Sample records for advanced control technologies

  1. Advanced control technology and its potential for future transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The topics covered include fly by wire, digital control, control configured vehicles, applications to advanced flight vehicles, advanced propulsion control systems, and active control technology for transport aircraft.

  2. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability; (2) angle of attack limiting; (3) lateral/directional augmented stability; (4) gust load alleviation; (5) maneuver load control; and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.

  3. Motion control of multi-actuator hydraulic systems for mobile machineries: Recent advancements and future trends

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Cheng, Min

    2018-06-01

    This paper presents a survey of recent advancements and upcoming trends in motion control technologies employed in designing multi-actuator hydraulic systems for mobile machineries. Hydraulic systems have been extensively used in mobile machineries due to their superior power density and robustness. However, motion control technologies of multi-actuator hydraulic systems have faced increasing challenges due to stringent emission regulations. In this study, an overview of the evolution of existing throttling control technologies is presented, including open-center and load sensing controls. Recent advancements in energy-saving hydraulic technologies, such as individual metering, displacement, and hybrid controls, are briefly summarized. The impact of energy-saving hydraulic technologies on dynamic performance and control solutions are also discussed. Then, the advanced operation methods of multi-actuator mobile machineries are reviewed, including coordinated and haptic controls. Finally, challenges and opportunities of advanced motion control technologies are presented by providing an overall consideration of energy efficiency, controllability, cost, reliability, and other aspects.

  4. Baseline Study Methodology for Future Phases of Research on Nuclear Power Plant Control Room Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Blanc, Katya Lee; Bower, Gordon Ross; Hill, Rachael Ann

    In order to provide a basis for industry adoption of advanced technologies, the Control Room Upgrades Benefits Research Project will investigate the benefits of including advanced technologies as part of control room modernization This report describes the background, methodology, and research plan for the first in a series of full-scale studies to test the effects of advanced technology in NPP control rooms. This study will test the effect of Advanced Overview Displays in the partner Utility’s control room simulator

  5. Adaptive Structures Programs for the Strategic Defense Initiative Organization

    DTIC Science & Technology

    1992-01-01

    Advanced Control Technology Experiment ( ACTEX ) Modular Control Patch High Frequency Passive Damping Strut Development Optional PZT Passive...on this space test bed in FY95. The Advanced Control Technology Experiment ( ACTEX ) will demonstrate many of the adaptive structures technologies...Accelerometer Bi-ax Accelerometer Smart Strut Figure 7. Schematic of Advanced Control Technology Experiment ( ACTEX ) 6-28-91-2M 1-6-92-5M PZ Stack

  6. Advanced Controller for the Free-Piston Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Gerber, Scott S.; Jamison, Mike; Roth, Mary Ellen; Regan, Timothy F.

    2004-01-01

    The free-piston Stirling power convertor is being considered as an advanced power conversion technology to be used for future NASA deep space missions requiring long life radioisotope power systems. This technology has a conversion efficiency of over 25%, which is significantly higher than the efficiency of the Radioisotope Thermal-electric Generators (RTG) now in use. The NASA Glenn Research Center has long been recognized as a leader in Stirling technology and is responsible for the development of advanced technologies that are intended to significantly improve key characteristics of the Stirling convertor. The advanced technologies identified for development also consider the requirements of potential future missions and the new capabilities that have become available in the associated technical areas. One of the key areas identified for technology development is the engine controller. To support this activity, an advanced controller is being developed for the Stirling power convertor. This controller utilizes active power factor correction electronics and microcontroller-based controls. The object of this paper is to present an overview of the advanced controller concept with modeling, simulation and hardware test data.

  7. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.

    1981-01-01

    The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included.

  8. JPL Advanced Thermal Control Technology Roadmap - 2012

    NASA Technical Reports Server (NTRS)

    Birur, Gaj; Rodriguez, Jose I.

    2012-01-01

    NASA's new emphasis on human exploration program for missions beyond LEO requires development of innovative and revolutionary technologies. Thermal control requirements of future NASA science instruments and missions are very challenging and require advanced thermal control technologies. Limited resources requires organizations to cooperate and collaborate; government, industry, universities all need to work together for the successful development of these technologies.

  9. Advanced instrumentation for next-generation aerospace propulsion control systems

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, S.; Cross, G. S.; Lorenzo, Carl F.

    1993-01-01

    New control concepts for the next generation of advanced air-breathing and rocket engines and hypersonic combined-cycle propulsion systems are analyzed. The analysis provides a database on the instrumentation technologies for advanced control systems and cross matches the available technologies for each type of engine to the control needs and applications of the other two types of engines. Measurement technologies that are considered to be ready for implementation include optical surface temperature sensors, an isotope wear detector, a brushless torquemeter, a fiberoptic deflectometer, an optical absorption leak detector, the nonintrusive speed sensor, and an ultrasonic triducer. It is concluded that all 30 advanced instrumentation technologies considered can be recommended for further development to meet need of the next generation of jet-, rocket-, and hypersonic-engine control systems.

  10. Advanced technologies for Mission Control Centers

    NASA Technical Reports Server (NTRS)

    Dalton, John T.; Hughes, Peter M.

    1991-01-01

    Advance technologies for Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: technology needs; current technology efforts at GSFC (human-machine interface development, object oriented software development, expert systems, knowledge-based software engineering environments, and high performance VLSI telemetry systems); and test beds.

  11. Advanced thermal control technologies for space science missions at JPL

    NASA Technical Reports Server (NTRS)

    Birur, G. C.; O'Donnell, T.

    2000-01-01

    A wide range of deep space science missions are planned by NASA for the future. Many of these missions are being planned under strict cost caps and advanced technologies are needed in order to enable these challenging mssions. Because of the wide range of thermal environments the spacecraft experience during the mission, advanced thermal control technologies are the key to enabling many of these missions.

  12. Advanced Active Thermal Control Systems Architecture Study

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.; Ewert, Michael K.

    1996-01-01

    The Johnson Space Center (JSC) initiated a dynamic study to determine possible improvements available through advanced technologies (not used on previous or current human vehicles), identify promising development initiatives for advanced active thermal control systems (ATCS's), and help prioritize funding and personnel distribution among many research projects by providing a common basis to compare several diverse technologies. Some technologies included were two-phase thermal control systems, light-weight radiators, phase-change thermal storage, rotary fluid coupler, and heat pumps. JSC designed the study to estimate potential benefits from these various proposed and under-development thermal control technologies for five possible human missions early in the next century. The study compared all the technologies to a baseline mission using mass as a basis. Each baseline mission assumed an internal thermal control system; an external thermal control system; and aluminum, flow-through radiators. Solar vapor compression heat pumps and light-weight radiators showed the greatest promise as general advanced thermal technologies which can be applied across a range of missions. This initial study identified several other promising ATCS technologies which offer mass savings and other savings compared to traditional thermal control systems. Because the study format compares various architectures with a commonly defined baseline, it is versatile and expandable, and is expected to be updated as needed.

  13. Pointing and control system enabling technology for future automated space missions

    NASA Technical Reports Server (NTRS)

    Dahlgren, J. B.

    1978-01-01

    Future automated space missions present challenging opportunities in the pointing-and-control technology disciplines. The enabling pointing-and-control system technologies for missions from 1985 to the year 2000 were identified and assessed. A generic mission set including Earth orbiter, planetary, and other missions which predominantly drive the pointing-and-control requirements was selected for detailed evaluation. Technology candidates identified were prioritized as planning options for future NASA-OAST advanced development programs. The primary technology thrusts in each candidate program were cited, and advanced development programs in pointing-and-control were recommended for the FY 80 to FY 87 period, based on these technology thrusts.

  14. Electronic/electric technology benefits study. [avionics

    NASA Technical Reports Server (NTRS)

    Howison, W. W.; Cronin, M. J.

    1982-01-01

    The benefits and payoffs of advanced electronic/electric technologies were investigated for three types of aircraft. The technologies, evaluated in each of the three airplanes, included advanced flight controls, advanced secondary power, advanced avionic complements, new cockpit displays, and advanced air traffic control techniques. For the advanced flight controls, the near term considered relaxed static stability (RSS) with mechanical backup. The far term considered an advanced fly by wire system for a longitudinally unstable airplane. In the case of the secondary power systems, trades were made in two steps: in the near term, engine bleed was eliminated; in the far term bleed air, air plus hydraulics were eliminated. Using three commercial aircraft, in the 150, 350, and 700 passenger range, the technology value and pay-offs were quantified, with emphasis on the fiscal benefits. Weight reductions deriving from fuel saving and other system improvements were identified and the weight savings were cycled for their impact on TOGW (takeoff gross weight) and upon the performance of the airframes/engines. Maintenance, reliability, and logistic support were the other criteria.

  15. Advanced extravehicular protective systems for shuttle, space station, lunar base and Mars missions.

    NASA Technical Reports Server (NTRS)

    Heimlich, P. F.; Sutton, J. G.; Tepper, E. H.

    1972-01-01

    Advances in extravehicular life support system technology will directly influence future space mission reliability and maintainability considerations. To identify required new technology areas, an appraisal of advanced portable life support system and subsystem concepts was conducted. Emphasis was placed on thermal control and combined CO2 control/O2 supply subsystems for both primary and emergency systems. A description of study methodology, concept evaluation techniques, specification requirements, and selected subsystems and systems are presented. New technology recommendations encompassing thermal control, CO2 control and O2 supply subsystems are also contained herein.

  16. Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brambley, Michael R.; Haves, Philip; McDonald, Sean C.

    2005-04-13

    Significant energy savings can be achieved in commercial building operation, along with increased comfort and control for occupants, through the implementation of advanced technologies. This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies. This paper is actually a synthesis of five other white papers: the first describes the market assessment including estimates of market potential and energy savings for sensors and control strategies currently on the market as well as a discussion of market barriers to these technologies. The othermore » four cover technology pathways: (1) current applications and strategies for new applications, (2) sensors and controls, (3) networking, security, and protocols and standards, and (4) automated diagnostics, performance monitoring, commissioning, optimal control and tools. Each technology pathway chapter gives an overview of the technology or application. This is followed by a discussion of needs and the current status of the technology. Finally, a series of research topics is proposed.« less

  17. CTOL Transport Technology, 1978. [conferences

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Technology associated with advanced conventional takeoff and landing transport aircraft is discussed. Topics covered include: advanced aerodynamics and active controls; operations and safety; and advanced systems. Emphasis is placed on increased energy efficiency.

  18. An assessment of advanced displays and controls technology applicable to future space transportation systems

    NASA Technical Reports Server (NTRS)

    Hatfield, Jack J.; Villarreal, Diana

    1990-01-01

    The topic of advanced display and control technology is addressed along with the major objectives of this technology, the current state of the art, major accomplishments, research programs and facilities, future trends, technology issues, space transportation systems applications and projected technology readiness for those applications. The holes that may exist between the technology needs of the transportation systems versus the research that is currently under way are addressed, and cultural changes that might facilitate the incorporation of these advanced technologies into future space transportation systems are recommended. Some of the objectives are to reduce life cycle costs, improve reliability and fault tolerance, use of standards for the incorporation of advancing technology, and reduction of weight, volume and power. Pilot workload can be reduced and the pilot's situational awareness can be improved, which would result in improved flight safety and operating efficiency. This could be accomplished through the use of integrated, electronic pictorial displays, consolidated controls, artificial intelligence, and human centered automation tools. The Orbiter Glass Cockpit Display is an example examined.

  19. The ECLSS Advanced Automation Project Evolution and Technology Assessment

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.; Carnes, James R.; Lukefahr, Brenda D.; Rogers, John S.; Rochowiak, Daniel M.; Mckee, James W.; Benson, Brian L.

    1990-01-01

    Viewgraphs on Environmental Control and Life Support System (ECLSS) advanced automation project evolution and technology assessment are presented. Topics covered include: the ECLSS advanced automation project; automatic fault diagnosis of ECLSS subsystems descriptions; in-line, real-time chemical and microbial fluid analysis; and object-oriented, distributed chemical and microbial modeling of regenerative environmental control systems description.

  20. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project. ACT/Control/Guidance System study. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The integrated application of active controls (IAAC) technology to an advanced subsonic transport is reported. Supplementary technical data on the following topics are included: (1) 1990's avionics technology assessment; (2) function criticality assessment; (3) flight deck system for total control and functional features list; (4) criticality and reliability assessment of units; (5) crew procedural function task analysis; and (6) recommendations for simulation mechanization.

  1. Conference Proceedings on Guidance and Control Techniques for Advanced Space Vehicles (37th) Held at Florence, Italy on 27-30 September 1983.

    DTIC Science & Technology

    1984-01-01

    P AD-A14l 969 CONFERENCE PROCEEDINGS ON GUIDANCE AND CONTROL 1 TECHNIQUES FOR ADVANCED SP-.(U,) ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT...findings of these various planning groups relativie to the ’e for advanced controls technology, and the perceived status of the technology t. me-,t... control of large flexible spacecraft. The program has also involved experimental activities to guide Ind validate the theoretical work. The

  2. Energy and Economic Trade Offs for Advanced Technology Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Composite materials may raise aspect radio to about 11 to 12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  3. Operational efficiency subpanel advanced mission control

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1990-01-01

    Herein, the term mission control will be taken quite broadly to include both ground and space based operations as well as the information infrastructure necessary to support such operations. Three major technology areas related to advanced mission control are examined: (1) Intelligent Assistance for Ground-Based Mission Controllers and Space-Based Crews; (2) Autonomous Onboard Monitoring, Control and Fault Detection Isolation and Reconfiguration; and (3) Dynamic Corporate Memory Acquired, Maintained, and Utilized During the Entire Vehicle Life Cycle. The current state of the art space operations are surveyed both within NASA and externally for each of the three technology areas and major objectives are discussed from a user point of view for technology development. Ongoing NASA and other governmental programs are described. An analysis of major research issues and current holes in the program are provided. Several recommendations are presented for enhancing the technology development and insertion process to create advanced mission control environments.

  4. An Introduction to Intelligent Processing Programs Developed by the Air Force Manufacturing Technology Directorate

    NASA Technical Reports Server (NTRS)

    Sampson, Paul G.; Sny, Linda C.

    1992-01-01

    The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).

  5. Application of advanced technologies to small, short-haul transport aircraft

    NASA Technical Reports Server (NTRS)

    Coussens, T. G.; Tullis, R. H.

    1980-01-01

    The performance and economic benefits available by incorporation of advanced technologies into the small, short haul air transport were assessed. Low cost structure and advanced composite material, advanced turboprop engines and new propellers, advanced high lift systems and active controls; and alternate aircraft configurations with aft mounted engines were investigated. Improvements in fuel consumed and aircraft economics (acquisition cost and direct operating cost) are available by incorporating selected advanced technologies into the small, short haul aircraft.

  6. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald D Dudenhoeffer; Burce P Hallbert

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functionalmore » obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.« less

  7. Technology for space station

    NASA Astrophysics Data System (ADS)

    Colladay, R. S.; Carlisle, R. F.

    1984-10-01

    Some of the most significant advances made in the space station discipline technology program are examined. Technological tasks and advances in the areas of systems/operations, environmental control and life support systems, data management, power, thermal considerations, attitude control and stabilization, auxiliary propulsion, human capabilities, communications, and structures, materials, and mechanisms are discussed. An overview of NASA technology planning to support the initial space station and the evolutionary growth of the space station is given.

  8. Future Challenges and Opportunities in Aerodynamics

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay; Hefner, Jerry N.

    2000-01-01

    Investments in aeronautics research and technology have declined substantially over the last decade, in part due to the perception that technologies required in aircraft design are fairly mature and readily available. This perception is being driven by the fact that aircraft configurations, particularly the transport aircraft, have evolved only incrementally, over last several decades. If however, one considers that the growth in air travel is expected to triple in the next 20 years, it becomes quickly obvious that the evolutionary development of technologies is not going to meet the increased demands for safety, environmental compatibility, capacity, and economic viability. Instead, breakthrough technologies will he required both in traditional disciplines of aerodynamics, propulsion, structures, materials, controls, and avionics as well as in the multidisciplinary integration of these technologies into the design of future aerospace vehicles concepts. The paper discusses challenges and opportunities in the field of aerodynamics over the next decade. Future technology advancements in aerodynamics will hinge on our ability, to understand, model, and control complex, three-dimensional, unsteady viscous flow across the speed range. This understanding is critical for developing innovative flow and noise control technologies and advanced design tools that will revolutionize future aerospace vehicle systems and concepts. Specifically, the paper focuses on advanced vehicle concepts, flow and noise control technologies, and advanced design and analysis tools.

  9. Rotorcraft technology at Boeing Vertol: Recent advances

    NASA Technical Reports Server (NTRS)

    Shaw, John; Dadone, Leo; Wiesner, Robert

    1988-01-01

    An overview is presented of key accomplishments in the rotorcraft development at Boeing Vertol. Projects of particular significance: high speed rotor development and the Model 360 Advanced Technology Helicopter. Areas addressed in the overview are: advanced rotors with reduced noise and vibration, 3-D aerodynamic modeling, flight control and avionics, active control, automated diagnostics and prognostics, composite structures, and drive systems.

  10. Advanced control techniques for teleoperation in earth orbit

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Brooks, T. L.

    1980-01-01

    Emerging teleoperation tasks in space invite advancements in teleoperator control technology. This paper briefly summarizes the generic issues related to earth orbital applications of teleoperators, and describes teleoperator control technology development work including visual and non-visual sensors and displays, kinesthetic feedback and computer-aided controls. Performance experiments were carried out using sensor and computer aided controls with promising results which are briefly summarized.

  11. 1998 IEEE Aerospace Conference. Proceedings.

    NASA Astrophysics Data System (ADS)

    The following topics were covered: science frontiers and aerospace; flight systems technologies; spacecraft attitude determination and control; space power systems; smart structures and dynamics; military avionics; electronic packaging; MEMS; hyperspectral remote sensing for GVP; space laser technology; pointing, control, tracking and stabilization technologies; payload support technologies; protection technologies; 21st century space mission management and design; aircraft flight testing; aerospace test and evaluation; small satellites and enabling technologies; systems design optimisation; advanced launch vehicles; GPS applications and technologies; antennas and radar; software and systems engineering; scalable systems; communications; target tracking applications; remote sensing; advanced sensors; and optoelectronics.

  12. Accessing and operating agricultural machinery: Advancements in assistive technology for users with impaired mobility.

    PubMed

    Ehlers, Shawn G; Field, William E

    2018-02-14

    This research focused on the advancements made in enabling agricultural workers with impaired mobility to access and operate off-road agricultural machinery. Although not a new concept, technological advancements in remote-controlled lifts, electronic actuators, electric over hydraulic controllers, and various modes of hand controls have advanced significantly, allowing operators with limited mobility to resume a high level of productivity in agricultural-related enterprises. In the United States, approximately 1.7% of the population is living with some form of paralysis or significant mobility impairment. When paired with the 2012 USDA Agriculture Census of 3.2 million farmers, it can be extrapolated that these technologies could impact 54,000 agricultural workers who have encountered disabling injuries or disease, which inhibit their ability to access and operate tractors, combines, and other self-propelled agricultural machines. Advancements in agricultural-specific technologies can allow for many of these individuals to regain the ability to effectively operate machinery once more.

  13. Advanced laptop and small personal computer technology

    NASA Technical Reports Server (NTRS)

    Johnson, Roger L.

    1991-01-01

    Advanced laptop and small personal computer technology is presented in the form of the viewgraphs. The following areas of hand carried computers and mobile workstation technology are covered: background, applications, high end products, technology trends, requirements for the Control Center application, and recommendations for the future.

  14. NASA IVHM Technology Experiment for X-vehicles (NITEX)

    NASA Technical Reports Server (NTRS)

    Sandra, Hayden; Bajwa, Anupa

    2001-01-01

    The purpose of the NASA IVHM Technology Experiment for X-vehicles (NITEX) is to advance the development of selected IVHM technologies in a flight environment and to demonstrate the potential for reusable launch vehicle ground processing savings. The technologies to be developed and demonstrated include system-level and detailed diagnostics for real-time fault detection and isolation, prognostics for fault prediction, automated maintenance planning based on diagnostic and prognostic results, and a microelectronics hardware platform. Complete flight The Evolution of Flexible Insulation as IVHM consists of advanced sensors, distributed data acquisition, data processing that includes model-based diagnostics, prognostics and vehicle autonomy for control or suggested action, and advanced data storage. Complete ground IVHM consists of evolved control room architectures, advanced applications including automated maintenance planning and automated ground support equipment. This experiment will advance the development of a subset of complete IVHM.

  15. Automatic process control in anaerobic digestion technology: A critical review.

    PubMed

    Nguyen, Duc; Gadhamshetty, Venkataramana; Nitayavardhana, Saoharit; Khanal, Samir Kumar

    2015-10-01

    Anaerobic digestion (AD) is a mature technology that relies upon a synergistic effort of a diverse group of microbial communities for metabolizing diverse organic substrates. However, AD is highly sensitive to process disturbances, and thus it is advantageous to use online monitoring and process control techniques to efficiently operate AD process. A range of electrochemical, chromatographic and spectroscopic devices can be deployed for on-line monitoring and control of the AD process. While complexity of the control strategy ranges from a feedback control to advanced control systems, there are some debates on implementation of advanced instrumentations or advanced control strategies. Centralized AD plants could be the answer for the applications of progressive automatic control field. This article provides a critical overview of the available automatic control technologies that can be implemented in AD processes at different scales. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Fuel efficiency through new airframe technology

    NASA Technical Reports Server (NTRS)

    Leonard, R. W.

    1982-01-01

    In its Aircraft Energy Efficiency Program, NASA has expended approximately 200 million dollars toward development and application of advanced airframe technologies to United States's commercial transports. United States manufacturers have already been given a significant boost toward early application of advanced composite materials to control surface and empennage structures and toward selected applications of active controls and advanced aerodynamic concepts. In addition, significant progress in definition and development of innovative, but realistic systems for laminar flow control over the wings of future transports has already been made.

  17. Advanced Sensor and Packaging Technologies for Intelligent Adaptive Engine Controls (Preprint)

    DTIC Science & Technology

    2013-05-01

    combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high - temperature electronics, and advanced harsh...with simultaneous pressure measurements up to 1,000 psi. The combination of a high - temperature , high -pressure-ratio compressor system, and adaptive...combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high temperature electronics, and advanced harsh

  18. Recent Technology Advances in Distributed Engine Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis

    2017-01-01

    This presentation provides an overview of the work performed at NASA Glenn Research Center in distributed engine control technology. This is control system hardware technology that overcomes engine system constraints by modularizing control hardware and integrating the components over communication networks.

  19. Energy and economic trade offs for advanced technology subsonic aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Whereas current airplanes have been designed for AR = 7, supercritical technology and much higher fuel prices will drive aspect ratio to the AR = 9-10 range. Composite materials may raise aspect ratio to about 11-12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  20. Attitude Control Subsystem for the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Hewston, Alan W.; Mitchell, Kent A.; Sawicki, Jerzy T.

    1996-01-01

    This paper provides an overview of the on-orbit operation of the Attitude Control Subsystem (ACS) for the Advanced Communications Technology Satellite (ACTS). The three ACTS control axes are defined, including the means for sensing attitude and determining the pointing errors. The desired pointing requirements for various modes of control as well as the disturbance torques that oppose the control are identified. Finally, the hardware actuators and control loops utilized to reduce the attitude error are described.

  1. Advanced Thermal Control Technologies for "CEV" (New Name: ORION)

    NASA Technical Reports Server (NTRS)

    Golliher, Eric; Westheimer, David; Ewert, Michael; Hasan, Mojib; Anderson, Molly; Tuan, George; Beach, Duane

    2007-01-01

    NASA is currently investigating several technology options for advanced human spaceflight. This presentation covers some recent developments that relate to NASA's Orion spacecraft and future Lunar missions.

  2. Installation of Computerized Procedure System and Advanced Alarm System in the Human Systems Simulation Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Blanc, Katya Lee; Spielman, Zachary Alexander; Rice, Brandon Charles

    2016-04-01

    This report describes the installation of two advanced control room technologies, an advanced alarm system and a computerized procedure system, into the Human Systems Simulation Laboratory (HSSL). Installation of these technologies enables future phases of this research by providing a platform to systematically evaluate the effect of these technologies on operator and plant performance.

  3. Achieving Helicopter Modernization with Advanced Technology Turbine Engines

    DTIC Science & Technology

    1999-04-01

    computer modeling of compressor and turbine aerody- digital engine control ( FADEC ) with manual backup. namics. Modern directionally solidified and single...controlled by a dual RAH.66A M channel FADEC , and features a very simple installation "" Improved Gross Weight and significantly reduced pilot...air separation efficiencies as an "advanced technology" engine. Technological meas- high as 97.5%. The FADEC improves acceleration, ures include but

  4. The Limits of Technological Optimism.

    ERIC Educational Resources Information Center

    Basiago, Andrew D.

    1994-01-01

    Presents the arguments advanced by James E. Krier, a professor of environmental law, against the belief that technological advancements will mitigate the problem of population growth in the battle against pollution control. (MDH)

  5. NREL and CSIRO Validating Advanced Microgrid Control Solution | Energy

    Science.gov Websites

    Organisation NREL and CSIRO Validating Advanced Microgrid Control Solution Australia's Commonwealth Scientific microgrid control solution. This technology helps hybrid microgrids to automatically recognize when solar

  6. Application of advanced technologies to future military transports

    NASA Technical Reports Server (NTRS)

    Clark, Rodney L.; Lange, Roy H.; Wagner, Richard D.

    1990-01-01

    Long range military transport technologies are addressed with emphasis of defining the potential benefits of the hybrid laminar flow control (HLFC) concept currently being flight tested. Results of a 1990's global range transport study are presented showing the expected payoff from application of advanced technologies. Technology forecast for military transports is also presented.

  7. Guidance and Control Aspects of Tactical Air-Launched Missiles

    DTIC Science & Technology

    1980-10-01

    information; - Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence pusture; -- Improving the co...Symposium on Precision Delivery Systems was held at Eglin Air Force Base , Florida. USA. Many important advances in guidance sensor technology, control system...paper concentrates primarily or the US Army Missile Command’s technology base for development of the precision pointing and tracking or fire control

  8. Civil propulsion technology for the next twenty-five years

    NASA Technical Reports Server (NTRS)

    Rosen, Robert; Facey, John R.

    1987-01-01

    The next twenty-five years will see major advances in civil propulsion technology that will result in completely new aircraft systems for domestic, international, commuter and high-speed transports. These aircraft will include advanced aerodynamic, structural, and avionic technologies resulting in major new system capabilities and economic improvements. Propulsion technologies will include high-speed turboprops in the near term, very high bypass ratio turbofans, high efficiency small engines and advanced cycles utilizing high temperature materials for high-speed propulsion. Key fundamental enabling technologies include increased temperature capability and advanced design methods. Increased temperature capability will be based on improved composite materials such as metal matrix, intermetallics, ceramics, and carbon/carbon as well as advanced heat transfer techniques. Advanced design methods will make use of advances in internal computational fluid mechanics, reacting flow computation, computational structural mechanics and computational chemistry. The combination of advanced enabling technologies, new propulsion concepts and advanced control approaches will provide major improvements in civil aircraft.

  9. An Overview of Magnetic Bearing Technology for Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Clark, Daniel J.; Jansen, Mark J.; Montague, Gerald T.

    2004-01-01

    The idea of the magnetic bearing and its use in exotic applications has been conceptualized for many years, over a century, in fact. Patented, passive systems using permanent magnets date back over 150 years. More recently, scientists of the 1930s began investigating active systems using electromagnets for high-speed ultracentrifuges. However, passive magnetic bearings are physically unstable and active systems only provide proper stiffness and damping through sophisticated controllers and algorithms. This is precisely why, until the last decade, magnetic bearings did not become a practical alternative to rolling element bearings. Today, magnetic bearing technology has become viable because of advances in micro-processing controllers that allow for confident and robust active control. Further advances in the following areas: rotor and stator materials and designs which maximize flux, minimize energy losses, and minimize stress limitations; wire materials and coatings for high temperature operation; high-speed micro processing for advanced controller designs and extremely robust capabilities; back-up bearing technology for providing a viable touchdown surface; and precision sensor technology; have put magnetic bearings on the forefront of advanced, lubrication free support systems. This paper will discuss a specific joint program for the advancement of gas turbine engines and how it implies the vitality of magnetic bearings, a brief comparison between magnetic bearings and other bearing technologies in both their advantages and limitations, and an examination of foreseeable solutions to historically perceived limitations to magnetic bearing.

  10. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  11. Advanced Technology for Portable Personal Visualization

    DTIC Science & Technology

    1991-12-01

    sites. VPL Research began in 1989 selling0IDapitP incodaesyemW commemcillys a KD system that used a glove to control the actions of flying and grabbing...problem of beacon switching error or its equivalent . Steps we took to control these errors would apply to other (3) Ascension Technology Corporation. The...AD-A245 905 / /7 Advanced Technology for Portable Personal Visualization I) ICReport of Research Progress JAN 3.ELEC April - December 1991I ELECTE I

  12. NASA R and T aerospace plane vehicles: Progress and plans

    NASA Technical Reports Server (NTRS)

    Dixon, S. C.

    1985-01-01

    Progress made in key technologies such as materials, structures, aerothermodynamics, hypersonic aerodynamics, and hypersonic airbreathing propulsion are reported. Advances were made in more generic, areas such as active controls, flight computer hardware and software, and interdisciplinary analytical design methodology. These technology advances coupled with the development of and experiences with the Space Shuttle make feasible aerospace plane-type vehicles that meet the more demanding requirements of various DOD missions and/or an all-weather Shuttle II with reduced launch costs. Technology needs and high payoff technologies, and the technology advancements in propulsion, control-configured-vehicles, aerodynamics, aerothermodynamics, aerothermal loads, and materials and structures were studied. The highest payoff technologies of materials and structures including thermal-structural analysis and high temperature test techniques are emphasized. The high priority technology of propulsion, and plans, of what remains to be done rather than firm program commitments, are briefly discussed.

  13. Single-Lever Power Control for General Aviation Aircraft Promises Improved Efficiency and Simplified Pilot Controls

    NASA Technical Reports Server (NTRS)

    Musgrave, Jeffrey L.

    1997-01-01

    General aviation research is leading to major advances in internal combustion engine control systems for single-engine, single-pilot aircraft. These advances promise to increase engine performance and fuel efficiency while substantially reducing pilot workload and increasing flight safety. One such advance is a single-lever power control (SLPC) system, a welcome departure from older, less user-friendly, multilever engine control systems. The benefits of using single-lever power controls for general aviation aircraft are improved flight safety through advanced engine diagnostics, simplified powerplant operations, increased time between overhauls, and cost-effective technology (extends fuel burn and reduces overhaul costs). The single-lever concept has proven to be so effective in preliminary studies that general aviation manufacturers are making plans to retrofit current aircraft with the technology and are incorporating it in designs for future aircraft.

  14. Modern and prospective technologies for weather modification activities: A look at integrating unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Axisa, Duncan; DeFelice, Tom P.

    2016-09-01

    Present-day weather modification technologies are scientifically based and have made controlled technological advances since the late 1990s, early 2000s. The technological advances directly related to weather modification have primarily been in the decision support and evaluation based software and modeling areas. However, there have been some technological advances in other fields that might now be advanced enough to start considering their usefulness for improving weather modification operational efficiency and evaluation accuracy. We consider the programmatic aspects underlying the development of new technologies for use in weather modification activities, identifying their potential benefits and limitations. We provide context and initial guidance for operators that might integrate unmanned aircraft systems technology in future weather modification operations.

  15. A Feasibility Study for Advanced Technology Integration for General Aviation.

    DTIC Science & Technology

    1980-05-01

    154 4.5.9.4 Stratified Charge Reciprocating Engine ..... .. 155 4.5.9.5 Advanced Diesel Engine . ... 158 4.5.9.6 Liquid Cooling ... ........ 159... diesel , rotary combustion engine, advanced reciprocating engine concepts. (7) Powerplant control - integrated controls, microprocessor- based controls...Research Center Topics. (1) GATE (2) Positive displacement engines (a) Advanced reciprocating engines. (b) Alternative engine systems Diesel engines

  16. Energy efficient transport technology: Program summary and bibliography

    NASA Technical Reports Server (NTRS)

    Middleton, D. B.; Bartlett, D. W.; Hood, R. V.

    1985-01-01

    The Energy Efficient Transport (EET) Program began in 1976 as an element of the NASA Aircraft Energy Efficiency (ACEE) Program. The EET Program and the results of various applications of advanced aerodynamics and active controls technology (ACT) as applicable to future subsonic transport aircraft are discussed. Advanced aerodynamics research areas included high aspect ratio supercritical wings, winglets, advanced high lift devices, natural laminar flow airfoils, hybrid laminar flow control, nacelle aerodynamic and inertial loads, propulsion/airframe integration (e.g., long duct nacelles) and wing and empennage surface coatings. In depth analytical/trade studies, numerous wind tunnel tests, and several flight tests were conducted. Improved computational methodology was also developed. The active control functions considered were maneuver load control, gust load alleviation, flutter mode control, angle of attack limiting, and pitch augmented stability. Current and advanced active control laws were synthesized and alternative control system architectures were developed and analyzed. Integrated application and fly by wire implementation of the active control functions were design requirements in one major subprogram. Additional EET research included interdisciplinary technology applications, integrated energy management, handling qualities investigations, reliability calculations, and economic evaluations related to fuel savings and cost of ownership of the selected improvements.

  17. Recent advances in spacecraft thermal-control materials research.

    NASA Technical Reports Server (NTRS)

    Zerlaut, G. A.; Gilligan, J. E.; Gates, D. W.

    1972-01-01

    The state-of-the-art of spacecraft thermal-control materials technology has been significantly advanced during the past 4 years. Selective black coatings are discussed together with black paints, dielectric films on metal surfaces, and white radiator coatings. Criteria for the selection of thermal-control surfaces are considered, giving attention to prelaunch protection, the capability of being measured, reproducibility, simulator response, and aspects of a nonindigenous space environment. Progress in space simulation is related to vacuum technology, ultraviolet sources, solar wind simulation, and the production of protons. Advances have been made in the protection against space environmental effects, and in the development of thermal-control surfaces and pigments.

  18. Automotive displays and controls : existing technology and future trends

    DOT National Transportation Integrated Search

    1987-11-01

    This report presents overview information on high-technology displays and : controls that are having a substantial effect on the driving environment. Advances : in electronics and computers, in addition to cost advantages, increase the : technologies...

  19. Application of advanced technologies to small, short-haul aircraft

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Brubaker, P. W.; Bryant, S. L.; Clay, C. W.; Giridharadas, B.; Hamamoto, M.; Kelly, T. J.; Proctor, D. K.; Myron, C. E.; Sullivan, R. L.

    1978-01-01

    The results of a preliminary design study which investigates the use of selected advanced technologies to achieve low cost design for small (50-passenger), short haul (50 to 1000 mile) transports are reported. The largest single item in the cost of manufacturing an airplane of this type is labor. A careful examination of advanced technology to airframe structure was performed since one of the most labor-intensive parts of the airplane is structures. Also, preliminary investigation of advanced aerodynamics flight controls, ride control and gust load alleviation systems, aircraft systems and turbo-prop propulsion systems was performed. The most beneficial advanced technology examined was bonded aluminum primary structure. The use of this structure in large wing panels and body sections resulted in a greatly reduced number of parts and fasteners and therefore, labor hours. The resultant cost of assembled airplane structure was reduced by 40% and the total airplane manufacturing cost by 16% - a major cost reduction. With further development, test verification and optimization appreciable weight saving is also achievable. Other advanced technology items which showed significant gains are as follows: (1) advanced turboprop-reduced block fuel by 15.30% depending on range; (2) configuration revisions (vee-tail)-empennage cost reduction of 25%; (3) leading-edge flap addition-weight reduction of 2500 pounds.

  20. On-product overlay enhancement using advanced litho-cluster control based on integrated metrology, ultra-small DBO targets and novel corrections

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kaustuve; Ke, Chih-Ming; Huang, Guo-Tsai; Chen, Kai-Hsiung; Smilde, Henk-Jan H.; Fuchs, Andreas; Jak, Martin; van Schijndel, Mark; Bozkurt, Murat; van der Schaar, Maurits; Meyer, Steffen; Un, Miranda; Morgan, Stephen; Wu, Jon; Tsai, Vincent; Liang, Frida; den Boef, Arie; ten Berge, Peter; Kubis, Michael; Wang, Cathy; Fouquet, Christophe; Terng, L. G.; Hwang, David; Cheng, Kevin; Gau, TS; Ku, Y. C.

    2013-04-01

    Aggressive on-product overlay requirements in advanced nodes are setting a superior challenge for the semiconductor industry. This forces the industry to look beyond the traditional way-of-working and invest in several new technologies. Integrated metrology2, in-chip overlay control, advanced sampling and process correction-mechanism (using the highest order of correction possible with scanner interface today), are a few of such technologies considered in this publication.

  1. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    NASA Astrophysics Data System (ADS)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  2. Summary of NASA Advanced Telescope and Observatory Capability Roadmap

    NASA Technical Reports Server (NTRS)

    Stahl, H. Phil; Feinberg, Lee

    2006-01-01

    The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  3. Summary of NASA Advanced Telescope and Observatory Capability Roadmap

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Feinberg, Lee

    2007-01-01

    The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  4. Control Center Technology Conference Proceedings

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Conference papers and presentations are compiled and cover evolving architectures and technologies applicable to flight control centers. Advances by NASA Centers and the aerospace industry are presented.

  5. Advanced traffic technology test-bed.

    DOT National Transportation Integrated Search

    2004-06-01

    The goal of this project was to create a test-bed to allow the University of California to conduct advanced traffic technology research in a designated, non-public, and controlled setting. Caltrans, with its associated research facilities on UC campu...

  6. Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brambley, M. R.; Haves, P.; McDonald, S. C.

    2005-04-01

    This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies.

  7. Spacecraft applications of advanced global positioning system technology

    NASA Technical Reports Server (NTRS)

    Huth, Gaylord; Dodds, James; Udalov, Sergei; Austin, Richard; Loomis, Peter; Duboraw, I. Newton, III

    1988-01-01

    The purpose of this study was to evaluate potential uses of Global Positioning System (GPS) in spacecraft applications in the following areas: attitude control and tracking; structural control; traffic control; and time base definition (synchronization). Each of these functions are addressed. Also addressed are the hardware related issues concerning the application of GPS technology and comparisons are provided with alternative instrumentation methods for specific functions required for an advanced low earth orbit spacecraft.

  8. Directions in propulsion control

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1990-01-01

    Discussed here is research at NASA Lewis in the area of propulsion controls as driven by trends in advanced aircraft. The objective of the Lewis program is to develop the technology for advanced reliable propulsion control systems and to integrate the propulsion control with the flight control for optimal full-system control.

  9. Advanced Environmental Monitoring and Control Program: Technology Development Requirements

    NASA Technical Reports Server (NTRS)

    Jan, Darrell (Editor); Seshan, Panchalam (Editor); Ganapathi, Gani (Editor); Schmidt, Gregory (Editor); Doarn, Charles (Editor)

    1996-01-01

    Human missions in space, from the International Space Station on towards potential human exploration of the moon, Mars and beyond into the solar system, will require advanced systems to maintain an environment that supports human life. These systems will have to recycle air and water for many months or years at a time, and avoid harmful chemical or microbial contamination. NASA's Advanced Environmental Monitoring and Control program has the mission of providing future spacecraft with advanced, integrated networks of microminiaturized sensors to accurately determine and control the physical, chemical and biological environment of the crew living areas. This document sets out the current state of knowledge for requirements for monitoring the crew environment, based on (1) crew health, and (2) life support monitoring systems. Both areas are updated continuously through research and space mission experience. The technologies developed must meet the needs of future life support systems and of crew health monitoring. These technologies must be inexpensive and lightweight, and use few resources. Using these requirements to continue to push the state of the art in miniaturized sensor and control systems will produce revolutionary technologies to enable detailed knowledge of the crew environment.

  10. Implications of advanced vehicle technologies for older drivers.

    PubMed

    Molnar, Lisa J; Eby, David W

    2017-09-01

    Advances are being made in vehicle technologies that may help older adults compensate for some of the declines in abilities associated with aging. These advances hold promise for increasing vehicle safety, reducing injuries, and making the driving task more comfortable. However, important research gaps remain with regard to how various advanced technologies impact the safety of older drivers, as well as older drivers' perceptions about these technologies. This special issue contains seven original contributions that address these issues. Specific topics include the: congruence of design guidelines with the needs and abilities of older drivers, transfer of control between automated and manual driving, use of in-vehicle monitoring technology, motivations for technology use and assigned meanings, technology valuation, and effects on driving behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Minimum Control Requirements for Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Boulange, Richard; Jones, Harry; Jones, Harry

    2002-01-01

    Advanced control technologies are not necessary for the safe, reliable and continuous operation of Advanced Life Support (ALS) systems. ALS systems can and are adequately controlled by simple, reliable, low-level methodologies and algorithms. The automation provided by advanced control technologies is claimed to decrease system mass and necessary crew time by reducing buffer size and minimizing crew involvement. In truth, these approaches increase control system complexity without clearly demonstrating an increase in reliability across the ALS system. Unless these systems are as reliable as the hardware they control, there is no savings to be had. A baseline ALS system is presented with the minimal control system required for its continuous safe reliable operation. This baseline control system uses simple algorithms and scheduling methodologies and relies on human intervention only in the event of failure of the redundant backup equipment. This ALS system architecture is designed for reliable operation, with minimal components and minimal control system complexity. The fundamental design precept followed is "If it isn't there, it can't fail".

  12. Advanced optical sensing and processing technologies for the distributed control of large flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Williams, G. M.; Fraser, J. C.

    1991-01-01

    The objective was to examine state-of-the-art optical sensing and processing technology applied to control the motion of flexible spacecraft. Proposed large flexible space systems, such an optical telescopes and antennas, will require control over vast surfaces. Most likely distributed control will be necessary involving many sensors to accurately measure the surface. A similarly large number of actuators must act upon the system. The used technical approach included reviewing proposed NASA missions to assess system needs and requirements. A candidate mission was chosen as a baseline study spacecraft for comparison of conventional and optical control components. Control system requirements of the baseline system were used for designing both a control system containing current off-the-shelf components and a system utilizing electro-optical devices for sensing and processing. State-of-the-art surveys of conventional sensor, actuator, and processor technologies were performed. A technology development plan is presented that presents a logical, effective way to develop and integrate advancing technologies.

  13. Recent advances in active noise and vibration control at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Gibbs, Gary P.; Cabell, Randolph H.; Palumbo, Daniel L.; Silcox, Richard J.; Turner, Travis L.

    2002-11-01

    Over the past 15 years NASA has investigated the use of active control technology for aircraft interior noise. More recently this work has been supported through the Advanced Subsonic Technology Noise Reduction Program (1994-2001), High Speed Research Program (1994-1999), and through the Quiet Aircraft Technology Program (2000-present). The interior environment is recognized as an important element in flight safety, crew communications and fatigue, as well as passenger comfort. This presentation will overview research in active noise and vibration control relating to interior noise being investigated by NASA. The research to be presented includes: active control of aircraft fuselage sidewall transmission due to turbulent boundary layer or jet noise excitation, active control of interior tones due to propeller excitation of aircraft structures, and adaptive stiffening of structures for noise, vibration, and fatigue control. Work on actuator technology ranging from piezoelectrics, shape memory actuators, and fluidic actuators will be described including applications. Control system technology will be included that is experimentally based, real-time, and adaptive.

