electromagnetic field is commonly modeled using the slow variables approach. The slow variables are quantities that vary slowly in time in comparison to the electron cyclotron frequency. They represent the electron momentum and the high frequency field of the resonant TE modes in the gyrotron cavity. For their definition, some reference frequencies need to be introduced. These include the so-called averaging frequency, used to define the slow variable corresponding to the electron momentum, and the carrier frequencies, used to define the slow variables corresponding to the field envelopes of the modes. From the mathematical point of view, the choice of the reference frequencies is, to some extent, arbitrary. However, from the numerical point of view, there are arguments that point toward specific choices, in the sense that these choices are advantageous in terms of simulation speed and accuracy. In this paper, the typical monochromatic gyrotron operation is considered, and the numerical integration of the interaction equations is performed by the trajectory approach, since it is the fastest, and therefore it is the one that is most commonly used. The influence of the choice of the reference frequencies on the interaction simulations is studied using theoretical arguments, as well as numerical simulations. From these investigations, appropriate choices for the values of the reference frequencies are identified. In addition, novel, advanced concepts for the definitions of these frequencies are addressed, and their benefits are demonstrated numerically.

  6. PRATHAM: Parallel Thermal Hydraulics Simulations using Advanced Mesoscopic Methods

    SciTech Connect

    Joshi, Abhijit S; Jain, Prashant K; Mudrich, Jaime A; Popov, Emilian L

    2012-01-01

    At the Oak Ridge National Laboratory, efforts are under way to develop a 3D, parallel LBM code called PRATHAM (PaRAllel Thermal Hydraulic simulations using Advanced Mesoscopic Methods) to demonstrate the accuracy and scalability of LBM for turbulent flow simulations in nuclear applications. The code has been developed using FORTRAN-90, and parallelized using the message passing interface MPI library. Silo library is used to compact and write the data files, and VisIt visualization software is used to post-process the simulation data in parallel. Both the single relaxation time (SRT) and multi relaxation time (MRT) LBM schemes have been implemented in PRATHAM. To capture turbulence without prohibitively increasing the grid resolution requirements, an LES approach [5] is adopted allowing large scale eddies to be numerically resolved while modeling the smaller (subgrid) eddies. In this work, a Smagorinsky model has been used, which modifies the fluid viscosity by an additional eddy viscosity depending on the magnitude of the rate-of-strain tensor. In LBM, this is achieved by locally varying the relaxation time of the fluid.

  7. Investigations and advanced concepts on gyrotron interaction modeling and simulations

    NASA Astrophysics Data System (ADS)

    Avramidis, K. A.

    2015-12-01

    In gyrotron theory, the interaction between the electron beam and the high frequency electromagnetic field is commonly modeled using the slow variables approach. The slow variables are quantities that vary slowly in time in comparison to the electron cyclotron frequency. They represent the electron momentum and the high frequency field of the resonant TE modes in the gyrotron cavity. For their definition, some reference frequencies need to be introduced. These include the so-called averaging frequency, used to define the slow variable corresponding to the electron momentum, and the carrier frequencies, used to define the slow variables corresponding to the field envelopes of the modes. From the mathematical point of view, the choice of the reference frequencies is, to some extent, arbitrary. However, from the numerical point of view, there are arguments that point toward specific choices, in the sense that these choices are advantageous in terms of simulation speed and accuracy. In this paper, the typical monochromatic gyrotron operation is considered, and the numerical integration of the interaction equations is performed by the trajectory approach, since it is the fastest, and therefore it is the one that is most commonly used. The influence of the choice of the reference frequencies on the interaction simulations is studied using theoretical arguments, as well as numerical simulations. From these investigations, appropriate choices for the values of the reference frequencies are identified. In addition, novel, advanced concepts for the definitions of these frequencies are addressed, and their benefits are demonstrated numerically.

  8. Representing low-frequency variability in continuous rainfall simulations: A hierarchical random Bartlett Lewis continuous rainfall generation model

    NASA Astrophysics Data System (ADS)

    Wasko, Conrad; Pui, Alexander; Sharma, Ashish; Mehrotra, Rajeshwar; Jeremiah, Erwin

    2015-12-01

    Low-frequency variability, in the form of the El Niño-Southern Oscillation, plays a key role in shaping local weather systems. However, current continuous stochastic rainfall models do not account for this variability in their simulations. Here a modified Random Pulse Bartlett Lewis stochastic generation model is presented for continuous rainfall simulation exhibiting low-frequency variability. Termed the Hierarchical Random Bartlett Lewis Model (HRBLM), the model features a hierarchical structure to represent a range of rainfall characteristics associated with the El Niño-Southern Oscillation with parameters conditioned to vary as functions of relevant climatic states. Long observational records of near-continuous rainfall at various locations in Australia are used to formulate and evaluate the model. The results indicate clear benefits of using the hierarchical climate-dependent structure proposed. In addition to accurately representing the wet spells characteristics and observed low-frequency variability, the model replicates the interannual variability of the antecedent rainfall preceding the extremes, which is known to be of considerable importance in design flood estimation applications.

  9. Advanced modeling and simulation to design and manufacture high performance and reliable advanced microelectronics and microsystems.

    SciTech Connect

    Nettleship, Ian (University of Pittsburgh, Pittsburgh, PA); Hinklin, Thomas; Holcomb, David Joseph; Tandon, Rajan; Arguello, Jose Guadalupe, Jr.; Dempsey, James Franklin; Ewsuk, Kevin Gregory; Neilsen, Michael K.; Lanagan, Michael (Pennsylvania State University, University Park, PA)

    2007-07-01

    An interdisciplinary team of scientists and engineers having broad expertise in materials processing and properties, materials characterization, and computational mechanics was assembled to develop science-based modeling/simulation technology to design and reproducibly manufacture high performance and reliable, complex microelectronics and microsystems. The team's efforts focused on defining and developing a science-based infrastructure to enable predictive compaction, sintering, stress, and thermomechanical modeling in ''real systems'', including: (1) developing techniques to and determining materials properties and constitutive behavior required for modeling; (2) developing new, improved/updated models and modeling capabilities, (3) ensuring that models are representative of the physical phenomena being simulated; and (4) assessing existing modeling capabilities to identify advances necessary to facilitate the practical application of Sandia's predictive modeling technology.

  10. Comparison of the EO-1 Advanced Land Imager Performance With the Landsat Data Continuity Mission Specification

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.; Hearn, D. R.; Lencioni, D. E.

    2002-01-01

    The performance requirements for the Advanced Land Imager were developed under NASA's New Millennium Program and were intended to facilitate the validation of new sensor technologies and architectures for potential application in future remote sensing missions. The Advanced Land Imager (ALI) was designed and flown well before the Landsat Data Continuity Mission (LDCM) specifications were developed. Nevertheless, the science focus of the ALI technology validation was Landsat data continuity. Therefore, although exact compliance by ALI is not expected, the performance should demonstrate a path to a compliant sensor system. The performance of the ALI, as determined from preflight and flight data, is compared to the LDCM specification. Twenty-one noncompliances have been identified: four data collection, four spectral, six spatial, and seven radiometric (Table I). All but six of these are considered minor. The six major noncompliances are the result of stray light, leaky detectors, and contamination. Appendix A replicates the LDCM specification and contains ALI compliance notes where appropriate. Details of the ALI stray light, contamination, and leaky detectors are provided in Appendix B, C, and D respectively. Additional information pertaining to the calculation of the ALI edge response and coherent noise is presented in Appendix E and F. A list of ALI related publications is provided in Appendix G.

  11. Advanced Simulation Capability for Environmental Management (ASCEM): Early Site Demonstration

    SciTech Connect

    Meza, Juan; Hubbard, Susan; Freshley, Mark D.; Gorton, Ian; Moulton, David; Denham, Miles E.

    2011-03-07

    The U.S. Department of Energy Office of Environmental Management, Technology Innovation and Development (EM-32), is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high performance computing tool will facilitate integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. As part of the initial development process, a series of demonstrations were defined to test ASCEM components and provide feedback to developers, engage end users in applications, and lead to an outcome that would benefit the sites. The demonstration was implemented for a sub-region of the Savannah River Site General Separations Area that includes the F-Area Seepage Basins. The physical domain included the unsaturated and saturated zones in the vicinity of the seepage basins and Fourmile Branch, using an unstructured mesh fit to the hydrostratigraphy and topography of the site. The calculations modeled variably saturated flow and the resulting flow field was used in simulations of the advection of non-reactive species and the reactive-transport of uranium. As part of the demonstrations, a new set of data management, visualization, and uncertainty quantification tools were developed to analyze simulation results and existing site data. These new tools can be used to provide summary statistics, including information on which simulation parameters were most important in the prediction of uncertainty and to visualize the relationships between model input and output.

  12. TID Simulation of Advanced CMOS Devices for Space Applications

    NASA Astrophysics Data System (ADS)

    Sajid, Muhammad

    2016-07-01

    This paper focuses on Total Ionizing Dose (TID) effects caused by accumulation of charges at silicon dioxide, substrate/silicon dioxide interface, Shallow Trench Isolation (STI) for scaled CMOS bulk devices as well as at Buried Oxide (BOX) layer in devices based on Silicon-On-Insulator (SOI) technology to be operated in space radiation environment. The radiation induced leakage current and corresponding density/concentration electrons in leakage current path was presented/depicted for 180nm, 130nm and 65nm NMOS, PMOS transistors based on CMOS bulk as well as SOI process technologies on-board LEO and GEO satellites. On the basis of simulation results, the TID robustness analysis for advanced deep sub-micron technologies was accomplished up to 500 Krad. The correlation between the impact of technology scaling and magnitude of leakage current with corresponding total dose was established utilizing Visual TCAD Genius program.

  13. POLYNOMIAL-BASED DISAGGREGATION OF HOURLY RAINFALL FOR CONTINUOUS HYDROLOGIC SIMULATION

    EPA Science Inventory

    Hydrologic modeling of urban watersheds for designs and analyses of stormwater conveyance facilities can be performed in either an event-based or continuous fashion. Continuous simulation requires, among other things, the use of a time series of rainfall amounts. However, for urb...

  14. Simulated Interactive Research Experiments as Educational Tools for Advanced Science

    NASA Astrophysics Data System (ADS)

    Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M.; Hopf, Martin; Arndt, Markus

    2015-09-01

    Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields.

  15. Simulated Interactive Research Experiments as Educational Tools for Advanced Science.

    PubMed

    Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M; Hopf, Martin; Arndt, Markus

    2015-01-01

    Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields. PMID:26370627

  16. Simulated Interactive Research Experiments as Educational Tools for Advanced Science

    PubMed Central

    Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M.; Hopf, Martin; Arndt, Markus

    2015-01-01

    Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields. PMID:26370627

  17. A Thermal Simulation Method for Solidification Process of Steel Slab in Continuous Casting

    NASA Astrophysics Data System (ADS)

    Zhong, Honggang; Chen, Xiangru; Han, Qingyou; Han, Ke; Zhai, Qijie

    2016-07-01

    Eighty years after the invention of continuous cast of steels, reproducibility from few mm3 samples in the laboratory to m3 product in plants is still a challenge. We have engineered a thermal simulation method to simulate the continuous casting process. The temperature gradient (G L ) and dendritic growth rate (v) of the slab were reproduced by controlling temperature and cooling intensity at hot and chill end, respectively, in our simulation samples. To verify that our samples can simulate the cast slab in continuous casting process, the heat transfer, solidification structure, and macrosegregation of the simulating sample were compared to those of a much larger continuous casting slab. The morphology of solid/liquid interface, solidified shell thickness, and dendritic growth rate were also investigated by in situ quenching the solidifying sample. Shell thickness (δ) determined by our quenching experiment was related to solidification time (τ) by equation: δ = 4.27 × τ 0.38. The results indicated that our method closely simulated the solidification process of continuous casting.

  18. Competence by Simulation: The Expert Nurse Continuing Education Experience Utilizing Simulation

    ERIC Educational Resources Information Center

    Underwood, Douglas W.

    2013-01-01

    Registered nurses practice in an environment that involves complex healthcare issues requiring continuous learning and evaluation of cognitive and technical skills to ensure safe and quality patient care. The purpose of this basic qualitative study was to gain a better understanding of the continuing educational needs of the expert nurse. This…

  19. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    SciTech Connect

    Pitsch, Heinz

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation; a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet transformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  20. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    SciTech Connect

    Heinz Pitsch

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high-fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation, a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet tranformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  1. Advanced thermal energy management: A thermal test bed and heat pipe simulation

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.

    1986-01-01

    Work initiated on a common-module thermal test simulation was continued, and a second project on heat pipe simulation was begun. The test bed, constructed from surplus Skylab equipment, was modeled and solved for various thermal load and flow conditions. Low thermal load caused the radiator fluid, Coolanol 25, to thicken due to its temperature avoided by using a regenerator-heat-exchanger. Other possible solutions modeled include a radiator heater and shunting heat from the central thermal bus to the radiator. Also, module air temperature can become excessive with high avionics load. A second preoject concerning advanced heat pipe concepts was initiated. A program was written which calculates fluid physical properties, liquid and vapor pressure in the evaporator and condenser, fluid flow rates, and thermal flux. The program is directed to evaluating newer heat pipe wicks and geometries, especially water in an artery surrounded by six vapor channels. Effects of temperature, groove and slot dimensions, and wick properties are reported.

  2. Development of ASTM standards in support of advanced ceramics -- continuing efforts

    SciTech Connect

    Brinkman, C.R.

    1998-02-01

    An update is presented of the activities of the American Society for Testing and Materials (ASTM) Committee C-28 on Advanced Ceramics. Since its inception in 1986, this committee, which has five standard producing subcommittees, has written and published over 32 consensus standards. These standards are concerned with mechanical testing of monolithic and composite ceramics, nondestructive examination, statistical analysis and design, powder characterization, quantitative microscopy, fractography, and terminology. These standards ensure optimum material behavior with physical and mechanical property reproducibility, component reliability, and well-defined methods of data treatment and material analysis for both monolithic and composite materials. Committee C-28 continues to sponsor technical symposia and to cooperate in the development of international standards. An update of recent and current activities as well as possible new areas of standardization work will be presented.

  3. ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS

    SciTech Connect

    Louis J. Durlofsky; Khalid Aziz

    2004-08-20

    Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow in the wellbore

  4. Simulation for supporting scale-up of a fluidized bed reactor for advanced water oxidation.

    PubMed

    Tisa, Farhana; Raman, Abdul Aziz Abdul; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe(3+) and Fe(2+) mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40-90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment. PMID:25309949

  5. Simulation for Supporting Scale-Up of a Fluidized Bed Reactor for Advanced Water Oxidation

    PubMed Central

    Abdul Raman, Abdul Aziz; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe3+ and Fe2+ mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40–90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment. PMID:25309949

  6. An Advanced Leakage Scheme for Neutrino Treatment in Astrophysical Simulations

    NASA Astrophysics Data System (ADS)

    Perego, A.; Cabezón, R. M.; Käppeli, R.

    2016-04-01

    We present an Advanced Spectral Leakage (ASL) scheme to model neutrinos in the context of core-collapse supernovae (CCSNe) and compact binary mergers. Based on previous gray leakage schemes, the ASL scheme computes the neutrino cooling rates by interpolating local production and diffusion rates (relevant in optically thin and thick regimes, respectively) separately for discretized values of the neutrino energy. Neutrino trapped components are also modeled, based on equilibrium and timescale arguments. The better accuracy achieved by the spectral treatment allows a more reliable computation of neutrino heating rates in optically thin conditions. The scheme has been calibrated and tested against Boltzmann transport in the context of Newtonian spherically symmetric models of CCSNe. ASL shows a very good qualitative and a partial quantitative agreement for key quantities from collapse to a few hundreds of milliseconds after core bounce. We have proved the adaptability and flexibility of our ASL scheme, coupling it to an axisymmetric Eulerian and to a three-dimensional smoothed particle hydrodynamics code to simulate core collapse. Therefore, the neutrino treatment presented here is ideal for large parameter-space explorations, parametric studies, high-resolution tests, code developments, and long-term modeling of asymmetric configurations, where more detailed neutrino treatments are not available or are currently computationally too expensive.

  7. Simulation of solidification process for billet with ϕ350mm section, continuous casted

    NASA Astrophysics Data System (ADS)

    Ardelean, E.; Lăscuţoni, A.; Ardelean, M.; Socalici, A.; Hepuţ, T.

    2016-02-01

    The quality of continuous casting product depends both on the quality of the steel, and on technological parameters adopted during the casting and how solidification of billets is conducted. A simulation of the solidifying process is very useful in the industrial casting practice, providing specialists with information about the phenomena during the process and the manner in which certain parameters may vary in order to obtain the desired effects. This paper presents a two-dimensional simulation model that can be used in the continuous casting process, when micro-coolers are used in order to control thermal regime during solidification.

  8. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL)

    NASA Astrophysics Data System (ADS)

    Turinsky, Paul J.; Kothe, Douglas B.

    2016-05-01

    The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear power industry that M&S can assist in addressing. To date CASL has developed a multi-physics "core simulator" based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M

  9. Advanced wellbore thermal simulator GEOTEMP2 research report

    SciTech Connect

    Mitchell, R.F.

    1982-02-01

    The development of the GEOTEMP2 wellbore thermal simulator is described. The major technical features include a general purpose air and mist drilling simulator and a two-phase steam flow simulator that can model either injection or production.

  10. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011.

    PubMed

    Zhang, Geli; Zhang, Yangjian; Dong, Jinwei; Xiao, Xiangming

    2013-03-12

    As the Earth's third pole, the Tibetan Plateau has experienced a pronounced warming in the past decades. Recent studies reported that the start of the vegetation growing season (SOS) in the Plateau showed an advancing trend from 1982 to the late 1990s and a delay from the late 1990s to 2006. However, the findings regarding the SOS delay in the later period have been questioned, and the reasons causing the delay remain unknown. Here we explored the alpine vegetation SOS in the Plateau from 1982 to 2011 by integrating three long-term time-series datasets of Normalized Difference Vegetation Index (NDVI): Global Inventory Modeling and Mapping Studies (GIMMS, 1982-2006), SPOT VEGETATION (SPOT-VGT, 1998-2011), and Moderate Resolution Imaging Spectroradiometer (MODIS, 2000-2011). We found GIMMS NDVI in 2001-2006 differed substantially from SPOT-VGT and MODIS NDVIs and may have severe data quality issues in most parts of the western Plateau. By merging GIMMS-based SOSs from 1982 to 2000 with SPOT-VGT-based SOSs from 2001 to 2011 we found the alpine vegetation SOS in the Plateau experienced a continuous advancing trend at a rate of ∼1.04 d·y(-1) from 1982 to 2011, which was consistent with observed warming in springs and winters. The satellite-derived SOSs were proven to be reliable with observed phenology data at 18 sites from 2003 to 2011; however, comparison of their trends was inconclusive due to the limited temporal coverage of the observed data. Longer-term observed data are still needed to validate the phenology trend in the future. PMID:23440201

  11. Entanglement in continuous-variable systems: recent advances and current perspectives

    NASA Astrophysics Data System (ADS)

    Adesso, Gerardo; Illuminati, Fabrizio

    2007-07-01

    We review the theory of continuous-variable entanglement with special emphasis on foundational aspects, conceptual structures and mathematical methods. Much attention is devoted to the discussion of separability criteria and entanglement properties of Gaussian states, for their great practical relevance in applications to quantum optics and quantum information, as well as for the very clean framework that they allow for the study of the structure of nonlocal correlations. We give a self-contained introduction to phase-space and symplectic methods in the study of Gaussian states of infinite-dimensional bosonic systems. We review the most important results on the separability and distillability of Gaussian states and discuss the main properties of bipartite entanglement. These include the extremal entanglement, minimal and maximal, of two-mode mixed Gaussian states, the ordering of two-mode Gaussian states according to different measures of entanglement, the unitary (reversible) localization and the scaling of bipartite entanglement in multimode Gaussian states. We then discuss recent advances in the understanding of entanglement sharing in multimode Gaussian states, including the proof of the monogamy inequality of distributed entanglement for all Gaussian states. Multipartite entanglement of Gaussian states is reviewed by discussing its qualification by different classes of separability, and the main consequences of the monogamy inequality, such as the quantification of genuine tripartite entanglement in three-mode Gaussian states, the promiscuous nature of entanglement sharing in symmetric Gaussian states and the possible coexistence of unlimited bipartite and multipartite entanglement. We finally review recent advances and discuss possible perspectives on the qualification and quantification of entanglement in non-Gaussian states, a field of research that is to a large extent yet to be explored.

  12. Advancements in HWIL simulation at the U.S. Army Aviation and Missile Command

    NASA Astrophysics Data System (ADS)

    Buford, James A., Jr.; Jolly, Alexander C.; Mobley, Scott B.

    1999-07-01

    This paper describes the Advanced Simulation Center (ASC) role, recaps the past year, describes the hardware-in-the- loop (HWIL) components and advancements, and outlines the path-ahead for the ASC in terms of both missile and complete system HWIL simulations and test with a focus on the imaging infrared systems.

  13. Genome Reshuffling for Advanced Intercross Permutation (GRAIP): Simulation and permutation for advanced intercross population analysis

    SciTech Connect

    Pierce, Jeremy; Broman, Karl; Lu, Lu; Chesler, Elissa J; Zhou, Guomin; Airey, David; Birmingham, Amanda; Williams, Robert

    2008-04-01

    Background: Advanced intercross lines (AIL) are segregating populations created using a multi-generation breeding protocol for fine mapping complex trait loci (QTL) in mice and other organisms. Applying QTL mapping methods for intercross and backcross populations, often followed by na ve permutation of individuals and phenotypes, does not account for the effect of AIL family structure in which final generations have been expanded and leads to inappropriately low significance thresholds. The critical problem with na ve mapping approaches in AIL populations is that the individual is not an exchangeable unit. Methodology/Principal Findings: The effect of family structure has immediate implications for the optimal AIL creation (many crosses, few animals per cross, and population expansion before the final generation) and we discuss these and the utility of AIL populations for QTL fine mapping. We also describe Genome Reshuffling for Advanced Intercross Permutation, (GRAIP) a method for analyzing AIL data that accounts for family structure. GRAIP permutes a more interchangeable unit in the final generation crosses - the parental genome - and simulating regeneration of a permuted AIL population based on exchanged parental identities. GRAIP determines appropriate genome-wide significance thresholds and locus-specific Pvalues for AILs and other populations with similar family structures. We contrast GRAIP with na ve permutation using a large densely genotyped mouse AIL population (1333 individuals from 32 crosses). A na ve permutation using coat color as a model phenotype demonstrates high false-positive locus identification and uncertain significance levels, which are corrected using GRAIP. GRAIP also detects an established hippocampus weight locus and a new locus, Hipp9a. Conclusions and Significance: GRAIP determines appropriate genome-wide significance thresholds and locus-specific Pvalues for AILs and other populations with similar family structures. The effect of

  14. Spectra: the last advance of T-FLaP technology for in continuous oceanographic observations

    NASA Astrophysics Data System (ADS)

    Marcelli, Marco; Piermattei, Viviana; Madonia, Alice; Mainardi, Umberto

    2015-04-01

    Ocean models have become increasingly useful as computing capabilities and in situ measurement systems have been improved. An operational observing and forecasting system of the ocean properties needs effective data collection programs for model data assimilation and satellite calibration. However, the development of observational networks is strongly limited by the advances of reliable, user-friendly and low cost technologies. These requirements cannot be achieved with current marine measurement technologies, which are too expensive for extensive utilization. For all these reasons in the last decades the use of low cost instrumentations from ships of opportunity (promoted within VOS and SOOP international research programmes), is gaining more and more attention. In order to reduce operative costs and to enhance spatial resolution of data, stand-alone systems provide continuous real-time information about the physical and biological states of the surface waters by moving ships. Following this philosophy, T-FLaP evolution leds to the development of a new low-cost mini ferrybox system, called Spectra, suitable for continuous in situ measures of temperature, conductivity (salinity and density), chlorophyll a and chromophoric dissolved organic matter (CDOM) fluorescence. The philosophy that inspired this instrument is therefore that of Ferrybox, but with miniaturization of components and a considerable reduction in costs. Spectra is composed by an electronic unit, dedicated to the data acquisition, transmission and storage, equipped with a GPS and a hydraulic unit where the measures occur. The measuring cell is a flow-through tubular cell where the water flows. The measuring cell has a modular structure. The design of the measuring cell has been studied in order to ensure that the sensors are in direct contact with the volume of water passing through the probe. In this work a detailed description of Spectra system is given. Moreover, the results of the application of

  15. Continuous variable quantum optical simulation for time evolution of quantum harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Deng, Xiaowei; Hao, Shuhong; Guo, Hong; Xie, Changde; Su, Xiaolong

    2016-03-01

    Quantum simulation enables one to mimic the evolution of other quantum systems using a controllable quantum system. Quantum harmonic oscillator (QHO) is one of the most important model systems in quantum physics. To observe the transient dynamics of a QHO with high oscillation frequency directly is difficult. We experimentally simulate the transient behaviors of QHO in an open system during time evolution with an optical mode and a logical operation system of continuous variable quantum computation. The time evolution of an atomic ensemble in the collective spontaneous emission is analytically simulated by mapping the atomic ensemble onto a QHO. The measured fidelity, which is used for quantifying the quality of the simulation, is higher than its classical limit. The presented simulation scheme provides a new tool for studying the dynamic behaviors of QHO.

  16. Continuous variable quantum optical simulation for time evolution of quantum harmonic oscillators

    PubMed Central

    Deng, Xiaowei; Hao, Shuhong; Guo, Hong; Xie, Changde; Su, Xiaolong

    2016-01-01

    Quantum simulation enables one to mimic the evolution of other quantum systems using a controllable quantum system. Quantum harmonic oscillator (QHO) is one of the most important model systems in quantum physics. To observe the transient dynamics of a QHO with high oscillation frequency directly is difficult. We experimentally simulate the transient behaviors of QHO in an open system during time evolution with an optical mode and a logical operation system of continuous variable quantum computation. The time evolution of an atomic ensemble in the collective spontaneous emission is analytically simulated by mapping the atomic ensemble onto a QHO. The measured fidelity, which is used for quantifying the quality of the simulation, is higher than its classical limit. The presented simulation scheme provides a new tool for studying the dynamic behaviors of QHO. PMID:26961962

  17. Alignment of Teacher and Student Perceptions on the Continued Use of Business Simulation Games

    ERIC Educational Resources Information Center

    Tao, Yu-Hui; Cheng, Chieh-Jen; Sun, Szu-Yuan

    2012-01-01

    The higher education system in Taiwan has increasingly adopted business simulation games (BSGs) in recent years. Previous BSG benefit research has shifted focus from learning performance to motivation due to mixed results. One recent study empirically investigated student perceptions on the continued use of BSGs; however, the counterpart of higher…

  18. Continued Development of the Rapid Cycle Amine (RCA) System for Advanced Extravehicular Activity Systems

    NASA Technical Reports Server (NTRS)

    Papale, William; Chullen, Cinda; Campbell, Colin; Conger, Bruce; McMillin, Summer; Jeng, Frank

    2014-01-01

    Development activities related to the Rapid Cycle Amine (RCA) Carbon Dioxide (CO2) and Humidity control system have progressed to the point of integrating the RCA into an advanced Primary Life Support System (PLSS 2.0) to evaluate the interaction of the RCA among other PLSS components in a ground test environment. The RCA 2.0 assembly (integrated into PLSS 2.0) consists of a valve assembly with commercial actuator motor, a sorbent canister, and a field-programmable gate array (FPGA)-based process node controller. Continued design and development activities for RCA 3.0 have been aimed at optimizing the canister size and incorporating greater fidelity in the valve actuator motor and valve position feedback design. Further, the RCA process node controller is envisioned to incorporate a higher degree of functionality to support a distributed PLSS control architecture. This paper will describe the progression of technology readiness levels of RCA 1.0, 2.0 and 3.0 along with a review of the design and manufacturing successes and challenges for 2.0 and 3.0 units. The anticipated interfaces and interactions with the PLSS 2.0/2.5/3.0 assemblies will also be discussed.

  19. CT angiography after 20 years: a transformation in cardiovascular disease characterization continues to advance.

    PubMed

    Rubin, Geoffrey D; Leipsic, Jonathon; Joseph Schoepf, U; Fleischmann, Dominik; Napel, Sandy

    2014-06-01

    Through a marriage of spiral computed tomography (CT) and graphical volumetric image processing, CT angiography was born 20 years ago. Fueled by a series of technical innovations in CT and image processing, over the next 5-15 years, CT angiography toppled conventional angiography, the undisputed diagnostic reference standard for vascular disease for the prior 70 years, as the preferred modality for the diagnosis and characterization of most cardiovascular abnormalities. This review recounts the evolution of CT angiography from its development and early challenges to a maturing modality that has provided unique insights into cardiovascular disease characterization and management. Selected clinical challenges, which include acute aortic syndromes, peripheral vascular disease, aortic stent-graft and transcatheter aortic valve assessment, and coronary artery disease, are presented as contrasting examples of how CT angiography is changing our approach to cardiovascular disease diagnosis and management. Finally, the recently introduced capabilities for multispectral imaging, tissue perfusion imaging, and radiation dose reduction through iterative reconstruction are explored with consideration toward the continued refinement and advancement of CT angiography. PMID:24848958

  20. The continuing evolution of the Langendorff and ejecting murine heart: new advances in cardiac phenotyping

    PubMed Central

    Liao, Ronglih; Podesser, Bruno K.

    2012-01-01

    The isolated retrograde-perfused Langendorff heart and the isolated ejecting heart have, over many decades, resulted in fundamental discoveries that form the underpinnings of our current understanding of the biology and physiology of the heart. These two experimental methodologies have proven invaluable in studying pharmacological effects on myocardial function, metabolism, and vascular reactivity and in the investigation of clinically relevant disease states such as ischemia-reperfusion injury, diabetes, obesity, and heart failure. With the advent of the genomics era, the isolated mouse heart preparation has gained prominence as an ex vivo research tool for investigators studying the impact of gene modification in the intact heart. This review summarizes the historical development of the isolated heart and provides a practical guide for the establishment of the Langendorff and ejecting heart preparations with a particular emphasis on the murine heart. In addition, current applications and novel methods of recording cardiovascular parameters in the isolated heart preparation will be discussed. With continued advances in methodological recordings, the isolated mouse heart preparation will remain physiologically relevant for the foreseeable future, serving as an integral bridge between in vitro assays and in vivo approaches. PMID:22636675

  1. Extended advance of continuous miner successfully ventilated with a scrubber in a blowing section

    SciTech Connect

    Volkwein, J.C.; Thimons, E.D.

    1986-01-01

    Underground testing was carried out by Ingersoll-Rand, Inc., under contract to the Bureau of Mines to determine the effectiveness of a machine-mounted scrubber system for ventilating the face during an extended advance. A continuous miner equipped with an integral flooded-bed dust scrubber system was instrumented with methanometers and Real-time Aerosol Monitor (RAM) dust monitors. Methane and respirable dust data were collected at brattice setbacks of 7.5 m (current operating distance), 10.5 m, and 15 m (blowing ventilation) during production shifts. Results showed that a suitable machine-mounted scrubber system can adequately ventilate the face at brattice setbacks up to 15 m. No deterioration in ventilation performance was observed as brattice setbacks were increased from 7.5 m to 15 m. The scrubber system effectively controlled face methane levels at large setbacks, though respirable dust levels increased as much as 33 pct at the operator's cab at setbacks greater than 7.5 m.

  2. The Continued Need for Modeling and Scaled Testing to Advance the Hanford Tank Waste Mission

    SciTech Connect

    Peurrung, Loni M.; Fort, James A.; Rector, David R.

    2013-09-03

    Hanford tank wastes are chemically complex slurries of liquids and solids that can exhibit changes in rheological behavior during retrieval and processing. The Hanford Waste Treatment and Immobilization Plant (WTP) recently abandoned its planned approach to use computational fluid dynamics (CFD) supported by testing at less than full scale to verify the design of vessels that process these wastes within the plant. The commercial CFD tool selected was deemed too difficult to validate to the degree necessary for use in the design of a nuclear facility. Alternative, but somewhat immature, CFD tools are available that can simulate multiphase flow of non-Newtonian fluids. Yet both CFD and scaled testing can play an important role in advancing the Hanford tank waste mission—in supporting the new verification approach, which is to conduct testing in actual plant vessels; in supporting waste feed delivery, where scaled testing is ongoing; as a fallback approach to design verification if the Full Scale Vessel Testing Program is deemed too costly and time-consuming; to troubleshoot problems during commissioning and operation of the plant; and to evaluate the effects of any proposed changes in operating conditions in the future to optimize plant performance.

  3. Advances in edge-diffraction modeling for virtual-acoustic simulations

    NASA Astrophysics Data System (ADS)

    Calamia, Paul Thomas

    In recent years there has been growing interest in modeling sound propagation in complex, three-dimensional (3D) virtual environments. With diverse applications for the military, the gaming industry, psychoacoustics researchers, architectural acousticians, and others, advances in computing power and 3D audio-rendering techniques have driven research and development aimed at closing the gap between the auralization and visualization of virtual spaces. To this end, this thesis focuses on improving the physical and perceptual realism of sound-field simulations in virtual environments through advances in edge-diffraction modeling. To model sound propagation in virtual environments, acoustical simulation tools commonly rely on geometrical-acoustics (GA) techniques that assume asymptotically high frequencies, large flat surfaces, and infinitely thin ray-like propagation paths. Such techniques can be augmented with diffraction modeling to compensate for the effect of surface size on the strength and directivity of a reflection, to allow for propagation around obstacles and into shadow zones, and to maintain soundfield continuity across reflection and shadow boundaries. Using a time-domain, line-integral formulation of the Biot-Tolstoy-Medwin (BTM) diffraction expression, this thesis explores various aspects of diffraction calculations for virtual-acoustic simulations. Specifically, we first analyze the periodic singularity of the BTM integrand and describe the relationship between the singularities and higher-order reflections within wedges with open angle less than 180°. Coupled with analytical approximations for the BTM expression, this analysis allows for accurate numerical computations and a continuous sound field in the vicinity of an arbitrary wedge geometry insonified by a point source. Second, we describe an edge-subdivision strategy that allows for fast diffraction calculations with low error relative to a numerically more accurate solution. Third, to address

  4. Handbook of Institutional Advancement. A Practical Guide to College and University Relations, Fund Raising, Alumni Relations, Government Relations, Publications, and Executive Management for Continued Advancement.

    ERIC Educational Resources Information Center

    Rowland, A. Westley, Ed.

    The guide's purpose is to provide administrators with essential information that will maintain public confidence in higher education and ensure continued financial support. Six major aspects of institutional advancement are considered: (1) institutional relation (programs to improve communication and understanding among students, administrators,…

  5. Advanced Simulation and Computing Fiscal Year 2016 Implementation Plan, Version 0

    SciTech Connect

    McCoy, M.; Archer, B.; Hendrickson, B.

    2015-08-27

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The purpose of this IP is to outline key work requirements to be performed and to control individual work activities within the scope of work. Contractors may not deviate from this plan without a revised WA or subsequent IP.

  6. Discrete event simulation tool for analysis of qualitative models of continuous processing systems

    NASA Technical Reports Server (NTRS)

    Malin, Jane T. (Inventor); Basham, Bryan D. (Inventor); Harris, Richard A. (Inventor)

    1990-01-01

    An artificial intelligence design and qualitative modeling tool is disclosed for creating computer models and simulating continuous activities, functions, and/or behavior using developed discrete event techniques. Conveniently, the tool is organized in four modules: library design module, model construction module, simulation module, and experimentation and analysis. The library design module supports the building of library knowledge including component classes and elements pertinent to a particular domain of continuous activities, functions, and behavior being modeled. The continuous behavior is defined discretely with respect to invocation statements, effect statements, and time delays. The functionality of the components is defined in terms of variable cluster instances, independent processes, and modes, further defined in terms of mode transition processes and mode dependent processes. Model construction utilizes the hierarchy of libraries and connects them with appropriate relations. The simulation executes a specialized initialization routine and executes events in a manner that includes selective inherency of characteristics through a time and event schema until the event queue in the simulator is emptied. The experimentation and analysis module supports analysis through the generation of appropriate log files and graphics developments and includes the ability of log file comparisons.

  7. Genome Reshuffling for Advanced Intercross Permutation (GRAIP): Simulation and permutation for advanced intercross population analysis

    SciTech Connect

    Pierce, Jeremy; Broman, Karl; Chesler, Elissa J; Zhou, Guomin; Airey, David; Birmingham, Amanda; Williams, Robert

    2008-01-01

    Abstract Background Advanced intercross lines (AIL) are segregating populations created using a multigeneration breeding protocol for fine mapping complex traits in mice and other organisms. Applying quantitative trait locus (QTL) mapping methods for intercross and backcross populations, often followed by na ve permutation of individuals and phenotypes, does not account for the effect of family structure in AIL populations in which final generations have been expanded and leads to inappropriately low significance thresholds. The critical problem with a na ve mapping approach in such AIL populations is that the individual is not an exchangeable unit given the family structure. Methodology/Principal Findings The effect of family structure has immediate implications for the optimal AIL creation (many crosses, few animals per cross, and population expansion before the final generation) and we discuss these and the utility of AIL populations for QTL fine mapping. We also describe Genome Reshuffling for Advanced Intercross Permutation, (GRAIP) a method for analyzing AIL data that accounts for family structure. RAIP permutes a more interchangeable unit in the final generation crosses - the parental genome - and simulating regeneration of a permuted AIL population based on exchanged parental identities. GRAIP determines appropriate genome- ide significance thresholds and locus-specific P-values for AILs and other populations with similar family structures. We contrast GRAIP with na ve permutation using a large densely genotyped mouse AIL population (1333 individuals from 32 crosses). A na ve permutation using coat color as a model phenotype demonstrates high false-positive locus identification and uncertain significance levels in our AIL population, which are corrected by use of GRAIP. We also show that GRAIP detects an established hippocampus weight locus and a new locus, Hipp9a. Conclusions and Significance GRAIP determines appropriate genome-wide significance thresholds

  8. Advancement of DOE's EnergyPlus Building Energy Simulation Payment

    SciTech Connect

    Gu, Lixing; Shirey, Don; Raustad, Richard; Nigusse, Bereket; Sharma, Chandan; Lawrie, Linda; Strand, Rick; Pedersen, Curt; Fisher, Dan; Lee, Edwin; Witte, Mike; Glazer, Jason; Barnaby, Chip

    2011-09-30

    EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced significantly

  9. Recent advances in computational methodology for simulation of mechanical circulatory assist devices

    PubMed Central

    Marsden, Alison L.; Bazilevs, Yuri; Long, Christopher C.; Behr, Marek

    2014-01-01

    Ventricular assist devices (VADs) provide mechanical circulatory support to offload the work of one or both ventricles during heart failure. They are used in the clinical setting as destination therapy, as bridge to transplant, or more recently as bridge to recovery to allow for myocardial remodeling. Recent developments in computational simulation allow for detailed assessment of VAD hemodynamics for device design and optimization for both children and adults. Here, we provide a focused review of the recent literature on finite element methods and optimization for VAD simulations. As VAD designs typically fall into two categories, pulsatile and continuous flow devices, we separately address computational challenges of both types of designs, and the interaction with the circulatory system with three representative case studies. In particular, we focus on recent advancements in finite element methodology that has increased the fidelity of VAD simulations. We outline key challenges, which extend to the incorporation of biological response such as thrombosis and hemolysis, as well as shape optimization methods and challenges in computational methodology. PMID:24449607

  10. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  11. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  12. [The numerical simulation of the internal flow field inside the pressure generator of a continuous positive airway pressure ventilator].

    PubMed

    Cheng, Yunzhang; Zhu, Lihua; Zhang, Weiguo; Wu, Wenquan

    2011-12-01

    The problem of noise in ventilator has always been an important topic to study in the development of the ventilator. A great number of data are showing that there are still large gaps of research and application levels in noise control of the ventilator between China and some more advanced foreign countries. In this study, with cooperation of the Shanghai Medical Equipment Limited Liability Company, we used the computational fluid dynamics (CFD), software FLUENT, adopted the standard k-epsilon turbulence model and the SIMPLE algorithm to simulate the inner flow field of the continuous positive airway pressure (CPAP) ventilator's pressure generator. After a detailed analysis, we figured out that there are several deficiencies in this ventilator, like local reflow in volute, uneven velocity distribution and local negative pressure in inlet of the impeller, which easily lead to noise and affect the ventilator's performances. So, it needs to be improved to a certain extent. PMID:22295700

  13. Advanced Simulation in Undergraduate Pilot Training: Systems Integration. Final Report (February 1972-March 1975).

    ERIC Educational Resources Information Center

    Larson, D. F.; Terry, C.

    The Advanced Simulator for Undergraduate Pilot Training (ASUPT) was designed to investigate the role of simulation in the future Undergraduate Pilot Training (UPT) program. The problem addressed in this report was one of integrating two unlike components into one synchronized system. These two components were the Basic T-37 Simulators and their…

  14. Modelling of slaughterhouse solid waste anaerobic digestion: determination of parameters and continuous reactor simulation.

    PubMed

    López, Iván; Borzacconi, Liliana

    2010-10-01

    A model based on the work of Angelidaki et al. (1993) was applied to simulate the anaerobic biodegradation of ruminal contents. In this study, two fractions of solids with different biodegradation rates were considered. A first-order kinetic was used for the easily biodegradable fraction and a kinetic expression that is function of the extracellular enzyme concentration was used for the slowly biodegradable fraction. Batch experiments were performed to obtain an accumulated methane curve that was then used to obtain the model parameters. For this determination, a methodology derived from the "multiple-shooting" method was successfully used. Monte Carlo simulations allowed a confidence range to be obtained for each parameter. Simulations of a continuous reactor were performed using the optimal set of model parameters. The final steady-states were determined as functions of the operational conditions (solids load and residence time). The simulations showed that methane flow peaked at a flow rate of 0.5-0.8 Nm(3)/d/m(reactor)(3) at a residence time of 10-20 days. Simulations allow the adequate selection of operating conditions of a continuous reactor. PMID:20303732

  15. Minimum fuel control of a vehicle with a continuously variable transmission. [control system simulation

    NASA Technical Reports Server (NTRS)

    Burghart, J. H.; Donoghue, J. F.

    1980-01-01

    The design and evaluation of a control system for a sedan with a heat engine and a continuously variable transmission, is considered in a effort to minimize fuel consumption and achieve satisfactory dynamic response of vehicle variables as the vehicle is driven over a standard driving cycle. Even though the vehicle system was highly nonlinear, attention was restricted to linear control algorithms which could be easily understood and implemented demonstrated by simulation. Simulation results also revealed that the vehicle could exhibit unexpected dynamic behavior which must be taken into account in any control system design.

  16. Using Simulated Debates to Teach History of Engineering Advances

    ERIC Educational Resources Information Center

    Reynolds, Terry S.

    1976-01-01

    Described is a technique for utilizing debates of past engineering controversies in the classroom as a means of teaching the history of engineering advances. Included is a bibliography for three debate topics relating to important controversies. (SL)

  17. A Simulator for the Respiratory Tree in Healthy Subjects Derived from Continued Fractions Expansions

    NASA Astrophysics Data System (ADS)

    Muntean, Ionuţ; Ionescu, Clara; Naşcu, Ioan

    2009-04-01

    Taking into account the self-similar recurrent geometrical structure of the human respiratory tree, the total respiratory impedance can be represented using an electrical equivalent of a ladder network model. In this paper, the parameters of the respiratory tree are employed in simulation, based on clinical insight and morphology. Once the transfer function of the total input impedance model is calculated, it is further interpreted in its continued fraction expansion form. The purpose is to compare the ladder network structure with the continuous fraction expansion form of the impedance. The results are supporting the theory of fractional-order impedance appearance (also known as constant-phase behaviour) and help understanding the mathematical and morphological basis for constructing a physiology-based simulator of the human lungs.

  18. Continuous metabolic and cardiovascular measurements on a monkey subject during a simulated 6-day Spacelab mission

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Mains, R. C.; Kodama, A. M.; Mccutcheon, E. P.

    1979-01-01

    A 10-kg male pig-tailed monkey (Macaca nemestrina) was selected as an optimal species for spaceflight studies on weightlessness. Three days before the simulated launch, the animal was placed in a fiberglass pod system to provide continuous measurement of respiratory gas exchange. Attention is given to examining the effects of weightlessness on several basic parameters of metabolic and cardiovascular function in an adult nonhuman primate. The 10.7-day total simulated-experiment period consisted of preflight 2.6 days, inflight 6.3 days, and postflight 1.8 days. Statistically significant diurnal variation was noted in oxygen consumption and CO2 production rates, body temperature and HR, but not in respiratory quotient or blood pressure. The high quality of the continuous data obtained demonstrates the feasibility of performing sound physiological experimentation on nonhuman primates in the Spacelab environment.

  19. Evolving high fidelity climate sensor simulators to preserve climate data record continuity

    NASA Astrophysics Data System (ADS)

    Teague, Kelly K.; Smith, G. L.; Priestley, Kory

    2012-09-01

    Six CERES scanning radiometers have flown to date. The Proto-­-Flight Model flew aboard the Tropical Rainfall Measuring Mission spacecraft in November 1997. Two CERES instruments, Flight Models (FM) 1 and 2, are aboard the Terra spacecraft, which was launched in December 1999. Two more CERES instruments, FM-­-3 and FM-­-4, are on the Aqua spacecraft, which was placed in orbit in May 2002. These instruments continue to operate after providing over a decade of Earth Radiation Budget data. FM-­-5 is onboard the NPP spacecraft and launched in October 2011. FM-­-6 is being built for use on the JPPS spacecraft. A successor to these CERES instruments is presently in the definition stage. This paper describes the role of instrument simulators in the life cycle of the CERES instruments and how the simulators may be modified to better represent the instrument and its operations. NASA LaRC originally built the CERES instrument simulators. They were created to test CERES flight loads and view the resulting instrument response. The simulator's interface to the instrument processor and spacecraft bus enables the verification of all software modifications, which are uploaded to orbiting instruments. The simulators were recently redesigned to provide additional functionality, however not all instrument operations are completely replicated. The existing simulator software provides the necessary stubs to incorporate modifications and improvements. One possible upgrade is a simulation to imitate the CERES detector assembly. Another useful enhancement is fault injection into select instrument systems, to simulate operational failures and resolve anomaly situations. Many features could be added to the simulator, all of which can ultimately improve instrument performance.