  14. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Mike; Cipiti, Ben; Demuth, Scott Francis

    2017-01-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less

  15. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durkee, Joe W.; Cipiti, Ben; Demuth, Scott Francis

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less

  16. The Technology Security Program. A Report to the 99th Congress, Second Session

    DTIC Science & Technology

    1986-01-01

    and implement effective and practical controls on advanced technologies. DoD has proposed and has collaborated with the Dept. of Commerce to establish...technology. The United States, the other NATO nations and Japan continue to revise the COCOM (coordinating Committee on Export Controls ) control list and

  17. Robotics-Control Technology. Technology Learning Activity. Teacher Edition. Technology Education Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains the materials required for presenting an 8-day competency-based technology learning activity (TLA) designed to introduce students in grades 6-10 to advances and career opportunities in the field of robotics-control technology. The guide uses hands-on exploratory experiences into which activities to help students develop…

  18. High-speed civil transport flight- and propulsion-control technological issues

    NASA Technical Reports Server (NTRS)

    Ray, J. K.; Carlin, C. M.; Lambregts, A. A.

    1992-01-01

    Technology advances required in the flight and propulsion control system disciplines to develop a high speed civil transport (HSCT) are identified. The mission and requirements of the transport and major flight and propulsion control technology issues are discussed. Each issue is ranked and, for each issue, a plan for technology readiness is given. Certain features are unique and dominate control system design. These features include the high temperature environment, large flexible aircraft, control-configured empennage, minimizing control margins, and high availability and excellent maintainability. The failure to resolve most high-priority issues can prevent the transport from achieving its goals. The flow-time for hardware may require stimulus, since market forces may be insufficient to ensure timely production. Flight and propulsion control technology will contribute to takeoff gross weight reduction. Similar technology advances are necessary also to ensure flight safety for the transport. The certification basis of the HSCT must be negotiated between airplane manufacturers and government regulators. Efficient, quality design of the transport will require an integrated set of design tools that support the entire engineering design team.

  19. Progress on advanced dc and ac induction drives for electric vehicles

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1982-01-01

    Progress is reported in the development of complete electric vehicle propulsion systems, and the results of tests on the Road Load Simulator of two such systems representative of advanced dc and ac drive technology are presented. One is the system used in the DOE's ETV-1 integrated test vehicle which consists of a shunt wound dc traction motor under microprocessor control using a transistorized controller. The motor drives the vehicle through a fixed ratio transmission. The second system uses an ac induction motor controlled by transistorized pulse width modulated inverter which drives through a two speed automatically shifted transmission. The inverter and transmission both operate under the control of a microprocessor. The characteristics of these systems are also compared with the propulsion system technology available in vehicles being manufactured at the inception of the DOE program and with an advanced, highly integrated propulsion system upon which technology development was recently initiated.

  20. Advances in Adaptive Control Methods

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2009-01-01

    This poster presentation describes recent advances in adaptive control technology developed by NASA. Optimal Control Modification is a novel adaptive law that can improve performance and robustness of adaptive control systems. A new technique has been developed to provide an analytical method for computing time delay stability margin for adaptive control systems.

  1. Aspects of intelligent electronic device based switchgear control training model application

    NASA Astrophysics Data System (ADS)

    Bogdanov, Dimitar; Popov, Ivaylo

    2018-02-01

    The design of the protection and control equipment for electrical power sector application was object of extensive advance in the last several decades. The modern technologies offer a wide range of multifunctional flexible applications, making the protection and control of facilities more sophisticated. In the same time, the advance of technology imposes the necessity of simulators, training models and tutorial laboratory equipment to be used for adequate training of students and field specialists

  2. Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3

    NASA Technical Reports Server (NTRS)

    Martinez, A.; Erickson, C.; Hines, B.

    1986-01-01

    Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.

  3. Advanced Grid Control Technologies Workshop Series | Energy Systems

    Science.gov Websites

    on advanced distribution management systems (ADMS) and microgrid controls. The workshops were held at . July 7, 2015: Advanced Distribution Management Systems (ADMS) Welcome and NREL Overview Dr. Murali Keynote: Next-Generation Distribution Management Systems and Distributed Resource Energy Management

  4. A Plan for Advanced Guidance and Control Technology for 2nd Generation Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Fogle, Frank (Technical Monitor)

    2002-01-01

    Advanced guidance and control (AG&C) technologies are critical for meeting safety/reliability and cost requirements for the next generation of reusable launch vehicle (RLV). This becomes clear upon examining the number of expendable launch vehicle failures in the recent past where AG&C technologies would have saved a RLV with the same failure mode, the additional vehicle problems where this technology applies, and the costs associated with mission design with or without all these failure issues. The state-of-the-art in guidance and control technology, as well as in computing technology, is at the point where we can took to the possibility of being able to safely return a RLV in any situation where it can physically be recovered. This paper outlines reasons for AG&C, current technology efforts, and the additional work needed for making this goal a reality.

  5. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1989-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  6. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1988-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  7. Controls and Health Management Technologies for Intelligent Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2004-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Technology Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of an Intelligent Engine. The key enabling technologies for an Intelligent Engine are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Technology Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  8. Modeling and control of active twist aircraft

    NASA Astrophysics Data System (ADS)

    Cramer, Nicholas Bryan

    The Wright Brothers marked the beginning of powered flight in 1903 using an active twist mechanism as their means of controlling roll. As time passed due to advances in other technologies that transformed aviation the active twist mechanism was no longer used. With the recent advances in material science and manufacturability, the possibility of the practical use of active twist technologies has emerged. In this dissertation, the advantages and disadvantages of active twist techniques are investigated through the development of an aeroelastic modeling method intended for informing the designs of such technologies and wind tunnel testing to confirm the capabilities of the active twist technologies and validate the model. Control principles for the enabling structural technologies are also proposed while the potential gains of dynamic, active twist are analyzed.

  9. Spacecraft Conceptual Design for the 8-Meter Advanced Technology Large Aperture Space Telescope (ATLAST)

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David

    2010-01-01

    The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.

  10. 78 FR 69773 - Approval and Promulgation of Implementation Plans; Texas; Control of Air Pollution by Permits for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ... advancement and development of new technologies. FutureGen refers to a combination of technologies for carbon... National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272 note) because application of those... Business Information (CBI) or other information the disclosure of which is restricted by statute. Do not...

  11. Advanced Telescopes and Observatories Capability Roadmap Presentation to the NRC

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This viewgraph presentation provides an overview of the NASA Advanced Planning and Integration Office (APIO) roadmap for developing technological capabilities for telescopes and observatories in the following areas: Optics; Wavefront Sensing and Control and Interferometry; Distributed and Advanced Spacecraft; Large Precision Structures; Cryogenic and Thermal Control Systems; Infrastructure.

  12. Advanced Controller Developed for the Free-Piston Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Gerber, Scott S.

    2005-01-01

    A free-piston Stirling power convertor is being considered as an advanced power-conversion technology for future NASA deep-space missions requiring long-life radioisotope power systems. The NASA Glenn Research Center has identified key areas where advanced technologies can enhance the capability of Stirling energy-conversion systems. One of these is power electronic controls. Current power-conversion technology for Glenn-tested Stirling systems consists of an engine-driven linear alternator generating an alternating-current voltage controlled by a tuning-capacitor-based alternating-current peak voltage load controller. The tuning capacitor keeps the internal alternator electromotive force (EMF) in phase with its respective current (i.e., passive power factor correction). The alternator EMF is related to the piston velocity, which must be kept in phase with the alternator current in order to achieve stable operation. This tuning capacitor, which adds volume and mass to the overall Stirling convertor, can be eliminated if the controller can actively drive the magnitude and phase of the alternator current.

  13. Access to augmentative and alternative communication: new technologies and clinical decision-making.

    PubMed

    Fager, Susan; Bardach, Lisa; Russell, Susanne; Higginbotham, Jeff

    2012-01-01

    Children with severe physical impairments require a variety of access options to augmentative and alternative communication (AAC) and computer technology. Access technologies have continued to develop, allowing children with severe motor control impairments greater independence and access to communication. This article will highlight new advances in access technology, including eye and head tracking, scanning, and access to mainstream technology, as well as discuss future advances. Considerations for clinical decision-making and implementation of these technologies will be presented along with case illustrations.

  14. Application of Multivariable Model Predictive Advanced Control for a 2×310T/H CFB Boiler Unit

    NASA Astrophysics Data System (ADS)

    Weijie, Zhao; Zongllao, Dai; Rong, Gou; Wengan, Gong

    When a CFB boiler is in automatic control, there are strong interactions between various process variables and inverse response characteristics of bed temperature control target. Conventional Pill control strategy cannot deliver satisfactory control demand. Kalman wave filter technology is used to establish a non-linear combustion model, based on the CFB combustion characteristics of bed fuel inventory, heating values, bed lime inventory and consumption. CFB advanced combustion control utilizes multivariable model predictive control technology to optimize primary and secondary air flow, bed temperature, air flow, fuel flow and heat flux. In addition to providing advanced combustion control to 2×310t/h CFB+1×100MW extraction condensing turbine generator unit, the control also provides load allocation optimization and advanced control for main steam pressure, combustion and temperature. After the successful implementation, under 10% load change, main steam pressure varied less than ±0.07MPa, temperature less than ±1°C, bed temperature less than ±4°C, and air flow (O2) less than ±0.4%.

  15. Human Support Technology Research to Enable Exploration

    NASA Technical Reports Server (NTRS)

    Joshi, Jitendra

    2003-01-01

    Contents include the following: Advanced life support. System integration, modeling, and analysis. Progressive capabilities. Water processing. Air revitalization systems. Why advanced CO2 removal technology? Solid waste resource recovery systems: lyophilization. ISRU technologies for Mars life support. Atmospheric resources of Mars. N2 consumable/make-up for Mars life. Integrated test beds. Monitoring and controlling the environment. Ground-based commercial technology. Optimizing size vs capability. Water recovery systems. Flight verification topics.

  16. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  17. Foreign technology summary of flight crucial flight control systems

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.

    1984-01-01

    A survey of foreign technology in flight crucial flight controls is being conducted to provide a data base for planning future research and technology programs. Only Free World countries were surveyed, and the primary emphasis was on Western Europe because that is where the most advanced technology resides. The survey includes major contemporary systems on operational aircraft, R&D flight programs, advanced aircraft developments, and major research and technology programs. The information was collected from open literature, personal communications, and a tour of several companies, government organizations, and research laboratories in the United Kingdom, France, and the Federal Republic of Germany. A summary of the survey results to date is presented.

  18. Aerosciences, Aero-Propulsion and Flight Mechanics Technology Development for NASA's Next Generation Launch Technology Program

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.

    2003-01-01

    The Next Generation Launch Technology (NGLT) program, Vehicle Systems Research and Technology (VSR&T) project is pursuing technology advancements in aerothermodynamics, aeropropulsion and flight mechanics to enable development of future reusable launch vehicle (RLV) systems. The current design trade space includes rocket-propelled, hypersonic airbreathing and hybrid systems in two-stage and single-stage configurations. Aerothermodynamics technologies include experimental and computational databases to evaluate stage separation of two-stage vehicles as well as computational and trajectory simulation tools for this problem. Additionally, advancements in high-fidelity computational tools and measurement techniques are being pursued along with the study of flow physics phenomena, such as boundary-layer transition. Aero-propulsion technology development includes scramjet flowpath development and integration, with a current emphasis on hypervelocity (Mach 10 and above) operation, as well as the study of aero-propulsive interactions and the impact on overall vehicle performance. Flight mechanics technology development is focused on advanced guidance, navigation and control (GN&C) algorithms and adaptive flight control systems for both rocket-propelled and airbreathing vehicles.

  19. Demand Response Advanced Controls Framework and Assessment of Enabling Technology Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, Jennifer; Cappers, Peter

    The Demand Response Advanced Controls Framework and Assessment of Enabling Technology Costs research describe a variety of DR opportunities and the various bulk power system services they can provide. The bulk power system services are mapped to a generalized taxonomy of DR “service types”, which allows us to discuss DR opportunities and bulk power system services in fewer yet broader categories that share similar technological requirements which mainly drive DR enablement costs. The research presents a framework for the costs to automate DR and provides descriptions of the various elements that drive enablement costs. The report introduces the various DRmore » enabling technologies and end-uses, identifies the various services that each can provide to the grid and provides the cost assessment for each enabling technology. In addition to a report, this research includes a Demand Response Advanced Controls Database and User Manual. They are intended to provide users with the data that underlies this research and instructions for how to use that database more effectively and efficiently.« less

  20. Overview of Lightweight Structures for Rotorcraft Engines and Drivetrains

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.

    2011-01-01

    This is an overview presentation of research being performed in the Advanced Materials Task within the NASA Subsonic Rotary Wing Project. This research is focused on technology areas that address both national goals and project goals for advanced rotorcraft. Specific technology areas discussed are: (1) high temperature materials for advanced turbines in turboshaft engines; (2) polymer matrix composites for lightweight drive system components; (3) lightweight structure approaches for noise and vibration control; and (4) an advanced metal alloy for lighter weight bearings and more reliable mechanical components. An overview of the technology in each area is discussed, and recent accomplishments are presented.

  1. Technology review of flight crucial flight controls

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.; Buckley, E. C.

    1984-01-01

    The results of a technology survey in flight crucial flight controls conducted as a data base for planning future research and technology programs are provided. Free world countries were surveyed with primary emphasis on the United States and Western Europe because that is where the most advanced technology resides. The survey includes major contemporary systems on operational aircraft, R&D flight programs, advanced aircraft developments, and major research and technology programs. The survey was not intended to be an in-depth treatment of the technology elements, but rather a study of major trends in systems level technology. The information was collected from open literature, personal communications and a tour of several companies, government organizations and research laboratories in the United States, United Kingdom, France, and the Federal Republic of Germany.

  2. Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2004-01-01

    This presentation is planned to be a 10-15 minute "catalytic" focused presentation to be scheduled during one of the working sessions at the TIM. This presentation will focus on Advanced Life Support technologies key to future human Space Exploration as outlined in the Vision, and will include basic requirements, assessment of the state-of-the-art and gaps, and include specific technology metrics. The presentation will be technical in character, lean heavily on data in published ALS documents (such as the Baseline Values and Assumptions Document) but not provide specific technical details or build to information on any technology mentioned (thus the presentation will be benign from an export control and a new technology perspective). The topics presented will be focused on the following elements of Advanced Life Support: air revitalization, water recovery, waste management, thermal control, habitation systems, food systems and bioregenerative life support.

  3. Study of the application of advanced technologies to long-range transport aircraft. Volume 2: Research and development requirements

    NASA Technical Reports Server (NTRS)

    Lange, R. H.; Sturgeon, R. F.; Adams, W. E.; Bradley, E. S.; Cahill, J. F.; Eudaily, R. R.; Hancock, J. P.; Moore, J. W.

    1972-01-01

    Investigations were conducted to evaluate the relative benefits attainable through the exploitation of advanced technologies and to identify future research and development efforts required to permit the application of selected technologies to transport aircraft entering commercial operation in 1985. Results show that technology advances, particularly in the areas of composite materials, supercritical aerodynamics, and active control systems, will permit the development of long-range, high-payload commercial transports operating at high-subsonic speeds with direct operating costs lower than those of current aircraft. These advanced transports also achieve lower noise levels and lower engine pollutant emissions than current transports. Research and development efforts, including analytical investigations, laboratory test programs, and flight test programs, are required in essentially all technology areas to achieve the potential technology benefits.

  4. Advanced helmet tracking technology developments for naval aviation

    NASA Astrophysics Data System (ADS)

    Brindle, James H.

    1996-06-01

    There is a critical need across the Services to improve the effectiveness of aircrew within the crewstation by capitalizing on the natural psycho-motor skills of the pilot through the use of a variety of helmet-mounted visual display and control techniques. This has resulted in considerable interest and significant ongoing research and development efforts on the part of the Navy, as well as the Army and the Air Force, in the technology building blocks associated with this area, such as advanced head position sensing or head tracking technologies, helmet- mounted display optics and electronics, and advanced night vision or image intensification technologies.

  5. ACTS TDMA network control. [Advanced Communication Technology Satellite

    NASA Technical Reports Server (NTRS)

    Inukai, T.; Campanella, S. J.

    1984-01-01

    This paper presents basic network control concepts for the Advanced Communications Technology Satellite (ACTS) System. Two experimental systems, called the low-burst-rate and high-burst-rate systems, along with ACTS ground system features, are described. The network control issues addressed include frame structures, acquisition and synchronization procedures, coordinated station burst-time plan and satellite-time plan changes, on-board clock control based on ground drift measurements, rain fade control by means of adaptive forward-error-correction (FEC) coding and transmit power augmentation, and reassignment of channel capacities on demand. The NASA ground system, which includes a primary station, diversity station, and master control station, is also described.

  6. Nuclear Terrorism - Dimensions, Options, and Perspectives in Moldova

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok; Susmann, P.; Braman, Eric W.; Enaki, Nicolae A.

    Securing nuclear materials, controlling contraband and preventing proliferation is an international priority to resolve using technology, diplomacy, strategic alliances, and if necessary, targeted military exercises. Nuclear security consists of complementary programs involving international legal and regulatory structure, intelligence and law enforcement agencies, border and customs forces, point and stand-off radiation detectors, personal protection equipment, preparedness for emergency and disaster, and consequence management teams. The strategic goal of UNSCR 1540 and the GICNT is to prevent nuclear materials from finding their way into the hands of our adversaries. This multi-jurisdictional and multi-agency effort demands tremendous coordination, technology assessment, policy development and guidance from several sectors. The overall goal envisions creating a secured environment that controls and protects nuclear materials while maintaining the free flow of commerce and individual liberty on international basis. Integral to such efforts are technologies to sense/detect nuclear material, provide advance information of nuclear smuggling routes, and other advanced means to control nuclear contraband and prevent proliferation. We provide an overview of GICNT and several initiatives supporting such efforts. An overview is provided of technological advances in support of point and stand-off detection and receiving advance information of nuclear material movement from perspectives of the Republic of Moldova.

  7. Potential for integrated optical circuits in advanced aircraft with fiber optic control and monitoring systems

    NASA Astrophysics Data System (ADS)

    Baumbick, Robert J.

    1991-02-01

    Fiber optic technology is expected to be used in future advanced weapons platforms as well as commercial aerospace applications. Fiber optic waveguides will be used to transmit noise free high speed data between a multitude of computers as well as audio and video information to the flight crew. Passive optical sensors connected to control computers with optical fiber interconnects will serve both control and monitoring functions. Implementation of fiber optic technology has already begun. Both the military and NASA have several programs in place. A cooperative program called FOCSI (Fiber Optic Control System Integration) between NASA Lewis and the NAVY to build environmentally test and flight demonstrate sensor systems for propul sion and flight control systems is currently underway. Integrated Optical Circuits (IOC''s) are also being given serious consideration for use in advanced aircraft sys tems. IOC''s will result in miniaturization and localization of components to gener ate detect optical signals and process them for use by the control computers. In some complex systems IOC''s may be required to perform calculations optically if the technology is ready replacing some of the electronic systems used today. IOC''s are attractive because they will result in rugged components capable of withstanding severe environments in advanced aerospace vehicles. Manufacturing technology devel oped for microelectronic integrated circuits applied to IOC''s will result in cost effective manufacturing. This paper reviews the current FOCSI program and describes the role of IOC''s in FOCSI applications.

  8. The Advanced Technology Operations System: ATOS

    NASA Technical Reports Server (NTRS)

    Kaufeler, J.-F.; Laue, H. A.; Poulter, K.; Smith, H.

    1993-01-01

    Mission control systems supporting new space missions face ever-increasing requirements in terms of functionality, performance, reliability and efficiency. Modern data processing technology is providing the means to meet these requirements in new systems under development. During the past few years the European Space Operations Centre (ESOC) of the European Space Agency (ESA) has carried out a number of projects to demonstrate the feasibility of using advanced software technology, in particular, knowledge based systems, to support mission operations. A number of advances must be achieved before these techniques can be moved towards operational use in future missions, namely, integration of the applications into a single system framework and generalization of the applications so that they are mission independent. In order to achieve this goal, ESA initiated the Advanced Technology Operations System (ATOS) program, which will develop the infrastructure to support advanced software technology in mission operations, and provide applications modules to initially support: Mission Preparation, Mission Planning, Computer Assisted Operations, and Advanced Training. The first phase of the ATOS program is tasked with the goal of designing and prototyping the necessary system infrastructure to support the rest of the program. The major components of the ATOS architecture is presented. This architecture relies on the concept of a Mission Information Base (MIB) as the repository for all information and knowledge which will be used by the advanced application modules in future mission control systems. The MIB is being designed to exploit the latest in database and knowledge representation technology in an open and distributed system. In conclusion the technological and implementation challenges expected to be encountered, as well as the future plans and time scale of the project, are presented.

  9. Critical technology areas of an SPS development and the applicability of European technology

    NASA Technical Reports Server (NTRS)

    Kassing, D.; Ruth, J.

    1980-01-01

    Possible system development and implementation scenarios for the hypothetical European part of a cooperative Satellite Power System effort are discussed, and the technology and systems requirements which could be used as an initial guideline for further evaluation studies are characterized. Examples of advanced European space technologies are described including high power microwave amplifiers, antennas, advanced structures, multi-kilowatt solar arrays, attitude and orbit control systems, and electric propulsion.

  10. Testimony of Fred R. Mynatt before the Energy Research and Development Subcommittee of the Committee on Science, Space, and Technology, US House of Representatives. [Advanced fuel technology, gas-cooled reactor technology, and liquid metal-cooled reactor technology programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mynatt, F.R.

    1987-03-18

    This report provides a description of the statements submitted for the record to the committee on Science, Space, and Technology of the United States House of Representatives. These statements describe three principal areas of activity of the Advanced Reactor Technology Program of the Department of Energy (DOE). These areas are advanced fuel cycle technology, modular high-temperature gas-cooled reactor technology, and liquid metal-cooled reactor. The areas of automated reactor control systems, robotics, materials and structural design shielding and international cooperation were included in these statements describing the Oak Ridge National Laboratory's efforts in these areas. (FI)

  11. Technological advances for studying human behavior

    NASA Technical Reports Server (NTRS)

    Roske-Hofstrand, Renate J.

    1990-01-01

    Technological advances for studying human behavior are noted in viewgraph form. It is asserted that performance-aiding systems are proliferating without a fundamental understanding of how they would interact with the humans who must control them. Two views of automation research, the hardware view and the human-centered view, are listed. Other viewgraphs give information on vital elements for human-centered research, a continuum of the research process, available technologies, new technologies for persistent problems, a sample research infrastructure, the need for metrics, and examples of data-link technology.

  12. Advanced Metering Infrastructure based on Smart Meters

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroshi

    By specifically designating penetrations rates of advanced meters and communication technologies, devices and systems, this paper introduces that the penetration of advanced metering is important for the future development of electric power system infrastructure. It examines the state of the technology and the economical benefits of advanced metering. One result of the survey is that advanced metering currently has a penetration of about six percent of total installed electric meters in the United States. Applications to the infrastructure differ by type of organization. Being integrated with emerging communication technologies, smart meters enable several kinds of features such as, not only automatic meter reading but also distribution management control, outage management, remote switching, etc.

  13. Technological Ecosystems in Health Informatics: A Brief Review Article.

    PubMed

    Wu, Zhongmei; Zhang, Xiuxiu; Chen, Ying; Zhang, Yan

    2016-09-01

    The existing models of information technology in health sciences have full scope of betterment and extension. The high demand pressures, public expectations, advanced platforms all collectively contribute towards hospital environment, which has to be kept in kind while designing of advanced technological ecosystem for information technology. Moreover, for the smooth conduct and operation of information system advanced management avenues are also essential in hospitals. It is the top priority of every hospital to deal with the essential needs of care for patients within the available resources of human and financial outputs. In these situations of high demand, the technological ecosystems in health informatics come in to play and prove its importance and role. The present review article would enlighten all these aspects of these ecosystems in hospital management and health care informatics. We searched the electronic database of MEDLINE, EMBASE, and PubMed for clinical controlled trials, pre-clinical studies reporting utilizaiono of ecosysyem advances in health information technology. The primary outcome of eligible studies included confirmation of importance and role of advances ecosystems in health informatics. It was observed that technological ecosystems are the backbone of health informatics. Advancements in technological ecosystems are essential for proper functioning of health information system in clinical setting.

  14. TECHNOLOGICAL OPTIONS FOR ACID RAIN CONTROL

    EPA Science Inventory

    Discussed are acid rain control options available to the electric utility industry. They include coal switching, flue gas desulfurization, and such emerging lower cost technologies as Limestone Injection Multistage Burners (LIMB) and Advanced Silicate (ADVACATE), both developed ...

  15. NASA capabilities roadmap: advanced telescopes and observatories

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.

    2005-01-01

    The NASA Advanced Telescopes and Observatories (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories collecting all electromagnetic bands, ranging from x-rays to millimeter waves, and including gravity-waves. It has derived capability priorities from current and developing Space Missions Directorate (SMD) strategic roadmaps and, where appropriate, has ensured their consistency with other NASA Strategic and Capability Roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  16. Advanced Topics in Wet-Weather Discharge Control

    EPA Science Inventory

    This report discusses four related but generally independent wet-weather flow (WWF) topic areas, namely: i) opportunities for advanced practices in WWF control technology, particularly as it applies to sewered systems; ii) tradeoffs between storage facilities (tanks) and enlarged...

  17. Characterization of particle bound organic carbon from diesel vehicles equipped with advanced emission control technologies.

    PubMed

    Pakbin, Payam; Ning, Zhi; Schauer, James J; Sioutas, Constantinos

    2009-07-01

    A chassis dynamometer study was carried out by the University of Southern California in collaboration with the Air Resources Board (CARB) to investigate the physical, chemical, and toxicological characteristics of diesel emissions of particulate matter (PM) from heavy-duty vehicles. These heavy-duty diesel vehicles (HDDV) were equipped with advanced emission control technologies, designed to meet CARB retrofit regulations. A HDDV without any emission control devices was used as the baseline vehicle. Three advanced emission control technologies; continuously regenerating technology (CRT), zeolite- and vanadium-based selective catalytic reduction technologies (Z-SCRT and V-SCRT), were tested under transient (UDDS) (1) and cruise (80 kmph) driving cycles to simulate real-world driving conditions. This paper focuses on the characterization of the particle bound organic species from the vehicle exhaust. Physical and chemical properties of PM emissions have been reported by Biswas et al. Atmos. Environ. 2008, 42, 5622-5634) and Hu et al. (Atmos. Environ. 2008, submitted) Significant reductions in the emission factors (microg/mile) of particle bound organic compounds were observed in HDDV equipped with advanced emission control technologies. V-SCRT and Z-SCRT effectively reduced PAHs, hopanes and steranes, n-alkanes and acids by more than 99%, and often to levels below detection limits for both cruise and UDDS cycles. The CRT technology also showed similar reductions with SCRT for medium and high molecular weight PAHs, acids, but with slightly lower removal efficiencies for other organic compounds. Ratios of particle bound organics-to-OC mass (microg/g) from the baseline exhaust were compared with their respective ratios in diesel fuel and lubricating oil, which revealed that hopanes and steranes originate from lubricating oil, whereas PAHs can either form during the combustion process or originate from diesel fuel itself. With the introduction of emission control technologies, the particle bound organics-to-OC ratios (microg/g) decreased considerably for PAHs, while the reduction was insignificant for hopanes and steranes, implying that fuel and lubricating oil have substantially different contributions to the total OC emitted by vehicles operating with after-treatment control devices compared to the baseline vehicle since these control technologies had a much larger impact on PAH OC than hopanes and steranes OC.

  18. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  19. Establishing confidence in CCV/ACT technology

    NASA Technical Reports Server (NTRS)

    Holloway, R. B.; Shomber, H. A.

    1976-01-01

    Despite significant advancements in controls configured vehicles/active controls technology (CCV/ACT) in the past decade, few applications of this promising technology have appeared in recent aircraft designs. The status of CCV/ACT is summarized, and some of the constraints which are retarding its wider application are described. Suggestions toward establishing an increased level of confidence in the technology are given.

  20. 77 FR 2734 - Health Information Technology Implementation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... Information Technology Implementation AGENCY: Health Resources and Services Administration, HHS. ACTION... Technology Implementation for Health Center Controlled Networks (HCCN) funds originally awarded to Community... advance information technology resources of the Tennessee's medically underserved communities, TPCA has...

  1. Technology for large space systems: A special bibliography with indexes (supplement 03)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A bibliography containing 217 abstracts addressing the technology for large space systems is presented. State of the art and advanced concepts concerning interactive analysis and design, structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, solar power satellite systems, and flight experiments are represented.

  2. Flight Control of Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2017-01-01

    This presentation presents an overview of flight control research for flexible high aspect wing aircraft in support of the NASA ARMD Advanced Air Transport Technology (AATT) project. It summarizes multi-objective flight control technology being developed for drag optimization, flutter suppression, and maneuver and gust load alleviation.

  3. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 1: Engineering studies

    NASA Technical Reports Server (NTRS)

    Alexander, H. R.; Smith, K. E.; Mcveigh, M. A.; Dixon, P. G.; Mcmanus, B. L.

    1979-01-01

    Composite structures technology is applied in a preliminary design study of advanced technology blades and hubs for the XV-15 tilt rotor research demonstrator aircraft. Significant improvements in XV-15 hover and cruise performance are available using blades designed for compatibility with the existing aircraft, i.e., blade installation would not require modification of the airframe, hub or upper controls. Provision of a low risk nonmechanical control system was also studied, and a development specification is given.

  4. Instrumentation and Controls Division Overview: Sensors Development for Harsh Environments at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Zeller, Mary V.; Lei, Jih-Fen

    2002-01-01

    The Instrumentation and Controls Division is responsible for planning, conducting and directing basic and applied research on advanced instrumentation and controls technologies for aerospace propulsion and power applications. The Division's advanced research in harsh environment sensors, high temperature high power electronics, MEMS (microelectromechanical systems), nanotechnology, high data rate optical instrumentation, active and intelligent controls, and health monitoring and management will enable self-feeling, self-thinking, self-reconfiguring and self-healing Aerospace Propulsion Systems. These research areas address Agency challenges to deliver aerospace systems with reduced size and weight, and increased functionality and intelligence for future NASA missions in advanced aeronautics, economical space transportation, and pioneering space exploration. The Division also actively supports educational and technology transfer activities aimed at benefiting all humankind.

  5. Development and flight test experiences with a flight-crucial digital control system

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.

    1988-01-01

    Engineers and scientists in the advanced fighter technology integration (AFTI) F-16 program investigated the integration of emerging technologies into an advanced fighter aircraft. AFTI's three major technologies included: flight-crucial digital control, decoupled aircraft flight control, and integration of avionics, flight control, and pilot displays. In addition to investigating improvements in fighter performance, researchers studied the generic problems confronting the designers of highly integrated flight-crucial digital control. An overview is provided of both the advantages and problems of integration digital control systems. Also, an examination of the specification, design, qualification, and flight test life-cycle phase is provided. An overview is given of the fault-tolerant design, multimoded decoupled flight control laws, and integrated avionics design. The approach to qualifying the software and system designs is discussed, and the effects of design choices on system qualification are highlighted.

  6. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study, volume 1

    NASA Technical Reports Server (NTRS)

    Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.

    1981-01-01

    An active controls technology (ACT) system architecture was selected based on current technology system elements and optimal control theory was evaluated for use in analyzing and synthesizing ACT multiple control laws. The system selected employs three redundant computers to implement all of the ACT functions, four redundant smaller computers to implement the crucial pitch-augmented stability function, and a separate maintenance and display computer. The reliability objective of probability of crucial function failure of less than 1 x 10 to the -9th power per flight of 1 hr can be met with current technology system components, if the software is assumed fault free and coverage approaching 1.0 can be provided. The optimal control theory approach to ACT control law synthesis yielded comparable control law performance much more systematically and directly than the classical s-domain approach. The ACT control law performance, although somewhat degraded by the inclusion of representative nonlinearities, remained quite effective. Certain high-frequency gust-load alleviation functions may require increased surface rate capability.

  7. Assessment of Sensor Technologies for Advanced Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsah, Kofi; Ramuhalli, Pradeep; Vlim, R.

    2016-10-01

    Sensors and measurement technologies provide information on processes, support operations and provide indications of component health. They are therefore crucial to plant operations and to commercialization of advanced reactors (AdvRx). This report, developed by a three-laboratory team consisting of Argonne National Laboratory (ANL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL), provides an assessment of sensor technologies and a determination of measurement needs for AdvRx. It provides the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy’s (DOE’s) Advanced Reactor Technology (ART) program and contributesmore » to the design and implementation of AdvRx concepts.« less

  8. Advancing Autonomous Operations Technologies for NASA Missions

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Thompson, Jerry Todd

    2013-01-01

    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce operations cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing operations cost, ameliorating inefficiencies, and mitigating catastrophic anomalies.

  9. Advancing Autonomous Operations Technologies for NASA Missions

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Thompson, Jerry T.

    2013-01-01

    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing cost, ameliorating inefficiencies, and mitigating catastrophic anomalies

  10. Quo vadis radiotherapy? Technological advances and the rising problems in cancer management.

    PubMed

    Allen, Barry J; Bezak, Eva; Marcu, Loredana G

    2013-01-01

    Despite the latest technological advances in radiotherapy, cancer control is still challenging for several tumour sites. The survival rates for the most deadly cancers, such as ovarian and pancreatic, have not changed over the last decades. The solution to the problem lies in the change of focus: from local treatment to systemic therapy. The aim of this paper is to present the current status as well as the gaps in radiotherapy and, at the same time, to look into potential solutions to improve cancer control and survival. The currently available advanced radiotherapy treatment techniques have been analysed and their cost-effectiveness discussed. The problem of systemic disease management was specifically targeted. Clinical studies show limited benefit in cancer control from hadron therapy. However, targeted therapies together with molecular imaging could improve treatment outcome for several tumour sites while controlling the systemic disease. The advances in photon therapy continue to be competitive with the much more expensive hadron therapy. To justify the cost effectiveness of proton/heavy ion therapy, there is a need for phase III randomised clinical trials. Furthermore, the success of systemic disease management lies in the fusion between radiation oncology technology and microbiology.

  11. Advanced supersonic propulsion study, phase 2. [propulsion system performance, design analysis and technology assessment

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.

    1975-01-01

    A continuation of the NASA/P and WA study to evaluate various types of propulsion systems for advanced commercial supersonic transports has resulted in the identification of two very promising engine concepts. They are the Variable Stream Control Engine which provides independent temperature and velocity control for two coannular exhaust streams, and a derivative of this engine, a Variable Cycle Engine that employs a rear flow-inverter valve to vary the bypass ratio of the cycle. Both concepts are based on advanced engine technology and have the potential for significant improvements in jet noise, exhaust emissions and economic characteristics relative to current technology supersonic engines. Extensive research and technology programs are required in several critical areas that are unique to these supersonic Variable Cycle Engines to realize these potential improvements. Parametric cycle and integration studies of conventional and Variable Cycle Engines are reviewed, features of the two most promising engine concepts are described, and critical technology requirements and required programs are summarized.

  12. Review of innovations in digital health technology to promote weight control.

    PubMed

    Thomas, J Graham; Bond, Dale S

    2014-01-01

    Advances in technology have contributed to the obesity epidemic and worsened health by reducing opportunities for physical activity and by the proliferation of inexpensive calorie-dense foods. However, much of the same technology can be used to counter these troublesome trends by fostering the development and maintenance of healthy eating and physical activity habits. In contrast to intensive face-to-face treatments, technology-based interventions also have the potential to reach large numbers of individuals at low cost. The purpose of this review is to discuss studies in which digital technology has been used for behavioral weight control, report on advances in consumer technology that are widely adopted but insufficiently tested, and explore potential future directions for both. Web-based, mobile (eg, smartphone), virtual reality, and gaming technologies are the focus of discussion. The best evidence exists to support the use of digital technology for self-monitoring of weight-related behaviors and outcomes. However, studies are underway that will provide additional, important information regarding how best to apply digital technology for behavioral weight control.

  13. Integrated Flight and Propulsion Controls for Advanced Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Merrill, Walter; Garg, Sanjay

    1995-01-01

    The research vision of the NASA Lewis Research Center in the area of integrated flight and propulsion controls technologies is described. In particular the Integrated Method for Propulsion and Airframe Controls developed at the Lewis Research Center is described including its application to an advanced aircraft configuration. Additionally, future research directions in integrated controls are described.

  14. Integrated Flight and Propulsion Controls for Advanced Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Merrill, Walter; Garg, Sanjay

    1996-01-01

    The research vision of the NASA Lewis Research Center in the area of integrated flight and propulsion controls technologies is described. In particular, the integrated method for propulsion and airframe controls developed at the Lewis Research Center is described including its application to an advanced aircraft configuration. Additionally, future research directions in integrated controls are described.

  15. Human factors of advanced technology (glass cockpit) transport aircraft

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1989-01-01

    A three-year study of airline crews at two U.S. airlines who were flying an advanced technology aircraft, the Boeing 757 is discussed. The opinions and experiences of these pilots as they view the advanced, automated features of this aircraft, and contrast them with previous models they have flown are discussed. Training for advanced automation; (2) cockpit errors and error reduction; (3) management of cockpit workload; and (4) general attitudes toward cockpit automation are emphasized. The limitations of the air traffic control (ATC) system on the ability to utilize the advanced features of the new aircraft are discussed. In general the pilots are enthusiastic about flying an advanced technology aircraft, but they express mixed feelings about the impact of automation on workload, crew errors, and ability to manage the flight.

  16. Tailoring advanced technologies for air traffic control : the importance of the development process

    DOT National Transportation Integrated Search

    1995-04-01

    This paper describes a process that is currently being applied to the : development and assessment of an advanced air traffic control (ATC) system, the : Center TRACON Automation System (CTAS). This process deviates from established : practices of AT...

  17. THE TECHNOLOGY OF TEACHING. THE CENTURY PSYCHOLOGY SERIES.

    ERIC Educational Resources Information Center

    SKINNER, B.F.

    TEACHING AS A TECHNOLOGY IS THE ARRANGEMENT OF CONTINGENCIES OF REINFORCEMENT UNDER WHICH BEHAVIOR CHANGES. RECENT ADVANCES IN TECHNIQUES OF BEHAVIOR CONTROL HAVE MADE SUCH A TECHNOLOGY IMMANENT, BUT THERE IS A SHOCKING LACK OF APPLICATION OF THESE TECHNIQUES. INSTEAD, TEACHING CONTINUES TO RELY HEAVILY ON AVERSIVE CONTROL FOR MOTIVATION AND TO…

  18. Acquisition: Navy Transition of Advanced Technology Programs to Military Applications

    DTIC Science & Technology

    2003-02-04

    The audit objective was to determine whether the Navy was successful in transitioning advanced technology projects to military applications...they relate to the audit objective. See Appendix A for a discussion of the audit scope and methodology, the review of the management control program, and prior coverage related to the audit objectives.

  19. Integration of Technology, Curriculum, and Professional Development for Advancing Middle School Mathematics: Three Large-Scale Studies

    ERIC Educational Resources Information Center

    Roschelle, Jeremy; Shechtman, Nicole; Tatar, Deborah; Hegedus, Stephen; Hopkins, Bill; Empson, Susan; Knudsen, Jennifer; Gallagher, Lawrence P.

    2010-01-01

    The authors present three studies (two randomized controlled experiments and one embedded quasi-experiment) designed to evaluate the impact of replacement units targeting student learning of advanced middle school mathematics. The studies evaluated the SimCalc approach, which integrates an interactive representational technology, paper curriculum,…

  20. Full Scale Evaluation of How Task-Based Overview Displays Impact Operator Workload and Situation Awareness When in Emergency Procedure Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spielman, Zachary; Hill, Racheal; LeBlanc, Katya

    Control room modernization is critical to extending the life of the 99 operating commercial nuclear power plants (NPP) within the United States. However, due to the lack of evidence demonstrating the efficiency and effectiveness of recent candidate technologies, current NPP control rooms operate without the benefit of various newer technologies now available. As nuclear power plants begin to extend their licenses to continue operating for another 20 years, there is increased interest in modernizing the control room and supplementing the existing control boards with advanced technologies. As part of a series of studies investigating the benefits of advanced control roommore » technologies, the researchers conducted an experimental study to observe the effect of Task-Based Overview Displays (TODs) on operator workload and situation awareness (SA) while completing typical operating scenarios. Researchers employed the Situation Awareness Rating Technique (SART) and the NASA Task Load Index (TLX) as construct measures.« less

  1. Color deviation controlling of phosphor conformal coating by advanced spray painting technology for white LEDs.

    PubMed

    Yang, Liang; Wang, Simin; Lv, Zhicheng; Liu, Sheng

    2013-04-01

    An advanced phosphor conformal coating technology is proposed, good correlated color temperature (CCT) and chromaticity uniformity samples are fabricated through phosphor spray painting technology. Spray painting technology is also suitable for phosphor conformal coating of whole LED wafers. The samples of different CCTs are obtained through controlling the phosphor film thickness in the range of 6-80 μm; CCT variation of samples can be controlled in the range of ±200 K. The experimental Δuv reveals that the spray painting method can obtain a much smaller CCT variation (Δuv of 1.36e(-3)) than the conventional dispensing method (Δuv of 11.86e(-3)) when the light is emitted at angles from -90° to +90°, and chromaticity area uniformity is also improved significantly.

  2. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  3. Engine health monitoring: An advanced system

    NASA Technical Reports Server (NTRS)

    Dyson, R. J. E.

    1981-01-01

    The advanced propulsion monitoring system is described. The system was developed in order to fulfill a growing need for effective engine health monitoring. This need is generated by military requirements for increased performance and efficiency in more complex propulsion systems, while maintaining or improving the cost to operate. This program represents a vital technological step in the advancement of the state of the art for monitoring systems in terms of reliability, flexibility, accuracy, and provision of user oriented results. It draws heavily on the technology and control theory developed for modern, complex, electronically controlled engines and utilizes engine information which is a by-product of such a system.

  4. 77 FR 19744 - Advanced BioPhotonics, Inc., Advanced Viral Research Corp., Brantley Capital Corp., Brilliant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Advanced BioPhotonics, Inc., Advanced Viral Research Corp., Brantley Capital Corp., Brilliant Technologies Corporation, 4C Controls, Inc., and 2-Track... Commission that there is a lack of current and accurate information concerning the securities of Advanced Bio...

  5. Advances in neuroprosthetic learning and control.

    PubMed

    Carmena, Jose M

    2013-01-01

    Significant progress has occurred in the field of brain-machine interfaces (BMI) since the first demonstrations with rodents, monkeys, and humans controlling different prosthetic devices directly with neural activity. This technology holds great potential to aid large numbers of people with neurological disorders. However, despite this initial enthusiasm and the plethora of available robotic technologies, existing neural interfaces cannot as yet master the control of prosthetic, paralyzed, or otherwise disabled limbs. Here I briefly discuss recent advances from our laboratory into the neural basis of BMIs that should lead to better prosthetic control and clinically viable solutions, as well as new insights into the neurobiology of action.

  6. Advances in Neuroprosthetic Learning and Control

    PubMed Central

    Carmena, Jose M.

    2013-01-01

    Significant progress has occurred in the field of brain–machine interfaces (BMI) since the first demonstrations with rodents, monkeys, and humans controlling different prosthetic devices directly with neural activity. This technology holds great potential to aid large numbers of people with neurological disorders. However, despite this initial enthusiasm and the plethora of available robotic technologies, existing neural interfaces cannot as yet master the control of prosthetic, paralyzed, or otherwise disabled limbs. Here I briefly discuss recent advances from our laboratory into the neural basis of BMIs that should lead to better prosthetic control and clinically viable solutions, as well as new insights into the neurobiology of action. PMID:23700383

  7. Economic impact of applying advanced technologies to transport airplanes.

    NASA Technical Reports Server (NTRS)

    Carline, A. J. K.

    1972-01-01

    Various technologies have been studied which could have application to the design of future transport airplanes. These technologies include the use of supercritical aerodynamics, composite materials, and active control systems, together with advanced engine designs that provide lower noise and pollutant levels. The economic impact of each technology is shown for a typical fleet of 195-passenger, transcontinental commercial transports cruising at both 0.9M and 0.98M. Comparisons are made with conventional transports cruising at 0.82M. Effects of combining the technologies are discussed. An R & D program aimed at bringing the technologies to fruition is outlined.