  20. Numerical simulation on the solidification structure of Ø600mm continuous casting round bloom

    NASA Astrophysics Data System (ADS)

    Fang, Q.; Ni, H. W.; Wang, S. J.; Zang, H.

    2016-03-01

    A FE (Finite Element)—CA (Cellular Automation) coupling model was developed for the simulation of solidification structure formation during the Ø600mm round bloom continuous casting process of Q345E steel. The simulation result of the temperature field was consistent with the nail-shooting experimental result, and the simulated solidification structure of the bloom was in great agreement with corrosion testing under the same casting condition. The simulation results showed that the centre equiaxed crystal ratio increased slightly with the increase of secondary cooling water rate and decreased with the increase of casting temperature and casting speed. When the secondary cooling water rate was over 0.08L/kg, it had less effect on the solidification structure. As the casting temperature increased by 1°C or the casting speed increased by 0.01m/min, the centre equiaxed crystal ratio would decrease by 0.4%∼1.2% and 3%∼0.8% respectively. According to the simulation results, the optimized continuous casting process of Ø600mm round bloom should be the secondary cooling water rate of 0.08L/kg, the casting temperature of 1532°C∼1539°C and the casting speed of 0.20m/min∼0.22m/min. It was found that the solidification structure of Ø600mm Q345E steel round bloom was much improved after the optimized continuous casting process was adopted in practical production.

  1. Simulation of the deep-sea biosphere by a continuous high-pressure bioreactor

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Maignien, L.; Verstraete, W.; Henriet, J.-P.; Boon, N.

    2009-04-01

    In ocean system Anaerobic Oxidation of Methane (AOM) followed by carbonate precipitation has a significant effect on the climate regulation, since this process avoids large methane emissions to the atmosphere and fixes carbon dioxide into carbonate structures. However the main difficulty to study AOM is that the consortia involved have extremely long doubling time (2-7 months) at ambient or low pressures. To simulate the in situ condition better and obtain a faster growth, we designed and constructed a unique continuous high-pressure bioreactor. The reactor can reach pressure up to 100 bars, representing a depth of 1000m below sea level; it can be operated in continuous or non-continuous style, simulating the different types of methane resource. By the help of this high pressure bioreactor system, we are also able to study the effect of environmental factors on AOM activity and on microbial community. Captain Arutyunov Mud Volcano (Gulf of Cadiz) sediment has been used as biomass resource and different molecular techniques (DGGE, cloning library, FISH) have been applied to examine the microbial community structure. By increasing methane partial pressure, an immediate increase of AOM activity has been observed before significant enrichment of biomass. A continuous methane flux is necessary to obtain optimal AOM activity. Bacterial community is more sensitive to the change of pressure compared with archaeal community.

  2. Multi-physics nuclear reactor simulator for advanced nuclear engineering education

    SciTech Connect

    Yamamoto, A.

    2012-07-01

    Multi-physics nuclear reactor simulator, which aims to utilize for advanced nuclear engineering education, is being introduced to Nagoya Univ.. The simulator consists of the 'macroscopic' physics simulator and the 'microscopic' physics simulator. The former performs real time simulation of a whole nuclear power plant. The latter is responsible to more detail numerical simulations based on the sophisticated and precise numerical models, while taking into account the plant conditions obtained in the macroscopic physics simulator. Steady-state and kinetics core analyses, fuel mechanical analysis, fluid dynamics analysis, and sub-channel analysis can be carried out in the microscopic physics simulator. Simulation calculations are carried out through dedicated graphical user interface and the simulation results, i.e., spatial and temporal behaviors of major plant parameters are graphically shown. The simulator will provide a bridge between the 'theories' studied with textbooks and the 'physical behaviors' of actual nuclear power plants. (authors)

  3. Advancing educational continuity in primary care residencies: an opportunity for patient-centered medical homes.

    PubMed

    Bowen, Judith L; Hirsh, David; Aagaard, Eva; Kaminetzky, Catherine P; Smith, Marie; Hardman, Joseph; Chheda, Shobhina G

    2015-05-01

    Continuity of care is a core value of patients and primary care physicians, yet in graduate medical education (GME), creating effective clinical teaching environments that emphasize continuity poses challenges. In this Perspective, the authors review three dimensions of continuity for patient care-informational, longitudinal, and interpersonal-and propose analogous dimensions describing continuity for learning that address both residents learning from patient care and supervisors and interprofessional team members supporting residents' competency development. The authors review primary care GME reform efforts through the lens of continuity, including the growing body of evidence that highlights the importance of longitudinal continuity between learners and supervisors for making competency judgments. The authors consider the challenges that primary care residency programs face in the wake of practice transformation to patient-centered medical home models and make recommendations to maximize the opportunity that these practice models provide. First, educators, researchers, and policy makers must be more precise with terms describing various dimensions of continuity. Second, research should prioritize developing assessments that enable the study of the impact of interpersonal continuity on clinical outcomes for patients and learning outcomes for residents. Third, residency programs should establish program structures that provide informational and longitudinal continuity to enable the development of interpersonal continuity for care and learning. Fourth, these educational models and continuity assessments should extend to the level of the interprofessional team. Fifth, policy leaders should develop a meaningful recognition process that rewards academic practices for training the primary care workforce. PMID:25470307

  4. ADVANCED UTILITY SIMULATION MODEL DESCRIPTION OF MODIFICATIONS TO THE STATE LEVEL MODEL (VERSION 3.0)

    EPA Science Inventory

    The report documents modifications to the state level model portion of the Advanced Utility Simulation Model (AUSM), one of four stationary source emission and control cost forecasting models developed for the National Acid Precipitation Assessment Program (NAPAP). The AUSM model...

  5. Five-dimensional simulation for advanced decision making

    NASA Astrophysics Data System (ADS)

    Lammers, Craig; Steinman, Jeffrey; Valinski, Maria; Roth, Karen

    2009-05-01

    This paper describes the application of a new parallel and distributed modeling and simulation technology known as HyperWarpSpeed to facilitate the decision-making process in a time-critical simulated Command and Control environment. HyperWarpSpeed enables the exploration of multiple decision branches at key decision points within a single simulation execution. Whereas the traditional Monte Carlo approach re-computes the majority of calculations for each run, HyperWarpSpeed shares computations between the parallel behaviors resulting in run times that are potentially orders of magnitude faster.

  6. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    SciTech Connect

    Pitz, William J.; McNenly, Matt J.; Whitesides, Russell; Mehl, Marco; Killingsworth, Nick J.; Westbrook, Charles K.

    2015-12-17

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  7. Continuous but diverse advancement of spring-summer phenology in response to climate warming across the Qinghai-Tibetan Plateau

    DOE PAGESBeta

    Zheng, Zhoutao; Zhu, Wenquan; Chen, Guangsheng; Jiang, Nan; Fan, Deqin; Zhang, Donghai

    2016-04-25

    The Qinghai-Tibetan Plateau (QTP) is more vulnerable and sensitive to climate change than many other regions worldwide because of its high altitude, permafrost geography, and harsh physical environment. As a sensitive bio-indicator of climate change, plant phenology shift in this region has been intensively studied during the recent decades, primarily based on satellite-retrieved data. However, great controversy still exists regarding the change in direction and magnitudes of spring-summer phenology. Based on a large number (11,000+ records) of long-term and continuous ground observational data for various plant species, our study intended to more comprehensively assess the changing trends of spring-summer phenologymore » and their relationships with climatic change across the QTP. The results indicated a continuous advancement (–2.69 days decade–1) in spring-summer phenology from 1981 to 2011, with an even more rapid advancement during 2000–2011 (–3.13 days decade–1), which provided new field evidence for continuous advancement in spring-summer phenology across the QTP. However, diverse advancing rates in spring-summer phenology were observed for different vegetation types, thermal conditions, and seasons. The advancing trends matched well with the difference in sensitivity of spring-summer phenology to increasing temperature, implying that the sensitivity of phenology to temperature was one of the major factors influencing spring-summer phenology shifts. Besides, increased precipitation could advance the spring-summer phenology. As a result, the response of spring-summer phenology to temperature tended to be stronger from east to west across all species, while the response to precipitation showed no consistent spatial pattern.« less

  8. Why continuous simulation? The role of antecedent moisture in design flood estimation

    NASA Astrophysics Data System (ADS)

    Pathiraja, S.; Westra, S.; Sharma, A.

    2012-06-01

    Continuous simulation for design flood estimation is increasingly becoming a viable alternative to traditional event-based methods. The advantage of continuous simulation approaches is that the catchment moisture state prior to the flood-producing rainfall event is implicitly incorporated within the modeling framework, provided the model has been calibrated and validated to produce reasonable simulations. This contrasts with event-based models in which both information about the expected sequence of rainfall and evaporation preceding the flood-producing rainfall event, as well as catchment storage and infiltration properties, are commonly pooled together into a single set of "loss" parameters which require adjustment through the process of calibration. To identify the importance of accounting for antecedent moisture in flood modeling, this paper uses a continuous rainfall-runoff model calibrated to 45 catchments in the Murray-Darling Basin in Australia. Flood peaks derived using the historical daily rainfall record are compared with those derived using resampled daily rainfall, for which the sequencing of wet and dry days preceding the heavy rainfall event is removed. The analysis shows that there is a consistent underestimation of the design flood events when antecedent moisture is not properly simulated, which can be as much as 30% when only 1 or 2 days of antecedent rainfall are considered, compared to 5% when this is extended to 60 days of prior rainfall. These results show that, in general, it is necessary to consider both short-term memory in rainfall associated with synoptic scale dependence, as well as longer-term memory at seasonal or longer time scale variability in order to obtain accurate design flood estimates.

  9. Advanced beam-dynamics simulation tools for RIA.

    SciTech Connect

    Garnett, R. W.; Wangler, T. P.; Billen, J. H.; Qiang, J.; Ryne, R.; Crandall, K. R.; Ostroumov, P.; York, R.; Zhao, Q.; Physics; LANL; LBNL; Tech Source; Michigan State Univ.

    2005-01-01

    We are developing multi-particle beam-dynamics simulation codes for RIA driver-linac simulations extending from the low-energy beam transport (LEBT) line to the end of the linac. These codes run on the NERSC parallel supercomputing platforms at LBNL, which allow us to run simulations with large numbers of macroparticles. The codes have the physics capabilities needed for RIA, including transport and acceleration of multiple-charge-state beams, beam-line elements such as high-voltage platforms within the linac, interdigital accelerating structures, charge-stripper foils, and capabilities for handling the effects of machine errors and other off-normal conditions. This year will mark the end of our project. In this paper we present the status of the work, describe some recent additions to the codes, and show some preliminary simulation results.

  10. [Research advances in soil nitrogen cycling models and their simulation].

    PubMed

    Tang, Guoyong; Huang, Daoyou; Tong, Chengli; Zhang, Wenju; Wu, Jinshui

    2005-11-01

    Nitrogen is one of the necessary nutrients for plant, and also a primary element leading to environmental pollution. Many researches have been concerned about the contribution of agricultural activities to environmental pollution by nitrogenous compounds, and the focus is how to simulate soil nitrogen cycling processes correctly. In this paper, the primary soil nitrogen cycling processes were reviewed in brief, with 13 cycling models and 6 simulated cycling processes introduced, and the parameterization of models discussed. PMID:16471369

  11. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    SciTech Connect

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe

    2008-01-21

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the potential development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a liquid metal cooled reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  12. Advanced Thermal Simulator Testing: Thermal Analysis and Test Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Reid, Robert; Adams, Mike; Davis, Joe

    2008-01-01

    Work at the NASA Marshall Space Flight Center seeks to develop high fidelity, electrically heated thermal simulators that represent fuel elements in a nuclear reactor design to support non-nuclear testing applicable to the development of a space nuclear power or propulsion system. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being tested correspond to a SNAP derivative reactor design that could be applied for Lunar surface power. These simulators are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. This paper reports the results of thermal simulator analysis and testing in a bare element configuration, which does not incorporate active heat removal, and testing in a water-cooled calorimeter designed to mimic the heat removal that would be experienced in a reactor core.

  13. Advanced SAR simulator with multi-beam interferometric capabilities

    NASA Astrophysics Data System (ADS)

    Reppucci, Antonio; Márquez, José; Cazcarra, Victor; Ruffini, Giulio

    2014-10-01

    State of the art simulations are of great interest when designing a new instrument, studying the imaging mechanisms due to a given scenario or for inversion algorithm design as they allow to analyze and understand the effects of different instrument configurations and targets compositions. In the framework of the studies about a new instruments devoted to the estimation of the ocean surface movements using Synthetic Aperture Radar along-track interferometry (SAR-ATI) an End-to-End simulator has been developed. The simulator, built in a high modular way to allow easy integration of different processing-features, deals with all the basic operations involved in an end to end scenario. This includes the computation of the position and velocity of the platform (airborne/spaceborne) and the geometric parameters defining the SAR scene, the surface definition, the backscattering computation, the atmospheric attenuation, the instrument configuration, and the simulation of the transmission/reception chains and the raw data. In addition, the simulator provides a inSAR processing suit and a sea surface movement retrieval module. Up to four beams (each one composed by a monostatic and a bistatic channel) can be activated. Each channel provides raw data and SLC images with the possibility of choosing between Strip-map and Scansar modes. Moreover, the software offers the possibility of radiometric sensitivity analysis and error analysis due atmospheric disturbances, instrument-noise, interferogram phase-noise, platform velocity and attitude variations. In this paper, the architecture and the capabilities of this simulator will be presented. Meaningful simulation examples will be shown.

  14. Strategies for reducing the climate noise in model simulations: ensemble runs versus a long continuous run

    NASA Astrophysics Data System (ADS)

    Decremer, Damien; Chung, Chul E.; Räisänen, Petri

    2015-03-01

    Climate modelers often integrate the model with constant forcing over a long time period, and make an average over the period in order to reduce climate noise. If the time series is persistent, as opposed to rapidly varying, such an average does not reduce noise efficiently. In this case, ensemble runs, which ideally represent independent runs, can reduce noise more efficiently. We quantify the noise reduction gain by using ensemble runs over a long continuous run in constant-forcing simulations. We find that in terms of the amplitude of the noise, a continuous simulation of 30 years may be equivalent to as few as five 3-year long ensemble runs in a slab ocean-atmosphere coupled model and as few as two 3-year long ensemble runs in a fully coupled model. The outperformance of ensemble runs over a continuous run is strictly a function of the persistence of the time series. We find that persistence depends on model, location and variable, and that persistence in surface air temperature has robust spatial structures in coupled models. We demonstrate that lag-1 year autocorrelation represents persistence fairly well, but the use of lag-1 year-lag-5 years autocorrelations represents the persistence far more sufficiently. Furthermore, there is more persistence in coupled model output than in the output of a first-order autoregressive model with the same lag-1 autocorrelation.

  15. Interaction of treatment with a continuous variable: simulation study of power for several methods of analysis.

    PubMed

    Royston, Patrick; Sauerbrei, Willi

    2014-11-30

    In a large simulation study reported in a companion paper, we investigated the significance levels of 21 methods for investigating interactions between binary treatment and a continuous covariate in a randomised controlled trial. Several of the methods were shown to have inflated type 1 errors. In the present paper, we report the second part of the simulation study in which we investigated the power of the interaction procedures for two sample sizes and with two distributions of the covariate (well and badly behaved). We studied several methods involving categorisation and others in which the covariate was kept continuous, including fractional polynomials and splines. We believe that the results provide sufficient evidence to recommend the multivariable fractional polynomial interaction procedure as a suitable approach to investigate interactions of treatment with a continuous variable. If subject-matter knowledge gives good arguments for a non-monotone treatment effect function, we propose to use a second-degree fractional polynomial approach, but otherwise a first-degree fractional polynomial (FP1) function with added flexibility (FLEX3) is the method of choice. The FP1 class includes the linear function, and the selected functions are simple, understandable, and transferable. Furthermore, software is available. We caution that investigation of interactions in one dataset can only be interpreted in a hypothesis-generating sense and needs validation in new data. PMID:25244679

  16. Advanced simulation of hydroelectric transient process with Comsol/Simulink

    NASA Astrophysics Data System (ADS)

    Li, L.; Yang, J. D.

    2010-08-01

    In the study of hydroelectric system, the research of its transient process and the improvement of its simulation accuracy are restricted mainly by the precision mismatch among the hydraulic and power system models. Simulink provides a very rich control and automation model library system, thus electrical and mechanical conditioning control systems can be accurately simulated. However, it can only solve time but spatial integral problem. Due to that cause, the hydraulic system model often needs to be simplified in course of the simulation of hydroelectric transient process. Comsol, a partial differential equation (PDEs)-based multi-physics finite element analysis software, can precisely simulate the hydraulic system model. Being developed in the Matlab environment, it also can seamlessly integrate with Simulink. In this paper, based on the individual component model, an integral hydraulic-mechanical-electric system model is established by implementing Comsol code into the Simulink S-Function. This model helps to study the interaction between the hydraulic system and the electric system, and analyze the transients of a hydro plant. Meanwhile the calculation results are compared and analyzed with the general simulation system only by using Simulink.

  17. Numerical Simulations and Optimisation in Forming of Advanced Materials

    NASA Astrophysics Data System (ADS)

    Huétink, J.

    2007-04-01

    With the introduction of new materials as high strength steels, metastable steels and fiber reinforce composites, the need for advanced physically valid constitutive models arises. A biaxial test equipment is developed and applied for the determination of material data as well as for validation of material models. An adaptive through- thickness integration scheme for plate elements is developed, which improves the accuracy of spring back prediction at minimal costs. An optimization strategy is proposed that assists an engineer to model an optimization problem.

  18. Continuous Symmetry and Chemistry Teachers: Learning Advanced Chemistry Content through Novel Visualization Tools

    ERIC Educational Resources Information Center

    Tuvi-Arad, Inbal; Blonder, Ron

    2010-01-01

    In this paper we describe the learning process of a group of experienced chemistry teachers in a specially designed workshop on molecular symmetry and continuous symmetry. The workshop was based on interactive visualization tools that allow molecules and their symmetry elements to be rotated in three dimensions. The topic of continuous symmetry is…

  19. Continuous Improvement in Education. Advancing Teaching--Improving Learning. White Paper

    ERIC Educational Resources Information Center

    Park, Sandra; Hironaka, Stephanie; Carver, Penny; Nordstrum, Lee

    2013-01-01

    In recent years, "continuous improvement" has become a popular catchphrase in the field of education. However, while continuous improvement has become commonplace and well-documented in other industries, such as healthcare and manufacturing, little is known about how this work has manifested itself in education. This white paper attempts…

  20. The Role of Numerical Simulation in Advancing Plasma Propulsion

    NASA Astrophysics Data System (ADS)

    Turchi, P. J.; Mikellides, P. G.; Mikellides, I. G.

    1999-11-01

    Plasma thrusters often involve a complex set of interactions among several distinct physical processes. While each process can yield to separate mathematical representation, their combination generally requires numerical simulation. We have extended and used the MACH2 code successfully to simulate both self-field and applied-field magnetoplasmadynamic thrusters and, more recently, ablation-fed pulsed plasma microthrusters. MACH2 provides a framework in which to compute 2-1/2 dimensional, unsteady, MHD flows in two-temperature LTE. It couples to several options for electrical circuitry and allows access to both analytic formulas and tabular values for material properties and transport coefficients, including phenomenological models for anomalous transport. Even with all these capabilities, however, successful modeling demands comparison with experiment and with analytic solutions in idealized limits, and careful combination of MACH2 results with separate physical reasoning. Although well understood elsewhere in plasma physics, the strengths and limitations of numerical simulation for plasma propulsion needs further discussion.

  1. Advancing botnet modeling techniques for military and security simulations

    NASA Astrophysics Data System (ADS)

    Banks, Sheila B.; Stytz, Martin R.

    2011-06-01

    Simulation environments serve many purposes, but they are only as good as their content. One of the most challenging and pressing areas that call for improved content is the simulation of bot armies (botnets) and their effects upon networks and computer systems. Botnets are a new type of malware, a type that is more powerful and potentially dangerous than any other type of malware. A botnet's power derives from several capabilities including the following: 1) the botnet's capability to be controlled and directed throughout all phases of its activity, 2) a command and control structure that grows increasingly sophisticated, and 3) the ability of a bot's software to be updated at any time by the owner of the bot (a person commonly called a bot master or bot herder.) Not only is a bot army powerful and agile in its technical capabilities, a bot army can be extremely large, can be comprised of tens of thousands, if not millions, of compromised computers or it can be as small as a few thousand targeted systems. In all botnets, their members can surreptitiously communicate with each other and their command and control centers. In sum, these capabilities allow a bot army to execute attacks that are technically sophisticated, difficult to trace, tactically agile, massive, and coordinated. To improve our understanding of their operation and potential, we believe that it is necessary to develop computer security simulations that accurately portray bot army activities, with the goal of including bot army simulations within military simulation environments. In this paper, we investigate issues that arise when simulating bot armies and propose a combination of the biologically inspired MSEIR infection spread model coupled with the jump-diffusion infection spread model to portray botnet propagation.

  2. Simulation and validation of two-phase turbulent flow and particle transport in continuous casting of steel slabs

    NASA Astrophysics Data System (ADS)

    Jin, K.; Thomas, B. G.; Liu, R.; Vanka, S. P.; Ruan, X. M.

    2015-06-01

    In continuous steel casting, argon gas is usually injected at the slide gate or stopper rod to prevent clogging, but entrapped bubbles may cause defects in the final product. To better understand this, the flow of molten steel and the transport and capture of argon gas bubbles have been simulated and compared with plant measurements. First, the flow field was solved with an Eulerian k-s model of the steel, which was two-way coupled with a Lagrangian model of the large bubbles using a Discrete Random Walk method to include dispersion of bubbles due to turbulence. The asymmetrical flow pattern predicted on the top surface agreed well with nailboard measurements. Then, the motion and capture of over two million bubbles were simulated using two different capture criteria. Results with the advanced capture criterion agreed well with measurements of the number, locations, and sizes of captured bubbles, especially for larger bubbles. The relative capture fraction of 0.3% was close to the measured 0.2% for 1mm bubbles, and occurred very near the top surface. The model presented here is an efficient tool to study the capture of bubbles and inclusion particles in solidification processes.

  3. Continuous intestinal infusion of levodopa/carbidopa in advanced Parkinson's disease: efficacy, safety and patient selection.

    PubMed

    Abbruzzese, Giovanni; Barone, Paolo; Bonuccelli, Ubaldo; Lopiano, Leonardo; Antonini, Angelo

    2012-01-01

    Long-term oral therapy with levodopa is associated with the development of motor fluctuations and dyskinesia in a large percentage of patients with Parkinson's disease (PD). Motor complications are associated with a number of non-motor symptoms and have a negative impact on disability and quality of life. There are three therapeutic options available for the management of patients at this advanced stage: high frequency deep brain stimulation, continuous subcutaneous infusion of apomorphine, and continuous intestinal infusion of levodopa/carbidopa. On the basis of published data and in consideration of the risk-benefit profile of current therapeutic strategies, we here propose an algorithm to help clinicians select the most suitable treatment option for patients with advanced PD. PMID:23402675

  4. Psychometric and Evidentiary Advances, Opportunities, and Challenges for Simulation-Based Assessment

    ERIC Educational Resources Information Center

    Levy, Roy

    2013-01-01

    This article characterizes the advances, opportunities, and challenges for psychometrics of simulation-based assessments through a lens that views assessment as evidentiary reasoning. Simulation-based tasks offer the prospect for student experiences that differ from traditional assessment. Such tasks may be used to support evidentiary arguments…

  5. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    SciTech Connect

    Durlofsky, Louis J.

    2000-08-28

    This project targets the development of (1) advanced reservoir simulation techniques for modeling non-conventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and well index (for use in simulation models), including the effects of wellbore flow; and (3) accurate approaches to account for heterogeneity in the near-well region.

  6. Computer graphics simulations comparing reduced exposure mining equipment: Shuttle cars versus continuous haulage systems. Information circular/1994

    SciTech Connect

    Ambrose, D.H.

    1994-12-31

    The U.S. Bureau of Mines recently developed computer graphic simulations to characterize mining scenarios, specifically for room-and-pillar mining operations in a 3-entry longwall development section. These simulations compare productivity between computer-assisted shuttle car and continuous haulage system concepts. One of the continuous haulage system concepts has bolting capabilities that supplement its haulage function. Simulations showed the continuous haulage system to be more time efficient than the shuttle car system. Researchers can reuse the simulation code (e.g., mining rates and equipment capacities can be changed) should investigators care to compare production of other mining scenarios. Using computer graphics simulation, researchers found computer model design modification flaws and mining scenario conceptual errors. This report documents the computer graphic model and simulation developments and discusses some of the results and observations from the simulations.

  7. User manual for IOSYM: an input-oriented simulation language for continuous systems

    SciTech Connect

    Polito, J.

    1981-03-01

    IOSYM is an extension of the GASP IV simulation language. It permits systems which are sequences of continuous processes to be modeled graphically. Normally the system can be described by data input only. The language permits stochastic sequencing and termination criteria for processes and allows crossing conditions for ending operations that are more general than GASP IV. Extensive capability exists for conditional branching and logical modification of the network. IOSYM has been used to model the cost of geothermal drilling where the various costly processes of drilling are represented by IOSYM operations. The language is much more general, however, since it retains most of GASP IV's discrete event capabilities and permits easy modeling of continuous processes.

  8. Simulating continuous-time Hamiltonian dynamics by way of a discrete-time quantum walk

    NASA Astrophysics Data System (ADS)

    Schmitz, A. T.; Schwalm, W. A.

    2016-03-01

    Much effort has been made to connect the continuous-time and discrete-time quantum walks. We present a method for making that connection for a general graph Hamiltonian on a bigraph. Furthermore, such a scheme may be adapted for simulating discretized quantum models on a quantum computer. A coin operator is found for the discrete-time quantum walk which exhibits the same dynamics as the continuous-time evolution. Given the spectral decomposition of the graph Hamiltonian and certain restrictions, the discrete-time evolution is solved for explicitly and understood at or near important values of the parameters. Finally, this scheme is connected to past results for the 1D chain.

  9. Programmers manual for IOSYM: an input-oriented simulation language for continuous systems. Volume 1

    SciTech Connect

    Smith, D.M.

    1981-06-01

    IOSYM is an extension of the GASP IV simulation language. It permits systems which are sequences of continuous processes to be modeled graphically. Normally the system can be described by data input only. The language permits stochastic sequencing and termination criteria for processes and allows crossing conditions for ending operations that are more general than GASP IV. Extensive capability exists for conditional branching and logical modification of the network. IOSYM has been used to model the cost of geothermal drilling where the various costly processes of drilling are represented by IOSYM operations. The language is much more general, however, since it retains more of GASP IV's discrete event capabilities and permits easy modeling of continuous processes.

  10. Numerical Simulation of Horizontal Continuous Casting Process of C194 Copper Alloy

    NASA Astrophysics Data System (ADS)

    Huang, Guojie; Xie, Shuisheng; Cheng, Lei; Cheng, Zhenkang

    2007-05-01

    Horizontal Continuous Casting (H.C.C) is an important method to cast C194 copper ingot. In this paper, numerical simulation is adopted to investigate the casting process in order to optimize the H.C.C technical parameters, such as the casting temperature, casting speed and cooling intensity. According to the numerical results, the reasonable parameters are that the casting temperature is between 1383K˜1463K, the casting speed is between 7.2m/h˜10.8m/h and the speed of cooling water is between 3.6m/s˜4.6m/s. The results of numerical simulation provide the significant reference to the subsequent experiments.

  11. Simulation of fluid flow induced by opposing ac magnetic fields in a continuous casting mold

    SciTech Connect

    Chang, F.C.; Hull, J.R.; Beitelman, L.

    1995-07-01

    A numerical simulation was performed for a novel electromagnetic stirring system employing two rotating magnetic fields. The system controls stirring flow in the meniscus region of a continuous casting mold independently from the stirring induced within the remaining volume of the mold by a main electromagnetic stirrer (M-EMS). This control is achieved by applying to the meniscus region an auxiliary electromagnetic field whose direction of rotation is opposite to that of the main magnetic field produced by the M-EMS. The model computes values and spatial distributions of electromagnetic parameters and fluid flow in the stirred pools of mercury in cylindrical and square geometries. Also predicted are the relationships between electromagnetics and fluid flows pertinent to a dynamic equilibrium of the opposing stirring swirls in the meniscus region. Results of the numerical simulation compared well with measurements obtained from experiments with mercury pools.

  12. Simulation of macrosegregation in a large vertical continuous casting of steel

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Wu, M.; Kharicha, A.; Ludwig, A.

    2016-07-01

    A three-phase mixed columnar-equiaxed solidification model considering fluid flow, heat and solute transport is applied to simulate the solidification in a vertical continuous casting. The key features of solidification phenomena in this process, such as evolution of columnar phase, evolution and floatation/sedimentation of equi- axed crystals, thermal solutal convection of the melt and the flow caused by crystal sedimentation, development of as-cast structure, the columnar-to-equiaxed transition (CET), and formation of macrosegregation, are simulated. It is predicted that there is an equiaxed zone in the central part of the strand, and the rest section is filled with columnar phase (or dominant with columnar phase). A relatively strong negative segregation in the equiaxed zone and a mostly neutral concentration in the columnar region are found. Near the CET, there is a so-called middle radius positive segregation band. Formation mechanisms of this segregation pattern are discussed.

  13. Numerical simulation of solid liquid interface behavior during continuous strip casting process.

    PubMed

    Lee, Changbum; Yoon, Wooyoung; Shin, Seungwon; Lee, Jaewoo; Jang, Bo-Yun; Kim, Joonsoo; Ahn, Youngsoo; Lee, Jinseok

    2013-05-01

    A new metal-strip-casting process called continuous strip-casting (CSC) has been developed for making thin metal strips. A numerical simulation model to help understand solid-liquid interface behavior during CSC has been developed and used to identify the solidification morphologies of the strips and to determine the optimum processing conditions. In this study, we used a modified level contour reconstruction method (LCRM) and the sharp interface method to modify interface tracking, and performed a simulation analysis of the CSC process. The effects of process parameters such as heat-transfer coefficient and extrusion velocity on the behavior of the solid-liquid interface were estimated and used to improve the apparatus. A Sn (Tin) plate of dimensions 200 x 50 x 1 mm3 was successfully produced by CSC for a heat-transfer coefficient of 104 W/m2 K and an extrusion velocity of 0.2 m/s. PMID:23858856

  14. Software Partitioning Schemes for Advanced Simulation Computer Systems. Final Report.

    ERIC Educational Resources Information Center

    Clymer, S. J.

    Conducted to design software partitioning techniques for use by the Air Force to partition a large flight simulator program for optimal execution on alternative configurations, this study resulted in a mathematical model which defines characteristics for an optimal partition, and a manually demonstrated partitioning algorithm design which…

  15. Recent Advances in Underwater Acoustic Modelling and Simulation

    NASA Astrophysics Data System (ADS)

    ETTER, P. C.

    2001-02-01

    A comprehensive review of international developments in underwater acoustic modelling is used to construct an updated technology baseline containing 107 propagation models, 16 noise models, 17 reverberation models and 25 sonar performance models. This updated technology baseline represents a 30% increase over a previous baseline published in 1996. When executed in higher-level simulations, these models can generate predictive and diagnostic outputs that are useful to acoustical oceanographers or sonar technologists in the analysis of complex systems operating in the undersea environment. Recent modelling developments described in the technical literature suggest two principal areas of application: low-frequency, inverse acoustics in deep water; and high-frequency, bottom-interacting acoustics in coastal regions. Rapid changes in global geopolitics have opened new avenues for collaboration, thereby facilitating the transfer of modelling and simulation technologies among members of the international community. This accelerated technology transfer has created new imperatives for international standards in modelling and simulation architectures. National and international activities to promote interoperability among modelling and simulation efforts in government, industry and academia are reviewed and discussed.

  16. Cross-Cultural Simulation to Advance Student Inquiry

    ERIC Educational Resources Information Center

    Inglis, Sue; Sammon, Sheila; Justice, Christopher; Cuneo, Carl; Miller, Stefania; Rice, James; Roy, Dale; Warry, Wayne

    2004-01-01

    This article reviews how and why the authors have used the cross-cultural simulation BAFA BAFA in a 1st-year social sciences inquiry course on social identity. The article discusses modifications made to Shirts's original script for BAFA BAFA, how the authors conduct the postsimulation debriefing, key aspects of the student-written reflection of…

  17. Advanced Simulation and Computing Co-Design Strategy

    SciTech Connect

    Ang, James A.; Hoang, Thuc T.; Kelly, Suzanne M.; McPherson, Allen; Neely, Rob

    2015-11-01

    This ASC Co-design Strategy lays out the full continuum and components of the co-design process, based on what we have experienced thus far and what we wish to do more in the future to meet the program’s mission of providing high performance computing (HPC) and simulation capabilities for NNSA to carry out its stockpile stewardship responsibility.

  18. Technical advances in molecular simulation since the 1980s.

    PubMed

    Field, Martin J

    2015-09-15

    This review describes how the theory and practice of molecular simulation have evolved since the beginning of the 1980s when the author started his career in this field. The account is of necessity brief and subjective and highlights the changes that the author considers have had significant impact on his research and mode of working. PMID:25772387

  19. Advanced Simulation in Undergraduate Pilot Training (ASUPT) Facility Utilization Plan.

    ERIC Educational Resources Information Center

    Hagin, William V.; Smith, James F.

    The capabilities of a flight simulation research facility located at Williams AFB, Arizona are described. Research philosophy to be applied is discussed. Long range and short range objectives are identified. A time phased plan for long range research accomplishment is described. In addition, some examples of near term research efforts which will…

  20. Simulation of transient fluid flow in mold region during steel continuous casting

    NASA Astrophysics Data System (ADS)

    Liu, R.; Thomas, B. G.; Sengupta, J.

    2012-07-01

    A system of models has been developed to study transient flow during continuous casting and applied to simulate an event of multiple stopper-rod movements. It includes four sub-models to incorporate different aspects in this transient event. A three-dimensional (3-D) porous-flow model of the nozzle wall calculates the rate argon gas flow into the liquid steel, and the initial mean bubble size is estimated. Transient CFD models simulate multiphase flow of steel and gas bubbles in the Submerged Entry Nozzle (SEN) and mold and have been validated with experimental data from both nail dipping and Sub-meniscus Velocity Control (SVC) measurements. To obtain the transient inlet boundary conditions for the simulation, two semi-empirical models, a stopper-rod-position based model and a metal-level-based model, predict the liquid steel flow rate through the SEN based on recorded plant data. Finally the model system was applied to study the effects of stopper rod movements on SEN/mold flow patterns. Meniscus level fluctuations were calculated using a simple pressure method and compared well with plant measurements. Insights were gained from the simulation results to explain the cause of meniscus level fluctuations and the formation of sliver defects during stopper rod movements.

  1. Particle swarm optimization-based continuous cellular automaton for the simulation of deep reactive ion etching

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Gosálvez, Miguel A.; Pal, Prem; Sato, Kazuo; Xing, Yan

    2015-05-01

    We combine the particle swarm optimization (PSO) method and the continuous cellular automaton (CCA) in order to simulate deep reactive ion etching (DRIE), also known as the Bosch process. By considering a generic growth/etch process, the proposed PSO-CCA method provides a general, integrated procedure to optimize the parameter values of any given theoretical model conceived to describe the corresponding experiments, which are simulated by the CCA method. To stress the flexibility of the PSO-CCA method, two different theoretical models of the DRIE process are used, namely, the ballistic transport and reaction (BTR) model, and the reactant concentration (RC) model. DRIE experiments are designed and conducted to compare the simulation results with the experiments on different machines and process conditions. Previously reported experimental data are also considered to further test the flexibility of the proposed method. The agreement between the simulations and experiments strongly indicates that the PSO-CCA method can be used to adjust the theoretical parameters by using a limited amount of experimental data. The proposed method has the potential to be applied on the modeling and optimization of other growth/etch processes.

  2. Numerical simulation of the solidification processes of copper during vacuum continuous casting

    NASA Astrophysics Data System (ADS)

    Tsai, D. C.; Hwang, W. S.

    2012-03-01

    A numerical simulation method is used to analyze the microstructure evolution of 8-mm-diameter copper rods during the vacuum continuous casting (VCC) process. The macro-microscopic coupling method is adopted to develop a temperature field model and a microstructure prediction model. The effects of casting parameters, including casting speed, pouring temperature, cooling rate, and casting dimension on the location and shape of the solid-liquid (S/L) interface and solidified microstructure are considered. Simulation results show that the casting speed has a large effect on the position and shape of the S/L interface and grain morphology. With an increase of casting speed, the shape of the S/L interface changes from a planar shape into an elliptical shape or a narrow, pear shape, and the grain morphology indicates a change from axial growth to axial-radial growth or completely radial growth. The simulation predictions agree well with the microstructure observations of cast specimens. Further analysis of the effects of other casting parameters on the position and shape of the S/L interface reveals that the casting dimension has more influence on the position and shape of the S/L interface and grain morphology than do pouring temperature and cooling rate. The simulation results can be summarized to obtain a discriminant of shape factor (η), which defines the shape of the S/L interface and grain morphology.

  3. Adoption of Test Driven Development and Continuous Integration for the Development of the Trick Simulation Toolkit

    NASA Technical Reports Server (NTRS)

    Penn, John M.

    2013-01-01

    This paper describes the adoption of a Test Driven Development approach and a Continuous Integration System in the development of the Trick Simulation Toolkit, a generic simulation development environment for creating high fidelity training and engineering simulations at the NASA/Johnson Space Center and many other NASA facilities. It describes what was learned and the significant benefits seen, such as fast, thorough, and clear test feedback every time code is checked-in to the code repository. It also describes a system that encourages development of code that is much more flexible, maintainable, and reliable. The Trick Simulation Toolkit development environment provides a common architecture for user-defined simulations. Trick builds executable simulations using user-supplied simulation-definition files (S_define) and user supplied "model code". For each Trick-based simulation, Trick automatically provides job scheduling, checkpoint / restore, data-recording, interactive variable manipulation (variable server), and an input-processor. Also included are tools for plotting recorded data and various other supporting tools and libraries. Trick is written in C/C++ and Java and supports both Linux and MacOSX. Prior to adopting this new development approach, Trick testing consisted primarily of running a few large simulations, with the hope that their complexity and scale would exercise most of Trick's code and expose any recently introduced bugs. Unsurprising, this approach yielded inconsistent results. It was obvious that a more systematic, thorough approach was required. After seeing examples of some Java-based projects that used the JUnit test framework, similar test frameworks for C and C++ were sought. Several were found, all clearly inspired by JUnit. Googletest, a freely available Open source testing framework, was selected as the most appropriate and capable. The new approach was implemented while rewriting the Trick memory management component, to eliminate a

  4. Continuous description of a grain boundary in olivine from atomic scale simulations: the role of disclinations

    NASA Astrophysics Data System (ADS)

    Cordier, P.; Sun, X.; Fressengeas, C.; Taupin, V.

    2015-12-01

    A crossover between atomistic description and continuous representation of grain boundaries in polycrystals is set-up to model the periodic arrays of structural units by using dislocation and disclination dipole arrays along grain boundaries. Continuous modeling of the boundary is built by bottom-up processing, meaning that the strain, rotation, curvature, disclination and dislocation density fields are calculated by using the discrete atomic positions generated by molecular dynamics simulations. Continuous modeling of a 18.9° symmetric tilt boundary in copper [1] is conducted as a benchmark case. Its accuracy is validated by comparison with a similar recent technique [2]. Then, results on the 60.8° Mg2SiO4 tilt boundary [3-4] are presented. By linking the atomistic description with continuum mechanics representations, they provide new insights into the structure of the grain boundary. [1] Fressengeas, C., Taupin, V., Capolungo, L., 2014. Continuous modelling of the structure of symmetric tilt boundaries. Int. J. Solids Struct. 51, 1434-1441. [2] Zimmerman, J.A., Bammann, D.J., Gao, H., 2009. Deformation gradients for continuum mechanical analysis of atomistic simulations. Int. J. Solids Struct. 46, 238-253. [3] Cordier, P., Demouchy, S., Beausir, B., Taupin, V., Barou, F., Fressengeas, C., 2014. Disclinations provide the missing mechanism for deforming olivine-rich rocks in the mantle. Nature 507, 51-56. [4] Adjaoud, O., Marquardt, K., Jahn, S., 2012. Atomic structures and energies of grain boundaries in Mg2SiO4 forsterite from atomistic modeling. Phys. Chem. Miner. 39, 749-760.

  5. A long-term, continuous simulation approach for large-scale flood risk assessments

    NASA Astrophysics Data System (ADS)

    Falter, Daniela; Schröter, Kai; Viet Dung, Nguyen; Vorogushyn, Sergiy; Hundecha, Yeshewatesfa; Kreibich, Heidi; Apel, Heiko; Merz, Bruno

    2014-05-01

    The Regional Flood Model (RFM) is a process based model cascade developed for flood risk assessments of large-scale basins. RFM consists of four model parts: the rainfall-runoff model SWIM, a 1D channel routing model, a 2D hinterland inundation model and the flood loss estimation model for residential buildings FLEMOps+r. The model cascade was recently undertaken a proof-of-concept study at the Elbe catchment (Germany) to demonstrate that flood risk assessments, based on a continuous simulation approach, including rainfall-runoff, hydrodynamic and damage estimation models, are feasible for large catchments. The results of this study indicated that uncertainties are significant, especially for hydrodynamic simulations. This was basically a consequence of low data quality and disregarding dike breaches. Therefore, RFM was applied with a refined hydraulic model setup for the Elbe tributary Mulde. The study area Mulde catchment comprises about 6,000 km2 and 380 river-km. The inclusion of more reliable information on overbank cross-sections and dikes considerably improved the results. For the application of RFM for flood risk assessments, long-term climate input data is needed to drive the model chain. This model input was provided by a multi-site, multi-variate weather generator that produces sets of synthetic meteorological data reproducing the current climate statistics. The data set comprises 100 realizations of 100 years of meteorological data. With the proposed continuous simulation approach of RFM, we simulated a virtual period of 10,000 years covering the entire flood risk chain including hydrological, 1D/2D hydrodynamic and flood damage estimation models. This provided a record of around 2.000 inundation events affecting the study area with spatially detailed information on inundation depths and damage to residential buildings on a resolution of 100 m. This serves as basis for a spatially consistent, flood risk assessment for the Mulde catchment presented in

  6. The SCHADEX method: A semi-continuous rainfall-runoff simulation for extreme flood estimation

    NASA Astrophysics Data System (ADS)

    Paquet, Emmanuel; Garavaglia, Federico; Garçon, Rémy; Gailhard, Joël

    2013-07-01

    This paper presents the SCHADEX probabilistic method for extreme flood estimation, developed and applied since 2006 at Electricité de France (EDF) for dam spillway design. SCHADEX is based on a semi-continuous rainfall-runoff simulation process: a continuous hydrological simulation provides an exhaustive description of the possible hydrological states of the catchment, while floods are generated on an event basis. The method has been built around two models: the Multi-Exponential Weather Pattern (MEWP) distribution for rainfall probability estimation, and the MORDOR hydrological model. The simulation process allows the production of an estimated distribution of flood volumes at the study’s time step, as well as a distribution of flood peaks based on a peak-to-volume ratio computed from observed hydrographs of significant floods. A wide range of rainy events are simulated on each hydrological state, generating an exhaustive set of crossings between precipitation and soil saturation hazards. Consequently, SCHADEX stands clearly apart from the “N-years flood is generated by a N-years rainfall” paradigm, as a great diversity of hydrological scenarios can generate a flood of a given return period, with many variables taken into account. Since its development, SCHADEX has been widely applied in France for industrial studies, to catchments from several to several thousand square kilometres. This has allowed the testing and improvement of the method. In this paper, the basic concepts and hypothesis of the method are given in detail and illustrated throughout with the example of the River Tarn at Millau (2170 km2, South of France). The different steps of the method are successively exposed, up to the estimated distribution of flood daily discharges and flood peaks and their comparison with observed values. Lastly, some methodological perspectives to enhance the method are presented.

  7. Large-scale derived flood frequency analysis based on continuous simulation

    NASA Astrophysics Data System (ADS)

    Dung Nguyen, Viet; Hundecha, Yeshewatesfa; Guse, Björn; Vorogushyn, Sergiy; Merz, Bruno

    2016-04-01

    There is an increasing need for spatially consistent flood risk assessments at the regional scale (several 100.000 km2), in particular in the insurance industry and for national risk reduction strategies. However, most large-scale flood risk assessments are composed of smaller-scale assessments and show spatial inconsistencies. To overcome this deficit, a large-scale flood model composed of a weather generator and catchments models was developed reflecting the spatially inherent heterogeneity. The weather generator is a multisite and multivariate stochastic model capable of generating synthetic meteorological fields (precipitation, temperature, etc.) at daily resolution for the regional scale. These fields respect the observed autocorrelation, spatial correlation and co-variance between the variables. They are used as input into catchment models. A long-term simulation of this combined system enables to derive very long discharge series at many catchment locations serving as a basic for spatially consistent flood risk estimates at the regional scale. This combined model was set up and validated for major river catchments in Germany. The weather generator was trained by 53-year observation data at 528 stations covering not only the complete Germany but also parts of France, Switzerland, Czech Republic and Australia with the aggregated spatial scale of 443,931 km2. 10.000 years of daily meteorological fields for the study area were generated. Likewise, rainfall-runoff simulations with SWIM were performed for the entire Elbe, Rhine, Weser, Donau and Ems catchments. The validation results illustrate a good performance of the combined system, as the simulated flood magnitudes and frequencies agree well with the observed flood data. Based on continuous simulation this model chain is then used to estimate flood quantiles for the whole Germany including upstream headwater catchments in neighbouring countries. This continuous large scale approach overcomes the several

  8. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    NASA Technical Reports Server (NTRS)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  9. Observations on the 2016 World Congress on Continuing Professional Development: Advancing Learning and Care in the Health Professions.