  8. IVHS Institutional and Legal Issues Program: Review of the FAST-TRAC Operational Test

    DOT National Transportation Integrated Search

    1994-06-01

    The FAST-TRAC (Faster and Safer Travel through Traffic Routing and Advanced Controls) operational test attempted to integrate advanced traveler information systems (ATIS) and advanced traffic management system (ATMS) technologies in Oakland County, M...

  9. NASA/HAA Advanced Rotorcraft Technology and Tilt Rotor Workshops. Volume 4: Flight Control Avionics Systems and Human Factors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Helicopter user needs, technology requirements and status, and proposed research and development action are summarized. It is divided into three sections: flight dynamics and control; all weather operations; and human factors.

  10. Aircraft fuel conservation technology. Task force report, September 10, 1975

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An advanced technology program is described for reduced fuel consumption in air transport. Cost benefits and estimates are given for improved engine design and components, turboprop propulsion systems, active control systems, laminar flow control, and composite primary structures.

  11. Space station systems technology study (add-on task). Volume 3: Technology advancement program plan

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Program plans are given for an integrating controller for space station autonomy as well as for controls and displays. The technical approach, facility requirements and candidate facilities, development schedules, and resource requirements estimates are given.

  12. Distributed control network for optogenetic experiments

    NASA Astrophysics Data System (ADS)

    Kasprowicz, G.; Juszczyk, B.; Mankiewicz, L.

    2014-11-01

    Nowadays optogenetic experiments are constructed to examine social behavioural relations in groups of animals. A novel concept of implantable device with distributed control network and advanced positioning capabilities is proposed. It is based on wireless energy transfer technology, micro-power radio interface and advanced signal processing.

  13. Advanced Electronic Systems. Curriculum Guide for Technology Education.

    ERIC Educational Resources Information Center

    Patrick, Dale R.

    This curriculum for a 1-semester or 1-year course in electronics is designed to take students from basic through advanced electronic systems. It covers several electronic areas, such as digital electronics, communication electronics, industrial process control, instrumentation, programmable controllers, and robotics. The guide contains…

  14. Guest Editorial Modeling and Advanced Control of Wind Turbines/Wind Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, J.; Hou, Y.; Zhu, Z.

    2017-09-01

    The papers in this special section brings together papers focused on the recent advancements and breakthroughs in the technology of modeling and enhanced active/reactive power control of wind power conversion systems, ranging from components of wind turbines to wind farms.

  15. Applications of aerospace technology in industry, a technology transfer profile: Contamination control

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The strong influence NASA-sponsored research has had on the development of solutions to difficult contamination problems is considered. The contamination control field is comprised of an industrial base, supplying the tools of control; a user base, adopting control techniques; and a technical base, expanding the concepts of control. Both formal and informal mechanisms used by NASA to communicate a variety of technical advances are reviewed and certain examples of the expansion of the user base through technology transfer are given. Issues related to transfer of NASA-generated contamination control technology are emphasized.

  16. Advanced thermal control for spacecraft applications

    NASA Astrophysics Data System (ADS)

    Hardesty, Robert; Parker, Kelsey

    2015-09-01

    In optical systems just like any other space borne system, thermal control plays an important role. In fact, most advanced designs are plagued with volume constraints that further complicate the thermal control challenges for even the most experienced systems engineers. Peregrine will present advances in satellite thermal control based upon passive heat transfer technologies to dissipate large thermal loads. This will address the use of 700 W/m K and higher conducting products that are five times better than aluminum on a specific basis providing enabling thermal control while maintaining structural support.

  17. 2006 NASA Seal/Secondary Air System Workshop; Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce, M. (Editor); Hendricks, Robert C. (Editor); Delgado, Irebert (Editor)

    2007-01-01

    The 2006 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (ii) Overview of NASA s new fundamental aeronautics technology project; (iii) Overview of NASA Glenn Research Center s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakages as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Several organizations presented development efforts aimed at developing faster clearance control systems and associated technology to meet future engine needs. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle. Seal technical challenges (including space environments, temperature variation, and seal-on-seal operation) as well as plans to develop the necessary "androgynous" seal technologies were reviewed. Researchers also reviewed seal technologies employed by the Apollo command module that serve as an excellent basis for seals for NASA s new Crew Exploration Vehicle (CEV).

  18. Advanced Environmental Monitoring Technologies

    NASA Technical Reports Server (NTRS)

    Jan, Darrell

    2004-01-01

    Viewgraphs on Advanced Environmental Monitoring Technologies are presented. The topics include: 1) Monitoring & Controlling the Environment; 2) Illustrative Example: Canary 3) Ground-based Commercial Technology; 4) High Capability & Low Mass/Power + Autonomy = Key to Future SpaceFlight; 5) Current Practice: in Flight; 6) Current Practice: Post Flight; 7) Miniature Mass Spectrometer for Planetary Exploration and Long Duration Human Flight; 8) Hardware and Data Acquisition System; 9) 16S rDNA Phylogenetic Tree; and 10) Preview of Porter.

  19. Command, Control and Communications Capabilities Enabling 21st Century Missions, a Historical Perspective

    NASA Technical Reports Server (NTRS)

    Waterman, Robert D.; Rice, Herbert D.; Waterman, Susan J.

    2010-01-01

    Command, Control and Communications (CCC) has evolved through the years from simple switches, dials, analogue hardwire networks and lights to a modern computer based digital network. However there are two closely coupled pillars upon which a CCC system is built. The first, is that technology drives the pace of advancement. The second is that a culture that fosters resistance to change can limit technological advancements in the CCC system. While technology has advanced at a tremendous rate throughout the years, the change in culture has moved slowly. This paper will attempt to show through a historical perspective where specific design decisions for early CCC systems have erroneously evolved into general requirements being imposed on later systems. Finally this paper will provide a glimpse into the future directions envisioned for CCC capabilities that will enable 21st century missions.

  20. Cryogenic Technology Development for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2007-01-01

    This paper reports the status and findings of different cryogenic technology research projects in support of the President s Vision for Space Exploration. The exploration systems architecture study is reviewed for cryogenic fluid management needs. It is shown that the exploration architecture is reliant on the cryogenic propellants of liquid hydrogen, liquid oxygen and liquid methane. Needs identified include: the key technologies of liquid acquisition devices, passive thermal and pressure control, low gravity mass gauging, prototype pressure vessel demonstration, active thermal control; as well as feed system testing, and Cryogenic Fluid Management integrated system demonstration. Then five NASA technology projects are reviewed to show how these needs are being addressed by technology research. Projects reviewed include: In-Space Cryogenic Propellant Depot; Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology; Cryogenic Propellant Operations Demonstrator; Zero Boil-Off Technology Experiment; and Propulsion and Cryogenic Advanced Development. Advances are found in the areas of liquid acquisition of liquid oxygen, mass gauging of liquid oxygen via radio frequency techniques, computational modeling of thermal and pressure control, broad area cooling thermal control strategies, flight experiments for resolving low gravity issues of cryogenic fluid management. Promising results are also seen for Joule-Thomson pressure control devices in liquid oxygen and liquid methane and liquid acquisition of methane, although these findings are still preliminary.

  1. An airline study of advanced technology requirements for advanced high speed commercial transport engines. 1: Engine design study assessment

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial tranport engine are presented. The results of the phase 1 study effort cover the following areas: (1) statement of an airline's major objectives for future transport engines, (2) airline's method of evaluating engine proposals, (3) description of an optimum engine for a long range subsonic commercial transport including installation and critical design features, (4) discussion of engine performance problems and experience with performance degradation, (5) trends in engine and pod prices with increasing technology and objectives for the future, (6) discussion of the research objectives for composites, reversers, advanced components, engine control systems, and devices to reduce the impact of engine stall, and (7) discussion of the airline objectives for noise and pollution reduction.

  2. A superconducting large-angle magnetic suspension

    NASA Technical Reports Server (NTRS)

    Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.

    1992-01-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  3. A superconducting large-angle magnetic suspension

    NASA Astrophysics Data System (ADS)

    Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.

    1992-12-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  4. JPL Advanced Thermal Control Technology Roadmap - 2008

    NASA Technical Reports Server (NTRS)

    Birur, Gaj

    2008-01-01

    This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.

  5. Advanced information processing system: Hosting of advanced guidance, navigation and control algorithms on AIPS using ASTER

    NASA Technical Reports Server (NTRS)

    Brenner, Richard; Lala, Jaynarayan H.; Nagle, Gail A.; Schor, Andrei; Turkovich, John

    1994-01-01

    This program demonstrated the integration of a number of technologies that can increase the availability and reliability of launch vehicles while lowering costs. Availability is increased with an advanced guidance algorithm that adapts trajectories in real-time. Reliability is increased with fault-tolerant computers and communication protocols. Costs are reduced by automatically generating code and documentation. This program was realized through the cooperative efforts of academia, industry, and government. The NASA-LaRC coordinated the effort, while Draper performed the integration. Georgia Institute of Technology supplied a weak Hamiltonian finite element method for optimal control problems. Martin Marietta used MATLAB to apply this method to a launch vehicle (FENOC). Draper supplied the fault-tolerant computing and software automation technology. The fault-tolerant technology includes sequential and parallel fault-tolerant processors (FTP & FTPP) and authentication protocols (AP) for communication. Fault-tolerant technology was incrementally incorporated. Development culminated with a heterogeneous network of workstations and fault-tolerant computers using AP. Draper's software automation system, ASTER, was used to specify a static guidance system based on FENOC, navigation, flight control (GN&C), models, and the interface to a user interface for mission control. ASTER generated Ada code for GN&C and C code for models. An algebraic transform engine (ATE) was developed to automatically translate MATLAB scripts into ASTER.

  6. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallbert, Bruce Perry; Thomas, Kenneth David

    2015-10-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  7. Programme and Abstracts. Workshop on Expert Evaluation and Control of Compound Semiconductor Materials and Technologies (1st) Held in Ecole Centrale De Lyon, France on 19 -22 May 1992. (EXAMTEC’ 92)

    DTIC Science & Technology

    1992-05-22

    Evaluation and Control of Compound Semiconductor Materials and Technologies (EXMATEC󈨠) at Ecole Centrale de Lyon (Ecully, France, 19th to 22nd May...semiconductor technologies to manufacture advanced devices with improved reproducibility, better reliability and lower cost. -’Device structures...concepts are required for expert evaluation and control of still developing technologies . In this context, the EXMATEC series will constitute a major

  8. Advanced thermal control technology for commercial applications

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.

    1991-01-01

    A number of the technologies previously developed for the thermal control of spacecraft have found their way into commercial application. Specialized coatings and heat pipes are but two examples. The thermal control of current and future spacecraft is becoming increasingly more demanding, and a variety of new technologies are being developed to meet these needs. Closed two-phase loops are perceived to be the answer to many of the new requirements. All of these technologies are discussed, and their spacecraft and current terrestrial applications are summarized.

  9. CONTROLLING SO2 EMISSIONS: A REVIEW OF TECHNOLOGIES

    EPA Science Inventory

    The report describes flue gas desulfurization (FGD) technologies, assesses their applications, and characterizes their performance. Additionally, it describes some of the advancements that have occurred in FGD technologies. Finally, it presents an analysis of the costs associated...

  10. Process control integration requirements for advanced life support systems applicable to manned space missions

    NASA Technical Reports Server (NTRS)

    Spurlock, Paul; Spurlock, Jack M.; Evanich, Peggy L.

    1991-01-01

    An overview of recent developments in process-control technology which might have applications in future advanced life support systems for long-duration space operations is presented. Consideration is given to design criteria related to control system selection and optimization, and process-control interfacing methodology. Attention is also given to current life support system process control strategies, innovative sensors, instrumentation and control, and innovations in process supervision.

  11. The IXV experience, from the mission conception to the flight results

    NASA Astrophysics Data System (ADS)

    Tumino, G.; Mancuso, S.; Gallego, J.-M.; Dussy, S.; Preaud, J.-P.; Di Vita, G.; Brunner, P.

    2016-07-01

    The atmospheric re-entry domain is a cornerstone of a wide range of space applications, ranging from reusable launcher stages developments, robotic planetary exploration, human space flight, to innovative applications such as reusable research platforms for in orbit validation of multiple space applications technologies. The Intermediate experimental Vehicle (IXV) is an advanced demonstrator which has performed in-flight experimentation of atmospheric re-entry enabling systems and technologies aspects, with significant advancements on Europe's previous flight experiences, consolidating Europe's autonomous position in the strategic field of atmospheric re-entry. The IXV mission objectives were the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled reentry system, integrating critical re-entry technologies at system level. Among such critical technologies of interest, special attention was paid to aerodynamic and aerothermodynamics experimentation, including advanced instrumentation for aerothermodynamics phenomena investigations, thermal protections and hot-structures, guidance, navigation and flight control through combined jets and aerodynamic surfaces (i.e. flaps), in particular focusing on the technologies integration at system level for flight, successfully performed on February 11th, 2015.

  12. Multichip module technology for automotive application

    NASA Astrophysics Data System (ADS)

    Johnson, R. Wayne; Evans, John L.; Bosley, Larry

    1995-01-01

    Advancements in multichip module technology are creating design freedoms previously unavailable to design engineers. These advancements are opening new markets for laminate based multichip module products. In particular, material improvements in laminate printed wiring boards are allowing multichip module technology to meet more stringent environmental conditions. In addition, improvements in encapsulants and adhesives are enhancing the capabilities of multichip module technology to meet harsh environment. Furthermore, improvements in manufacturing techniques are providing the reliability improvements necessary for use in high quality electronic systems. These advances are making multichip module technology viable for high volume, harsh environment applications like under-the-hood automotive electronics. This paper will provide a brief review of multichip module technology, a discussion of specific research activities with Chrysler for use of multichip modules in automotive engine controllers and finally a discussion of prototype multichip modules fabricated and tested.

  13. Advanced Chemical Propulsion for Science Missions

    NASA Technical Reports Server (NTRS)

    Liou, Larry

    2008-01-01

    The advanced chemical propulsion technology area of NASA's In-Space Technology Project is investing in systems and components for increased performance and reduced cost of chemical propulsion technologies applicable to near-term science missions. Presently the primary investment in the advanced chemical propulsion technology area is in the AMBR high temperature storable bipropellant rocket engine. Scheduled to be available for flight development starting in year 2008, AMBR engine shows a 60 kg payload gain in an analysis for the Titan-Enceladus orbiter mission and a 33 percent manufacturing cost reduction over its baseline, state-of-the-art counterpart. Other technologies invested include the reliable lightweight tanks for propellant and the precision propellant management and mixture ratio control. Both technologies show significant mission benefit, can be applied to any liquid propulsion system, and upon completion of the efforts described in this paper, are at least in parts ready for flight infusion. Details of the technologies are discussed.

  14. CTOL Transport Technology, 1978. [conferences

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Technology generated by NASA and specifically associated with advanced conventional takeoff and landing transport aircraft is reported. Topics covered include: aircraft propulsion; structures and materials; and laminar flow control.

  15. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    NASA Technical Reports Server (NTRS)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  16. Introduction to Advanced Engine Control Concepts

    NASA Technical Reports Server (NTRS)

    Sanjay, Garg

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This presentation describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  17. Advancing Technologies for Climate Observation

    NASA Technical Reports Server (NTRS)

    Wu, D.; Esper, J.; Ehsan, N.; Johnson, T.; Mast, W.; Piepmeier, J.; Racette, P.

    2014-01-01

    Climate research needs Accurate global cloud ice measurements Cloud ice properties are fundamental controlling variables of radiative transfer and precipitation Cost-effective, sensitive instruments for diurnal and wide-swath coverage Mature technology for space remote sensing IceCube objectivesDevelop and validate a flight-qualified 883 GHz receiver for future use in ice cloud radiometer missions Raise TRL (57) of 883 GHz receiver technology Reduce instrument cost and risk by developing path to space for COTS sub-mm-wave receiver systems Enable remote sensing of global cloud ice with advanced technologies and techniques

  18. Engine/airframe compatibility studies for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology assessment studies were conducted to provide an updated technology base from which an advanced supersonic cruise aircraft can be produced with a high probability of success. An assessment of the gains available through the application of advanced technologies in aerodynamics, propulsion, acoustics, structures, materials, and active controls is developed. The potential market and range requirements as well as economic factors including payload, speed, airline operating costs, and airline profitability are analyzed. The conceptual design of the baseline aircraft to be used in assessing the technology requirements is described.

  19. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  20. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 3: Navigation, guidance and control panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    User technology requirements are identified in relation to needed technology advancement for future space missions in the areas of navigation, guidance, and control. Emphasis is placed on: reduction of mission support cost by 50% through autonomous operation, a ten-fold increase in mission output through improved pointing and control, and a hundred-fold increase in human productivity in space through large-scale teleoperator applications.

  1. A study of spaceraft technology and design concepts, volume 1

    NASA Technical Reports Server (NTRS)

    Zylius, F. A.

    1985-01-01

    Concepts for advancing the state of the art in the design of unmanned spacecraft, the requirements that gave rise to its configuration, and the programs of technology that are suggested as leading to its eventual development are examined. Particular technology issues discussed include: structures and materials; thermal control; propulsion; electrical power; communications; data management; and guidance, navigation, and control.

  2. Study of the application of advanced technologies to laminar flow control systems for subsonic transports. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.; Bennett, J. A.; Etchberger, F. R.; Ferrill, R. S.; Meade, L. E.

    1976-01-01

    A study was conducted to evaluate the technical and economic feasibility of applying laminar flow control to the wings and empennage of long-range subsonic transport aircraft compatible with initial operation in 1985. For a design mission range of 10,186 km (5500 n mi), advanced technology laminar-flow-control (LFC) and turbulent-flow (TF) aircraft were developed for both 200 and 400-passenger payloads, and compared on the basis of production costs, direct operating costs, and fuel efficiency. Parametric analyses were conducted to establish the optimum geometry for LFC and TF aircraft, advanced LFC system concepts and arrangements were evaluated, and configuration variations maximizing the effectiveness of LFC were developed. For the final LFC aircraft, analyses were conducted to define maintenance costs and procedures, manufacturing costs and procedures, and operational considerations peculiar to LFC aircraft. Compared to the corresponding advanced technology TF transports, the 200- and 400-passenger LFC aircraft realized reductions in fuel consumption up to 28.2%, reductions in direct operating costs up to 8.4%, and improvements in fuel efficiency, in ssm/lb of fuel, up to 39.4%. Compared to current commercial transports at the design range, the LFC study aircraft demonstrate improvements in fuel efficiency up to 131%. Research and technology requirements requisite to the development of LFC transport aircraft were identified.

  3. Modular Rocket Engine Control Software (MRECS)

    NASA Technical Reports Server (NTRS)

    Tarrant, Charlie; Crook, Jerry

    1997-01-01

    The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for a generic, advanced engine control system that will result in lower software maintenance (operations) costs. It effectively accommodates software requirements changes that occur due to hardware. technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives and benefits of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishment are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software, architecture, reuse software, and reduced software reverification time related to software changes. Currently, the program is focused on supporting MSFC in accomplishing a Space Shuttle Main Engine (SSME) hot-fire test at Stennis Space Center and the Low Cost Boost Technology (LCBT) Program.

  4. REVIEW: Restoring standing capabilities with feedback control of functional neuromuscular stimulation following spinal cord injury

    PubMed Central

    Nataraj, Raviraj; Audu, Musa L.; Triolo, Ronald J.

    2017-01-01

    This paper reviews the field of feedback control for neuroprosthesis systems that restore advanced standing function to individuals with spinal cord injury. Investigations into closed-loop control of standing by functional neuromuscular stimulation (FNS) have spanned three decades. The ultimate goal for FNS standing control systems is to facilitate hands free standing and enabling the user to perform manual functions at self-selected leaning positions. However, most clinical systems for home usage currently only provide basic upright standing using preprogrammed stimulation patterns. To date, online modulation of stimulation to produce advanced standing functions such as balance against postural disturbances or the ability to assume leaning postures have been limited to simulation and laboratory investigations. While great technological advances have been made in biomechanical sensing and interfaces for neuromuscular stimulation, further progress is still required for finer motor control by FNS. Another major challenge is the development of sophisticated control schemes that produce the necessary postural adjustments, adapt against accelerating muscle fatigue, and consider volitional actions of the intact upper-body of the user. Model-based development for novel control schemes are proven and sensible approaches to prototype and test the basic operating efficacy of potentially complex and multi-faceted control systems. The major considerations for further innovation of such systems are summarized in this paper prior to describing the evolution of closed-loop FNS control of standing from previous works. Finally, necessary emerging technologies to for implementing FNS feedback control systems for standing are identified. These technological advancements include novel electrodes that more completely and selectively activate paralyzed musculature and implantable sensors and stimulation modules for flexible neuroprosthesis system deployment. PMID:28215399

  5. Restoring standing capabilities with feedback control of functional neuromuscular stimulation following spinal cord injury.

    PubMed

    Nataraj, Raviraj; Audu, Musa L; Triolo, Ronald J

    2017-04-01

    This paper reviews the field of feedback control for neuroprosthesis systems that restore advanced standing function to individuals with spinal cord injury. Investigations into closed-loop control of standing by functional neuromuscular stimulation (FNS) have spanned three decades. The ultimate goal for FNS standing control systems is to facilitate hands free standing and enabling the user to perform manual functions at self-selected leaning positions. However, most clinical systems for home usage currently only provide basic upright standing using preprogrammed stimulation patterns. To date, online modulation of stimulation to produce advanced standing functions such as balance against postural disturbances or the ability to assume leaning postures have been limited to simulation and laboratory investigations. While great technological advances have been made in biomechanical sensing and interfaces for neuromuscular stimulation, further progress is still required for finer motor control by FNS. Another major challenge is the development of sophisticated control schemes that produce the necessary postural adjustments, adapt against accelerating muscle fatigue, and consider volitional actions of the intact upper-body of the user. Model-based development for novel control schemes are proven and sensible approaches to prototype and test the basic operating efficacy of potentially complex and multi-faceted control systems. The major considerations for further innovation of such systems are summarized in this paper prior to describing the evolution of closed-loop FNS control of standing from previous works. Finally, necessary emerging technologies to for implementing FNS feedback control systems for standing are identified. These technological advancements include novel electrodes that more completely and selectively activate paralyzed musculature and implantable sensors and stimulation modules for flexible neuroprosthesis system deployment. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Military and Government Applications of Human-Machine Communication by Voice

    NASA Astrophysics Data System (ADS)

    Weinstein, Clifford J.

    1995-10-01

    This paper describes a range of opportunities for military and government applications of human-machine communication by voice, based on visits and contacts with numerous user organizations in the United States. The applications include some that appear to be feasible by careful integration of current state-of-the-art technology and others that will require a varying mix of advances in speech technology and in integration of the technology into applications environments. Applications that are described include (1) speech recognition and synthesis for mobile command and control; (2) speech processing for a portable multifunction soldier's computer; (3) speech- and language-based technology for naval combat team tactical training; (4) speech technology for command and control on a carrier flight deck; (5) control of auxiliary systems, and alert and warning generation, in fighter aircraft and helicopters; and (6) voice check-in, report entry, and communication for law enforcement agents or special forces. A phased approach for transfer of the technology into applications is advocated, where integration of applications systems is pursued in parallel with advanced research to meet future needs.

  7. Advanced life support study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Summary reports on each of the eight tasks undertaken by this contract are given. Discussed here is an evaluation of a Closed Ecological Life Support System (CELSS), including modeling and analysis of Physical/Chemical Closed Loop Life Support (P/C CLLS); the Environmental Control and Life Support Systems (ECLSS) evolution - Intermodule Ventilation study; advanced technologies interface requirements relative to ECLSS; an ECLSS resupply analysis; the ECLSS module addition relocation systems engineering analysis; an ECLSS cost/benefit analysis to identify rack-level interface requirements of the alternate technologies evaluated in the ventilation study, with a comparison of these with the rack level interface requirements for the baseline technologies; advanced instrumentation - technology database enhancement; and a clean room survey and assessment of various ECLSS evaluation options for different growth scenarios.

  8. The NASA-Lewis/ERDA Solar Heating and Cooling Technology Program

    NASA Technical Reports Server (NTRS)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    The NASA Lewis Research Center plans to carry out a major role in the ERDA Solar Heating and Cooling Program. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is to move progressively through component, subsystem, and then system technology advancement phases in parallel with continuing manufacturing cost assessment studies. This approach will be accomplished principally by contract with industry to develop advanced components and subsystems. This advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  9. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Public design report (preliminary and final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This Public Design Report presents the design criteria of a DOE Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of NO{sub x} emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 (500 MW) near Rome, Georgia. The technologies being demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NO{sub x} burner. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NO{submore » x} burners, advanced overfire systems, and digital control system.« less

  10. Functional safety for the Advanced Technology Solar Telescope

    NASA Astrophysics Data System (ADS)

    Bulau, Scott; Williams, Timothy R.

    2012-09-01

    Since inception, the Advanced Technology Solar Telescope (ATST) has planned to implement a facility-wide functional safety system to protect personnel from harm and prevent damage to the facility or environment. The ATST will deploy an integrated safety-related control system (SRCS) to achieve functional safety throughout the facility rather than relying on individual facility subsystems to provide safety functions on an ad hoc basis. The Global Interlock System (GIS) is an independent, distributed, facility-wide, safety-related control system, comprised of commercial off-the-shelf (COTS) programmable controllers that monitor, evaluate, and control hazardous energy and conditions throughout the facility that arise during operation and maintenance. The GIS has been designed to utilize recent advances in technology for functional safety plus revised national and international standards that allow for a distributed architecture using programmable controllers over a local area network instead of traditional hard-wired safety functions, while providing an equivalent or even greater level of safety. Programmable controllers provide an ideal platform for controlling the often complex interrelationships between subsystems in a modern astronomical facility, such as the ATST. A large, complex hard-wired relay control system is no longer needed. This type of system also offers greater flexibility during development and integration in addition to providing for expanded capability into the future. The GIS features fault detection, self-diagnostics, and redundant communications that will lead to decreased maintenance time and increased availability of the facility.

  11. High Penetration Photovoltaic Power Electronics and Energy Management Technology Research, Development and Demonstration: Cooperative Research and Development Final Report, CRADA Number CRD-13-517

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudgins, Andrew P.

    Advanced Energy Industries, Inc., will partner with DOE's National Renewable Energy Laboratory (NREL) to conduct research and development to demonstrate technologies that will increase the penetration of photovoltaic (PV) technologies for commercial and utility applications. Standard PV power control systems use simple control techniques that only provide real power to the grid. A focus of this partnership is to demonstrate how state of the art control and power electronic technologies can be combined to create a utility interactive control platform.

  12. Air Pollutant Emissions Projections for the Cement and Steel Industry in China and the Impact of Emissions Control Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasanbeigi, Ali; Khanna, Nina; Price, Lynn

    China’s cement and steel industry accounts for approximately half of the world’s total cement and steel production. These two industries are two of the most energy-intensive and highest carbon dioxide (CO 2)-emitting industries and two of the key industrial contributors to air pollution in China. For example, the cement industry is the largest source of particulate matter (PM) emissions in China, accounting for 40 percent of its industrial PM emissions and 27 percent of its total national PM emissions. The Chinese steel industry contributed to approximately 20 percent of sulfur dioxide (SO 2) emissions and 27 percent of PM emissionsmore » for all key manufacturing industries in China in 2013. In this study, we analyzed and projected the total PM and SO2 emissions from the Chinese cement and steel industry from 2010–2050 under three different scenarios: a Base Case scenario, an Advanced scenario, and an Advanced EOP (end-of-pipe) scenario. We used bottom-up emissions control technologies data and assumptions to project the emissions. In addition, we conducted an economic analysis to estimate the cost for PM emissions reductions in the Chinese cement industry using EOP control technologies, energy efficiency measures, and product change measures. The results of the emissions projection showed that there is not a substantial difference in PM emissions between the Base Case and Advanced scenarios, for both the cement and steel industries. This is mainly because PM emissions in the cement industry caused mainly by production process and not the fuel use. Since our forecast for the cement production in the Base Case and Advanced scenarios are not too different from each other, this results in only a slight difference in PM emissions forecast for these two scenarios. Also, we assumed a similar share and penetration rate of control technologies from 2010 up to 2050 for these two scenarios for the cement and steel industry. However, the Advanced EOP scenario showed significantly lower PM emissions for the cement industry, reaching to 1.7 million tons of PM in 2050, which is less than half of that in the other two scenarios. The Advanced EOP scenario also has the lowest SO2 emissions for the cement industry in China, reaching to 212,000 tons of SO2 in 2050, which is equal to 40 percent of the SO2 emissions in the Advanced scenario and 30 percent of the emissions in the Base Case scenario. The SO2 emission is mainly caused by fuel (coal) burning in cement kiln or steel processes. For the steel industry, the SO2 emissions of the Advanced EOP scenario are significantly lower than the other scenarios, with emissions declining to 323,000 tons in 2050, which is equal to 21 percent and 17 percent of the emissions of Advanced and Base Case scenarios in 2050, respectively. Results of the economic analysis show that for the Chinese cement industry, end-of-pipe PM control technologies have the lowest abatement cost per ton of PM reduced, followed by product change measures and energy efficiency measures, respectively. In summary, in order to meet Chinese national and regional air quality standards, best practice end-of-pipe emissions control technologies must be installed in both cement and steel industry and it must be supplemented by implementation of energy efficiency technologies and reduction of cement and steel production through structural change in industry.« less

  13. The Advanced Technology Large Aperture Space Telescope (ATLAST): Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Giavalisco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Phillip; hide

    2011-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers and the resulting performance requirements for ATLAST (8 to 16 milliarcsecond angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to current generation observatory-class space missions. Keywords: Advanced Technology Large-Aperture Space Telescope (ATLAST); ultraviolet/optical space telescopes; astrophysics; astrobiology; technology development.

  14. Flow Control Research at NASA Langley in Support of High-Lift Augmentation

    NASA Technical Reports Server (NTRS)

    Sellers, William L., III; Jones, Gregory S.; Moore, Mark D.

    2002-01-01

    The paper describes the efforts at NASA Langley to apply active and passive flow control techniques for improved high-lift systems, and advanced vehicle concepts utilizing powered high-lift techniques. The development of simplified high-lift systems utilizing active flow control is shown to provide significant weight and drag reduction benefits based on system studies. Active flow control that focuses on separation, and the development of advanced circulation control wings (CCW) utilizing unsteady excitation techniques will be discussed. The advanced CCW airfoils can provide multifunctional controls throughout the flight envelope. Computational and experimental data are shown to illustrate the benefits and issues with implementation of the technology.

  15. Adapting Wireless Technology to Lighting Control and Environmental Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana Teasdale; Francis Rubinstein; David S. Watson

    Although advanced lighting control systems offer significant energy savings, the high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor,more » and current transducer were all integrated with SmartMesh{trademark} wireless mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output, in addition to 0-24 Volt and 0-10 Volt inputs. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multisensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including open and closed-loop daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 20% lower than a comparable wired system for a typical 16,000 square-foot office building, with a payback period of less than 3 years. At 30% market penetration saturation, a cumulative 695 Billion kWh of energy could be saved through 2025, a cost savings of $52 Billion.« less

  16. The aircraft energy efficiency active controls technology program

    NASA Technical Reports Server (NTRS)

    Hood, R. V., Jr.

    1977-01-01

    Broad outlines of the NASA Aircraft Energy Efficiency Program for expediting the application of active controls technology to civil transport aircraft are presented. Advances in propulsion and airframe technology to cut down on fuel consumption and fuel costs, a program for an energy-efficient transport, and integrated analysis and design technology in aerodynamics, structures, and active controls are envisaged. Fault-tolerant computer systems and fault-tolerant flight control system architectures are under study. Contracts with leading manufacturers for research and development work on wing-tip extensions and winglets for the B-747, a wing load alleviation system, elastic mode suppression, maneuver-load control, and gust alleviation are mentioned.

  17. Integrated technology wing design study

    NASA Technical Reports Server (NTRS)

    Hays, A. P.; Beck, W. E.; Morita, W. H.; Penrose, B. J.; Skarshaug, R. E.; Wainfan, B. S.

    1984-01-01

    The technology development costs and associated benefits in applying advanced technology associated with the design of a new wing for a new or derivative trijet with a capacity for 350 passengers and maximum range of 8519 km, entering service in 1990 were studied. The areas of technology are: (1) airfoil technology; (2) planform parameters; (3) high lift; (4) pitch active control system; (5) all electric systems; (6) E to 3rd power propulsion; (7) airframe/propulsion integration; (8) graphite/epoxy composites; (9) advanced aluminum alloys; (10) titanium alloys; and (11) silicon carbide/aluminum composites. These technologies were applied to the reference aircraft configuration. Payoffs were determined for block fuel reductions and net value of technology. These technologies are ranked for the ratio of net value of technology (NVT) to technology development costs.

  18. A feasibility study for advanced technology integration for general aviation

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.; Matsuyama, G. T.; Hawley, K. E.; Meredith, P. T.

    1980-01-01

    An investigation was conducted to identify candidate technologies and specific developments which offer greatest promise for improving safety, fuel efficiency, performance, and utility of general aviation airplanes. Interviews were conducted with general aviation airframe and systems manufacturers and NASA research centers. The following technologies were evaluated for use in airplane design tradeoff studies conducted during the study: avionics, aerodynamics, configurations, structures, flight controls, and propulsion. Based on industry interviews and design tradeoff studies, several recommendations were made for further high payoff research. The most attractive technologies for use by the general aviation industry appear to be advanced engines, composite materials, natural laminar flow airfoils, and advanced integrated avionics systems. The integration of these technologies in airplane design can yield significant increases in speeds, ranges, and payloads over present aircraft with 40 percent to 50 percent reductions in fuel used.

  19. Enhanced technologies for unattended ground sensor systems

    NASA Astrophysics Data System (ADS)

    Hartup, David C.

    2010-04-01

    Progress in several technical areas is being leveraged to advantage in Unattended Ground Sensor (UGS) systems. This paper discusses advanced technologies that are appropriate for use in UGS systems. While some technologies provide evolutionary improvements, other technologies result in revolutionary performance advancements for UGS systems. Some specific technologies discussed include wireless cameras and viewers, commercial PDA-based system programmers and monitors, new materials and techniques for packaging improvements, low power cueing sensor radios, advanced long-haul terrestrial and SATCOM radios, and networked communications. Other technologies covered include advanced target detection algorithms, high pixel count cameras for license plate and facial recognition, small cameras that provide large stand-off distances, video transmissions of target activity instead of still images, sensor fusion algorithms, and control center hardware. The impact of each technology on the overall UGS system architecture is discussed, along with the advantages provided to UGS system users. Areas of analysis include required camera parameters as a function of stand-off distance for license plate and facial recognition applications, power consumption for wireless cameras and viewers, sensor fusion communication requirements, and requirements to practically implement video transmission through UGS systems. Examples of devices that have already been fielded using technology from several of these areas are given.

  20. Impacts of an advanced public transportation system : demonstration project

    DOT National Transportation Integrated Search

    1999-10-01

    In 1997, the Ann Arbor (Michigan) Transportation Authority began deploying a set of integrated : advanced public transportation system technologies in its vehicles, stations and control center. This paper summarizes selected findings of a multidimens...

  1. Woodworking Technology.

    ERIC Educational Resources Information Center

    Kirk, Albert S.; And Others

    1991-01-01

    Three articles discuss the importance of wood processing to manufacturing and construction industries and the need for progressive change in the curriculum; the evolution of wood-based synthetic panel materials; and the technological advances in the computer control of machine tools and their incorporation into wood technology curricula. (JOW)

  2. 2005 NASA Seal/Secondary Air System Workshop, Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)

    2006-01-01

    The 2005 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (ii) Overview of the NASA-sponsored Propulsion 21 Project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Several organizations presented development efforts aimed at developing faster clearance control systems and associated technology to meet future engine needs. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle. Seal technical challenges (including space environments, temperature variation, and seal-on-seal operation) as well as plans to develop the necessary "androgynous" seal technologies were reviewed. Researchers also reviewed tests completed for the shuttle main landing gear door seals.

  3. Stellar Interferometer Technology Experiment (SITE)

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Miller, David; Laskin, Robert; Shao, Michael

    1995-01-01

    The MIT Space Engineering Research Center and the Jet Propulsion Laboratory stand ready to advance science sensor technology for discrete-aperture astronomical instruments such as space-based optical interferometers. The objective of the Stellar Interferometer Technology Experiment (SITE) is to demonstrate system-level functionality of a space-based stellar interferometer through the use of enabling and enhancing Controlled-Structures Technologies (CST). SITE mounts to the Mission Peculiar Experiment Support System inside the Shuttle payload bay. Starlight, entering through two apertures, is steered to a combining plate where it is interferred. Interference requires 27 nanometer pathlength (phasing) and 0.29 archsecond wavefront-tilt (pointing) control. The resulting 15 milli-archsecond angular resolution exceeds that of current earth-orbiting telescopes while maintaining low cost by exploiting active optics and structural control technologies. With these technologies, unforeseen and time-varying disturbances can be rejected while relaxing reliance on ground alignment and calibration. SITE will reduce the risk and cost of advanced optical space systems by validating critical technologies in their operational environment. Moreover, these technologies are directly applicable to commercially driven applications such as precision matching, optical scanning, and vibration and noise control systems for the aerospace, medical, and automotive sectors. The SITE team consists of experienced university, government, and industry researchers, scientists, and engineers with extensive expertise in optical interferometry, nano-precision opto-mechanical control and spaceflight experimentation. The experience exists and the technology is mature. SITE will validate these technologies on a functioning interferometer science sensor in order to confirm definitely their readiness to be baselined for future science missions.

  4. Advanced fighter technology integration (AFTI)/F-16 Automated Maneuvering Attack System final flight test results

    NASA Technical Reports Server (NTRS)

    Dowden, Donald J.; Bessette, Denis E.

    1987-01-01

    The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.

  5. Advanced automation in space shuttle mission control

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.

    1991-01-01

    The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.

  6. Self-controlled technologies to support skill attainment in persons with an autism spectrum disorder and/or an intellectual disability: a systematic literature review.

    PubMed

    den Brok, W L J E; Sterkenburg, P S

    2015-01-01

    Persons with an autism spectrum disorder and/or intellectual disability have difficulties in processing information, which impedes the learning of daily living skills and cognitive concepts. Technological aids support learning, and if used temporarily and in a self-controlled manner, they may contribute to independent societal participation. This systematic review examines the studies that applied self-controlled technologies. The 28 relevant studies showed that skills and concepts are learned through prompting, interaction with devices, and practicing in (realistic) virtual environments. For attaining cognitive concepts, advanced technologies such as virtual reality are effective. Five studies focussed on cognitive concepts and two on emotion concepts. More research is necessary to examine the generalization of results and effect of using technology for learning cognitive and emotional concepts. Implications for Rehabilitation Persons with a moderate to mild intellectual disability and/or with autism can use self-controlled technology to learn new activities of daily living and cognitive concepts (e.g. time perception and imagination). Specific kinds of technologies can be used to learn specific kinds of skills (e.g. videos on computers or handheld devices for daily living skills; Virtual Reality for time perception and emotions of others). For learning new cognitive concepts it is advisable to use more advanced technologies as they have the potential to offer more features to support learning.

  7. Use, perceptions, and benefits of automotive technologies among aging drivers.

    PubMed

    Eby, David W; Molnar, Lisa J; Zhang, Liang; St Louis, Renée M; Zanier, Nicole; Kostyniuk, Lidia P; Stanciu, Sergiu

    2016-12-01

    Advanced in-vehicle technologies have been proposed as a potential way to keep older adults driving for as long as they can safely do so, by taking into account the common declines in functional abilities experienced by older adults. The purpose of this report was to synthesize the knowledge about older drivers and advanced in-vehicle technologies, focusing on three areas: use (how older drivers use these technologies), perception (what they think about the technologies), and outcomes (the safety and/or comfort benefits of the technologies). Twelve technologies were selected for review and grouped into three categories: crash avoidance systems (lane departure warning, curve speed warning, forward collision warning, blind spot warning, parking assistance); in-vehicle information systems (navigation assistance, intelligent speed adaptation); and other systems (adaptive cruise control, automatic crash notification, night vision enhancement, adaptive headlight, voice activated control). A comprehensive and systematic search was conducted for each technology to collect related publications. 271 articles were included into the final review. Research findings for each of the 12 technologies are synthesized in relation to how older adults use and think about the technologies as well as potential benefits. These results are presented separately for each technology. Can advanced in-vehicle technologies help extend the period over which an older adult can drive safely? This report answers this question with an optimistic "yes." Some of the technologies reviewed in this report have been shown to help older drivers avoid crashes, improve the ease and comfort of driving, and travel to places and at times that they might normally avoid.

  8. Advanced Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Alexander, Leslie, Jr.

    2006-01-01

    Advanced Chemical Propulsion (ACP) provides near-term incremental improvements in propulsion system performance and/or cost. It is an evolutionary approach to technology development that produces useful products along the way to meet increasingly more demanding mission requirements while focusing on improving payload mass fraction to yield greater science capability. Current activities are focused on two areas: chemical propulsion component, subsystem, and manufacturing technologies that offer measurable system level benefits; and the evaluation of high-energy storable propellants with enhanced performance for in-space application. To prioritize candidate propulsion technology alternatives, a variety of propulsion/mission analyses and trades have been conducted for SMD missions to yield sufficient data for investment planning. They include: the Advanced Chemical Propulsion Assessment; an Advanced Chemical Propulsion System Model; a LOx-LH2 small pumps conceptual design; a space storables propellant study; a spacecraft cryogenic propulsion study; an advanced pressurization and mixture ratio control study; and a pump-fed vs. pressure-fed study.

  9. Adapting Wireless Technology to Lighting Control and Environmental Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dana Teasdale; Francis Rubinstein; Dave Watson

    The high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor, and current transducer were all integrated with SmartMesh{trademark} wirelessmore » mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multi-sensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 30% lower than a comparable wired system for a typical 16,000 square-foot office building, with a payback period of less than 3 years.« less

  10. Brain-computer interfaces in neurological rehabilitation.

    PubMed

    Daly, Janis J; Wolpaw, Jonathan R

    2008-11-01

    Recent advances in analysis of brain signals, training patients to control these signals, and improved computing capabilities have enabled people with severe motor disabilities to use their brain signals for communication and control of objects in their environment, thereby bypassing their impaired neuromuscular system. Non-invasive, electroencephalogram (EEG)-based brain-computer interface (BCI) technologies can be used to control a computer cursor or a limb orthosis, for word processing and accessing the internet, and for other functions such as environmental control or entertainment. By re-establishing some independence, BCI technologies can substantially improve the lives of people with devastating neurological disorders such as advanced amyotrophic lateral sclerosis. BCI technology might also restore more effective motor control to people after stroke or other traumatic brain disorders by helping to guide activity-dependent brain plasticity by use of EEG brain signals to indicate to the patient the current state of brain activity and to enable the user to subsequently lower abnormal activity. Alternatively, by use of brain signals to supplement impaired muscle control, BCIs might increase the efficacy of a rehabilitation protocol and thus improve muscle control for the patient.

  11. Using OPC technology to support the study of advanced process control.

    PubMed

    Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa

    2015-03-01

    OPC, originally the Object Linking and Embedding (OLE) for Process Control, brings a broad communication opportunity between different kinds of control systems. This paper investigates the use of OPC technology for the study of distributed control systems (DCS) as a cost effective and flexible research tool for the development and testing of advanced process control (APC) techniques in university research centers. Co-Simulation environment based on Matlab, LabVIEW and TCP/IP network is presented here. Several implementation issues and OPC based client/server control application have been addressed for TCP/IP network. A nonlinear boiler model is simulated as OPC server and OPC client is used for closed loop model identification, and to design a Model Predictive Controller. The MPC is able to control the NOx emissions in addition to drum water level and steam pressure. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Industrial Inspection with Open Eyes: Advance with Machine Vision Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zheng; Ukida, H.; Niel, Kurt

    Machine vision systems have evolved significantly with the technology advances to tackle the challenges from modern manufacturing industry. A wide range of industrial inspection applications for quality control are benefiting from visual information captured by different types of cameras variously configured in a machine vision system. This chapter screens the state of the art in machine vision technologies in the light of hardware, software tools, and major algorithm advances for industrial inspection. The inspection beyond visual spectrum offers a significant complementary to the visual inspection. The combination with multiple technologies makes it possible for the inspection to achieve a bettermore » performance and efficiency in varied applications. The diversity of the applications demonstrates the great potential of machine vision systems for industry.« less

  13. Instrumentation and Control for Fossil-Energy Processes

    NASA Technical Reports Server (NTRS)

    Mark, A., Jr.