    PubMed

    Turco, Mary G; Baron, Robert B

    2016-01-01

    The 2016 World Congress on Continuing Professional Development: Advancing Learning and Care in the Health Professions took place in San Diego, California, March 17-19, 2016. Hosts were the Association for Hospital Medical Education (AHME), Alliance for Continuing Education in the Health Professionals (ACEhp), and Society for Academic Continuing Medical Education (SACME). The target audience was the international community working to improve medical (CME), nursing (CNE), pharmacy (CPE), and interprofessional (CIPE) continuing education (CE) and continuing professional development (CPD). Goals included: addressing patients' concerns and needs; advancing global medical and interprofessional health sciences education; utilizing learning to address health disparities; and promoting international cooperation. The five keynote speakers were: patient advocate Alicia Cole ("Why What We Do Matters: The Patients Voice"); linguist Lorelei Lingard ("Myths about Healthcare Teamwork and Their Implications for How We Understand Competence"); futurist and philosopher Alex Jadad ("What Do We Need to Protect at All Costs in the 21st Century?"); ethicist and change agent Zeke Emanuel ("Learn to Change: Teaching Toward a Shifting Healthcare Horizon"); and technology innovator Stephen Downes ("From Individual to Community: The Learning Is in the Doing"). Organizers announced the new Dave Davis Distinguished Award for Excellence in Mentorship in Continuing Professional Development to honor the career of David Davis, MD, in CME/CPD scholarship in Canada, the United States, and beyond. Participants valued the emphasis on interprofessional education and practice, the importance of integrating the patient voice, the effectiveness of flipped classroom methods, and the power of collective competency theories. Attendee-respondents encouraged Congress planners to continue to strive for a broad global audience and themes of international interest. PMID:27584068

  10. Simulation studies of the impact of advanced observing systems on numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Atlas, R.; Kalnay, E.; Susskind, J.; Reuter, D.; Baker, W. E.; Halem, M.

    1984-01-01

    To study the potential impact of advanced passive sounders and lidar temperature, pressure, humidity, and wind observing systems on large-scale numerical weather prediction, a series of realistic simulation studies between the European Center for medium-range weather forecasts, the National Meteorological Center, and the Goddard Laboratory for Atmospheric Sciences is conducted. The project attempts to avoid the unrealistic character of earlier simulation studies. The previous simulation studies and real-data impact tests are reviewed and the design of the current simulation system is described. Consideration is given to the simulation of observations of space-based sounding systems.

  11. Design tradeoffs in the development of the advanced multispectral simulation test acceptance resource (AMSTAR) HWIL facilities

    NASA Astrophysics Data System (ADS)

    LeSueur, Kenneth G.; Almendinger, Frank J.

    2007-04-01

    The Army's Advanced Multispectral Simulation Test Acceptance Resource (AMSTAR) is a suite of missile Hardware-In-the-Loop (HWIL) simulation / test capabilities designed to support testing from concept through production. This paper presents the design tradeoffs that were conducted in the development of the AMSTAR sensor stimulators and the flight motion simulators. The AMSTAR facility design includes systems to stimulate each of the Millimeter Wave (MMW), Infrared (IR), and Semi-Active Laser (SAL) sensors. The flight motion simulator (FMS) performance was key to the success of the simulation but required many concessions to accommodate the design considerations for the tri-mode stimulation systems.

  12. Advanced lung cancer patients' experience with continuity of care and supportive care needs.

    PubMed

    Husain, Amna; Barbera, Lisa; Howell, Doris; Moineddin, Rahim; Bezjak, Andrea; Sussman, Jonathan

    2013-05-01

    As cancer care becomes increasingly complex, the ability to coordinate this care is more difficult for health care providers, patients and their caregivers alike. Despite the widely recognized need for improving continuity and coordination of care, the relationship of continuity of care with patient outcomes has yet to be elucidated. Our study's main finding is that the Continuity and Coordination subscale of the widely used Picker System of Ambulatory Cancer Care Survey is able to distinguish between lung cancer patients with unmet supportive care needs and those without. Specifically, this study shows a new association between this widely implemented continuity and coordination survey and the 'psychological needs' domain, as well as the 'health system and information' domains of supportive care needs. The finding provides support for the idea that interventions to improve continuity may impact tangible indicators of patient care such as supportive care needs being met. The study focuses attention on continuity of care as an important aspect of optimizing outcomes in cancer care. PMID:23274923

  13. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  14. Simulating data processing for an Advanced Ion Mobility Mass Spectrometer

    SciTech Connect

    Chavarría-Miranda, Daniel; Clowers, Brian H.; Anderson, Gordon A.; Belov, Mikhail E.

    2007-11-03

    We have designed and implemented a Cray XD-1-based sim- ulation of data capture and signal processing for an ad- vanced Ion Mobility mass spectrometer (Hadamard trans- form Ion Mobility). Our simulation is a hybrid application that uses both an FPGA component and a CPU-based soft- ware component to simulate Ion Mobility mass spectrome- try data processing. The FPGA component includes data capture and accumulation, as well as a more sophisticated deconvolution algorithm based on a PNNL-developed en- hancement to standard Hadamard transform Ion Mobility spectrometry. The software portion is in charge of stream- ing data to the FPGA and collecting results. We expect the computational and memory addressing logic of the FPGA component to be portable to an instrument-attached FPGA board that can be interfaced with a Hadamard transform Ion Mobility mass spectrometer.

  15. Applicability of Randomdec technique to flight simulator for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Reed, R. E., Jr.; Cole, H. A., Jr.

    1975-01-01

    The feasibility of Randomdec analysis to detect certain changes in a flight simulator system is studied. Results show that (1) additional studies are needed to ensure effectiveness; (2) a trade-off exists between development complexity and level of malfunction to be detected; and (3) although the system generally limits the input signals to less than about 5 Hz, higher frequency components in the range of 9 Hz and its harmonics are possible.

  16. Advanced wellbore thermal simulator: GEOTEMP2 user manual

    SciTech Connect

    Mitchell, R.F.

    1982-02-01

    GEOTEMP2 is a wellbore thermal simulator designed for geothermal well drilling and production problems. GEOTEMP2 includes the following features: fully transient heat conduction, wellbore fluid flow options, well completion options, and drilling-production histories. The data input format is given, along with input examples and comments on special features of the input. Ten examples that illustrate all of the flowing options and input options in GEOTEMP2 are included.

  17. ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS

    SciTech Connect

    WALTZ RE; CANDY J; HINTON FL; ESTRADA-MILA C; KINSEY JE

    2004-10-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or a globally with physical profile variation. Rohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, plasma pinches and impurity flow, and simulations at fixed flow rather than fixed gradient are illustrated and discussed.

  18. Simulation of an advanced techniques of ion propulsion Rocket system

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, R.

    2016-07-01

    The ion propulsion rocket system is expected to become popular with the development of Deuterium,Argon gas and Hexagonal shape Magneto hydrodynamic(MHD) techniques because of the stimulation indirectly generated the power from ionization chamber,design of thrust range is 1.2 N with 40 KW of electric power and high efficiency.The proposed work is the study of MHD power generation through ionization level of Deuterium gas and combination of two gaseous ions(Deuterium gas ions + Argon gas ions) at acceleration stage.IPR consists of three parts 1.Hexagonal shape MHD based power generator through ionization chamber 2.ion accelerator 3.Exhaust of Nozzle.Initially the required energy around 1312 KJ/mol is carrying out the purpose of deuterium gas which is changed to ionization level.The ionized Deuterium gas comes out from RF ionization chamber to nozzle through MHD generator with enhanced velocity then after voltage is generated across the two pairs of electrode in MHD.it will produce thrust value with the help of mixing of Deuterium ion and Argon ion at acceleration position.The simulation of the IPR system has been carried out by MATLAB.By comparing the simulation results with the theoretical and previous results,if reaches that the proposed method is achieved of thrust value with 40KW power for simulating the IPR system.

  19. The role of advanced engineering simulation in model-based design

    SciTech Connect

    Hommert, P.J.; Biffle, J.H.

    1995-03-01

    The agile manufacturing paradigm engenders many new concepts and work approaches for manufacturing operations. A technology often invoked in the concept of agility is modeling and simulation. Few would disagree that modeling and simulation holds the potential to substantially reduce the product development cycle and lead to improve product reliability and performance. Advanced engineering simulation can impact manufacturing in three areas: process design, product design, and process control. However, despite that promise, the routine utilization of modeling and simulation by industry within the design process is very limited. Advanced simulation is still used primarily in a troubleshooting mode examining design or process problems after the fact. Sandia National Laboratories has been engaged in the development of advanced engineering simulation tools for many years and more recently has begun to focus on the application of such models to manufacturing processes important for the defense industry. These efforts involve considerable interaction and cooperative research with US industry. Based upon this experience, this presentation examines the elements that are necessary for advanced engineering simulation to become an integral part of the design process.

  20. Profile control of advanced tokamak plasmas in view of continuous operation

    NASA Astrophysics Data System (ADS)

    Mazon, D.

    2015-07-01

    The concept of the tokamak is a very good candidate to lead to a fusion reactor. In fact, certain regimes of functioning allow today the tokamaks to attain performances close to those requested by a reactor. Among the various scenarios of functioning nowadays considered for the reactor option, certain named 'advanced scenarios' are characterized by an improvement of the stability and confinement in the plasma core, as well as by a modification of the current profile, notably thank to an auto-generated 'bootstrap' current. The general frame of this paper treats the perspective of a real-time control of advanced regimes. Concrete examples will underline the impact of diagnostics on the identification of plasma models, from which the control algorithms are constructed. Several preliminary attempts will be described.

  1. Advanced visualization technology for terascale particle accelerator simulations

    SciTech Connect

    Ma, K-L; Schussman, G.; Wilson, B.; Ko, K.; Qiang, J.; Ryne, R.

    2002-11-16

    This paper presents two new hardware-assisted rendering techniques developed for interactive visualization of the terascale data generated from numerical modeling of next generation accelerator designs. The first technique, based on a hybrid rendering approach, makes possible interactive exploration of large-scale particle data from particle beam dynamics modeling. The second technique, based on a compact texture-enhanced representation, exploits the advanced features of commodity graphics cards to achieve perceptually effective visualization of the very dense and complex electromagnetic fields produced from the modeling of reflection and transmission properties of open structures in an accelerator design. Because of the collaborative nature of the overall accelerator modeling project, the visualization technology developed is for both desktop and remote visualization settings. We have tested the techniques using both time varying particle data sets containing up to one billion particle s per time step and electromagnetic field data sets with millions of mesh elements.

  2. Advanced Simulation Technology to Design Etching Process on CMOS Devices

    NASA Astrophysics Data System (ADS)

    Kuboi, Nobuyuki

    2015-09-01

    Prediction and control of plasma-induced damage is needed to mass-produce high performance CMOS devices. In particular, side-wall (SW) etching with low damage is a key process for the next generation of MOSFETs and FinFETs. To predict and control the damage, we have developed a SiN etching simulation technique for CHxFy/Ar/O2 plasma processes using a three-dimensional (3D) voxel model. This model includes new concepts for the gas transportation in the pattern, detailed surface reactions on the SiN reactive layer divided into several thin slabs and C-F polymer layer dependent on the H/N ratio, and use of ``smart voxels''. We successfully predicted the etching properties such as the etch rate, polymer layer thickness, and selectivity for Si, SiO2, and SiN films along with process variations and demonstrated the 3D damage distribution time-dependently during SW etching on MOSFETs and FinFETs. We confirmed that a large amount of Si damage was caused in the source/drain region with the passage of time in spite of the existing SiO2 layer of 15 nm in the over etch step and the Si fin having been directly damaged by a large amount of high energy H during the removal step of the parasitic fin spacer leading to Si fin damage to a depth of 14 to 18 nm. By analyzing the results of these simulations and our previous simulations, we found that it is important to carefully control the dose of high energy H, incident energy of H, polymer layer thickness, and over-etch time considering the effects of the pattern structure, chamber-wall condition, and wafer open area ratio. In collaboration with Masanaga Fukasawa and Tetsuya Tatsumi, Sony Corporation. We thank Mr. T. Shigetoshi and Mr. T. Kinoshita of Sony Corporation for their assistance with the experiments.

  3. Microwave Processing of Simulated Advanced Nuclear Fuel Pellets

    SciTech Connect

    D.E. Clark; D.C. Folz

    2010-08-29

    Throughout the three-year project funded by the Department of Energy (DOE) and lead by Virginia Tech (VT), project tasks were modified by consensus to fit the changing needs of the DOE with respect to developing new inert matrix fuel processing techniques. The focus throughout the project was on the use of microwave energy to sinter fully stabilized zirconia pellets using microwave energy and to evaluate the effectiveness of techniques that were developed. Additionally, the research team was to propose fundamental concepts as to processing radioactive fuels based on the effectiveness of the microwave process in sintering the simulated matrix material.

  4. Advanced flight deck/crew station simulator functional requirements

    NASA Technical Reports Server (NTRS)

    Wall, R. L.; Tate, J. L.; Moss, M. J.

    1980-01-01

    This report documents a study of flight deck/crew system research facility requirements for investigating issues involved with developing systems, and procedures for interfacing transport aircraft with air traffic control systems planned for 1985 to 2000. Crew system needs of NASA, the U.S. Air Force, and industry were investigated and reported. A matrix of these is included, as are recommended functional requirements and design criteria for simulation facilities in which to conduct this research. Methods of exploiting the commonality and similarity in facilities are identified, and plans for exploiting this in order to reduce implementation costs and allow efficient transfer of experiments from one facility to another are presented.

  5. Modelling the dependence and internal structure of storm events for continuous rainfall simulation

    NASA Astrophysics Data System (ADS)

    Gyasi-Agyei, Yeboah; Melching, Charles S.

    2012-09-01

    SummaryPair-copula construction methodology has been explored to model the dependence structure between net storm event depth (R), maximum wet periods' depth (M), and the total wet periods' duration (L), noting that the total storm event depth is RT = R + M. Random variable R was used instead of RT in order to avoid physical boundary effects due to the condition of RT ⩾ M. The flexibility of pair-copula construction allowed the examination of 11 bivariate copulas at the three bivariate stages of the three-dimensional (3D) copula. For 21 years of hourly rainfall data from Cook County, Illinois, USA, examined, three different copulas were found suitable for the bivariate stages. For the internal storm event structure, a Geometric distribution was used to model the net event duration, defined as the difference between the total duration (D) and L. A two-parameter Poisson model was adopted for modelling the distribution of the L wet periods within D, and the first-order autoregressive Lognormal model was applied for the distribution of RT over the L wet periods. Incorporation of an inter-event (I) sub-model completed the continuous rainfall simulation scheme. The strong seasonality in the marginal and dependence model parameters was captured using first harmonic Fourier series, thus, reducing the number of parameters. Polynomial functions were fitted to the internal storm event model parameters which did not exhibit seasonal variability. Four hundred simulation runs were carried out in order to verify the developed model. Kolmogorov-Smirnov (KS) tests found the hypothesis that the observed and simulated storm event quantiles come from the same distribution cannot be rejected at the 5% significance level in nearly all cases. Gross statistics (dry probability, mean, variance, skewness, autocorrelations, and the intensity-duration-frequency (IDF) curves) of the continuous rainfall time series at several aggregation levels were very well preserved by the developed model.

  6. Coronal Magnetic Field Evolution from 1996 to 2012: Continuous Non-potential Simulations

    NASA Astrophysics Data System (ADS)

    Yeates, A. R.

    2014-02-01

    Coupled flux transport and magneto-frictional simulations are extended to simulate the continuous magnetic-field evolution in the global solar corona for over 15 years, from the start of Solar Cycle 23 in 1996. By simplifying the dynamics, our model follows the build-up and transport of electric currents and free magnetic energy in the corona, offering an insight into the magnetic structure and topology that extrapolation-based models cannot. To enable these extended simulations, we have implemented a more efficient numerical grid, and have carefully calibrated the surface flux-transport model to reproduce the observed large-scale photospheric radial magnetic field, using emerging active regions determined from observed line-of-sight magnetograms. This calibration is described in some detail. In agreement with previous authors, we find that the standard flux-transport model is insufficient to simultaneously reproduce the observed polar fields and butterfly diagram during Cycle 23, and that additional effects must be added. For the best-fit model, we use automated techniques to detect the latitude-time profile of flux ropes and their ejections over the full solar cycle. Overall, flux ropes are more prevalent outside of active latitudes but those at active latitudes are more frequently ejected. Future possibilities for space-weather prediction with this approach are briefly assessed.

  7. Continuity-based model interfacing for plant-wide simulation: a general approach.

    PubMed

    Volcke, Eveline I P; van Loosdrecht, Mark C M; Vanrolleghem, Peter A

    2006-08-01

    In plant-wide simulation studies of wastewater treatment facilities, often existing models from different origin need to be coupled. However, as these submodels are likely to contain different state variables, their coupling is not straightforward. The continuity-based interfacing method (CBIM) provides a general framework to construct model interfaces for models of wastewater systems, taking into account conservation principles. In this contribution, the CBIM approach is applied to study the effect of sludge digestion reject water treatment with a SHARON-Anammox process on a plant-wide scale. Separate models were available for the SHARON process and for the Anammox process. The Benchmark simulation model no. 2 (BSM2) is used to simulate the behaviour of the complete WWTP including sludge digestion. The CBIM approach is followed to develop three different model interfaces. At the same time, the generally applicable CBIM approach was further refined and particular issues when coupling models in which pH is considered as a state variable, are pointed out. PMID:16846629

  8. Simulation and optimization of beam losses during continuous transfer extraction at the CERN Proton Synchrotron

    NASA Astrophysics Data System (ADS)

    Barranco García, Javier; Gilardoni, Simone

    2011-03-01

    The proton beams used for the fixed target physics at the Super Proton Synchrotron (SPS) are extracted from the Proton Synchrotron (PS) by a multiturn technique called continuous transfer (CT). During the CT extraction, large losses are observed in locations where the machine aperture should be large enough to accommodate the circulating beam. This limits the maximum intensity deliverable due to the induced stray radiation outside the PS tunnel. Scattered particles from the interaction with the electrostatic septum are identified as the possible source of these losses. This article presents a detailed study aiming to understand the origin of losses and propose possible cures. The simulations could reproduce accurately the beam loss pattern measured in real machine operation and determine the beam shaving, intrinsic to the extraction process, as the cause for the unexpected losses. Since these losses are unavoidable, the proposed solution implies a new optics scheme displacing the losses to a region with better shielding. New simulations demonstrate the satisfactory performance of the new extraction optics and its suitability to be implemented in the machine. Finally, beam loss measurements in these new operation conditions confirmed the previous simulation results.

  9. ADVANCES IN COMPREHENSIVE GYROKINETIC SIMULATIONS OF TRANSPORT IN TOKAMAKS

    SciTech Connect

    WALTZ,R.E; CANDY,J; HINTON,F.L; ESTRADA-MILA,C; KINSEY,J.E

    2004-10-01

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite {beta}, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius ({rho}{sub *}) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or globally with physical profile variation. Bohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, are illustrated.

  10. Langley advanced real-time simulation (ARTS) system

    NASA Technical Reports Server (NTRS)

    Crawford, Daniel J.; Cleveland, Jeff I., II

    1988-01-01

    A system of high-speed digital data networks was developed and installed to support real-time flight simulation at the NASA Langley Research Center. This system, unlike its predecessor, employs intelligence at each network node and uses distributed 10-V signal conversion equipment rather than centralized 100-V equipment. A network switch, which replaces an elaborate system of patch panels, allows the researcher to construct a customized network from the 25 available simulation sites by invoking a computer control statement. The intent of this paper is to provide a coherent functional description of the system. This development required many significant innovations to enhance performance and functionality such as the real-time clock, the network switch, and improvements to the CAMAC network to increase both distances to sites and data rates. The system has been successfully tested at a usable data rate of 24 M. The fiber optic lines allow distances of approximately 1.5 miles from switch to site. Unlike other local networks, CAMAC does not buffer data in blocks. Therefore, time delays in the network are kept below 10 microsec total. This system underwent months of testing and was put into full service in July 1987.

  11. Simulation models and designs for advanced Fischer-Tropsch technology

    SciTech Connect

    Choi, G.N.; Kramer, S.J.; Tam, S.S.

    1995-12-31

    Process designs and economics were developed for three grass-roots indirect Fischer-Tropsch coal liquefaction facilities. A baseline and an alternate upgrading design were developed for a mine-mouth plant located in southern Illinois using Illinois No. 6 coal, and one for a mine-mouth plane located in Wyoming using Power River Basin coal. The alternate design used close-coupled ZSM-5 reactors to upgrade the vapor stream leaving the Fischer-Tropsch reactor. ASPEN process simulation models were developed for all three designs. These results have been reported previously. In this study, the ASPEN process simulation model was enhanced to improve the vapor/liquid equilibrium calculations for the products leaving the slurry bed Fischer-Tropsch reactors. This significantly improved the predictions for the alternate ZSM-5 upgrading design. Another model was developed for the Wyoming coal case using ZSM-5 upgrading of the Fischer-Tropsch reactor vapors. To date, this is the best indirect coal liquefaction case. Sensitivity studies showed that additional cost reductions are possible.

  12. Advanced simulation of electron heat transport in fusion plasmas

    SciTech Connect

    Lin, Zhihong; Xiao, Y.; Klasky, Scott A; Lofstead, J.

    2009-01-01

    Electron transport in burning plasmas is more important since fusion products first heat electrons. First-principles simulations of electron turbulence are much more challenging due to the multi-scale dynamics of the electron turbulence, and have been made possible by close collaborations between plasma physicists and computational scientists. The GTC simulations of collisionless trapped electron mode (CTEM) turbulence show that the electron heat transport exhibits a gradual transition from Bohm to gyroBohm scaling when the device size is increased. The deviation from the gyroBohm scaling can be induced by large turbulence eddies, turbulence spreading, and non-diffusive transport processes. Analysis of radial correlation function shows that CTEM turbulence eddies are predominantly microscopic but with a significant tail in the mesoscale. A comprehensive analysis of kinetic and fluid time scales shows that zonal flow shearing is the dominant decorrelation mechanism. The mesoscale eddies result from a dynamical process of linear streamers breaking by zonal flows and merging of microscopic eddies. The radial profile of the electron heat conductivity only follows the profile of fluctuation intensity on a global scale, whereas the ion transport tracks more sensitively the local fluctuation intensity. This suggests the existence of a nondiffusive component in the electron heat flux, which arises from the ballistic radial E x B drift of trapped electrons due to a combination of the presence of mesoscale eddies and the weak de-tuning of the toroidal precessional resonance that drives the CTEM instability. On the other hand, the ion radial excursion is not affected by the mesoscale eddies due to a parallel decorrelation, which is not operational for the trapped electrons because of a bounce averaging process associated with the electron fast motion along magnetic field lines. The presence of the nondiffusive component raises question on the applicability of the usual

  13. Advanced Simulation of Electron Heat Transport in Fusion Plasmas

    SciTech Connect

    Lin, Z.; Xiao, Y.; Holod, I.; Zhang, W. L.; Deng, Wenjun; Klasky, Scott A; Lofstead, J.; Kamath, Chandrika; Wichmann, Nathan

    2009-01-01

    Electron transport in burning plasmas is more important since fusion products first heat electrons. First-principles simulations of electron turbulence are much more challenging due to the multi-scale dynamics of the electron turbulence, and have been made possible by close collaborations between plasma physicists and computational scientists. The GTC simulations of collisionless trapped electron mode (CTEM) turbulence show that the electron heat transport exhibits a gradual transition from Bohm to gyroBohm scaling when the device size is increased. The deviation from the gyroBohm scaling can be induced by large turbulence eddies, turbulence spreading, and non-diffusive transport processes. Analysis of radial correlation function shows that CTEM turbulence eddies are predominantly microscopic but with a significant tail in the mesoscale. A comprehensive analysis of kinetic and fluid time scales shows that zonal flow shearing is the dominant decorrelation mechanism. The mesoscale eddies result from a dynamical process of linear streamers breaking by zonal flows and merging of microscopic eddies. The radial profile of the electron heat conductivity only follows the profile of fluctuation intensity on a global scale, whereas the ion transport tracks more sensitively the local fluctuation intensity. This suggests the existence of a nondiffusive component in the electron heat flux, which arises from the ballistic radial E x B drift of trapped electrons due to a combination of the presence of mesoscale eddies and the weak de-tuning of the toroidal precessional resonance that drives the CTEM instability. On the other hand, the ion radial excursion is not affected by the mesoscale eddies due to a parallel decorrelation, which is not operational for the trapped electrons because of a bounce averaging process associated with the electron fast motion along magnetic field lines. The presence of the nondiffusive component raises question on the applicability of the usual

  14. Numerical Forming Simulations and Optimisation in Advanced Materials

    NASA Astrophysics Data System (ADS)

    Huétink, J.; van den Boogaard, A. H.; Geijselears, H. J. M.; Meinders, T.

    2007-05-01

    With the introduction of new materials as high strength steels, metastable steels and fibre reinforced composites, the need for advanced physically valid constitutive models arises. In finite deformation problems constitutive relations are commonly formulated in terms the Cauchy stress as a function of the elastic Finger tensor and an objective rate of the Cauchy stress as a function of the rate of deformation tensor. For isotropic materials models this is rather straightforward, but for anisotropic material models, including elastic anisotropy as well as plastic anisotropy, this may lead to confusing formulations. It will be shown that it is more convenient to define the constitutive relations in terms of invariant tensors referred to the deformed metric. Experimental results are presented that show new combinations of strain rate and strain path sensitivity. An adaptive through- thickness integration scheme for plate elements is developed, which improves the accuracy of spring back prediction at minimal costs. A procedure is described to automatically compensate the CAD tool shape numerically to obtain the desired product shape. Forming processes need to be optimized for cost saving and product improvement. Until recently, a trial-and-error process in the factory primarily did this optimization. An optimisation strategy is proposed that assists an engineer to model an optimization problem that suits his needs, including an efficient algorithm for solving the problem.

  15. Simulation and ground testing with the Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Johnston, Albert S.; Bryan, Thomas C.; Book, Michael L.

    2005-01-01

    The Advanced Video Guidance Sensor (AVGS), an active sensor system that provides near-range 6-degree-of-freedom sensor data, has been developed as part of an automatic rendezvous and docking system for the Demonstration of Autonomous Rendezvous Technology (DART). The sensor determines the relative positions and attitudes between the active sensor and the passive target at ranges up to 300 meters. The AVGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state imager to detect the light returned from the target, and image capture electronics and a digital signal processor to convert the video information into the relative positions and attitudes. The development of the sensor, through initial prototypes, final prototypes, and three flight units, has required a great deal of testing at every phase, and the different types of testing, their effectiveness, and their results, are presented in this paper, focusing on the testing of the flight units. Testing has improved the sensor's performance.

  16. Advanced wellbore thermal simulator GEOTEMP2 user manual

    SciTech Connect

    Mondy, L.A.; Duda, L.E.

    1984-11-01

    GEOTEMP2 is a wellbore thermal simulator computer code designed for geothermal drilling and production applications. The code treats natural and forced convection and conduction within the wellbore and heat conduction within the surrounding rock matrix. A variety of well operations can be modeled including injection, production, forward, and reverse circulation with gas or liquid, gas or liquid drilling, and two-phase steam injection and production. Well completion with several different casing sizes and cement intervals can be modeled. The code allows variables suchas flow rate to change with time enabling a realistic treatment of well operations. This user manual describes the input required to properly operate the code. Ten sample problems are included which illustrate all the code options. Complete listings of the code and the output of each sample problem are provided.

  17. Brownian dynamics simulations of a flexible polymer chain which includes continuous resistance and multibody hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Butler, Jason E.; Shaqfeh, Eric S. G.

    2005-01-01

    Using methods adapted from the simulation of suspension dynamics, we have developed a Brownian dynamics algorithm with multibody hydrodynamic interactions for simulating the dynamics of polymer molecules. The polymer molecule is modeled as a chain composed of a series of inextensible, rigid rods with constraints at each joint to ensure continuity of the chain. The linear and rotational velocities of each segment of the polymer chain are described by the slender-body theory of Batchelor [J. Fluid Mech. 44, 419 (1970)]. To include hydrodynamic interactions between the segments of the chain, the line distribution of forces on each segment is approximated by making a Legendre polynomial expansion of the disturbance velocity on the segment, where the first two terms of the expansion are retained in the calculation. Thus, the resulting linear force distribution is specified by a center of mass force, couple, and stresslet on each segment. This method for calculating the hydrodynamic interactions has been successfully used to simulate the dynamics of noncolloidal suspensions of rigid fibers [O. G. Harlen, R. R. Sundararajakumar, and D. L. Koch, J. Fluid Mech. 388, 355 (1999); J. E. Butler and E. S. G. Shaqfeh, J. Fluid Mech. 468, 204 (2002)]. The longest relaxation time and center of mass diffusivity are among the quantities calculated with the simulation technique. Comparisons are made for different levels of approximation of the hydrodynamic interactions, including multibody interactions, two-body interactions, and the "freely draining" case with no interactions. For the short polymer chains studied in this paper, the results indicate a difference in the apparent scaling of diffusivity with polymer length for the multibody versus two-body level of approximation for the hydrodynamic interactions.

  18. Recent Advancements in the Development of an Intensity-Modulated Continuous-Wave Lidar System for the ASCENDS Mission

    NASA Astrophysics Data System (ADS)

    Ismail, S.; Lin, B.; Nehrir, A. R.; Browell, E. V.; Harrison, F. W.; Dobler, J. T.; Kooi, S. A.; Obland, M. D.; Meadows, B. L.; Campbell, J. F.; CHEN, S.; Collins, J. E.; Refaat, T.; Yang, M. M.; Choi, Y.; Dijoseph, M. S.

    2013-12-01

    NASA Langley, in collaboration with Exelis, is developing and demonstrating an intensity-modulated continuous-wave (IM-CW) Laser Absorption Spectrometer approach for the Active Sensing of CO2 Emission over Nights, Days, and Seasons (ASCENDS) space mission. A Multi-functional Fiber Laser Lidar (MFLL) LAS system developed by Exelis has been used previously to demonstrate high precision CO2 column measurements from several different aircraft platforms. In addition, the MFLL system was recently operated from the NASA DC-8 aircraft during the February-March 2013 ASCENDS flight campaign. The objectives of this campaign included making CO2 column measurements under a variety of background, cloud, and surface conditions, including over snow and tall forests; and evaluating the capability of the LAS systems to retrieve the average CO2 mixing ratio columns from the simultaneous CO2 and O2 column measurements. Nine flights were conducted during the 2013 campaign, including flights over vegetation in the Central Valley of California; playa of Railroad Valley in Nevada, which coincided with an overpass of the GOSAT (Greenhouse Gas Observing Satellite); snow in the Rocky Mountains; forests of California/Oregon coastal region; snow in the Northern Plains; and desert of Arizona. Balloon sondes were launched in conjunction with flights in California and Nevada to obtain atmospheric pressure, temperature and water vapor profiles. In situ CO2 measurements were made with the AVOCET (Atmospheric Vertical Observations of CO2 in the Earth's Troposphere) and Picarro instruments onboard the DC-8 to compare with MFLL measurements. A new, compact, tactical dewar/detector that is a part of NASA Langley's ACES (ASCENDS CarbonHawk Experiment Simulator) project was tested as part of the MFLL during the field campaign. This system demonstrated a new technology applicable for space by reducing mass and volume; enhancing detection bandwidth and service free operation time; and improving the

  19. Continued Development and Application of Circulation Control Pneumatic Technology to Advanced Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1998-01-01

    Personnel of the Georgia Tech Research Institute (GTRI) Aerospace and Transportation Lab have completed a four-year grant program to develop and evaluate the pneumatic aerodynamic technology known as Circulation Control (CC) or Circulation Control Wing (CCW) for advanced transport aircraft. This pneumatic technology, which employs low-level blowing from tangential slots over round or near-round trailing edges of airfoils, greatly augments the circulation around a lifting or control surface and thus enhances the aerodynamic forces and moments generated by that surface. Two-dimensional force augmentations as high as 80 times the input blowing momentum coefficient have been recorded experimentally for these blown devices, thus providing returns of 8000% on the jet momentum expended. A further benefit is the absence of moving parts such as mechanical flaps, slats, spoilers, ailerons, elevators and rudders from these pneumatic surfaces, or the use of only very small, simple, blown aerodynamic surfaces on synergistic designs which integrate the lift, drag and control surfaces. The application of these devices to advanced aircraft can offer significant benefits in their performance, efficiency, simplicity, reliability, economic cost of operation, noise reduction, and safety of flight. To further develop and evaluate this potential, this research effort was conducted by GTRI under grant for the NASA Langley Research Center, Applied Aerodynamics Division, Subsonic Aerodynamics Branch, between June 14, 1993 and May 31, 1997.

  20. Development of an advanced, continuous mild gasification process for the production of co-products

    SciTech Connect

    Wolfe, R.A.; Wright, R.E.; Im, C.J.; Henkelman, M.R.; O`Neal, G.W.

    1992-11-01

    The objective of this project is to develop a continuous mild gasification process to convert highly caking coals to coal liquids, char and coke for near term commercial application. Task 3, Bench-Scale Char Upgrading Study, has been underway since September 1989. In char upgrading studies, ``green`` uncured char briquettes have been prepared and calcined in 20-pound batches to evaluate the effects of char, binders, and heating conditions on final coke properties. A total of 150. formulations have been tested thus far in this work. Work on Task 4, Process Development Unit (PDU) Mild Gasification Study, has been in progress since February 1991, with the completion of a Continuous Mild Gasification Unit (CMGU) with a design rate of 1000 lb./hr. Since start-up of the CMGU, there have been 72 runs with a variety of operating conditions and coal types.

  1. A Continuous Quality Improvement Program to Focus a College of Pharmacy on Programmatic Advancement

    PubMed Central

    DiPiro, Joseph T.; Rowen, Randall C.; McNair, David

    2013-01-01

    Objective. To enhance the achievement of a college of pharmacy’s goals for education, research, and service missions by implementing an excellence program based on the Studer Group model for continuous quality improvement. Methods. The Studer model was combined with university strategic planning for a comprehensive quality-improvement program that was implemented over 5 years. The program included identifying and measuring key performance indicators, establishing specific “pillar” goals, aligning behaviors with goals and values, and training leaders. Results. Assessment of key performance indicators over 5 years demonstrated progress toward achieving college goals for student and faculty satisfaction, research funding, numbers of students seeking formal postgraduate training, and private giving. Conclusions. Implementation of a continuous quality-improvement program based on the Studer program enabled the college to focus on and meet its yearly and strategic goals for all components of its mission. PMID:23966720

  2. Benefits of intermittent/continuous androgen deprivation in patients with advanced prostate cancer

    PubMed Central

    MURESANU, HORIA

    2016-01-01

    Background and aims In 1941 Huggins described the effect of castration on prostate cancer. gonadotropin-releasing hormone (GNRH) analogues were introduced in 1985. Complete androgen blockade (association of GNRH analogue with antiandrogen) was introduced by Fernand Labrie to achieve suppression of suprarenal testosterone. Long time androgen deprivation lead to androgen independence of the prostate cancer cell. Our principal aim was to demonstrate longer survival rates on prostate cancer patients with intermittent androgen deprivation. Methods 82 patients in the Urology Department of Vasile Goldis West University Arad were included into two groups, with continuous and intermittent androgen deprivation. Treatment efficiency was assessed by the level of testosterone and PSA. Adverse events (AE) and serious adverse events were reported according to Common Terminology Criteria of Adverse Events (CTCAE) of the National Cancer Institute (NCI). Results Evolution towards castrate resistant prostate cancer: 12.5% from the intermittent androgen deprivation group and 23.8% from the continuous androgen deprivation group Mortality rate: 15% of patients from the intermittent androgen deprivation group; 19% of patients from the continuous androgen deprivation group Conclusions Better quality of life (Qol) in periods without treatment due to testosteron recovery; Less AE’s and metabolic syndrome (MS) related complications; Better survival and longer time of disease control and Cost reduction. PMID:27547063

  3. ADVANCED SIMULATION CAPABILITY FOR ENVIRONMENTAL MANAGEMENT – CURRENT STATUS AND PHASE II DEMONSTRATION RESULTS

    SciTech Connect

    Seitz, Roger; Freshley, Mark D.; Dixon, Paul; Hubbard, Susan S.; Freedman, Vicky L.; Flach, Gregory P.; Faybishenko, Boris; Gorton, Ian; Finsterle, Stefan A.; Moulton, John D.; Steefel, Carl I.; Marble, Justin

    2013-06-27

    The U.S. Department of Energy (USDOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Toolsets and High-Performance Computing (HPC) Multiprocess Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, toolsets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial toolsets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations

  4. ADVANCED SIMULATION CAPABILITY FOR ENVIRONMENTAL MANAGEMENT- CURRENT STATUS AND PHASE II DEMONSTRATION RESULTS

    SciTech Connect

    Seitz, R.

    2013-02-26

    The U.S. Department of Energy (USDOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Toolsets and High-Performance Computing (HPC) Multiprocess Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, toolsets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial toolsets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations

  5. Methodological advances: using greenhouses to simulate climate change scenarios.

    PubMed

    Morales, F; Pascual, I; Sánchez-Díaz, M; Aguirreolea, J; Irigoyen, J J; Goicoechea, N; Antolín, M C; Oyarzun, M; Urdiain, A

    2014-09-01

    Human activities are increasing atmospheric CO2 concentration and temperature. Related to this global warming, periods of low water availability are also expected to increase. Thus, CO2 concentration, temperature and water availability are three of the main factors related to climate change that potentially may influence crops and ecosystems. In this report, we describe the use of growth chamber - greenhouses (GCG) and temperature gradient greenhouses (TGG) to simulate climate change scenarios and to investigate possible plant responses. In the GCG, CO2 concentration, temperature and water availability are set to act simultaneously, enabling comparison of a current situation with a future one. Other characteristics of the GCG are a relative large space of work, fine control of the relative humidity, plant fertirrigation and the possibility of light supplementation, within the photosynthetic active radiation (PAR) region and/or with ultraviolet-B (UV-B) light. In the TGG, the three above-mentioned factors can act independently or in interaction, enabling more mechanistic studies aimed to elucidate the limiting factor(s) responsible for a given plant response. Examples of experiments, including some aimed to study photosynthetic acclimation, a phenomenon that leads to decreased photosynthetic capacity under long-term exposures to elevated CO2, using GCG and TGG are reported. PMID:25113448

  6. Advanced numerical methods and software approaches for semiconductor device simulation

    SciTech Connect

    CAREY,GRAHAM F.; PARDHANANI,A.L.; BOVA,STEVEN W.

    2000-03-23

    In this article the authors concisely present several modern strategies that are applicable to drift-dominated carrier transport in higher-order deterministic models such as the drift-diffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of upwind and artificial dissipation schemes, generalization of the traditional Scharfetter-Gummel approach, Petrov-Galerkin and streamline-upwind Petrov Galerkin (SUPG), entropy variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of the methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. They have included numerical examples from the recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and they emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, they briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.

  7. Advanced Numerical Methods and Software Approaches for Semiconductor Device Simulation

    DOE PAGESBeta

    Carey, Graham F.; Pardhanani, A. L.; Bova, S. W.

    2000-01-01

    In this article we concisely present several modern strategies that are applicable to driftdominated carrier transport in higher-order deterministic models such as the driftdiffusion, hydrodynamic, and quantum hydrodynamic systems. The approaches include extensions of “upwind” and artificial dissipation schemes, generalization of the traditional Scharfetter – Gummel approach, Petrov – Galerkin and streamline-upwind Petrov Galerkin (SUPG), “entropy” variables, transformations, least-squares mixed methods and other stabilized Galerkin schemes such as Galerkin least squares and discontinuous Galerkin schemes. The treatment is representative rather than an exhaustive review and several schemes are mentioned only briefly with appropriate reference to the literature. Some of themore » methods have been applied to the semiconductor device problem while others are still in the early stages of development for this class of applications. We have included numerical examples from our recent research tests with some of the methods. A second aspect of the work deals with algorithms that employ unstructured grids in conjunction with adaptive refinement strategies. The full benefits of such approaches have not yet been developed in this application area and we emphasize the need for further work on analysis, data structures and software to support adaptivity. Finally, we briefly consider some aspects of software frameworks. These include dial-an-operator approaches such as that used in the industrial simulator PROPHET, and object-oriented software support such as those in the SANDIA National Laboratory framework SIERRA.« less

  8. Micromechanics analysis of space simulated thermal deformations and stresses in continuous fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Bowles, David E.

    1990-01-01

    Space simulated thermally induced deformations and stresses in continuous fiber reinforced composites were investigated with a micromechanics analysis. The investigation focused on two primary areas. First, available explicit expressions for predicting the effective coefficients of thermal expansion (CTEs) for a composite were compared with each other, and with a finite element (FE) analysis, developed specifically for this study. Analytical comparisons were made for a wide range of fiber/matrix systems, and predicted values were compared with experimental data. The second area of investigation focused on the determination of thermally induced stress fields in the individual constituents. Stresses predicted from the FE analysis were compared to those predicted from a closed-form solution to the composite cylinder (CC) model, for two carbon fiber/epoxy composites. A global-local formulation, combining laminated plate theory and FE analysis, was used to determine the stresses in multidirectional laminates. Thermally induced damage initiation predictions were also made.

  9. Continuous description of a grain boundary in forsterite from atomic scale simulations: the role of disclinations

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Yu; Cordier, Patrick; Taupin, Vincent; Fressengeas, Claude; Jahn, Sandro

    2016-06-01

    We present continuous modelling at inter-atomic scale of a high-angle symmetric tilt boundary in forsterite. The model is grounded in periodic arrays of dislocation and disclination dipoles built on information gathered from discrete atomistic configurations generated by molecular dynamics simulations. The displacement, distortion (strain and rotation), curvature, dislocation and disclination density fields are determined in the boundary area using finite difference and interpolation techniques between atomic sites. The distortion fields of the O, Si and Mg sub-lattices are detailed to compare their roles in the accommodation of lattice incompatibility along the boundary. It is shown that the strain and curvature fields associated with the dislocation and disclination fields in the 'skeleton' O and Si sub-lattices accommodate the tilt incompatibility, whereas the elastic strain and rotation fields of the Mg sub-lattice are essentially compatible and induce stresses balancing the incompatibility stresses in the overall equilibrium.

  10. Simulations of electromagnetic emissions produced in a thin plasma by a continuously injected electron beam

    NASA Astrophysics Data System (ADS)

    Annenkov, V. V.; Timofeev, I. V.; Volchok, E. P.

    2016-05-01

    In this paper, electromagnetic emissions produced in a thin beam-plasma system are studied using two-dimensional particle-in-cell simulations. For the first time, the problem of emission generation in such a system is considered in a realistic formulation allowing for the continuous injection of a relativistic electron beam through a plasma boundary. Specific attention is given to the thin plasma case in which the transverse plasma size is comparable to the typical wavelength of beam-driven oscillations. Such a case is often implemented in laboratory beam-plasma experiments and has a number of peculiarities. Emission from a thin plasma does not require intermediate generation of the electromagnetic plasma eigenmodes, as in an infinite case, and is more similar to the regular antenna radiation. In this work, we determine how efficiently the fundamental and the second harmonic emissions can be generated in previously modulated and initially homogeneous plasmas.

  11. Preliminary simulation of an advanced, hingless rotor XV-15 tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.

    1976-01-01

    The feasibility of the tilt-rotor concept was verified through investigation of the performance, stability and handling qualities of the XV-15 tilt rotor. The rotors were replaced by advanced-technology fiberglass/composite hingless rotors of larger diameter, combined with an advanced integrated fly-by-wire control system. A parametric simulation model of the HRXV-15 was developed, model was used to define acceptable preliminary ranges of primary and secondary control schedules as functions of the flight parameters, to evaluate performance, flying qualities and structural loads, and to have a Boeing-Vertol pilot conduct a simulated flight test evaluation of the aircraft.

  12. State of the Art Assessment of Simulation in Advanced Materials Development

    NASA Technical Reports Server (NTRS)

    Wise, Kristopher E.

    2008-01-01

    Advances in both the underlying theory and in the practical implementation of molecular modeling techniques have increased their value in the advanced materials development process. The objective is to accelerate the maturation of emerging materials by tightly integrating modeling with the other critical processes: synthesis, processing, and characterization. The aims of this report are to summarize the state of the art of existing modeling tools and to highlight a number of areas in which additional development is required. In an effort to maintain focus and limit length, this survey is restricted to classical simulation techniques including molecular dynamics and Monte Carlo simulations.

  13. Development of an advanced, continuous mild gasification process for the production of co-products

    SciTech Connect

    Wright, R.E.; Wolfe, R.A.; Im, C.J.; Henkelman, M.R.; O`Neal, G.W.; McKinney, D.A.

    1993-12-31

    The objective of this project is to develop a continuous mild gasification process to convert highly caking coals to coal liquids, char and coke for near term commercial application. Coal liquids after fractionation can be blended with petroleum and used interchangeably with conventional fuels without modifications in gasoline and diesel engines. Char can be used as a carbon source in the production of ferroalloys and in mini-mills. Coke can be produced by upgrading char through briquetting and calcining and for use in the steel industry foundries and blast furnaces. In a step beyond the scope of the project, the plan is to finance, design and construct, in a partnership with others, a plant to produce coal liquid, char and coke in the initial range of 250,000 tons/year. In the Coal Technology Corporation CTC/CLC{reg_sign} Process, coal is continuously moved by interfolded twin screws through a heated retort in the absence of air. The residence time of the coal in the Continuous Mild Gasification Unit (CMGU) is in the range of 20--30 minutes. The coal is heated to controlled temperatures between 800{degree} and 1400{degree}F and is converted into char, condensible hydrocarbon liquids, small quantities of water, and non-condensible fuel gases. The coal derived fuel gases could supply all the required process heat, but for convenience, natural gas is used in the experimental unit. The process concept particularly suitable for highly caking coals which cannot be processed in fluidized bed or moving bed furnaces.