    1984-01-01

    Instrumentation and control requirements for fossil-energy processes discussed in working document. Published to foster advancement of instrumentation and control technology by making equipment suppliers and others aware of specifications, needs, and potential markets.

  14. Role of RIS/APC for manufacturing RFG/LSD. [Refinery Information Systems/Advanced Process Control, ReFormulated Gasoline/Low Sulfur Diesels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latour, P.R.

    Revolutionary changes in quality specifications (number, complexity, uncertainty, economic sensitivity) for reformulated gasolines (RFG) and low-sulfur diesels (LSD) are being addressed by powerful, new, computer-integrated manufacturing technology for Refinery Information Systems and Advanced Process Control (RIS/APC). This paper shows how the five active RIS/APC functions: performance measurement, optimization, scheduling, control and integration are used to manufacture new, clean fuels competitively. With current industry spending for this field averaging 2 to 3 cents/bbl crude, many refineries can capture 50 to 100 cents/bbl if the technology is properly employed and sustained throughout refining operations, organizations, and businesses.

  15. Mickey Leland Energy Fellowship Report: Development of Advanced Window Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolton, Ladena A.; Alvine, Kyle J.; Schemer-Kohrn, Alan L.

    2014-08-05

    Advanced fenestration technologies for light and thermal management in building applications are of great recent research interest for improvements in energy efficiency. Of these technologies, there is specific interest in advanced window coating technologies that have tailored control over the visible and infrared (IR) scattering into a room for both static and dynamic applications. Recently, PNNL has investigated novel subwavelength nanostructured coatings for both daylighting, and IR thermal management applications. Such coatings rese still in the early stages and additional research is needed in terms of scalable manufacturing. This project investigates aspects of a potential new methodology for low-cost scalablemore » manufacture of said subwavelength coatings.« less

  16. Contribution of concentrator photovoltaic installations to grid stability and power quality

    NASA Astrophysics Data System (ADS)

    del Toro García, Xavier; Roncero-Sánchez, Pedro; Torres, Alfonso Parreño; Vázquez, Javier

    2012-10-01

    Large-scale integration of Photovoltaic (PV) generation systems, including Concentrator Photovoltaic (CPV) technologies, will require the contribution and support of these technologies to the management and stability of the grid. New regulations and grid codes for PV installations in countries such as Spain have recently included dynamic voltage control support during faults. The PV installation must stay connected to the grid during voltage dips and inject reactive power in order to enhance the stability of the system. The existing PV inverter technologies based on the Voltage-Source Converter (VSC) are in general well suited to provide advanced grid-support characteristics. Nevertheless, new advanced control schemes and monitoring techniques will be necessary to meet the most demanding requirements.

  17. Management accounting for advanced technological environments.

    PubMed

    Kaplan, R S

    1989-08-25

    Management accounting systems designed decades ago no longer provide timely, relevant information for companies in today's highly competitive environment. New operational control and performance measurement systems are recognizing the importance of direct measurement of quality, manufacturing lead times, flexibility, and customer responsiveness, as well as more accurate measures of the actual costs of consumed resources. Activity-based cost systems can assign the costs of indirect and support resources to the specific products and activities that benefit from these resources. Both operational control and activity-based systems represent new opportunities for improved managerial information in complex, technologically advanced environments.

  18. Proceedings of the American Power Conference. Volume 60-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, A.E.

    1998-12-01

    The American Power Conference, 60th annual meeting, 1998, addressed reliability and economy as related to technology for competition and globalization. The topics of the papers included needs and advances in power engineering education, global climate change, distributed generation, the critical role of the nations largest coal, nuclear and hydropower stations, advances in generation technology, financing electric power projects, successful deregulation, year 2000 outlook for equipment conflict with information and control, system planning, asset management, relay and communication, particulate and SO{sub x} control, environmental protection compliance strategies, fuel cells, gas turbines, renewable energy, steam turbines, and cost reduction strategies.

  19. Proceedings of the American Power Conference. Volume 60-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, A.E.

    1998-12-01

    The American Power Conference, 60th annual meeting, 1998, addressed reliability and economy as related to technology for competition and globalization. The topics of the papers included needs and advances in power engineering education, global climate change, distributed generation, the critical role of the nations largest coal, nuclear and hydropower stations, advances in generation technology, financing electric power projects, successful deregulation, year 2000 outlook for equipment conflict with information and control, system planning, asset management, relay and communication, particulate and SO{sub x} control, environmental protection compliance strategies, fuel cells, gas turbines, renewable energy, steam turbines, and cost reduction strategies.

  20. ECLSS evolution: Advanced instrumentation interface requirements. Volume 3: Appendix C

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An Advanced ECLSS (Environmental Control and Life Support System) Technology Interfaces Database was developed primarily to provide ECLSS analysts with a centralized and portable source of ECLSS technologies interface requirements data. The database contains 20 technologies which were previously identified in the MDSSC ECLSS Technologies database. The primary interfaces of interest in this database are fluid, electrical, data/control interfaces, and resupply requirements. Each record contains fields describing the function and operation of the technology. Fields include: an interface diagram, description applicable design points and operating ranges, and an explaination of data, as required. A complete set of data was entered for six of the twenty components including Solid Amine Water Desorbed (SAWD), Thermoelectric Integrated Membrane Evaporation System (TIMES), Electrochemical Carbon Dioxide Concentrator (EDC), Solid Polymer Electrolysis (SPE), Static Feed Electrolysis (SFE), and BOSCH. Additional data was collected for Reverse Osmosis Water Reclaimation-Potable (ROWRP), Reverse Osmosis Water Reclaimation-Hygiene (ROWRH), Static Feed Solid Polymer Electrolyte (SFSPE), Trace Contaminant Control System (TCCS), and Multifiltration Water Reclamation - Hygiene (MFWRH). A summary of the database contents is presented in this report.

  1. Advanced supersonic propulsion study, phase 3

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.; Johnson, J.; Sabatella, J.; Sewall, T.

    1976-01-01

    The variable stream control engine is determined to be the most promising propulsion system concept for advanced supersonic cruise aircraft. This concept uses variable geometry components and a unique throttle schedule for independent control of two flow streams to provide low jet noise at takeoff and high performance at both subsonic and supersonic cruise. The advanced technology offers a 25% improvement in airplane range and an 8 decibel reduction in takeoff noise, relative to first generation supersonic turbojet engines.

  2. Impact of new technologies on diabetes care.

    PubMed

    Giani, Elisa; Scaramuzza, Andrea Enzo; Zuccotti, Gian Vincenzo

    2015-07-25

    Technologies for diabetes management, such as continuous subcutaneous insulin infusion (CSII) and continuous glucose monitoring (CGM) systems, have improved remarkably over the last decades. These developments are impacting the capacity to achieve recommended hemoglobin A1c levels and assisting in preventing the development and progression of micro- and macro vascular complications. While improvements in metabolic control and decreases in risk of severe and moderate hypoglycemia have been described with use of these technologies, large epidemiological international studies show that many patients are still unable to meet their glycemic goals, even when these technologies are used. This editorial will review the impact of technology on glycemic control, hypoglycemia and quality of life in children and youth with type 1 diabetes. Technologies reviewed include CSII, CGM systems and sensor-augmented insulin pumps. In addition, the usefulness of advanced functions such as bolus profiles, bolus calculators and threshold-suspend features will be also discussed. Moreover, the current editorial will explore the challenges of using these technologies. Indeed, despite the evidence currently available of the potential benefits of using advanced technologies in diabetes management, many patients still report barriers to using them. Finally this article will highlight the importance of future studies tailored toward overcome these barriers to optimizing glycemic control and avoiding severe hypoglycemia.

  3. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2015-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Advanced Air Vehicles Program (AAVP), Airspace Operations and Safety Program (AOSP) and Transformative Aeronautics Concepts Program (TAC). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  4. Contributions of CCLM to advances in quality control.

    PubMed

    Kazmierczak, Steven C

    2013-01-01

    Abstract The discipline of laboratory medicine is relatively young when considered in the context of the history of medicine itself. The history of quality control, within the context of laboratory medicine, also enjoys a relatively brief, but rich history. Laboratory quality control continues to evolve along with advances in automation, measurement techniques and information technology. Clinical Chemistry and Laboratory Medicine (CCLM) has played a key role in helping disseminate information about the proper use and utility of quality control. Publication of important advances in quality control techniques and dissemination of guidelines concerned with laboratory quality control has undoubtedly helped readers of this journal keep up to date on the most recent developments in this field.

  5. Modular Rocket Engine Control Software (MRECS)

    NASA Technical Reports Server (NTRS)

    Tarrant, C.; Crook, J.

    1998-01-01

    The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for advanced engine control systems that will result in lower software maintenance (operations) costs. It effectively accommodates software requirement changes that occur due to hardware technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives, benefits, and status of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishments are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software architecture, reuse software, and reduced software reverification time related to software changes. MRECS was recently modified to support a Space Shuttle Main Engine (SSME) hot-fire test. Cold Flow and Flight Readiness Testing were completed before the test was cancelled. Currently, the program is focused on supporting NASA MSFC in accomplishing development testing of the Fastrac Engine, part of NASA's Low Cost Technologies (LCT) Program. MRECS will be used for all engine development testing.

  6. Spinoff 2011

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Topics include: Bioreactors Drive Advances in Tissue Engineering; Tooling Techniques Enhance Medical Imaging; Ventilator Technologies Sustain Critically Injured Patients; Protein Innovations Advance Drug Treatments, Skin Care; Mass Analyzers Facilitate Research on Addiction; Frameworks Coordinate Scientific Data Management; Cameras Improve Navigation for Pilots, Drivers; Integrated Design Tools Reduce Risk, Cost; Advisory Systems Save Time, Fuel for Airlines; Modeling Programs Increase Aircraft Design Safety; Fly-by-Wire Systems Enable Safer, More Efficient Flight; Modified Fittings Enhance Industrial Safety; Simulation Tools Model Icing for Aircraft Design; Information Systems Coordinate Emergency Management; Imaging Systems Provide Maps for U.S. Soldiers; High-Pressure Systems Suppress Fires in Seconds; Alloy-Enhanced Fans Maintain Fresh Air in Tunnels; Control Algorithms Charge Batteries Faster; Software Programs Derive Measurements from Photographs; Retrofits Convert Gas Vehicles into Hybrids; NASA Missions Inspire Online Video Games; Monitors Track Vital Signs for Fitness and Safety; Thermal Components Boost Performance of HVAC Systems; World Wind Tools Reveal Environmental Change; Analyzers Measure Greenhouse Gasses, Airborne Pollutants; Remediation Technologies Eliminate Contaminants; Receivers Gather Data for Climate, Weather Prediction; Coating Processes Boost Performance of Solar Cells; Analyzers Provide Water Security in Space and on Earth; Catalyst Substrates Remove Contaminants, Produce Fuel; Rocket Engine Innovations Advance Clean Energy; Technologies Render Views of Earth for Virtual Navigation; Content Platforms Meet Data Storage, Retrieval Needs; Tools Ensure Reliability of Critical Software; Electronic Handbooks Simplify Process Management; Software Innovations Speed Scientific Computing; Controller Chips Preserve Microprocessor Function; Nanotube Production Devices Expand Research Capabilities; Custom Machines Advance Composite Manufacturing; Polyimide Foams Offer Superior Insulation; Beam Steering Devices Reduce Payload Weight; Models Support Energy-Saving Microwave Technologies; Materials Advance Chemical Propulsion Technology; and High-Temperature Coatings Offer Energy Savings.

  7. SSTO rockets. A practical possibility

    NASA Technical Reports Server (NTRS)

    Bekey, Ivan

    1994-01-01

    Most experts agree that single-stage-to-orbit (SSTO) rockets would become feasible if more advanced technologies were available to reduce the vehicle dry weight, increase propulsion system performance, or both. However, these technologies are usually judged to be very ambitious and very far off. This notion persists despite major advances in technology and vehicle design in the past decade. There appears to be four major misperceptions about SSTOs, regarding their mass fraction, their presumed inadequate performance margin, their supposedly small payloads, and their extreme sensitivity to unanticipated vehicle weight growth. These misperceptions can be dispelled for SSTO rockets using advanced technologies that could be matured and demonstrated in the near term. These include a graphite-composite primary structure, graphite-composite and Al-Li propellant tanks with integral reusable thermal protection, long-life tripropellant or LOX-hydrogen engines, and several technologies related to operational effectiveness, including vehicle health monitoring, autonomous avionics/flight control, and operable launch and ground handling systems.

  8. SSTO rockets. A practical possibility

    NASA Astrophysics Data System (ADS)

    Bekey, Ivan

    1994-07-01

    Most experts agree that single-stage-to-orbit (SSTO) rockets would become feasible if more advanced technologies were available to reduce the vehicle dry weight, increase propulsion system performance, or both. However, these technologies are usually judged to be very ambitious and very far off. This notion persists despite major advances in technology and vehicle design in the past decade. There appears to be four major misperceptions about SSTOs, regarding their mass fraction, their presumed inadequate performance margin, their supposedly small payloads, and their extreme sensitivity to unanticipated vehicle weight growth. These misperceptions can be dispelled for SSTO rockets using advanced technologies that could be matured and demonstrated in the near term. These include a graphite-composite primary structure, graphite-composite and Al-Li propellant tanks with integral reusable thermal protection, long-life tripropellant or LOX-hydrogen engines, and several technologies related to operational effectiveness, including vehicle health monitoring, autonomous avionics/flight control, and operable launch and ground handling systems.

  9. A Pilot Computer-Aided Design and Manufacturing Curriculum that Promotes Engineering

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Elizabeth City State University (ECSU) is located in a community that is mostly rural in nature. The area is economically deprived when compared to the rest of the state. Many businesses lack the computerized equipment and skills needed to propel upward in today's technologically advanced society. This project will close the ever-widening gap between advantaged and disadvantaged workers as well as increase their participation with industry, NASA and/or other governmental agencies. Everyone recognizes computer technology as the catalyst for advances in design, prototyping, and manufacturing or the art of machining. Unprecedented quality control and cost-efficiency improvements are recognized through the use of computer technology. This technology has changed the manufacturing industry with advanced high-tech capabilities needed by NASA. With the ever-widening digital divide, we must continue to provide computer technology to those who are socio-economically disadvantaged.

  10. Advanced rotorcraft technology: Task force report

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The technological needs and opportunities related to future civil and military rotorcraft were determined and a program plan for NASA research which was responsive to the needs and opportunities was prepared. In general, the program plan places the primary emphasis on design methodology where the development and verification of analytical methods is built upon a sound data base. The four advanced rotorcraft technology elements identified are aerodynamics and structures, flight control and avionic systems, propulsion, and vehicle configurations. Estimates of the total funding levels that would be required to support the proposed program plan are included.

  11. Military and government applications of human-machine communication by voice.

    PubMed Central

    Weinstein, C J

    1995-01-01

    This paper describes a range of opportunities for military and government applications of human-machine communication by voice, based on visits and contacts with numerous user organizations in the United States. The applications include some that appear to be feasible by careful integration of current state-of-the-art technology and others that will require a varying mix of advances in speech technology and in integration of the technology into applications environments. Applications that are described include (1) speech recognition and synthesis for mobile command and control; (2) speech processing for a portable multifunction soldier's computer; (3) speech- and language-based technology for naval combat team tactical training; (4) speech technology for command and control on a carrier flight deck; (5) control of auxiliary systems, and alert and warning generation, in fighter aircraft and helicopters; and (6) voice check-in, report entry, and communication for law enforcement agents or special forces. A phased approach for transfer of the technology into applications is advocated, where integration of applications systems is pursued in parallel with advanced research to meet future needs. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7479718

  12. Center/TRACON Automation System: Development and Evaluation in the Field

    DOT National Transportation Integrated Search

    1993-10-01

    Technological advances are changing the way that advanced air traffic control : automation should be developed and assessed. Current standards and practices of : system development place field testing at the end of the development process. : While su...

  13. Development of Supersonic Retro-Propulsion for Future Mars Entry, Descent, and Landing Systems

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Dyakonov, Artem A.; Shidner, Jeremy D.; Studak, Joseph W.; Tiggers, Michael A.; Kipp, Devin M.; Prakash, Ravi; Trumble, Kerry A.; Dupzyk, Ian C.; Korzun, Ashley M.

    2010-01-01

    Recent studies have concluded that Viking-era entry system technologies are reaching their practical limits and must be succeeded by new methods capable of delivering large payloads (greater than 10 metric tons) required for human exploration of Mars. One such technology, termed Supersonic Retro-Propulsion, has been proposed as an enabling deceleration technique. However, in order to be considered for future NASA flight projects, this technology will require significant maturation beyond its current state. This paper proposes a roadmap for advancing the component technologies to a point where Supersonic Retro-Propulsion can be reliably used on future Mars missions to land much larger payloads than are currently possible using Viking-based systems. The development roadmap includes technology gates that are achieved through testing and/or analysis, culminating with subscale flight tests in Earth atmosphere that demonstrate stable and controlled flight. The component technologies requiring advancement include large engines capable of throttling, computational models for entry vehicle aerodynamic/propulsive force and moment interactions, aerothermodynamic environments modeling, entry vehicle stability and control methods, integrated systems engineering and analyses, and high-fidelity six degree-of-freedom trajectory simulations. Quantifiable metrics are also proposed as a means to gage the technical progress of Supersonic Retro-Propulsion. Finally, an aggressive schedule is proposed for advancing the technology through sub-scale flight tests at Earth by 2016.

  14. Full Scale Advanced Systems Testbed (FAST): Capabilities and Recent Flight Research

    NASA Technical Reports Server (NTRS)

    Miller, Christopher

    2014-01-01

    At the NASA Armstrong Flight Research Center research is being conducted into flight control technologies that will enable the next generation of air and space vehicles. The Full Scale Advanced Systems Testbed (FAST) aircraft provides a laboratory for flight exploration of these technologies. In recent years novel but simple adaptive architectures for aircraft and rockets have been researched along with control technologies for improving aircraft fuel efficiency and control structural interaction. This presentation outlines the FAST capabilities and provides a snapshot of the research accomplishments to date. Flight experimentation allows a researcher to substantiate or invalidate their assumptions and intuition about a new technology or innovative approach Data early in a development cycle is invaluable for determining which technology barriers are real and which ones are imagined Data for a technology at a low TRL can be used to steer and focus the exploration and fuel rapid advances based on real world lessons learned It is important to identify technologies that are mature enough to benefit from flight research data and not be tempted to wait until we have solved all the potential issues prior to getting some data Sometimes a stagnated technology just needs a little real world data to get it going One trick to getting data for low TRL technologies is finding an environment where it is okay to take risks, where occasional failure is an expected outcome Learning how things fail is often as valuable as showing that they work FAST has been architected to facilitate this type of testing for control system technologies, specifically novel algorithms and sensors Rapid prototyping with a quick turnaround in a fly-fix-fly paradigm Sometimes it's easier and cheaper to just go fly it than to analyze the problem to death The goal is to find and test control technologies that would benefit from flight data and find solutions to the real barriers to innovation. The FAST vehicle is a flexible laboratory for nascent technologies that would benefit from early life cycle flight research data It provides a robust and safe environment where innovative techniques can be explored in a fly-fix-fly rapid prototyping paradigm IRAC Simple adaptive control technologies can provide real benefits without undo complexity Adverse pilot/adaptive system interactions can be mitigated and tools have been developed to evaluate those interactions ICP Substantial fuel savings can be achieved over a broad range of vehicles and configurations with intelligent control solutions LVAC The AAC design is robust and effective for the SLS mission, and promises to provide benefits to other platforms as well OCLA Hopefully will show that structural feedback can be seamlessly integrated with performance and stability objectives All of these control technologies have been implemented into the same baseline control law and could be combined into one control solution that answers many pressing questions for modern vehicle configurations

  15. Trends in communicative access solutions for children with cerebral palsy.

    PubMed

    Myrden, Andrew; Schudlo, Larissa; Weyand, Sabine; Zeyl, Timothy; Chau, Tom

    2014-08-01

    Access solutions may facilitate communication in children with limited functional speech and motor control. This study reviews current trends in access solution development for children with cerebral palsy, with particular emphasis on the access technology that harnesses a control signal from the user (eg, movement or physiological change) and the output device (eg, augmentative and alternative communication system) whose behavior is modulated by the user's control signal. Access technologies have advanced from simple mechanical switches to machine vision (eg, eye-gaze trackers), inertial sensing, and emerging physiological interfaces that require minimal physical effort. Similarly, output devices have evolved from bulky, dedicated hardware with limited configurability, to platform-agnostic, highly personalized mobile applications. Emerging case studies encourage the consideration of access technology for all nonverbal children with cerebral palsy with at least nascent contingency awareness. However, establishing robust evidence of the effectiveness of the aforementioned advances will require more expansive studies. © The Author(s) 2014.

  16. Multidimensional quantum entanglement with large-scale integrated optics.

    PubMed

    Wang, Jianwei; Paesani, Stefano; Ding, Yunhong; Santagati, Raffaele; Skrzypczyk, Paul; Salavrakos, Alexia; Tura, Jordi; Augusiak, Remigiusz; Mančinska, Laura; Bacco, Davide; Bonneau, Damien; Silverstone, Joshua W; Gong, Qihuang; Acín, Antonio; Rottwitt, Karsten; Oxenløwe, Leif K; O'Brien, Jeremy L; Laing, Anthony; Thompson, Mark G

    2018-04-20

    The ability to control multidimensional quantum systems is central to the development of advanced quantum technologies. We demonstrate a multidimensional integrated quantum photonic platform able to generate, control, and analyze high-dimensional entanglement. A programmable bipartite entangled system is realized with dimensions up to 15 × 15 on a large-scale silicon photonics quantum circuit. The device integrates more than 550 photonic components on a single chip, including 16 identical photon-pair sources. We verify the high precision, generality, and controllability of our multidimensional technology, and further exploit these abilities to demonstrate previously unexplored quantum applications, such as quantum randomness expansion and self-testing on multidimensional states. Our work provides an experimental platform for the development of multidimensional quantum technologies. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Status of NASA In-Space Propulsion Technologies and Their Infusion Potential

    NASA Technical Reports Server (NTRS)

    Anderson, David; Pencil, Eric; Vento, Dan; Peterson, Todd; Dankanich, John; Hahne, David; Munk, Michelle

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies have broad applicability to future competed Discovery and New Frontiers mission solicitations, and are potentially enabling for future NASA flagship and sample return missions currently being considered. This paper provides status of the technology development of several in-space propulsion technologies that are ready for infusion into future missions. The technologies that are ready for flight infusion are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in FY12/13 are 1) Advanced Xenon Flow Control System, and 2) ultra-lightweight propellant tank technology advancements and their infusion potential will be also discussed. The paper will also describe the ISPT project s future focus on propulsion for sample return missions: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. Systems/Mission Analysis focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts.

  18. Evaluating the Acoustic Benefits of Over-the-Rotor Acoustic Treatments Installed on the Advanced Noise Control Fan

    NASA Technical Reports Server (NTRS)

    Gazella, Matthew R.; Takakura, Tamuto; Sutliff, Daniel L.; Bozak, Richard F.; Tester, Brian J.

    2017-01-01

    Over the last 15 years, over-the-rotor acoustic treatments have been evaluated by NASA with varying success. Recently, NASA has been developing the next generation of over-the-rotor acoustic treatments for fan noise reduction. The NASA Glenn Research Centers Advanced Noise Control Fan was used as a Low Technology Readiness Level test bed. A rapid prototyped in-duct array consisting of 50 microphones was employed, and used to correlate the in-duct analysis to the far-field acoustic levels and to validate an existing beam-former method. The goal of this testing was to improve the Technology Readiness Level of various over-the-rotor acoustic treatments by advancing the understanding of the physical mechanisms and projecting the far-field acoustic benefit.

  19. Technological advances in bovine mastitis diagnosis: an overview.

    PubMed

    Duarte, Carla M; Freitas, Paulo P; Bexiga, Ricardo

    2015-11-01

    Bovine mastitis is an economic burden for dairy farmers and preventive control measures are crucial for the sustainability of any dairy business. The identification of etiological agents is necessary in controlling the disease, reducing risk of chronic infections and targeting antimicrobial therapy. The suitability of a detection method for routine diagnosis depends on several factors, including specificity, sensitivity, cost, time in producing results, and suitability for large-scale sampling of milk. This article focuses on current methodologies for identification of mastitis pathogens and for detection of inflammation, as well as the advantages and disadvantages of different methods. Emerging technologies, such as transcriptome and proteome analyses and nano- and microfabrication of portable devices, offer promising, sensitive methods for advanced detection of mastitis pathogens and biomarkers of inflammation. The demand for alternative, fast, and reliable diagnostic procedures is rising as farms become bigger. Several examples of technological and scientific advances are summarized which have given rise to more sensitive, reliable and faster diagnostic results. © 2015 The Author(s).

  20. F-15 IFCS Intelligent Flight Control System

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2008-01-01

    This viewgraph presentation gives a detailed description of the F-15 aircraft, flight tests, aircraft performance and overall advanced neural network based flight control technologies for aerospace systems designs.

  1. Euler Technology Assessment - SPLITFLOW Code Applications for Stability and Control Analysis on an Advanced Fighter Model Employing Innovative Control Concepts

    NASA Technical Reports Server (NTRS)

    Jordan, Keith J.

    1998-01-01

    This report documents results from the NASA-Langley sponsored Euler Technology Assessment Study conducted by Lockheed-Martin Tactical Aircraft Systems (LMTAS). The purpose of the study was to evaluate the ability of the SPLITFLOW code using viscous and inviscid flow models to predict aerodynamic stability and control of an advanced fighter model. The inviscid flow model was found to perform well at incidence angles below approximately 15 deg, but not as well at higher angles of attack. The results using a turbulent, viscous flow model matched the trends of the wind tunnel data, but did not show significant improvement over the Euler solutions. Overall, the predictions were found to be useful for stability and control design purposes.

  2. Propulsion Control Technology Development in the United States A Historical Perspective

    NASA Technical Reports Server (NTRS)

    Jaw, Link C.a; Garg, Sanjay

    2005-01-01

    This paper presents a historical perspective of the advancement of control technologies for aircraft gas turbine engines. The paper primarily covers technology advances in the United States in the last 60 years (1940 to approximately 2002). The paper emphasizes the pioneering technologies that have been tested or implemented during this period, assimilating knowledge and experience from industry experts, including personal interviews with both current and retired experts. Since the first United States-built aircraft gas turbine engine was flown in 1942, engine control technology has evolved from a simple hydro-mechanical fuel metering valve to a full-authority digital electronic control system (FADEC) that is common to all modern aircraft propulsion systems. At the same time, control systems have provided engine diagnostic functions. Engine diagnostic capabilities have also evolved from pilot observation of engine gauges to the automated on-board diagnostic system that uses mathematical models to assess engine health and assist in post-flight troubleshooting and maintenance. Using system complexity and capability as a measure, we can break the historical development of control systems down to four phases: (1) the start-up phase (1942 to 1949), (2) the growth phase (1950 to 1969), (3) the electronic phase (1970 to 1989), and (4) the integration phase (1990 to 2002). In each phase, the state-of-the-art control technology is described and the engines that have become historical landmarks, from the control and diagnostic standpoint, are identified. Finally, a historical perspective of engine controls in the last 60 years is presented in terms of control system complexity, number of sensors, number of lines of software (or embedded code), and other factors.

  3. Pacifichem 2000 Symposium on Plasma Chemistry and Technology for Green Manufacturing, Pollution Control and Processing Applications

    DTIC Science & Technology

    2001-03-19

    Plasma chemistry and technology represents a significant advance and improvement for green manufacturing, pollution control, and various processing...December 14-19, 2000 in Honolulu, HI. This Congress consists of over 120 symposia. amongst them the Symposium on Plasma Chemistry and Technology for...in the plasma chemistry many field beyond the more traditional and mature fields of semiconductor and materials processing. This symposium was focus on

  4. Advanced Electronic Technology

    DTIC Science & Technology

    1977-11-15

    Electronics 15 III. Materials Research 15 TV. Microelectronics 16 V. Surface- Wave Technology 16 DATA SYSTEMS DIVISION 2 INTRODUCTION This...Processing Digital Voice Processing Packet Speech Wideband Integrated Voice/Data Technology Radar Signal Processing Technology Nuclear Safety Designs...facilities make it possible to track the status of these jobs, retrieve their job control language listings, and direct a copy of printed or punched

  5. Thin film resonator technology.

    PubMed

    Lakin, Kenneth M

    2005-05-01

    Advances in wireless systems have placed increased demands on high performance frequency control devices for operation into the microwave range. With spectrum crowding, high bandwidth requirements, miniaturization, and low cost requirements as a background, the thin film resonator technology has evolved into the mainstream of applications. This technology has been under development for over 40 years in one form or another, but it required significant advances in integrated circuit processing to reach microwave frequencies and practical manufacturing for high-volume applications. This paper will survey the development of the thin film resonator technology and describe the core elements that give rise to resonators and filters for today's high performance wireless applications.

  6. New thinking for the boiler room.

    PubMed

    Rose, Wayne

    2008-09-01

    Wayne Rose, marketing manager at integrated plant room manufacturer Armstrong Integrated Systems, explains how increasing use of off-site manufacture, the latest 3D modelling technology, and advances in control technology, are revolutionising boiler room design and construction.

  7. Advanced Prop-fan Engine Technology (APET) single- and counter-rotation gearbox/pitch change mechanism

    NASA Technical Reports Server (NTRS)

    Reynolds, C. N.

    1985-01-01

    The preliminary design of advanced technology (1992) turboprop engines for single-rotation prop-fans and conceptual designs of pitch change mechanisms for single- and counter-rotation prop-fan application are discussed. The single-rotation gearbox is a split path, in-line configuration. The counter-rotation gearbox is an in-line, differential planetary design. The pitch change mechanisms for both the single- and counter-rotation arrangements are rotary/hydraulic. The advanced technology single-rotation gearbox yields a 2.4 percent improvement in aircraft fuel burn and a one percent improvement in operating cost relative to a current technology gearbox. The 1992 counter-rotation gearbox is 15 percent lighter, 15 percent more reliable, 5 percent lower in cost, and 45 percent lower in maintenance cost than the 1992 single-rotation gearbox. The pitch controls are modular, accessible, and external.

  8. A Probabilistic Assessment of NASA Ultra-Efficient Engine Technologies for a Large Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Jones, Scott M.; Arcara, Philip C., Jr.; Haller, William J.

    2004-01-01

    NASA's Ultra Efficient Engine Technology (UEET) program features advanced aeropropulsion technologies that include highly loaded turbomachinery, an advanced low-NOx combustor, high-temperature materials, intelligent propulsion controls, aspirated seal technology, and an advanced computational fluid dynamics (CFD) design tool to help reduce airplane drag. A probabilistic system assessment is performed to evaluate the impact of these technologies on aircraft fuel burn and NOx reductions. A 300-passenger aircraft, with two 396-kN thrust (85,000-pound) engines is chosen for the study. The results show that a large subsonic aircraft equipped with the UEET technologies has a very high probability of meeting the UEET Program goals for fuel-burn (or equivalent CO2) reduction (15% from the baseline) and LTO (landing and takeoff) NOx reductions (70% relative to the 1996 International Civil Aviation Organization rule). These results are used to provide guidance for developing a robust UEET technology portfolio, and to prioritize the most promising technologies required to achieve UEET program goals for the fuel-burn and NOx reductions.

  9. Collaboration in Research and Engineering for Advanced Technology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vrieling, P. Douglas

    SNL/CA proposes the Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) facility to support customer-driven national security mission requirements while demonstrating a fiscally responsible approach to cost-control. SNL/CA realizes that due to the current backlog of capital projects in NNSA that following the normal Line Item process to procure capital funding is unlikely and therefore SNL/CA will be looking at all options including Alternative Financing.

  10. Effects of UAV Supervisory Control on F-18 Formation Flight Performance in a Simulator Environment

    DTIC Science & Technology

    2013-03-01

    words) Continual advances in technology, along with increased cockpit workload— particularly the shift from two- seat to single- seat fighters to save...INTENTIONALLY LEFT BLANK v ABSTRACT Continual advances in technology, along with increased cockpit workload— particularly the shift from two- seat to...single- seat fighters to save money and reduce risk to life—push the limits of human mental capacity. Additionally, there is interest within the

  11. Advanced process control framework initiative

    NASA Astrophysics Data System (ADS)

    Hill, Tom; Nettles, Steve

    1997-01-01

    The semiconductor industry, one the world's most fiercely competitive industries, is driven by increasingly complex process technologies and global competition to improve cycle time, quality, and process flexibility. Due to the complexity of these problems, current process control techniques are generally nonautomated, time-consuming, reactive, nonadaptive, and focused on individual fabrication tools and processes. As the semiconductor industry moves into higher density processes, radical new approaches are required. To address the need for advanced factory-level process control in this environment, Honeywell, Advanced Micro Devices (AMD), and SEMATECH formed the Advanced Process Control Framework Initiative (APCFI) joint research project. The project defines and demonstrates an Advanced Process Control (APC) approach based on SEMATECH's Computer Integrated Manufacturing (CIM) Framework. Its scope includes the coordination of Manufacturing Execution Systems, process control tools, and wafer fabrication equipment to provide necessary process control capabilities. Moreover, it takes advantage of the CIM Framework to integrate and coordinate applications from other suppliers that provide services necessary for the overall system to function. This presentation discusses the key concept of model-based process control that differentiates the APC Framework. This major improvement over current methods enables new systematic process control by linking the knowledge of key process settings to desired product characteristics that reside in models created with commercial model development tools The unique framework-based approach facilitates integration of commercial tools and reuse of their data by tying them together in an object-based structure. The presentation also explores the perspective of each organization's involvement in the APCFI project. Each has complementary goals and expertise to contribute; Honeywell represents the supplier viewpoint, AMD represents the user with 'real customer requirements', and SEMATECH provides a consensus-building organization that widely disseminates technology to suppliers and users in the semiconductor industry that face similar equipment and factory control systems challenges.

  12. Technological advances in radiotherapy for cervical cancer.

    PubMed

    Walsh, Lorraine; Morgia, Marita; Fyles, Anthony; Milosevic, Michael

    2011-09-01

    To discuss the important technological advances that have taken place in the planning and delivery of both external beam radiotherapy and brachytherapy for patients with locally advanced cervical cancer, and the implications for improved clinical outcomes. Technological advances in external beam radiation treatment and brachytherapy for patients with cervical cancer allow more precise targeting of tumour and relative sparing of surrounding normal organs and tissues. Early evidence is emerging to indicate that these advances will translate into improvements in tumour control and reduced side effects. However, there are patient, tumour and treatment-related factors that can detract from these benefits. Foremost among these is complex, unpredictable and sometimes dramatic internal tumour and normal organ motion during treatment. The focus of current research and clinical development is on tracking internal anatomic change in individual patients and adapting treatment plans as required to assure that optimal tumour coverage and normal tissue sparing is maintained at all times. The success of this approach will depend on clear definitions of target volumes, high resolution daily soft tissue imaging, and new software tools for rapid contouring, treatment planning and quality assurance. Radiation treatment of locally advanced cervical cancer is evolving rapidly, driven by advances in technology, towards more individualized patient care that has the potential to substantially improve clinical outcomes.

  13. Opportunities for development of advanced large cargo aircraft

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1976-01-01

    A critical review of the history, current state of the art, and future prospects for cargo aircraft systems indicates that three of the major advantages of air cargo are rapid delivery, ability to bridge geographical boundaries, and capability to provide a flexible market response. Foreseeable advances in large aircraft development offer even greater profit potential by increasing the payload ton-miles per pound of fuel. Intermodal containers and handling systems and computerized control and billing may be key ingredients. Details of a NASA program for large aircraft systems technology are outlined, which includes systems studies, research and technology investigations, and determination of the need for critical flight experiments. Innovative advanced technologies and configuration concepts are discussed. Numerous illustrations supplement the text.

  14. Measuring Human Performance in Simulated Nuclear Power Plant Control Rooms Using Eye Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovesdi, Casey Robert; Rice, Brandon Charles; Bower, Gordon Ross

    Control room modernization will be an important part of life extension for the existing light water reactor fleet. As part of modernization efforts, personnel will need to gain a full understanding of how control room technologies affect performance of human operators. Recent advances in technology enables the use of eye tracking technology to continuously measure an operator’s eye movement, which correlates with a variety of human performance constructs such as situation awareness and workload. This report describes eye tracking metrics in the context of how they will be used in nuclear power plant control room simulator studies.

  15. Application of pneumatic lift and control surface technology to advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1996-01-01

    The application of pneumatic (blown) aerodynamic technology to both the lifting and the control surfaces of advanced transport aircraft can provide revolutionary changes in the performance and operation of these vehicles, ranging in speed regime from Advanced Subsonic Transports to the High Speed Civil Transport, and beyond. This technology, much of it based on the Circulation Control Wing blown concepts, can provide aerodynamic force augmentations of 80 to 100 (i.e., return of 80-100 pounds of force per pound of input momentum from the blowing jet). This can be achieved without use of external mechanical surfaces. Clever application of this technology can provide no-moving-part lifting surfaces (wings/tails) integrated into the control system to greatly simplify aircraft designs while improving their aerodynamic performance. Lift/drag ratio may be pneumatically tailored to fit the current phase of the flight, and takeoff/landing performance can be greatly improved by reducing ground roll distances and liftoff/touchdown speeds. Alternatively, great increases in liftoff weights and payloads are possible, as are great reductions in wing and tail planform size, resulting in optimized cruise wing designs. Furthermore, lift generation independent of angle of attack provides much promise for increased safety of flight in the severe updrafts/downdrafts of microbursts and windshears, which is further augmented by the ability to sustain flight at greatly reduced airspeeds. Load-tailored blown wings can also reduce tip vorticity during highlift operations and the resulting vortex wake hazards near terminal areas. Reduced noise may also be possible as these jets can be made to operate at low pressures. The planned presentation will support the above statements through discussions of recent experimental and numerical (CFD) research and development of these advanced blown aerodynamic surfaces, portions of which have been conducted for NASA. Also to be presented will be predicted performance of advanced transports resulting from these devices. Suggestions will be presented for additional innovative high-payoff research leading to further confirmation of these concepts and their application to advanced efficient commercial transport aircraft.

  16. Recent Progress in Engine Noise Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Huff, Dennis; Gliebe, Philip

    2003-01-01

    Highlights from NASA-funded research over the past ten years for aircraft engine noise reduction are presented showing overall technical plans, accomplishments, and selected applications to turbofan engines. The work was sponsored by NASA's Advanced Subsonic Technology (AST) Noise Reduction Program. Emphasis is given to only the engine noise reduction research and significant accomplishments that were investigated at Technology Readiness Levels ranging from 4 to 6. The Engine Noise Reduction sub-element was divided into four work areas: source noise prediction, model scale tests, engine validation, and active noise control. Highlights from each area include technologies for higher bypass ratio turbofans, scarf inlets, forward-swept fans, swept and leaned stators, chevron/tabbed nozzles, advanced noise prediction analyses, and active noise control for fans. Finally, an industry perspective is given from General Electric Aircraft Engines showing how these technologies are being applied to commercial products. This publication contains only presentation vu-graphs from an invited lecture given at the 41st AIAA Aerospace Sciences Meeting, January 6-9, 2003.

  17. New frontiers in ground-based optical astronomy

    NASA Astrophysics Data System (ADS)

    Strom, Steve

    1991-07-01

    Technological advances made in telescope designs during 1980's are outlined, including a segmented primary mirror for a 10-m telescope, new mirror-figuring techniques, and control systems based on computers and electronics. A new detector technology employing CCD's and advances in high-resolution telescopes are considered, along with such areas of research ready for major advances given new observing tools as the origin of large-scale structures in the universe, the creation and evolution of galaxies, and the formation of stars and planetary systems. Attention is focused on circumstellar disks, dust veils, jets, and brown dwarfs.

  18. NASA technology program for future civil air transports

    NASA Technical Reports Server (NTRS)

    Wright, H. T.

    1983-01-01

    An assessment is undertaken of the development status of technology, applicable to future civil air transport design, which is currently undergoing conceptual study or testing at NASA facilities. The NASA civil air transport effort emphasizes advanced aerodynamic computational capabilities, fuel-efficient engines, advanced turboprops, composite primary structure materials, advanced aerodynamic concepts in boundary layer laminarization and aircraft configuration, refined control, guidance and flight management systems, and the integration of all these design elements into optimal systems. Attention is given to such novel transport aircraft design concepts as forward swept wings, twin fuselages, sandwich composite structures, and swept blade propfans.

  19. Aeromechanics and man-machine integration technology opportunities for rotorcraft of the 1990s and beyond

    NASA Technical Reports Server (NTRS)

    Kerr, Andrew W.

    1989-01-01

    Programs related to rotorcraft aeromechanics and man-machine integration are discussed which will support advanced army rotorcraft design. In aeromechanics, recent advances in computational fluid dynamics will be used to characterize the complex unsteady flowfields of rotorcraft, and a second-generation comprehensive helicopter analysis system will be used along with models of aerodynamics, engines, and control systems to study the structural dynamics of rotor/body configurations. The man-machine integration program includes the development of advanced cockpit design technology and the evaluation of cockpit and mission equipment concepts in a real-time full-combat environment.

  20. An overview of flywheel technology for space applications

    NASA Astrophysics Data System (ADS)

    Decker, D. Kent; Spector, Victor A.; Pieronek, Thomas J.

    1997-01-01

    Recent developments in advanced composite flywheels using magnetic bearings has produced specific energies greater than 30 Whr/lb. These specific energy levels provide an opportunity for significant spacecraft weight savings compared to using nickel-hydrogen battery technology. Additional weight savings are possible if the flywheels are also used for momentum control. This paper explores the new challenges presented by application of flywheel technology to space power and attitude control subsystems. Issues with respect to mission application, safety and containment, launch environment, and combined power and attitude control operation are discussed.

  1. Advances and new directions in crystallization control.

    PubMed

    Nagy, Zoltan K; Braatz, Richard D

    2012-01-01

    The academic literature on and industrial practice of control of solution crystallization processes have seen major advances in the past 15 years that have been enabled by progress in in-situ real-time sensor technologies and driven primarily by needs in the pharmaceutical industry for improved and more consistent quality of drug crystals. These advances include the accurate measurement of solution concentrations and crystal characteristics as well as the first-principles modeling and robust model-based and model-free feedback control of crystal size and polymorphic identity. Research opportunities are described in model-free controller design, new crystallizer designs with enhanced control of crystal size distribution, strategies for the robust control of crystal shape, and interconnected crystallization systems for multicomponent crystallization.

  2. Propulsion Controls and Health Management Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2002-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Technology Branch at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with the U.S. aerospace industry and academia to develop advanced controls and health management technologies that will help meet these challenges. These technologies are being developed with a view towards making the concept of "Intelligent Engines" a reality. The major research activities of the Controls and Dynamics Technology Branch are described in the following.