  14. A Simulation Learning Approach to Training First Responders for Radiological Emergencies ? A Continuation of Work

    SciTech Connect

    Lake, Joe E; Cross, Butch; Sanders, Robert Lon

    2008-01-01

    Real-time gaming engines, such as Epic Game's Unreal Engine[1], provide an excellent resource as a training environment. These engines provide an alternate reality that can accurately depict not only real world geometry, but they can also achieve realistic physical effects such as radiation fields and blast physics. The real time photorealistic graphics available through the Unreal Engine add to its applicability to this project's needs. Moreover, this engine provides a very efficient means to modify the game's physics modeling, visual effects, and game play structure to fit the ever-evolving needs of a training curriculum. To this end, we have worked to extend the Unreal Engine to incorporate radiation effects dependent on distance from a radiological source, similar to what one would experience in the real world. In order to help better prepare first responders for using the radiological detection equipment vital for mission success, we have continued work, previously described by Sanders and Rhodes [2], on a Geiger counter readout display being implemented and added to the interface's Heads Up Display (HUD) as well as incorporating a physically accurate model within the engine that will allow the first responder to acclimate themselves to the sounds and possible size of the device. Moreover, the Karma Physics Engine, which works in conjunction with the Unreal Engine 2, accurately simulates fluid physics, blast effects, and basic player movements. It is this physics engine that has been the focus of our continued efforts and has been extended to include realistic modeling of radiological effects.

  15. Reservoir Simulation on the Cerro Prieto Geothermal Field: A Continuing Study

    SciTech Connect

    Castaneda, M.; Marquez, R.; Arellano, V.; Esquer, C.A.

    1983-12-15

    The Cerro Prieto geothermal field is a liquid-dominated geothermal reservoir of complex geological and hydrological structure. It is located at the southern end of the Salton-Mexicali trough which includes other geothermal anomalies as Heber and East Mesa. Although in 1973, the initial power plant installed capacity was 75 MW of electrical power, this amount increased to 180 MW in 1981 as field development continued. It is expected to have a generating capacity of 620 MW by the end of 1985, when two new plants will be completely in operation. Questions about field deliverability, reservoir life and ultimate recovery related to planned installations are being presently asked. Numerical modeling studies can give very valuable answers to these questions, even at the early stages in the development of a field. An effort to simulate the Cerro Prieto geothermal reservoir has been undergoing for almost two years. A joint project among Comision Federal de Electricidad (CFE), Instituto de Investigaciones Electricas (IIE) and Intercomp of Houstin, Texas, was created to perform reservoir engineering and simulation studies on this field. The final project objective is tosimulate the behavior of the old field region when production from additional wells located in the undeveloped field zones will be used for feeding the new power plants.

  16. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Zheng, Song; Zhai, Qinglan

    2016-02-01

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn-Hilliard equation which is solved in the frame work of LBE. The scalar convection-diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results.

  17. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  18. Large Eddy Simulations of Double-Ruler Electromagnetic Field Effect on Transient Flow During Continuous Casting

    NASA Astrophysics Data System (ADS)

    Singh, Ramnik; Thomas, Brian G.; Vanka, Surya P.

    2014-06-01

    Transient flow during nominally steady conditions is responsible for many intermittent defects during the continuous casting of steel. The double-ruler electromagnetic field configuration, or "FC-Mold EMBr," is popular in commercial slab casting as it provides independent control of the applied static field near the jet and free surface regions of the mold. In the current study, transient flow in a typical commercial caster is simulated in the absence and in the presence of a double-ruler magnetic field, with rulers of equal strengths. Large eddy simulations with the in-house code CU-FLOW resolve the important transient behavior, using grids of over five million cells with a fast parallel solver. In the absence of a magnetic field, a double-roll pattern is observed, with transient unbalanced behavior, high surface velocities (~0.5 m/s), surface vortex formation, and very large surface-level fluctuations (~±12 mm). Applying the magnetic field suppresses the unbalanced behavior, producing a more complex mold flow pattern, but with much lower surface velocities (~0.1 m/s), and a flat surface level with small level fluctuations (<±1 mm). Nail board measurements taken at this commercial caster, in the absence of the field, matched reasonably well with the calculated results, both quantitatively and qualitatively.

  19. Emerging tools for continuous nutrient monitoring networks: Sensors advancing science and water resources protection

    USGS Publications Warehouse

    Pellerin, Brian; Stauffer, Beth A; Young, Dwane A; Sullivan, Daniel J.; Bricker, Suzanne B.; Walbridge, Mark R; Clyde, Gerard A; Shaw, Denice M

    2016-01-01

    Sensors and enabling technologies are becoming increasingly important tools for water quality monitoring and associated water resource management decisions. In particular, nutrient sensors are of interest because of the well-known adverse effects of nutrient enrichment on coastal hypoxia, harmful algal blooms, and impacts to human health. Accurate and timely information on nutrient concentrations and loads is integral to strategies designed to minimize risk to humans and manage the underlying drivers of water quality impairment. Using nitrate sensors as an example, we highlight the types of applications in freshwater and coastal environments that are likely to benefit from continuous, real-time nutrient data. The concurrent emergence of new tools to integrate, manage and share large data sets is critical to the successful use of nutrient sensors and has made it possible for the field of continuous nutrient monitoring to rapidly move forward. We highlight several near-term opportunities for Federal agencies, as well as the broader scientific and management community, that will help accelerate sensor development, build and leverage sites within a national network, and develop open data standards and data management protocols that are key to realizing the benefits of a large-scale, integrated monitoring network. Investing in these opportunities will provide new information to guide management and policies designed to protect and restore our nation’s water resources.

  20. Continuous distributed phase-plate advances for high-energy laser systems

    NASA Astrophysics Data System (ADS)

    Marozas, J. A.; Collins, T. J. B.; Zuegel, J. D.; McKenty, P. W.; Cao, D.; Fochs, S.; Radha, P. B.

    2016-05-01

    The distributed phase plate (DPP) design code Zhizhoo’ has been used to design full- aperture, continuous near-field transmission optics for a wide variety of high-fidelity focal-spot shapes for high-energy laser systems: OMEGA EP, Dynamic Compression Sector (DCS), and the National Ignition Facility (NIF). The envelope shape, or profile, of the focal spot affects the hydrodynamics of directly driven targets in these laser systems. Controlling the envelope shape to a high degree of fidelity impacts the quality of the ablatively driven implosions. The code Zhizhoo’ not only produces DPP's with great control of the envelope shape, but also spectral and gradient control as well as robustness from near-field phase aberrations. The focal-spot shapes can take on almost any profile from symmetric to irregular patterns and with high fidelity relative to the objective function over many decades of intensity. The control over the near-field phase spectrum and phase gradients offer greater manufacturability of the full- aperture continuous surface-relief pattern. The flexibility and speed of the DPP design code Zhizhoo’ will be demonstrated by showing the wide variety of successful designs that have been made and those that are in progress.

  1. Continuous infusion of 5-fluorouracil with alpha 2b interferon for advanced colorectal carcinoma.

    PubMed Central

    Ferguson, J. E.; Hulse, P.; Lorigan, P.; Jayson, G.; Scarffe, J. H.

    1995-01-01

    Thirty patients with symptomatic colorectal carcinoma were commenced on treatment with 5-fluorouracil (2.5 g week-1) administered by continuous intravenous infusion and alpha 2b interferon (3 x 10(6) U s.c. three times a week). Six out of 30 patients (20%) achieved a partial response. Three patients (10%) had stable disease and 21 patients (70%) progressed on treatment. Twenty patients (67%) completed ten or more weeks of treatment. In nine patients, treatment was withdrawn after 2-9 weeks because of disease progression or death. One patient's treatment was interrupted by emergency surgery. The median survival for all patients was 210 days (7 months). The principal side-effects were oral mucositis (12/30 patients), nausea (8/30 patients) and transient diarrhoea (4/30 patients), and initial constitutional symptoms due to alpha 2b interferon. The combination of low-dose continuous infusional 5-fluorouracil and low-dose alpha 2b interferon is well tolerated but has no obvious advantage over alternative infusional regimens using 5-fluorouracil as a single agent. PMID:7599051

  2. Reproducibility of a continuous ramp lower body negative pressure protocol for simulating hemorrhage

    PubMed Central

    Kay, Victoria L; Rickards, Caroline A

    2015-01-01

    Central hypovolemia elicited by application of lower body negative pressure (LBNP) has been used extensively to simulate hemorrhage in human subjects. Traditional LBNP protocols incorporate progressive steps in pressure held for specific time intervals. The aim of this study was to assess the reproducibility of applying continuous LBNP at a constant rate until presyncope to replicate actual bleeding. During two trials (≥4 weeks intervening), LBNP was applied at a rate of 3 mmHg/min in 18 healthy human subjects (12M; 6F) until the onset of presyncopal symptoms. Heart rate (HR), mean arterial pressure (MAP), stroke volume (SV), total peripheral resistance (TPR), mean middle and posterior cerebral artery velocities (MCAv, PCAv), and cerebral oxygen saturation (ScO2) were measured continuously. Time to presyncope (TTPS) and hemodynamic responses were compared between the two trials. TTPS (1649 ± 98 sec vs. 1690 ± 88 sec; P = 0.47 [t-test]; r = 0.77) and the subsequent magnitude of central hypovolemia (%Δ SV −54 ± 4% vs. −53 ± 4%; P = 0.55) were similar between trials. There were no statistically distinguishable differences at either baseline (P ≥ 0.17) or presyncope between trials for HR, MAP, TPR, mean MCAv, mean PCAv, or ScO2 (P ≥ 0.19). The rate of change from baseline to presyncope for all hemodynamic responses was also similar between trials (P ≥ 0.12). Continuous LBNP applied at a rate of 3 mmHg/min was reproducible in healthy human subjects, eliciting similar reductions in central blood volume and subsequent reflex hemodynamic responses. PMID:26607173

  3. Advanced Method to Estimate Fuel Slosh Simulation Parameters

    NASA Technical Reports Server (NTRS)

    Schlee, Keith; Gangadharan, Sathya; Ristow, James; Sudermann, James; Walker, Charles; Hubert, Carl

    2005-01-01

    The nutation (wobble) of a spinning spacecraft in the presence of energy dissipation is a well-known problem in dynamics and is of particular concern for space missions. The nutation of a spacecraft spinning about its minor axis typically grows exponentially and the rate of growth is characterized by the Nutation Time Constant (NTC). For launch vehicles using spin-stabilized upper stages, fuel slosh in the spacecraft propellant tanks is usually the primary source of energy dissipation. For analytical prediction of the NTC this fuel slosh is commonly modeled using simple mechanical analogies such as pendulums or rigid rotors coupled to the spacecraft. Identifying model parameter values which adequately represent the sloshing dynamics is the most important step in obtaining an accurate NTC estimate. Analytic determination of the slosh model parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices and elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the equations of motion for the mechanical analog are hand-derived, evaluated, and their results are compared with the experimental results. The proposed research is an effort to automate the process of identifying the parameters of the slosh model using a MATLAB/SimMechanics-based computer simulation of the experimental setup. Different parameter estimation and optimization approaches are evaluated and compared in order to arrive at a reliable and effective parameter identification process. To evaluate each parameter identification approach, a simple one-degree-of-freedom pendulum experiment is constructed and motion is induced using an electric motor. By applying the

  4. Advanced Computer Simulations Of Nanomaterials And Stochastic Biological Processes

    NASA Astrophysics Data System (ADS)

    Minakova, Maria S.

    This dissertation consists of several parts. The first two chapters are devoted to of study of dynamic processes in cellular organelles called filopodia. A stochastic kinetics approach is used to describe non-equilibrium evolution of the filopodial system from nano- to micro scales. Dynamic coupling between chemistry and mechanics is also taken into account in order to investigate the influence of focal adhesions on cell motility. The second chapter explores the possibilities and effects of motor enhanced delivery of actin monomers to the polymerizing tips of filopodia, and how the steady-state filopodial length can exceed the limit set by pure diffusion. Finally, we also challenge the currently existing view of active transport and propose a new theoretical model that accurately describes the motor dynamics and concentration profiles seen in experiments in a physically meaningful way. The third chapter is a result of collaboration between three laboratories, as a part of Energy Frontier Research Center at the University of North Carolina at Chapel Hill. The work presented here unified the fields of synthetic chemistry, photochemistry, and computational physical chemistry in order to investigate a novel bio-synthetic compound and its energy transfer capabilities. This particular peptide-based design has never been studied via Molecular Dynamics with high precision, and it is the first attempt known to us to simulate the whole chromophore-peptide complex in solution in order to gain detailed information about its structural and dynamic features. The fourth chapter deals with the non-equilibrium relaxation induced transport of water molecules in a microemulsion. This problem required a different set of methodologies and a more detailed, all-atomistic treatment of the system. We found interesting water clustering effects and elucidated the most probable mechanism of water transfer through oil under the condition of saturated Langmuir monolayers. Together these

  5. Advanced sine wave modulation of continuous wave laser system for atmospheric CO(2) differential absorption measurements.

    PubMed

    Campbell, Joel F; Lin, Bing; Nehrir, Amin R

    2014-02-10

    In this theoretical study, modulation techniques are developed to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. A continuous wave (CW) lidar system using sine waves modulated by maximum length (ML) pseudo-noise (PN) codes is described for making simultaneous online/offline differential absorption measurements. Amplitude and phase-shift keying (PSK) modulated intensity modulation (IM) carriers, in addition to a hybrid-pulse technique are investigated, which exhibit optimal autocorrelation properties. A method is presented to bandwidth limit the ML sequence based on a filter implemented in terms of Jacobi theta functions, which does not significantly degrade the resolution or introduce sidelobes as a means of reducing aliasing and IM carrier bandwidth. PMID:24663259

  6. Continuity and change in friendships in advanced old age: findings from the Berkeley older generation study.

    PubMed

    Field, D

    1999-01-01

    A longitudinal study of friendships between young-old and old-old adults found far more continuity than change in amount of contact with friends. Nevertheless, activities with casual friends more often occurred in groups, whereas activities with close friends were more often concerned with exchanging confidences, with sharing interesting experiences and thoughts, and with helping each other. Gender differences are more pronounced than life-course differences. Men declined in number of new friends, in their desire for close friendships, in the less intimate nature of their interactions with friends, and in involvement in beyond-family activities, while women did not change. Questions about closest friends revealed only a trivial difference between men and women in young-old age; but in old-old age, men (but not women) had declined in many measures of friendship. PMID:10498019

  7. Iron Resources and Oceanic Nutrients: Advancement of Global Environment Simulations

    NASA Astrophysics Data System (ADS)

    Debaar, H. J.

    2002-12-01

    simulated. An existing plankton ecosystem model already well predicts limitation by four nutrients (N, P, Si, Fe) of two algal groups (diatoms and nanoplankton) including export and CO2 air/sea exchange. This is being expanded with 3 other groups of algae and DMS(P)pathways. Next this extended ecosystem model is being simplified while maintaining reliable output for export and CO2/DMS gas exchange. This unit will then be put into two existing OBCM's. Inputs of Fe from above and below into the oceans have been modeled. Moreover a simple global Fe cycling model has been verified versus field data and insights. Two different OBCM's with same upper ocean ecosystem/DMS unit and Fe cycling will be verified versus pre-industrial and present conditions. Next climate change scenario's, notably changes in Fe inputs, will be run, with special attention to climatic feedbacks (warming) on the oceanic cycles and fluxes.

  8. Clinical accuracy of a continuous glucose monitoring system with an advanced algorithm.

    PubMed

    Bailey, Timothy S; Chang, Anna; Christiansen, Mark

    2015-03-01

    We assessed the performance of a modified Dexcom G4 Platinum system with an advanced algorithm, in comparison with frequent venous samples measured on a laboratory reference (YSI) during a clinic session and in comparison to self-monitored blood glucose (SMBG) during home use. Fifty-one subjects with diabetes were enrolled in a prospective multicenter study. Subjects wore 1 sensor for 7-day use and participated in one 12-hour in-clinic session on day 1, 4, or 7 to collect YSI reference venous glucose every 15 minutes and capillary SMBG test every 30 minutes. Carbohydrate consumption and insulin dosing and timing were manipulated to obtain data in low and high glucose ranges. In comparison with the laboratory reference method (n = 2,263) the system provided a mean and median absolute relative differences (ARD) of 9.0% and 7.0%, respectively. The mean absolute difference for CGM was 6.4 mg/dL when the YSIs were within hypoglycemia ranges (≤ 70 mg/dL). The percentage in the clinically accurate Clarke error grid A zone was 92.4% and in the benign error B zone was 7.1%. Majority of the sensors (73%) had an aggregated MARD in reference to YSI ≤ 10%. The MARD of CGM-SMBG for home use was 11.3%. The study showed that the point and rate accuracy, clinical accuracy, reliability, and consistency over the duration of wear and across glycemic ranges were superior to current commercial real-time CGM systems. The performance of this CGM is reaching that of a self-monitoring blood glucose meter in real use environment. PMID:25370149

  9. Achieve Continuous Injection of Solid Fuels into Advanced Combustion System Pressures

    SciTech Connect

    Derek L. Aldred; Timothy Saunders

    2007-03-31

    The overall objective of this project is the development of a mechanical rotary-disk feeder, known as the Stamet Posimetric High Pressure Solids Feeder System, to demonstrate feeding of dry granular coal continuously and controllably into pressurized environments of up to 70 kg/cm2 (1,000 psi). This is the Phase III of the ongoing program. Earlier Phases 1 and II successfully demonstrated feeding into pressures up to 35 kg/cm{sup 2} (500 psi). The final report for those phases was submitted in April 2005. Based on the previous work done in Phases I & II using Powder River Basin coal provided by the PSDF facility in Wilsonville, AL, a Phase III feeder system was designed and built to accomplish the target of feeding the coal into a pressure of 70 kg/cm2 (1,000 psi) and to be capable of feed rates of up to 550 kilograms (1,200lbs) per hour. The drive motor system from Phase II was retained for use on Phase III since projected performance calculations indicated it should be capable of driving the Phase III pump to the target levels. The pump & motor system was installed in a custom built test rig comprising an inlet vessel containing an active live-wall hopper mounted on weigh cells in a support frame, transition into the pump inlet, transition from pump outlet and a receiver vessel containing a receiver drum supported on weigh cells. All pressure containment on the rig was rated to105 kg/cm{sup 2} (1,500psi) to accommodate the final pressure requirement of a proposed Phase IV of the program. A screw conveyor and batch hopper were added to transfer coal at atmospheric pressure from the shop floor up into the test rig to enable continuous feeding up to the capacity of the receiving vessel. Control & monitoring systems were up-rated from the Phase II system to cover the additional features incorporated in the Phase III rig, and provide closer control and expanded monitoring of the entire system. A program of testing and modification was carried out in Stamet's facility

  10. Proposing "the burns suite" as a novel simulation tool for advancing the delivery of burns education.

    PubMed

    Sadideen, Hazim; Wilson, David; Moiemen, Naiem; Kneebone, Roger

    2014-01-01

    Educational theory highlights the importance of contextualized simulation for effective learning. We explored this concept in a burns scenario in a novel, low-cost, high-fidelity, portable, immersive simulation environment (referred to as distributed simulation). This contextualized simulation/distributed simulation combination was named "The Burns Suite" (TBS). A pediatric burn resuscitation scenario was selected after high trainee demand. It was designed on Advanced Trauma and Life Support and Emergency Management of Severe Burns principles and refined using expert opinion through cognitive task analysis. TBS contained "realism" props, briefed nurses, and a simulated patient. Novices and experts were recruited. Five-point Likert-type questionnaires were developed for face and content validity. Cronbach's α was calculated for scale reliability. Semistructured interviews captured responses for qualitative thematic analysis allowing for data triangulation. Twelve participants completed TBS scenario. Mean face and content validity ratings were high (4.6 and 4.5, respectively; range, 4-5). The internal consistency of questions was high. Qualitative data analysis revealed that participants felt 1) the experience was "real" and they were "able to behave as if in a real resuscitation environment," and 2) TBS "addressed what Advanced Trauma and Life Support and Emergency Management of Severe Burns didn't" (including the efficacy of incorporating nontechnical skills). TBS provides a novel, effective simulation tool to significantly advance the delivery of burns education. Recreating clinical challenge is crucial to optimize simulation training. This low-cost approach also has major implications for surgical education, particularly during increasing financial austerity. Alternative scenarios and/or procedures can be recreated within TBS, providing a diverse educational immersive simulation experience. PMID:23877145

  11. WinSRFR: Current Advances in Software for Surface Irrigation Simulation and Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Significant advances have been made over the last decade in the development of software for surface irrigation analysis. WinSRFR is an integrated tool that combines unsteady flow simulation with tools for system evaluation/parameter estimation, system design, and for operational optimization. Ongoi...

  12. Battery Performance of ADEOS (Advanced Earth Observing Satellite) and Ground Simulation Test Results

    NASA Technical Reports Server (NTRS)

    Koga, K.; Suzuki, Y.; Kuwajima, S.; Kusawake, H.

    1997-01-01

    The Advanced Earth Observing Satellite (ADEOS) is developed with the aim of establishment of platform technology for future spacecraft and inter-orbit communication technology for the transmission of earth observation data. ADEOS uses 5 batteries, consists of two packs. This paper describes, using graphs and tables, the ground simulation tests and results that are carried to determine the performance of the ADEOS batteries.

  13. Advancements in the treatment of pediatric acute leukemia and brain tumor - continuous efforts for 100% cure.

    PubMed

    Ju, Hee Young; Hong, Che Ry; Shin, Hee Young

    2014-10-01

    Treatment outcomes of pediatric cancers have improved greatly with the development of improved treatment protocols, new drugs, and better supportive measures, resulting in overall survival rates greater than 70%. Survival rates are highest in acute lymphoblastic leukemia, reaching more than 90%, owing to risk-based treatment through multicenter clinical trials and protocols developed to prevent central nervous system relapse and testicular relapse in boys. New drugs including clofarabine and nelarabine are currently being evaluated in clinical trials, and other targeted agents are continuously being developed. Chimeric antigen receptor-modified T cells are now attracting interest for the treatment of recurrent or refractory disease. Stem cell transplantation is still the most effective treatment for pediatric acute myeloid leukemia (AML). However, in order to reduce treatment-related death after stem cell transplantation, there is need for improved treatments. New drugs and targeted agents are also needed for improved outcome of AML. Surgery and radiation therapy have been the mainstay for brain tumor treatment. However, chemotherapy is becoming more important for patients who are not eligible for radiotherapy owing to age. Stem cell transplant as a means of high dose chemotherapy and stem cell rescue is a new treatment modality and is often repeated for improved survival. Drugs such as temozolomide are new chemotherapeutic options. In order to achieve 100% cure in children with pediatric cancer, every possible treatment modality and effort should be considered. PMID:25379043

  14. Development of advanced, continuous mild gasification process for the production of co-products

    SciTech Connect

    Ness, R.O. Jr.; Aulich, T.R.

    1991-05-01

    The current objective of the University of North Dakota Energy and Environmental Research Center (EERC) mild gasification project is to optimize reaction char and marketable liquids production on a 100-lb/hr scale using Wyodak subbituminous and Indiana No. 3 bituminous coals. Tests performed using the EERC 100-lb/hr process development unit (PDU) include a refractory-cure (Test P001), a test using petroleum coke (Test P002), and tests using Wyodak and Indiana coals. The reactor system used for the 11 PDU tests conducted to date consists of a spouted, fluid-bed carbonizer equipped with an on-line condensation train that yields three boiling point fractions of coal liquids ranging in volatility from about (77{degrees}--750{degrees}F) (25{degrees}--400{degrees}C). The September--December 1990 quarterly report described reaction conditions and the bulk of the analytical results for Tests P010 and P011. This report describes further P010 and P011 analytical work, including the generation of simulated distillation curves for liquid samples on the basis of sulfur content, using gas chromatography coupled with atomic emission detection (GC/AED) analysis. 13 figs., 3 tabs.

  15. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, Amy; Hansman, R. J.

    1992-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) has developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator has been successfully used to evaluate graphical microburst alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  16. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, A.; Hansman, R. John

    1994-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator was successfully used to evaluate graphical microbursts alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  17. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  18. Physics-Based Continuous Simulation of Long-Term Near-Surface Hydrologic Response for the Coos Bay Experimental Catchment

    NASA Astrophysics Data System (ADS)

    Ebel, B. A.; Loague, K.; Montgomery, D. R.; Dietrich, W. E.

    2007-12-01

    The study reported here employed the physics-based InHM to simulate continuous hydrologic response from 1990 through 1996 for the Coos Bay (CB1) experimental catchment. InHM dynamically simulates 3D variably- saturated subsurface flow using Richards equation and 2D surface and open channel flow using the diffusion- wave approximation to the depth-integrated shallow-water equations. The uniqueness of the boundary-value problem (BVP) used in a previous study to successfully simulate three sprinkling experiments was assessed, via model performance evaluation against piezometric and discharge data, for 33 events extracted from the seven- year continuous record. The simulations conducted in this effort suggest the potential for interaction between the deeper water table and near-surface hydrologic response, which is in agreement with the detailed field observations made during the CB1 sprinkling experiments. The InHM simulations could not adequately reproduce the observed pore-water pressures, suggesting that detailed characterization of the locations and connectivities of bedrock fractures would be necessary to simulate distributed hydrologic response at locations where bedrock fracture flow is important. The results from this study suggest that uniqueness is a problem for physics-based models when employing a BVP used successfully for smaller magnitude storms to simulate larger storms. The long-term simulations conducted here, combined with previous event-based hydrologic- response simulations and field-based observations, highlight the challenges in characterizing / simulating fractured bedrock flow at small catchments like CB1.

  19. Wireless Hearing Aid System Simulations using Advanced Design System™: A Behavioral Modeling Approach.

    PubMed

    Singh Rana, Ram; Bin, Tang; Liang, Zhang; Hari Krishna, Garg; De Yun, Wang

    2005-01-01

    The stringent requirements on size and power consumption constrain the conventional hearing aid devices from providing the patients an economic and user friendly solution, specifically for better noise cancellation. With the advancements in technologies such as integrated circuits design, wireless communications and digital signal processing techniques, the wireless hearing aids having multi-microphones, analog, digital and mixed signals and radio frequency signals processing circuits, DSP and programmable units seem to be promising to provide enhanced performance. The focus of this paper is about the system simulation of a typical wireless hearing aid using Agilent Advanced Design System™. The behavioral modeling features are exploited to enable the whole system simulations including electro-acoustic transducers. A few system level simulation results are included. PMID:17282359

  20. Man-vehicle systems research facility advanced aircraft flight simulator throttle mechanism

    NASA Technical Reports Server (NTRS)

    Kurasaki, S. S.; Vallotton, W. C.

    1985-01-01

    The Advanced Aircraft Flight Simulator is equipped with a motorized mechanism that simulates a two engine throttle control system that can be operated via a computer driven performance management system or manually by the pilots. The throttle control system incorporates features to simulate normal engine operations and thrust reverse and vary the force feel to meet a variety of research needs. While additional testing to integrate the work required is principally now in software design, since the mechanical aspects function correctly. The mechanism is an important part of the flight control system and provides the capability to conduct human factors research of flight crews with advanced aircraft systems under various flight conditions such as go arounds, coupled instrument flight rule approaches, normal and ground operations and emergencies that would or would not normally be experienced in actual flight.

  1. The Efficacy of Continued Sorafenib Treatment after Radiologic Confirmation of Progressive Disease in Patients with Advanced Hepatocellular Carcinoma

    PubMed Central

    2016-01-01

    Background Whether radiologically detected progressive disease (PD) is an accurate metric for discontinuing sorafenib treatment in patients with hepatocellular carcinoma (HCC) is unclear. We investigated the efficacy of sorafenib treatment after radiologic confirmation of PD in patients with advanced HCC. Methods We retrospectively analyzed HCC patients treated with sorafenib at Kyushu Medical Center. Six of the 92 patients with radiologically confirmed PD were excluded because they were classified as Child-Pugh C or had an Eastern Cooperative Oncology Group (ECOG) performance status (PS) ≥3; 86 patients were ultimately enrolled. Results Among the 86 patients, 47 continued sorafenib treatment after radiologic confirmation of PD (the continuous group), whereas 39 did not (the discontinuous group). The median survival time (MST) in the continuous group after confirmation was 12.9 months compared with 4.5 months in the discontinuous group (p <0.01). The time to progression in the continuous group after confirmation was 2.6 months compared with 1.4 months in the discontinuous group (p <0.01); it was 4.2 months and 2.1 months in patients who had received sorafenib ≥4 months and <4 months, respectively, before confirmation (p = 0.03). In these subgroups, the post-PD MST was 16.7 months and 9.6 months, respectively (p < 0.01). Independent predictors of overall survival after radiologic detection of PD were (hazard ratio, confidence interval): ECOG PS <2 (0.290, 0.107–0.880), Barcelona Clinical Liver Cancer stage B (0.146, 0.047–0.457), serum α-fetoprotein level ≥400 ng/mL (2.801, 1.355–5.691), and post-PD sorafenib administration (0.279, 0.150–0.510). Conclusion Continuing sorafenib treatment after radiologic confirmation of PD increased survival in patients with advanced HCC. Therefore, radiologically detected PD is not a metric for discontinuation of sorafenib treatment in such patients. PMID:26745625

  2. Simulator training in gastrointestinal endoscopy - From basic training to advanced endoscopic procedures.

    PubMed

    van der Wiel, S E; Küttner Magalhães, R; Rocha Gonçalves, Carla Rolanda; Dinis-Ribeiro, M; Bruno, M J; Koch, A D

    2016-06-01

    Simulator-based gastrointestinal endoscopy training has gained acceptance over the last decades and has been extensively studied. Several types of simulators have been validated and it has been demonstrated that the use of simulators in the early training setting accelerates the learning curve in acquiring basic skills. Current GI endoscopy simulators lack the degree of realism that would be necessary to provide training to achieve full competency or to be applicable in certification. Virtual Reality and mechanical simulators are commonly used in basic flexible endoscopy training, whereas ex vivo and in vivo models are used in training the most advanced endoscopic procedures. Validated models for the training of more routine therapeutic interventions like polypectomy, EMR, stenting and haemostasis are lacking or scarce and developments in these areas should be encouraged. PMID:27345646

  3. Development of a VOR/DME model for an advanced concepts simulator

    NASA Technical Reports Server (NTRS)

    Steinmetz, G. G.; Bowles, R. L.

    1984-01-01

    The report presents a definition of a VOR/DME, airborne and ground systems simulation model. This description was drafted in response to a need in the creation of an advanced concepts simulation in which flight station design for the 1980 era can be postulated and examined. The simulation model described herein provides a reasonable representation of VOR/DME station in the continental United States including area coverage by type and noise errors. The detail in which the model has been cast provides the interested researcher with a moderate fidelity level simulator tool for conducting research and evaluation of navigator algorithms. Assumptions made within the development are listed and place certain responsibilities (data bases, communication with other simulation modules, uniform round earth, etc.) upon the researcher.

  4. Advances in the simulation and automated measurement of well-sorted granular material: 1. Simulation

    USGS Publications Warehouse

    Daniel Buscombe; Rubin, David M.

    2012-01-01

    1. In this, the first of a pair of papers which address the simulation and automated measurement of well-sorted natural granular material, a method is presented for simulation of two-phase (solid, void) assemblages of discrete non-cohesive particles. The purpose is to have a flexible, yet computationally and theoretically simple, suite of tools with well constrained and well known statistical properties, in order to simulate realistic granular material as a discrete element model with realistic size and shape distributions, for a variety of purposes. The stochastic modeling framework is based on three-dimensional tessellations with variable degrees of order in particle-packing arrangement. Examples of sediments with a variety of particle size distributions and spatial variability in grain size are presented. The relationship between particle shape and porosity conforms to published data. The immediate application is testing new algorithms for automated measurements of particle properties (mean and standard deviation of particle sizes, and apparent porosity) from images of natural sediment, as detailed in the second of this pair of papers. The model could also prove useful for simulating specific depositional structures found in natural sediments, the result of physical alterations to packing and grain fabric, using discrete particle flow models. While the principal focus here is on naturally occurring sediment and sedimentary rock, the methods presented might also be useful for simulations of similar granular or cellular material encountered in engineering, industrial and life sciences.

  5. Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    NASA Technical Reports Server (NTRS)

    Montag, Bruce C.; Bishop, Alfred M.; Redfield, Joe B.

    1989-01-01

    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power.

  6. Advanced Simulation of Coupled Earthquake and Tsunami Events (ASCETE) - Simulation Techniques for Realistic Tsunami Process Studies

    NASA Astrophysics Data System (ADS)

    Behrens, Joern; Bader, Michael; Breuer, Alexander N.; van Dinther, Ylona; Gabriel, Alice-A.; Galvez Barron, Percy E.; Rahnema, Kaveh; Vater, Stefan; Wollherr, Stephanie

    2015-04-01

    At the End of phase 1 of the ASCETE project a simulation framework for coupled physics-based rupture generation with tsunami propagation and inundation is available. Adaptive mesh tsunami propagation and inundation by discontinuous Galerkin Runge-Kutta methods allows for accurate and conservative inundation schemes. Combined with a tree-based refinement strategy to highly optimize the code for high-performance computing architectures, a modeling tool for high fidelity tsunami simulations has been constructed. Validation results demonstrate the capacity of the software. Rupture simulation is performed by an unstructured tetrahedral discontinuous Galerking ADER discretization, which allows for accurate representation of complex geometries. The implemented code was nominated for and was selected as a finalist for the Gordon Bell award in high-performance computing. Highly realistic rupture events can be simulated with this modeling tool. The coupling of rupture induced wave activity and displacement with hydrodynamic equations still poses a major problem due to diverging time and spatial scales. Some insight from the ASCETE set-up could be gained and the presentation will focus on the coupled behavior of the simulation system. Finally, an outlook to phase 2 of the ASCETE project will be given in which further development of detailed physical processes as well as near-realistic scenario computations are planned. ASCETE is funded by the Volkswagen Foundation.

  7. Use of MCNPX for Alpha Spectrometry Simulations of a Continuous Air Monitor

    SciTech Connect

    Robert Hayes, Craig Marianno

    2007-01-01

    The purpose of this study was to determine if the alpha energy spectrum in a Passive Implanted Planar Silicon (PIPS) detector, as modeled by MCNPX [1], can be used to design a radon stripping algorithm for a continuous air monitor (CAM). This stripping algorithm would be employed to discriminate naturally occurring radioisotopes from the anthropogenic for nuclear safety -related applications. It is hoped that using an algorithm based on MCNPX simulations, the CAM will not be prone to false alarms when radon levels are dynamic as identified in other CAM systems [2,3]. This work is focused on the design of the next generation air particulate detector (NGAPD) for the United States Navy. The primary isotope of interest is Co-60. This radionuclide emits a beta with an average energy of 96 keV. Therefore, once deposited on the CAM filter, it will produce a beta continuum seen by the PIPS detector. In addition, as radon progeny is deposited on the air filter, these will give rise to characteristic alpha peaks and a beta continuum. This is primarily an issue in port-or land-based applications. Ultimately, measurement of a radon alpha spectrum is desired to predict the amount of beta activity which would be measured from the radon progeny decay chains. All excess beta activity could then be attributed to anthropogenic sources once the radon progeny contributions have been stripped out.

  8. MODEL SIMULATIONS OF CONTINUOUS ION INTERJECTION INTO EBIS TRAP WITH SLANTED ELECTROSTATIC MIRROR.

    SciTech Connect

    PIKIN,A.; KPONOU, A.; ALESSI, J.G.; BEEBE, E.N.; PRELEC, K.; RAPARIA, D.

    2007-08-26

    The efficiency of trapping ions in an EBIS is of primary importance for many applications requiring operations with externally produced ions: RIA breeders, ion sources, traps. At the present time, the most popular method of ion injection is pulsed injection, when short bunches of ions get trapped in a longitudinal trap while traversing the trap region. Continuous trapping is a challenge for EBIS devices because mechanisms which reduce the longitudinal ion energy per charge in a trap (cooling with residual gas, energy exchange with other ions, ionization) are not very effective, and accumulation of ions is slow. A possible approach to increase trapping efficiency is to slant the mirror at the end of the trap which is opposite to the injection end. A slanted mirror will convert longitudinal motion of ions into transverse motion, and, by reducing their longitudinal velocity, prevent these ions from escaping the trap on their way out. The trade off for the increased trapping efficiency this way is an increase in the initial transverse energy of the accumulated ions. The slanted mirror can be realized if the ends of two adjacent electrodes- drift tubes - which act as an electrostatic mirror, are machined to produce a slanted gap, rather than an upright one. Applying different voltages to these electrodes will produce a slanted mirror. The results are presented of 2D and 3D computer simulations of ion injection into a simplified model of EBIS with slanted mirror.

  9. Numerical Simulation of Dendritic Growth of Continuously Cast High Carbon Steel

    NASA Astrophysics Data System (ADS)

    Wang, Weiling; Luo, Sen; Zhu, Miaoyong

    2015-01-01

    Considering the influence of the latent heat released during the solidification of high carbon liquid steel, a cellular automaton (CA) model coupled with the heat transfer was developed to investigate the growth of equiaxed dendrites which is controlled by the solute diffusion during the continuous casting process. Additionally, the growth of columnar dendrites and primary dendrite arm spacings were predicted and measured. The results show that the CA model is able to describe the growth behavior of equiaxed dendrites, especially at 5 K to 7 K melt undercoolings, and the approach adjusting the cooling medium temperature is reliable to keep the undercooling condition stable for equiaxed dendrites although its hysteresis is reinforced as the pre-set undercooling increases. With the increase of the melt undercooling, the growth of equiaxed dendrites becomes faster, and the thickness of dendritic arms increases slightly, however, the thickness of the diffusion layer in front of dendritic tips keeps constant. The growth of thin and tiny columnar dendrites will be confined due to the competition and absorbed by neighboring strong columnar dendrites, giving rise to the coarsening of columnar dendrites, which is observed both from the experimental observation and the numerical simulation. With the decrease of the cooling intensity, columnar dendrites get sparser, primary dendrite arm spacings increase, and secondary dendritic arms become undeveloped.

  10. Simulations of magnetic reversal in continuously distorted artificial spin ice lattices

    NASA Astrophysics Data System (ADS)

    Farmer, Barry; Bhat, Vinayak; Woods, Justin; Hastings, J. Todd; de Long, Lance

    2014-03-01

    Artificial spin ice (ASI) systems consist of lithographically patterned ferromagnetic segments that behave as Ising spins. The honeycomb lattice is an ASI analogue of the Kagomé spin ice lattice found in bulk pyrochlore crystals. We have developed a method to continuously distort the honeycomb lattice such that the pattern vertex spacings follow a Fibonacci chain sequence. The distortions break the rotational symmetry of the honeycomb lattice and alter the segment orientations and lengths such that all vertices retain three-fold coordination, but are no longer equivalent. We have performed micromagnetic simulations (OOMMF) of magnetization reversal for many samples having different strengths of distortion, and found the kinetics of magnetic reversal to be dramatically slowed, and avalanches (sequential switching of neighboring segments) shortened by only small deviations from perfect honeycomb symmetry. The coercivity increases as the distortion is strengthened, which is consistent with the retarded reversal. Research supported by U.S. DoE Grant DE-FG02-97ER45653 and NSF Grant EPS-0814194.

  11. Comparing ensemble projections of flooding against flood estimation by continuous simulation

    NASA Astrophysics Data System (ADS)

    Smith, Andrew; Freer, Jim; Bates, Paul; Sampson, Christopher

    2014-04-01

    Climate impact studies focused on the projection of changing flood risk are increasingly utilized to inform future flood risk policy. These studies typically use the output from global (GCMs) and regional climate models (RCMs). However the direct application of GCM/RCM output is controversial as often significant biases exist in predicted rainfall; instead a number of alternative 'correction' approaches have emerged. In this study an ensemble of RCMs from the ENSEMBLES and UKCP09 projects are applied, via a number of application techniques, to explore the possible impacts of climate change on flooding in the Avon catchment, in the UK. The analysis is conducted under a continuous simulation methodology, using a stochastic rainfall generator to drive the HBV-light rainfall run-off model under a parameter uncertainty framework. This permitted a comparison between the projections produced by differing application approaches, whilst also considering the uncertainty associated with flood risk projections under observed conditions. The results from each of the application approaches project an increase in annual maximum flows under the future (2061-2099) climate scenario. However the magnitude and spread of the projected changes varied significantly. These findings highlight the need to incorporate multiple approaches in climate impact studies focusing on flood risk. Additionally these results outline the significant uncertainties associated with return period estimates under current climate conditions, suggesting that uncertainty over this observed record already poses a challenge to develop robust risk management plans.

  12. Simulation of Space Charge Dynamic in Polyethylene Under DC Continuous Electrical Stress

    NASA Astrophysics Data System (ADS)

    Hamed, Boukhari; Rogti, Fatiha

    2016-06-01

    The space charge dynamic plays a very important role in the aging and breakdown of polymeric insulation materials under high voltage. This is due to the intensification of the local electric field and the attendant chemical-mechanical effects in the vicinity around the trapped charge. In this paper, we have investigated the space charge dynamic in low-density polyethylene under high direct-current voltage, which is evaluated by experimental conditions. The evaluation is on the basis of simulation using a bipolar charge transport model consisting of charge injection, transports, trapping, detrapping, and recombination phenomena. The theoretical formulation of the physical problem is based on the Poisson, the continuity, and the transport equations. Numerical results provide temporal and local distributions of the electric field, the space charge density for the different kinds of charges (net charge density, mobile and trapped of electron density, mobile hole density), conduction and displacement current densities, and the external current. The result shows the appearance of the negative packet-like space charge with a large amount of the bulk under the dc electric field of 100 kV/mm, and the induced distortion of the electric field is largely near to the anode, about 39% higher than the initial electric field applied.

  13. The Osseus platform: a prototype for advanced web-based distributed simulation

    NASA Astrophysics Data System (ADS)

    Franceschini, Derrick; Riecken, Mark

    2016-05-01

    Recent technological advances in web-based distributed computing and database technology have made possible a deeper and more transparent integration of some modeling and simulation applications. Despite these advances towards true integration of capabilities, disparate systems, architectures, and protocols will remain in the inventory for some time to come. These disparities present interoperability challenges for distributed modeling and simulation whether the application is training, experimentation, or analysis. Traditional approaches call for building gateways to bridge between disparate protocols and retaining interoperability specialists. Challenges in reconciling data models also persist. These challenges and their traditional mitigation approaches directly contribute to higher costs, schedule delays, and frustration for the end users. Osseus is a prototype software platform originally funded as a research project by the Defense Modeling & Simulation Coordination Office (DMSCO) to examine interoperability alternatives using modern, web-based technology and taking inspiration from the commercial sector. Osseus provides tools and services for nonexpert users to connect simulations, targeting the time and skillset needed to successfully connect disparate systems. The Osseus platform presents a web services interface to allow simulation applications to exchange data using modern techniques efficiently over Local or Wide Area Networks. Further, it provides Service Oriented Architecture capabilities such that finer granularity components such as individual models can contribute to simulation with minimal effort.

  14. The role of numerical simulation for the development of an advanced HIFU system

    NASA Astrophysics Data System (ADS)

    Okita, Kohei; Narumi, Ryuta; Azuma, Takashi; Takagi, Shu; Matumoto, Yoichiro

    2014-10-01

    High-intensity focused ultrasound (HIFU) has been used clinically and is under clinical trials to treat various diseases. An advanced HIFU system employs ultrasound techniques for guidance during HIFU treatment instead of magnetic resonance imaging in current HIFU systems. A HIFU beam imaging for monitoring the HIFU beam and a localized motion imaging for treatment validation of tissue are introduced briefly as the real-time ultrasound monitoring techniques. Numerical simulations have a great impact on the development of real-time ultrasound monitoring as well as the improvement of the safety and efficacy of treatment in advanced HIFU systems. A HIFU simulator was developed to reproduce ultrasound propagation through the body in consideration of the elasticity of tissue, and was validated by comparison with in vitro experiments in which the ultrasound emitted from the phased-array transducer propagates through the acrylic plate acting as a bone phantom. As the result, the defocus and distortion of the ultrasound propagating through the acrylic plate in the simulation quantitatively agree with that in the experimental results. Therefore, the HIFU simulator accurately reproduces the ultrasound propagation through the medium whose shape and physical properties are well known. In addition, it is experimentally confirmed that simulation-assisted focus control of the phased-array transducer enables efficient assignment of the focus to the target. Simulation-assisted focus control can contribute to design of transducers and treatment planning.

  15. High power continuous wave microwave test bench at 4.6 GHz for experimental advanced superconducting tokamak.

    PubMed

    Ma, Wendong; Hu, Huaichuan; Shan, Jiafang; Xu, Handong; Wang, Mao; Wu, Zege; Zhu, Liang

    2013-01-01

    The lower hybrid current drive (LHCD) is an effective approach for auxiliary heating and non-inductive current drive in the experimental advanced superconducting tokamak. The 6 MW/4.6 GHz LHCD system is being designed and installed with twenty-four 250 KW/4.6 GHz high power klystron amplifiers. The test bench operating at 250 KW/4.6 GHz in continuous wave mode has been set up, which can test and train microwave components for the 6 MW/4.6 GHz LHCD system. In this paper, the system architecture and software of the microwave test bench are presented. Moreover, the test results of these klystrons and microwave units are described here in detail. The long term operation of the test bench and improved performance of all microwave component samples indicated that the related technologies on test bench can be applied in the large scale LHCD systems. PMID:23387646

  16. Simulation of rice plant temperatures using the UC Davis Advanced Canopy-Atmosphere-Soil Algorithm (ACASA)

    NASA Astrophysics Data System (ADS)

    Maruyama, A.; Pyles, D.; Paw U, K.