  3. Continued Development and Application of Circulation Control Pneumatic Technology to Advanced Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1998-01-01

    Personnel of the Georgia Tech Research Institute (GTRI) Aerospace and Transportation Lab have completed a four-year grant program to develop and evaluate the pneumatic aerodynamic technology known as Circulation Control (CC) or Circulation Control Wing (CCW) for advanced transport aircraft. This pneumatic technology, which employs low-level blowing from tangential slots over round or near-round trailing edges of airfoils, greatly augments the circulation around a lifting or control surface and thus enhances the aerodynamic forces and moments generated by that surface. Two-dimensional force augmentations as high as 80 times the input blowing momentum coefficient have been recorded experimentally for these blown devices, thus providing returns of 8000% on the jet momentum expended. A further benefit is the absence of moving parts such as mechanical flaps, slats, spoilers, ailerons, elevators and rudders from these pneumatic surfaces, or the use of only very small, simple, blown aerodynamic surfaces on synergistic designs which integrate the lift, drag and control surfaces. The application of these devices to advanced aircraft can offer significant benefits in their performance, efficiency, simplicity, reliability, economic cost of operation, noise reduction, and safety of flight. To further develop and evaluate this potential, this research effort was conducted by GTRI under grant for the NASA Langley Research Center, Applied Aerodynamics Division, Subsonic Aerodynamics Branch, between June 14, 1993 and May 31, 1997.

  4. Tissue vascularization through 3D printing: Will technology bring us flow?

    PubMed

    Paulsen, S J; Miller, J S

    2015-05-01

    Though in vivo models provide the most physiologically relevant environment for studying tissue function, in vitro studies provide researchers with explicit control over experimental conditions and the potential to develop high throughput testing methods. In recent years, advancements in developmental biology research and imaging techniques have significantly improved our understanding of the processes involved in vascular development. However, the task of recreating the complex, multi-scale vasculature seen in in vivo systems remains elusive. 3D bioprinting offers a potential method to generate controlled vascular networks with hierarchical structure approaching that of in vivo networks. Bioprinting is an interdisciplinary field that relies on advances in 3D printing technology along with advances in imaging and computational modeling, which allow researchers to monitor cellular function and to better understand cellular environment within the printed tissue. As bioprinting technologies improve with regards to resolution, printing speed, available materials, and automation, 3D printing could be used to generate highly controlled vascularized tissues in a high throughput manner for use in regenerative medicine and the development of in vitro tissue models for research in developmental biology and vascular diseases. © 2015 Wiley Periodicals, Inc.

  5. Strategic deployment plan : intelligent transportation system (ITS) : early deployment study, Kansas City metropolitan bi-state area

    DOT National Transportation Integrated Search

    1997-01-01

    Intelligent transportation systems (ITS) are systems that utilize advanced technologies, including computer, communications and process control technologies, to improve the efficiency and safety of the transportation system. These systems encompass a...

  6. CONTACT: An Air Force technical report on military satellite control technology

    NASA Astrophysics Data System (ADS)

    Weakley, Christopher K.

    1993-07-01

    This technical report focuses on Military Satellite Control Technologies and their application to the Air Force Satellite Control Network (AFSCN). This report is a compilation of articles that provide an overview of the AFSCN and the Advanced Technology Program, and discusses relevant technical issues and developments applicable to the AFSCN. Among the topics covered are articles on Future Technology Projections; Future AFSCN Topologies; Modeling of the AFSCN; Wide Area Communications Technology Evolution; Automating AFSCN Resource Scheduling; Health & Status Monitoring at Remote Tracking Stations; Software Metrics and Tools for Measuring AFSCN Software Performance; Human-Computer Interface Working Group; Trusted Systems Workshop; and the University Technical Interaction Program. In addition, Key Technology Area points of contact are listed in the report.

  7. An Expert Opinion on Advanced Insulin Pump Use in Youth with Type 1 Diabetes.

    PubMed

    Bode, Bruce W; Kaufman, Francine R; Vint, Nan

    2017-03-01

    Among children and adolescents with type 1 diabetes mellitus, the use of insulin pump therapy has increased since its introduction in the early 1980s. Optimal management of type 1 diabetes mellitus depends on sufficient understanding by patients, their families, and healthcare providers on how to use pump technology. The goal for the use of insulin pump therapy should be to advance proficiency over time from the basics taught at the initiation of pump therapy to utilizing advanced settings to obtain optimal glycemic control. However, this goal is often not met, and appropriate understanding of the full features of pump technology can be lacking. The objective of this review is to provide an expert perspective on the advanced features and use of insulin pump therapy, including practical guidelines for the successful use of insulin pump technology, and other considerations specific to patients and healthcare providers.

  8. NWTC Researchers Field-Test Advanced Control Turbine Systems to Increase Performance, Decrease Structural Loading of Wind Turbines and Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) are studying component controls, including new advanced actuators and sensors, for both conventional turbines as well as wind plants. This research will help develop innovative control strategies that reduce aerodynamic structural loads and improve performance. Structural loads can cause damage that increase maintenance costs and shorten the life of a turbine or wind plant.

  9. Psychology, technology, and diabetes management.

    PubMed

    Gonder-Frederick, Linda A; Shepard, Jaclyn A; Grabman, Jesse H; Ritterband, Lee M

    2016-10-01

    Use of technology in diabetes management is rapidly advancing and has the potential to help individuals with diabetes achieve optimal glycemic control. Over the past 40 years, several devices have been developed and refined, including the blood glucose meter, insulin pump, and continuous glucose monitor. When used in tandem, the insulin pump and continuous glucose monitor have prompted the Artificial Pancreas initiative, aimed at developing control system for fully automating glucose monitoring and insulin delivery. In addition to devices, modern technology, such as the Internet and mobile phone applications, have been used to promote patient education, support, and intervention to address the behavioral and emotional challenges of diabetes management. These state-of-the-art technologies not only have the potential to improve clinical outcomes, but there are possible psychological benefits, such as improved quality of life, as well. However, practical and psychosocial limitations related to advanced technology exist and, in the context of several technology-related theoretical frameworks, can influence patient adoption and continued use. It is essential for future diabetes technology research to address these barriers given that the clinical benefits appear to largely depend on patient engagement and consistence of technology use. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Ergonomics technology

    NASA Technical Reports Server (NTRS)

    Jones, W. L.

    1977-01-01

    Major areas of research and development in ergonomics technology for space environments are discussed. Attention is given to possible applications of the technology developed by NASA in industrial settings. A group of mass spectrometers for gas analysis capable of fully automatic operation has been developed for atmosphere control on spacecraft; a version for industrial use has been constructed. Advances have been made in personal cooling technology, remote monitoring of medical information, and aerosol particle control. Experience gained by NASA during the design and development of portable life support units has recently been applied to improve breathing equipment used by fire fighters.

  11. Application of Laminar Flow Control Technology to Long-Range Transport Design

    NASA Technical Reports Server (NTRS)

    Gratzer, L. B.; George-Falvy, D.

    1978-01-01

    The impact of laminar flow control (LFC) technology on aircraft structural design concepts and systems was discussed and the corresponding benefits were shown in terms of performance and fuel economy. Specific topics discussed include: (1) recent advances in laminar boundary layer development and stability analysis techniques in terms of suction requirements and wing suction surface design; (2) validation of theory and realistic simulation of disturbances and off-design conditions by wind tunnel testing; (3) compatibility of aerodynamic design of airfoils and wings with LFC requirements; (4) structural alternatives involving advanced alloys or composites in combinations made possible by advanced materials processing and manufacturing techniques; (5) addition of suction compressor and drive units and their location on the aircraft; and (6) problems associated with operation of LFC aircraft, including accumulation of insects at low altitudes and environmental considerations.

  12. Fuel cell systems program plan, FY 1990

    NASA Astrophysics Data System (ADS)

    1989-10-01

    A principal goal of the Office of Fossil Energy is to increase the utilization of domestic fuels in an environmentally benign manner, through the development and transfer to the private sector of advanced energy conversion technology. Successful efforts to achieve this goal contribute to the stability and reliability of reasonably priced energy supplies, enhance the competitiveness of domestic fuels and energy technologies in domestic and international markets, and contribute to the development of cost effective strategies for control of acid rain and global warming. Several advanced energy conversion technologies are now under development by DOE which can help to achieve these objectives. Fuel cells are among those technologies. This report briefly describes fuel cell technology and the program plan of U.S. DOE fuel cell program.

  13. Advanced Technologies for Space Life Science Payloads on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Connolly, John P. (Technical Monitor)

    1997-01-01

    SENSORS 2000! (S2K!) is a specialized, high-performance work group organized to provide advanced engineering and technology support for NASA's Life Sciences spaceflight and ground-based research and development programs. In support of these objectives, S2K! manages NASA's Advanced Technology Development Program for Biosensor and Biotelemetry Systems (ATD-B), with particular emphasis on technologies suitable for Gravitational Biology, Human Health and Performance, and Information Technology and Systems Management. A concurrent objective is to apply and transition ATD-B developed technologies to external, non-NASA humanitarian (medical, clinical, surgical, and emergency) situations and to stimulate partnering and leveraging with other government agencies, academia, and the commercial/industrial sectors. A phased long-term program has been implemented to support science disciplines and programs requiring specific biosensor (i.e., biopotential, biophysical, biochemical, and biological) measurements from humans, animals (mainly primates and rodents), and cells under controlled laboratory and simulated microgravity situations. In addition to the technology programs described above, NASA's Life and Microgravity Sciences and Applications Office has initiated a Technology Infusion process to identify and coordinate the utilization and integration of advanced technologies into its International Space Station Facilities. This project has recently identified a series of technologies, tasks, and products which, if implemented, would significantly increase the science return, decrease costs, and provide improved technological capability. This presentation will review the programs described above and discuss opportunities for collaboration, leveraging, and partnering with NASA.

  14. Technological Improvements for Digital Fire Control Systems

    DTIC Science & Technology

    2017-09-30

    Final Technical Status Report For DOTC-12-01-INIT061 Technological Improvements for Digital Fire Control Systems Reporting Period: 30 Sep...Initiative Information Develop and fabricate next generation designs using advanced materials and processes. This will include but is not limited to...4.2 Develop manufacturing processes 100% 4.3 Develop manufacturing processes 100% 4.4 Develop manufacturing processes 100% 5 Design Tooling

  15. Advances and trends in computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1986-01-01

    Recent developments in computational structural mechanics are reviewed with reference to computational needs for future structures technology, advances in computational models for material behavior, discrete element technology, assessment and control of numerical simulations of structural response, hybrid analysis, and techniques for large-scale optimization. Research areas in computational structural mechanics which have high potential for meeting future technological needs are identified. These include prediction and analysis of the failure of structural components made of new materials, development of computational strategies and solution methodologies for large-scale structural calculations, and assessment of reliability and adaptive improvement of response predictions.

  16. Seminar for High School Students “Practice on Manufacturing Technology by Advanced Machine Tools”

    NASA Astrophysics Data System (ADS)

    Marui, Etsuo; Yamawaki, Masao; Taga, Yuken; Omoto, Ken'ichi; Miyaji, Reiji; Ogura, Takahiro; Tsubata, Yoko; Sakai, Toshimasa

    The seminar ‘Practice on Manufacturing Technology by Advanced Machine Tools’ for high school students was held at the supporting center for technology education of Gifu University, under the sponsorship of the Japan Society of Mechanical Engineers. This seminar was held, hoping that many students become interested in manufacturing through the experience of the seminar. Operating CNC milling machine and CNC wire-cut electric discharge machine, they made original nameplates. Participants made the program to control CNC machine tools themselves. In this report, some valuable results obtained through such experience are explained.

  17. A summary of NASA/Air Force full scale engine research programs using the F100 engine

    NASA Technical Reports Server (NTRS)

    Deskin, W. J.; Hurrell, H. G.

    1979-01-01

    A full scale engine research (FSER) program conducted with the F100 engine is presented. The program mechanism is described and the F100 test vehicles utilized are illustrated. Technology items were addressed in the areas of swirl augmentation, flutter phenomenon, advanced electronic control logic theory, strain gage technology and distortion sensitivity. The associated test programs are described. The FSER approach utilizes existing state of the art engine hardware to evaluate advanced technology concepts and problem areas. Aerodynamic phenomenon previously not considered by design systems were identified and incorporated into industry design tools.

  18. 78 FR 34584 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Allegheny County...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272 note) because application of those... Technology Under the 8-Hour Ozone National Ambient Air Quality Standard AGENCY: Environmental Protection... reasonably available control technology (RACT) for nitrogen oxides (NO X ) and volatile organic compounds...

  19. 78 FR 54960 - Approval and Promulgation of Air Quality Implementation Plans; Massachusetts; Reasonably...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... requirements of Section 12(d) of the National Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272... Technology for the 1997 8- Hour Ozone Standard AGENCY: Environmental Protection Agency (EPA). ACTION: Final... reasonably available control technology (RACT) for oxides of nitrogen (NO X ) and volatile organic compounds...

  20. Technology development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a candidate large UV-Optical-Infrared (LUVOIR) surveyor

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-09-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  1. Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; hide

    2015-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  2. Advanced control design for hybrid turboelectric vehicle

    NASA Technical Reports Server (NTRS)

    Abban, Joseph; Norvell, Johnesta; Momoh, James A.

    1995-01-01

    The new environment standards are a challenge and opportunity for industry and government who manufacture and operate urban mass transient vehicles. A research investigation to provide control scheme for efficient power management of the vehicle is in progress. Different design requirements using functional analysis and trade studies of alternate power sources and controls have been performed. The design issues include portability, weight and emission/fuel efficiency of induction motor, permanent magnet and battery. A strategic design scheme to manage power requirements using advanced control systems is presented. It exploits fuzzy logic, technology and rule based decision support scheme. The benefits of our study will enhance the economic and technical feasibility of technological needs to provide low emission/fuel efficient urban mass transit bus. The design team includes undergraduate researchers in our department. Sample results using NASA HTEV simulation tool are presented.

  3. Configurable technology development for reusable control and monitor ground systems

    NASA Technical Reports Server (NTRS)

    Uhrlaub, David R.

    1994-01-01

    The control monitor unit (CMU) uses configurable software technology for real-time mission command and control, telemetry processing, simulation, data acquisition, data archiving, and ground operations automation. The base technology is currently planned for the following control and monitor systems: portable Space Station checkout systems; ecological life support systems; Space Station logistics carrier system; and the ground system of the Delta Clipper (SX-2) in the Single-Stage Rocket Technology program. The CMU makes extensive use of commercial technology to increase capability and reduce development and life-cycle costs. The concepts and technology are being developed by McDonnell Douglas Space and Defense Systems for the Real-Time Systems Laboratory at NASA's Kennedy Space Center under the Payload Ground Operations Contract. A second function of the Real-Time Systems Laboratory is development and utilization of advanced software development practices.

  4. High temperature, harsh environment sensors for advanced power generation systems

    NASA Astrophysics Data System (ADS)

    Ohodnicki, P. R.; Credle, S.; Buric, M.; Lewis, R.; Seachman, S.

    2015-05-01

    One mission of the Crosscutting Technology Research program at the National Energy Technology Laboratory is to develop a suite of sensors and controls technologies that will ultimately increase efficiencies of existing fossil-fuel fired power plants and enable a new generation of more efficient and lower emission power generation technologies. The program seeks to accomplish this mission through soliciting, managing, and monitoring a broad range of projects both internal and external to the laboratory which span sensor material and device development, energy harvesting and wireless telemetry methodologies, and advanced controls algorithms and approaches. A particular emphasis is placed upon harsh environment sensing for compatibility with high temperature, erosive, corrosive, and highly reducing or oxidizing environments associated with large-scale centralized power generation. An overview of the full sensors and controls portfolio is presented and a selected set of current and recent research successes and on-going projects are highlighted. A more detailed emphasis will be placed on an overview of the current research thrusts and successes of the in-house sensor material and device research efforts that have been established to support the program.

  5. REMOVAL OF SO2 FROM INDUSTRIAL WASTE GASES

    EPA Science Inventory

    The paper discusses technology for sulfur dioxide (SO2) pollution control by flue gas cleaning (called 'scrubbing') in the utility industry, a technology that has advanced significantly during the past 5 years. Federal Regulations are resulting in increasingly large-scale applica...

  6. 2015 Accomplishments Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This report covers selected highlights from the four research pathways in the LWRS Program: Materials Aging and Degradation; Risk-Informed Safety Margin Characterization; Advanced Instrumentation, Information, and Control Systems Technologies; and Reactor Safety Technologies, as well as a look-ahead at planned activities for 2017.

  7. 2016 Accomplishments Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This report covers selected highlights from the four research pathways in the LWRS Program: Materials Aging and Degradation; Risk-Informed Safety Margin Characterization; Advanced Instrumentation, Information, and Control Systems Technologies; and Reactor Safety Technologies, as well as a look-ahead at planned activities for 2017.

  8. Emerging Technologies in the Workplace.

    ERIC Educational Resources Information Center

    Ammon, Adelaide; Robertson, Lyle

    1985-01-01

    Presents survey responses of 100 Michigan firms regarding the use of advanced technologies, employment growth projections in skilled occupations, and views about community college education. Examines the impact of the introduction of office automation, telecommunications, computer-aided design, laser, quality control, materials management, and…

  9. Management of CAD/CAM information: Key to improved manufacturing productivity

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Brainin, J.

    1984-01-01

    A key element to improved industry productivity is effective management of CAD/CAM information. To stimulate advancements in this area, a joint NASA/Navy/Industry project designated Integrated Programs for Aerospace-Vehicle Design (IPAD) is underway with the goal of raising aerospace industry productivity through advancement of technology to integrate and manage information involved in the design and manufacturing process. The project complements traditional NASA/DOD research to develop aerospace design technology and the Air Force's Integrated Computer-Aided Manufacturing (ICAM) program to advance CAM technology. IPAD research is guided by an Industry Technical Advisory Board (ITAB) composed of over 100 repesentatives from aerospace and computer companies. The IPAD accomplishments to date in development of requirements and prototype software for various levels of company-wide CAD/CAM data management are summarized and plans for development of technology for management of distributed CAD/CAM data and information required to control future knowledge-based CAD/CAM systems are discussed.

  10. Advanced Life Support Research and Technology Development Metric

    NASA Technical Reports Server (NTRS)

    Hanford, A. J.

    2004-01-01

    The Metric is one of several measures employed by the NASA to assess the Agency s progress as mandated by the United States Congress and the Office of Management and Budget. Because any measure must have a reference point, whether explicitly defined or implied, the Metric is a comparison between a selected ALS Project life support system and an equivalently detailed life support system using technology from the Environmental Control and Life Support System (ECLSS) for the International Space Station (ISS). This document provides the official calculation of the Advanced Life Support (ALS) Research and Technology Development Metric (the Metric) for Fiscal Year 2004. The values are primarily based on Systems Integration, Modeling, and Analysis (SIMA) Element approved software tools or reviewed and approved reference documents. For Fiscal Year 2004, the Advanced Life Support Research and Technology Development Metric value is 2.03 for an Orbiting Research Facility and 1.62 for an Independent Exploration Mission.

  11. Technology advancement of the static feed water electrolysis process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.

    1977-01-01

    A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.

  12. The NASA controls-structures interaction technology program

    NASA Technical Reports Server (NTRS)

    Newsom, Jerry R.; Layman, W. E.; Waites, H. B.; Hayduk, R. J.

    1990-01-01

    The interaction between a flexible spacecraft structure and its control system is commonly referred to as controls-structures interaction (CSI). The CSI technology program is developing the capability and confidence to integrate the structure and control system, so as to avoid interactions that cause problems and to exploit interactions to increase spacecraft capability. A NASA program has been initiated to advance CSI technology to a point where it can be used in spacecraft design for future missions. The CSI technology program is a multicenter program utilizing the resources of the NASA Langley Research Center (LaRC), the NASA Marshall Space Flight Center (MSFC), and the NASA Jet Propulsion Laboratory (JPL). The purpose is to describe the current activities, results to date, and future activities of the NASA CSI technology program.

  13. Spacecraft applications of advanced global positioning system technology

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This is the final report on the Texas Instruments Incorporated (TI) simulations study of Spacecraft Application of Advanced Global Positioning System (GPS) Technology. This work was conducted for the NASA Johnson Space Center (JSC) under contract NAS9-17781. GPS, in addition to its baselined capability as a highly accurate spacecraft navigation system, can provide traffic control, attitude control, structural control, and uniform time base. In Phase 1 of this program, another contractor investigated the potential of GPS in these four areas and compared GPS to other techniques. This contract was for the Phase 2 effort, to study the performance of GPS for these spacecraft applications through computer simulations. TI had previously developed simulation programs for GPS differential navigation and attitude measurement. These programs were adapted for these specific spacecraft applications. In addition, TI has extensive expertise in the design and production of advanced GPS receivers, including space-qualified GPS receivers. We have drawn on this background to augment the simulation results in the system level overview, which is Section 2 of this report.

  14. Development of Improved Graphical Displays for an Advanced Outage Control Center, Employing Human Factors Principles for Outage Schedule Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St Germain, Shawn Walter; Farris, Ronald Keith; Thomas, Kenneth David

    The long-term viability of existing nuclear power plants in the United States (U.S.) is dependent upon a number of factors, including maintaining high capacity factors, maintaining nuclear safety, and reducing operating costs, particularly those associated with refueling outages. Refueling outages typically take 20-30 days, and for existing light water NPPs in the U.S., the reactor cannot be in operation during the outage. Furthermore, given that many NPPs generate between $1-1.5 million/day in revenue when in operation, there is considerable interest in shortening the length of refueling outages. Yet refueling outages are highly complex operations, involving multiple concurrent and dependent activitiesmore » that are somewhat challenging to coordinate; therefore, finding ways to improve refueling outage performance, while maintaining nuclear safety has proven to be difficult. The Advanced Outage Control Center (AOCC) project is a research and development (R&D) demonstration activity under the LWRS Program. LWRS is an R&D program that works closely with industry R&D programs to establish technical foundations for the licensing and managing of long-term, safe, and economical operation of current fleet of NPPs. As such, the LWRS Advanced Outage Control Center project has the goal of improving the management of commercial NPP refueling outages. To accomplish this goal, INL is developing an advanced outage control center (OCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. The overall focus is on developing an AOCC with the following capabilities that enables plant and OCC staff to; Collaborate in real-time to address emergent issues; Effectively communicate outage status to all workers involved in the outage; Effectively communicate discovered conditions in the field to the OCC; Provide real-time work status; Provide automatic pending support notifications; Provide real-time requirements monitoring; Maximize their collective situational awareness to improve decision-making; and Leverage macro data to better support resource allocation. INL has partnered with several commercial NPP utilities to develop a number of advanced outage management technologies. These outage management technologies have focused on both collaborative technologies for control centers and developing mobile technologies for NPP field workers. This report describes recent efforts made in developing a suite of outage technologies to support more effective schedule management. Currently, a master outage schedule is created months in advance using the plant’s existing scheduling software (e.g., Primavera P6). Typically, during the outage, the latest version of the schedule is printed at the beginning of each shift. INL and its partners are developing technologies that will have capabilities such as Automatic Schedule Updating, Automatic Pending Support Notifications, and the ability to allocate and schedule outage support task resources on a sub-hour basis (e.g., outage Micro-Scheduling). The remaining sections of this report describe in more detail the scheduling challenges that occur during outages, how the outage scheduling technologies INL is developing helps address those challenges, and the latest developments on this task (e.g., work accomplished to date and the path forward)« less

  15. Proceedings of the American Power Conference. Volume 58-I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, A.E.

    1996-10-01

    This is volume 58-I of the proceedings of the American Power Conference, 1996, Technology for Competition and Globalization. The topics of the papers include power plant DC issues; cost of environmental compliance; advanced coal systems -- environmental performance; technology for competition in dispersed generation; superconductivity technologies for electric utility applications; power generation trends and challenges in China; aging in nuclear power plants; innovative and competitive repowering options; structural examinations, modifications and repairs; electric load forecasting; distribution planning; EMF effects; fuzzy logic and neural networks for power plant applications; electrokinetic decontamination of soils; integrated gasification combined cycle; advances in fusion; coolingmore » towers; relays; plant controls; flue gas desulfurization; waste product utilization; and improved technologies.« less

  16. Rebuilding the space technology base

    NASA Technical Reports Server (NTRS)

    Povinelli, Frederick P.; Stephenson, Frank W.; Sokoloski, Martin M.; Montemerlo, Melvin D.; Venneri, Samuel L.; Mulville, Daniel R.; Hirschbein, Murray S.; Smith, Paul H.; Schnyer, A. Dan; Lum, Henry

    1989-01-01

    NASA's Civil Space Technology Initiative (CSTI) will not only develop novel technologies for space exploration and exploitation, but also take mature technologies into their demonstration phase in earth orbit. In the course of five years, CSTI will pay off in ground- and space-tested hardware, software, processes, methods for low-orbit transport and operation, and fundamental scientific research on the orbital environment. Attention is given to LOX/hydrogen and LOX/hydrocarbon reusable engines, liquid/solid fuel hybrid boosters, and aeroassist flight experiments for the validation of aerobraking with atmospheric friction. Also discussed are advanced scientific sensors, systems autonomy and telerobotics, control of flexible structures, precise segmented reflectors, high-rate high-capacity data handling, and advanced nuclear power systems.

  17. Snapshot of Active Flow Control Research at NASA Langley

    NASA Technical Reports Server (NTRS)

    Washburn, A. E.; Gorton, S. Althoff; Anders, S. G.

    2002-01-01

    NASA Langley is aggressively investigating the potential advantages of active flow control as opposed to more traditional aerodynamic techniques. Many of these techniques will be blended with advanced materials and structures to further enhance payoff. Therefore a multi-disciplinary approach to technology development is being attempted that includes researchers from the more historical disciplines of fluid mechanics. acoustics, material science, structural mechanics, and control theory. The overall goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids rather than on specific engineering problems. An organizational view of current research activities at NASA Langley in active flow control as supported by several programs such as the Morphing Project under Breakthrough Vehicle Technologies Program (BVT). the Ultra-Efficient Engine Technology Program (UEET), and the 21st Century Aircraft Technology Program (TCAT) is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research, as part of the fundamental NASA R and D (research and development) program. will be demonstrated as either bench-top experiments, wind-tunnel investigations, or in flight tests. Later they will be transferred to more applied research programs within NASA, DOD (Department of Defense), and U.S. industry.

  18. NASA Advanced Life Support Technology Testing and Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2012-01-01

    Prior to 2010, NASA's advanced life support research and development was carried out primarily under the Exploration Life Support Project of NASA's Exploration Systems Mission Directorate. In 2011, the Exploration Life Support Project was merged with other projects covering Fire Prevention/Suppression, Radiation Protection, Advanced Environmental Monitoring and Control, and Thermal Control Systems. This consolidated project was called Life Support and Habitation Systems, which was managed under the Exploration Systems Mission Directorate. In 2012, NASA re-organized major directorates within the agency, which eliminated the Exploration Systems Mission Directorate and created the Office of the Chief Technologist (OCT). Life support research and development is currently conducted within the Office of the Chief Technologist, under the Next Generation Life Support Project, and within the Human Exploration Operation Missions Directorate under several Advanced Exploration System projects. These Advanced Exploration Systems projects include various themes of life support technology testing, including atmospheric management, water management, logistics and waste management, and habitation systems. Food crop testing is currently conducted as part of the Deep Space Habitation (DSH) project within the Advanced Exploration Systems Program. This testing is focused on growing salad crops that could supplement the crew's diet during near term missions.

  19. Technology for Diagnosis, Treatment, and Prevention of Cardiometabolic Disease in India.

    PubMed

    Hameed, Safraj Shahul; Rawal, Ishita; Soni, Deepa; Ajay, Vamadevan S; Goenka, Shifalika; Prabhakaran, Dorairaj

    2016-01-01

    Cardiometabolic diseases (CMD) are a major cause of mortality, morbidity and disability worldwide. Among Indians, CMD onset is at a much younger age and is prevalent in all sections of the society. Prevention, control and management of CMD and its risk factors is a major public health challenge, and alternative approaches need to be explored and integrated into public health programs. Advancements in the fields of computers, electronics, telecommunication and medicine have resulted in the rapid development of health-related technology. In this paper we provide an overview of the major technological advances in diagnosis, treatment and prevention within the field of CMD in the last few decades. This non-exhaustive review focuses on the most promising technologies that the authors feel might be of relevance in the Indian context. Some of the techniques detailed include advances in imaging and mobile phone technology, surgical techniques, electronic health records, Nano medicine, telemedicine and decision support systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. MEMS Deformable Mirror Technology Development for Space-Based Exoplanet Detection

    NASA Astrophysics Data System (ADS)

    Bierden, Paul; Cornelissen, S.; Ryan, P.

    2014-01-01

    In the search for earth-like extrasolar planets that has become an important objective for NASA, a critical technology development requirement is to advance deformable mirror (DM) technology. High-actuator-count DMs are critical components for nearly all proposed coronagraph instrument concepts. The science case for exoplanet imaging is strong, and rapid recent advances in test beds with DMs made using microelectromechanical system (MEMS) technology have motivated a number of compelling mission concepts that set technical specifications for their use as wavefront controllers. This research will advance the technology readiness of the MEMS DMs components that are currently at the forefront of the field, and the project will be led by the manufacturer of those components, Boston Micromachines Corporation (BMC). The project aims to demonstrate basic functionality and performance of this key component in critical test environments and in simulated operational environments, while establishing model-based predictions of its performance relative to launch and space environments. Presented will be the current status of the project with modeling and initial test results.

  1. Integration of advanced teleoperation technologies for control of space robots

    NASA Technical Reports Server (NTRS)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  2. Leveraging Intelligent Vehicle Technologies to Maximize Fuel Economy (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonder, J.

    2011-11-01

    Advancements in vehicle electronics, along with communication and sensing technologies, have led to a growing number of intelligent vehicle applications. Example systems include those for advanced driver information, route planning and prediction, driver assistance, and crash avoidance. The National Renewable Energy Laboratory is exploring ways to leverage intelligent vehicle systems to achieve fuel savings. This presentation discusses several potential applications, such as providing intelligent feedback to drivers on specific ways to improve their driving efficiency, and using information about upcoming driving to optimize electrified vehicle control strategies for maximum energy efficiency and battery life. The talk also covers the potentialmore » of Advanced Driver Assistance Systems (ADAS) and related technologies to deliver significant fuel savings in addition to providing safety and convenience benefits.« less

  3. Advanced ground station architecture

    NASA Technical Reports Server (NTRS)

    Zillig, David; Benjamin, Ted

    1994-01-01

    This paper describes a new station architecture for NASA's Ground Network (GN). The architecture makes efficient use of emerging technologies to provide dramatic reductions in size, operational complexity, and operational and maintenance costs. The architecture, which is based on recent receiver work sponsored by the Office of Space Communications Advanced Systems Program, allows integration of both GN and Space Network (SN) modes of operation in the same electronics system. It is highly configurable through software and the use of charged coupled device (CCD) technology to provide a wide range of operating modes. Moreover, it affords modularity of features which are optional depending on the application. The resulting system incorporates advanced RF, digital, and remote control technology capable of introducing significant operational, performance, and cost benefits to a variety of NASA communications and tracking applications.

  4. Autonomous RPRV Navigation, Guidance and Control

    NASA Technical Reports Server (NTRS)

    Johnston, Donald E.; Myers, Thomas T.; Zellner, John W.

    1983-01-01

    Dryden Flight Research Center has the responsibility for flight testing of advanced remotely piloted research vehicles (RPRV) to explore highly maneuverable aircraft technology, and to test advanced structural concepts, and related aeronautical technologies which can yield important research results with significant cost benefits. The primary purpose is to provide the preliminary design of an upgraded automatic approach and landing control system and flight director display to improve landing performance and reduce pilot workload. A secondary purpose is to determine the feasibility of an onboard autonomous navigation, orbit, and landing capability for safe vehicle recovery in the event of loss of telemetry uplink communication with the vehicles. The current RPRV approach and landing method, the proposed automatic and manual approach and autoland system, and an autonomous navigation, orbit, and landing system concept which is based on existing operational technology are described.

  5. The rise of active-element phased-array radar

    NASA Astrophysics Data System (ADS)

    Chang, Ike

    The War in the Persian Gulf has recently underscored the vast leverage of advanced electronics to U.S. military power. Advanced electronics will likely play an even greater role in the U.S. military in the future. Under declining budgets, the U.S. forces are experiencing drastic reductions in manpower and resources. To offset these reductions, the military has turned to high technology in general as a force multiplier. In terms of projecting air power, a key force multiplier involves the use of electronic sensors for reconnaissance, surveillance, and tracking. One type of sensor for tactical aircraft, fire control radar, has proven to be a crucial element in establishing air superiority over potential adversaries in war. The advantages, history of development, and enabling technologies of a superior and emerging technology for fire control radars are discussed.

  6. RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doebber, I.; Dean, J.; Dominick, J.

    2014-03-01

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This was one of several demonstrations of new and underutilized commercial energy efficiency technologies. The consistent year-round demand for air conditioning and dehumidification in Hawaii provides an advantageous demonstration location for advanced rooftop control (ARC) retrofit kits to packaged rooftop units (RTUs). This report summarizes the field demonstration of ARCs installed on nine RTUs serving a 70,000-ft 2 exchangemore » store (large retail) and two RTUs, each serving small office buildings located on Joint Base Pearl Harbor-Hickam (JBPHH).« less

  7. Weight-Control Information Network

    MedlinePlus

    ... Process Research Training & Career Development Funded Grants & Grant History Research Resources Research at NIDDK Technology Advancement & Transfer Meetings & Events Health Information Diabetes Digestive ...

  8. Access from Space: A New Perspective on NASA's Space Transportation Technology Requirements and Opportunities

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.

    2004-01-01

    The need for robust and reliable access from space is clearly demonstrated by the recent loss of the Space Shuttle Columbia; as well as the NASA s goals to get the Shuttle re-flying and extend its life, build new vehicles for space access, produce successful robotic landers and s a q k retrr? llisrions, and maximize the science content of ambitious outer planets missions that contain nuclear reactors which must be safe for re-entry after possible launch aborts. The technology lynch pin of access from space is hypersonic entry systems such the thermal protection system, along with navigation, guidance and control (NG&C). But it also extends to descent and landing systems such as parachutes, airbags and their control systems. Current space access technology maturation programs such as NASA s Next Generation Launch Technology (NGLT) program or the In-Space Propulsion (ISP) program focus on maturing laboratory demonstrated technologies for potential adoption by specific mission applications. A key requirement for these programs success is a suitable queue of innovative technologies and advanced concepts to mature, including mission concepts enabled by innovative, cross cutting technology advancements. When considering space access, propulsion often dominates the capability requirements, as well as the attention and resources. From the perspective of access from space some new cross cutting technology drivers come into view, along with some new capability opportunities. These include new miniature vehicles (micro, nano, and picosats), advanced automated systems (providing autonomous on-orbit inspection or landing site selection), and transformable aeroshells (to maximize capabilities and minimize weight). This paper provides an assessment of the technology drivers needed to meet future access from space mission requirements, along with the mission capabilities that can be envisioned from innovative, cross cutting access from space technology developments.

  9. Success Stories in Control: Nonlinear Dynamic Inversion Control

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2010-01-01

    NASA plays an important role in advancing the state of the art in flight control systems. In the case of Nonlinear Dynamic Inversion (NDI) NASA supported initial implementation of the theory in an aircraft and demonstration in a space vehicle. Dr. Dale Enns of Honeywell Aerospace Advanced Technology performed this work in cooperation with NASA and under NASA contract. Honeywell and Lockheed Martin were subsequently contracted by AFRL to create "Design Guidelines for Multivariable Control Theory". This foundational work directly contributed to the advancement of the technology and the credibility of the control law as a design option. As a result Honeywell collaborated with Lockheed Martin to produce a Nonlinear Dynamic Inversion controller for the X-35 and subsequently Lockheed Martin did the same for the production Lockheed Martin F-35 vehicle. The theory behind NDI is to use a systematic generalized approach to controlling a vehicle. Using general aircraft nonlinear equations of motion and onboard aerodynamic, mass properties, and engine models specific to the vehicle, a relationship between control effectors and desired aircraft motion can be formulated. Using this formulation a control combination is used that provides a predictable response to commanded motion. Control loops around this formulation shape the response as desired and provide robustness to modeling errors. Once the control law is designed it can be used on a similar class of vehicle with only an update to the vehicle specific onboard models.

  10. Proceedings, Annual Meeting, Aquatic Plant Control Research Program (20th) Held at Atlanta, Georgia on 18-21 November 1985.

    DTIC Science & Technology

    1986-06-01

    Technology Development -Ed A. Theriot, WES Chemical Control Technology Development -Howard E. Westerdahl , WES 12:00 noon LUNCH iv 1:30 p.m. APCRP...PO Box 631 Vicksburg, MS 39180-0631 Vicksburg, MS 39180-0631 VkDan Thayer Howard Westerdahl Center for Aquatic Weeds USAE Waterways Experiment 7922...Technology Development, A Review by Howard E. Westerdahl * INTRODUCTION Over the past 8 years many advancements and a few disappointing events occurred that

  11. Comparative Evaluation of Energy Measurement Models for Transit Systems

    DOT National Transportation Integrated Search

    1984-02-01

    Recent advances in solid state control technology have led to chopper-controlled propulsion systems in urban rail transit applications. Such systems offer the potential for superior train performance through increased train propulsion efficiency and ...

  12. Expanding Robust HCCI Operation with Advanced Valve and Fuel Control Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, J. P.; Confer, K.

    2012-09-11

    Delphi Automotive Systems and ORNL established this CRADA to advance the commercialization potential of the homogeneous charge compression ignition (HCCI) advanced combustion strategy for gasoline engine platforms. HCCI combustion has been shown by others to produce high diesel-like efficiency on a gasoline engine platform while simultaneously producing low NOX and particulate matter emissions. However, the commercialization barriers that face HCCI combustion are significant, with requirements for a more active engine control system, likely with next-cycle closed-loop feedback control, and with advanced valve train technologies to enable negative valve overlap conditions. In the partnership between Delphi and ORNL, each organization broughtmore » a unique and complementary set of skills to the project. Delphi has made a number of breakthroughs with production-intent valve train technologies and controls in recent years to make a part time production-intent HCCI engine plausible. ORNL has extensive knowledge and expertise with HCCI combustion, and also has a versatile research engine with hydraulic valve actuation (HVA) that is useful for guiding production of a cam-based HCCI system. Partnering these knowledge bases and capabilities was essential towards making progress to better understand HCCI combustion and the commercialization barriers that it faces. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided guidance to ORNL regarding operational strategies to investigate on their single-cylinder research engine with HVA and data from their experimental multi-cylinder engine for modeling. ORNL provided single-cylinder engine data and modeling results.« less

  13. Prototype Tool and Focus Group Evaluation for an Advanced Trajectory-Based Operations Concept

    NASA Technical Reports Server (NTRS)

    Guerreiro, Nelson M.; Jones, Denise R.; Barmore, Bryan E.; Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Ahmad, Nash'at N.

    2017-01-01

    Trajectory-based operations (TBO) is a key concept in the Next Generation Air Transportation System transformation of the National Airspace System (NAS) that will increase the predictability and stability of traffic flows, support a common operational picture through the use of digital data sharing, facilitate more effective collaborative decision making between airspace users and air navigation service providers, and enable increased levels of integrated automation across the NAS. NASA has been developing trajectory-based systems to improve the efficiency of the NAS during specific phases of flight and is now also exploring Advanced 4-Dimensional Trajectory (4DT) operational concepts that will integrate these technologies and incorporate new technology where needed to create both automation and procedures to support gate-to-gate TBO. A TBO Prototype simulation toolkit has been developed that demonstrates initial functionality of an Advanced 4DT TBO concept. Pilot and controller subject matter experts (SMEs) were brought to the Air Traffic Operations Laboratory at NASA Langley Research Center for discussions on an Advanced 4DT operational concept and were provided an interactive demonstration of the TBO Prototype using four example scenarios. The SMEs provided feedback on potential operational, technological, and procedural opportunities and concerns. This paper describes an Advanced 4DT operational concept, the TBO Prototype, the demonstration scenarios and methods used, and the feedback obtained from the pilot and controller SMEs in this focus group activity.

  14. PTC test bed upgrades to provide ACSES testing support capabilities at transportation technology center.

    DOT National Transportation Integrated Search

    2015-06-01

    FRA Task Order 314 upgraded the Positive Train Control (PTC) Test Bed at the Transportation Technology Center to support : testing of PTC systems, components, and related equipment associated with the Advanced Civil Speed Enforcement System : (ACSES)...

  15. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design and development of an advanced Czochralski crystal grower are described. Several exhaust gas analysis system equipment specifications studied are discussed. Process control requirements were defined and design work began on the melt temperature, melt level, and continuous diameter control. Sensor development included assembly and testing of a bench prototype of a diameter scanner system.

  16. Multiple access techniques and spectrum utilization of the GLOBALSTAR mobile satellite system

    NASA Astrophysics Data System (ADS)

    Louie, Ming; Cohen, Michel; Rouffet, Denis; Gilhousen, Klein S.

    The GLOBALSTAR System is a Low Earth Orbit (LEO) satellite-based mobile communications system that is interoperable with the current and future Public Land Mobile Network (PLMN). The GLOBALSTAR System concept is based upon technological advancement in two key areas: (1) the advancement in LEO satellite technology; (2) the advancement in cellular telephone technology, including the commercial applications of Code Division Multiple Access (CDMA) technologies, and of the most recent progress in Time Division Multiple Access technologies. The GLOBALSTAR System uses elements of CDMA, Frequency Division Multiple Access (FDMA), and Time Division Multiple Access (TDMA) technology, combining with satellite Multiple Beam Antenna (MBA) technology, to arrive at one of the most efficient modulation and multiple access system ever proposed for a satellite communications system. The technology used in GLOBALSTAR exploits the following techniques in obtaining high spectral efficiency and affordable cost per channel, with minimum coordination among different systems: power control, in open and closed loops, voice activation, spot beam satellite antenna for frequency reuse, weighted satellite antenna gain, multiple satellite coverage, and handoff between satellites. The GLOBALSTAR system design will use the following frequency bands: 1610-1626.5 MHz for up-link and 2483.5-2500 MHz for down-link.

  17. Advances in welding science: A perspective

    NASA Astrophysics Data System (ADS)

    David, S. A.; Vitek, J. M.; Babu, S. S.; Debroy, T.

    The ultimate goal of welding technology is to improve the joint integrity and increase productivity. Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based tailoring of composition, structure, and properties of welds with intelligent control and automation of the welding processes.

  18. A Review of Noise and Vibration Control Technologies for Rotorcraft Transmissions

    NASA Technical Reports Server (NTRS)

    Scheidler, Justin J.; Asnani, Vivake M.

    2016-01-01

    An expanded commercial use of rotorcraft can alleviate runway congestion and improve the accessibility of routine air travel. To date, commercial use has been hindered by excessive cabin noise. The primary noise source is structure-borne vibration originating from the main rotor gearbox. Despite significant advancements in gear design, the gear mesh tones generated often exceed 100 dB. This paper summarizes the findings of a literature survey of vibration control technologies that serve to attenuate this vibration near the source, before it spreads into the airframe and produces noise. The scope is thus limited to vibration control treatments and modifications of the gears, driveline, housing structures, and the strut connections to the airframe. The findings of the literature are summarized and persistent and unresolved issues are identified. An emphasis is placed on components and systems that have been demonstrated in flight vehicles. Then, a discussion is presented of emerging technologies that have the potential to make significant advancements over the state of the art.

  19. Small Satellite Propulsion Options

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Oleson, Steven R.; Curran, Francis M.; Schneider, Steven J.

    1994-01-01

    Advanced chemical and low power electric propulsion offer attractive options for small satellite propulsion. Applications include orbit raising, orbit maintenance, attitude control, repositioning, and deorbit of both Earth-space and planetary spacecraft. Potential propulsion technologies for these functions include high pressure Ir/Re bipropellant engines, very low power arcjets, Hall thrusters, and pulsed plasma thrusters, all of which have been shown to operate in manners consistent with currently planned small satellites. Mission analyses show that insertion of advanced propulsion technologies enables and/or greatly enhances many planned small satellite missions. Examples of commercial, DoD, and NASA missions are provided to illustrate the potential benefits of using advanced propulsion options on small satellites.