    2009-12-01

    The thermal environment in the plant canopy affects plants’ growth processes such as flowering and ripening. High temperatures often cause grain sterility and poor filling in serial crops, and reduce their production in tropical and temperate regions. With global warming predicted, these effects have become a major concern worldwide. In this study, we observed the plant body temperature profiles for the rice canopy and simulate them using a higher-order closure micrometeorological model to understand the relationship between plant temperatures and atmospheric condition. Experiments were conducted in rice paddy during 2007-summer season under warm temperate climate in Japan. Leaf temperatures at three different height (0.3, 0.5, 0.7m) and panicle temperatures at 0.9m were measured using fine-thermocouples. The UC Davis Advanced Canopy-Atmosphere-Soil Algorithm (ACASA) was used to calculate plant body temperature profiles in the canopy. ACASA is based on the radiation transfer, higher-order closure of turbulent equations for mass and heat exchange, and detailed plant physiological parameterization for the canopy-atmosphere-soil system. Water temperature was almost constant of 21-23 C throughout the summer because of continuous irrigation. Therefore, larger difference between air temperature at 2 m and water temperature was found on daytime. Observed leaf/panicle temperature was lower near the water surface and higher on upper layer in the canopy. Difference of temperatures between 0.3 m and 0.9 m was around 3-4 C for daytime, and around 1-2 C for nighttime. Calculated result of ACASA recreated these trends of plant temperature profile sufficiently. However, the relationship between plant and air temperature in the canopy was a little different from observed, i.e. observed leaf/panicle temperature were almost the same as air temperature, in contrast the simulated air temperature was 0.5-1.5 C higher than plant temperatures for the both of daytime and night time

  17. Advanced Simulation Capability for Environmental Management - Current Status and Phase II Demonstration Results - 13161

    SciTech Connect

    Seitz, Roger R.; Flach, Greg; Freshley, Mark D.; Freedman, Vicky; Gorton, Ian; Dixon, Paul; Moulton, J. David; Hubbard, Susan S.; Faybishenko, Boris; Steefel, Carl I.; Finsterle, Stefan; Marble, Justin

    2013-07-01

    The U.S. Department of Energy (US DOE) Office of Environmental Management (EM), Office of Soil and Groundwater, is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of computer software capabilities with an emphasis on integration of capabilities in FY12. Capability development is occurring for both the Platform and Integrated Tool-sets and High-Performance Computing (HPC) Multi-process Simulator. The Platform capabilities provide the user interface and tools for end-to-end model development, starting with definition of the conceptual model, management of data for model input, model calibration and uncertainty analysis, and processing of model output, including visualization. The HPC capabilities target increased functionality of process model representations, tool-sets for interaction with Platform, and verification and model confidence testing. The Platform and HPC capabilities are being tested and evaluated for EM applications in a set of demonstrations as part of Site Applications Thrust Area activities. The Phase I demonstration focusing on individual capabilities of the initial tool-sets was completed in 2010. The Phase II demonstration completed in 2012 focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site deep vadose zone (BC Cribs) served as an application site for an end-to-end demonstration of capabilities, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations

  18. Continuous-Readout Simulation with FairRoot on the Example of the P̅ANDA Experiment

    NASA Astrophysics Data System (ADS)

    Stockmanns, Tobias

    2015-12-01

    Future particle physics experiments are searching more and more for rare decays which have similar signatures in the detector as the huge background. For those events usually simple selection criteria do not exist, which makes it impossible to implement a hardware- trigger based on a small subset of detector data. Therefore, all the detector data is read out continuously and processed on-the-fly to achieve a data reduction suitable for permanent storage and detailed analysis. To cope with these requirements of a triggerless readout, also the simulation software has to be adopted to add a continuous data production with pile-up effects and event overlapping in addition to the event-wise simulation. This simulated data is of utmost importance to get a realistic detector simulation, to develop event-building algorithms and to determine the hardware requirements for the DAQ system of the experiments. The possibility to simulate a continuous data stream was integrated into the FairRoot simulation framework. This running mode is called time-based simulation and a lot of effort was taken that one can switch seamlessly between the event-based and the time-based simulation mode. One experiment, which is using this new feature, is the PANDA experiment. It utilizes a quasicontinuous antiproton beam with a mean time between interactions of 50 ns. Because of the unbunched structure of the beam the interaction time follows a Poisson statistic with a high probability of events with short time distances. Depending on the time resolution of the subdetectors this leads to an overlap of up to 20 events inside a sub-detector. This makes it an ideal test candidate for the time-based simulation. In the following text an overview of the implementation of the time-based simulation mode in FairRoot is given and some examples for the P̅ANDA experiment are shown.

  19. Advanced simulation technology for etching process design for CMOS device applications

    NASA Astrophysics Data System (ADS)

    Kuboi, Nobuyuki; Fukasawa, Masanaga; Tatsumi, Tetsuya

    2016-07-01

    Plasma etching is a critical process for the realization of high performance in the next generation of CMOS devices. To predict and control fluctuations in the etching properties accurately during mass production, it is essential that etching process simulation technology considers fluctuations in the plasma chamber wall conditions, the effects of by-products on the critical dimensions, the Si recess dependence on the wafer open area ratio and local pattern structure, and the time-dependent plasma-induced damage distribution associated with the three-dimensional feature scale profile at the 100 nm level. This consideration can overcome the issues with conventional simulations performed under the assumed ideal conditions, which are not accurate enough for practical process design. In this article, these advanced process simulation technologies are reviewed, and, from the results of suitable process simulations, a new etching system that automatically controls the etching properties is proposed to enable stable CMOS device fabrication with high yields.

  20. Integrating advanced materials simulation techniques into an automated data analysis workflow at the Spallation Neutron Source

    SciTech Connect

    Borreguero Calvo, Jose M; Campbell, Stuart I; Delaire, Olivier A; Doucet, Mathieu; Goswami, Monojoy; Hagen, Mark E; Lynch, Vickie E; Proffen, Thomas E; Ren, Shelly; Savici, Andrei T; Sumpter, Bobby G

    2014-01-01

    This presentation will review developments on the integration of advanced modeling and simulation techniques into the analysis step of experimental data obtained at the Spallation Neutron Source. A workflow framework for the purpose of refining molecular mechanics force-fields against quasi-elastic neutron scattering data is presented. The workflow combines software components to submit model simulations to remote high performance computers, a message broker interface for communications between the optimizer engine and the simulation production step, and tools to convolve the simulated data with the experimental resolution. A test application shows the correction to a popular fixed-charge water model in order to account polarization effects due to the presence of solvated ions. Future enhancements to the refinement workflow are discussed. This work is funded through the DOE Center for Accelerating Materials Modeling.

  1. Advances in POST2 End-to-End Descent and Landing Simulation for the ALHAT Project

    NASA Technical Reports Server (NTRS)

    Davis, Jody L.; Striepe, Scott A.; Maddock, Robert W.; Hines, Glenn D.; Paschall, Stephen, II; Cohanim, Babak E.; Fill, Thomas; Johnson, Michael C.; Bishop, Robert H.; DeMars, Kyle J.; Sostaric, Ronald r.; Johnson, Andrew E.

    2008-01-01

    Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining design and integration capability and system performance of the lunar descent and landing system and environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. The POST2 simulation provides a six degree-of-freedom capability necessary to test, design and operate a descent and landing system for successful lunar landing. This paper presents advances in the development and model-implementation of the POST2 simulation, as well as preliminary system performance analysis, used for the testing and evaluation of ALHAT project system models.

  2. Continuous separation of protein loaded nanoparticles by simulated moving bed chromatography.

    PubMed

    Satzer, Peter; Wellhoefer, Martin; Jungbauer, Alois

    2014-07-01

    For scale up and efficient production of protein loaded nanoparticles continuous separation by size exclusion chromatography in simulated moving bed (SMB) mode helps do reduce unbound protein concentration and increase yields for perfectly covered particles. Silica nanoparticles were loaded with an excess of beta casein or bovine serum albumin (BSA) and the loaded particles purified by size exclusion chromatography using Sephacryl300 as stationary phase in a four zone SMB. We determined our working points for the SMB from batch separations and the triangle theory described by Mazzotti et al. with an SMB setup of one Sephacryl300 26/70mm column per zone with switch times of 5min for BSA and 7min for beta casein. In the case of BSA the Raffinate contained loaded nanoparticles of 63% purity with 98% recovery and the extract was essentially particle free (95% purity). We showed that the low purity of the Raffinate was only due to BSA multimers present in the used protein solution. In the case of beta casein where no multimers are present we achieved 89% purity and 90% recovery of loaded nanoparticles in the Raffinate and an extract free of particles (92% purity). Using a tangential flow filtration unit with 5kDa cutoff membrane we proved that the extract can be concentrated for recycling of protein and buffer. The calculated space-time-yield for loaded nanoparticles was 0.25g of loaded nanoparticles per hour and liter of used resin. This proves that the presented process is suitable for large scale production for industrial purposes. PMID:24866563

  3. 2D Flood Modelling Using Advanced Terrain Analysis Techniques And A Fully Continuous DEM-Based Rainfall-Runoff Algorithm

    NASA Astrophysics Data System (ADS)

    Nardi, F.; Grimaldi, S.; Petroselli, A.

    2012-12-01

    Remotely sensed Digital Elevation Models (DEMs), largely available at high resolution, and advanced terrain analysis techniques built in Geographic Information Systems (GIS), provide unique opportunities for DEM-based hydrologic and hydraulic modelling in data-scarce river basins paving the way for flood mapping at the global scale. This research is based on the implementation of a fully continuous hydrologic-hydraulic modelling optimized for ungauged basins with limited river flow measurements. The proposed procedure is characterized by a rainfall generator that feeds a continuous rainfall-runoff model producing flow time series that are routed along the channel using a bidimensional hydraulic model for the detailed representation of the inundation process. The main advantage of the proposed approach is the characterization of the entire physical process during hydrologic extreme events of channel runoff generation, propagation, and overland flow within the floodplain domain. This physically-based model neglects the need for synthetic design hyetograph and hydrograph estimation that constitute the main source of subjective analysis and uncertainty of standard methods for flood mapping. Selected case studies show results and performances of the proposed procedure as respect to standard event-based approaches.

  4. In Situ Simulation in Continuing Education for the Health Care Professions: A Systematic Review

    ERIC Educational Resources Information Center

    Rosen, Michael A.; Hunt, Elizabeth A.; Pronovost, Peter J.; Federowicz, Molly A.; Weaver, Sallie J.

    2012-01-01

    Introduction: Education in the health sciences increasingly relies on simulation-based training strategies to provide safe, structured, engaging, and effective practice opportunities. While this frequently occurs within a simulation center, in situ simulations occur within an actual clinical environment. This blending of learning and work…

  5. CAPE-OPEN Integration for Advanced Process Engineering Co-Simulation

    SciTech Connect

    Zitney, S.E.

    2006-11-01

    This paper highlights the use of the CAPE-OPEN (CO) standard interfaces in the Advanced Process Engineering Co-Simulator (APECS) developed at the National Energy Technology Laboratory (NETL). The APECS system uses the CO unit operation, thermodynamic, and reaction interfaces to provide its plug-and-play co-simulation capabilities, including the integration of process simulation with computational fluid dynamics (CFD) simulation. APECS also relies heavily on the use of a CO COM/CORBA bridge for running process/CFD co-simulations on multiple operating systems. For process optimization in the face of multiple and some time conflicting objectives, APECS offers stochastic modeling and multi-objective optimization capabilities developed to comply with the CO software standard. At NETL, system analysts are applying APECS to a wide variety of advanced power generation systems, ranging from small fuel cell systems to commercial-scale power plants including the coal-fired, gasification-based FutureGen power and hydrogen production plant.

  6. Development and integration of the Army's Advanced Multispectral Simulation Test Acceptance Resource (AMSTAR) HWIL facilities

    NASA Astrophysics Data System (ADS)

    LeSueur, Kenneth G.; Lowry, William; Morris, Joe

    2006-05-01

    The Advanced Multispectral Simulation Test Acceptance Resource (AMSTAR) is a suite of state-of-the-art hardware-in-the-loop (HWIL) simulation / test capabilities designed to meet the life-cycle testing needs of multi-spectral systems. This paper presents the major AMSTAR facility design concepts and each of the Millimeter Wave (MMW), Infrared (IR), and Semi-Active Laser (SAL) in-band scene generation and projection system designs. The emergence of Multispectral sensors in missile systems necessitates capabilities such as AMSTAR to simultaneous project MMW, IR, and SAL wave bands into a common sensor aperture.

  7. Development and integration of the Army's advanced multispectral simulation test acceptance resource (AMSTAR) HWIL facilities

    NASA Astrophysics Data System (ADS)

    LeSueur, Kenneth G.; Lowry, William; Morris, Joe

    2005-05-01

    The Advanced Multispectral Simulation Test Acceptance Resource (AMSTAR) is a suite of state-of-the-art Hardware-In-the-Loop (HWIL) simulation / test capabilities designed to meet the life-cycle testing needs of multi-spectral systems. This paper presents the major AMSTAR facility design concepts and each of the Millimeter Wave (MMW), Infrared (IR), and Semi-Active Laser (SAL) in-band scene generation and projection system designs. The emergence of Multispectral sensors in missile systems necessitates capabilities such as AMSTAR to simultaneous project MMW, IR, and SAL wave bands into a common sensor aperture.

  8. Accuracy of a Decision Aid for Advance Care Planning: Simulated End-of-Life Decision Making

    PubMed Central

    Levi, Benjamin H.; Heverley, Steven R.; Green, Michael J.

    2013-01-01

    Purpose Advance directives have been criticized for failing to help physicians make decisions consistent with patients’ wishes. This pilot study sought to determine if an interactive, computer-based decision aid that generates an advance directive can help physicians accurately translate patients’ wishes into treatment decisions. Methods We recruited 19 patient-participants who had each previously created an advance directive using a computer-based decision aid, and 14 physicians who had no prior knowledge of the patient-participants. For each advance directive, three physicians were randomly assigned to review the advance directive and make five to six treatment decisions for each of six (potentially) end-of-life clinical scenarios. From the three individual physicians’ responses, a “consensus physician response” was generated for each treatment decision (total decisions = 32). This consensus response was shared with the patient whose advance directive had been reviewed, and she/he was then asked to indicate how well the physician translated his/her wishes into clinical decisions. Results Patient-participants agreed with the consensus physician responses 84 percent (508/608) of the time, including 82 percent agreement on whether to provide mechanical ventilation, and 75 percent on decisions about cardiopulmonary resuscitation (CPR). Across the six vignettes, patient-participants’ rating of how well physicians translated their advance directive into medical decisions was 8.4 (range = 6.5–10, where 1 = extremely poorly, and 10 = extremely well). Physicians’ overall rating of their confidence at accurately translating patients’ wishes into clinical decisions was 7.8 (range = 6.1–9.3, 1 = not at all confident, 10 = extremely confident). Conclusion For simulated cases, a computer-based decision aid for advance care planning can help physicians more confidently make end-of-life decisions that patients will endorse. PMID:22167985

  9. Advanced Methodology for Simulation of Complex Flows Using Structured Grid Systems

    NASA Technical Reports Server (NTRS)

    Steinthorsson, Erlendur; Modiano, David

    1995-01-01

    Detailed simulations of viscous flows in complicated geometries pose a significant challenge to current capabilities of Computational Fluid Dynamics (CFD). To enable routine application of CFD to this class of problems, advanced methodologies are required that employ (a) automated grid generation, (b) adaptivity, (c) accurate discretizations and efficient solvers, and (d) advanced software techniques. Each of these ingredients contributes to increased accuracy, efficiency (in terms of human effort and computer time), and/or reliability of CFD software. In the long run, methodologies employing structured grid systems will remain a viable choice for routine simulation of flows in complex geometries only if genuinely automatic grid generation techniques for structured grids can be developed and if adaptivity is employed more routinely. More research in both these areas is urgently needed.

  10. Overview of the Consortium for the Advanced Simulation of Light Water Reactors (CASL)

    NASA Astrophysics Data System (ADS)

    Kulesza, Joel A.; Franceschini, Fausto; Evans, Thomas M.; Gehin, Jess C.

    2016-02-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) was established in July 2010 for the purpose of providing advanced modeling and simulation solutions for commercial nuclear reactors. The primary goal is to provide coupled, higher-fidelity, usable modeling and simulation capabilities than are currently available. These are needed to address light water reactor (LWR) operational and safety performance-defining phenomena that are not yet able to be fully modeled taking a first-principles approach. In order to pursue these goals, CASL has participation from laboratory, academic, and industry partners. These partners are pursuing the solution of ten major "Challenge Problems" in order to advance the state-of-the-art in reactor design and analysis to permit power uprates, higher burnup, life extension, and increased safety. At present, the problems being addressed by CASL are primarily reactor physics-oriented; however, this paper is intended to introduce CASL to the reactor dosimetry community because of the importance of reactor physics modelling and nuclear data to define the source term for that community and the applicability and extensibility of the transport methods being developed.

  11. QUANTITY-QUALITY SIMULATION (QQS) A DETAILED CONTINUOUS PLANNING MODEL FOR URBAN RUNOFF CONTROL. VOLUME II. USERS'S MANUAL

    EPA Science Inventory

    To calculate urban stormwater and combined sewer overflow pollution and means for its control, a comprehensive mathematical model is presented. The model (Quantity-Quality Simulation) operates in a continuous mode and accounts for the unsteady runoff and overflow behavior of tota...

  12. Advanced Simulation in Undergraduate Pilot Training: Automatic Instructional System. Final Report for the Period March 1971-January 1975.

    ERIC Educational Resources Information Center

    Faconti, Victor; Epps, Robert

    The Advanced Simulator for Undergraduate Pilot Training (ASUPT) was designed to investigate the role of simulation in the future Undergraduate Pilot Training (UPT) program. The Automated Instructional System designed for the ASUPT simulator was described in this report. The development of the Automated Instructional System for ASUPT was based upon…

  13. Evaluation of the Efficacy of Combined Continuous Arterial Infusion and Systemic Chemotherapy for the Treatment of Advanced Pancreatic Carcinoma

    SciTech Connect

    Ikeda, O. Kusunoki, S.; Kudoh, K.; Takamori, H.; Tsuji, T.; Kanemitsu, K.; Yamashita, Y.

    2006-06-15

    Purpose. To evaluate the effects of combined continuous transcatheter arterial infusion (CTAI) and systemic chemotherapy in patients with advanced pancreatic carcinoma. Methods. CTAI was performed in 17 patients with stage IV pancreatic cancer with (n = 11) or without (n = 6) liver metastasis. The reservoir was transcutaneously implanted with the help of angiography. The inferior pancreatic artery (IPA) was embolized to achieve delivery of the pancreatic blood supply through only the celiac artery. The systemic administration of gemcitabine was combined with the infusion of 5-fluorouracil via the reservoir. Treatment effects were evaluated based on the primary tumor size, liver metastasis, and survival time and factors such as tumor size, tumor location, and stage of pancreatic carcinoma; the embolized arteries were analyzed with respect to treatment effects and prognosis. Results. A catheter was fixed in the gastroduodenal artery and splenic artery in 10 and 7 patients, respectively. Complete peripancreatic arterial occlusion was successful in 10 patients. CT showed a decrease in tumor size in 6 of 17 (35%) patients and a decrease in liver metastases in 6 of 11 (55%) patients. The survival time ranged from 4 to 18 months (mean {+-} SD, 8.8 {+-} 1.5 months). Complete embolization of arteries surrounding the pancreas was achieved in 10 patients; they manifested superior treatment effects and prognoses (p < 0.05). Conclusion. In patients with advanced pancreatic cancer, long-term CTAI with systemic chemotherapy appeared to be effective not only against the primary tumor but also against liver metastases. Patients with successfully occluded peripancreatic arteries tended to survive longer.

  14. Intermittent versus continuous androgen deprivation for locally advanced, recurrent or metastatic prostate cancer: a systematic review and meta-analysis

    PubMed Central

    2014-01-01

    Background Prostate cancer is the most common cancer in older men in the United States (USA) and Western Europe. Androgen deprivation (AD) constitutes, in most cases, the first-line of treatment for these cases. The negative impact of CAD in quality of life, secondary to the adverse events of sustained hormone deprivation, plus the costs of this therapy, motivated the intermittent treatment approach. The objective of this study is to to perform a systematic review and meta-analysis of all randomized controlled trials that compared the efficacy and adverse events profile of intermittent versus continuous androgen deprivation for locally advanced, recurrent or metastatic hormone-sensitive prostate cancer. Methods Several databases were searched, including MEDLINE, EMBASE, LILACS, and CENTRAL. The endpoints were overall survival (OS), cancer-specific survival (CSS), time to progression (TTP) and adverse events. We performed a meta-analysis (MA) of the published data. The results were expressed as Hazard Ratio (HR) or Risk Ratio (RR), with their corresponding 95% Confidence Intervals (CI 95%). Results The final analysis included 13 trials comprising 6,419 patients with hormone-sensitive prostate cancer. TTP was similar in patients who received intermittent androgen deprivation (IAD) or continuous androgen deprivation (CAD) (fixed effect: HR = 1.04; CI 95% = 0.96 to 1.14; p = 0.3). OS and CSS were also similar in patients treated with IAD or CAD (OS: fixed effect: HR = 1.02; CI 95% = 0.95 to 1.09; p = 0.56 and CSS: fixed effect: HR = 1.06; CI 95% = 0.96 to 1.18; p = 0.26). Conclusion Overall survival was similar between IAD and CAD in patients with locally advanced, recurrent or metastatic hormone-sensitive prostate cancer. Data on CSS are weak and the benefits of IAD on this outcome remain uncertain. Impact in QoL was similar for both groups, however, sexual activity scores were higher and the incidence of hot flushes was lower in

  15. Validation of an Advanced Material Model for Simulating the Impact and Shock Response of Composite Materials

    NASA Astrophysics Data System (ADS)

    Clegg, Richard A.; Hayhurst, Colin J.; Nahme, Hartwig

    2001-06-01

    Validation of an advanced continuum based numerical model for the simulation of the shock response of composite materials during high rate transient dynamic loading is described. The constitutive model, implemented in AUTODYN-2D and 3D, allows for the representation of non-linear shock effects in combination with orthotropic stiffness and damage. Simulations of uniaxial flyer plate experiments on aramid and polyethylene fibre composite systems are presented and compared with experiment. The continuum model is shown to reproduce well the experimental VISAR velocity traces at the rear surface of the targets. Finally, practical application of the model as implemented in AUTODYN is demonstrated through the simulation of ballistic and hypervelocity impact events. Comparison with experiment is given where possible.

  16. Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors

    SciTech Connect

    Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.; Mitchell, Mark R.; Gore, Bryan F.; Faris, Drury K.

    2009-10-09

    The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected to come from increasingly diverse educational and experiential backgrounds.

  17. Do Advance Yield Markings Increase Safe Driver Behaviors at Unsignalized, Marked Midblock Crosswalks? Driving Simulator Study

    PubMed Central

    Gómez, Radhameris A.; Samuel, Siby; Gerardino, Luis Roman; Romoser, Matthew R. E.; Collura, John; Knodler, Michael; Fisher, Donald L.

    2012-01-01

    In the United States, 78% of pedestrian crashes occur at noninter-section crossings. As a result, unsignalized, marked midblock crosswalks are prime targets for remediation. Many of these crashes occur under sight-limited conditions in which the view of critical information by the driver or pedestrian is obstructed by a vehicle stopped in an adjacent travel or parking lane on the near side of the crosswalk. Study of such a situation on the open road is much too risky, but study of the situation in a driving simulator is not. This paper describes the development of scenarios with sight limitations to compare potential vehicle–pedestrian conflicts on a driving simulator under conditions with two different types of pavement markings. Under the first condition, advance yield markings and symbol signs (prompts) that indicated “yield here to pedestrians” were used to warn drivers of pedestrians at marked, midblock crosswalks. Under the second condition, standard crosswalk treatments and prompts were used to warn drivers of these hazards. Actual crashes as well as the drivers' point of gaze were measured to determine if the drivers approaching a marked midblock crosswalk looked for pedestrians in the crosswalk more frequently and sooner in high-risk scenarios when advance yield markings and prompts were present than when standard markings and prompts were used. Fewer crashes were found to occur with advance yield markings. Drivers were also found to look for pedestrians much more frequently and much sooner with advance yield markings. The advantages and limitations of the use of driving simulation to study problems such as these are discussed. PMID:23082040

  18. Mission simulation as an approach to develop requirements for automation in Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.; Eckelkamp, R. E.; Barta, D. J.; Dragg, J.; Henninger, D. L. (Principal Investigator)

    1996-01-01

    This paper examines mission simulation as an approach to develop requirements for automation and robotics for Advanced Life Support Systems (ALSS). The focus is on requirements and applications for command and control, control and monitoring, situation assessment and response, diagnosis and recovery, adaptive planning and scheduling, and other automation applications in addition to mechanized equipment and robotics applications to reduce the excessive human labor requirements to operate and maintain an ALSS. Based on principles of systems engineering, an approach is proposed to assess requirements for automation and robotics using mission simulation tools. First, the story of a simulated mission is defined in terms of processes with attendant types of resources needed, including options for use of automation and robotic systems. Next, systems dynamics models are used in simulation to reveal the implications for selected resource allocation schemes in terms of resources required to complete operational tasks. The simulations not only help establish ALSS design criteria, but also may offer guidance to ALSS research efforts by identifying gaps in knowledge about procedures and/or biophysical processes. Simulations of a planned one-year mission with 4 crewmembers in a Human Rated Test Facility are presented as an approach to evaluation of mission feasibility and definition of automation and robotics requirements.

  19. Retention of Advanced Cardiac Life Support Knowledge and Skills Following High-Fidelity Mannequin Simulation Training

    PubMed Central

    Sen, Sanchita; Finn, Laura A.; Cawley, Michael J.

    2015-01-01

    Objective. To assess pharmacy students’ ability to retain advanced cardiac life support (ACLS) knowledge and skills within 120 days of previous high-fidelity mannequin simulation training. Design. Students were randomly assigned to rapid response teams of 5-6. Skills in ACLS and mannequin survival were compared between teams some members of which had simulation training 120 days earlier and teams who had not had previous training. Assessment. A checklist was used to record and assess performance in the simulations. Teams with previous simulation training (n=10) demonstrated numerical superiority to teams without previous training (n=12) for 6 out of 8 (75%) ACLS skills observed, including time calculating accurate vasopressor infusion rate (83 sec vs 113 sec; p=0.01). Mannequin survival was 37% higher for teams who had previous simulation training, but this result was not significant (70% vs 33%; p=0.20). Conclusion. Teams with students who had previous simulation training demonstrated numerical superiority in ACLS knowledge and skill retention within 120 days of previous training compared to those who had no previous training. Future studies are needed to add to the current evidence of pharmacy students’ and practicing pharmacists’ ACLS knowledge and skill retention. PMID:25741028

  20. Advanced virtual energy simulation training and research: IGCC with CO2 capture power plant

    SciTech Connect

    Zitney, S.; Liese, E.; Mahapatra, P.; Bhattacharyya, D.; Provost, G.

    2011-01-01

    In this presentation, we highlight the deployment of a real-time dynamic simulator of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture at the Department of Energy's (DOE) National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTARTM) Center. The Center was established as part of the DOE's accelerating initiative to advance new clean coal technology for power generation. IGCC systems are an attractive technology option, generating low-cost electricity by converting coal and/or other fuels into a clean synthesis gas mixture in a process that is efficient and environmentally superior to conventional power plants. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Fueled with coal, petroleum coke, and/or biomass, the gasification island of the simulated IGCC plant consists of two oxygen-blown, downward-fired, entrained-flow, slagging gasifiers with radiant syngas coolers and two-stage sour shift reactors, followed by a dual-stage acid gas removal process for CO{sub 2} capture. The combined cycle island consists of two F-class gas turbines, steam turbine, and a heat recovery steam generator with three-pressure levels. The dynamic simulator can be used for normal base-load operation, as well as plant start-up and shut down. The real-time dynamic simulator also responds satisfactorily to process disturbances, feedstock blending and switchovers, fluctuations in ambient conditions, and power demand load shedding. In addition, the full-scope simulator handles a wide range of abnormal situations, including equipment malfunctions and failures, together with changes initiated through actions from plant field operators. By providing a comprehensive IGCC operator training system, the AVESTAR Center is poised to develop a

  1. A continuous mixing model for pdf simulations and its applications to combusting shear flows

    NASA Technical Reports Server (NTRS)

    Hsu, A. T.; Chen, J.-Y.

    1991-01-01

    The problem of time discontinuity (or jump condition) in the coalescence/dispersion (C/D) mixing model is addressed in this work. A C/D mixing model continuous in time is introduced. With the continuous mixing model, the process of chemical reaction can be fully coupled with mixing. In the case of homogeneous turbulence decay, the new model predicts a pdf very close to a Gaussian distribution, with finite higher moments also close to that of a Gaussian distribution. Results from the continuous mixing model are compared with both experimental data and numerical results from conventional C/D models.

  2. The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering

    NASA Technical Reports Server (NTRS)

    Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen

    2006-01-01

    This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.

  3. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. PMID:24464989

  4. Transesterification of vegetable oils: Simulating the replacement of batch reactors with continuous reactors.

    PubMed

    Fonseca, Felipe A S; Vidal-Vieira, José A; Ravagnani, Sergio P

    2010-11-01

    A kinetic model was employed to represent biodiesel production via transesterification of vegetable oils. Reaction rate constants found in the open literature were used in order to compare the behavior of batch and continuous processes. A single continuous stirred tank reactor (CSTR) under the usual operation conditions was not capable of achieving the same productivity as a batch process. However, when reactors in series were used, the continuous process presented a behavior similar to batch processes. As a result, it was evidenced that a series of CSTRs can be an industrially feasible choice for replacing batch transesterification reactors in large scale biodiesel plants. Further, it was shown that the loss in productivity caused by changing from batch to continuous process can be compensated by means of using higher catalyst concentrations. PMID:20566283

  5. Design, simulation and evaluation of advanced display concepts for the F-16 control configured vehicle

    NASA Technical Reports Server (NTRS)

    Klein, R. W.; Hollister, W. M.

    1982-01-01

    Advanced display concepts to augment the tracking ability of the F-16 Control Configured Vehicle (CCV) were designed, simulated, and evaluated. A fixed-base simulator was modified to represent the F-16 CCV. An isometric sidearm control stick and two-axis CCV thumb button were installed in the cockpit. The forward cockpit CRT was programmed to present an external scene (numbered runway, horizon) and the designed Heads Up Display. The cockpit interior was modified to represent a fighter and the F-16 CCV dynamics and direct lift and side force modes were programmed. Compensatory displays were designed from man-machine considerations. Pilots evaluated the Heads up Display and compensatory displays during simulated descents in the presence of several levels of filtered, zero-mean winds gusts. During a descent from 2500 feet to the runway, the pilots tracked a point on the runway utilizing the basic F-16, F-16 CCV, and F-16 CCV with advanced displays. Substantial tracking improvements resulted utilizing the CCV modes, and the displays were found to even further enhance the tracking ability of the F-16 CCV.

  6. Validation of an Advanced Material Model for Simulating the Impact and Shock Response of Composite Materials

    NASA Astrophysics Data System (ADS)

    Clegg, Richard A.; Hayhurst, Colin J.; Nahme, Hartwig

    2002-07-01

    Composite materials are now commonly used as ballistic and hypervelocity protection materials and the demand for simulation of impact on these materials is increasing. A new material model specifically designed for the shock response of anisotropic materials has been developed and implemented in the hydrocode AUTODYN. The model allows for the representation of non-linear shock effects in combination with anisotropic material stiffness and damage. The coupling of the equation of state and anisotropic response is based on the methodology proposed by Anderson et al. [2]. An overview of the coupled formulation is described in order to point out the important assumptions, key innovations and basic theoretical framework. The coupled model was originally developed by Century Dynamics and Fhg-EMI for assessing the hypervelocity impact response of composite satellite protection systems [1]. It was also identified that the developed model should also offer new possibilities and capabilities for modelling modern advanced armour materials. Validation of the advanced composite model is firstly shown via simulations of uniaxial strain flyer plate experiments on aramid and polyethylene fibre composite systems. Finally, practical application of the model as implemented in AUTODYN is demonstrated through the simulation of ballistic and hypervelocity impact events. Comparison with experiment is given where possible.

  7. ADVANCED UTILITY SIMULATION MODEL, REPORT OF SENSITIVITY TESTING, CALIBRATION, AND MODEL OUTPUT COMPARISONS (VERSION 3.0)

    EPA Science Inventory

    The report gives results of activities relating to the Advanced Utility Simulation Model (AUSM): sensitivity testing. comparison with a mature electric utility model, and calibration to historical emissions. The activities were aimed at demonstrating AUSM's validity over input va...

  8. Large eddy simulation of unsteady wind farm behavior using advanced actuator disk models

    NASA Astrophysics Data System (ADS)

    Moens, Maud; Duponcheel, Matthieu; Winckelmans, Gregoire; Chatelain, Philippe

    2014-11-01

    The present project aims at improving the level of fidelity of unsteady wind farm scale simulations through an effort on the representation and the modeling of the rotors. The chosen tool for the simulations is a Fourth Order Finite Difference code, developed at Universite catholique de Louvain; this solver implements Large Eddy Simulation (LES) approaches. The wind turbines are modeled as advanced actuator disks: these disks are coupled with the Blade Element Momentum method (BEM method) and also take into account the turbine dynamics and controller. A special effort is made here to reproduce the specific wake behaviors. Wake decay and expansion are indeed initially governed by vortex instabilities. This is an information that cannot be obtained from the BEM calculations. We thus aim at achieving this by matching the large scales of the actuator disk flow to high fidelity wake simulations produced using a Vortex Particle-Mesh method. It is obtained by adding a controlled excitation at the disk. We apply this tool to the investigation of atmospheric turbulence effects on the power production and on the wake behavior at a wind farm level. A turbulent velocity field is then used as inflow boundary condition for the simulations. We gratefully acknowledge the support of GDF Suez for the fellowship of Mrs Maud Moens.

  9. [Objective surgery -- advanced robotic devices and simulators used for surgical skill assessment].

    PubMed

    Suhánszki, Norbert; Haidegger, Tamás

    2014-12-01

    Robotic assistance became a leading trend in minimally invasive surgery, which is based on the global success of laparoscopic surgery. Manual laparoscopy requires advanced skills and capabilities, which is acquired through tedious learning procedure, while da Vinci type surgical systems offer intuitive control and advanced ergonomics. Nevertheless, in either case, the key issue is to be able to assess objectively the surgeons' skills and capabilities. Robotic devices offer radically new way to collect data during surgical procedures, opening the space for new ways of skill parameterization. This may be revolutionary in MIS training, given the new and objective surgical curriculum and examination methods. The article reviews currently developed skill assessment techniques for robotic surgery and simulators, thoroughly inspecting their validation procedure and utility. In the coming years, these methods will become the mainstream of Western surgical education. PMID:25500641

  10. Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect

    Joshi, Abhinaya; Lou, Xinsheng; Neuschaefer, Carl; Chaudry, Majid; Quinn, Joseph

    2012-07-31

    This document provides the results of the project through September 2009. The Phase I project has recently been extended from September 2009 to March 2011. The project extension will begin work on Chemical Looping (CL) Prototype modeling and advanced control design exploration in preparation for a scale-up phase. The results to date include: successful development of dual loop chemical looping process models and dynamic simulation software tools, development and test of several advanced control concepts and applications for Chemical Looping transport control and investigation of several sensor concepts and establishment of two feasible sensor candidates recommended for further prototype development and controls integration. There are three sections in this summary and conclusions. Section 1 presents the project scope and objectives. Section 2 highlights the detailed accomplishments by project task area. Section 3 provides conclusions to date and recommendations for future work.

  11. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report

    SciTech Connect

    Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

    2009-10-12

    In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

  12. [Applicability of agricultural production systems simulator (APSIM) in simulating the production and water use of wheat-maize continuous cropping system in North China Plain].

    PubMed

    Wang, Lin; Zheng, You-fei; Yu, Qiang; Wang, En-li

    2007-11-01

    The Agricultural Production Systems Simulator (APSIM) was applied to simulate the 1999-2001 field experimental data and the 2002-2003 water use data at the Yucheng Experiment Station under Chinese Ecosystem Research Network, aimed to verify the applicability of the model to the wheat-summer maize continuous cropping system in North China Plain. The results showed that the average errors of the simulations of leaf area index (LAI), biomass, and soil moisture content in 1999-2000 and 2000-2001 field experiments were 27.61%, 24.59% and 7.68%, and 32.65%, 35.95% and 10.26%, respectively, and those of LAI and biomass on the soils with high and low moisture content in 2002-2003 were 26.65% and 14.52%, and 23.91% and 27.93%, respectively. The simulations of LAI and biomass accorded well with the measured values, with the coefficients of determination being > 0.85 in 1999-2000 and 2002-2003, and 0.78 in 2000-2001, indicating that APSIM had a good applicability in modeling the crop biomass and soil moisture content in the continuous cropping system, but the simulation error of LAI was a little larger. PMID:18260451

  13. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    SciTech Connect

    Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-09

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  14. Generation of large scale urban environments to support advanced sensor and seeker simulation

    NASA Astrophysics Data System (ADS)

    Giuliani, Joseph; Hershey, Daniel; McKeown, David, Jr.; Willis, Carla; Van, Tan

    2009-05-01

    One of the key aspects for the design of a next generation weapon system is the need to operate in cluttered and complex urban environments. Simulation systems rely on accurate representation of these environments and require automated software tools to construct the underlying 3D geometry and associated spectral and material properties that are then formatted for various objective seeker simulation systems. Under an Air Force Small Business Innovative Research (SBIR) contract, we have developed an automated process to generate 3D urban environments with user defined properties. These environments can be composed from a wide variety of source materials, including vector source data, pre-existing 3D models, and digital elevation models, and rapidly organized into a geo-specific visual simulation database. This intermediate representation can be easily inspected in the visible spectrum for content and organization and interactively queried for accuracy. Once the database contains the required contents, it can then be exported into specific synthetic scene generation runtime formats, preserving the relationship between geometry and material properties. To date an exporter for the Irma simulation system developed and maintained by AFRL/Eglin has been created and a second exporter to Real Time Composite Hardbody and Missile Plume (CHAMP) simulation system for real-time use is currently being developed. This process supports significantly more complex target environments than previous approaches to database generation. In this paper we describe the capabilities for content creation for advanced seeker processing algorithms simulation and sensor stimulation, including the overall database compilation process and sample databases produced and exported for the Irma runtime system. We also discuss the addition of object dynamics and viewer dynamics within the visual simulation into the Irma runtime environment.

  15. Toward faster OPC convergence: advanced analysis for OPC iterations and simulation environment

    NASA Astrophysics Data System (ADS)

    Bahnas, Mohamed; Al-Imam, Mohamed; Tawfik, Tamer

    2008-10-01

    Achieving faster Turn-Around-Time (TAT) is one of the most attractive objectives for the silicon wafer manufacturers despite the technology node they are processing. This is valid for all the active technology nodes from 130nm till the cutting edge technologies. There have been several approaches adopted to cut down the OPC simulation runtime without sacrificing the OPC output quality, among them is using stronger CPU power and Hardware acceleration which is a good usage for the advancing powerful processing technology. Another favorable approach for cutting down the runtime is to look deeper inside the used OPC algorithm and the implemented OPC recipe. The OPC algorithm includes the convergence iterations and simulation sites distribution, and the OPC recipe is in definition how to smartly tune the OPC knobs to efficiently use the implemented algorithm. Many previous works were exposed to monitoring the OPC convergence through iterations and analyze the size of the shift per iteration, similarly several works tried to calculate the amount of simulation capacity needed for all these iterations and how to optimize it for less amount. The scope of the work presented here is an attempt to decrease the number of optical simulations by reducing the number of control points per site and without affecting OPC accuracy. The concept is proved by many simulation results and analysis. Implementing this flow illustrated the achievable simulation runtime reduction which is reflected in faster TAT. For its application, it is not just runtime optimization, additionally it puts some more intelligence in the sparse OPC engine by eliminating the headache of specifying the optimum simulation site length.

  16. Numerical simulation of temperature field in horizontal core-filling continuous casting for copper cladding aluminum rods

    NASA Astrophysics Data System (ADS)

    Su, Ya-jun; Liu, Xin-hua; Wu, Yong-fu; Huang, Hai-you; Xie, Jian-xin

    2013-07-01

    The steady-state temperature field of horizontal core-filling continuous casting (HCFC) for producing copper cladding aluminum rods was simulated by finite element method to investigate the effects of key processing parameters on the positions of solid-liquid interfaces (SLIs) of copper and aluminum. It is found that mandrel tube length and mean withdrawing speed have significant effects on the SLI positions of both copper and aluminum. Aluminum casting temperature ( T Al) (1003-1123 K) and secondary cooling water flux (600-900 L·h-1) have little effect on the SLI of copper but cause the SLI of aluminum to move 2-4 mm. When T Al is in a range of 1043-1123 K, the liquid aluminum can fill continuously into the pre-solidified copper tube. Based on the numerical simulation, reasonable processing parameters were determined.

  17. Investigation of high frequency oscillations in the OV102 elevon actuation subsystems using continuous system modeling program simulation

    NASA Technical Reports Server (NTRS)

    Powell, W. W., Sr.

    1979-01-01

    Two theories emerged as the cause of undesired oscillations at frequencies between 40 and 60 Hz in the Orbiter Vehicle inboard and outboard elevon actuation subsystems during hardware testing. Both the "hardover feedback" and "deadspace" theories were examined using continuous system modeling program simulation. Results did not support the "hardover feedback" theory but showed that deadspace in the torque feedback spring connections to the servospools must be considered to be a possible cause of the oscillations. Further investigation is recommended.

  18. Neural network setpoint control of an advanced test reactor experiment loop simulation

    SciTech Connect

    Cordes, G.A.; Bryan, S.R.; Powell, R.H.; Chick, D.R.

    1990-09-01

    This report describes the design, implementation, and application of artificial neural networks to achieve temperature and flow rate control for a simulation of a typical experiment loop in the Advanced Test Reactor (ATR) located at the Idaho National Engineering Laboratory (INEL). The goal of the project was to research multivariate, nonlinear control using neural networks. A loop simulation code was adapted for the project and used to create a training set and test the neural network controller for comparison with the existing loop controllers. The results for three neural network designs are documented and compared with existing loop controller action. The neural network was shown to be as accurate at loop control as the classical controllers in the operating region represented by the training set. 9 refs., 28 figs., 2 tabs.

  19. Recent Advances in the Theory and Simulation of Model Colloidal Microphase Formers.

    PubMed

    Zhuang, Yuan; Charbonneau, Patrick

    2016-08-18

    This mini-review synthesizes our understanding of the equilibrium behavior of particle-based models with short-range attractive and long-range repulsive (SALR) interactions. These models, which can form stable periodic microphases, aim to reproduce the essence of colloidal suspensions with competing interparticle interactions. Ordered structures, however, have yet to be obtained in experiments. In order to better understand the hurdles to periodic microphase assembly, marked theoretical and simulation advances have been made over the past few years. Here, we present recent progress in the study of microphases in models with SALR interactions using liquid-state theory and density-functional theory as well as numerical simulations. Combining these various approaches provides a description of periodic microphases, and gives insights into the rich phenomenology of the surrounding disordered regime. Ongoing research directions in the thermodynamics of models with SALR interactions are also presented. PMID:27466702

  20. Technical note: Large-eddy simulation of cloudy boundary layer with the Advanced Research WRF model

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Takanobu; Feingold, Graham

    2012-03-01

    A thorough evaluation of the large-eddy simulation (LES) mode of the Advanced Research WRF model is performed with use of three cloudy boundary layer cases developed as LES intercomparison cases by the GEWEX Cloud System Study. Our evaluation reveals two problems that must be recognized and carefully addressed before proceeding with production runs. These are (i) sensitivity of results to the prescribed number of acoustic time steps per physical time step; and (ii) the assumption of saturation adjustment in the initial cloudy state. A temporary, but effective method of how to cope with these issues is suggested. With the proper treatment, the simulation results are comparable to the ensemble mean of the other LES models, and sometimes closer to the observational estimate than the ensemble mean. In order to ease the burden for configuration and post-processing, two new packages are developed and implemented. A detailed description of each package is presented. These packages are freely available to the public.

  1. Motion-base simulator results of advanced supersonic transport handling qualities with active controls

    NASA Technical Reports Server (NTRS)

    Feather, J. B.; Joshi, D. S.

    1981-01-01

    Handling qualities of the unaugmented advanced supersonic transport (AST) are deficient in the low-speed, landing approach regime. Consequently, improvement in handling with active control augmentation systems has been achieved using implicit model-following techniques. Extensive fixed-based simulator evaluations were used to validate these systems prior to tests with full motion and visual capabilities on a six-axis motion-base simulator (MBS). These tests compared the handling qualities of the unaugmented AST with several augmented configurations to ascertain the effectiveness of these systems. Cooper-Harper ratings, tracking errors, and control activity data from the MBS tests have been analyzed statistically. The results show the fully augmented AST handling qualities have been improved to an acceptable level.

  2. A randomized study of inpatient versus outpatient continuous infusion chemotherapy for patients with locally advanced head and neck cancer.