  20. Baseline Assessment and Prioritization Framework for IVHM Integrity Assurance Enabling Capabilities

    NASA Technical Reports Server (NTRS)

    Cooper, Eric G.; DiVito, Benedetto L.; Jacklin, Stephen A.; Miner, Paul S.

    2009-01-01

    Fundamental to vehicle health management is the deployment of systems incorporating advanced technologies for predicting and detecting anomalous conditions in highly complex and integrated environments. Integrated structural integrity health monitoring, statistical algorithms for detection, estimation, prediction, and fusion, and diagnosis supporting adaptive control are examples of advanced technologies that present considerable verification and validation challenges. These systems necessitate interactions between physical and software-based systems that are highly networked with sensing and actuation subsystems, and incorporate technologies that are, in many respects, different from those employed in civil aviation today. A formidable barrier to deploying these advanced technologies in civil aviation is the lack of enabling verification and validation tools, methods, and technologies. The development of new verification and validation capabilities will not only enable the fielding of advanced vehicle health management systems, but will also provide new assurance capabilities for verification and validation of current generation aviation software which has been implicated in anomalous in-flight behavior. This paper describes the research focused on enabling capabilities for verification and validation underway within NASA s Integrated Vehicle Health Management project, discusses the state of the art of these capabilities, and includes a framework for prioritizing activities.

  1. Plant growth chamber based on space proven controlled environment technology

    NASA Astrophysics Data System (ADS)

    Ignatius, Ronald W.; Ignatius, Matt H.; Imberti, Henry J.

    1997-01-01

    Quantum Devices, Inc., in conjunction with Percival Scientific, Inc., and the Wisconsin Center for Space Automation and Robotics (WCSAR) have developed a controlled environment plant growth chamber for terrestrial agricultural and scientific applications. This chamber incorporates controlled environment technology used in the WCSAR ASTROCULTURE™ flight unit for conducting plant research on the Space Shuttle. The new chamber, termed CERES 2010, features air humidity, temperature, and carbon dioxide control, an atmospheric contaminant removal unit, an LED lighting system, and a water and nutrient delivery system. The advanced environment control technology used in this chamber will increase the reliability and repeatability of environmental physiology data derived from plant experiments conducted in this chamber.

  2. Integrated Application of Active Controls (IAAC) Technology to an Advanced Subsonic Transport: Project Plan

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The state of the art of active controls technology (ACT) and a recommended ACT development program plan are reviewed. The performance benefits and cost of ownership of an integrated application of ACT to civil transport aircraft is to be assessed along with the risk and laboratory and/or flight experiments designed to reduce the technical risks to a commercially acceptable level.

  3. Future Automotive Aftertreatment Solutions: The 150°C Challenge Workshop Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zammit, Michael; DiMaggio, Craig L.; Kim, Chang H.

    2013-10-15

    With future fuel economy standards enacted, the U.S. automotive manufacturers (OEMs) are committed to pursuing a variety of high risk/highly efficient stoichiometric and lean combustion strategies to achieve superior performance. In recognition of this need, the U.S. Department of Energy (DOE) has partnered with domestic automotive manufacturers through U.S. DRIVE to develop these advanced technologies. However, before these advancements can be introduced into the U.S. market, they must also be able to meet increasingly stringent emissions requirements. A significant roadblock to this implementation is the inability of current catalyst and aftertreatment technologies to provide the required activity at the muchmore » lower exhaust temperatures that will accompany highly efficient combustion processes and powertrain strategies. Therefore, the goal of this workshop and report is to create a U.S. DRIVE emission control roadmap that will identify new materials and aftertreatment approaches that offer the potential for 90% conversion of emissions at low temperature (150°C) and are consistent with highly efficient combustion technologies currently under investigation within U.S. DRIVE Advanced Combustion and Emission Control (ACEC) programs.« less

  4. Material Protection, Accounting, and Control Technologies (MPACT): Modeling and Simulation Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipiti, Benjamin; Dunn, Timothy; Durbin, Samual

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal. This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools willmore » consist of instrumentation and devices as well as computer software for modeling. To aid in framing its long-term goal, during FY16, a modeling and simulation roadmap is being developed for three major areas of investigation: (1) radiation transport and sensors, (2) process and chemical models, and (3) shock physics and assessments. For each area, current modeling approaches are described, and gaps and needs are identified.« less

  5. Advanced Research Projects Agency counterdrug program

    NASA Astrophysics Data System (ADS)

    Pennella, John J.

    1994-03-01

    The Department of Defense (DoD), in support of the National Drug Control Strategy, has designated that detecting and countering the production, trafficking and use of illegal drugs is a high priority national security mission. The Advanced Research Projects Agency (ARPA) Counterdrug Program is assisting DoD in this objective by developing technology and prototype systems to enhance the capabilities of the DoD and civilian law enforcement agencies, consistent with the DoD mission and the supply reduction goals of the National Drug Control Strategy. The objective of this paper is to summarize the current ARPA Counterdrug Program, with special emphasis on the current efforts and future plans for developing technology to meet the National needs for Non-Intrusive Inspection.

  6. Environmental control and life support system requirements and technology needs for advanced manned space missions

    NASA Technical Reports Server (NTRS)

    Powell, Ferolyn T.; Sedej, Melaine; Lin, Chin

    1987-01-01

    NASA has completed an environmental control and life support system (ECLSS) technology R&D plan for advanced missions which gave attention to the drivers (crew size, mission duration, etc.) of a range of manned missions under consideration. Key planning guidelines encompassed a time horizon greater than 50 years, funding resource requirements, an evolutionary approach to goal definition, and the funding of more than one approach to satisfy a given perceived requirement. Attention was given to the ECLSS requirements of transportation and service vehicles, platforms, bases and settlements, ECLSS functions and average load requirements, unique drivers for various missions, and potentially exploitable commonalities among vehicles and habitats.

  7. ATP Interior Noise Technology and Flight Demonstration Program

    NASA Technical Reports Server (NTRS)

    Stephens, David G.; Powell, Clemans A.

    1988-01-01

    The paper provides an overview of the ATP (Advanced Turboprop Program) acoustics program with emphasis on the NASA technology program and the recent NASA/Industry demonstration programs aimed at understanding and controlling passenger cabin noise. Technology developments in propeller (source) noise, cabin noise transmission, and subjective acoustics are described. Finally, an overview of the industry demonstrator programs is presented.

  8. Space station systems technology study (add-on task). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1985-01-01

    System concepts were characterized in order to define cost versus benefits for autonomous functional control and for controls and displays for OMV, OTV, and spacecraft servicing and operation. The attitude control topic focused on characterizing the Space Station attitude control problem through simulation of control system responses to structural disturbances. The first two topics, mentioned above, focused on specific technology items that require advancement in order to support an early 1990s initial launch of a Space Station, while the attitude control study was an exploration of the capability of conventional controller techniques.

  9. Preliminary design of a supersonic cruise aircraft high-pressure turbine

    NASA Technical Reports Server (NTRS)

    Aceto, L. D.; Calderbank, J. C.

    1983-01-01

    Development of the supersonic cruise aircraft engine continued in this National Aeronautics and Space Administration (NASA) sponsored Pratt and Whitney program for the Preliminary Design of an Advanced High-Pressure Turbine. Airfoil cooling concepts and the technology required to implement these concepts received particular emphasis. Previous supersonic cruise aircraft mission studies were reviewed and the Variable Stream Control Engine (VSCE) was chosen as the candidate or the preliminary turbine design. The design was evaluated for the supersonic cruise mission. The advanced technology to be generated from these designs showed benefits in the supersonic cruise application and subsonic cruise application. The preliminary design incorporates advanced single crystal materials, thermal barrier coatings, and oxidation resistant coatings for both the vane and blade. The 1990 technology vane and blade designs have cooled turbine efficiency of 92.3 percent, 8.05 percent Wae cooling and a 10,000 hour life. An alternate design with 1986 technology has 91.9 percent efficiency and 12.43 percent Wae cooling at the same life. To achieve these performance and life results, technology programs must be pursued to provide the 1990's technology assumed for this study.

  10. Status of NO sub x control for coal-fired power plants

    NASA Technical Reports Server (NTRS)

    Teixeira, D. P.

    1978-01-01

    The status of technologies for controlling emissions of oxides of nitrogen (NOx) from coal-fired power plants is reviewed. A discussion of current technology as well as future NOx control approaches is presented. Advanced combustion approaches are included as well as post-combustion alternatives such as catalytic and noncatalytic ammonia-bases systems and wet scrubbing. Special emphasis is given to unresolved development issues as they relate to practical applications on coal-fired power plants.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liss, W.; Dybel, M.; West, R.

    This report covers the first year's work performed by the Gas Technology Institute and Encorp Inc. under subcontract to the National Renewable Energy Laboratory. The objective of this three-year contract is to develop innovative grid interconnection and control systems. This supports the advancement of distributed generation in the marketplace by making installations more cost-effective and compatible across the electric power and energy management systems. Specifically, the goals are: (1) To develop and demonstrate cost-effective distributed power grid interconnection products and software and communication solutions applicable to improving the economics of a broad range of distributed power systems, including existing, emerging,more » and other power generation technologies. (2) To enhance the features and capabilities of distributed power products to integrate, interact, and provide operational benefits to the electric power and advanced energy management systems. This includes features and capabilities for participating in resource planning, the provision of ancillary services, and energy management. Specific topics of this report include the development of an advanced controller, a power sensing board, expanded communication capabilities, a revenue-grade meter interface, and a case study of an interconnection distributed power system application that is a model for demonstrating the functionalities of the design of the advanced controller.« less

  12. F-15 IFCS: Intelligent Flight Control System

    NASA Technical Reports Server (NTRS)

    Bosworth, John

    2007-01-01

    This viewgraph presentation describes the F-15 Intelligent Flight Control System (IFCS). The goals of this project include: 1) Demonstrate revolutionary control approaches that can efficiently optimize aircraft performance in both normal and failure conditions; and 2) Demonstrate advance neural network-based flight control technology for new aerospace systems designs.

  13. Systems Analysis of Life Support for Long-Duration Missions

    NASA Technical Reports Server (NTRS)

    Drysdale, Alan E.; Maxwell, Sabrina; Ewert, Michael K.; Hanford, Anthony J.

    2000-01-01

    Work defining advanced life support (ALS) technologies and evaluating their applicability to various long-duration missions has continued. Time-dependent and time-invariant costs have been estimated for a variety of life support technology options, including International Space Station (ISS) environmental control and life support systems (ECLSS) technologies and improved options under development by the ALS Project. These advanced options include physicochemical (PC) and bioregenerative (BIO) technologies, and may in the future include in-situ resource utilization (ISRU) in an attempt to reduce both logistics costs and dependence on supply from Earth. PC and bioregenerative technologies both provide possibilities for reducing mission equivalent system mass (ESM). PC technologies are most advantageous for missions of up to several years in length, while bioregenerative options are most appropriate for longer missions. ISRU can be synergistic with both PC and bioregenerative options.

  14. Performance of Water Recirculation Loop Maintenance Components for the Advanced Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a recirculating control loop which had no water quality maintenance. Results show that periodic water maintenance can improve performance of the SWME. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage of this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the evaluation of water recirculation maintenance components was to enhance the robustness of the SWME through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A patented bed design that was developed for a United Technologies Aerospace System military application provided a low pressure drop means for water maintenance in the SWME recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for the ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  15. Advanced Control Surface Seal Development at NASA GRC for Future Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2003-01-01

    NASA s Glenn Research Center (GRC) is developing advanced control surface seal technologies for future space launch vehicles as part of the Next Generation Launch Technology project (NGLT). New resilient seal designs are currently being fabricated and high temperature seal preloading devices are being developed as a means of improving seal resiliency. GRC has designed several new test rigs to simulate the temperatures, pressures, and scrubbing conditions that seals would have to endure during service. A hot compression test rig and hot scrub test rig have been developed to perform tests at temperatures up to 3000 F. Another new test rig allows simultaneous seal flow and scrub tests at room temperature to evaluate changes in seal performance with scrubbing. These test rigs will be used to evaluate the new seal designs. The group is also performing tests on advanced TPS seal concepts for Boeing using these new test facilities.

  16. Advanced Launch System (ALS) actuation and power systems impact operability and cost

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  17. Advanced Launch System (ALS): Electrical actuation and power systems improve operability and cost picture

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  18. Advanced launch system (ALS) - Electrical actuation and power systems improve operability and cost picture

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrrical power system and controls for all aviation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a sdpecific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military ans civilian aircraft, lunar/Martian vehicles, and a multitude of comercial applications.

  19. Technology Advancements Enhance Aircraft Support of Experiment Campaigns

    NASA Technical Reports Server (NTRS)

    Vachon, Jacques J.

    2009-01-01

    For over 30 years, the NASA Airborne Science Program has provided airborne platforms for space bound instrument development, for calibrating new and existing satellite systems, and for making in situ and remote sensing measurements that can only be made from aircraft. New technologies have expanded the capabilities of aircraft that are operated for these missions. Over the last several years a new technology investment portfolio has yielded improvements that produce better measurements for the airborne science communities. These new technologies include unmanned vehicles, precision trajectory control and advanced telecommunications capabilities. We will discuss some of the benefits of these new technologies and systems which aim to provide users with more precision, lower operational costs, quicker access to data, and better management of multi aircraft and multi sensor campaigns.

  20. Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, K.H.

    1993-06-01

    The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermalmore » energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.« less

  1. Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump

    DOE PAGES

    Melin, Alexander M.; Kisner, Roger A.

    2018-04-03

    Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less

  2. Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melin, Alexander M.; Kisner, Roger A.

    Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less

  3. Advanced extravehicular protective systems

    NASA Technical Reports Server (NTRS)

    Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.

    1972-01-01

    New technologies are identified and recommended for developing a regenerative portable life support system that provides protection for extravehicular human activities during long duration missions on orbiting space stations, potential lunar bases, and possible Mars landings. Parametric subsystems analyses consider: thermal control, carbon dioxide control, oxygen supply, power supply, contaminant control, humidity control, prime movers, and automatic temperature control.

  4. Advanced technology optical telescopes IV; Proceedings of the Meeting, Tucson, AZ, Feb. 12-16, 1990. Parts 1 & 2

    NASA Technical Reports Server (NTRS)

    Barr, Lawrence D. (Editor)

    1990-01-01

    The present conference on the current status of large, advanced-technology optical telescope development and construction projects discusses topics on such factors as their novel optical system designs, the use of phased arrays, seeing and site performance factors, mirror fabrication and testing, pointing and tracking techniques, mirror thermal control, structural design strategies, mirror supports and coatings, and the control of segmented mirrors. Attention is given to the proposed implementation of the VLT Interferometer, the first diffraction-limited astronomical images with adaptive optics, a fiber-optic telescope using a large cross-section image-transmitting bundle, the design of wide-field arrays, Hartmann test data reductions, liquid mirrors, inertial drives for telescope pointing, temperature control of large honeycomb mirrors, evaporative coatings for very large telescope mirrors, and the W. M. Keck telescope's primary mirror active control system software.

  5. Flight control systems development and flight test experience with the HiMAT research vehicles

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Earls, Michael R.

    1988-01-01

    Two highly maneuverable aircraft technology (HiMAT) remotely piloted vehicles were flown a total of 26 flights. These subscale vehicles were of advanced aerodynamic configuration with advanced technology concepts such as composite and metallic structures, digital integrated propulsion control, and ground (primary) and airborne (backup) relaxed static stability, digital fly-by-wire control systems. Extensive systems development, checkout, and flight qualification were required to conduct the flight test program. The design maneuver goal was to achieve a sustained 8-g turn at Mach 0.9 at an altitude of 25,000 feet. This goal was achieved, along with the acquisition of high-quality flight data at subsonic and supersonic Mach numbers. Control systems were modified in a variety of ways using the flight-determined aerodynamic characteristics. The HiMAT program was successfully completed with approximately 11 hours of total flight time.

  6. Advanced Smart Structures Flight Experiments for Precision Spacecraft

    NASA Astrophysics Data System (ADS)

    Denoyer, Keith K.; Erwin, R. Scott; Ninneman, R. Rory

    2000-07-01

    This paper presents an overview as well as data from four smart structures flight experiments directed by the U.S. Air Force Research Laboratory's Space Vehicles Directorate in Albuquerque, New Mexico. The Middeck Active Control Experiment $¯Flight II (MACE II) is a space shuttle flight experiment designed to investigate modeling and control issues for achieving high precision pointing and vibration control of future spacecraft. The Advanced Controls Technology Experiment (ACTEX-I) is an experiment that has demonstrated active vibration suppression using smart composite structures with embedded piezoelectric sensors and actuators. The Satellite Ultraquiet Isolation Technology Experiment (SUITE) is an isolation platform that uses active piezoelectric actuators as well as damped mechanical flexures to achieve hybrid passive/active isolation. The Vibration Isolation, Suppression, and Steering Experiment (VISS) is another isolation platform that uses viscous dampers in conjunction with electromagnetic voice coil actuators to achieve isolation as well as a steering capability for an infra-red telescope.

  7. 77 FR 64310 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ..., electronic, mechanical, or other technological collection techniques or other forms of information technology... factor in managing loan programs is controlling the advancement of funds. RUS Form 675 allows this... institutions; Business or other for-profit. Number of Respondents: 250. Frequency of Responses: Reporting: On...

  8. The S02 Concern in Developed Nations

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1976

    1976-01-01

    Delegates of a working group on air pollution problems of the Economic Commission for Europe discussed the status of advanced technologies for controlling man-made emissions of sulfur dioxide. Technologies discussed included: coal washing, oil desulfurization, flue gas desulfurization, scrubbing, residual oil desulfurization, fluidized bed…

  9. Mechanically Pumped Fluid Loop (MPFL) Technologies for Thermal Control of Future Mars Rovers

    NASA Technical Reports Server (NTRS)

    Birur, Gaj; Bhandari, Pradeep; Prina, Mauro; Bame, Dave; Yavrouian, Andre; Plett, Gary

    2006-01-01

    Mechanically pumped fluid loop has been the basis of thermal control architecture for the last two Mars lander and rover missions and is the key part of the MSL thermal architecture. Several MPFL technologies are being developed for the MSL rover include long-life pumps, thermal control valves, mechanical fittings for use with CFC-11 at elevated temperatures of approx.100 C. Over three years of life tests and chemical compatibility tests on these MPFL components show that MPFL technology is mature for use on MSL. The advances in MPFL technologies for MSL Rover will benefit any future MPFL applications on NASA s Moon, Mars and Beyond Program.

  10. WTEC panel report on European nuclear instrumentation and controls

    NASA Technical Reports Server (NTRS)

    White, James D.; Lanning, David D.; Beltracchi, Leo; Best, Fred R.; Easter, James R.; Oakes, Lester C.; Sudduth, A. L.

    1991-01-01

    Control and instrumentation systems might be called the 'brain' and 'senses' of a nuclear power plant. As such they become the key elements in the integrated operation of these plants. Recent developments in digital equipment have allowed a dramatic change in the design of these instrument and control (I&C) systems. New designs are evolving with cathode ray tube (CRT)-based control rooms, more automation, and better logical information for the human operators. As these new advanced systems are developed, various decisions must be made about the degree of automation and the human-to-machine interface. Different stages of the development of control automation and of advanced digital systems can be found in various countries. The purpose of this technology assessment is to make a comparative evaluation of the control and instrumentation systems that are being used for commercial nuclear power plants in Europe and the United States. This study is limited to pressurized water reactors (PWR's). Part of the evaluation includes comparisons with a previous similar study assessing Japanese technology.

  11. Controlled Drug Delivery Using Microdevices

    PubMed Central

    Sanjay, Sharma T.; Dou, Maowei; Fu, Guanglei; Xu, Feng; Li, XiuJun

    2016-01-01

    Therapeutic drugs administered systematically are evenly distributed to the whole body through blood circulation and have to cross many biological barriers before reaching the pathological site. Conventional drug delivery may make drugs inactive or reduce their potency as they may be hydrolyzed or degraded enzymatically and are rapidly excreted through the urinary system resulting in suboptimal concentration of drugs at the desired site. Controlled drug delivery aims to localize the pharmacological activity of the drug to the desired site at desired release rates. The advances made by micro/nanofluidic technologies have provided new opportunities for better-controlled drug delivery. Various components of a drug delivery system can be integrated within a single tiny micro/nanofluidic chip. This article reviews recent advances of controlled drug delivery made by microfluidic/nanofluidic technologies. We first discuss microreservoir-based drug delivery systems. Then we highlight different kinds of microneedles used for controlled drug delivery, followed with a brief discussion about the current limitations and the future prospects of controlled drug delivery systems. PMID:26813304

  12. Analysis and Preliminary Design of an Advanced Technology Transport Flight Control System

    NASA Technical Reports Server (NTRS)

    Frazzini, R.; Vaughn, D.

    1975-01-01

    The analysis and preliminary design of an advanced technology transport aircraft flight control system using avionics and flight control concepts appropriate to the 1980-1985 time period are discussed. Specifically, the techniques and requirements of the flight control system were established, a number of candidate configurations were defined, and an evaluation of these configurations was performed to establish a recommended approach. Candidate configurations based on redundant integration of various sensor types, computational methods, servo actuator arrangements and data-transfer techniques were defined to the functional module and piece-part level. Life-cycle costs, for the flight control configurations, as determined in an operational environment model for 200 aircraft over a 15-year service life, were the basis of the optimum configuration selection tradeoff. The recommended system concept is a quad digital computer configuration utilizing a small microprocessor for input/output control, a hexad skewed set of conventional sensors for body rate and body acceleration, and triple integrated actuators.

  13. Controlled Drug Delivery Using Microdevices.

    PubMed

    Sanjay, Sharma T; Dou, Maowei; Fu, Guanglei; Xu, Feng; Li, XiuJun

    Therapeutic drugs administered systematically are evenly distributed to the whole body through blood circulation and have to cross many biological barriers before reaching the pathological site. Conventional drug delivery may make drugs inactive or reduce their potency as they may be hydrolyzed or degraded enzymatically and are rapidly excreted through the urinary system resulting in suboptimal concentration of drugs at the desired site. Controlled drug delivery aims to localize the pharmacological activity of the drug to the desired site at desired release rates. The advances made by micro/nanofluidic technologies have provided new opportunities for better-controlled drug delivery. Various components of a drug delivery system can be integrated within a single tiny micro/nanofluidic chip. This article reviews recent advances of controlled drug delivery made by microfluidic/nanofluidic technologies. We first discuss microreservoir-based drug delivery systems. Then we highlight different kinds of microneedles used for controlled drug delivery, followed with a brief discussion about the current limitations and the future prospects of controlled drug delivery systems.

  14. FY2017 Advanced Combustion Systems and Fuels Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Advanced Combustion Systems and Fuels Program supports VTO’s goal and focuses early-stage research and development (R&D) to improve understanding of the combustion processes, fuel properties, and emission control technologies while generating knowledge and insight necessary for industry to develop the next generation of engines.

  15. Advanced gas turbines breathe new life into vintage reheat units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-04-01

    This article describes the repowering of reheat units with advanced gas turbines. The topics of the article include a project overview, plant configuration including heat recovery steam generators and the plant-wide distributed control system, upgrade of existing steam turbines, gas turbine technology, reliability, availability, maintenance features, and training.

  16. The use of genomics and chemistry to screen for secondary metabolites in bacillus spp. biocontrol organisms

    USDA-ARS?s Scientific Manuscript database

    Recent advances in DNA sequencing technologies have revolutionized the way we study bacterial biological control strains. These advances have provided the ability to rapidily characterize the secondary metabolite potential of these bacterial strains. A variety of bioinformatics tools have been devel...

  17. Labour analgesia: Recent advances

    PubMed Central

    Pandya, Sunil T

    2010-01-01

    Advances in the field of labour analgesia have tread a long journey from the days of ether and chloroform in 1847 to the present day practice of comprehensive programme of labour pain management using evidence-based medicine. Newer advances include introduction of newer techniques like combined spinal epidurals, low-dose epidurals facilitating ambulation, pharmacological advances like introduction of remifentanil for patient-controlled intravenous analgesia, introduction of newer local anaesthetics and adjuvants like ropivacaine, levobupivacaine, sufentanil, clonidine and neostigmine, use of inhalational agents like sevoflourane for patient-controlled inhalational analgesia using special vaporizers, all have revolutionized the practice of pain management in labouring parturients. Technological advances like use of ultrasound to localize epidural space in difficult cases minimizes failed epidurals and introduction of novel drug delivery modalities like patient-controlled epidural analgesia (PCEA) pumps and computer-integrated drug delivery pumps have improved the overall maternal satisfaction rate and have enabled us to customize a suitable analgesic regimen for each parturient. Recent randomized controlled trials and Cochrane studies have concluded that the association of epidurals with increased caesarean section and long-term backache remains only a myth. Studies have also shown that the newer, low-dose regimes do not have a statistically significant impact on the duration of labour and breast feeding and also that these reduce the instrumental delivery rates thus improving maternal and foetal safety. Advances in medical technology like use of ultrasound for localizing epidural space have helped the clinicians to minimize the failure rates, and many novel drug delivery modalities like PCEA and computer-integrated PCEA have contributed to the overall maternal satisfaction and safety. PMID:21189877

  18. Trends in plant virus epidemiology: opportunities from new or improved technologies.

    PubMed

    Jones, R A C

    2014-06-24

    This review focuses on new or improved technologies currently being applied, or likely to be applied in the future, to worldwide research on plant virus epidemiology. Recent technological advances and innovations provide many opportunities to improve understanding of the way diverse types of plant virus epidemics develop and how to manage them. The review starts at the macro level by considering how recent innovations in remote sensing and precision agriculture can provide valuable information about (i) virus epidemics occurring at continental, regional or district scales (via satellites) and within individual crops (mostly via lightweight unmanned aerial vehicles), and (ii) exactly where to target control measures. It then considers recent improvements in information systems and innovations in modelling that improve (i) understanding of virus epidemics and ability to predict them, and (ii) delivery to end-users of critical advice on control measures, such as Internet-based Decision Support Systems. The review goes on to discuss how advances in analysis of spatiotemporal virus spread patterns within crops can help to enhance understanding of how virus epidemics develop and validate potentially useful virus control measures. At the micro level, the review then considers the many insights that advances in molecular epidemiology can provide about genetic variation within plant virus populations involved in epidemics, and how this variation drives what occurs at the macro level. Next, it describes how recent innovations in virus detection technologies are providing many opportunities to collect and analyse new types, and ever increasing amounts, of data about virus epidemics, and the genetic variability of the virus populations involved. Finally, the implications for plant virus epidemiology of technologies likely to be important in the future are considered. To address looming world food insecurity and threats to plant biodiversity resulting from climate change and rapid population growth, it is important that new and improved technologies that help understand and control epidemics of damaging plant viruses are adopted as smoothly and speedily as possible. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  20. Three-year program to improve critical 1-micron Qsw laser technology for Earth observation

    NASA Astrophysics Data System (ADS)

    Sakaizawa, Daisuke; Chishiki, Yoshikazu; Satoh, Yohei; Hanada, Tatsuyuki; Yamakawa, Shiro; Ogawa, Takayo; Wada, Satoshi; Ishii, Shoken; Mizutani, Kohei; Yasui, Motoaki

    2012-11-01

    Laser remote sensing technologies are valuable for a variety of scientific requirements. These measurement techniques are involved in several earth science areas, including atmospheric chemistry, aerosols and clouds, wind speed and directions, prediction of pollution, oceanic mixed layer depth, vegetation canopy height (biomass), ice sheet, surface topography, and others. Much of these measurements have been performed from the ground to aircraft over the past decades. To improve knowledge of these science areas with transport models (e.g. AGCM), further advances of vertical profile are required. JAXA collaborated with NICT and RIKEN started a new cross-sectional 3-year program to improve a technology readiness of the critical 1-micron wavelengths from 2011. The efficient frequency conversions such as second and third harmonic generation and optical parametric oscillation/generation are applied. A variety of elements are common issues to lidar instruments, which includes heat rejection using high thermal conductivity materials, laser diode life time and reliability, wavelength control, and suppression of contamination control. And the program has invested in several critical areas including advanced laser transmitter technologies to enable science measurements and improvement of knowledge for space-based laser diode arrays, Pockels cells, advanced nonlinear wavelength conversion technology for space-based LIDIRs. Final goal is aim to realize 15 watt class Q-switched pulse laser over 3-year lifetime.

  1. The ENABLER - Based on proven NERVA technology

    NASA Astrophysics Data System (ADS)

    Livingston, Julie M.; Pierce, Bill L.

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial mass in low Earth orbit and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tommorrow's space propulsion needs.

  2. The NASA-Lewis/ERDA solar heating and cooling technology program. [project planning/energy policy

    NASA Technical Reports Server (NTRS)

    Couch, J. P.; Bloomfield, H. S.

    1975-01-01

    Plans by NASA to carry out a major role in a solar heating and cooling program are presented. This role would be to create and test the enabling technology for future solar heating, cooling, and combined heating/cooling systems. The major objectives of the project are to achieve reduction in solar energy system costs, while maintaining adequate performance, reliability, life, and maintenance characteristics. The project approach is discussed, and will be accomplished principally by contract with industry to develop advanced components and subsystems. Advanced hardware will be tested to establish 'technology readiness' both under controlled laboratory conditions and under real sun conditions.

  3. Dynamic Resectorization and Coordination Technology: An Evaluation of Air Traffic Control Complexity

    NASA Technical Reports Server (NTRS)

    Brinton, Christopher R.

    1996-01-01

    The work described in this report is done under contract with the National Aeronautics and Space Administration (NASA) to support the Advanced Air Transportation Technology (AATR) program. The goal of this program is to contribute to and accelerate progress in Advanced Air Transportation Technologies. Wyndemere Incorporated is supporting this goal by studying the complexity of the Air Traffic Specialist's role in maintaining the safety of the Air Transportation system. It is envisioned that the implementation of Free Flight may significantly increase the complexity and difficulty of maintaining this safety. Wyndemere Incorporated is researching potential methods to reduce this complexity. This is the final report for the contract.

  4. Physical properties of particulate matter (PM) from late model heavy-duty diesel vehicles operating with advanced PM and NO x emission control technologies

    NASA Astrophysics Data System (ADS)

    Biswas, Subhasis; Hu, Shaohua; Verma, Vishal; Herner, Jorn D.; Robertson, William H.; Ayala, Alberto; Sioutas, Constantinos

    Emission control technologies designed to meet the 2007 and 2010 emission standards for heavy-duty diesel vehicles (HDDV) remove effectively the non-volatile fraction of particles, but are comparatively less efficient at controlling the semi-volatile components. A collaborative study between the California Air Resources Board (CARB) and the University of Southern California was initiated to investigate the physicochemical and toxicological characteristics of the semi-volatile and non-volatile particulate matter (PM) fractions from HDDV emissions. This paper reports the physical properties, including size distribution, volatility (in terms of number and mass), surface diameter, and agglomeration of particles emitted from HDDV retrofitted with advanced emission control devices. Four vehicles in combination with six after-treatment devices (V-SCRT ®, Z-SCRT ®, CRT ®, DPX, Hybrid-CCRT ®, EPF) were tested under three driving cycles: steady state (cruise), transient (urban dynamometer driving schedule, UDDS), and idle. An HDDV without any control device is served as the baseline vehicle. Substantial reduction of PM mass emissions (>90%) was accomplished for the HDDV operating with advanced emission control technologies. This reduction was not observed for particle number concentrations under cruise conditions, with the exceptions of the Hybrid-CCRT ® and EPF vehicles, which were efficient in controlling both—mass and number emissions. In general, significant nucleation mode particles (<50 nm) were formed during cruise cycles in comparison with the UDDS cycles, which emit higher PM mass in the accumulation mode. The nucleation mode particles (<50 nm) were mainly internally mixed, and evaporated considerably between 150 and 230 °C. Compared to the baseline vehicle, particles from vehicles with controls (except of the Hybrid-CCRT ®) had a higher mass specific surface area.

  5. The outlook for advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Leavens, J. M., Jr.; Schaufele, R. D.; Jones, R. T.; Steiner, J. E.; Beteille, R.; Titcomb, G. A.; Coplin, J. F.; Rowe, B. H.; Lloyd-Jones, D. J.; Overend, W. J.

    1982-01-01

    The technological advances most likely to contribute to advanced aircraft designs and the efficiency, performance, and financial considerations driving the development directions for new aircraft are reviewed. Fuel-efficiency is perceived as the most critical factor for any new aircraft or component design, with most gains expected to come in areas of propulsion, aerodynamics, configurations, structural designs and materials, active controls, digital avionics, laminar flow control, and air-traffic control improvements. Any component area offers an efficiency improvement of 3-12%, with a maximum of 50% possible with a 4000 m range aircraft. Advanced turboprops have potential applications in short and medium haul subsonic aircraft, while a fuel efficient SST may be possible by the year 2000. Further discussion is devoted to the pivoted oblique wing aircraft, lightweight structures, and the necessity for short payback times.

  6. Bladder Control Problems and Bedwetting in Children

    MedlinePlus

    ... Process Research Training & Career Development Funded Grants & Grant History Research Resources Research at NIDDK Technology Advancement & Transfer Meetings & Workshops Health Information Diabetes Digestive ...

  7. Ceramic Technology For Advanced Heat Engines Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramicsmore » for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.« less

  8. Project Longshot: A mission to Alpha Centauri

    NASA Technical Reports Server (NTRS)

    West, Curtis; Chamberlain, Sally; Pagan, Neftali; Stevens, Robert

    1989-01-01

    Project Longshot, an exercise in the Advanced Design Program for Space, had as its destination Alpha Centauri, the closest star system to our own solar system. Alpha Centauri, a trinary star system, is 4.34 light years from earth. Although Project Longshot is impossible based on existing technologies, areas that require further investigation in order to make this feat possible are identified. Three areas where advances in technology are needed are propulsion, data processing for autonomous command and control functions, and reliability. Propulsion, possibly by antimatter annihilation; navigation and navigation aids; reliable hardware and instruments; artificial intelligence to eliminate the need for command telemetry; laser communication; and a reliable, compact, and lightweight power system that converts energy efficiently and reliably present major challenges. Project Longshot promises exciting advances in science and technology and new information concerning the universe.

  9. Communications and Intelligent Systems Division Overview

    NASA Technical Reports Server (NTRS)

    Emerson, Dawn

    2017-01-01

    Provides expertise, and plans, conducts and directs research and engineering development in the competency fields of advanced communications and intelligent systems technologies for applications in current and future aeronautics and space systems.Advances communication systems engineering, development and analysis needed for Glenn Research Center's leadership in communications and intelligent systems technology. Focus areas include advanced high frequency devices, components, and antennas; optical communications, health monitoring and instrumentation; digital signal processing for communications and navigation, and cognitive radios; network architectures, protocols, standards and network-based applications; intelligent controls, dynamics and diagnostics; and smart micro- and nano-sensors and harsh environment electronics. Research and discipline engineering allow for the creation of innovative concepts and designs for aerospace communication systems with reduced size and weight, increased functionality and intelligence. Performs proof-of-concept studies and analyses to assess the impact of the new technologies.

  10. The future challenge for aeropropulsion

    NASA Technical Reports Server (NTRS)

    Rosen, Robert; Bowditch, David N.

    1992-01-01

    NASA's research in aeropropulsion is focused on improving the efficiency, capability, and environmental compatibility for all classes of future aircraft. The development of innovative concepts, and theoretical, experimental, and computational tools provide the knowledge base for continued propulsion system advances. Key enabling technologies include advances in internal fluid mechanics, structures, light-weight high-strength composite materials, and advanced sensors and controls. Recent emphasis has been on the development of advanced computational tools in internal fluid mechanics, structural mechanics, reacting flows, and computational chemistry. For subsonic transport applications, very high bypass ratio turbofans with increased engine pressure ratio are being investigated to increase fuel efficiency and reduce airport noise levels. In a joint supersonic cruise propulsion program with industry, the critical environmental concerns of emissions and community noise are being addressed. NASA is also providing key technologies for the National Aerospaceplane, and is studying propulsion systems that provide the capability for aircraft to accelerate to and cruise in the Mach 4-6 speed range. The combination of fundamental, component, and focused technology development underway at NASA will make possible dramatic advances in aeropropulsion efficiency and environmental compatibility for future aeronautical vehicles.

  11. Technology transfer of military space microprocessor developments

    NASA Astrophysics Data System (ADS)

    Gorden, C.; King, D.; Byington, L.; Lanza, D.

    1999-01-01

    Over the past 13 years the Air Force Research Laboratory (AFRL) has led the development of microprocessors and computers for USAF space and strategic missile applications. As a result of these Air Force development programs, advanced computer technology is available for use by civil and commercial space customers as well. The Generic VHSIC Spaceborne Computer (GVSC) program began in 1985 at AFRL to fulfill a deficiency in the availability of space-qualified data and control processors. GVSC developed a radiation hardened multi-chip version of the 16-bit, Mil-Std 1750A microprocessor. The follow-on to GVSC, the Advanced Spaceborne Computer Module (ASCM) program, was initiated by AFRL to establish two industrial sources for complete, radiation-hardened 16-bit and 32-bit computers and microelectronic components. Development of the Control Processor Module (CPM), the first of two ASCM contract phases, concluded in 1994 with the availability of two sources for space-qualified, 16-bit Mil-Std-1750A computers, cards, multi-chip modules, and integrated circuits. The second phase of the program, the Advanced Technology Insertion Module (ATIM), was completed in December 1997. ATIM developed two single board computers based on 32-bit reduced instruction set computer (RISC) processors. GVSC, CPM, and ATIM technologies are flying or baselined into the majority of today's DoD, NASA, and commercial satellite systems.

  12. Integration and Control of a Battery Balancing System

    DTIC Science & Technology

    2013-12-01

    2. Energy storage comparisons. From [2]. • Storage Technologies Pumped Storage CAES Flow Batteries: PSB VRB ZnBr Metal-Air NaS LHon Ni...Storage Technologies Pumped Storage CAES Flow Batteries: PSB VRB ZnBr Metal-Air NaS LHon Ni-Cd Other Advanced Batteries Lead-Acid

  13. Airframe technology for aircraft energy efficiency. [economic factors

    NASA Technical Reports Server (NTRS)

    James, R. L., Jr.; Maddalon, D. V.

    1984-01-01

    The economic factors that resulted in the implementation of the aircraft energy efficiency program (ACEE) are reviewed and airframe technology elements including content, progress, applications, and future direction are discussed. The program includes the development of laminar flow systems, advanced aerodynamics, active controls, and composite structures.

  14. Technology Against Terrorism: The Federal Effort

    DTIC Science & Technology

    1991-07-01

    control appli - control and airport security plans. Some difficulties cations, irises of those seeking entry would be have arisen: now that specific...Washington International Air- tion. Among more advanced technologies are four of port as a test-bed. Sandia is applying to airport interest: voice...and 300 by 1999. criteria as well as evaluation standards and proce- In further tests carried out at JFK Airport in New dures for future EDS devices

  15. Systems Engineering and Integration for Advanced Life Support System and HST

    NASA Technical Reports Server (NTRS)

    Kamarani, Ali K.

    2005-01-01

    Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.

  16. Advanced systems engineering and network planning support

    NASA Technical Reports Server (NTRS)

    Walters, David H.; Barrett, Larry K.; Boyd, Ronald; Bazaj, Suresh; Mitchell, Lionel; Brosi, Fred

    1990-01-01

    The objective of this task was to take a fresh look at the NASA Space Network Control (SNC) element for the Advanced Tracking and Data Relay Satellite System (ATDRSS) such that it can be made more efficient and responsive to the user by introducing new concepts and technologies appropriate for the 1997 timeframe. In particular, it was desired to investigate the technologies and concepts employed in similar systems that may be applicable to the SNC. The recommendations resulting from this study include resource partitioning, on-line access to subsets of the SN schedule, fluid scheduling, increased use of demand access on the MA service, automating Inter-System Control functions using monitor by exception, increase automation for distributed data management and distributed work management, viewing SN operational control in terms of the OSI Management framework, and the introduction of automated interface management.

  17. Development of selected advanced aerodynamics and active control concepts for commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, A. B.

    1984-01-01

    Work done under the Energy Efficient Transport project in the field of advanced aerodynamics and active controls is summarized. The project task selections focused on the following: the investigation of long-duct nacelle shape variation on interference drag; the investigation of the adequacy of a simple control law for the elastic modes of a wing; the development of the aerodynamic technology at cruise and low speed of high-aspect-ratio supercritical wings of high performance; and the development of winglets for a second-generation jet transport. All the tasks involved analysis and substantial wind tunnel testing. The winglet program also included flight evaluation. It is considered that the technology base has been built for the application of high-aspect-ratio supercritical wings and for the use of winglets on second-generation transports.

  18. The Design and Testing of the LSSIF Advanced Thermal Control System

    NASA Technical Reports Server (NTRS)

    Henson, Robert A.; Keller, John R.

    1995-01-01

    The Life Support Systems Integration Facility (LSSIF) provides a platform to design and evaluate advanced manned space systems at NASA Johnson Space Center (JSC). The LSSIF Early Human Testing Initiative requires the integration of such subsystems to enable human occupancy of the 6 meter chamber for a 90 day closed volume test. The Advanced Thermal Control System (TCS) is an important component of the integrated system by supplying coolant to the subsystems within the chamber, such as the Air Revitalization System. The TCS incorporates an advanced high efficiency, heat pump to reject waste heat from the chamber to an external sink or 'lift' temperature that emulates a Lunar environment. The heat pump is the High Lift Heat Pump, developed by Foster-Miller, Inc., and is the main test article of the TCS. The heat pump prototype utilizes a non-CFC refrigerant in a design where the thermal requirements exceed existing terrestrial technology. These operating requirements provide a unique opportunity to design and test an advanced integrated thermal system and the associated controls. The design, control, and systems integration of the heat pump and the TCS also have terrestrial technology application. This paper addresses the design of the TCS and the heat pump, along with the control scheme to fully test the heat pump. Design approaches utilized in the LSSIF TCS are promoted for implementation in terrestrial thermal systems. The results of the preliminary thermal and fluid analyses used to develop the control of the thermal systems will also be discussed. The paper includes objectives for the 90 day human test and the test setup. Finally, conclusions will be drawn and recommendations for Earth design application are submitted.

  19. Flight control systems development of highly maneuverable aircraft technology /HiMAT/ vehicle

    NASA Technical Reports Server (NTRS)

    Petersen, K. L.

    1979-01-01

    The highly maneuverable aircraft technology (HiMAT) program was conceived to demonstrate advanced technology concepts through scaled-aircraft flight tests using a remotely piloted technique. Closed-loop primary flight control is performed from a ground-based cockpit, utilizing a digital computer and up/down telemetry links. A backup flight control system for emergency operation resides in an onboard computer. The onboard systems are designed to provide fail-operational capabilities and utilize two microcomputers, dual uplink receiver/decoders, and redundant hydraulic actuation and power systems. This paper discusses the design and validation of the primary and backup digital flight control systems as well as the unique pilot and specialized systems interfaces.

  20. Control of flexible structures

    NASA Technical Reports Server (NTRS)

    Russell, R. A.

    1985-01-01

    The requirements for future space missions indicate that many of these spacecraft will be large, flexible, and in some applications, require precision geometries. A technology program that addresses the issues associated with the structure/control interactions for these classes of spacecraft is discussed. The goal of the NASA control of flexible structures technology program is to generate a technology data base that will provide the designer with options and approaches to achieve spacecraft performance such as maintaining geometry and/or suppressing undesired spacecraft dynamics. This technology program will define the appropriate combination of analysis, ground testing, and flight testing required to validate the structural/controls analysis and design tools. This work was motivated by a recognition that large minimum weight space structures will be required for many future missions. The tools necessary to support such design included: (1) improved structural analysis; (2) modern control theory; (3) advanced modeling techniques; (4) system identification; and (5) the integration of structures and controls.

  1. Advanced Oil Recovery Technologies for Improved Recovery From Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark B. Murphy

    The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

  2. Advanced automation of a prototypic thermal control system for Space Station

    NASA Technical Reports Server (NTRS)

    Dominick, Jeff

    1990-01-01

    Viewgraphs on an advanced automation of a prototypic thermal control system for space station are presented. The Thermal Expert System (TEXSYS) was initiated in 1986 as a cooperative project between ARC and JCS as a way to leverage on-going work at both centers. JSC contributed Thermal Control System (TCS) hardware and control software, TCS operational expertise, and integration expertise. ARC contributed expert system and display expertise. The first years of the project were dedicated to parallel development of expert system tools, displays, interface software, and TCS technology and procedures by a total of four organizations.

  3. Simulation and control of the technological processes of metal forming

    NASA Astrophysics Data System (ADS)

    Salikhov, Z. G.; Genkin, A. L.

    2015-11-01

    Theoretical and applied reports in the field of simulation, prediction, and control of the technological processes of metal forming are reviewed. These reports were presented by researchers from Austria, Great Britain, Germany, Italy, Kazakhstan, Canada, the Netherlands, Poland, Russia, the United States, Thailand, Ukraine, Finland, Czech Republic, and Switzerland in international scientific and technical congress on metal forming "OMD-2014. Fundamental Problems. Innovative Materials and Technologies." The advanced innovative trends in MF investigations, which were presented by well-known scientific teams and Russian and foreign companies, are discussed.

  4. Continuation of Crosscutting Technology Development at Cast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Roe-Hoan

    2012-03-31

    This Final Technical Report describes progress made on the sub-projects awarded in the Cooperative Agreement DE-FC26-05NT42457: Continuation of Crosscutting Technology Development at Center for Advanced Separation Technologies (CAST). The final reports for each sub-project are attached in the appendix. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: a) Solid-solid separation b) Solid-liquid separation c) Chemical/Biological Extraction d) Modeling and Control, and e) Environmental Control.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melin, Alexander M.; Kisner, Roger A.; Drira, Anis

    Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings tomore » support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.« less

  6. Proceedings of the 2004 NASA/ONR Circulation Control Workshop, Part 1

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S. (Editor); Joslin, Ronald D. (Editor)

    2005-01-01

    As technological advances influence the efficiency and effectiveness of aerodynamic and hydrodynamic applications, designs and operations, this workshop was intended to address the technologies, systems, challenges and successes specific to Coanda driven circulation control in aerodynamics and hydrodynamics. A major goal of this workshop was to determine the 2004 state-of-the-art in circulation control and understand the roadblocks to its application. The workshop addressed applications, CFD, and experiments related to circulation control, emphasizing fundamental physics, systems analysis, and applied research. The workshop consisted of 34 single session oral presentations and written papers that focused on Naval hydrodynamic vehicles (e.g. submarines), Fixed Wing Aviation, V/STOL platforms, propulsion systems (including wind turbine systems), ground vehicles (automotive and trucks) and miscellaneous applications (e.g., poultry exhaust systems and vacuum systems). Several advanced CFD codes were benchmarked using a two-dimensional NCCR circulation control airfoil. The CFD efforts highlighted inconsistencies in turbulence modeling, separation and performance predictions.

  7. Environmental Systems Test Stand

    NASA Astrophysics Data System (ADS)

    Barta, D.; Young, J.; Ewert, M.; Lee, S.; Wells, P.; Fortson, R.; Castillo, J.

    A test stand has been developed for the evaluation of prototype lighting, environmental control and crop cultivation technologies for plant production within an advanced life support system. Design of the test stand was based on preliminary designs of the center growth bay of the Biomass Production Chamber, one of several modules of the Bioregenerative Planetary Life Support Systems Test Complex (BIO- Plex). It consists of two controlled-environment shelves, each with 4.7 m2 of area for crop growth (150 cm width, 315 cm length). There are two chilled water loops, one for operation at conventional temperatures (5-10C) for air temperature and humidity control and one for operation at higher temperatures (15-50C) for waste heat acquisition and heating. Modular light boxes, utilizing either air-cooled or water- jacketed HPS lamps, have been developed. This modular design will allow for easy replacement of new lighting technologies within the light banks. An advanced data acquisition and control system has been developed utilizing localized, networked- based data acquisition modules and programmed with object-based control software.

  8. Advanced refractory-metal and process technology for the fabrication of x-ray masks

    NASA Astrophysics Data System (ADS)

    Brooks, Cameron J.; Racette, Kenneth C.; Lercel, Michael J.; Powers, Lynn A.; Benoit, Douglas E.

    1999-06-01

    This paper provides an in-depth report of the advanced materials and process technology being developed for x-ray mask manufacturing at IBM. Masks using diamond membranes as replacement for silicon carbide are currently being fabricated. Alternate tantalum-based absorbers, such as tantalum boron, which offer improved etch resolution and critical dimension control, as well as higher x-ray absorption, are also being investigated. In addition to the absorber studies, the development of conductive chromium- based hard-mask films to replace the current silicon oxynitride layer is being explored. The progress of this advanced-materials work, which includes significant enhancements to x-ray mask image-placement performance, will be outlined.

  9. Ceramic Technology for Advanced Heat Engines Project. Semiannual progress report, October 1984-March 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-09-01

    A five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applicationsmore » in these engines.« less

  10. Ceramic technology for advanced heat engines project: Semiannual progress report for April through September 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-03-01

    An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barriermore » and wear applications in these engines.« less

  11. Space Power Architectures for NASA Missions: The Applicability and Benefits of Advanced Power and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.

    2001-01-01

    The relative importance of electrical power systems as compared with other spacecraft bus systems is examined. The quantified benefits of advanced space power architectures for NASA Earth Science, Space Science, and Human Exploration and Development of Space (HEDS) missions is then presented. Advanced space power technologies highlighted include high specific power solar arrays, regenerative fuel cells, Stirling radioisotope power sources, flywheel energy storage and attitude control, lithium ion polymer energy storage and advanced power management and distribution.

  12. Advanced electrical power system technology for the all electric aircraft

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg.

  13. Energy efficient engine preliminary design and integration study

    NASA Technical Reports Server (NTRS)

    Gray, D. E.

    1978-01-01

    The technology and configurational requirements of an all new 1990's energy efficient turbofan engine having a twin spool arrangement with a directly coupled fan and low-pressure turbine, a mixed exhaust nacelle, and a high 38.6:1 overall pressure ratio were studied. Major advanced technology design features required to provide the overall benefits were a high pressure ratio compression system, a thermally actuated advanced clearance control system, lightweight shroudless fan blades, a low maintenance cost one-stage high pressure turbine, a short efficient mixer and structurally integrated engine and nacelle. A conceptual design analysis was followed by integration and performance analyses of geared and direct-drive fan engines with separate or mixed exhaust nacelles to refine previously designed engine cycles. Preliminary design and more detailed engine-aircraft integration analysis were then conducted on the more promising configurations. Engine and aircraft sizing, fuel burned, and airframe noise studies on projected 1990's domestic and international aircraft produced sufficient definition of configurational and advanced technology requirements to allow immediate initiation of component technology development.

  14. Advanced lighting guidelines: 1993. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eley, C.; Tolen, T.M.; Benya, J.R.

    1993-12-31

    The 1993 Advanced Lighting Guidelines document consists of twelve guidelines that provide an overview of specific lighting technologies and design application techniques utilizing energy-efficient lighting practice. Lighting Design Practice assesses energy-efficient lighting strategies, discusses lighting issues, and explains how to obtain quality lighting design and consulting services. Luminaires and Lighting Systems surveys luminaire equipment designed to take advantage of advanced technology lamp products and includes performance tables that allow for accurate estimation of luminaire light output and power input. The additional ten guidelines -- Computer-Aided Lighting Design, Energy-Efficient Fluorescent Ballasts, Full-Size Fluorescent Lamps, Compact Fluorescent Lamps, Tungsten-Halogen Lamps, Metal Halidemore » and HPS Lamps, Daylighting and Lumen Maintenance, Occupant Sensors, Time Scheduling Systems, and Retrofit Control Technologies -- each provide a product technology overview, discuss current products on the lighting equipment market, and provide application techniques. This document is intended for use by electric utility personnel involved in lighting programs, lighting designers, electrical engineers, architects, lighting manufacturers` representatives, and other lighting professionals.« less

  15. 77 FR 28336 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Offset Lithographic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... Technology Transfer and Advancement Act of 1995 (15 U.S.C. 272 note) because application of those... Technology (RACT) for sources covered by EPA's Control Techniques Guidelines (CTG) for offset lithographic..., unless the comment includes information claimed to be Confidential Business Information (CBI) or other...

  16. Teach Efficient Production with Modular Fixturing Pallets

    ERIC Educational Resources Information Center

    Creger, Don W.; Payne, Brent A.

    2010-01-01

    Advances in technology have yielded computer numerical control (CNC) machines and computer-aided manufacturing (CAM) software that saves time and increases productivity in today's industrial world. Training students to understand and use these technologies has become a key ingredient in preparing them for work in industry. Teachers of machining…

  17. Schools Gear Up for "Hypermedia"--A Quantum Leap in Electronic Learning.

    ERIC Educational Resources Information Center

    Trotter, Andrew

    1989-01-01

    A new technological phenomenon known as "hypermedia" or "interactive multimedia" allows the learner to be in control and to access a variety of media with a computer. Advances in information storage technology have placed libraries of documents, sounds, and video and graphic images on laser discs. (MLF)

  18. Military aircraft and missile technology at the Langley Research Center: A selected bibliography

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1980-01-01

    A compilation of reference material is presented on the Langley Research Center's efforts in developing advanced military aircraft and missile technology over the past twenty years. Reference material includes research made in aerodynamics, performance, stability, control, stall-spin, propulsion integration, flutter, materials, and structures.

  19. Automated Water Chemistry Control at University of Virginia Pools.

    ERIC Educational Resources Information Center

    Krone, Dan

    1997-01-01

    Describes the technologically advanced aquatic and fitness center at the University of Virginia. Discusses the imprecise water chemistry control at the former facility and its intensive monitoring requirements. Details the new chemistry control standards initiated in the new center, which ensure constant chlorine and pH levels. (RJM)

  20. Schistosomiasis: The Social Challenge of Controlling a Man-Made Disease

    ERIC Educational Resources Information Center

    Lemma, Aklilu

    1973-01-01

    There is an indication of a method for curbing or controlling schistosomiasis or bilharziasis. Modern technological advances in applied pharmacology have not provided a satisfactory remedy but a simple natural product, an endod berry, has been used to control the disease on a self-help basis. (EB)

  1. HFE safety reviews of advanced nuclear power plant control rooms

    NASA Technical Reports Server (NTRS)

    Ohara, John

    1994-01-01

    Advanced control rooms (ACR's) will utilize human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role and means of interacting with the system. The Nuclear Regulatory Commission (NRC) reviews the human factors engineering (HFE) aspects of HSI's to ensure that they are designed to good HFE principles and support performance and reliability in order to protect public health and safety. However, the only available NRC guidance was developed more than ten years ago, and does not adequately address the human performance issues and technology changes associated with ACR's. Accordingly, a new approach to ACR safety reviews was developed based upon the concept of 'convergent validity'. This approach to ACR safety reviews is described.

  2. Towards a Standard Mixed-Signal Parallel Processing Architecture for Miniature and Microrobotics.

    PubMed

    Sadler, Brian M; Hoyos, Sebastian

    2014-01-01

    The conventional analog-to-digital conversion (ADC) and digital signal processing (DSP) architecture has led to major advances in miniature and micro-systems technology over the past several decades. The outlook for these systems is significantly enhanced by advances in sensing, signal processing, communications and control, and the combination of these technologies enables autonomous robotics on the miniature to micro scales. In this article we look at trends in the combination of analog and digital (mixed-signal) processing, and consider a generalized sampling architecture. Employing a parallel analog basis expansion of the input signal, this scalable approach is adaptable and reconfigurable, and is suitable for a large variety of current and future applications in networking, perception, cognition, and control.

  3. Towards a Standard Mixed-Signal Parallel Processing Architecture for Miniature and Microrobotics

    PubMed Central

    Sadler, Brian M; Hoyos, Sebastian

    2014-01-01

    The conventional analog-to-digital conversion (ADC) and digital signal processing (DSP) architecture has led to major advances in miniature and micro-systems technology over the past several decades. The outlook for these systems is significantly enhanced by advances in sensing, signal processing, communications and control, and the combination of these technologies enables autonomous robotics on the miniature to micro scales. In this article we look at trends in the combination of analog and digital (mixed-signal) processing, and consider a generalized sampling architecture. Employing a parallel analog basis expansion of the input signal, this scalable approach is adaptable and reconfigurable, and is suitable for a large variety of current and future applications in networking, perception, cognition, and control. PMID:26601042

  4. Diverse applications of advanced man-telerobot interfaces

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas A.

    1991-01-01

    Advancements in man-machine interfaces and control technologies used in space telerobotics and teleoperators have potential application wherever human operators need to manipulate multi-dimensional spatial relationships. Bilateral six degree-of-freedom position and force cues exchanged between the user and a complex system can broaden and improve the effectiveness of several diverse man-machine interfaces.

  5. Advances in Electrically Driven Thermal Management

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2017-01-01

    Electrically Driven Thermal Management is a vibrant technology development initiative incorporating ISS based technology demonstrations, development of innovative fluid management techniques and fundamental research efforts. The program emphasizes high temperature high heat flux thermal management required for future generations of RF electronics and power electronic devices. This presentation reviews i.) preliminary results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched on STP-H5 payload in February 2017 ii.) advances in liquid phase flow distribution control iii.) development of the Electrically Driven Liquid Film Boiling Experiment under the NASA Microgravity Fluid Physics Program.

  6. In-space research, technology and engineering experiments and Space Station

    NASA Technical Reports Server (NTRS)

    Tyson, Richard; Gartrell, Charles F.

    1988-01-01

    The NASA Space Station will serve as a technology research laboratory, a payload-servicing facility, and a large structure fabrication and assembly facility. Space structures research will encompass advanced structural concepts and their dynamics, advanced control concepts, sensors, and actuators. Experiments dealing with fluid management will gather data on such fundamentals as multiphase flow phenomena. As requirements for power systems and thermal management grow, experiments quantifying the performance of energy systems and thermal management concepts will be undertaken, together with expanded efforts in the fields of information systems, automation, and robotics.

  7. Application of Advanced Technologies to Small, Short-haul Air Transports

    NASA Technical Reports Server (NTRS)

    Adcock, C.; Coverston, C.; Knapton, B.

    1980-01-01

    A study was conducted of the application of advanced technologies to small, short-haul transport aircraft. A three abreast, 30 passenger design for flights of approximately 100 nautical miles was evaluated. Higher wing loading, active flight control, and a gust alleviation system results in improved ride quality. Substantial savings in fuel and direct operating cost are forecast. An aircraft of this configuration also has significant benefits in forms of reliability and operability which should enable it to sell a total of 450 units through 1990, of which 80% are for airline use.

  8. Advances in traction drive technology

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Anderson, N. E.; Rohn, D. A.

    1983-01-01

    Traction drives are traced from early uses as main transmissions in automobiles at the turn of the century to modern, high-powered traction drives capable of transmitting hundreds of horsepower. Recent advances in technology are described which enable today's traction drive to be a serious candidate for off-highway vehicles and helicopter applications. Improvements in materials, traction fluids, design techniques, power loss and life prediction methods will be highlighted. Performance characteristics of the Nasvytis fixed-ratio drive are given. Promising future drive applications, such as helicopter main transmissions and servo-control positioning mechanisms are also addressed.

  9. The NASA Aircraft Energy Efficiency Program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1978-01-01

    The objective of the NASA Aircraft Energy Efficiency Program is to accelerate the development of advanced technology for more energy-efficient subsonic transport aircraft. This program will have application to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s. Six major technology projects were defined that could result in fuel savings in commercial aircraft: (1) Engine Component Improvement, (2) Energy Efficient Engine, (3) Advanced Turboprops, (4) Energy Efficiency Transport (aerodynamically speaking), (5) Laminar Flow Control, and (6) Composite Primary Structures.

  10. Abstract - Cooperative Research and Development Agreement between Ames National Laboratory and National Energy Technology Laboratory AGMT-0609

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryden, Mark; Tucker, David A.

    The goal of this project is to develop a merged environment for simulation and analysis (MESA) at the National Energy Technology Laboratory’s (NETL) Hybrid Performance (Hyper) project laboratory. The MESA sensor lab developed as a component of this research will provide a development platform for investigating: 1) advanced control strategies, 2) testing and development of sensor hardware, 3) various modeling in-the-loop algorithms and 4) other advanced computational algorithms for improved plant performance using sensors, real-time models, and complex systems tools.

  11. Advanced Computing Technologies for Rocket Engine Propulsion Systems: Object-Oriented Design with C++

    NASA Technical Reports Server (NTRS)

    Bekele, Gete

    2002-01-01

    This document explores the use of advanced computer technologies with an emphasis on object-oriented design to be applied in the development of software for a rocket engine to improve vehicle safety and reliability. The primary focus is on phase one of this project, the smart start sequence module. The objectives are: 1) To use current sound software engineering practices, object-orientation; 2) To improve on software development time, maintenance, execution and management; 3) To provide an alternate design choice for control, implementation, and performance.

  12. Aeronautical-Satellite-Assisted Process Being Developed for Information Exchange Through Network Technologies (Aero-SAPIENT)

    NASA Technical Reports Server (NTRS)

    Zernic, Michael J.

    2001-01-01

    Communications technologies are being developed to address safety issues during aviation travel. Some of these technologies enable the aircraft to be in constant bidirectional communications with necessary systems, people, and other aircraft that are not currently in place today. Networking technologies, wireless datalinks, and advanced avionics techniques are areas of particular importance that the NASA Glenn Research Center has contributed. Glenn, in conjunction with the NASA Ames Research Center, NASA Dryden Flight Research Center, and NASA Langley Research Center, is investigating methods and applications that would utilize these communications technologies. In mid-June 2000, the flight readiness of the network and communications technologies were demonstrated via a simulated aircraft. A van simulating an aircraft was equipped with advanced phased-array antennas (Advanced Communications/Air Traffic Management (AC/ATM) Advanced Air Transportation Technologies (AATT) project) that used commercial Ku-band satellite communications to connect Glenn, Dryden, and Ames in a combined system ground test. This test simulated air-ground bidirectional transport of real-time digital audio, text, and video data via a hybrid network configuration that demonstrated the flight readiness of the network and communications technologies. Specifically, a Controller Pilot Data Link Communications application was used with other applications to demonstrate a multiprotocol capability via Internet-protocol encapsulated ATN (Aeronautical Telecommunications Network) data packets. The significance of this combined ground test is its contribution to the Aero Information Technology Base Program Level I milestone (Software Technology investment area) of a real-time data link for the National Airspace System. The objective of this milestone was to address multiprotocol technology applicable for real-time data links between aircraft, a satellite, and the ground as well as the ability to distribute flight data with multilevel priorities among several sites.

  13. Laboratory diagnosis of tuberculosis: Advances in technology and drug susceptibility testing.

    PubMed

    Oommen, Seema; Banaji, Nandita

    2017-01-01

    There have been rapid technological advances in the detection of Mycobacterium tuberculosis and its drug susceptibility in clinical samples. These include advances in microscopic examination, in vitro culture and application of molecular techniques. The World Health Organization (WHO) has played a large role in evaluating these technologies for their efficacy and feasibility, especially in the developing countries. Amongst these, the Revised National Tuberculosis Control Programme (RNTCP), through its national network of designated microscopy centres and intermediate reference laboratories, has adopted certain technologies that are currently implemented in India. Advances in microscopy technology include fluorescent microscopy using light-emitting diode source, sodium hypochlorite microscopy and vital fluorescent staining of sputum smears. Automation of in vitro culture has markedly reduced the turnaround time (TAT), even in smear-negative samples, and permits simultaneous detection of resistant mutants. Molecular detection of drug resistance has further reduced the TAT, and the cartridge-based nucleic acid amplification test with its performance convenience and rapid results, appears poised to become the future of tuberculosis (TB) diagnosis in all settings, provided the cost of testing is reduced especially for use in private diagnostic settings. This article reviews technologies currently available for the diagnosis of TB, keeping in mind the WHO recommendations and the RNTCP practices. This is a thematic synthesis of data available on diagnosis in literature, preserving the conclusions of the primary studies.

  14. Next Generation Life Support Project Status

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Chullen, Cinda; Pickering, Karen D.; Cox, Marlon; Towsend, Neil; Campbell, Colin; Flynn, Michael; Wheeler, Raymond

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by NASA s Game Changing Development Program. The NGLS Project is developing life support technologies (including water recovery and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processor (AWP). The RCA swing bed and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Advanced Extravehicular Mobility Unit, with focus on test article development and integrated testing in an Advanced PLSS in cooperation with the Advanced Extra Vehicular Activity (EVA) Project. An RCA swing-bed provides integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The VOR technology will significantly increase the number of pressure settings available to the space suit. Current space suit pressure regulators are limited to only two settings whereas the adjustability of the advanced regulator will be nearly continuous. The AWP effort, based on natural biological processes and membrane-based secondary treatment, will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water. This paper will provide a status of technology development activities and future plans.

  15. Terrestrial Planet Finder Coronagraph and Enabling Technologies

    NASA Technical Reports Server (NTRS)

    Ford, Virginia G.

    2005-01-01

    Starlight suppression research is Stowed in Delta IV-H advancing rapidly to approach the required contrast ratio. The current analysis of the TPF Coronagraph system indicates that it is feasible to achieve the stability required by using developing technologies: a) Wave Front Sensing and Control (DMs, control algorithms, and sensing); b) Laser metrology. Yet needed: a) Property data measured with great precision in the required environments; b) Modeling tools that are verified with testbeds.

  16. Active CryoCubeSat

    NASA Technical Reports Server (NTRS)

    Swenson, Charles

    2016-01-01

    The Active CryoCubeSat project will demonstrate an advanced thermal control system for a 6-Unit (6U) CubeSat platform. A miniature, active thermal control system, in which a fluid is circulated in a closed loop from thermal loads to radiators, will be developed. A miniature cryogenic cooler will be integrated with this system to form a two-stage thermal control system. Key components will be miniaturized by using advanced additive manufacturing techniques resulting in a thermal testbed for proving out these technologies. Previous CubeSat missions have not tackled the problem of active thermal control systems nor have any past or current CubeSat missions included cryogenic instrumentation. This Active CryoCubeSat development effort will provide completely new capacities for CubeSats and constitutes a major advancement over the state-of-the-art in CubeSat thermal control.

  17. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hugo, Jacques Victor; Gertman, David Ira

    The new generation of nuclear power plants (NPPs) will likely make use of state-of-the-art technologies in many areas of the plant. The analysis, design, and selection of advanced human–system interfaces (HSIs) constitute an important part of power plant engineering. Designers need to consider the new capabilities afforded by these technologies in the context of current regulations and new operational concepts, which is why they need a more rigorous method by which to plan the introduction of advanced HSIs in NPP work areas. Much of current human factors research stops at the user interface and fails to provide a definitive processmore » for integration of end user devices with instrumentation and control (I&C) and operational concepts. The current lack of a clear definition of HSI technology, including the process for integration, makes characterization and implementation of new and advanced HSIs difficult. This paper describes how new design concepts in the nuclear industry can be analyzed and how HSI technologies associated with new industrial processes might be considered. Furthermore, it also describes a basis for an understanding of human as well as technology characteristics that could be incorporated into a prioritization scheme for technology selection and deployment plans.« less

  19. The ENABLER—based on proven NERVA technology

    NASA Astrophysics Data System (ADS)

    Livingston, Julie M.; Pierce, Bill L.

    1991-01-01

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial Mass In Low Earth Orbit (IMLEO) and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tomorrow's space propulsion needs.

  20. EC93-41094-4

    NASA Image and Video Library

    1993-05-18

    A NASA F/A-18, specially modified to test the newest and most advanced system technologies, on its first research flight on May 21, 1993, at NASA's Dryden Flight Research Facility, Edwards, California. Flown by Dryden in a multi-year, joint NASA/DOD/industry program, the F/A-18 former Navy fighter was modified into a unique Systems Research Aircraft (SRA) to investigate a host of new technologies in the areas of flight controls, airdata sensing and advanced computing. The primary goal of the SRA program was to validate through flight research cutting-edge technologies which could benefit future aircraft and spacecraft by improving efficiency and performance, reducing weight and complexity, with a resultant reduction on development and operational costs.

  1. Hypersonic airbreathing vehicle conceptual design (focus on aero-space plane)

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Martin, John G.

    1989-01-01

    The airbreathing single stage to orbit (SSTO) vehicle design environment is variable-rich, intricately networked and sensitivity intensive. As such, it represents a tremondous technology challenge. Creating a viable design will require sophisticated configuration/synthesis and the synergistic integration of advanced technologies across the discipline spectrum. In design exercises, reductions in the fuel weight-fraction requirements projected for an orbital vehicle concept can result from improvements in aerodynamics/controls, propulsion efficiencies and trajectory optimization; also, gains in the fuel weight-fraction achievable for such a concept can result from improvements in structural design, heat management techniques, and material properties. As these technology advances take place, closure on a viable vehicle design will be realizable.

  2. Advanced Physiological Estimation of Cognitive Status. Part 2

    DTIC Science & Technology

    2011-05-24

    Neurofeedback Algorithms and Gaze Controller EEG Sensor System g.USBamp *, ** • internal 24-bit ADC and digital signal processor • 16 channels (expandable...SUBJECT TERMS EEG eye-tracking mental state estimation machine learning Leonard J. Trejo Pacific Development and Technology LLC 999 Commercial St. Palo...fatigue, overload) Technology Transfer Opportunity Technology from PDT – Methods to acquire various physiological signals ( EEG , EOG, EMG, ECG, etc

  3. Advanced Integrated Power and Attitude Control System (IPACS) study

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission.

  4. 2004 NASA Seal/Secondary Air System Workshop, Volume 1

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The 2004 NASA Seal/Secondary Air System workshop covered the following topics: (1) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (2) Overview of the NASA-sponsored Ultra-Efficient Engine Technology (UEET) program; (3) Overview of NASA Glenn s seal program aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (4) Reviews of NASA prime contractor and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (5) Reviews of material development programs relevant to advanced seals development. The NASA UEET overview illustrated for the reader the importance of advanced technologies, including seals, in meeting future turbine engine system efficiency and emission goals. For example, the NASA UEET program goals include an 8- to 15-percent reduction in fuel burn, a 15-percent reduction in CO2, a 70-percent reduction in NOx, CO, and unburned hydrocarbons, and a 30-dB noise reduction relative to program baselines. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle, as part of NASA s new Exploration Initiative. Plans to develop the necessary mechanism and androgynous seal technologies were reviewed. Seal challenges posed by reusable re-entry space vehicles include high-temperature operation, resiliency at temperature to accommodate gap changes during operation, and durability to meet mission requirements.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitney, S.E.

    This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulationmore » for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.« less

  6. Serial Back-Plane Technologies in Advanced Avionics Architectures

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta

    2005-01-01

    Current back plane technologies such as VME, and current personal computer back planes such as PCI, are shared bus systems that can exhibit nondeterministic latencies. This means a card can take control of the bus and use resources indefinitely affecting the ability of other cards in the back plane to acquire the bus. This provides a real hit on the reliability of the system. Additionally, these parallel busses only have bandwidths in the 100s of megahertz range and EMI and noise effects get worse the higher the bandwidth goes. To provide scalable, fault-tolerant, advanced computing systems, more applicable to today s connected computing environment and to better meet the needs of future requirements for advanced space instruments and vehicles, serial back-plane technologies should be implemented in advanced avionics architectures. Serial backplane technologies eliminate the problem of one card getting the bus and never relinquishing it, or one minor problem on the backplane bringing the whole system down. Being serial instead of parallel improves the reliability by reducing many of the signal integrity issues associated with parallel back planes and thus significantly improves reliability. The increased speeds associated with a serial backplane are an added bonus.

  7. Space station as a vital focus for advancing the technologies of automation and robotics

    NASA Technical Reports Server (NTRS)

    Varsi, Giulio; Herman, Daniel H.

    1988-01-01

    A major guideline for the design of the U.S. Space Station is that the Space Station address a wide variety of functions. These functions include the servicing of unmanned assets in space, the support of commercial labs in space and the efficient management of the Space Station itself; the largest space asset. The technologies of Automation and Robotics have the promise to help in reducing Space Station operating costs and to achieve a highly efficient use of the human in space. The use of advanced automation and artificial intelligence techniques, such as expert systems, in Space Station subsystems for activity planning and failure mode management will enable us to reduce dependency on a mission control center and could ultimately result in breaking the umbilical link from Earth to the Space Station. The application of robotic technologies with advanced perception capability and hierarchical intelligent control to servicing system will enable the servicing of assets either in space or in situ with a high degree of human efficiency. The results of studies leading toward the formulation of an automation and robotics plan for Space Station development are presented.

  8. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2013-10-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45 nm through 14/10 nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques, such as litho-etch-litho-etch, sidewall image transfer, line/cut mask, and self-aligned structures, have been implemented to solution required device scaling. Advances in dry plasma etch process control across wafer uniformity and etch selectivity to both masking materials have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes, such as trilayer etches, aggressive critical dimension shrink techniques, and the extension of resist trim processes, have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across-design variation, defectivity, profile stability within wafer, within lot, and across tools has been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated total patterning solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. We will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  9. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2012-03-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45nm through 14/10nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques such as litho-etch-litho-etch, sidewall image transfer, line/cut mask and self-aligned structures have been implemented to solution required device scaling. Advances in dry plasma etch process control, across wafer uniformity and etch selectivity to both masking materials and have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes such as trilayer etches, aggressive CD shrink techniques, and the extension of resist trim processes have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across design variation, defectivity, profile stability within wafer, within lot, and across tools have been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated Total Patterning Solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. This paper will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  10. The evolution of in vitro fertilization: integration of pharmacology, technology, and clinical care.

    PubMed

    Feinberg, Eve C; Bromer, Jason G; Catherino, William H

    2005-06-01

    For the couple having trouble achieving pregnancy, the options and opportunities for assistance have never been brighter. Options such as controlled ovarian hyperstimulation, in vitro fertilization, and intracytoplasmic sperm injection have been developed over the past five decades and provide hope for couples that previously would have been considered infertile. In vitro fertilization and intracytoplasmic sperm injection represent a coalescence of advances in physiology, endocrinology, pharmacology, technology, and clinical care. In vitro fertilization has assisted well over one million couples in their efforts to start or build a family, and the demand for such services continues to increase. The purpose of this manuscript is to review the pharmacological advances that made controlled ovarian hyperstimulation, and therefore in vitro fertilization and intracytoplasmic sperm injection, possible. We will discuss the early stages of gonadotropin use to stimulate ovarian production of multiple mature eggs, the advances in recombinant technology that allowed purified hormone for therapy, and the use of other hormones to regulate the menstrual cycle such that the likelihood of successful oocyte retrieval and embryo implantation is optimized. Finally, we will review current areas that require particular attention if we are to provide more opportunity for infertile couples.

  11. Ranger© - An Affordable, Advanced, Next-Generation, Dual-Pol, X-Band Weather Radar

    NASA Astrophysics Data System (ADS)

    Stedronsky, Richard

    2014-05-01

    The Enterprise Electronics Corporation (EEC) Ranger© system is a new generation, X-band (3 cm), Adaptive Polarization Doppler Weather Surveillance Radar that fills the gap between high-cost, high-power traditional radar systems and the passive ground station weather sensors. Developed in partnership with the University of Oklahoma Advanced Radar Research Center (ARRC), the system uses relatively low power solid-state transmitters and pulse compression technology to attain nearly the same performance capabilities of much more expensive traditional radar systems. The Ranger© also employs Adaptive Dual Polarization (ADP) techniques to allow Alternating or Simultaneous Dual Polarization capability with total control over the transmission polarization state using dual independent coherent transmitters. Ranger© has been designed using the very latest technology available in the industry and the technical and manufacturing experience gained through over four decades of successful radar system design and production at EEC. The entire Ranger© design concept emphasizes precision, stability, reliability, and value using proven solid state technology combined with the most advanced motion control system ever conceived for weather radar. Key applications include meteorology, hydrology, aviation, offshore oil/gas drilling, wind energy, and outdoor event situational awareness.

  12. Lights and Larvae

    ERIC Educational Resources Information Center

    TItlow, Josh; Anderson, Heidi; Cooper, Robin

    2014-01-01

    Switching genes between organisms and controlling an animal's brain using lasers may seem like science fiction, but with advancements in a technique called optogenetics, such experiments are now common in neuroscience research. Optogenetics combines recombinant DNA technology with a controlled light source to help researchers address…

  13. A Plan for Revolutionary Change in Gas Turbine Engine Control System Architecture

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.

    2011-01-01

    The implementation of Distributed Engine Control technology on the gas turbine engine has been a vexing challenge for the controls community. A successful implementation requires the resolution of multiple technical issues in areas such as network communications, power distribution, and system integration, but especially in the area of high temperature electronics. Impeding the achievement has been the lack of a clearly articulated message about the importance of the distributed control technology to future turbine engine system goals and objectives. To resolve these issues and bring the technology to fruition has, and will continue to require, a broad coalition of resources from government, industry, and academia. This presentation will describe the broad challenges facing the next generation of advanced control systems and the plan which is being put into action to successfully implement the technology on the next generation of gas turbine engine systems.

  14. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control. Part 1; New Technologies and Validation Approach

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem

    2010-01-01

    Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, four experiments Thermal Loop, Dependable Microprocessor, SAILMAST, and UltraFlex - were conducted to advance the maturity of individual technologies from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. This paper presents the new technologies and validation approach of the Thermal Loop experiment. The Thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Details of the thermal loop concept, technical advances, benefits, objectives, level 1 requirements, and performance characteristics are described. Also included in the paper are descriptions of the test articles and mathematical modeling used for the technology validation. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for TRL 4 and TRL 5 validations, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. Capabilities and limitations of the analytical model are also addressed.

  15. Space Station Freedom ECLSS: A step toward autonomous regenerative life support systems

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.

    1990-01-01

    The Environmental Control and Life Support System (ECLSS) is a Freedom Station distributed system with inherent applicability to extensive automation primarily due to its comparatively long control system latencies. These allow longer contemplation times in which to form a more intelligent control strategy and to prevent and diagnose faults. The regenerative nature of the Space Station Freedom ECLSS will contribute closed loop complexities never before encountered in life support systems. A study to determine ECLSS automation approaches has been completed. The ECLSS baseline software and system processes could be augmented with more advanced fault management and regenerative control systems for a more autonomous evolutionary system, as well as serving as a firm foundation for future regenerative life support systems. Emerging advanced software technology and tools can be successfully applied to fault management, but a fully automated life support system will require research and development of regenerative control systems and models. The baseline Environmental Control and Life Support System utilizes ground tests in development of batch chemical and microbial control processes. Long duration regenerative life support systems will require more active chemical and microbial feedback control systems which, in turn, will require advancements in regenerative life support models and tools. These models can be verified using ground and on orbit life support test and operational data, and used in the engineering analysis of proposed intelligent instrumentation feedback and flexible process control technologies for future autonomous regenerative life support systems, including the evolutionary Space Station Freedom ECLSS.

  16. Supervisory Control System Architecture for Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cetiner, Sacit M; Cole, Daniel L; Fugate, David L

    2013-08-01

    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history ofmore » hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.« less

  17. Final Technical Report: Commercial Advanced Lighting Control (ALC) Demonstration and Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Gabe

    This three-year demonstration and deployment project sought to address market barriers to accelerating the adoption of Advanced Lighting Controls (ALCs), an underutilized technology with low market penetration. ALCs are defined as networked, addressable lighting control systems that utilize software or intelligent controllers to combine multiple energy-saving lighting control strategies in a single space (e.g., smart-time scheduling, daylight harvesting, task tuning, occupancy control, personal control, variable load-shedding, and plug-load control). The networked intelligent aspect of these systems allows applicable lighting control strategies to be combined in a single space, layered over one another, maximizing overall energy-savings. The project included five realmore » building demonstrations of ALCs across the Northeast US region. The demonstrations provided valuable data and experience to support deployment tasks that are necessary to overcome market barriers. These deployment tasks included development of training resources for building designers, installers, and trades, as well as development of new energy efficiency rebates for the technology from Efficiency Forward’s utility partners. Educating designers, installers, and trades on ALCs is a critical task for reducing the cost of the technology that is currently inflated due to perceived complexity and unfamiliarity with how to design and install the systems. Further, utility and non-utility energy efficiency programs continue to relegate the technology to custom or ill-suited prescriptive program designs that do not effectively deploy the technology at scale. This project developed new, scalable rebate approaches for the technology. Efficiency Forward utilized their DesignLights Consortium® (DLC) brand and network of 81 DLC member utilities to develop and deploy the results of the project. The outputs of the project have included five published case studies, a six-hour ALC technology training curriculum that has already been deployed in five US states, and new rebates offered for the technology that have been deployed by a dozen utilities across the US. Widespread adoption of ALC technology in commercial buildings would provide tremendous benefits. The current market penetration of ALC systems is estimated at <0.1% in commercial buildings. If ALC systems were installed in all commercial buildings, approximately 1,051 TBtu of energy could be saved. This would translate into customer cost savings of approximately $10.7 billion annually.« less

  18. A flexible architecture for advanced process control solutions

    NASA Astrophysics Data System (ADS)

    Faron, Kamyar; Iourovitski, Ilia

    2005-05-01

    Advanced Process Control (APC) is now mainstream practice in the semiconductor manufacturing industry. Over the past decade and a half APC has evolved from a "good idea", and "wouldn"t it be great" concept to mandatory manufacturing practice. APC developments have primarily dealt with two major thrusts, algorithms and infrastructure, and often the line between them has been blurred. The algorithms have evolved from very simple single variable solutions to sophisticated and cutting edge adaptive multivariable (input and output) solutions. Spending patterns in recent times have demanded that the economics of a comprehensive APC infrastructure be completely justified for any and all cost conscious manufacturers. There are studies suggesting integration costs as high as 60% of the total APC solution costs. Such cost prohibitive figures clearly diminish the return on APC investments. This has limited the acceptance and development of pure APC infrastructure solutions for many fabs. Modern APC solution architectures must satisfy the wide array of requirements from very manual R&D environments to very advanced and automated "lights out" manufacturing facilities. A majority of commercially available control solutions and most in house developed solutions lack important attributes of scalability, flexibility, and adaptability and hence require significant resources for integration, deployment, and maintenance. Many APC improvement efforts have been abandoned and delayed due to legacy systems and inadequate architectural design. Recent advancements (Service Oriented Architectures) in the software industry have delivered ideal technologies for delivering scalable, flexible, and reliable solutions that can seamlessly integrate into any fabs" existing system and business practices. In this publication we shall evaluate the various attributes of the architectures required by fabs and illustrate the benefits of a Service Oriented Architecture to satisfy these requirements. Blue Control Technologies has developed an advance service oriented architecture Run to Run Control System which addresses these requirements.

  19. USMC UGS technology advancements

    NASA Astrophysics Data System (ADS)

    Hartup, David C.; Barr, Michael E.; Hirz, Philip M.; Kipp, Jason; Fishburn, Thomas A.; Waller, Ezra S.; Marks, Brian A.

    2008-04-01

    Technology advancements for the USMC UGS system are described. Integration of the ARL Blue Radio/CSR into the System Controller and Radio Repeater permit the TRSS system to operate seamlessly within the Family of UGS concept. In addition to the Blue Radio/CSR, the TRSS system provides VHF and SATCOM radio links. The TRSS system is compatible with a wide range of imagers, including those with both analog and digital interfaces. The TRSS System Controller permits simultaneous monitoring of 2 camera inputs. To complement enhanced compatibility and improved processing, the mechanical housing of the TRSS System Controller has been updated. The SDR-II, a system monitoring device, also incorporates four Blue Radio/CSRs along with other communication capabilities, making it an ideal choice for a monitoring station within the Family of UGS. Field testing of L-3 Nova's UGS system at YPG has shown flawless performance, capturing all 126 targets.

  20. Aquila field: Advanced contracting strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    Aquila oil field, in 2,800 ft of water, is in the middle of the Otranto Channel in the Mediterranean Sea, approximately 28 miles offshore southern Italy, and is subject to difficult sea and weather conditions. The many difficulties, caused mainly by water depth, requires the use of advanced technology that can be obtained only through the direct association with contractor companies. This solution safeguards the technological reliability and allows for maximum control of time and cost. The selection of a floating production, storage, and offloading (FPSO) system resulted from a feasibility study that indicated this solution was the only methodmore » that would provide economical exploitation of the Aquila field. The system includes flowlines and control lines. The ship, FPSO Agip Firenze, has been specially redesigned to manage the field development. Agip will provide the subsea production system, the Christmas tree, control system, and artificial lift.« less

  1. APC implementation in Chandra Asri - ethylene plant

    NASA Astrophysics Data System (ADS)

    Sidiq, Mochamad; Mustofa, Ali

    2017-05-01

    Nowadays, the modern process plants are continuously improved for maximizing production, Optimization of the energy and raw material and reducing the risk. Due to many disturbances appearance between the process units, hence, the failure of one unit might have a bad effect on the overall productivity. Ethylene Plant have significant opportunities for using Advanced Process Control (APC) technologies to improve operation stability, push closer to quality or equipment limit, and improve the capability of process units to handle disturbances. APC implementation had considered a best answer for solving multivariable control problem. PT. Chandra Asri Petrochemical, Tbk (CAP) operates a large naphtha cracker complex at Cilegon, Indonesia. To optimize the plant operation and to enhance the benefit, Chandra Asri has been decided to implement Advance Process Control (APC) for ethylene plant. The APC implementation technology scopes at CAP are as follows: 1. Hot Section : Furnaces, Quench Tower 2. Cold Section : Demethanizer, Deethanizer, Acetylene Converter, Ethylene Fractionator, Depropanizer, Propylene Fractionator, Debutanizer

  2. SMART-1, Platform Design and Project Status

    NASA Astrophysics Data System (ADS)

    Sjoberg, F.

    SMART-1 is the first of the Small Missions for Advanced Research and Technology (SMART), an element of ESA's Horizons 2000 plan for scientific projects. These missions aim at testing key technologies for future Cornerstone missions. The mission of SMART-1 is the flight demonstration of Electric Primary Propulsion for a scientifically relevant deep space trajectory. More specifically, SMART-1 will be launched into a geostationary transfer orbit and use a single ion thruster to achieve lunar orbit. include: -A modern avionics architecture with a clean-cut control hierarchy -Extensive Failure Detection, Isolation and Recovery (FDIR) capabilities following the control hierarchy of the -An advanced power control and distribution system -A newly developed gimbal mechanism for the orientation of the electric ion thruster The project is currently in the FM AIT phase scheduled for launch in late 2002. The paper will describe the SMART- 1 spacecraft platform design as well as the current project and spacecraft verification status.

  3. A 100-Year Review: Milestones in the development of frozen desserts.

    PubMed

    Hartel, R W; Rankin, S A; Bradley, R L

    2017-12-01

    Ice cream has come a long way since the first snow cone was made. Innovations in a variety of areas over the past century have led to the development of highly sophisticated, automated manufacturing plants that churn out pint after pint of ice cream. Significant advances in fields such as mechanical refrigeration, chilling and freezing technologies, cleaning and sanitation, packaging, and ingredient functionality have shaped the industry. Advances in our understanding of the science of ice cream, particularly related to understanding the complex structures that need to be controlled to create a desirable product, have also enhanced product quality and shelf stability. Although significant advances have been made, there remain numerous opportunities for further advancement both scientifically and technologically. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Advanced Thermo-Adsorptive Battery: Advanced Thermo-Adsorptive Battery Climate Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    HEATS Project: MIT is developing a low-cost, compact, high-capacity, advanced thermoadsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials’ ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption. The ATB is also looking to explore the possibility of shifting peak electricity loads for cooling and heating in a variety of other applications, includingmore » commercial and residential buildings, data centers, and telecom facilities.« less

  5. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  6. Computer Sciences and Data Systems, volume 2

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: data storage; information network architecture; VHSIC technology; fiber optics; laser applications; distributed processing; spaceborne optical disk controller; massively parallel processors; and advanced digital SAR processors.