    PubMed

    Vokes, E E; Schilsky, R L; Choi, K E; Magid, D M; Guarnieri, C M; Whaling, S M; Ratain, M J; Weichselbaum, R R; Panje, W R

    1989-01-01

    This study was designed to evaluate the safety, reliability, and patient acceptance of outpatient continuous intravenous infusion (CVI) chemotherapy. Twenty-two patients with locally advanced head and neck cancer received induction chemotherapy with methotrexate, cisplatin and a 5-day CVI of 5-fluorouracil (5-FU). Patients were randomized to receive the 5-FU portion of cycle 1 either by a standard inpatient CVI chemotherapy delivery device (standard pump) or by the Infusor (Baxter Healthcare Corporation, Deerfield, IL), a portable chemotherapy delivery system that provides a constant flow of drug over a period of 24 hours. For cycle 2, patients crossed over to the alternative drug delivery method. Patients receiving chemotherapy via the Infusor could choose to be either inpatients or outpatients. Daily plasma concentrations of 5-FU were determined during the first two cycles of chemotherapy. There was no significant difference in the mean steady state plasma 5-FU levels achieved with either drug delivery method (329.7 +/- 95.8 ng/ml for infusor cycles vs. 352.8 +/- 114.9 ng/ml for standard pump cycles). Clinical toxicities consisted primarily of mucositis for both methods of drug delivery. Eight patients declined to receive CVI chemotherapy as outpatients citing as reasons fear of malfunction of the device, inconvenience of the frequent clinic visits necessitated by daily monitoring of plasma 5-FU concentrations, and restrictions in daily home activities. Eleven patients underwent CVI chemotherapy via Infusor as outpatients. All reported outpatient CVI chemotherapy as convenient and effective and, when eligible, chose it again in subsequent cycles. A comparison of estimated costs revealed reductions in daily costs of +366.00 (+2,200.00 per cycle) for outpatient chemotherapy. Outpatient CVI chemotherapy is a reliable drug delivery method that was accepted by a majority of patients in this study. These factors may help to establish outpatient CVI chemotherapy as a

  3. Salt weathering in Egyptian limestone after laboratory simulations with continuous flow of salt solutions at different temperatures

    NASA Astrophysics Data System (ADS)

    Aly, Nevin; Gomez-Heras, Miguel; Hamed, Ayman; Alvarez de Buergo, Monica

    2013-04-01

    weathering in Egyptian limestone after laboratory simulations with continuous flow of salt solutions at different temperatures Nevin Aly Mohamed (1), Miguel Gomez - Heras(2), Ayman Hamed Ahmed (1), and Monica Alvarez de Buergo(2). (1) Faculty of Pet. & Min. Engineering- Suez Canal University, Suez, Egypt, (2) Instituto de Geociencias (CSIC-UCM) Madrid. Spain. Limestone is one of the most frequent building stones in Egypt and is used since the time of ancient Egyptians and salt weathering is one of the main threats to its conservation. Most of the limestone used in historical monuments in Cairo is a biomicrite extracted from the Mid-Eocene Mokattam Group. During this work, cylindrical samples (2.4 cm diameter and approx. 4.8 cm length) were subjected, in a purpose-made simulation chamber, to simulated laboratory weathering tests with fixed salt concentration (10% weight NaCl solution), at different temperatures, which were kept constant throughout each test (10, 20, 30, 40 oC). During each test, salt solutions flowed continuously imbibing samples by capilarity. Humidity within the simulation chamber was reduced using silica gel to keep it low and constant to increase evaporation rate. Temperature, humidity inside the simulation chamber and samples weight were digitally monitored during each test. Results show the advantages of the proposed experimental methodology using a continuous flow of salt solutions and shed light on the effect of temperature on the dynamics of salt crystallization on and within samples. Research funded by mission sector of high education ministry, Egypt and Geomateriales S2009/MAT-1629.

  4. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect

    Kimberlyn C. Mousseau

    2011-10-01

    The Nuclear Energy Computational Fluid Dynamics Advanced Modeling and Simulation (NE-CAMS) system is being developed at the Idaho National Laboratory (INL) in collaboration with Bettis Laboratory, Sandia National Laboratory (SNL), Argonne National Laboratory (ANL), Utah State University (USU), and other interested parties with the objective of developing and implementing a comprehensive and readily accessible data and information management system for computational fluid dynamics (CFD) verification and validation (V&V) in support of nuclear energy systems design and safety analysis. The two key objectives of the NE-CAMS effort are to identify, collect, assess, store and maintain high resolution and high quality experimental data and related expert knowledge (metadata) for use in CFD V&V assessments specific to the nuclear energy field and to establish a working relationship with the U.S. Nuclear Regulatory Commission (NRC) to develop a CFD V&V database, including benchmark cases, that addresses and supports the associated NRC regulations and policies on the use of CFD analysis. In particular, the NE-CAMS system will support the Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, which aims to develop and deploy advanced modeling and simulation methods and computational tools for reliable numerical simulation of nuclear reactor systems for design and safety analysis. Primary NE-CAMS Elements There are four primary elements of the NE-CAMS knowledge base designed to support computer modeling and simulation in the nuclear energy arena as listed below. Element 1. The database will contain experimental data that can be used for CFD validation that is relevant to nuclear reactor and plant processes, particularly those important to the nuclear industry and the NRC. Element 2. Qualification standards for data evaluation and classification will be incorporated and applied such that validation data sets will result in well

  5. Current Advances in the Computational Simulation of the Formation of Low-Mass Stars

    SciTech Connect

    Klein, R I; Inutsuka, S; Padoan, P; Tomisaka, K

    2005-10-24

    Developing a theory of low-mass star formation ({approx} 0.1 to 3 M{sub {circle_dot}}) remains one of the most elusive and important goals of theoretical astrophysics. The star-formation process is the outcome of the complex dynamics of interstellar gas involving non-linear interactions of turbulence, gravity, magnetic field and radiation. The evolution of protostellar condensations, from the moment they are assembled by turbulent flows to the time they reach stellar densities, spans an enormous range of scales, resulting in a major computational challenge for simulations. Since the previous Protostars and Planets conference, dramatic advances in the development of new numerical algorithmic techniques have been successfully implemented on large scale parallel supercomputers. Among such techniques, Adaptive Mesh Refinement and Smooth Particle Hydrodynamics have provided frameworks to simulate the process of low-mass star formation with a very large dynamic range. It is now feasible to explore the turbulent fragmentation of molecular clouds and the gravitational collapse of cores into stars self-consistently within the same calculation. The increased sophistication of these powerful methods comes with substantial caveats associated with the use of the techniques and the interpretation of the numerical results. In this review, we examine what has been accomplished in the field and present a critique of both numerical methods and scientific results. We stress that computational simulations should obey the available observational constraints and demonstrate numerical convergence. Failing this, results of large scale simulations do not advance our understanding of low-mass star formation.

  6. Comparative analysis of discrete and continuous absorption weighting estimators used in Monte Carlo simulations of radiative transport in turbid media.

    PubMed

    Hayakawa, Carole K; Spanier, Jerome; Venugopalan, Vasan

    2014-02-01

    We examine the relative error of Monte Carlo simulations of radiative transport that employ two commonly used estimators that account for absorption differently, either discretely, at interaction points, or continuously, between interaction points. We provide a rigorous derivation of these discrete and continuous absorption weighting estimators within a stochastic model that we show to be equivalent to an analytic model, based on the radiative transport equation (RTE). We establish that both absorption weighting estimators are unbiased and, therefore, converge to the solution of the RTE. An analysis of spatially resolved reflectance predictions provided by these two estimators reveals no advantage to either in cases of highly scattering and highly anisotropic media. However, for moderate to highly absorbing media or isotropically scattering media, the discrete estimator provides smaller errors at proximal source locations while the continuous estimator provides smaller errors at distal locations. The origin of these differing variance characteristics can be understood through examination of the distribution of exiting photon weights. PMID:24562029

  7. Comparative analysis of discrete and continuous absorption weighting estimators used in Monte Carlo simulations of radiative transport in turbid media

    PubMed Central

    Hayakawa, Carole K.; Spanier, Jerome; Venugopalan, Vasan

    2014-01-01

    We examine the relative error of Monte Carlo simulations of radiative transport that employ two commonly used estimators that account for absorption differently, either discretely, at interaction points, or continuously, between interaction points. We provide a rigorous derivation of these discrete and continuous absorption weighting estimators within a stochastic model that we show to be equivalent to an analytic model, based on the radiative transport equation (RTE). We establish that both absorption weighting estimators are unbiased and, therefore, converge to the solution of the RTE. An analysis of spatially resolved reflectance predictions provided by these two estimators reveals no advantage to either in cases of highly scattering and highly anisotropic media. However, for moderate to highly absorbing media or isotropically scattering media, the discrete estimator provides smaller errors at proximal source locations while the continuous estimator provides smaller errors at distal locations. The origin of these differing variance characteristics can be understood through examination of the distribution of exiting photon weights. PMID:24562029

  8. A demonstration of motion base design alternatives for the National Advanced Driving Simulator

    NASA Technical Reports Server (NTRS)

    Mccauley, Michael E.; Sharkey, Thomas J.; Sinacori, John B.; Laforce, Soren; Miller, James C.; Cook, Anthony

    1992-01-01

    A demonstration of the capability of NASA's Vertical Motion Simulator to simulate two alternative motion base designs for the National Advanced Driving simulator (NADS) is reported. The VMS is located at ARC. The motion base conditions used in this demonstration were as follows: (1) a large translational motion base; and (2) a motion base design with limited translational capability. The latter had translational capability representative of a typical synergistic motion platform. These alternatives were selected to test the prediction that large amplitude translational motion would result in a lower incidence or severity of simulator induced sickness (SIS) than would a limited translational motion base. A total of 10 drivers performed two tasks, slaloms and quick-stops, using each of the motion bases. Physiological, objective, and subjective measures were collected. No reliable differences in SIS between the motion base conditions was found in this demonstration. However, in light of the cost considerations and engineering challenges associated with implementing a large translation motion base, performance of a formal study is recommended.

  9. Advanced optical system simulation in a coupled CAD/optical analysis package

    NASA Astrophysics Data System (ADS)

    Stevenson, Michael A.; Campillo, Chris J.; Jenkins, David G.

    1999-05-01

    Software packages capable of simulating complex optical systems have the power to shorten the design process for non-imaging illumination, projection display, and other imaging illumination systems, Breault Research Organization's Advanced Systems Analysis Program (ASAP) and Robert McNeel and Associates' Rhinoceros computer aided design software, together, allow complicated optical systems to be simulated and analyzed. Through the use of Rhinoceros, an optical system can be accurately modeled in a 3D design environment. ASAP is then used to assign optical properties to the Rhinoceros CAD model. After the optical system has been characterized, it can be analyzed and optimized, by way of features specific to the ASAP optical analysis engine. Using this simulation technique, an HID arc source manufactured by Ushio America, Inc. is accurately represented. 2D CCD images are gathered for the source's emitting-volume across its spectral bandwidth. The images are processed within ASAP, via the inverse Abel command, to produce a 3D emitting-volume. This emitting-volume is combined with an accurate model of the source geometry and its optical properties, to finalize a functioning virtual source model. The characterized source is then joined with a simulated optical system for detailed performance analysis: namely, a projection display system.

  10. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    SciTech Connect

    Schultz, Peter Andrew

    2011-12-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

  11. Space-based radar representation in the advanced warfighting simulation (AWARS)

    NASA Astrophysics Data System (ADS)

    Phend, Andrew E.; Buckley, Kathryn; Elliott, Steven R.; Stanley, Page B.; Shea, Peter M.; Rutland, Jimmie A.

    2004-09-01

    Space and orbiting systems impact multiple battlefield operating systems (BOS). Space support to current operations is a perfect example of how the United States fights. Satellite-aided munitions, communications, navigation and weather systems combine to achieve military objectives in a relatively short amount of time. Through representation of space capabilities within models and simulations, the military will have the ability to train and educate officers and soldiers to fight from the high ground of space or to conduct analysis and determine the requirements or utility of transformed forces empowered with advanced space-based capabilities. The Army Vice Chief of Staff acknowledged deficiencies in space modeling and simulation during the September 2001 Space Force Management Analsyis Review (FORMAL) and directed that a multi-disciplinary team be established to recommend a service-wide roadmap to address shortcomings. A Focus Area Collaborative Team (FACT), led by the U.S. Army Space & Missile Defense Command with participation across the Army, confirmed the weaknesses in scope, consistency, correctness, completeness, availability, and usability of space model and simulation (M&S) for Army applications. The FACT addressed the need to develop a roadmap to remedy Space M&S deficiencies using a highly parallelized process and schedule designed to support a recommendation during the Sep 02 meeting of the Army Model and Simulation Executive Council (AMSEC).

  12. Development of an advanced actuator disk model for Large-Eddy Simulation of wind farms

    NASA Astrophysics Data System (ADS)

    Moens, Maud; Duponcheel, Matthieu; Winckelmans, Gregoire; Chatelain, Philippe

    2015-11-01

    This work aims at improving the fidelity of the wind turbine modelling for Large-Eddy Simulation (LES) of wind farms, in order to accurately predict the loads, the production, and the wake dynamics. In those simulations, the wind turbines are accounted for through actuator disks. i.e. a body-force term acting over the regularised disk swept by the rotor. These forces are computed using the Blade Element theory to estimate the normal and tangential components (based on the local simulated flow and the blade characteristics). The local velocities are modified using the Glauert tip-loss factor in order to account for the finite number of blades; the computation of this correction is here improved thanks to a local estimation of the effective upstream velocity at every point of the disk. These advanced actuator disks are implemented in a 4th order finite difference LES solver and are compared to a classical Blade Element Momentum method and to high fidelity wake simulations performed using a Vortex Particle-Mesh method in uniform and turbulent flows.

  13. Characterization and Simulation of the Thermoacoustic Instability Behavior of an Advanced, Low Emissions Combustor Prototype

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Paxson, Daniel E.

    2008-01-01

    Extensive research is being done toward the development of ultra-low-emissions combustors for aircraft gas turbine engines. However, these combustors have an increased susceptibility to thermoacoustic instabilities. This type of instability was recently observed in an advanced, low emissions combustor prototype installed in a NASA Glenn Research Center test stand. The instability produces pressure oscillations that grow with increasing fuel/air ratio, preventing full power operation. The instability behavior makes the combustor a potentially useful test bed for research into active control methods for combustion instability suppression. The instability behavior was characterized by operating the combustor at various pressures, temperatures, and fuel and air flows representative of operation within an aircraft gas turbine engine. Trends in instability behavior versus operating condition have been identified and documented, and possible explanations for the trends provided. A simulation developed at NASA Glenn captures the observed instability behavior. The physics-based simulation includes the relevant physical features of the combustor and test rig, employs a Sectored 1-D approach, includes simplified reaction equations, and provides time-accurate results. A computationally efficient method is used for area transitions, which decreases run times and allows the simulation to be used for parametric studies, including control method investigations. Simulation results show that the simulation exhibits a self-starting, self-sustained combustion instability and also replicates the experimentally observed instability trends versus operating condition. Future plans are to use the simulation to investigate active control strategies to suppress combustion instabilities and then to experimentally demonstrate active instability suppression with the low emissions combustor prototype, enabling full power, stable operation.

  14. A driver linac for the Advanced Exotic Beam Laboratory : physics design and beam dynamics simulations.

    SciTech Connect

    Ostroumov, P. N.; Mustapha, B.; Nolen, J.; Physics

    2007-01-01

    The Advanced Exotic Beam Laboratory (AEBL) being developed at ANL consists of an 833 MV heavy-ion driver linac capable of producing uranium ions up to 200 MeV/u and protons to 580 MeV with 400 kW beam power. We have designed all accelerator components including a two charge state LEBT, an RFQ, a MEBT, a superconducting linac, a stripper station and chicane. We present the results of an optimized linac design and end-to-end simulations including machine errors and detailed beam loss analysis. The Advanced Exotic Beam Laboratory (AEBL) has been proposed at ANL as a reduced scale of the original Rare Isotope Accelerator (RIA) project with about half the cost but the same beam power. AEBL will address 90% or more of RIA physics but with reduced multi-users capabilities. The focus of this paper is the physics design and beam dynamics simulations of the AEBL driver linac. The reported results are for a multiple charge state U{sup 238} beam.

  15. A review on recent advances in the numerical simulation for coalbed-methane-recovery process

    SciTech Connect

    Wei, X.R.; Wang, G.X.; Massarotto, P.; Golding, S.D.; Rudolph, V.

    2007-12-15

    The recent advances in numerical simulation for primary coalbed methane (CBM) recovery and enhanced coalbed-methane recovery (ECBMR) processes are reviewed, primarily focusing on the progress that has occurred since the late 1980s. Two major issues regarding the numerical modeling will be discussed in this review: first, multicomponent gas transport in in-situ bulk coal and, second, changes of coal properties during methane (CH{sub 4}) production. For the former issues, a detailed review of more recent advances in modeling gas and water transport within a coal matrix is presented. Further, various factors influencing gas diffusion through the coal matrix will be highlighted as well, such as pore structure, concentration and pressure, and water effects. An ongoing bottleneck for evaluating total mass transport rate is developing a reasonable representation of multiscale pore space that considers coal type and rank. Moreover, few efforts have been concerned with modeling water-flow behavior in the coal matrix and its effects on CH{sub 4} production and on the exchange of carbon dioxide (CO{sub 2}) and CH{sub 4}. As for the second issue, theoretical coupled fluid-flow and geomechanical models have been proposed to describe the evolution of pore structure during CH{sub 4} production, instead of traditional empirical equations. However, there is currently no effective coupled model for engineering applications. Finally, perspectives on developing suitable simulation models for CBM production and for predicting CO{sub 2}-sequestration ECBMR are suggested.

  16. Testing of a Continuous Sampling Mercury CEM at the EPA-Rotary Kiln Incinerator Simulator Facility

    SciTech Connect

    D.P. Baldwin; S.J. Bajic; D.E. Eckels; D.S. Zamzow

    2002-04-12

    This report has been prepared to document the performance of the continuous sampling mercury monitoring system developed by Ames Laboratory for use as a continuous emission monitor (CEM). This work was funded by the U.S. Department of Energy, Office of Environmental Management, Office of Science and Technology, through the Mixed Waste Focus Area. The purpose of the project is to develop instrumentation and methods for spectroscopic field-monitoring applications. During FY01 this included continued development and testing of an echelle spectrometer system for the detection of mercury (Hg) by atomic absorption. Due to the relatively poor limits of detection for Hg by optical emission techniques, the CEM has been designed for the detection of elemental Hg by optical absorption. The sampling system allows continuous introduction of stack gas into the CEM for analysis of elemental and total Hg in the gas stream. A heated pyrolysis tube is used in this system to convert oxidized Hg compounds to elemental Hg prior to analysis for total Hg. The pyrolysis tube is bypassed to measure elemental Hg. The CEM is designed to measure the elemental Hg concentration of the gas sample, measure the total Hg concentration, perform a zero check (analysis of room air), and then re-zero the system (to correct for any instrumental drift that occurs over time). This is done in an automated, sequential measurement cycle to provide continuous monitoring of Hg concentrations in the stack gas. The continuous sampling Hg CEM was tested at the EPA-Rotary Kiln in Durham, NC at the beginning of FY02. This report describes the characteristics and performance of the system and the results of the field tests performed at EPA. The Hg CEM system was developed in response to the need of DOE and other organizations to monitor Hg that may be released during the processing or combustion of hazardous or mixed-waste materials. The promulgation of regulations limiting the release of Hg and requiring continuous

  17. Simulation for the development of the continuous groundwater flow measurement technology

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kaoru; Kumagai, Koki; Fujima, Ritsuko; Chikahisa, Hiroshi

    The flow of groundwater varies with time due to rainfall, atmospheric pressure change, tidal change, melting of snow during seasonal change, underground construction works etc. Therefore, to increase the precision of assessing in-situ groundwater flow characteristics, it is important to measure continuously the direction and velocity of the flow, in addition to obtaining accurate data for the afore mentioned environmental changes. The first part of this paper describes the development of a new device for measuring the direction and velocity of groundwater flow. The device was composed of a unique floating sensor with a hinge end at the bottom, which enabled continuous measurement of groundwater flow based on image data processing technique. In the second part, discussion is focused on clarifying the optimum cross-section shape and the behavior of the float sensor in saltwater and freshwater using numerical analysis.

  18. Hemodynamic Stability to Surface Warming and Cooling During Sustained and Continuous Simulated Hemorrhage in Humans.

    PubMed

    Poh, Paula Y S; Gagnon, Daniel; Romero, Steven A; Convertino, Victor A; Adams-Huet, Beverley; Crandall, Craig G

    2016-09-01

    One in 10 deaths worldwide is caused by traumatic injury, and 30% to 40% of those trauma-related deaths are due to hemorrhage. Currently, warming a bleeding victim is the standard of care due to the adverse effects of combined hemorrhage and hypothermia on survival. We tested the hypothesis that heating is detrimental to the maintenance of arterial pressure and cerebral perfusion during hemorrhage, while cooling is beneficial to victims who are otherwise normothermic. Twenty-one men (31 ± 9 y) were examined under two separate protocols designed to produce central hypovolemia similar to hemorrhage. Following 15 min of supine rest, 10 min of 30 mm Hg of lower body negative pressure (LBNP) was applied. On separate randomized days, subjects were then exposed to skin surface cooling (COOL), warming (WARM), or remained thermoneutral (NEUT), while LBNP continued. Subjects remained in these thermal conditions for either 40 min of 30 mm Hg LBNP (N = 9), or underwent a continuous LBNP ramp until hemodynamic decompensation (N = 12). Arterial blood pressure during LBNP was dependent on the thermal perturbation as blood pressure was greater during COOL (P >0.001) relative to NEUT and WARM for both protocols. Middle cerebral artery blood velocity decreased (P <0.001) from baseline throughout sustained and continuous LBNP, but the magnitude of reduction did not differ between thermal conditions. Contrary to our hypothesis, WARM did not reduce cerebral blood velocity or LBNP tolerance relative to COOL and NEUT in normothermic individuals. While COOL increased blood pressure, cerebral perfusion and time to presyncope were not different relative to NEUT or WARM during sustained or continuous LBNP. Warming an otherwise normothermic hemorrhaging victim is not detrimental to hemodynamic stability, nor is this stability improved with cooling. PMID:27224744

  19. Numerical simulation of MHD for electromagnetic edge dam in continuous casting.

    SciTech Connect

    Chang, F. C.

    1999-03-30

    A computer model was developed to predict eddy currents and fluid flows in molten steel. The model was verified by comparing predictions with experimental results of liquid-metal containment and fluid flow in electromagnetic (EM) edge dams (EMDs) designed at Inland Steel for twin-roll casting. The model can optimize the EMD design so it is suitable for application, and minimize expensive, time-consuming full-scale testing. Numerical simulation was performed by coupling a three-dimensional (3-D) finite-element EM code (ELEKTRA) and a 3-D finite-difference fluids code (CaPS-EM) to solve heat transfer, fluid flow, and turbulence transport in a casting process that involves EM fields. ELEKTRA is able to predict the eddy-current distribution and the electromagnetic forces in complex geometries. CaPS-EM is capable of modeling fluid flows with free surfaces. Results of the numerical simulation compared measurements obtained from a static test.

  20. Computational Advances in the Arctic Terrestrial Simulator: Modeling Permafrost Degradation in a Warming Arctic

    NASA Astrophysics Data System (ADS)

    Coon, E.; Berndt, M.; Garimella, R.; Moulton, J. D.; Manzini, G.; Painter, S. L.

    2013-12-01

    The terrestrial Arctic has been a net sink of carbon for thousands of years, but warming trends suggest this may change. As the terrestrial Arctic warms, degradation of the permafrost results in significant melting of the ice wedges that support low-centered polygonal ground. This leads to subsidence of the topography, inversion of the polygonal ground, and restructuring of drainage networks. The change in hydrology and vegetation that result from these processes is poorly understood. Predictive simulation of the fate of this carbon is critical for understanding feedback effects between the terrestrial Arctic and climate change. Simulation of this system at fine scales presents many challenges. Flow and energy equations are solved on both the surface and subsurface domains, and deformation of the soil subsurface must couple with both. Additional processes such as snow, evapo-transpiration, and biogeochemistry supplement this THMC model. While globally implicit coupling methods enable conservation of mass and energy on the combined domain, care must be taken to ensure conservation as the soil subsides and the mesh deforms. Uncertainty in both critical physics of each process model and in coupling to maintain accuracy between processes suggests the need for a versatile many-physics framework. This framework should allow swapping of both processes and constitutive relations, and enable easy numerical experimentation of coupling strategies. Deformation dictates the need for advanced discretizations which maintain accuracy and a mesh framework capable of calculating smooth deformation with remapped fields. And latent heat introduces strong nonlinearities, requiring robust solvers and an efficient globalization strategy. Here we discuss advances as implemented in the Arctic Terrestrial Simulator (ATS), a many-physics framework and collection of physics kernels based upon Amanzi. We demonstrate the deformation capability, conserving mass and energy while simulating soil

  1. Comparison of Experimentally Measured Temperature Gradient and Finite-Element-Method Simulations for Two Continuously Cast Bloom Heating Strategies

    NASA Astrophysics Data System (ADS)

    Kvíčala, M.; Frydrýšek, K.; Štamborská, M.

    2015-03-01

    This paper deals with the comparison of experimentally measured temperature gradients and finite-element-method (FEM) simulations of two heating strategies that were used for continuously cast bloom soaking. The temperature gradient between the bloom surface and center was measured by two thermocouples incorporated directly into the bloom. Scanning electron microscopy equipped by energy dispersive X-ray spectroscopy analysis, hot tensile tests, and interdendritic solidification software was used for modeling of steel thermophysical properties with respect to the alloying-elements macrosegregation. The model of the bloom was programmed in the Fortran language. The FEM software MARC/MENTAT 2012 was used for simulation of two heating strategies (plane strain formulation). The first heating model was fitted to the commonly used heating strategy when internal defects grew above the critical limit. The second heating model was a newly proposed strategy that consisted of slower heating up to 1073 K when the first warming-through period occurred. The FEM simulations included determinations of the temperature gradient, the equivalent of stress, the equivalent of elastic strain, the equivalent of plastic strain, and the equivalent of total strain. The simulation results were in good agreement with experimental observations. The new heating strategy based on the FEM simulations led to significantly lower occurrence of internal defects in hot-rolled billets that are used for cylinder production.

  2. Simulating anisotropic etching of silicon in any etchant: evolutionary algorithm for the calibration of the continuous cellular automaton

    NASA Astrophysics Data System (ADS)

    Gosálvez, M. A.; Ferrando, N.; Xing, Y.; Pal, Prem; Sato, K.; Cerdá, J.; Gadea, R.

    2011-06-01

    An evolutionary algorithm is presented for the automated calibration of the continuous cellular automaton for the simulation of isotropic and anisotropic wet chemical etching of silicon in as many as 31 widely different and technologically relevant etchants, including KOH, KOH+IPA, TMAH and TMAH+Triton, in various concentrations and temperatures. Based on state-of-the-art evolutionary operators, we implement a robust algorithm for the simultaneous optimization of roughly 150 microscopic removal rates based on the minimization of a cost function with four quantitative error measures, including (i) the error between simulated and experimental macroscopic etch rates for numerous surface orientations all over the unit sphere, (ii) the error due to underetching asymmetries and floor corrugation features observed in simulated silicon samples masked using a circular pattern, (iii) the error associated with departures from a step-flow-based hierarchy in the values of the microscopic removal rates, and (iv) the error associated with deviations from a step-flow-based clustering of the microscopic removal rates. For the first time, we present the calibration and successful simulation of two technologically relevant CMOS compatible etchants, namely TMAH and, especially, TMAH+Triton, providing several comparisons between simulated and experimental MEMS structures based on multi-step etching in these etchants.

  3. Continuous flow simulation in the Bârlad river basin, Romania

    NASA Astrophysics Data System (ADS)

    Corbuş, Ciprian; Mic, Rodica Paula; Mătreaţă, Marius

    2014-05-01

    This paper presents the partial results obtained into the project CLIMHYDEX ("Changes in Climate Extremes and associated impact on hydrological events in Romania") project that, among others, have as objectives the development of hydrological models at different spatial and temporal scales and the impact of climate change on extreme runoff in Bârlad catchment. To estimate the impact of climate change and variability on the flow regime in Bârlad catchment CONSUL hydrological model, with lumped parameters, was used. This rainfall-runoff deterministic model simulates the most significant hydrological processes within a hydrographic basin: snow-melting, interception, retention in the depressions, evapotranspiration, infiltration, surface runoff, hypodermic runoff, percolation, base runoff. According to the schematic representation (physiographic modelling) of how water flows and collects in a river basin the model computes the discharge hydrographs on selected simulation points on the river network and then performs their routing and composition on the main river and tributaries. After physiographic modelling resulted for Bârlad river basin: 56 sub-basins and 30 river reaches. CONSUL model was calibrated using historical data in Bârlad river basin by simulating the flow during 1975-2010. Calculation of average precipitation and air temperature (hydrological model input data) for each sub-basin was performed using a pre-processing program of meteorological data from original rectangular grid nodes corresponding to Bârlad river basin, averaging being achieved as weighted values based on the representativeness of these nodes for each analyzed sub-basin. In order to estimate the initial values of CONSUL model parameters the generalization relationships of these parameters based on morphometric characteristics of the river basin or river reach were used. Calibration of model parameters was performed in two stages: (i) individual and (ii) globally. (i) Individual

  4. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan part 2 mappings for the ASC software quality engineering practices, version 2.0.

    SciTech Connect

    Heaphy, Robert; Sturtevant, Judith E.; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR001.3.2 and CPR001.3.6 and to a Department of Energy document, ''ASCI Software Quality Engineering: Goals, Principles, and Guidelines''. This document also identifies ASC management and software project teams' responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  5. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1: ASC software quality engineering practices, Version 2.0.

    SciTech Connect

    Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  6. Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan. Part 2, Mappings for the ASC software quality engineering practices. Version 1.0.

    SciTech Connect

    Ellis, Molly A.; Heaphy, Robert; Sturtevant, Judith E.; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2005-01-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, 'ASCI Software Quality Engineering: Goals, Principles, and Guidelines'. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  7. Light-field-characterization in a continuous hydrogen-producing photobioreactor by optical simulation and computational fluid dynamics.

    PubMed

    Krujatz, Felix; Illing, Rico; Krautwer, Tobias; Liao, Jing; Helbig, Karsten; Goy, Katharina; Opitz, Jörg; Cuniberti, Gianaurelio; Bley, Thomas; Weber, Jost

    2015-12-01

    Externally illuminated photobioreactors (PBRs) are widely used in studies on the use of phototrophic microorganisms as sources of bioenergy and other photobiotechnology research. In this work, straightforward simulation techniques were used to describe effects of varying fluid flow conditions in a continuous hydrogen-producing PBR on the rate of photofermentative hydrogen production (rH2 ) by Rhodobacter sphaeroides DSM 158. A ZEMAX optical ray tracing simulation was performed to quantify the illumination intensity reaching the interior of the cylindrical PBR vessel. 24.2% of the emitted energy was lost through optical effects, or did not reach the PBR surface. In a dense culture of continuously producing bacteria during chemostatic cultivation, the illumination intensity became completely attenuated within the first centimeter of the PBR radius as described by an empirical three-parametric model implemented in Mathcad. The bacterial movement in chemostatic steady-state conditions was influenced by varying the fluid Reynolds number. The "Computational Fluid Dynamics" and "Particle Tracing" tools of COMSOL Multiphysics were used to visualize the fluid flow pattern and cellular trajectories through well-illuminated zones near the PBR periphery and dark zones in the center of the PBR. A moderate turbulence (Reynolds number = 12,600) and fluctuating illumination of 1.5 Hz were found to yield the highest continuous rH2 by R. sphaeroides DSM 158 (170.5 mL L(-1) h(-1) ) in this study. PMID:26037711

  8. A year-long continuous Large Eddy Simulation of actual weather: subgrid and spatio-temporal scale issues

    NASA Astrophysics Data System (ADS)

    Jonker, Harmen; Verzijlbergh, Remco

    2016-04-01

    We analyse results of a single, continuous Large-Eddy Simulation of actual weather conditions during the timespan of a full year, made possible through recent computational developments (Schalkwijk et al, MWR, 2015). The simulation is coupled to a regional weather model in order to provide an LES dataset that is representative of the daily weather of the year 2012 around Cabauw, the Netherlands. This location is chosen such that LES results can be compared with both the regional weather model and observations from the Cabauw observational supersite. The simulation yields a data-set of relevant atmospheric variables that cover a scale range from seconds to seasons. Analysis of the spatial and temporal spectra of wind and thermodynamical quantities reveals the scale mismatches that arise from the coupling to the large-scale weather model, and provides information on how to better choose the domain size of the LES. In addition, as the single continuous run encompasses many different days and nights with widely varying atmospheric stabilities, we will discuss the high demands that are put on the LES subgrid model.

  9. Annoyance response to simulated advanced turboprop aircraft interior noise containing tonal beats

    NASA Technical Reports Server (NTRS)

    Leatherwood, Jack D.

    1987-01-01

    A study is done to investigate the effects on subjective annoyance of simulated advanced turboprop (ATP) interior noise environments containing tonal beats. The simulated environments consisted of low-frequency tones superimposed on a turbulent-boundary-layer noise spectrum. The variables used in the study included propeller tone frequency (100 to 250 Hz), propeller tone levels (84 to 105 dB), and tonal beat frequency (0 to 1.0 Hz). Results indicated that propeller tones within the simulated ATP environment resulted in increased annoyance response that was fully predictable in terms of the increase in overall sound pressure level due to the tones. Implications for ATP aircraft include the following: (1) the interior noise environment with propeller tones is more annoying than an environment without tones if the tone is present at a level sufficient to increase the overall sound pressure level; (2) the increased annoyance due to the fundamental propeller tone frequency without harmonics is predictable from the overall sound pressure level; and (3) no additional noise penalty due to the perception of single discrete-frequency tones and/or beats was observed.

  10. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Rafferty, Conor S.; Ancona, Mario G.; Yu, Zhi-Ping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction to the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion or quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  11. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Ancona, Mario G.; Rafferty, Conor S.; Yu, Zhiping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction ot the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  12. Design and development of a virtual reality simulator for advanced cardiac life support training.

    PubMed

    Vankipuram, Akshay; Khanal, Prabal; Ashby, Aaron; Vankipuram, Mithra; Gupta, Ashish; DrummGurnee, Denise; Josey, Karen; Smith, Marshall

    2014-07-01

    The use of virtual reality (VR) training tools for medical education could lead to improvements in the skills of clinicians while providing economic incentives for healthcare institutions. The use of VR tools can also mitigate some of the drawbacks currently associated with providing medical training in a traditional clinical environment such as scheduling conflicts and the need for specialized equipment (e.g., high-fidelity manikins). This paper presents the details of the framework and the development methodology associated with a VR-based training simulator for advanced cardiac life support, a time critical, team-based medical scenario. In addition, we also report the key findings of a usability study conducted to assess the efficacy of various features of this VR simulator through a postuse questionnaire administered to various care providers. The usability questionnaires were completed by two groups that used two different versions of the VR simulator. One version consisted of the VR trainer with it all its features and a minified version with certain immersive features disabled. We found an increase in usability scores from the minified group to the full VR group. PMID:24122608

  13. Simulation of Thin-Film Damping and Thermal Mechanical Noise Spectra for Advanced Micromachined Microphone Structures

    PubMed Central

    Hall, Neal A.; Okandan, Murat; Littrell, Robert; Bicen, Baris; Degertekin, F. Levent

    2008-01-01

    In many micromachined sensors the thin (2–10 μm thick) air film between a compliant diaphragm and backplate electrode plays a dominant role in shaping both the dynamic and thermal noise characteristics of the device. Silicon microphone structures used in grating-based optical-interference microphones have recently been introduced that employ backplates with minimal area to achieve low damping and low thermal noise levels. Finite-element based modeling procedures based on 2-D discretization of the governing Reynolds equation are ideally suited for studying thin-film dynamics in such structures which utilize relatively complex backplate geometries. In this paper, the dynamic properties of both the diaphragm and thin air film are studied using a modal projection procedure in a commonly used finite element software and the results are used to simulate the dynamic frequency response of the coupled structure to internally generated electrostatic actuation pressure. The model is also extended to simulate thermal mechanical noise spectra of these advanced sensing structures. In all cases simulations are compared with measured data and show excellent agreement—demonstrating 0.8 pN/√Hz and 1.8 μPa/√Hz thermal force and thermal pressure noise levels, respectively, for the 1.5 mm diameter structures under study which have a fundamental diaphragm resonance-limited bandwidth near 20 kHz. PMID:19081811

  14. Simulation of continuous boric acid slurry reactors in series by microfluid and macrofluid models

    NASA Astrophysics Data System (ADS)

    Çakal, Gaye Ö.; Eroğlu, İnci; Özkar, Saim

    2007-08-01

    Growth kinetics of gypsum during dissolution of colemanite with particle size less than 150 μm in aqueous sulfuric acid was studied in a batch reactor at 85 °C with a stirring rate of 400 rpm and initial CaO/SO 42- ratio of 1.0. Kinetic data obtained from batch reactors was used to predict calcium ion concentration in continuous reactors by macrofluid and microfluid models. Model predictions were tested by experiments in four CFSSR in series each having mean residence time of 20 or 60 min. Calcium ion concentration predicted by macrofluid model in the first reactor was found to be closer to the experimental value indicating the significance of segregation. However, microfluid model provides the effluent calcium ion concentrations from the third and fourth reactors closer to experimental values. Verification of the model values by experimental data reveals that the methodology developed here is applicable to gypsum crystallization in n-CFSSR's in series.

  15. A comparative analysis of 9 multi-model averaging approaches in hydrological continuous streamflow simulation

    NASA Astrophysics Data System (ADS)

    Arsenault, Richard; Gatien, Philippe; Renaud, Benoit; Brissette, François; Martel, Jean-Luc

    2015-10-01

    This study aims to test whether a weighted combination of several hydrological models can simulate flows more accurately than the models taken individually. In addition, the project attempts to identify the most efficient model averaging method and the optimal number of models to include in the weighting scheme. In order to address the first objective, streamflow was simulated using four lumped hydrological models (HSAMI, HMETS, MOHYSE and GR4J-6), each of which were calibrated with three different objective functions on 429 watersheds. The resulting 12 hydrographs (4 models × 3 metrics) were weighted and combined with the help of 9 averaging methods which are the simple arithmetic mean (SAM), Akaike information criterion (AICA), Bates-Granger (BGA), Bayes information criterion (BICA), Bayesian model averaging (BMA), Granger-Ramanathan average variant A, B and C (GRA, GRB and GRC) and the average by SCE-UA optimization (SCA). The same weights were then applied to the hydrographs in validation mode, and the Nash-Sutcliffe Efficiency metric was measured between the averaged and observed hydrographs. Statistical analyses were performed to compare the accuracy of weighted methods to that of individual models. A Kruskal-Wallis test and a multi-objective optimization algorithm were then used to identify the most efficient weighted method and the optimal number of models to integrate. Results suggest that the GRA, GRB, GRC and SCA weighted methods perform better than the individual members. Model averaging from these four methods were superior to the best of the individual members in 76% of the cases. Optimal combinations on all watersheds included at least one of each of the four hydrological models. None of the optimal combinations included all members of the ensemble of 12 hydrographs. The Granger-Ramanathan average variant C (GRC) is recommended as the best compromise between accuracy, speed of execution, and simplicity.

  16. Programmer's manual for IOSYM: an input-oriented simulation language for continuous systems. Volume 2: subprogram description

    SciTech Connect

    Smith, D.M.

    1981-06-01

    IOSYM is an extension of the GASP IV simulation language. It permits systems which are sequences of continuous processes to be modeled graphically. Normally the system can be described by data input only. The language permits stochastic sequencing and termination criteria for processes and allows crossing conditions for ending operations that are more general than GASP IV. Extensive capability exists for conditional branching and logical modification of the network. IOSYM has been used to model the cost of geothermal drilling where the various costly processes of drilling are represented by IOSYM operations. The language is much more general however; it retains more of GASP IV's discrete event capabilities and permits easy modeling of continuous processes.

  17. Modeling and simulation of liquid-solid circulating fluidized bed ion exchange system for continuous protein recovery.

    PubMed

    Mazumder, Jahirul; Zhu, Jingxu; Bassi, Amarjeet S; Ray, Ajay K

    2009-09-01

    Liquid-solid circulating fluidized bed (LSCFB) is an integrated two-column (downcomer and riser) system which can accommodate two separate processes (adsorption and desorption) in the same unit with continuous circulation of the solid particles between the two columns. In this study, a mathematical model based on the assumption of homogeneous fluidization was developed considering hydrodynamics, adsorption-desorption kinetics and liquid-solid mass transfer. The simulation results showed good agreement with the available experimental results for continuous protein recovery. A parametric sensitivity study was performed to better understand the influence of different operating parameters on the BSA adsorption and desorption capacity of the system. The model developed can easily be extended to other applications of LSCFB. PMID:19466748

  18. Monte Carlo simulations of the vacuum performance of differential pumps at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Liu, C.; Shu, D.; Kuzay, T. M.; Kersevan, R.

    1996-09-01

    Monte Carlo computer simulations have been successfully applied in the design of vacuum systems. These simulations allow the user to check the vacuum performance without the need of making a prototype of the vacuum system. In this paper we demonstrate the effectiveness and aptitude of these simulations in the design of differential pumps for synchrotron radiation beamlines. Eventually a good number of the beamline front ends at the Advanced Photon Source (APS) will use differential pumps to protect the synchrotron storage ring vacuum. A Monte Carlo computer program is used to calculate the molecular flow transmission and pressure distribution across the differential pump. A differential pump system, which consists of two 170 l/s ion pumps with three conductance-limiting apertures, was previously tested on an APS insertion-device beamline front end. Pressure distribution measurements using controlled leaks demonstrated a pressure difference of over two decades across the differential pump. A new differential pump utilizes a fixed mask between two 170 l/s ion pumps. The fixed mask, which has a conical channel with a small cross section of 4.5×4.5 mm2 in the far end, is used in the beamline to confine the photon beam. Monte Carlo simulations indicate that this configuration with the fixed mask significantly improves the pressure reduction capability of the differential pump, to ˜3×10-5, within the operational range from ˜10-4 to 10-10 Torr. The lower end of pressure is limited by outgassing from front-end components and the higher end by the pumping ability of the ion pump.

  19. Advances in simulating radiance signatures for dynamic air/water interfaces

    NASA Astrophysics Data System (ADS)

    Goodenough, Adam A.; Brown, Scott D.; Gerace, Aaron

    2015-05-01

    The air-water interface poses a number of problems for both collecting and simulating imagery. At the surface, the magnitude of observed radiance can change by multiple orders of magnitude at high spatiotemporal frequency due to glinting effects. In the volume, similarly high frequency focusing of photons by a dynamic wave surface significantly changes the reflected radiance of in-water objects and the scattered return of the volume itself. These phenomena are often manifest as saturated pixels and artifacts in collected imagery (often enhanced by time delays between neighboring pixels or interpolation between adjacent filters) and as noise and greater required computation times in simulated imagery. This paper describes recent advances made to the Digital Image and Remote Sensing Image Generation (DIRSIG) model to address the simulation issues to better facilitate an understanding of a multi/hyper-spectral collection. Glint effects are simulated using a dynamic height field that can be driven by wave frequency models and generates a sea state at arbitrary time scales. The volume scattering problem is handled by coupling the geometry representing the surface (facetization by the height field) with the single scattering contribution at any point in the water. The problem is constrained somewhat by assuming that contributions come from a Snell's window above the scattering point and by assuming a direct source (sun). Diffuse single scattered and multiple scattered energy contributions are handled by Monte Carlo techniques employed previously. The model is compared to existing radiative transfer codes where possible, with the objective of providing a robust movel of time-dependent absolute radiance at many wavelengths.

  20. Advanced Maintenance Simulation by Means of Hand-Based Haptic Interfaces

    NASA Astrophysics Data System (ADS)

    Nappi, Michele; Paolino, Luca; Ricciardi, Stefano; Sebillo, Monica; Vitiello, Giuliana

    Aerospace industry has been involved in virtual simulation for design and testing since the birth of virtual reality. Today this industry is showing a growing interest in the development of haptic-based maintenance training applications, which represent the most advanced way to simulate maintenance and repair tasks within a virtual environment by means of a visual-haptic approach. The goal is to allow the trainee to experiment the service procedures not only as a workflow reproduced at a visual level but also in terms of the kinaesthetic feedback involved with the manipulation of tools and components. This study, conducted in collaboration with aerospace industry specialists, is aimed to the development of an immersive virtual capable of immerging the trainees into a virtual environment where mechanics and technicians can perform maintenance simulation or training tasks by directly manipulating 3D virtual models of aircraft parts while perceiving force feedback through the haptic interface. The proposed system is based on ViRstperson, a virtual reality engine under development at the Italian Center for Aerospace Research (CIRA) to support engineering and technical activities such as design-time maintenance procedure validation, and maintenance training. This engine has been extended to support haptic-based interaction, enabling a more complete level of interaction, also in terms of impedance control, and thus fostering the development of haptic knowledge in the user. The user’s “sense of touch” within the immersive virtual environment is simulated through an Immersion CyberForce® hand-based force-feedback device. Preliminary testing of the proposed system seems encouraging.

  1. Exploring the use of standardized patients for simulation-based learning in preparing advanced practice nurses.

    PubMed

    Kowitlawakul, Yanika; Chow, Yeow Leng; Salam, Zakir Hussian Abdul; Ignacio, Jeanette

    2015-07-01

    The use of standardized patients for simulation-based learning was integrated into the Master of Nursing curriculum in the 2012-2013 academic year. The study aimed to explore the Master of Nursing students' experiences with and perceptions of using standardized patients in simulations, and to identify the students' learning needs in preparing to become advanced practice nurses. The study adopted an exploratory descriptive qualitative design, using a focus group interview. The study was conducted at a university in Singapore. Seven Master of Nursing students who were enrolled in the Acute Care Track of Master of Nursing program in the 2012-2013 academic year participated in the study. The data were gathered at the end of the first semester. Content analysis was used to analyze the data. Three main categories - usefulness, clinical limitations, and realism - were identified in the study. The results revealed that the students felt using standardized patients was useful and realistic for developing skills in history taking, communication, and responding to an emergency situation. On the other hand, they found that the standardized patients were limited in providing critical signs and symptoms of case scenarios. To meet the learning objectives, future development and integration of standardized patients in the Master of Nursing curriculum might need to be considered along with the use of a high-fidelity simulator. This can be an alternative strategy to fill the gaps in each method. Obviously, using standardized patients for simulation-based learning has added value to the students' learning experiences. It is highly recommended that future studies explore the impact of using standardized patients on students' performance in clinical settings. PMID:25819268

  2. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    SciTech Connect

    Rich Johnson; Kimberlyn C. Mousseau; Hyung Lee

    2011-09-01

    NE-KAMS knowledge base will assist computational analysts, physics model developers, experimentalists, nuclear reactor designers, and federal regulators by: (1) Establishing accepted standards, requirements and best practices for V&V and UQ of computational models and simulations, (2) Establishing accepted standards and procedures for qualifying and classifying experimental and numerical benchmark data, (3) Providing readily accessible databases for nuclear energy related experimental and numerical benchmark data that can be used in V&V assessments and computational methods development, (4) Providing a searchable knowledge base of information, documents and data on V&V and UQ, and (5) Providing web-enabled applications, tools and utilities for V&V and UQ activities, data assessment and processing, and information and data searches. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the Consortium for Advanced Simulation of Light Water Reactors (CASL), the Nuclear Energy Advanced Modeling and Simulation (NEAMS), the Light Water Reactor Sustainability (LWRS), the Small Modular Reactors (SMR), and the Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve computational modeling and simulation (M&S) of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs. In addition, from the outset, NE-KAMS will support the use of computational M&S in the nuclear industry by developing guidelines and recommended practices aimed at quantifying the uncertainty and assessing the applicability of existing analysis models and methods. The NE-KAMS effort will initially focus on supporting the use of computational fluid dynamics (CFD) and thermal hydraulics (T/H) analysis for M&S of nuclear

  3. Simulations of Liners and Test Objects for a New Atlas Advanced Radiography Source

    SciTech Connect

    D. V. Morgan; S. Iversen; R. A. Hilko

    2002-06-01

    The Advanced Radiographic Source (ARS) will improve the data significantly due to its smaller source width. Because of the enhanced ARS output, larger source-to-object distances are a reality. The harder ARS source will allow radiography of thick high-Z targets. The five different spectral simulations resulted in similar imaging detector weighted transmission. This work used a limited set of test objects and imaging detectors. Other test objects and imaging detectors could possibly change the MVp-sensitivity result. The effect of material motion blur must be considered for the ARS due to the expected smaller X-ray source size. This study supports the original 1.5-MVp value.

  4. Photocatalytic removal of microcystin-LR by advanced WO3-based nanoparticles under simulated solar light.

    PubMed

    Zhao, Chao; Li, Dawei; Liu, Yonggang; Feng, Chuanping; Zhang, Zhenya; Sugiura, Norio; Yang, Yingnan

    2015-01-01

    A series of advanced WO3-based photocatalysts including CuO/WO3, Pd/WO3, and Pt/WO3 were synthesized for the photocatalytic removal of microcystin-LR (MC-LR) under simulated solar light. In the present study, Pt/WO3 exhibited the best performance for the photocatalytic degradation of MC-LR. The MC-LR degradation can be described by pseudo-first-order kinetic model. Chloride ion (Cl-) with proper concentration could enhance the MC-LR degradation. The presence of metal cations (Cu2+ and Fe3+) improved the photocatalytic degradation of MC-LR. This study suggests that Pt/WO3 photocatalytic oxidation under solar light is a promising option for the purification of water containing MC-LR. PMID:25884038

  5. Photocatalytic Removal of Microcystin-LR by Advanced WO3-Based Nanoparticles under Simulated Solar Light

    PubMed Central

    Zhao, Chao; Li, Dawei; Feng, Chuanping; Zhang, Zhenya; Sugiura, Norio; Yang, Yingnan

    2015-01-01

    A series of advanced WO3-based photocatalysts including CuO/WO3, Pd/WO3, and Pt/WO3 were synthesized for the photocatalytic removal of microcystin-LR (MC-LR) under simulated solar light. In the present study, Pt/WO3 exhibited the best performance for the photocatalytic degradation of MC-LR. The MC-LR degradation can be described by pseudo-first-order kinetic model. Chloride ion (Cl−) with proper concentration could enhance the MC-LR degradation. The presence of metal cations (Cu2+ and Fe3+) improved the photocatalytic degradation of MC-LR. This study suggests that Pt/WO3 photocatalytic oxidation under solar light is a promising option for the purification of water containing MC-LR. PMID:25884038

  6. Advanced adaptive computational methods for Navier-Stokes simulations in rotorcraft aerodynamics

    NASA Technical Reports Server (NTRS)

    Stowers, S. T.; Bass, J. M.; Oden, J. T.

    1993-01-01

    A phase 2 research and development effort was conducted in area transonic, compressible, inviscid flows with an ultimate goal of numerically modeling complex flows inherent in advanced helicopter blade designs. The algorithms and methodologies therefore are classified as adaptive methods, which are error estimation techniques for approximating the local numerical error, and automatically refine or unrefine the mesh so as to deliver a given level of accuracy. The result is a scheme which attempts to produce the best possible results with the least number of grid points, degrees of freedom, and operations. These types of schemes automatically locate and resolve shocks, shear layers, and other flow details to an accuracy level specified by the user of the code. The phase 1 work involved a feasibility study of h-adaptive methods for steady viscous flows, with emphasis on accurate simulation of vortex initiation, migration, and interaction. Phase 2 effort focused on extending these algorithms and methodologies to a three-dimensional topology.

  7. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    SciTech Connect

    Hale, Steve

    2013-09-11

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  8. Biodegradation of oxo-alcohol ethoxylates in the continuous flow activated sludge simulation test.

    PubMed

    Szymanski, Andrzej; Wyrwas, Bogdan; Bubien, Ewa; Kurosz, Tatiana; Hreczuch, Wieslaw; Zembrzuski, Wlodzimierz; Lukaszewski, Zenon

    2002-07-01

    Biodegradation of two alpha-methyl branched oxo-alcohol ethoxylates (OAE) of different polydispersity: LIAL 125/14 BRD (LIALB) (broad M.W. distribution) and LIAL 125/14 NRD (LIALN) (narrow M.W. distribution), both having an average of 14 oxyethylene subunits (EO) and a C(12-15) alkyl moiety were tested under the continuous flow activated sludge conditions of the classical Husmann plant. Primary biodegradation and concentration of metabolites: free oxo-alcohol fraction (FOA) and poly(ethylene glycols) (PEG), were measured. PEG were divided into two fractions: short-chained PEG (PEGshch) (1-4 EO) and long-chained PEG (PEGlch) (>4 EO). The indirect tensammetric technique combined with an adequate separation was used for analysis. Central fission was found to be a highly dominating pathway, as is the case with fatty alcohol ethoxylates. OAE are highly primarily biodegraded (above 95%). High concentrations of FOA and PEG are formed. Once formed the PEGlch are further fragmented into the PEGshch. Free alcohol fraction compounds are biodegraded sooner when alkyl moiety is shorter. OAE polydispersity has an influence on the kinetics of biodegradation; PEG formed from LIALN are biodegraded slower and to a lower degree than those from LIALB. PMID:12188138

  9. Transient Simulation of Mold Heat Transfer and Solidification Phenomena of Continuous Casting of Steel

    NASA Astrophysics Data System (ADS)

    El-Bealy, Mostafa Omar

    2016-07-01

    A comprehensive model of heat transfer and solidification phenomena has been developed including microstructure evolution and fluctuation macrosegregation in continuously cast steel slabs with an objective of evaluation of various mold cooling conditions. The study contains plant trials, metallographic examinations, and formulation of mathematical modeling. The plant trials involved sample collection from three slab casters in use at two different steel plants. The metallographic study combined measurements of dendrite arm spacings and macrosegregation analysis of collected samples. A one-dimensional mathematical model has been developed to characterize the thermal, solidification phases, microstructure evolution, interdendritic strain, and therefore, the macrosegregation distributions. Two cooling approaches were proposed in this study to evaluate the Newtonian heat transfer coefficient in various mold regions. The first approach is a direct estimation approach (DEA), whereas the second one is a coupled approach of the interfacial resistor model and direct estimation approach (CIR/DEA). The model predictions and standard analytical models as well as the previous measurements were compared to verify and to calibrate the model where good agreements were obtained. The comparison between the model predictions and the measurements of dendrite arm spacings and fluctuated carbon concentration profiles were performed to determine the model accuracy level with different cooling approaches. Good agreements were obtained by different accuracy levels with different cooling approaches. The model predictions of thermal parameters and isotherms were analyzed and discussed.

  10. Simulation of Image Performance Characteristics of the Landsat Data Continuity Mission (LDCM) Thermal Infrared Sensor (TIRS)

    NASA Technical Reports Server (NTRS)

    Schott, John; Gerace, Aaron; Brown, Scott; Gartley, Michael; Montanaro, Matthew; Reuter, Dennis C.

    2012-01-01

    The next Landsat satellite, which is scheduled for launch in early 2013, will carry two instruments: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). Significant design changes over previous Landsat instruments have been made to these sensors to potentially enhance the quality of Landsat image data. TIRS, which is the focus of this study, is a dual-band instrument that uses a push-broom style architecture to collect data. To help understand the impact of design trades during instrument build, an effort was initiated to model TIRS imagery. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) tool was used to produce synthetic "on-orbit" TIRS data with detailed radiometric, geometric, and digital image characteristics. This work presents several studies that used DIRSIG simulated TIRS data to test the impact of engineering performance data on image quality in an effort to determine if the image data meet specifications or, in the event that they do not, to determine if the resulting image data are still acceptable.

  11. A Computational Methodology for Simulating Thermal Loss Testing of the Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Reid, Terry V.; Wilson, Scott D.; Schifer, Nicholas A.; Briggs, Maxwell H.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. In an effort to improve net heat input predictions, numerous tasks have been performed which provided a more accurate value for net heat input into the ASCs, including the use of multidimensional numerical models. Validation test hardware has also been used to provide a direct comparison of numerical results and validate the multi-dimensional numerical models used to predict convertor net heat input and efficiency. These validation tests were designed to simulate the temperature profile of an operating Stirling convertor and resulted in a measured net heat input of 244.4 W. The methodology was applied to the multi-dimensional numerical model which resulted in a net heat input of 240.3 W. The computational methodology resulted in a value of net heat input that was 1.7 percent less than that measured during laboratory testing. The resulting computational methodology and results are discussed.

  12. Advanced Simulation and Computing: A Summary Report to the Director's Review

    SciTech Connect

    McCoy, M G; Peck, T

    2003-06-01

    It has now been three years since the Advanced Simulation and Computing Program (ASCI), as managed by Defense and Nuclear Technologies (DNT) Directorate, has been reviewed by this Director's Review Committee (DRC). Since that time, there has been considerable progress for all components of the ASCI Program, and these developments will be highlighted in this document and in the presentations planned for June 9 and 10, 2003. There have also been some name changes. Today, the Program is called ''Advanced Simulation and Computing,'' Although it retains the familiar acronym ASCI, the initiative nature of the effort has given way to sustained services as an integral part of the Stockpile Stewardship Program (SSP). All computing efforts at LLNL and the other two Defense Program (DP) laboratories are funded and managed under ASCI. This includes the so-called legacy codes, which remain essential tools in stockpile stewardship. The contract between the Department of Energy (DOE) and the University of California (UC) specifies an independent appraisal of Directorate technical work and programmatic management. Such represents the work of this DNT Review Committee. Beginning this year, the Laboratory is implementing a new review system. This process was negotiated between UC, the National Nuclear Security Administration (NNSA), and the Laboratory Directors. Central to this approach are eight performance objectives that focus on key programmatic and administrative goals. Associated with each of these objectives are a number of performance measures to more clearly characterize the attainment of the objectives. Each performance measure has a lead directorate and one or more contributing directorates. Each measure has an evaluation plan and has identified expected documentation to be included in the ''Assessment File''.

  13. Numerical Simulation of the Anaerobic Transformation of Tetrachloroethene to cis-Dichloroethene in a Continuous Flow Aquifer Column

    NASA Astrophysics Data System (ADS)

    Mustafa, N.; Azizian, M.; Dolan, M.; Semprini, L.

    2007-12-01

    The anaerobic reductive dechlorination of tetrachloroethene (PCE) to cis-dichloroethene (c-DCE) in a laboratory column study was numerically simulated and compared with experimental observations. The column study was conducted with continuous flow and injection of PCE in synthetic groundwater. The column was packed with aquifer solids from the Hanford DOE site and bioaugmented with the Evanite (EV) dechlorinating enrichment culture. After the column was bioaugmented and fed lactate as an electron donor, c-DCE concentrations in the column effluent exceeded the influent PCE concentration. This high c-DCE concentration resulted from enhanced PCE desorption and transformation. A 1-D reactive transport model was developed that included the processes of dispersion, advection, rate-limited sorption and desorption, reductive dechlorination kinetics with competitive inhibition and microbial growth and decay. The model was validated by mass balances, comparisons with analytical solutions and batch kinetic models. Previously determined kinetic and inhibition constants for the EV culture of Yu and Semprini (2004) were input into the model simulations. Initial biomass concentration was assumed to be exponentially distributed along the column. The sorption parameters including the aquifer: water distribution coefficients (Kds) and first-order mass transfer coefficients for PCE, trichloroethene (TCE), and c-DCE were determined in batch laboratory studies. The system of model equations was solved numerically using COMSOL 3.3, which employs finite-element methods. The reactive transport model successfully simulated the initial results of continuous flow column experiment. The increase in c-DCE above the influent PCE concentration was simulated and TCE was shown not to accumulate in the column effluent. The simulations showed that microbial kinetic values generated in previous studies and the sorption parameters generated in batch tests, when used in a transport model, did a

  14. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.

    SciTech Connect

    Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia; Pilch, Martin M.

    2009-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and the software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.

  15. Continuous neuronal ensemble control of simulated arm reaching by a human with tetraplegia

    NASA Astrophysics Data System (ADS)

    Chadwick, E. K.; Blana, D.; Simeral, J. D.; Lambrecht, J.; Kim, S. P.; Cornwell, A. S.; Taylor, D. M.; Hochberg, L. R.; Donoghue, J. P.; Kirsch, R. F.

    2011-06-01

    Functional electrical stimulation (FES), the coordinated electrical activation of multiple muscles, has been used to restore arm and hand function in people with paralysis. User interfaces for such systems typically derive commands from mechanically unrelated parts of the body with retained volitional control, and are unnatural and unable to simultaneously command the various joints of the arm. Neural interface systems, based on spiking intracortical signals recorded from the arm area of motor cortex, have shown the ability to control computer cursors, robotic arms and individual muscles in intact non-human primates. Such neural interface systems may thus offer a more natural source of commands for restoring dexterous movements via FES. However, the ability to use decoded neural signals to control the complex mechanical dynamics of a reanimated human limb, rather than the kinematics of a computer mouse, has not been demonstrated. This study demonstrates the ability of an individual with long-standing tetraplegia to use cortical neuron recordings to command the real-time movements of a simulated dynamic arm. This virtual arm replicates the dynamics associated with arm mass and muscle contractile properties, as well as those of an FES feedback controller that converts user commands into the required muscle activation patterns. An individual with long-standing tetraplegia was thus able to control a virtual, two-joint, dynamic arm in real time using commands derived from an existing human intracortical interface technology. These results show the feasibility of combining such an intracortical interface with existing FES systems to provide a high-performance, natural system for restoring arm and hand function in individuals with extensive paralysis. This paper was originally submitted for the special issue containing contributions from the Fourth International Brain-Computer Interface Meeting.

  16. Regression Discontinuity Design: Simulation and Application in Two Cardiovascular Trials with Continuous Outcomes.

    PubMed

    van Leeuwen, Nikki; Lingsma, Hester F; de Craen, Anton J M; Nieboer, Daan; Mooijaart, Simon P; Richard, Edo; Steyerberg, Ewout W

    2016-07-01

    In epidemiology, the regression discontinuity design has received increasing attention recently and might be an alternative to randomized controlled trials (RCTs) to evaluate treatment effects. In regression discontinuity, treatment is assigned above a certain threshold of an assignment variable for which the treatment effect is adjusted in the analysis. We performed simulations and a validation study in which we used treatment effect estimates from an RCT as the reference for a prospectively performed regression discontinuity study. We estimated the treatment effect using linear regression adjusting for the assignment variable both as linear terms and restricted cubic spline and using local linear regression models. In the first validation study, the estimated treatment effect from a cardiovascular RCT was -4.0 mmHg blood pressure (95% confidence interval: -5.4, -2.6) at 2 years after inclusion. The estimated effect in regression discontinuity was -5.9 mmHg (95% confidence interval: -10.8, -1.0) with restricted cubic spline adjustment. Regression discontinuity showed different, local effects when analyzed with local linear regression. In the second RCT, regression discontinuity treatment effect estimates on total cholesterol level at 3 months after inclusion were similar to RCT estimates, but at least six times less precise. In conclusion, regression discontinuity may provide similar estimates of treatment effects to RCT estimates, but requires the assumption of a global treatment effect over the range of the assignment variable. In addition to a risk of bias due to wrong assumptions, researchers need to weigh better recruitment against the substantial loss in precision when considering a study with regression discontinuity versus RCT design. PMID:27031038

  17. A simulation study of crew performance in operating an advanced transport aircraft in an automated terminal area environment

    NASA Technical Reports Server (NTRS)

    Houck, J. A.

    1983-01-01

    A simulation study assessing crew performance operating an advanced transport aircraft in an automated terminal area environment is described. The linking together of the Langley Advanced Transport Operating Systems Aft Flight Deck Simulator with the Terminal Area Air Traffic Model Simulation was required. The realism of an air traffic control (ATC) environment with audio controller instructions for the flight crews and the capability of inserting a live aircraft into the terminal area model to interact with computer generated aircraft was provided. Crew performance using the advanced displays and two separate control systems (automatic and manual) in flying area navigation routes in the automated ATC environment was assessed. Although the crews did not perform as well using the manual control system, their performances were within acceptable operational limits with little increase in workload. The crews favored using the manual control system and felt they were more alert and aware of their environment when using it.

  18. Life disruption, life continuation: contrasting themes in the lives of African-American elders with advanced heart failure.

    PubMed

    Hopp, Faith Pratt; Thornton, Nancy; Martin, Lindsey; Zalenski, Robert

    2012-01-01

    This study addresses the need for more information about how urban African-American elders experience advanced heart failure. Participants included 35 African Americans aged 60 and over with advanced heart failure, identified through records from a community hospital in Detroit, Michigan. Four focus groups (n = 13) and 22 individual interviews were conducted. We used thematic analysis to examine qualitative focus groups and interviews. Themes identified included life disruption, which encompassed the sub-themes of living scared, making sense of heart failure, and limiting activities. Resuming life was a contrasting theme involving culturally relevant coping strategies, and included the sub-themes of resiliency, spirituality, and self-care that helped patients regain and maintain a sense of self amid serious illness. Participants faced numerous challenges and invoked a variety of strategies to cope with their illness, and their stories of struggles, hardship, and resilience can serve as a model for others struggling with advanced illness. PMID:22352363

  19. The continuing role of epidermal growth factor receptor tyrosine kinase inhibitors in advanced squamous cell carcinoma of the lung

    PubMed Central

    Tan, Wan Ling

    2016-01-01

    Squamous cell carcinoma (SCC) of the lung represents about 20-30% of non-small cell lung cancers (NSCLC) and is associated with a poorer prognosis with limited treatment options. Erlotinib is an approved, standard second-line therapy in this setting, besides docetaxel. The LUX-Lung 8 study has shown superior overall survival (OS), progression-free survival (PFS), as well as disease control rates for treatment with afatinib compared to erlotinib in this head-to-head trial in patients with previously treated advanced SCC of the lung, with manageable side effect profile. This is the first and largest prospective phase III trial comparing two different tyrosine kinase inhibitors in patients with advanced SCC of the lung. Whether the results would be practice-changing remains to be seen, especially with the advent of novel immunotherapeutic agents such as nivolumab, which is recently approved for advanced lung SCC. PMID:26958503

  20. Connectivity as a spatial performance metric to validate simulated spatial patterns of continuous hydrological states and fluxes in distributed hydrological modelling.

    NASA Astrophysics Data System (ADS)

    Koch, Julian; Stisen, Simon

    2015-04-01

    Distributed hydrological models are traditionally evaluated against single spatially aggregated catchment scale observations, e.g. river discharge or hydraulic head data with the conviction that they are suitable measures for the simulation of spatially explicit hydrological processes within a catchment. Recent studies have shown that this is disputable and often a false conclusion and raise the demand for a model evaluation framework that focuses on distributed instead of aggregated variables, such as remotely sensed data. However no single spatial performance metric has been identified yet that proved suitable for a robust comparison of observed and simulated spatial patterns of hydrological variables, nor there exists an agreed procedure to do so. This study promotes a novel spatial performance metric which is based on a connectivity analysis. The connectivity of a continuous variable is best analyzed through a decomposition of the maps into a series of binary sets, which are based on threshold values. The probability of connection of all clusters in a specific binary set is used as a metric to describe the spatial pattern of the variable and reflects if the clusters are rather disperse or centralized. The applicability, robustness and sensitivity of the new metric are assessed by comparing simulated and observed land-surface temperature (LST) patterns. The applied model is MIKE She, a coupled, physically based and fully distributed hydrological model and the observed LST maps are derived from the MODIS sensor; 33 LST maps with full coverage are available for a 6 year simulation period of the Skjern river, the HOBE hydrological observatory in western Jutland (DK). Considering an increasing and decreasing threshold value for the decomposition of the LST maps allows to investigate the connectivity of the warm and the cold clusters individually. The evolution of the metric along an increasing and decreasing threshold value is unique for each LST map and thus allows

  1. Some Specific CASL Requirements for Advanced Multiphase Flow Simulation of Light Water Reactors

    SciTech Connect

    R. A. Berry

    2010-11-01

    Because of the diversity of physical phenomena occuring in boiling, flashing, and bubble collapse, and of the length and time scales of LWR systems, it is imperative that the models have the following features: • Both vapor and liquid phases (and noncondensible phases, if present) must be treated as compressible. • Models must be mathematically and numerically well-posed. • The models methodology must be multi-scale. A fundamental derivation of the multiphase governing equation system, that should be used as a basis for advanced multiphase modeling in LWR coolant systems, is given in the Appendix using the ensemble averaging method. The remainder of this work focuses specifically on the compressible, well-posed, and multi-scale requirements of advanced simulation methods for these LWR coolant systems, because without these are the most fundamental aspects, without which widespread advancement cannot be claimed. Because of the expense of developing multiple special-purpose codes and the inherent inability to couple information from the multiple, separate length- and time-scales, efforts within CASL should be focused toward development of a multi-scale approaches to solve those multiphase flow problems relevant to LWR design and safety analysis. Efforts should be aimed at developing well-designed unified physical/mathematical and high-resolution numerical models for compressible, all-speed multiphase flows spanning: (1) Well-posed general mixture level (true multiphase) models for fast transient situations and safety analysis, (2) DNS (Direct Numerical Simulation)-like models to resolve interface level phenmena like flashing and boiling flows, and critical heat flux determination (necessarily including conjugate heat transfer), and (3) Multi-scale methods to resolve both (1) and (2) automatically, depending upon specified mesh resolution, and to couple different flow models (single-phase, multiphase with several velocities and pressures, multiphase with single

  2. Technology advancement for the ASCENDS mission using the ASCENDS CarbonHawk Experiment Simulator (ACES)

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Antill, C.; Browell, E. V.; Campbell, J. F.; CHEN, S.; Cleckner, C.; Dijoseph, M. S.; Harrison, F. W.; Ismail, S.; Lin, B.; Meadows, B. L.; Mills, C.; Nehrir, A. R.; Notari, A.; Prasad, N. S.; Kooi, S. A.; Vitullo, N.; Dobler, J. T.; Bender, J.; Blume, N.; Braun, M.; Horney, S.; McGregor, D.; Neal, M.; Shure, M.; Zaccheo, T.; Moore, B.; Crowell, S.; Rayner, P. J.; Welch, W.

    2013-12-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) is a NASA Langley Research Center project funded by NASA's Earth Science Technology Office that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The technologies being advanced are: (1) multiple transmitter and telescope-aperture operations, (2) high-efficiency CO2 laser transmitters, (3) a high bandwidth detector and transimpedance amplifier (TIA), and (4) advanced algorithms for cloud and aerosol discrimination. The instrument architecture is being developed for ACES to operate on a high-altitude aircraft, and it will be directly scalable to meet the ASCENDS mission requirements. The above technologies are critical for developing an airborne simulator and spaceborne instrument with lower platform consumption of size, mass, and power, and with improved performance. This design employs several laser transmitters and telescope-apertures to demonstrate column CO2 retrievals with alignment of multiple laser beams in the far-field. ACES will transmit five laser beams: three from commercial lasers operating near 1.57-microns, and two from the Exelis atmospheric oxygen (O2) fiber laser amplifier system operating near 1.26-microns. The Master Oscillator Power Amplifier at 1.57-microns measures CO2 column concentrations using an Integrated-Path Differential Absorption (IPDA) lidar approach. O2 column amounts needed for calculating the CO2 mixing ratio will be retrieved using the Exelis laser system with a similar IPDA approach. The three aperture telescope design was built to meet the constraints of the Global Hawk high-altitude unmanned aerial vehicle (UAV). This assembly integrates fiber-coupled transmit collimators for all of the laser transmitters and fiber-coupled optical signals from the three telescopes to the aft optics and detector package. The detector

  3. A Simulation Study of Categorizing Continuous Exposure Variables Measured with Error in Autism Research: Small Changes with Large Effects

    PubMed Central

    Heavner, Karyn; Burstyn, Igor

    2015-01-01

    Variation in the odds ratio (OR) resulting from selection of cutoffs for categorizing continuous variables is rarely discussed. We present results for the effect of varying cutoffs used to categorize a mismeasured exposure in a simulated population in the context of autism spectrum disorders research. Simulated cohorts were created with three distinct exposure-outcome curves and three measurement error variances for the exposure. ORs were calculated using logistic regression for 61 cutoffs (mean ± 3 standard deviations) used to dichotomize the observed exposure. ORs were calculated for five categories with a wide range for the cutoffs. For each scenario and cutoff, the OR, sensitivity, and specificity were calculated. The three exposure-outcome relationships had distinctly shaped OR (versus cutoff) curves, but increasing measurement error obscured the shape. At extreme cutoffs, there was non-monotonic oscillation in the ORs that cannot be attributed to “small numbers.” Exposure misclassification following categorization of the mismeasured exposure was differential, as predicted by theory. Sensitivity was higher among cases and specificity among controls. Cutoffs chosen for categorizing continuous variables can have profound effects on study results. When measurement error is not too great, the shape of the OR curve may provide insight into the true shape of the exposure-disease relationship. PMID:26305250

  4. Acute Biventricular Interaction in Pediatric Patients Implanted with Continuous Flow and Pulsatile Flow LVAD: A Simulation Study.

    PubMed

    Di Molfetta, Arianna; Ferrari, Gianfranco; Iacobelli, Roberta; Fresiello, Libera; Pilati, Mara; Toscano, Alessandra; Filippelli, Sergio; Morelli, Stefano; Amodeo, Antonio

    2016-01-01

    Left ventricular assist devices (LVADs) are used to bridge pediatric patients till transplantation. However, the LVADs effects on right ventricular (RV) function are controversial. This work aims at studying the ventricular interdependency in the presence of continuous (c-) and pulsatile (p-) flow LVAD in pediatric patients using a lumped parameter model including the representation of the septum. Five pediatric patients' data were used to simulate patients' baseline. The effects on LV and RV functions, energetics, preloads and afterloads of different c-LVAD speeds, p-LVAD rate, p-LVAD systole duration, p-LVAD filling and ejection pressures were simulated. c-LVAD and p-LVAD unload the LV decreasing the LV external work and improving the LV ventriculo-arterial coupling and these effects are more evident increasing the c-LVAD speed and the p-LVAD rate. Continuous-LVAD and p-LVAD decrease the RV afterload, increase the RV ejection fraction and improve the RV ventriculo-arterial coupling. The changes in RV function are inversely proportional to the degree of the interventricular septum leftward shift that increased by increasing the LVAD contribution. The study of the interventricular interaction could lead to the development of a dedicated algorithm to optimize LVAD setting in pediatric population. PMID:27258223

  5. Subjective loudness of simulated quarry blast waves, with implications for the transition from impulsive to continuous sound.

    PubMed

    Niedzwiecki, A; Ribner, H S

    1979-05-01

    The tradeoff between amplitude and duration for equal loudness was explored for idealized quarry blast waves. An extended low-frequency response loudspeaker-driven simulation booth was employed with computer-generated imput test signals. In place of actual irregular blast waves, the simulated signatures were composed of sequences of identical shock-decay impulses of 25 ms duration and 0.2 ms rise time. Sequences of 1--16 impulses yielded overall durations of 25--400 ms. At the short durations the loudness was found to increase 2 dB for each doubling of duration; above 100 ms the increase was progressively lower, approaching as an asymptote the level for continuous sound. The results were compared with theoretical predictions: for this purpose the spectral method of Johnson and Robinson, well varified in our earlier studies of sonic boom impulses, was used. The shorter quarry blast judgments (T less than or equal to 100 ms) were found to be in very good agreement in terms of relative loudness levels. With an ad hoc--but physically plausible--modification (including adjustment of the critical integration time of the ear) the predictive method was extended to encompass the long duration signals as well. Thus the applicability of the method has been demonstrated for other types of transient sounds than the N wave; and the extension of the method tentatively appears to bridge the range between impulsive and continuous sounds of similar spectral content. PMID:458043

  6. Particle-in-cell Simulations of Continuously Driven Mirror and Ion Cyclotron Instabilities in High Beta Astrophysical and Heliospheric Plasmas

    NASA Astrophysics Data System (ADS)

    Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel

    2015-02-01

    We use particle-in-cell simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is β ~ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with p > p ∥ and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular phase in which the fluctuations grow on the same timescale as the background magnetic field (with δB ~ 0.3 langBrang in the secular phase). At early times, the ion magnetic moment is well-conserved but once the fluctuation amplitudes exceed δB ~ 0.1 langBrang, the magnetic moment is no longer conserved but instead changes on a timescale comparable to that of the mean magnetic field. We discuss the implications of our results for low-collisionality astrophysical plasmas, including the near-Earth solar wind and low-luminosity accretion disks around black holes.

  7. PARTICLE-IN-CELL SIMULATIONS OF CONTINUOUSLY DRIVEN MIRROR AND ION CYCLOTRON INSTABILITIES IN HIGH BETA ASTROPHYSICAL AND HELIOSPHERIC PLASMAS

    SciTech Connect

    Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel E-mail: eliot@berkeley.edu

    2015-02-10

    We use particle-in-cell simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is β ∼ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with p > p {sub ∥} and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular phase in which the fluctuations grow on the same timescale as the background magnetic field (with δB ∼ 0.3 (B) in the secular phase). At early times, the ion magnetic moment is well-conserved but once the fluctuation amplitudes exceed δB ∼ 0.1 (B), the magnetic moment is no longer conserved but instead changes on a timescale comparable to that of the mean magnetic field. We discuss the implications of our results for low-collisionality astrophysical plasmas, including the near-Earth solar wind and low-luminosity accretion disks around black holes.

  8. The Synergy Between Total Scattering and Advanced Simulation Techniques: Quantifying Geopolymer Gel Evolution

    SciTech Connect

    White, Claire; Bloomer, Breaunnah E.; Provis, John L.; Henson, Neil J.; Page, Katharine L.

    2012-05-16

    With the ever increasing demands for technologically advanced structural materials, together with emerging environmental consciousness due to climate change, geopolymer cement is fast becoming a viable alternative to traditional cements due to proven mechanical engineering characteristics and the reduction in CO2 emitted (approximately 80% less CO2 emitted compared to ordinary Portland cement). Nevertheless, much remains unknown regarding the kinetics of the molecular changes responsible for nanostructural evolution during the geopolymerization process. Here, in-situ total scattering measurements in the form of X-ray pair distribution function (PDF) analysis are used to quantify the extent of reaction of metakaolin/slag alkali-activated geopolymer binders, including the effects of various activators (alkali hydroxide/silicate) on the kinetics of the geopolymerization reaction. Restricting quantification of the kinetics to the initial ten hours of reaction does not enable elucidation of the true extent of the reaction, but using X-ray PDF data obtained after 128 days of reaction enables more accurate determination of the initial extent of reaction. The synergies between the in-situ X-ray PDF data and simulations conducted by multiscale density functional theory-based coarse-grained Monte Carlo analysis are outlined, particularly with regard to the potential for the X-ray data to provide a time scale for kinetic analysis of the extent of reaction obtained from the multiscale simulation methodology.

  9. Propulsion Simulations Using Advanced Turbulence Models with the Unstructured Grid CFD Tool, TetrUSS

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Frink, Neal T.; Deere, Karen A.; Pandya, Mohangna J.

    2004-01-01

    A computational investigation has been completed to assess the capability of TetrUSS for exhaust nozzle flows. Three configurations were chosen for this study (1) an axisymmetric supersonic jet, (2) a transonic axisymmetric boattail with solid sting operated at different Reynolds number and Mach number, and (3) an isolated non-axisymmetric nacelle with a supersonic cruise nozzle. These configurations were chosen because existing experimental data provided a means for measuring the ability of TetrUSS for simulating complex nozzle flows. The main objective of this paper is to validate the implementation of advanced two-equation turbulence models in the unstructured-grid CFD code USM3D for propulsion flow cases. USM3D is the flow solver of the TetrUSS system. Three different turbulence models, namely, Menter Shear Stress Transport (SST), basic k epsilon, and the Spalart-Allmaras (SA) are used in the present study. The results are generally in agreement with other implementations of these models in structured-grid CFD codes. Results indicate that USM3D provides accurate simulations for complex aerodynamic configurations with propulsion integration.

  10. Real-time manned simulation of advanced terminal area guidance concepts for short-haul operations

    NASA Technical Reports Server (NTRS)

    Tobias, L.; Obrien, P. J.

    1977-01-01

    A real-time simulation was conducted of three-dimensional area navigation and four-dimensional area navigation equipped (STOL) aircraft operating in a high-density terminal area traffic environment. The objectives were to examine the effects of 3D RNAV and 4D RNAV equipped aircraft on the terminal area traffic efficiency, and to examine the performance of an air traffic control system concept and associated controller display proposed for use with advanced RNAV systems. Three types of STOL aircraft were simulated each with different performance capabilities. System performance was measured in both the 4D mode and in a 3D mode; the 3D mode, used as a baseline, was simply the 4D mode less any time specification. The results show that communications workload in the 4D mode was reduced by about 35 percent compared to the 3D, while 35 percent more traffic was handled with the 4D. Aircraft holding time in the 4D mode was only 30 percent of that required in the 3D mode. In addition, the orderliness of traffic was improved significantly in the 4D mode.

  11. Continuous separation of sugarcane molasses with a simulated moving-bed adsorber. Adsorption equilibria, kinetics, and application

    SciTech Connect

    Saska, M.; Mei Di Wu; Clarke, S.J.; Iqbal, K. )

    1992-10-01

    Fundamental chromatographic properties are reported that are related to the industrial separation of sugarcane molasses in a simulated moving-bed adsorber. The distribution coefficients of KCL, sucrose, glucose, and fructose on XUS-40166.00 (K[sup +]) cation exchanger were determined by pulse testing to be 0.00, 0.22, 0.45, and 0.50 at infinite dilution at 70 C. The adsorption isotherm of KCl is quadratic; those of the sugars only slightly nonlinear and dependent on KCl concentration. HETP was found to be independent of fluid velocity for KCl in the range of the interstitial velocity of 5 to 35 cm/min, and increasing with v for sucrose. At high fluid velocities the broadening of the sucrose band in a packed bed comes primarily from intraparticle mass transfer, with axial dispersion and film diffusion playing minor roles. The process for separation of sugarcane molasses was demonstrated on a 47 liter, eight-column simulated moving-bed adsorber. A theoretical, staged model of the simulated moving-bed adsorber with one inert totally excluded and three linearly adsorbing components was found to give an excellent representation of the transient and steady-state behavior of the continuous separation of sugarcane molasses.

  12. Simulations of Continuous Descent Operations with Arrival-management Automation and Mixed Flight-deck Interval Management Equipage

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Kupfer, Michael; Martin, Lynne Hazel; Prevot, Thomas

    2013-01-01

    Air traffic management simulations conducted in the Airspace Operations Laboratory at NASA Ames Research Center have addressed the integration of trajectory-based arrival-management automation, controller tools, and Flight-Deck Interval Management avionics to enable Continuous Descent Operations (CDOs) during periods of sustained high traffic demand. The simulations are devoted to maturing the integrated system for field demonstration, and refining the controller tools, clearance phraseology, and procedures specified in the associated concept of operations. The results indicate a variety of factors impact the concept's safety and viability from a controller's perspective, including en-route preconditioning of arrival flows, useable clearance phraseology, and the characteristics of airspace, routes, and traffic-management methods in use at a particular site. Clear understanding of automation behavior and required shifts in roles and responsibilities is important for controller acceptance and realizing potential benefits. This paper discusses the simulations, drawing parallels with results from related European efforts. The most recent study found en-route controllers can effectively precondition arrival flows, which significantly improved route conformance during CDOs. Controllers found the tools acceptable, in line with previous studies.

  13. CHARMM-GUI PDB Manipulator for Advanced Modeling and Simulations of Proteins Containing Non-standard Residues

    PubMed Central

    Jo, Sunhwan; Cheng, Xi; Islam, Shahidul M.; Huang, Lei; Rui, Huan; Zhu, Allen; Lee, Hui Sun; Qi, Yifei; Han, Wei; Vanommeslaeghe, Kenno; MacKerell, Alexander D.; Roux, Benoît; Im, Wonpil

    2016-01-01

    CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface to prepare molecular simulation systems and input files to facilitate the usage of common and advanced simulation techniques. Since its original development in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to setup a broad range of simulations including free energy calculation and large-scale coarse-grained representation. Here, we describe functionalities that have recently been integrated into CHARMM-GUI PDB Manipulator, such as ligand force field generation, incorporation of methanethiosulfonate (MTS) spin labels and chemical modifiers, and substitution of amino acids with unnatural amino acids. These new features are expected to be useful in advanced biomolecular modeling and simulation of proteins. PMID:25443960

  14. Advancements for Active Remote Sensing of Carbon Dioxide from Space using the ASCENDS CarbonHawk Experiment Simulator: First Results

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Nehrir, A. R.; Lin, B.; Harrison, F. W.; Kooi, S. A.; Choi, Y.; Plant, J.; Yang, M. M.; Antill, C.; Campbell, J. F.; Ismail, S.; Browell, E. V.; Meadows, B.; Dobler, J. T.; Zaccheo, T. S.; Moore, B., III; Crowell, S.

    2014-12-01

    The ASCENDS CarbonHawk Experiment Simulator (ACES) is an Intensity-Modulated Continuous-Wave lidar system recently developed at NASA Langley Research Center that seeks to advance technologies and techniques critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. These advancements include: (1) increasing the power-aperture product to approach ASCENDS mission requirements by implementing multi-aperture telescopes and multiple co-aligned laser transmitters; (2) incorporating high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) developing and incorporating a high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration operation on Global Hawk aircraft, and (4) advancing algorithms for cloud and aerosol discrimination. The ACES instrument architecture is being developed for operation on high-altitude aircraft and will be directly scalable to meet the ASCENDS mission requirements. ACES simultaneously transmits five laser beams: three from commercial EDFAs operating near 1571 nm, and two from the Exelis oxygen (O2) Raman fiber laser amplifier system operating near 1260 nm. The Integrated-Path Differential Absorption (IPDA) lidar approach is used at both wavelengths to independently measure the CO2 and O2 column number densities and retrieve the average column CO2 mixing ratio. The outgoing laser beams are aligned to the field of view of ACES' three fiber-coupled 17.8-cm diameter athermal telescopes. The backscattered light collected by the three telescopes is sent to the detector/TIA subsystem, which has a bandwidth of 4.7 MHz and operates service-free using a tactical dewar and cryocooler. Two key laser modulation approaches are being tested to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. Full instrument development concluded in the

  15. Numerical simulation of the reactive flow in advanced (HSR) combustors using KIVA-2

    NASA Technical Reports Server (NTRS)

    Winowich, Nicholas S.

    1991-01-01

    Recent work has been done with the goal of establishing ultralow emission aircraft gas turbine combustors. A significant portion of the effort is the development of three dimensional computational combustor models. The KIVA-II computer code which is based on the Implicit Continuous Eulerian Difference mesh Arbitrary Lagrangian Eulerian (ICED-ALE) numerical scheme is one of the codes selected by NASA to achieve these goals. This report involves a simulation of jet injection through slanted slots within the Rich burn/Quick quench/Lean burn (RQL) baseline experimental rig. The RQL combustor distinguishes three regions of combustion. This work specifically focuses on modeling the quick quench mixer region in which secondary injection air is introduced radially through 12 equally spaced slots around the mixer circumference. Steady state solutions are achieved with modifications to the KIVA-II program. Work currently underway will evaluate thermal mixing as a function of injection air velocity and angle of inclination of the slots.

  16. Simulation Manikin Modifications for High-Fidelity Training of Advanced Airway Procedures.

    PubMed

    Hirsch, Jan; Generoso, Jose R; Latoures, Renee; Acar, Yahya; Fidler, Richard L

    2016-05-01

    Thoracic anesthesia procedures are challenging to master during anesthesia training. A Laerdal ALS Simulator® manikin was modified by adding a bronchial tree module to create fidelity to the fourth generation. After modification, placement of endotracheal tubes up to 8.0 mm is possible by direct laryngoscopy, video laryngoscopy, and fiberoptically; in addition, it allows fiberoptically guided insertion of endobronchial blockers. Insertion of left and right 35-Fr double-lumen tubes permits double- and single-lung ventilation with continuous positive airway pressure and positive end-expiratory pressure. This anatomical modification created a high-fidelity training tool for thoracic anesthesia that has been incorporated into educational curricula for anesthesia. PMID:26752178

  17. CO2 over the past 5 million years: Continuous simulation and new δ11B-based proxy data

    NASA Astrophysics Data System (ADS)

    Stap, Lennert B.; de Boer, Bas; Ziegler, Martin; Bintanja, Richard; Lourens, Lucas J.; van de Wal, Roderik S. W.

    2016-04-01

    During the past five million yrs, benthic δ18O records indicate a large range of climates, from warmer than today during the Pliocene Warm Period to considerably colder during glacials. Antarctic ice cores have revealed Pleistocene glacial-interglacial CO2 variability of 60-100 ppm, while sea level fluctuations of typically 125 m are documented by proxy data. However, in the pre-ice core period, CO2 and sea level proxy data are scarce and there is disagreement between different proxies and different records of the same proxy. This hampers comprehensive understanding of the long-term relations between CO2, sea level and climate. Here, we drive a coupled climate-ice sheet model over the past five million years, inversely forced by a stacked benthic δ18O record. We obtain continuous simulations of benthic δ18O, sea level and CO2 that are mutually consistent. Our model shows CO2 concentrations of 300 to 470 ppm during the Early Pliocene. Furthermore, we simulate strong CO2 variability during the Pliocene and Early Pleistocene. These features are broadly supported by existing and new δ11B-based proxy CO2 data, but less by alkenone-based records. The simulated concentrations and variations therein are larger than expected from global mean temperature changes. Our findings thus suggest a smaller Earth System Sensitivity than previously thought. This is explained by a more restricted role of land ice variability in the Pliocene. The largest uncertainty in our simulation arises from the mass balance formulation of East Antarctica, which governs the variability in sea level, but only modestly affects the modeled CO2 concentrations.

  18. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage.

    PubMed

    Taffetani, M; Griebel, M; Gastaldi, D; Klisch, S M; Vena, P

    2014-04-01

    Articular cartilage is a soft hydrated tissue that facilitates proper load transfer in diarthroidal joints. The mechanical properties of articular cartilage derive from its structural and hierarchical organization that, at the micrometric length scale, encompasses three main components: a network of insoluble collagen fibrils, negatively charged macromolecules and a porous extracellular matrix. In this work, a constituent-based constitutive model for the simulation of nanoindentation tests on articular cartilage is presented: it accounts for the multi-constituent, non-linear, porous, and viscous aspects of articular cartilage mechanics. In order to reproduce the articular cartilage response under different loading conditions, the model considers a continuous distribution of collagen fibril orientation, swelling, and depth-dependent mechanical properties. The model's parameters are obtained by fitting published experimental data for the time-dependent response in a stress relaxation unconfined compression test on adult bovine articular cartilage. Then, model validation is obtained by simulating three independent experimental tests: (i) the time-dependent response in a stress relaxation confined compression test, (ii) the drained response of a flat punch indentation test and (iii) the depth-dependence of effective Poisson's ratio in a unconfined compression test. Finally, the validated constitutive model has been used to simulate multiload spherical nanoindentation creep tests. Upon accounting for strain-dependent tissue permeability and intrinsic viscoelastic properties of the collagen network, the model accurately fits the drained and undrained curves and time-dependent creep response. The results show that depth-dependent tissue properties and glycosaminoglycan-induced tissue swelling should be accounted for when simulating indentation experiments. PMID:24389384

  19. The Nuclear Energy Advanced Modeling and Simulation Safeguards and Separations Reprocessing Plant Toolkit

    SciTech Connect

    McCaskey, Alex; Billings, Jay Jay; de Almeida, Valmor F

    2011-08-01

    This report details the progress made in the development of the Reprocessing Plant Toolkit (RPTk) for the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. RPTk is an ongoing development effort intended to provide users with an extensible, integrated, and scalable software framework for the modeling and simulation of spent nuclear fuel reprocessing plants by enabling the insertion and coupling of user-developed physicochemical modules of variable fidelity. The NEAMS Safeguards and Separations IPSC (SafeSeps) and the Enabling Computational Technologies (ECT) supporting program element have partnered to release an initial version of the RPTk with a focus on software usability and utility. RPTk implements a data flow architecture that is the source of the system's extensibility and scalability. Data flows through physicochemical modules sequentially, with each module importing data, evolving it, and exporting the updated data to the next downstream module. This is accomplished through various architectural abstractions designed to give RPTk true plug-and-play capabilities. A simple application of this architecture, as well as RPTk data flow and evolution, is demonstrated in Section 6 with an application consisting of two coupled physicochemical modules. The remaining sections describe this ongoing work in full, from system vision and design inception to full implementation. Section 3 describes the relevant software development processes used by the RPTk development team. These processes allow the team to manage system complexity and ensure stakeholder satisfaction. This section also details the work done on the RPTk ``black box'' and ``white box'' models, with a special focus on the separation of concerns between the RPTk user interface and application runtime. Section 4 and 5 discuss that application runtime component in more detail, and describe the dependencies, behavior, and rigorous testing of its constituent components.