  7. An Experience of CACSD for Networked Control Systems: From Mechatronic Platform Identification to Control Implementation

    ERIC Educational Resources Information Center

    Losada, Cristina; Espinosa, Felipe; Santos, Carlos; Gálvez, Manuel; Bueno, Emilio J.; Marrón, Marta; Rodríguez, Francisco J.

    2016-01-01

    Continual advances in information and communication technologies (ICT) are revolutionizing virtual education and bringing new tools on the market that provide virtual solutions to a range of problems. Nevertheless, nonvirtual experimentation using computer-aided control system design tools is still fundamental for future engineers. This paper…

  8. 77 FR 57156 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... used to prevent the fall of roof, face, and rib. Advancements in technology of roof and rock bolts and... information technology, e.g., permitting electronic submission of responses. Agency: DOL-MSHA. Title of... Control Number: 1219-0121. Affected Public: Private Sector--businesses or other for profits. Total...

  9. Biotechnology on the Battlefield: An Application of Agent-based Modelling for Emerging Technology Assessment

    DTIC Science & Technology

    2015-03-01

    UNCLASSIFIED UNCLASSIFIED Biotechnology on the Battlefield: An Application of Agent-based Modelling for Emerging Technology Assessment...wounds might be treatable using advanced biotechnologies to control haemorrhaging and reduce blood-loss until medical evacuation can be completed. This...APPROVED FOR PUBLIC RELEASE UNCLASSIFIED UNCLASSIFIED Biotechnology on the Battlefield: An Application

  10. UBC's Centre for Interactive Research on Sustainability (CIRS) Will Serve as Test Bed for Innovation

    ERIC Educational Resources Information Center

    Neary, Tim

    2012-01-01

    The University of British Columbia (UBC) recently celebrated the opening of its Centre for Interactive Research on Sustainability (CIRS), a living laboratory for researchers to teach, test, and study the long-term impact of sustainable practices and technologies. Featuring advanced building controls, sensing technology, and management software…

  11. Recent advances in PV systems technology development in Europe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imamura, M.; Grottke, M.; Weiss, I.

    1995-11-01

    The objectives of the photovoltaics (PV) systems technology development were to study several aspects of plant design, monitoring, control, operation, and management of different types of photovoltaic plants. Unsolved problems were to be identified and analysed, and guidelines to improve the monitoring system were to be developed. Principal studies are summarized.

  12. Robots in space into the 21st century

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Lavery, D.; Rodriguez, G.

    1997-01-01

    Describes the technological developments which are establishing the foundation for an exciting era of in situ exploration missions to planets, comets and asteroids with advanced robotic systems. Also outlines important concurrent terrestrial applications and spinoffs of the space robotics technology. These include high-precision robotic manipulators for microsurgical operations and dexterous arm control systems.

  13. Considerations for site-specific implementation of active downforce and seeding depth technologies on row-crop planters

    USDA-ARS?s Scientific Manuscript database

    Planter technology continues to rapidly advance including row-by-row control of parameters such as applied downforce and seeding depth that permit real-time adjustment to varying field conditions. The objective of this research was to investigate the relationship of seeding depth and applied downfo...

  14. Advanced communications technology satellite high burst rate link evaluation terminal experiment control and monitor software user's guide, version 1.0

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    1992-01-01

    The Experiment Control and Monitor (EC&M) software was developed at NASA Lewis Research Center to support the Advanced Communications Technology Satellite (ACTS) High Burst Rate Link Evaluation Terminal (HBR-LET). The HBR-LET is an experimenter's terminal to communicate with the ACTS for various investigations by government agencies, universities, and industry. The EC&M software is one segment of the Control and Performance Monitoring (C&PM) software system of the HBR-LET. The EC&M software allows users to initialize, control, and monitor the instrumentation within the HBR-LET using a predefined sequence of commands. Besides instrument control, the C&PM software system is also responsible for computer communication between the HBR-LET and the ACTS NASA Ground Station and for uplink power control of the HBR-LET to demonstrate power augmentation during rain fade events. The EC&M Software User's Guide, Version 1.0 (NASA-CR-189160) outlines the commands required to install and operate the EC&M software. Input and output file descriptions, operator commands, and error recovery procedures are discussed in the document.

  15. Space station thermal control surfaces. Volume 1: Interim report

    NASA Technical Reports Server (NTRS)

    Maag, C. R.; Millard, J. M.

    1978-01-01

    The U.S. space program goals for long-duration manned missions place particular demands on thermal-control systems. The objective of this program is to develop plans which are based on the present thermal-control technology, and which will keep pace with the other space program elements. The program tasks are as follows: (1) requirements analysis, with the objectives to define the thermal-control-surface requirements for both space station and 25 kW power module, to analyze the missions, and to determine the thermal-control-surface technology needed to satisfy both sets of requirements; (2) technology assessment, with the objectives to perform a literature/industry survey on thermal-control surfaces, to compare current technology with the requirements developed in the first task, and to determine what technology advancements are required for both the space station and the 25 kW power module; and (3) program planning that defines new initiative and/or program augmentation for development and testing areas required to provide the proper environment control for the space station and the 25 kW power module.

  16. Development of bacterial display peptides for use in biosensing applications

    NASA Astrophysics Data System (ADS)

    Stratis-Cullum, Dimitra N.; Kogot, Joshua M.; Sellers, Michael S.; Hurley, Margaret M.; Sarkes, Deborah A.; Pennington, Joseph M.; Val-Addo, Irene; Adams, Bryn L.; Warner, Candice R.; Carney, James P.; Brown, Rebecca L.; Pellegrino, Paul M.

    2012-06-01

    Recent advances in synthetic library engineering continue to show promise for the rapid production of reagent technology in response to biological threats. A synthetic library of peptide mutants built off a bacterial host offers a convenient means to link the peptide sequence, (i.e., identity of individual library members) with the desired molecular recognition traits, but also allows for a relatively simple protocol, amenable to automation. An improved understanding of the mechanisms of recognition and control of synthetic reagent isolation and evolution remain critical to success. In this paper, we describe our approach to development of peptide affinity reagents based on peptide bacterial display technology with improved control of binding interactions for stringent evolution of reagent candidates, and tailored performance capabilities. There are four key elements to the peptide affinity reagent program including: (1) the diverse bacterial library technology, (2) advanced reagent screening amenable to laboratory automation and control, (3) iterative characterization and feedback on both affinity and specificity of the molecular interactions, and (3) integrated multiscale computational prescreening of candidate peptide ligands including in silico prediction of improved binding performance. Specific results on peptides binders to Protective Antigen (PA) protein of Bacillus anthracis and Staphylococcal Enterotoxin B (SEB) will be presented. Recent highlights of on cell vs. off-cell affinity behavior and correlation of the results with advanced docking simulations on the protein-peptide system(s) are included. The potential of this technology and approach to enable rapid development of a new affinity reagent with unprecedented speed (less than one week) would allow for rapid response to new and constantly emerging threats.

  17. 2007 Research and Technology

    NASA Technical Reports Server (NTRS)

    Riddlebaugh, Stephen M. (Editor)

    2008-01-01

    The NASA Glenn Research Center is pushing the envelope of research and technology in aeronautics, space exploration, science, and space operations. Our research in aeropropulsion, structures and materials, and instrumentation and controls is enabling next-generation transportation systems that are faster, more environmentally friendly, more fuel efficient, and safer. Our research and development of space flight systems is enabling advanced power, propulsion, communications, and human health systems that will advance the exploration of our solar system. This report selectively summarizes NASA Glenn Research Center s research and technology accomplishments for fiscal year 2007. Comprising 104 short articles submitted by the staff scientists and engineers, the report is organized into six major sections: Aeropropulsion, Power and Space Propulsion, Communications, Space Processes and Experiments, Instrumentation and Controls, and Structures and Materials. It is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year; most of the work is reported in Glenn-published technical reports, journal articles, and presentations. For each article in this report, a Glenn contact person has been identified, and where possible, a reference document is listed so that additional information can be easily obtained.

  18. A Research Agenda for Helminth Diseases of Humans: Diagnostics for Control and Elimination Programmes

    PubMed Central

    McCarthy, James S.; Lustigman, Sara; Yang, Guo-Jing; Barakat, Rashida M.; García, Héctor H.; Sripa, Banchob; Willingham, Arve Lee; Prichard, Roger K.; Basáñez, María-Gloria

    2012-01-01

    Diagnostic tools appropriate for undertaking interventions to control helminth infections are key to their success. Many diagnostic tests for helminth infection have unsatisfactory performance characteristics and are not well suited for use in the parasite control programmes that are being increasingly implemented. Although the application of modern laboratory research techniques to improve diagnostics for helminth infection has resulted in some technical advances, uptake has not been uniform. Frequently, pilot or proof of concept studies of promising diagnostic technologies have not been followed by much needed product development, and in many settings diagnosis continues to rely on insensitive and unsatisfactory parasitological or serodiagnostic techniques. In contrast, PCR-based xenomonitoring of arthropod vectors, and use of parasite recombinant proteins as reagents for serodiagnostic tests, have resulted in critical advances in the control of specific helminth parasites. The Disease Reference Group on Helminths Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR) was given the mandate to review helminthiases research and identify research priorities and gaps. In this review, the diagnostic technologies relevant to control of helminth infections, either available or in development, are reviewed. Critical gaps are identified and opportunities to improve needed technologies are discussed. PMID:22545166

  19. Propulsion and Cryogenics Advanced Development (PCAD) Project Propulsion Technologies for the Lunar Lander

    NASA Technical Reports Server (NTRS)

    Klem, Mark D.; Smith, Timothy D.

    2008-01-01

    The Propulsion and Cryogenics Advanced Development (PCAD) Project in the Exploration Technology Development Program is developing technologies as risk mitigation for Orion and the Lunar Lander. An integrated main and reaction control propulsion system has been identified as a candidate for the Lunar Lander Ascent Module. The propellants used in this integrated system are Liquid Oxygen (LOX)/Liquid Methane (LCH4) propellants. A deep throttle pump fed Liquid Oxygen (LOX)/Liquid Hydrogen (LH2) engine system has been identified for the Lunar Lander Descent Vehicle. The propellant combination and architecture of these propulsion systems are novel and would require risk reduction prior to detailed design and development. The PCAD Project addresses the technology requirements to obtain relevant and necessary test data to further the technology maturity of propulsion hardware utilizing these propellants. This plan and achievements to date will be presented.

  20. How gamma radiation processing systems are benefiting from the latest advances in information technology

    NASA Astrophysics Data System (ADS)

    Gibson, Wayne H.; Levesque, Daniel

    2000-03-01

    This paper discusses how gamma irradiation plants are putting the latest advances in computer and information technology to use for better process control, cost savings, and strategic advantages. Some irradiator operations are gaining significant benefits by integrating computer technology and robotics with real-time information processing, multi-user databases, and communication networks. The paper reports on several irradiation facilities that are making good use of client/server LANs, user-friendly graphics interfaces, supervisory control and data acquisition (SCADA) systems, distributed I/O with real-time sensor devices, trending analysis, real-time product tracking, dynamic product scheduling, and automated dosimetry reading. These plants are lowering costs by fast and reliable reconciliation of dosimetry data, easier validation to GMP requirements, optimizing production flow, and faster release of sterilized products to market. There is a trend in the manufacturing sector towards total automation using "predictive process control". Real-time verification of process parameters "on-the-run" allows control parameters to be adjusted appropriately, before the process strays out of limits. Applying this technology to the gamma radiation process, control will be based on monitoring the key parameters such as time, and making adjustments during the process to optimize quality and throughput. Dosimetry results will be used as a quality control measurement rather than as a final monitor for the release of the product. Results are correlated with the irradiation process data to quickly and confidently reconcile variations. Ultimately, a parametric process control system utilizing responsive control, feedback and verification will not only increase productivity and process efficiency, but can also result in operating within tighter dose control set points.

  1. Preliminary simulation of an advanced, hingless rotor XV-15 tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.

    1976-01-01

    The feasibility of the tilt-rotor concept was verified through investigation of the performance, stability and handling qualities of the XV-15 tilt rotor. The rotors were replaced by advanced-technology fiberglass/composite hingless rotors of larger diameter, combined with an advanced integrated fly-by-wire control system. A parametric simulation model of the HRXV-15 was developed, model was used to define acceptable preliminary ranges of primary and secondary control schedules as functions of the flight parameters, to evaluate performance, flying qualities and structural loads, and to have a Boeing-Vertol pilot conduct a simulated flight test evaluation of the aircraft.

  2. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Fundamental Aeronautics Program (FAP) and the Aviation Safety Program (ASP). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  3. Systems study for an Integrated Digital-Electric Aircraft (IDEA)

    NASA Technical Reports Server (NTRS)

    Tagge, G. E.; Irish, L. A.; Bailey, A. R.

    1985-01-01

    The results of the Integrated Digital/Electric Aircraft (IDEA) Study are presented. Airplanes with advanced systems were, defined and evaluated, as a means of identifying potential high payoff research tasks. A baseline airplane was defined for comparison, typical of a 1990's airplane with advanced active controls, propulsion, aerodynamics, and structures technology. Trade studies led to definition of an IDEA airplane, with extensive digital systems and electric secondary power distribution. This airplane showed an improvement of 3% in fuel use and 1.8% in DOC relative to the baseline configuration. An alternate configuration, an advanced technology turboprop, was also evaluated, with greater improvement supported by digital electric systems. Recommended research programs were defined for high risk, high payoff areas appropriate for implementation under NASA leadership.

  4. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  5. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transpot project-demonstration act system definition

    NASA Technical Reports Server (NTRS)

    Hanks, G. W.; Shomber, H. A.; Crumb, C. B.; Flora, C. C.; Macdonald, K. A. B.; Smith, R. D.; Sassi, A. P.; Dorwart, R. J.

    1982-01-01

    The 1985 ACT airplane is the Final Active Controls Technology (ACT) Airplane with the addition of three-axis fly by wire. Thus it retains all the efficiency features of the full ACT system plus the weight and cost savings accruing from deletion of the mechanical control system. The control system implements the full IAAC spectrum of active controls except flutter-mode control, judged essentially nonbeneficial, and incorporates new control surfaces called flaperons to make the most of wing-load alleviation. This redundant electronic system is conservatively designed to preserve the extreme reliability required of crucial short-period pitch augmentation, which provides more than half of the fuel savings.

  6. Guidance, Navigation, and Control Technology Assessment for Future Planetary Science Missions

    NASA Technical Reports Server (NTRS)

    Beauchamp, Pat; Cutts, James; Quadrelli, Marco B.; Wood, Lincoln J.; Riedel, Joseph E.; McHenry, Mike; Aung, MiMi; Cangahuala, Laureano A.; Volpe, Rich

    2013-01-01

    Future planetary explorations envisioned by the National Research Council's (NRC's) report titled Vision and Voyages for Planetary Science in the Decade 2013-2022, developed for NASA Science Mission Directorate (SMD) Planetary Science Division (PSD), seek to reach targets of broad scientific interest across the solar system. This goal requires new capabilities such as innovative interplanetary trajectories, precision landing, operation in close proximity to targets, precision pointing, multiple collaborating spacecraft, multiple target tours, and advanced robotic surface exploration. Advancements in Guidance, Navigation, and Control (GN&C) and Mission Design in the areas of software, algorithm development and sensors will be necessary to accomplish these future missions. This paper summarizes the key GN&C and mission design capabilities and technologies needed for future missions pursuing SMD PSD's scientific goals.

  7. U.S. perspective on technology demonstration experiments for adaptive structures

    NASA Technical Reports Server (NTRS)

    Aswani, Mohan; Wada, Ben K.; Garba, John A.

    1991-01-01

    Evaluation of design concepts for adaptive structures is being performed in support of several focused research programs. These include programs such as Precision Segmented Reflector (PSR), Control Structure Interaction (CSI), and the Advanced Space Structures Technology Research Experiment (ASTREX). Although not specifically designed for adaptive structure technology validation, relevant experiments can be performed using the Passive and Active Control of Space Structures (PACOSS) testbed, the Space Integrated Controls Experiment (SPICE), the CSI Evolutionary Model (CEM), and the Dynamic Scale Model Test (DSMT) Hybrid Scale. In addition to the ground test experiments, several space flight experiments have been planned, including a reduced gravity experiment aboard the KC-135 aircraft, shuttle middeck experiments, and the Inexpensive Flight Experiment (INFLEX).

  8. Sensors Applications, Volume 4, Sensors for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Marek, Jiri; Trah, Hans-Peter; Suzuki, Yasutoshi; Yokomori, Iwao

    2003-07-01

    An international team of experts from the leading companies in this field gives a detailed picture of existing as well as future applications. They discuss in detail current technologies, design and construction concepts, market considerations and commercial developments. Topics covered include vehicle safety, fuel consumption, air conditioning, emergency control, traffic control systems, and electronic guidance using radar and video. Meeting the growing need for comprehensive information on the capabilities, potentials and limitations of modern sensor systems, Sensors Applications is a book series covering the use of sophisticated technologies and materials for the creation of advanced sensors and their implementation in the key areas process monitoring, building control, health care, automobiles, aerospace, environmental technology and household appliances.

  9. Integrated Power and Attitude Control System (IPACS) technology developments

    NASA Technical Reports Server (NTRS)

    Eisenhaure, David B.; Bechtel, Robert; Hockney, Richard; Oglevie, Ron; Olszewski, Mitch

    1990-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of storing electrical energy in flywheels and utilizing the resulting angular momentum for spacecraft attitude control. Such a system has been shown to have numerous attractive features relative to more contemporary technology, and is appropriate to many applications (including high-performance slewing actuators). Technology advances over the last two decades in composite rotors, motor/generator/electronics, and magnetic bearings are found to support the use of IPACS for increasingly sophisticated applications. It is concluded that the concept offers potential performance advantages as well as savings in mass and life-cycle cost. Viewgraphs and discussion on IPACS are included.

  10. Required technologies for a lunar optical UV-IR synthesis array

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Wetzel, John P.

    1992-01-01

    A Lunar Optical UV-IR Synthesis Array (LOUISA) proposed to take advantage of the characteristics of the lunar environment requires appropriate advances in technology. These technologies are in the areas of contamination/interference control, test and evaluation, manufacturing, construction, autonomous operations and maintenance, power and heating/cooling, stable precision structures, optics, parabolic antennas, and communications/control. LOUISA needs to be engineered to operate for long periods with minimal intervention by humans or robots. What is essential for LOUISA operation is enforcement of a systems engineering approach that makes compatible all lunar operations associated with habitation, resource development, and science.

  11. Research and technology, 1983

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Highlights of major accomplishments and applications made during the past year illustrate the broad range of research and technology activities at the Langley Research Center. Advances are reported in the following areas: systems engineering and operation; aeronautics; electronics; space applications; aircraft and spacecraft structures; composite structures; laminar flow control; subsonic transport aircraft; and supersonic fighter concepts. Technology utilization efforts described cover a hyperthermia monitor, a lightweight composite wheelchair; and a vehicle ride quality meter.

  12. SCADA Application for ACTS Technology

    NASA Technical Reports Server (NTRS)

    Fairbanks, Barry

    1992-01-01

    The results of a system level study done by Hughes Network Systems for NASA are presented. For the supervisory control and data acquisition (SCADA) application, use of Ka-band spot beam satellite technology associated with NASA's Advanced Communication Technology Satellite (ACTS) offers a reduction in Earth station antenna size and transmitter power that may translate into lower system costs. The approaches taken to determine commercial potential of the system are described.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, Robert; McConnell, Elizabeth

    Machining methods across many industries generally require multiple operations to machine and process advanced materials, features with micron precision, and complex shapes. The resulting multiple machining platforms can significantly affect manufacturing cycle time and the precision of the final parts, with a resultant increase in cost and energy consumption. Ultrafast lasers represent a transformative and disruptive technology that removes material with micron precision and in a single step manufacturing process. Such precision results from athermal ablation without modification or damage to the remaining material which is the key differentiator between ultrafast laser technologies and traditional laser technologies or mechanical processes.more » Athermal ablation without modification or damage to the material eliminates post-processing or multiple manufacturing steps. Combined with the appropriate technology to control the motion of the work piece, ultrafast lasers are excellent candidates to provide breakthrough machining capability for difficult-to-machine materials. At the project onset in early 2012, the project team recognized that substantial effort was necessary to improve the application of ultrafast laser and precise motion control technologies (for micromachining difficult-to-machine materials) to further the aggregate throughput and yield improvements over conventional machining methods. The project described in this report advanced these leading-edge technologies thru the development and verification of two platforms: a hybrid enhanced laser chassis and a multi-application testbed.« less

  14. Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Littleton, Harry; Griffin, John

    2011-07-31

    This project was a subtask of Energy Saving Melting and Revert Reduction Technology (Energy SMARRT) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy savingmore » estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU's/year and 6.46 trillion BTU's/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).« less

  15. Nonlinear control systems - A brief overview of historical and recent advances

    NASA Astrophysics Data System (ADS)

    Iqbal, Jamshed; Ullah, Mukhtar; Khan, Said Ghani; Khelifa, Baizid; Ćuković, Saša

    2017-12-01

    Last five decades witnessed remarkable developments in linear control systems and thus problems in this subject has been largely resolved. The scope of the present paper is beyond linear solutions. Modern technology demands sophisticated control laws to meet stringent design specifications thus highlighting the increasingly conspicuous position of nonlinear control systems, which is the topic of this paper. Historical role of analytical concepts in analysis and design of nonlinear control systems is briefly outlined. Recent advancements in these systems from applications perspective are examined with critical comments on associated challenges. It is anticipated that wider dissemination of this comprehensive review will stimulate more collaborations among the research community and contribute to further developments.

  16. Potential impacts of advanced technologies on the ATC capacity of high-density terminal areas

    NASA Technical Reports Server (NTRS)

    Simpson, R. W.; Odoni, A. R.; Salas-Roche, F.

    1986-01-01

    Advanced technologies for airborne systems (automatic flight control, flight displays, navigation) and for ground ATC systems (digital communications, improved surveillance and tracking, automated decision-making) create the possibility of advanced ATC operations and procedures which can bring increased capacity for runway systems. A systematic analysis is carried out to identify certain such advanced ATC operations, and then to evaluate the potential benefits occurring over time at typical US high-density airports (Denver and Boston). The study is divided into three parts: (1) A Critical Examination of Factors Which Determine Operational Capacity of Runway Systems at Major Airports, is an intensive review of current US separation criteria and terminal area ATC operations. It identifies 11 new methods to increase the capacity of landings and takeoffs for runway systems; (2) Development of Risk Based Separation Criteria is the development of a rational structure for establishing reduced ATC separation criteria which meet a consistent Target Level of Safety using advanced technology and operational procedures; and (3) Estimation of Capacity Benefits from Advanced Terminal Area Operations - Denver and Boston, provides an estimate of the overall annual improvement in runway capacity which might be expected at Denver and Boston from using some of the advanced ATC procedures developed in Part 1. Whereas Boston achieved a substantial 37% increase, Denver only achieved a 4.7% increase in its overall annual capacity.

  17. Advanced electrical power system technology for the all electric aircraft

    NASA Technical Reports Server (NTRS)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764

  18. Thick resist for MEMS processing

    NASA Astrophysics Data System (ADS)

    Brown, Joe; Hamel, Clifford

    2001-11-01

    The need for technical innovation is always present in today's economy. Microfabrication methods have evolved in support of the demand for smaller and faster integrated circuits with price performance improvements always in the scope of the manufacturing design engineer. The dispersion of processing technology spans well beyond IC fabrication today with batch fabrication and wafer scale processing lending advantages to MEMES applications from biotechnology to consumer electronics from oil exploration to aerospace. Today the demand for innovative processing techniques that enable technology is apparent where only a few years ago appeared too costly or not reliable. In high volume applications where yield and cost improvements are measured in fractions of a percent it is imperative to have process technologies that produce consistent results. Only a few years ago thick resist coatings were limited to thickness less than 20 microns. Factors such as uniformity, edge bead and multiple coatings made high volume production impossible. New developments in photoresist formulation combined with advanced coating equipment techniques that closely controls process parameters have enable thick photoresist coatings of 70 microns with acceptable uniformity and edge bead in one pass. Packaging of microelectronic and micromechanical devices is often a significant cost factor and a reliability issue for high volume low cost production. Technologies such as flip- chip assembly provide a solution for cost and reliability improvements over wire bond techniques. The processing for such technology demands dimensional control and presents a significant cost savings if it were compatible with mainstream technologies. Thick photoresist layers, with good sidewall control would allow wafer-bumping technologies to penetrate the barriers to yield and production where costs for technology are the overriding issue. Single pass processing is paramount to the manufacturability of packaging technology. Uniformity and edge bead control defined the success of process implementation. Today advanced packaging solutions are created with thick photoresist coatings. The techniques and results will be presented.

  19. Recent Electric Propulsion Development Activities for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.

    2009-01-01

    (The primary source of electric propulsion development throughout NASA is managed by the In-Space Propulsion Technology Project at the NASA Glenn Research Center for the Science Mission Directorate. The objective of the Electric Propulsion project area is to develop near-term electric propulsion technology to enhance or enable science missions while minimizing risk and cost to the end user. Major hardware tasks include developing NASA s Evolutionary Xenon Thruster (NEXT), developing a long-life High Voltage Hall Accelerator (HIVHAC), developing an advanced feed system, and developing cross-platform components. The objective of the NEXT task is to advance next generation ion propulsion technology readiness. The baseline NEXT system consists of a high-performance, 7-kW ion thruster; a high-efficiency, 7-kW power processor unit (PPU); a highly flexible advanced xenon propellant management system (PMS); a lightweight engine gimbal; and key elements of a digital control interface unit (DCIU) including software algorithms. This design approach was selected to provide future NASA science missions with the greatest value in mission performance benefit at a low total development cost. The objective of the HIVHAC task is to advance the Hall thruster technology readiness for science mission applications. The task seeks to increase specific impulse, throttle-ability and lifetime to make Hall propulsion systems applicable to deep space science missions. The primary application focus for the resulting Hall propulsion system would be cost-capped missions, such as competitively selected, Discovery-class missions. The objective of the advanced xenon feed system task is to demonstrate novel manufacturing techniques that will significantly reduce mass, volume, and footprint size of xenon feed systems over conventional feed systems. This task has focused on the development of a flow control module, which consists of a three-channel flow system based on a piezo-electrically actuated valve concept, as well as a pressure control module, which will regulate pressure from the propellant tank. Cross-platform component standardization and simplification are being investigated through the Standard Architecture task to reduce first user costs for implementing electric propulsion systems. Progress on current hardware development, recent test activities and future plans are discussed.

  20. Development and analysis of a STOL supersonic cruise fighter concept

    NASA Technical Reports Server (NTRS)

    Dollyhigh, S. M.; Foss, W. E., Jr.; Morris, S. J., Jr.; Walkley, K. B.; Swanson, E. E.; Robins, A. W.

    1984-01-01

    The application of advanced and emerging technologies to a fighter aircraft concept is described. The twin-boom fighter (TBF-1) relies on a two dimensional vectoring/reversing nozzle to provide STOL performance while also achieving efficient long range supersonic cruise. A key feature is that the propulsion package is placed so that the nozzle hinge line is near the aircraft center-of-gravity to allow large vector angles and, thus, provide large values of direct lift while minimizing the moments to be trimmed. The configurations name is derived from the long twin booms extending aft of the engine to the twin vertical tails which have a single horizontal tail mounted atop and between them. Technologies utilized were an advanced engine (1985 state-of-the-art), superplastic formed/diffusion bonded titanium structure, advanced controls/avionics/displays, supersonic wing design, and conformal weapons carriage. The integration of advanced technologies into this concept indicate that large gains in takeoff and landing performance, maneuver, acceleration, supersonic cruise speed, and range can be acieved relative to current fighter concepts.

  1. 75 FR 17203 - National Rail Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ..., such as roles and responsibilities, including national leadership as well as those of State, and local... considering implementation of high-speed rail and technological advances such as positive train control and...

  2. Optimization-Based Robust Nonlinear Control

    DTIC Science & Technology

    2006-08-01

    ABSTRACT New control algorithms were developed for robust stabilization of nonlinear dynamical systems . Novel, linear matrix inequality-based synthesis...was to further advance optimization-based robust nonlinear control design, for general nonlinear systems (especially in discrete time ), for linear...Teel, IEEE Transactions on Control Systems Technology, vol. 14, no. 3, p. 398-407, May 2006. 3. "A unified framework for input-to-state stability in

  3. Advanced Guidance and Control for Hypersonics and Space Access

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Hall, Charles E.; Mulqueen, John A.; Jones, Robert E.

    2003-01-01

    Advanced guidance and control (AG&C) technologies are critical for meeting safety, reliability, and cost requirements for the next generation of reusable launch vehicle (RLV), whether it is fully rocket-powered or has air- breathing components. This becomes clear upon examining the number of expendable launch vehicle failures in the recent past where AG&C technologies could have saved a RLV with the same failure mode, the additional vehicle problems where t h i s technology applies, and the costs and time associated with mission design with or without all these failure issues. The state-of-the-art in guidance and control technology, as well as in computing technology, is the point where we can look to the possibility of being able to safely return a RLV in any situation where it can physically be recovered. This paper outlines reasons for AWC, current technology efforts, and the additional work needed for making this goal a reality. There are a number of approaches to AG&C that have the potential for achieving the desired goals. For some of these methods, we compare the results of tests designed to demonstrate the achievement of the goals. Tests up to now have been focused on rocket-powered vehicles; application to hypersonic air-breathers is planned. We list the test cases used to demonstrate that the desired results are achieved, briefly describe an automated test scoring method, and display results of the tests. Some of the technology components have reached the maturity level where they are ready for application to a new vehicle concept, while others are not far along in development.

  4. Technology innovations and experience curves for nitrogen oxides control technologies.

    PubMed

    Yeh, Sonia; Rubin, Edward S; Taylor, Margaret R; Hounshell, David A

    2005-12-01

    This paper reviews the regulatory history for nitrogen oxides (NOx) pollutant emissions from stationary sources, primarily in coal-fired power plants. Nitrogen dioxide (NO2) is one of the six criteria pollutants regulated by the 1970 Clean Air Act where National Ambient Air Quality Standards were established to protect public health and welfare. We use patent data to show that in the cases of Japan, Germany, and the United States, innovations in NOx control technologies did not occur until stringent government regulations were in place, thus "forcing" innovation. We also demonstrate that reductions in the capital and operation and maintenance (O&M) costs of new generations of high-efficiency NOx control technologies, selective catalytic reduction (SCR), are consistently associated with the increasing adoption of the control technology: the so-called learning-by-doing phenomena. The results show that as cumulative world coal-fired SCR capacity doubles, capital costs decline to approximately 86% and O&M costs to 58% of their original values. The observed changes in SCR technology reflect the impact of technological advance as well as other factors, such as market competition and economies of scale.

  5. Pilot vehicle interface on the advanced fighter technology integration F-16

    NASA Technical Reports Server (NTRS)

    Dana, W. H.; Smith, W. B.; Howard, J. D.

    1986-01-01

    This paper focuses on the work load aspects of the pilot vehicle interface in regard to the new technologies tested during AMAS Phase II. Subjects discussed in this paper include: a wide field-of-view head-up display; automated maneuvering attack system/sensor tracker system; master modes that configure flight controls and mission avionics; a modified helmet mounted sight; improved multifunction display capability; a voice interactive command system; ride qualities during automated weapon delivery; a color moving map; an advanced digital map display; and a g-induced loss-of-consciousness and spatial disorientation autorecovery system.

  6. Application of advanced signal processing techniques to the rectification and registration of spaceborne imagery. [technology transfer, data transmission

    NASA Technical Reports Server (NTRS)

    Caron, R. H.; Rifman, S. S.; Simon, K. W.

    1974-01-01

    The development of an ERTS/MSS image processing system responsive to the needs of the user community is discussed. An overview of the TRW ERTS/MSS processor is presented, followed by a more detailed discussion of image processing functions satisfied by the system. The particular functions chosen for discussion are evolved from advanced signal processing techniques rooted in the areas of communication and control. These examples show how classical aerospace technology can be transferred to solve the more contemporary problems confronting the users of spaceborne imagery.

  7. AN ELECTROCHEMICAL SYSTEM FOR REMOVING AND RECOVERING ELEMENTAL MERCURY FROM FLUE-STACK GASES

    EPA Science Inventory

    the impending EPA regulations on the control of mercury emissions from the flue stacks of coal-burning electric utilities has resulted in heightened interest in the development of advanced mercury control technologies such as sorbent injection and in-situ mercury oxidation. Altho...

  8. Advanced Technology Large-Aperture Space Telescope: Science Drivers and Technology Developments

    NASA Technical Reports Server (NTRS)

    Postman, Marc; Brown, Tom; Sembach, Kenneth; Glavallsco, Mauro; Traub, Wesley; Stapelfeldt, Karl; Calzetti, Daniela; Oegerle, William; Rich, R. Michael; Stahl, H. Philip; hide

    2012-01-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8- to 16-m ultraviolet optical near Infrared space observatory for launch in the 2025 to 2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including: Is there life elsewhere in the Galaxy? We present a range of science drivers and the resulting performance requirements for ATLAST (8- to 16-marcsec angular resolution, diffraction limited imaging at 0.5 micron wavelength, minimum collecting area of 45 sq m, high sensitivity to light wavelengths from 0.1 to 2.4 micron, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to that of current generation observatory-class space missions.

  9. Propulsion controls

    NASA Technical Reports Server (NTRS)

    Harkney, R. D.

    1980-01-01

    Increased system requirements and functional integration with the aircraft have placed an increased demand on control system capability and reliability. To provide these at an affordable cost and weight and because of the rapid advances in electronic technology, hydromechanical systems are being phased out in favor of digital electronic systems. The transition is expected to be orderly from electronic trimming of hydromechanical controls to full authority digital electronic control. Future propulsion system controls will be highly reliable full authority digital electronic with selected component and circuit redundancy to provide the required safety and reliability. Redundancy may include a complete backup control of a different technology for single engine applications. The propulsion control will be required to communicate rapidly with the various flight and fire control avionics as part of an integrated control concept.

  10. NASA Glenn Research in Controls and Diagnostics for Intelligent Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. This presentation describes the current CDB activities in support of the NASA Aeronautics Research Mission, with an emphasis on activities under the Integrated Vehicle Health Management (IVHM) and Integrated Resilient Aircraft Control (IRAC) projects of the Aviation Safety Program. Under IVHM, CDB focus is on developing advanced techniques for monitoring the health of the aircraft engine gas path with a focus on reliable and early detection of sensor, actuator and engine component faults. Under IRAC, CDB focus is on developing adaptive engine control technologies which will increase the probability of survival of aircraft in the presence of damage to flight control surfaces or to one or more engines. The technology development plans are described as well as results from recent research accomplishments.

  11. Advanced Technologies for Future Spacecraft Cockpits and Space-based Control Centers

    NASA Technical Reports Server (NTRS)

    Garcia-Galan, Carlos; Uckun, Serdar; Gregory, William; Williams, Kerry

    2006-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a new era of Space Exploration, aimed at sending crewed spacecraft beyond Low Earth Orbit (LEO), in medium and long duration missions to the Lunar surface, Mars and beyond. The challenges of such missions are significant and will require new technologies and paradigms in vehicle design and mission operations. Current roles and responsibilities of spacecraft systems, crew and the flight control team, for example, may not be sustainable when real-time support is not assured due to distance-induced communication lags, radio blackouts, equipment failures, or other unexpected factors. Therefore, technologies and applications that enable greater Systems and Mission Management capabilities on-board the space-based system will be necessary to reduce the dependency on real-time critical Earth-based support. The focus of this paper is in such technologies that will be required to bring advance Systems and Mission Management capabilities to space-based environments where the crew will be required to manage both the systems performance and mission execution without dependence on the ground. We refer to this concept as autonomy. Environments that require high levels of autonomy include the cockpits of future spacecraft such as the Mars Exploration Vehicle, and space-based control centers such as a Lunar Base Command and Control Center. Furthermore, this paper will evaluate the requirements, available technology, and roadmap to enable full operational implementation of onboard System Health Management, Mission Planning/re-planning, Autonomous Task/Command Execution, and Human Computer Interface applications. The technology topics covered by the paper include enabling technology to perform Intelligent Caution and Warning, where the systems provides directly actionable data for human understanding and response to failures, task automation applications that automate nominal and Off-nominal task execution based on human input or integrated health state-derived conditions. Shifting from Systems to Mission Management functions, we discuss the role of automated planning applications (tactical planning) on-board, which receive data from the other cockpit automation systems and evaluate the mission plan against the dynamic systems and mission states and events, to provide the crew with capabilities that enable them to understand, change, and manage the timeline of their mission. Lastly, we discuss the role of advanced human interface technologies that organize and provide the system md mission information to the crew in ways that maximize their situational awareness and ability to provide oversight and control of aLl the automated data and functions.

  12. Advanced Networks in Motion Mobile Sensorweb

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Stewart, David H.

    2011-01-01

    Advanced mobile networking technology applicable to mobile sensor platforms was developed, deployed and demonstrated. A two-tier sensorweb design was developed. The first tier utilized mobile network technology to provide mobility. The second tier, which sits above the first tier, utilizes 6LowPAN (Internet Protocol version 6 Low Power Wireless Personal Area Networks) sensors. The entire network was IPv6 enabled. Successful mobile sensorweb system field tests took place in late August and early September of 2009. The entire network utilized IPv6 and was monitored and controlled using a remote Web browser via IPv6 technology. This paper describes the mobile networking and 6LowPAN sensorweb design, implementation, deployment and testing as well as wireless systems and network monitoring software developed to support testing and validation.

  13. Computing technology in the 1980's. [computers

    NASA Technical Reports Server (NTRS)

    Stone, H. S.

    1978-01-01

    Advances in computing technology have been led by consistently improving semiconductor technology. The semiconductor industry has turned out ever faster, smaller, and less expensive devices since transistorized computers were first introduced 20 years ago. For the next decade, there appear to be new advances possible, with the rate of introduction of improved devices at least equal to the historic trends. The implication of these projections is that computers will enter new markets and will truly be pervasive in business, home, and factory as their cost diminishes and their computational power expands to new levels. The computer industry as we know it today will be greatly altered in the next decade, primarily because the raw computer system will give way to computer-based turn-key information and control systems.

  14. NASA aeronautics R&T - A resource for aircraft design

    NASA Technical Reports Server (NTRS)

    Olstad, W. B.

    1981-01-01

    This paper discusses the NASA aeronautics research and technology program from the viewpoint of the aircraft designer. The program spans the range from fundamental research to the joint validation with industry of technology for application into product development. Examples of recent developments in structures, materials, aerodynamics, controls, propulsion systems, and safety technology are presented as new additions to the designer's handbook. Finally, the major thrusts of NASA's current and planned programs which are keyed to revolutionary advances in materials science, electronics, and computer technology are addressed.

  15. Health management and controls for Earth-to-orbit propulsion systems

    NASA Astrophysics Data System (ADS)

    Bickford, R. L.

    1995-03-01

    Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.

  16. The role of advanced sensing in smart cities.

    PubMed

    Hancke, Gerhard P; Silva, Bruno de Carvalho E; Hancke, Gerhard P

    2012-12-27

    In a world where resources are scarce and urban areas consume the vast majority of these resources, it is vital to make cities greener and more sustainable. Advanced systems to improve and automate processes within a city will play a leading role in smart cities. From smart design of buildings, which capture rain water for later use, to intelligent control systems, which can monitor infrastructures autonomously, the possible improvements enabled by sensing technologies are immense. Ubiquitous sensing poses numerous challenges, which are of a technological or social nature. This paper presents an overview of the state of the art with regards to sensing in smart cities. Topics include sensing applications in smart cities, sensing platforms and technical challenges associated with these technologies. In an effort to provide a holistic view of how sensing technologies play a role in smart cities, a range of applications and technical challenges associated with these applications are discussed. As some of these applications and technologies belong to different disciplines, the material presented in this paper attempts to bridge these to provide a broad overview, which can be of help to researchers and developers in understanding how advanced sensing can play a role in smart cities.

  17. The Role of Advanced Sensing in Smart Cities

    PubMed Central

    Hancke, Gerhard P.; de Carvalho e Silva, Bruno; Hancke, Gerhard P.

    2013-01-01

    In a world where resources are scarce and urban areas consume the vast majority of these resources, it is vital to make cities greener and more sustainable. Advanced systems to improve and automate processes within a city will play a leading role in smart cities. From smart design of buildings, which capture rain water for later use, to intelligent control systems, which can monitor infrastructures autonomously, the possible improvements enabled by sensing technologies are immense. Ubiquitous sensing poses numerous challenges, which are of a technological or social nature. This paper presents an overview of the state of the art with regards to sensing in smart cities. Topics include sensing applications in smart cities, sensing platforms and technical challenges associated with these technologies. In an effort to provide a holistic view of how sensing technologies play a role in smart cities, a range of applications and technical challenges associated with these applications are discussed. As some of these applications and technologies belong to different disciplines, the material presented in this paper attempts to bridge these to provide a broad overview, which can be of help to researchers and developers in understanding how advanced sensing can play a role in smart cities. PMID:23271603

  18. Emissions control for ground power gas turbines

    NASA Technical Reports Server (NTRS)

    Rudney, R. A.; Priem, R. J.; Juhasz, A. J.; Anderson, D. N.; Mroz, T. S.; Mularz, E. J.

    1977-01-01

    The similarities and differences of emissions reduction technology for aircraft and ground power gas turbines is described. The capability of this technology to reduce ground power emissions to meet existing and proposed emissions standards is presented and discussed. Those areas where the developing aircraft gas turbine technology may have direct application to ground power and those areas where the needed technology may be unique to the ground power mission are pointed out. Emissions reduction technology varying from simple combustor modifications to the use of advanced combustor concepts, such as catalysis, is described and discussed.

  19. Orbit transfer rocket engine integrated control and health monitoring system technology readiness assessment

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.; Collamore, F. N.; Gage, M. L.; Morgan, D. B.; Thomas, E. R.

    1992-01-01

    The objectives of this task were to: (1) estimate the technology readiness of an integrated control and health monitoring (ICHM) system for the Aerojet 7500 lbF Orbit Transfer Vehicle engine preliminary design assuming space based operations; and (2) estimate the remaining cost to advance this technology to a NASA defined 'readiness level 6' by 1996 wherein the technology has been demonstrated with a system validation model in a simulated environment. The work was accomplished through the conduct of four subtasks. In subtask 1 the minimally required functions for the control and monitoring system was specified. The elements required to perform these functions were specified in Subtask 2. In Subtask 3, the technology readiness level of each element was assessed. Finally, in Subtask 4, the development cost and schedule requirements were estimated for bringing each element to 'readiness level 6'.

  20. QFD emphasis of IME design

    NASA Astrophysics Data System (ADS)

    Erickson, C. M.; Martinez, A.

    1993-06-01

    The 1992 Integrated Modular Engine (IME) design concept, proposed to the Air Force Space Systems Division as a candidate for a National Launch System (NLS) upper stage, emphasized a detailed Quality Functional Deployment (QFD) procedure which set the basis for its final selection. With a list of engine requirements defined and prioritized by the customer, a QFD procedure was implemented where the characteristics of a number of engine and component configurations were assessed for degree of requirement satisfaction. The QFD process emphasized operability, cost, reliability and performance, with relative importance specified by the customer. Existing technology and near-term advanced technology were surveyed to achieve the required design strategies. In the process, advanced nozzles, advanced turbomachinery, valves, controls, and operational procedures were evaluated. The integrated arrangement of three conventional bell nozzle thrust chambers with two advanced turbopump sets selected as the configuration meeting all requirements was rated significantly ahead of the other candidates, including the Aerospike and horizontal flow nozzle configurations.

Top