  20. Advanced End-to-end Simulation for On-board Processing (AESOP)

    NASA Technical Reports Server (NTRS)

    Mazer, Alan S.

    1994-01-01

    Developers of data compression algorithms typically use their own software together with commercial packages to implement, evaluate and demonstrate their work. While convenient for an individual developer, this approach makes it difficult to build on or use another's work without intimate knowledge of each component. When several people or groups work on different parts of the same problem, the larger view can be lost. What's needed is a simple piece of software to stand in the gap and link together the efforts of different people, enabling them to build on each other's work, and providing a base for engineers and scientists to evaluate the parts as a cohesive whole and make design decisions. AESOP (Advanced End-to-end Simulation for On-board Processing) attempts to meet this need by providing a graphical interface to a developer-selected set of algorithms, interfacing with compiled code and standalone programs, as well as procedures written in the IDL and PV-Wave command languages. As a proof of concept, AESOP is outfitted with several data compression algorithms integrating previous work on different processors (AT&T DSP32C, TI TMS320C30, SPARC). The user can specify at run-time the processor on which individual parts of the compression should run. Compressed data is then fed through simulated transmission and uncompression to evaluate the effects of compression parameters, noise and error correction algorithms. The following sections describe AESOP in detail. Section 2 describes fundamental goals for usability. Section 3 describes the implementation. Sections 4 through 5 describe how to add new functionality to the system and present the existing data compression algorithms. Sections 6 and 7 discuss portability and future work.

  1. Kinetic study of the heterogeneous photocatalysis of porous nanocrystalline TiO₂ assemblies using a continuous random walk simulation.

    PubMed

    Liu, Baoshun; Zhao, Xiujian

    2014-10-28

    The continuous time random walk (CTRW) simulation was used to study the photocatalytic kinetics of nanocrystalline (nc)-TiO2 assemblies in this research. nc-TiO2 assemblies, such as nc-TiO2 porous films and nc-TiO2 hierarchical structures, are now widely used in photocatalysis. The nc-TiO2 assemblies have quasi-disordered networks consisting of many tiny nanoparticles, so the charge transport within them can be studied by CTRW simulation. We considered the experimental facts that the holes can be quickly trapped and transferred to organic species just after photogeneration, and the electrons transfer to O2 slowly and accumulate in the conduction band of TiO2, which is believed to be the rate-limiting process of the photocatalysis under low light intensity and low organic concentration. Due to the existence of numerous traps, the electron transport within the nc-TiO2 assemblies follows a multi-trapping (MT) mechanism, which significantly limits the electron diffusion speed. The electrons need to undergo several steps of MT transport before transferring to oxygen, so it is highly important that the electron transport in nc-TiO2 networks is determined for standard photocatalytic reactions. Based on the MT transport model, the transient decays of photocurrents during the photocatalytic oxidation of formic acid were studied by CTRW simulation, and are in good accordance with experiments. The steady state photocatalysis was also simulated. The effects of organic concentration, light intensity, temperature, and nc-TiO2 crystallinity on the photocatalytic kinetics were investigated, and were also consistent with the experimental results. Due to the agreement between the simulation and the experiments for both the transient and the steady state photocatalysis, the MT charge transport should be an important mechanism that controls the kinetics of recombination and photocatalysis in nc-TiO2 assemblies. Also, our research provides a new methodology to study the photocatalytic

  2. Development of a Mold Cracking Simulator: The Study of Breakout and Crack Formation in Continuous Casting Mold

    NASA Astrophysics Data System (ADS)

    Zhang, Yexin; Wang, Wanlin; Zhang, Haihui

    2016-08-01

    Based on the mold simulator technology, a mold-cracking simulator has been successfully developed to study the process of breakout and the shell surface crack formation during the initial solidification of molten steel inside the continuous casting mold. First, a spheroidal protrusion was installed on the mold hot surface to mimic the abnormal force that generated by mold wall deformation, and then the external force was applied to the initial solidified shell, to facilitate the formation of breakout and shell surface cracks. Second, the responding temperature and heat flux across mold hot surface were recovered by an inverse heat conduction problem. The experimental results indicated that the mold breakout occurs around the shell tip by the combined efforts from external horizontal force, ferrostatic pressure, and thermal stresses during positive strip time. The breakout tends to introduce the peak of the responding temperature and heat flux across the mold hot surface. The vertical propagation velocity of the rupture point in the solidification shell has been calculated as 0.42 m/s in this study, which is in good agreement with industrial slabs. The paper also suggested that surface transverse crack formation is related to the segregation of sulfur during the initial solidification of molten steel.

  3. Development of a Mold Cracking Simulator: The Study of Breakout and Crack Formation in Continuous Casting Mold

    NASA Astrophysics Data System (ADS)

    Zhang, Yexin; Wang, Wanlin; Zhang, Haihui

    2016-06-01

    Based on the mold simulator technology, a mold-cracking simulator has been successfully developed to study the process of breakout and the shell surface crack formation during the initial solidification of molten steel inside the continuous casting mold. First, a spheroidal protrusion was installed on the mold hot surface to mimic the abnormal force that generated by mold wall deformation, and then the external force was applied to the initial solidified shell, to facilitate the formation of breakout and shell surface cracks. Second, the responding temperature and heat flux across mold hot surface were recovered by an inverse heat conduction problem. The experimental results indicated that the mold breakout occurs around the shell tip by the combined efforts from external horizontal force, ferrostatic pressure, and thermal stresses during positive strip time. The breakout tends to introduce the peak of the responding temperature and heat flux across the mold hot surface. The vertical propagation velocity of the rupture point in the solidification shell has been calculated as 0.42 m/s in this study, which is in good agreement with industrial slabs. The paper also suggested that surface transverse crack formation is related to the segregation of sulfur during the initial solidification of molten steel.

  4. Worm algorithm and diagrammatic Monte Carlo: A new approach to continuous-space path integral Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Boninsegni, M.; Prokof'Ev, N. V.; Svistunov, B. V.

    2006-09-01

    A detailed description is provided of a new worm algorithm, enabling the accurate computation of thermodynamic properties of quantum many-body systems in continuous space, at finite temperature. The algorithm is formulated within the general path integral Monte Carlo (PIMC) scheme, but also allows one to perform quantum simulations in the grand canonical ensemble, as well as to compute off-diagonal imaginary-time correlation functions, such as the Matsubara Green function, simultaneously with diagonal observables. Another important innovation consists of the expansion of the attractive part of the pairwise potential energy into elementary (diagrammatic) contributions, which are then statistically sampled. This affords a complete microscopic account of the long-range part of the potential energy, while keeping the computational complexity of all updates independent of the size of the simulated system. The computational scheme allows for efficient calculations of the superfluid fraction and off-diagonal correlations in space-time, for system sizes which are orders of magnitude larger than those accessible to conventional PIMC. We present illustrative results for the superfluid transition in bulk liquid He4 in two and three dimensions, as well as the calculation of the chemical potential of hcp He4 .

  5. Recent advances in large-eddy simulation of spray and coal combustion

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.

    2013-07-01

    Large-eddy simulation (LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering. Spray and coal combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering, hence LES of spray and coal two-phase combustion is particularly important for engineering application. LES of two-phase combustion attracts more and more attention; since it can give the detailed instantaneous flow and flame structures and more exact statistical results than those given by the Reynolds averaged modeling (RANS modeling). One of the key problems in LES is to develop sub-grid scale (SGS) models, including SGS stress models and combustion models. Different investigators proposed or adopted various SGS models. In this paper the present author attempts to review the advances in studies on LES of spray and coal combustion, including the studies done by the present author and his colleagues. Different SGS models adopted by different investigators are described, some of their main results are summarized, and finally some research needs are discussed.

  6. Performance experiments with alternative advanced teleoperator control modes for a simulated solar maximum satellite repair

    NASA Technical Reports Server (NTRS)

    Das, H.; Zak, H.; Kim, W. S.; Bejczy, A. K.; Schenker, P. S.

    1992-01-01

    Experiments are described which were conducted at the JPL Advanced Teleoperator Lab to demonstrate and evaluate the effectiveness of various teleoperator control modes in the performance of a simulated Solar Max Satellite Repair (SMSR) task. THe SMSR was selected as a test because it is very rich in performance capability requirements and it actually has been performed by two EVA astronauts in the Space Shuttle Bay in 1984. The main subtasks are: thermal blanket removal; installation of a hinge attachment for electrical panel opening; opening of electrical panel; removal of electrical connectors; relining of cable bundles; replacement of electrical panel; securing parts and cables; re-mate electrical connectors; closing of electrical panel; and reinstating thermal blanket. The current performance experiments are limited to thermal blanket cutting, electrical panel unbolting and handling electrical bundles and connectors. In one formal experiment even different control modes were applied to the unbolting and reinsertion of electrical panel screws subtasks. The seven control modes are alternative combinations of manual position and rate control with force feedback and remote compliance referenced to force-torque sensor information. Force-torque sensor and end effector position data and task completion times were recorded for analysis and quantification of operator performance.

  7. Recent advances in auxiliary-field methods --- simulations in lattice models and real materials

    NASA Astrophysics Data System (ADS)

    Zhang, Shiwei

    2007-03-01

    We have developed an auxiliary-field (AF) quantum Monte Carlo (QMC) method for many-body simulations. The method takes the form of a linear superposition of independent-particle calculations in fluctuating external fields. ``Entanglement'' of the different field configurations leads to random walks in Slater determinant space. We formulate an approximate constraint on the random walk paths to control the sign/phase problem, which has shown to be very accurate even with simple mean-field solutions as the constraining trial wave function. The same method can be applied to both simplified lattice models and real materials. For realistic electronic Hamiltonians, each random walk stream resembles a density-functional theory (DFT) calculation in random local fields. Thus, the AF QMC method can directly import existing technology from standard electronic structure methods into a many-body QMC framework. We have demonstrated this method with calculations in close to 100 systems, including Si solid, first- and second-row molecular systems, molecules of heavier post-d elements, transition-metal systems, and ultra-cold atomic gases. In these we have operated largely in an automated mode, inputting the DFT or Hartree-Fock solutions as trial wave functions. The AF QMC results showed consistently good agreement with near-exact quantum chemistry results and/or experiment. I will also discuss additional algorithmic advances which can further improve the method in strongly correlated systems. Supported by ARO, NSF, ONR, and DOE-cmsn.

  8. An expanded framework for the advanced computational testing and simulation toolkit

    SciTech Connect

    Marques, Osni A.; Drummond, Leroy A.

    2003-11-09

    The Advanced Computational Testing and Simulation (ACTS) Toolkit is a set of computational tools developed primarily at DOE laboratories and is aimed at simplifying the solution of common and important computational problems. The use of the tools reduces the development time for new codes and the tools provide functionality that might not otherwise be available. This document outlines an agenda for expanding the scope of the ACTS Project based on lessons learned from current activities. Highlights of this agenda include peer-reviewed certification of new tools; finding tools to solve problems that are not currently addressed by the Toolkit; working in collaboration with other software initiatives and DOE computer facilities; expanding outreach efforts; promoting interoperability, further development of the tools; and improving functionality of the ACTS Information Center, among other tasks. The ultimate goal is to make the ACTS tools more widely used and more effective in solving DOE's and the nation's scientific problems through the creation of a reliable software infrastructure for scientific computing.

  9. An architecture and model for cognitive engineering simulation analysis - Application to advanced aviation automation

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Smith, Barry R.

    1993-01-01

    The process of designing crew stations for large-scale, complex automated systems is made difficult because of the flexibility of roles that the crew can assume, and by the rapid rate at which system designs become fixed. Modern cockpit automation frequently involves multiple layers of control and display technology in which human operators must exercise equipment in augmented, supervisory, and fully automated control modes. In this context, we maintain that effective human-centered design is dependent on adequate models of human/system performance in which representations of the equipment, the human operator(s), and the mission tasks are available to designers for manipulation and modification. The joint Army-NASA Aircrew/Aircraft Integration (A3I) Program, with its attendant Man-machine Integration Design and Analysis System (MIDAS), was initiated to meet this challenge. MIDAS provides designers with a test bed for analyzing human-system integration in an environment in which both cognitive human function and 'intelligent' machine function are described in similar terms. This distributed object-oriented simulation system, its architecture and assumptions, and our experiences from its application in advanced aviation crew stations are described.

  10. Calculating dosimetry parameters in brachytherapy using the continuous beta spectrum of Sm-153 in the Monte Carlo simulation approach

    NASA Astrophysics Data System (ADS)

    Shahrabi, Mohammad; Tavakoli-Anbaran, Hossien

    2015-02-01

    Calculation of dosimetry parameters by TG-60 approach for beta sources and TG-43 approach for gamma sources can help to design brachytherapy sources. In this work, TG-60 dosimetry parameters are calculated for the Sm-153 brachytherapy seed using the Monte Carlo simulation approach. The continuous beta spectrum of Sm-153 and probability density are applied to simulate the Sm-153 source. Sm-153 is produced by neutron capture during the 152Sm( n,)153Sm reaction in reactors. The Sm-153 radionuclide decays by beta rays followed by gamma-ray emissions with half-life of 1.928 days. Sm-153 source is simulated in a spherical water phantom to calculate the deposited energy and geometry function in the intended points. The Sm-153 seed consists of 20% samarium, 30% calcium and 50% silicon, in cylindrical shape with density 1.76gr/cm^3. The anisotropy function and radial dose function were calculated at 0-4mm radial distances relative to the seed center and polar angles of 0-90 degrees. The results of this research are compared with the results of Taghdiri et al. (Iran. J. Radiat. Res. 9, 103 (2011)). The final beta spectrum of Sm-153 is not considered in their work. Results show significant relative differences even up to 5 times for anisotropy functions at 0.6, 1 and 2mm distances and some angles. MCNP4C Monte Carlo code is applied in both in the present paper and in the above-mentioned one.

  11. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process.

    PubMed

    Moussavi, Gholamreza; Shekoohiyan, Sakine

    2016-11-15

    This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N2 selectivity achieved at HRT of 80min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate. PMID:27434736

  12. Development of advanced methods for continuous Czochralski growth. Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Wolfson, R. G.; Sibley, C. B.

    1978-01-01

    The three components required to modify the furnace for batch and continuous recharging with granular silicon were designed. The feasibility of extended growth cycles up to 40 hours long was demonstrated by a recharge simulation experiment; a 6 inch diameter crystal was pulled from a 20 kg charge, remelted, and pulled again for a total of four growth cycles, 59-1/8 inch of body length, and approximately 65 kg of calculated mass.

  13. Development of an advanced, continuous mild gasification process for the production of co-products (Task 1), Volume 1

    SciTech Connect

    Knight, R.A.; Gissy, J.L.; Onischak, M.; Babu, S.P.; Carty, R.H. ); Duthie, R.G. ); Wootten, J.M. )

    1991-09-01

    Under US DOE sponsorship, a project team consisting of the Institute of Gas Technology, Peabody Holding Company, and Bechtel Group, Inc. has been developing an advanced, mild gasification process to process all types of coal and to produce solid and condensable liquid co-products that can open new markets for coal. The three and a half year program (September 1987 to June 1991) consisted of investigations in four main areas. These areas are: (1) Literature Survey of Mild Gasification Processes, Co-Product Upgrading and Utilization, and Market Assessment; (2) Mild Gasification Technology Development: Process Research Unit Tests Using Slipstream Sampling; (3) Bench-Scale Char Upgrading Study; (4) Mild Gasification Technology Development: System Integration Studies. In this report, the literature and market assessment of mild gasification processes are discussed.

  14. Advanced timing analysis based on post-OPC patterning process simulations

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Capodieci, Luigi; Sylvester, Dennis

    2005-05-01

    For current and upcoming technology nodes (90, 65, 45 nm and beyond) one of the fundamental enablers of Moore's Law is the use of Resolution Enhancement Techniques (RET) in optical lithography. While RETs allow for continuing reduction in integrated circuits" critical dimensions (CD), layout distortions are introduced as an undesired consequence due to proximity effects. Complex and costly Optical Proximity Correction (OPC) is then deployed to compensate for CD variations and loss of pattern fidelity, in an effort to improve yield. This, together with other sources for CD variations, causes the actual on-silicon chip performance to be quite different from sign-off expectations. In current design optimization methodologies, process variation modeling, aimed at providing guardbands for performance analysis, is based on "worst-case scenarios" (corner cases) and yields overly pessimistic simulation results which makes meeting design targets unnecessarily difficult. Assumptions of CD distributions in Monte Carlo simulations, and statistical timing analysis in general, can be made more rigorous by considering realistic systematic and random contributions to the overall process variation. A novel methodology is presented in this paper for extracting residual OPC errors from a placed and routed full chip layout and for deriving actual (i.e., calibrated to silicon) CD values, to be used in timing analysis and speed path characterization. The implementation of this automated flow is achieved through a combination of tagging critical gates, post-OPC layout back-annotation, and selective extraction from the global circuit netlist. This approach improves upon traditional design flow practices where ideal (i.e., drawn) CD values are employed, which leads to poor performance predictability of the as-fabricated design. With this more accurate timing analysis, we are able to highlight the necessity of a post-OPC verification embedded design flow by showing substantial differences

  15. Advanced simulation for analysis of critical infrastructure : abstract cascades, the electric power grid, and Fedwire.

    SciTech Connect

    Glass, Robert John, Jr.; Stamber, Kevin Louis; Beyeler, Walter Eugene

    2004-08-01

    Critical Infrastructures are formed by a large number of components that interact within complex networks. As a rule, infrastructures contain strong feedbacks either explicitly through the action of hardware/software control, or implicitly through the action/reaction of people. Individual infrastructures influence others and grow, adapt, and thus evolve in response to their multifaceted physical, economic, cultural, and political environments. Simply put, critical infrastructures are complex adaptive systems. In the Advanced Modeling and Techniques Investigations (AMTI) subgroup of the National Infrastructure Simulation and Analysis Center (NISAC), we are studying infrastructures as complex adaptive systems. In one of AMTI's efforts, we are focusing on cascading failure as can occur with devastating results within and between infrastructures. Over the past year we have synthesized and extended the large variety of abstract cascade models developed in the field of complexity science and have started to apply them to specific infrastructures that might experience cascading failure. In this report we introduce our comprehensive model, Polynet, which simulates cascading failure over a wide range of network topologies, interaction rules, and adaptive responses as well as multiple interacting and growing networks. We first demonstrate Polynet for the classical Bac, Tang, and Wiesenfeld or BTW sand-pile in several network topologies. We then apply Polynet to two very different critical infrastructures: the high voltage electric power transmission system which relays electricity from generators to groups of distribution-level consumers, and Fedwire which is a Federal Reserve service for sending large-value payments between banks and other large financial institutions. For these two applications, we tailor interaction rules to represent appropriate unit behavior and consider the influence of random transactions within two stylized networks: a regular homogeneous array and a

  16. Update on ORNL TRANSFORM Tool: Simulating Multi-Module Advanced Reactor with End-to-End I&C

    SciTech Connect

    Hale, Richard Edward; Fugate, David L.; Cetiner, Sacit M.; Qualls, A. L.

    2015-05-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the fourth year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled reactor) concepts, including the use of multiple coupled reactors at a single site. The focus of this report is the development of a steam generator and drum system model that includes the complex dynamics of typical steam drum systems, the development of instrumentation and controls for the steam generator with drum system model, and the development of multi-reactor module models that reflect the full power reactor innovative small module design concept. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor models; ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface technical area; and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the TRANSFORM tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the Advanced Reactors Technology program; (2) developing a library of baseline component modules that can be assembled into full plant models using available geometry, design, and thermal-hydraulic data; (3) defining modeling conventions for interconnecting component models; and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  17. Continuous 7-Days-A-Week External Beam Irradiation in Locally Advanced Cervical Cancer: Final Results of the Phase I/II Study

    SciTech Connect

    Serkies, Krystyna; Dziadziuszko, Rafal; Jassem, Jacek

    2012-03-01

    Purpose: To evaluate the feasibility and efficacy of definitive continuous 7-days-a-week pelvic irradiation without breaks between external beam radiotherapy and brachytherapy in locally advanced cervical cancer. Methods and Materials: Between November 1998 and December 1999, 30 patients with International Federation of Obstetrics and Gynecology Stage IIB or IIIB cervical cancer were included in a prospective Phase I/II study of continuous 7-days-a-week pelvic irradiation, to the total Manchester point B dose of 40.0-57.6 Gy. The first 13 patients (Group A) were given a daily tumor dose of 1.6 Gy, and the remaining 17 patients (Group B) were given 1.8 Gy. One or two immediate brachytherapy applications (point A dose 10-20 Gy, each) were performed in 28 cases. Results: Two patients did not complete the irradiation because of apparent early progression of disease during the irradiation. Eleven of the 28 evaluable patients (39%; 45% and 35% in Groups A and B, respectively) completed their treatment within the prescribed overall treatment time. Acute toxicity (including severe European Organisation for Research and Treatment of Cancer/Radiation Therapy Oncology Group Grade 3 and 4 effects in 40%) was experienced by 83% of patients and resulted in unplanned treatment interruptions in 40% of all patients (31% and 47% of patients in Groups A and B, respectively). Severe intestinal side effects occurred in 31% and 41% of Patients in Groups A and B, respectively (p = 0.71). The 5-year overall survival probability was 33%. Cancer recurrence occurred in 63% of patients: 20% inside and 57% outside the pelvis. Cumulative incidence of late severe bowel and urinary bladder toxicity at 24 months was 15%. Conclusion: Continuous irradiation in locally advanced cervical cancer is associated with a high incidence of severe acute toxicity, resulting in unplanned treatment interruptions. Late severe effects and survival after continuous radiotherapy do not substantially differ from

  18. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations

    PubMed Central

    Bisetti, Fabrizio; Attili, Antonio; Pitsch, Heinz

    2014-01-01

    Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. PMID:25024412

  19. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations.

    PubMed

    Bisetti, Fabrizio; Attili, Antonio; Pitsch, Heinz

    2014-08-13

    Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. PMID:25024412

  20. Advances in the continuous monitoring of erosion and deposition dynamics: Developments and applications of the new PEEP-3T system

    NASA Astrophysics Data System (ADS)

    Lawler, D. M.

    2008-01-01

    In most episodic erosion and deposition systems, knowledge of the timing of geomorphological change, in relation to fluctuations in the driving forces, is crucial to strong erosion process inference, and model building, validation and development. A challenge for geomorphology, however, is that few studies have focused on geomorphological event structure (timing, magnitude, frequency and duration of individual erosion and deposition events), in relation to applied stresses, because of the absence of key monitoring methodologies. This paper therefore (a) presents full details of a new erosion and deposition measurement system — PEEP-3T — developed from the Photo-Electronic Erosion Pin sensor in five key areas, including the addition of nocturnal monitoring through the integration of the Thermal Consonance Timing (TCT) concept, to produce a continuous sensing system; (b) presents novel high-resolution datasets from the redesigned PEEP-3T system for river bank system of the Rivers Nidd and Wharfe, northern England, UK; and (c) comments on their potential for wider application throughout geomorphology to address these key measurement challenges. Relative to manual methods of erosion and deposition quantification, continuous PEEP-3T methodologies increase the temporal resolution of erosion/deposition event detection by more than three orders of magnitude (better than 1-second resolution if required), and this facility can significantly enhance process inference. Results show that river banks are highly dynamic thermally and respond quickly to radiation inputs. Data on bank retreat timing, fixed with PEEP-3T TCT evidence, confirmed that they were significantly delayed up to 55 h after flood peaks. One event occurred 13 h after emergence from the flow. This suggests that mass failure processes rather than fluid entrainment dominated the system. It is also shown how, by integrating turbidity instrumentation with TCT ideas, linkages between sediment supply and sediment

  1. WRF4G project: Advances in running climate simulations on the EGI Infrastructure

    NASA Astrophysics Data System (ADS)

    Blanco, Carlos; Cofino, Antonio S.; Fernández Quiruelas, Valvanuz; García, Markel; Fernández, Jesús

    2014-05-01

    The Weather Research and Forecasting For Grid (WRF4G) project is a two-year Spanish National R&D project, which has started in 2011. It is now a well established project, involving scientists and technical staff from several institutions, which contribute results to international initiatives such as CORDEX and European FP7 projects such as SPECS and EUPORIAS. The aim of the WRF4G project is to homogenize access hybrid Distributed Computer Infrastructures (DCIs), such as HPC and Grid infrastructures, for climate researchers. Additionally, it provides a productive interface to accomplish ambitious climate experiments such as regional hind-cast/forecast and sensitivity studies. Although Grid infrastructures are very powerful, they have some drawbacks for executing climate applications such as the WRF model. This makes necessary to encapsulate the applications in a middleware in order to provide the appropriate services for monitoring and management. Therefore, the challenge of the WRF4G project is to develop a generic adaptation framework (WRF4G framework) to disseminate it to the scientific community. The framework aims at simplifying the model access by releasing climate scientists from technical and computational aspects. In this contribution, we present some new advances of the WRF4G framework, including new components for designing experiments, simulation monitoring and data management. Additionally, we will show how WRF4G makes possible to run complex experiments on EGI infrastructures concurrently over several VOs such as esr and earth.vo.ibergrid. http://www.meteo.unican.es/software/wrf4g This work has been partially funded by the European Regional Development Fund (ERDF) and the Spanish National R&D Plan 2008-2011 (CGL2011-28864, WRF4G)

  2. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    NASA Astrophysics Data System (ADS)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  3. In-Service Design & Performance Prediction of Advanced Fusion Material Systems by Computational Modeling and Simulation

    SciTech Connect

    G. R. Odette; G. E. Lucas

    2005-11-15

    This final report on "In-Service Design & Performance Prediction of Advanced Fusion Material Systems by Computational Modeling and Simulation" (DE-FG03-01ER54632) consists of a series of summaries of work that has been published, or presented at meetings, or both. It briefly describes results on the following topics: 1) A Transport and Fate Model for Helium and Helium Management; 2) Atomistic Studies of Point Defect Energetics, Dynamics and Interactions; 3) Multiscale Modeling of Fracture consisting of: 3a) A Micromechanical Model of the Master Curve (MC) Universal Fracture Toughness-Temperature Curve Relation, KJc(T - To), 3b) An Embrittlement DTo Prediction Model for the Irradiation Hardening Dominated Regime, 3c) Non-hardening Irradiation Assisted Thermal and Helium Embrittlement of 8Cr Tempered Martensitic Steels: Compilation and Analysis of Existing Data, 3d) A Model for the KJc(T) of a High Strength NFA MA957, 3e) Cracked Body Size and Geometry Effects of Measured and Effective Fracture Toughness-Model Based MC and To Evaluations of F82H and Eurofer 97, 3-f) Size and Geometry Effects on the Effective Toughness of Cracked Fusion Structures; 4) Modeling the Multiscale Mechanics of Flow Localization-Ductility Loss in Irradiation Damaged BCC Alloys; and 5) A Universal Relation Between Indentation Hardness and True Stress-Strain Constitutive Behavior. Further details can be found in the cited references or presentations that generally can be accessed on the internet, or provided upon request to the authors. Finally, it is noted that this effort was integrated with our base program in fusion materials, also funded by the DOE OFES.

  4. Development of an advanced continuous mild gasification process for the production of coproducts: Task 4. 6, Technical and economic evaluation

    SciTech Connect

    Hogsett, R.F.; Jha, M.C.

    1991-12-01

    Morgantown Energy Technology Center (METC) of DOE has sponsored, and continues to sponsor, programs for the development of technology and market strategies which will lead to the commercialization of processes for the production of coproducts from mild gasification of coal. It has been recognized by DOE and industry that mild gasification is a promising technology with potential to economically convert coal into marketable products, thereby increasing domestic coal utilization. In this process, coal is devolatilized under non- oxidizing conditions at mild temperature (900--1100{degrees}F) and pressure (1--15psig). Condensation of the vapor will yield a liquid product that can be upgraded to a petroleum substitute, and the remaining gas can provide the fuel for the process. The residual char can be burned in a power plant. Thus, in a long-term national scenario, implementation of this process will result in significant decrease of imported oil and increase in coal utilization.

  5. Development of advanced, continuous mild gasification process for the production of co-products addendum to technical evaluation. Final report

    SciTech Connect

    Not Available

    1992-11-01

    This report contains the material balance data for Wyodak, Indiana No. 3, and Cannelton coals that were tested in the mild gasification program. Data include tests conducted using the 1- to 4-lb/hr continuous fluid-bed reactor (CFBR) and the 100-lb/hr Process Research Unit (PRU). All raw analysis data were reduced to calculate product yields as a percentage of the product mass divided by the maf coal feed. The material closure was then determined, and losses were assigned to one or a combination of the three product streams: char, condensate (includes condensed steam), and gas. Mass was added proportionally to each constituent of the stream until the closure was 100%.

  6. Development of advanced, continuous mild gasification process for the production of co-products addendum to technical evaluation

    SciTech Connect

    Not Available

    1992-11-01

    This report contains the material balance data for Wyodak, Indiana No. 3, and Cannelton coals that were tested in the mild gasification program. Data include tests conducted using the 1- to 4-lb/hr continuous fluid-bed reactor (CFBR) and the 100-lb/hr Process Research Unit (PRU). All raw analysis data were reduced to calculate product yields as a percentage of the product mass divided by the maf coal feed. The material closure was then determined, and losses were assigned to one or a combination of the three product streams: char, condensate (includes condensed steam), and gas. Mass was added proportionally to each constituent of the stream until the closure was 100%.

  7. Clinical management of patients with advanced Parkinson's disease treated with continuous intestinal infusion of levodopa/carbidopa.

    PubMed

    Santos García, Diego; Martínez Castrillo, Juan Carlos; Puente Périz, Víctor; Seoane Urgorri, Agustín; Fernández Díez, Servando; Benita León, Vicente; Udaeta Baldivieso, Beatriz; Campolongo Perillo, Antonia; Mariscal Pérez, Natividad

    2016-06-01

    Patients with Parkinson's disease often have a good initial response to dopaminergic therapy but later usually develop motor fluctuations and dyskinesia. In these patients, continuous infusion of levodopa-carbidopa intestinal gel (LCIG) allows for maintaining adequate dopamine levels and for improving motor and nonmotor symptoms, as well as quality of life and autonomy. Adequate candidate selection and follow-up are crucial for treatment success. Management should be multidisciplinary, and patient and caregiver education is a priority. This expert consensus document has been developed by a team of neurologists, gastroenterologists and nurses who have a vast experience in LCIG therapy, with an intention to provide knowledge and tools to facilitate patient management throughout all phases of LCIG treatment process. PMID:27075968

  8. Estimation of floods with long return period using continuous simulation within the framework of the limits of acceptability approach

    NASA Astrophysics Data System (ADS)

    Beven, K.; Blazkova, S.

    2009-04-01

    The estimation of flood frequency by continuous simulation provides an alternative method to direct statistical estimation for catchments where there are limited historical records of flood peaks. We are presenting the extended GLUE multiple limits of acceptability calibration strategy in which models are treated as hypotheses about system response, to be rejected if the predictions fall outside of the limits of acceptability. Flood frequency predictions on the Skalka catchment in the Czech Republic (672 km2, range of altitudes from 460 to 1041 m a.s.l.), are compared against summary information of rainfall characteristics, the flow duration curve, and the frequency characteristics of flood discharges and snow water equivalent. Limits of acceptability have been defined, prior to running the Monte Carlo model realisations. Since we have identified only 39 behavioural models we have relaxed the limits of acceptability using a procedure of scoring deviations relative to the limits, to identify the minimum extension across all criteria (together 114 criteria) to obtain a sample of 4192 parameter sets that were accepted as potentially useful in prediction. Long term simulations of 10000 years for retained models were used to obtain uncertain estimates of the 1000 year peak required for the assessment of dam safety at the catchment outlet. We also demonstrate the effect of different input realisations on acceptability. Taking just one of the behavioural parameter sets and generating 10,000 input sequences of the same length as the observed flood series results in a range of critical values for acceptability across a range of evaluation criteria.

  9. Development of an advanced continuous mild gasification process for the production of co-products. Quarterly report, October--December 1995

    SciTech Connect

    O`Neal, G.W.

    1996-01-01

    Efforts continued to obtain financing for a commercial continuous formed coke plant. Discussions were held with two steel companies that are interested in producing coke for their use in steel production and foundry operations. Planning for production of 40 tons of foundry formed coke is underway. This coke will be used in two 20-ton tests at General Motors` foundries. During this production, it is planned to determine if a tunnel kiln can be used as a coking furnace as an alternative for a rotary hearth. A rotary hearth is about three times more costly than a competitive-sized tunnel kiln. Work continued on using Western non-caking coals to produce formed coke. Successful tests were made by using Eastern caking coals and other binders to permit using up to 50% of the cheaper Western non-caking coals in formed coke production. The primary objective of this project is to develop an advanced continuous mild gasification process and product upgrading processes which will be capable of eventual commercialization.

  10. A phase I trial of docetaxel and 5-day continuous infusion of 5-fluorouracil in patients with advanced or recurrent breast cancer.

    PubMed Central

    Ando, M.; Watanabe, T.; Sasaki, Y.; Ying, D. F.; Omuro, Y.; Katsumata, N.; Narabayashi, M.; Tokue, Y.; Fujii, H.; Igarashi, T.; Wakita, H.; Ohtsu, T.; Itoh, K.; Adachi, I.; Taguchi, T.

    1998-01-01

    To determine the maximum-tolerated doses (MTDs), the dose-limiting toxicities (DLTs) and the recommended doses for further trials of docetaxel in combination with a 5-day continuous infusion of 5-fluorouracil (5-FU) in advanced or recurrent breast cancer patients who had been treated previously with at least one chemotherapeutic regimen, patients were treated with docetaxel as a 1-h infusion on day 1 followed by 5-FU as a continuous infusion on days 1 through 5 every 3-4 weeks. Three or six patients were assessed at the following escalating dose levels of docetaxel/5-FU per day: 40/150, 40/300, 50/300, 50/500 and 60/500 mg m(-2). Nineteen patients entered this trial, of whom 18 could be assessed for adverse event and therapeutic efficacy. The DLTs were neutropenia and diarrhoea. The MTDs were 60 mg m(-2) of docetaxel on day 1 and 500 mg m(-2) per day of 5-day continuous infusion of 5-FU. One of 18 patients achieved a complete response and eight achieved partial response (over all response rate: 50%). The recommended doses of docetaxel and 5-day continuous infusion of 5-FU for a phase II trial are 50 mg m(-2) and 500 mg m(-2) per day every 3 or 4 weeks. PMID:9667671

  11. Implementation of an advanced hybrid MPC-PID control system using PAT tools into a direct compaction continuous pharmaceutical tablet manufacturing pilot plant.

    PubMed

    Singh, Ravendra; Sahay, Abhishek; Karry, Krizia M; Muzzio, Fernando; Ierapetritou, Marianthi; Ramachandran, Rohit

    2014-10-01

    It is desirable for a pharmaceutical final dosage form to be manufactured through a quality by design (QbD)-based approach rather than a quality by testing (QbT) approach. An automatic feedback control system coupled with PAT tools that is part of the QbD paradigm shift, has the potential to ensure that the pre-defined end product quality attributes are met in a time and cost efficient manner. In this work, an advanced hybrid MPC-PID control architecture coupled with real time inline/online monitoring tools and principal components analysis (PCA) based additional supervisory control layer has been proposed for a continuous direct compaction tablet manufacturing process. The advantages of both MPC and PID have been utilized in a hybrid scheme. The control hardware and software integration and implementation of the control system has been demonstrated using feeders and blending unit operation of a continuous tablet manufacturing pilot plant and an NIR based PAT tool. The advanced hybrid MPC-PID control scheme leads to enhanced control loop performance of the critical quality attributes in comparison to a regulatory (e.g. PID) control scheme indicating its potential to improve pharmaceutical product quality. PMID:24974987

  12. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect

    Digby Macdonald; Brian Marx; Balaji Soundararajan; Morgan Smith

    2005-07-28

    The different tasks that have been carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA), which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals, and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture

  13. Development of Advanced Wear and Corrosion Resistant Systems Through Laser Surface Alloying and Materials Simulations

    SciTech Connect

    R. P. Martukanitz and S. Babu

    2007-05-03

    Laser surfacing in the form of cladding, alloying, and modifications are gaining widespread use because of its ability to provide high deposition rates, low thermal distortion, and refined microstructure due to high solidification rates. Because of these advantages, laser surface alloying is considered a prime candidate for producing ultra-hard coatings through the establishment or in situ formation of composite structures. Therefore, a program was conducted by the Applied Research Laboratory, Pennsylvania State University and Oak Ridge National Laboratory to develop the scientific and engineering basis for performing laser-based surface modifications involving the addition of hard particles, such as carbides, borides, and nitrides, within a metallic matrix for improved wear, fatigue, creep, and corrosion resistance. This has involved the development of advanced laser processing and simulation techniques, along with the refinement and application of these techniques for predicting and selecting materials and processing parameters for the creation of new surfaces having improved properties over current coating technologies. This program has also resulted in the formulation of process and material simulation tools capable of examining the potential for the formation and retention of composite coatings and deposits produced using laser processing techniques, as well as positive laboratory demonstrations in producing these coatings. In conjunction with the process simulation techniques, the application of computational thermodynamic and kinetic models to design laser surface alloying materials was demonstrated and resulted in a vast improvement in the formulation of materials used for producing composite coatings. The methodology was used to identify materials and to selectively modify microstructures for increasing hardness of deposits produced by the laser surface alloying process. Computational thermodynamic calculations indicated that it was possible to induce the

  14. Large Eddy Simulation of Transient Flow and Inclusions Transport in Continuous Casting Mold under Different Electromagnetic Brakes

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan

    2016-06-01

    A mathematical model has been developed to analyze transient fluid flow and inclusions transport in a slab continuous casting mold, considering the effects of electromagnetic brake (EMBr) arrangement and magnetic field strength. Transient flow of molten steel in the mold is calculated by using the large eddy simulation. The electromagnetic force is incorporated into the Navier-Stokes equation. The transport of inclusion inside the mold is calculated using the Lagrangian approach based on the transient flow field. The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern and inclusion transport inside the mold exhibits satisfactory agreement with the corresponding measurements. With electromagnetic brake effect, the velocities around the braking region are significantly suppressed, and the recirculating flow in the lower part drops and tends to develop a plug-like flow. The EMBr arrangement has an insignificant effect on the overall removal fraction of inclusions, especially for larger inclusions. The inclusion removal rate for the flow-control mold (FCM arrangement) reduces instead compared with no EMBr, especially for smaller inclusions.

  15. Study for the Effect of Continuously Applied Load on a Compressed Ag Nanoparticle at Room Temperature by Atomic Scale Simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Lin

    2016-05-01

    Molecular dynamics calculations are reported for structural transition of a compressed Ag nanoparticle containing 2123 atoms with a crystal structure during the processes of continuously applied load at room temperature. Analytical tools are used to demonstrate the effect of the load on the packing patterns in this deformed particle including internal energy per atom, pair distribution functions, coordination number, pair number as well as the cross-sectional images, and mean square displacements. The simulation results show that the deformation processes of this particle include different stages. Owing to the atom sliding in the (111) plane in different regions of this particle, some interfaces are formed between these regions, and they are barriers of atom movements. With increasing the load, the interfaces in the middle of this particle are disappeared, and the deformation is able to carry out. At larger load, new interfaces are formed in the different regions of this heavily compressed particle with several atom layers, and these interfaces again become obstacles for the further deformation.

  16. Simulating Non-Specific Influences of Body Posture and Temperature on Thigh-Bioimpedance Spectroscopy during Continuous Monitoring Applications

    NASA Astrophysics Data System (ADS)

    Ismail, A. H.; Leonhardt, S.

    2013-04-01

    Application of bioimpedance spectroscopy (BIS) for continuous monitoring of body fluid volumes is gaining considerable importance in personal health care. Unless laboratory conditions are applied, both whole-body or segmental BIS configurations are subject to nonspecific influences (e.g. temperature and change in body position) reducing the method's accuracy and reproducibility. In this work, a two-compartment mathematical model, which describes the thigh segment, has been adapted to simulate fluid and solute kinetics during change in body position or variation in skin temperature. The model is an improved version of our previous one offering a good tradeoff between accuracy and simplicity. It represents the kinetics of fluid redistribution, sodium-, potassium-, and protein-concentrations based on simple equations to predict the time course of BIS variations. Validity of the model was verified in five subjects (following a sequence of 7 min supine, 20 min standing, and 40 min supine). The output of the model may reduce possible influences on BIS by up to 80%.

  17. Investigation of Alien Wavelength Quality in Live Multi-Domain, Multi-Vendor Link Using Advanced Simulation Tool

    NASA Astrophysics Data System (ADS)

    Nordal Petersen, Martin; Nuijts, Roeland; Lange Bjørn, Lars

    2014-05-01

    This article presents an advanced optical model for simulation of alien wavelengths in multi-domain and multi-vendor dense wavelength-division multiplexing networks. The model aids optical network planners with a better understanding of the non-linear effects present in dense wavelength-division multiplexing systems and better utilization of alien wavelengths in future applications. The limiting physical effects for alien wavelengths are investigated in relation to power levels, channel spacing, and other factors. The simulation results are verified through experimental setup in live multi-domain dense wavelength-division multiplexing systems between two national research networks: SURFnet in Holland and NORDUnet in Denmark.

  18. CFD Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Power Systems

    SciTech Connect

    Arastoopour, Hamid; Abbasian, Javad

    2014-07-31

    This project describes the work carried out to prepare a highly reactive and mechanically strong MgO based sorbents and to develop a Population Balance Equations (PBE) approach to describe the evolution of the particle porosity distribution that is linked with Computational Fluid Dynamics (CFD) to perform simulations of the CO2 capture and sorbent regeneration. A large number of MgO-based regenerable sorbents were prepared using low cost and abundant dolomite as the base material. Among various preparation parameters investigated the potassium/magnesium (K/Mg) ratio was identified as the key variable affecting the reactivity and CO2 capacity of the sorbent. The optimum K/Mg ratio is about 0.15. The sorbent formulation HD52-P2 was identified as the “best” sorbent formulation and a large batch (one kg) of the sorbent was prepared for the detailed study. The results of parametric study indicate the optimum carbonation and regeneration temperatures are 360° and 500°C, respectively. The results also indicate that steam has a beneficial effect on the rate of carbonation and regeneration of the sorbent and that the reactivity and capacity of the sorbent decreases in the cycling process (sorbent deactivation). The results indicate that to achieve a high CO2 removal efficiency, the bed of sorbent should be operated at a temperature range of 370-410°C which also favors production of hydrogen through the WGS reaction. To describe the carbonation reaction kinetics of the MgO, the Variable Diffusivity shrinking core Model (VDM) was developed in this project, which was shown to accurately fit the experimental data. An important advantage of this model is that the changes in the sorbent conversion with time can be expressed in an explicit manner, which will significantly reduce the CFD computation time. A Computational Fluid Dynamic/Population Balance Equations (CFD/PBE) model was developed that accounts for the particle (sorbent) porosity distribution and a new version of

  19. Development of an advanced, continuous mild gasification process for the production of co-products technical evaluation

    SciTech Connect

    Ness, R.O. Jr.; Runge, B.; Sharp, L.

    1992-11-01

    The University of North Dakota Energy and Environmental Research Center (EERC) and the AMAX Research and Development Center are cooperating in the development of a Mild Gasification process that will rapidly devolatilize coals of all ranks at relatively low temperatures between 930[degree] and 1470[degree]F (500[degree]and 800[degree]C) and near atmospheric pressure to produce primary products that include a reactive char, a hydrocarbon condensate, and a low-Btu gas. These will be upgraded in a coal refinery'' system having the flexibility to optimize products based on market demand. Task 2 of the four-task development sequence primarily covered bench-scale testing on a 10-gram thermogravimetric analyzer (TGA) and a 1 to 4-lb/hr continuous fluidized-bed reactor (CFBR). Tests were performed to determine product yields and qualities for the two major test coals-one a high-sulfur bituminous coal from the Illinois Basin (Indiana No. 3) and the other a low-sulfur subbituminous coal from the Powder River Basin (Wyodak). Results from Task 3, on product upgrading tests performed by AMAX Research and Development (R D), are also reported. Task 4 included the construction, operation of a Process Research Unit (PRU), and the upgrading of the products. An economic evaluation of a commercial facility was made, based on the data produced in the PRU, CFBR, and the physical cleaning steps.

  20. Development of an advanced, continuous mild gasification process for the production of co-products technical evaluation. Final report

    SciTech Connect

    Ness, R.O. Jr.; Runge, B.; Sharp, L.

    1992-11-01

    The University of North Dakota Energy and Environmental Research Center (EERC) and the AMAX Research and Development Center are cooperating in the development of a Mild Gasification process that will rapidly devolatilize coals of all ranks at relatively low temperatures between 930{degree} and 1470{degree}F (500{degree}and 800{degree}C) and near atmospheric pressure to produce primary products that include a reactive char, a hydrocarbon condensate, and a low-Btu gas. These will be upgraded in a ``coal refinery`` system having the flexibility to optimize products based on market demand. Task 2 of the four-task development sequence primarily covered bench-scale testing on a 10-gram thermogravimetric analyzer (TGA) and a 1 to 4-lb/hr continuous fluidized-bed reactor (CFBR). Tests were performed to determine product yields and qualities for the two major test coals-one a high-sulfur bituminous coal from the Illinois Basin (Indiana No. 3) and the other a low-sulfur subbituminous coal from the Powder River Basin (Wyodak). Results from Task 3, on product upgrading tests performed by AMAX Research and Development (R&D), are also reported. Task 4 included the construction, operation of a Process Research Unit (PRU), and the upgrading of the products. An economic evaluation of a commercial facility was made, based on the data produced in the PRU, CFBR, and the physical cleaning steps.